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We present an escape rate theory for current-induced chemical reactions. We use Keldysh nonequi-
librium Green’s functions to derive a Langevin equation for the reaction coordinate. Due to the out
of equilibrium electronic degrees of freedom, the friction, noise, and effective temperature in the
Langevin equation depend locally on the reaction coordinate. As an example, we consider the dis-
sociation of diatomic molecules induced by the electronic current from a scanning tunnelling mi-
croscope tip. In the resonant tunnelling regime, the molecular dissociation involves two processes
which are intricately interconnected: a modification of the potential energy barrier and heating of
the molecule. The decrease of the molecular barrier (i.e., the current induced catalytic reduction of
the barrier) accompanied by the appearance of the effective, reaction-coordinate-dependent tempera-
ture is an alternative mechanism for current-induced chemical reactions, which is distinctly different
from the usual paradigm of pumping vibrational degrees of freedom. © 2013 American Institute of
Physics. [http://dx.doi.org/10.1063/1.4797495]

I. INTRODUCTION

The recent advances in nano fabrication make it possi-
ble to use the scanning tunnelling microscope (STM) as a
“nanoscale chemical reactor.” The tunnelling current from the
STM tip can selectively break or form chemical bonds1–3 and
initiate chemical reactions of the reactants.4, 5

The rates of chemical reactions can be routinely
computed for molecular systems in thermodynamic equi-
librium. Usually one relies on the Born-Oppenheimer
approximation6–8 and may include various nonadiabatic ef-
fects, when the electronic energy levels are not well separated
or coupled to the continuum of the environment states.9–12

Let us now assume that the electronic system is driven out
of equilibrium. As an example for an out of equilibrium sys-
tem we consider a molecular junction (molecule attached to
two macroscopic metal electrodes held at different chemical
potentials) or a molecule absorbed on a metal surface under
a scanning tunnelling microscope tip. As electric current is
flowing through the molecule, considerable amounts of en-
ergy are dissipated and partly passed from electronic to nu-
clear degrees of freedom—in linear response, the total dissi-
pated power is proportional to IV . Thus, since the current is
in the range of nanoamperes and the voltage is a few volts, a
significant energy (∼0.2 Hartree/ns) is dissipated in total and
the energy which is dissipated in the molecule per nanosecond
can be comparable to typical barriers for chemical reactions.

Generally speaking, the electrons produce not only the
standard adiabatic force but also give random fluctuations and

viscosity to the nuclear dynamics.12 Close to equilibrium, the
latter are related by the fluctuation-dissipation theorem,13 but
far from equilibrium the noise is no longer balanced by the
viscosity. The absence of the fluctuation-dissipation relation
as a direct consequence of nonequilibrium opens new possi-
bilities in chemistry, such as unusual ways to catalyse chemi-
cal reactions.

In this paper, we develop a theory for current-induced
chemical reactions. The main physical assumptions of our
theory are that the electronic dynamics is much faster than
the nuclear motion and that the reaction coordinate is a classi-
cal variable. This results in Markovian dynamics of the reac-
tion coordinate described by a Fokker-Planck equation. This
Fokker-Planck equation has interesting new features. Namely,
the nonequilibrium potential energy surface depends on the
electronic current flow through the molecule and the effective
temperature produced by the nonequilibrium electrons on nu-
clear degrees of freedom is no longer constant but becomes
a function of the reaction coordinate. In other words, the out
of equilibrium electrons not only change the profile of the po-
tential energy surface for the reaction coordinate but locally
heat it with different rates. For the paradigmatic example of
the dissociation of diatomic molecules, we show that current-
induced chemical reactions involve two interconnected pro-
cesses: a modification of the potential energy barrier and heat-
ing of the molecule. This new mechanism for current-induced
chemical reactions complements the familiar paradigm of
pumping vibrational degrees of freedom.14, 15 The principal
difference between this paper and previous work13 lies in
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lifting the strong assumption that the temperature of the nu-
clear degrees of freedom is exactly the same as that of the
equilibrium electrons in the metal surface.

The remainder of the paper is organized as follows. Our
main results are summarized and illustrated by Fig. 7 and we
discuss our results in relation to experiment at the end of Sec.
III. In Sec. II, we describe the Langevin equation for the re-
action coordinate. Section III presents the calculation of the
reaction rates via the solution of a Fokker-Planck equation.
Conclusions are given in Sec. IV. Some technical aspects
are relegated to Appendixes A and B. We use atomic units
throughout the equations in the paper.

II. LANGEVIN EQUATION FOR THE REACTION
COORDINATE

As a model system, we consider a diatomic molecule at-
tached to two metal electrodes, say, a metal surface on one
side and an STM tip on the other. A sketch of a possible exper-
imental setup is shown in Fig. 1. The molecule is modeled by
one electronic spin-degenerate molecular orbital with single
particle energy ε(x) + Vg , which depends on the bond length
x and the gate voltage Vg. The bond length x can be considered
as the reaction coordinate. The Coulomb interaction between
electrons is accounted for by a charging energy UC(x), which
is a function of the bond length x. The reaction coordinate
x is considered to be a classical variable with corresponding
momentum p and a reduced mass m (taken as that of the H2

molecule, m = 918 a.u.). The nuclear Coulomb repulsion en-
ergy is VN (x) = 1/x. Then the molecular Hamiltonian is

HM = (ε(x) + Vg)
∑

σ

a†
σ aσ + 1

2
UC(x)n↑n↓ + p2

2m
+ VN (x).

(1)
Here a†

σ (aσ ) creates (annihilates) an electron with spin
σ = ↑, ↓ in the molecular orbital and nσ = a†

σ aσ . The details
of the parametrization of the molecular Hamiltonian are given
in Appendix A. The model Hamiltonian is not restricted to the
H2 molecule. It should rather be considered as a physically
simple yet qualitative accurate model of a covalent chemical
bond.

The complete Hamiltonian of the molecular junction con-
sists of the molecular Hamiltonian (1), the Hamiltonians for
noninteracting left and right electrodes, and the molecule-
electrode interaction:

H = HM +
∑

σ,k∈L,R

εka
†
σkaσk +

∑
σ,k∈L,R

(tka
†
σkaσ + h.c.), (2)

where a
†
σk(aσk) creates (annihilates) an electron in the single-

particle state σk of either the left (L) or the right (R) electrode.
The electron creation and annihilation operators satisfy stan-
dard fermionic anticommutation relations. The electron occu-
pation numbers in both electrodes obey the Fermi-Dirac dis-
tribution fL,R(εk) = [1 + e(εk−μL,R )/T ]−1. The chemical po-
tentials in the electrodes, μL and μR, are assumed to be biased
by the external symmetrically applied voltage V = μL − μR ,
which we take to be positive, and μL,R = ±0.5 V. The Fermi
energies of the electrodes are set to zero. We also assume that
the tunnelling matrix element tk is spin independent.

FIG. 1. (Upper part) Possible experimental setup. The STM tip is positioned
above a molecule (represented as a sphere). An electron coming from the tip
onto the molecule then tunnel into the conducting surface. A gate electrode
is used to tune the molecular energy level(s), and to control the current flow
between the STM tip and the conducting surface. (Lower part) Schematic
illustration of the model. By varying the gate voltage, the molecular energy
level can be shifted near the chemical potential of the electrodes. The molecu-
lar orbital energy ε(x) and electron-electron interaction energy UC(x) depend
on the bond length x.

The coupling with the electrodes broadens the molecular
level with the width given by the imaginary part of the elec-
trode self-energy,

�(ω) = �L + �R = −Im
∑

k∈L,R

|tk|2/(ω − εk + i0+). (3)

In what follows, for the sake of simplicity, we will use the
wide-band approximation for the electrodes, i.e., the imagi-
nary part � of the self-energy is energy independent and the
real part vanishes. The total width of the molecular level is
fixed in our numerical calculations, � = 1.36 eV, but we vary
the relative contributions of left and right electrodes.
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We neglect the effect of the electric field on the
molecule—for diatomic molecules lying flat on the metal sur-
face the electric field is perpendicular to the bond length and
does not influence the dynamics. In other cases, the electric
field may give an additive contribution which can be easily
included into the model for particular molecule-electrode ge-
ometries and inter-electrode distances.

We begin with the Ehrenfest coupled electron-nuclei dy-
namical equations

i¯ρ̇(x, t) = [H, ρ(x, t)], (4)

mẍ = −Tr

[
ρ(x, t)

∂H

∂x

]
. (5)

We eliminate the electronic density matrix from this equation
assuming that the electronic degrees of freedom vary much
faster than the nuclear motion. Physically this means that the
oscillation period τ p of the reaction coordinate is much larger
than the tunneling time for the electrons, i.e., τ p � 1/�. Be-
low we will see that this assumption is fulfilled for the model
under consideration. This eliminates the direct time depen-
dence from the electronic density matrix ρ(x, t) ∼ ρ(x), which
now depends parametrically on time through the reaction co-
ordinate. The result is the following Langevin equation for the
reaction coordinate,

mẍ = −Tr

[
ρ(x)

∂H

∂x

]
− ξ (x)ẋ + δf (x, t). (6)

Here ρ(x) is the nonequilibrium density matrix, ξ (x) is the
frictional force (viscosity), and δf(x, t) is the random force
(noise) taken in the Gaussian form

〈δf (x, t)〉 = 0, 〈δf (x, t)δf (x, t ′)〉 = D(x)δ(t − t ′). (7)

The derivation of the Langevin equation via Keldysh
nonequilibrium Green’s functions (NEGF) is presented in
Appendix B.

To obtain expressions for the frictional force and noise
intensity D(x), we apply the mean-field approximation to the
Hamiltonian (1), i.e., we replace it by

H mf
M = εeff(x)

∑
σ

nσ + VN (x) + p2

2m
, (8)

where

εeff(x) = ε(x) + Vg + 1

2
UC(x)n(x) (9)

is the effective single particle energy and n(x) = Tr[ρ(x)nσ ]
is the nonequilibrium population of the electronic level of the
molecule. This can be computed by means of the NEGF, see
Eq. (B17) in Appendix B. In Appendix B, we also present the
details of the derivation of the explicit expressions for ξ (x)
and D(x).

For low temperatures, T → 0, the Fermi-Dirac electron
distributions in the electrodes fL, R(ω) can be approximated by
a step like function, and the level population, friction coeffi-

cient, and noise intensity can be written as

n(x) =1

2
− 1

π�

{
�L arctan

(
εeff(x) − μL

�

)

+ �R arctan

(
εeff(x) − μR

�

)}
, (10)

ξ (x) = 2�

π
{�LQ(μL, x) + �RQ(μR, x)} , (11)

D(x) = 4�L�R

π

∫ μL

μR

dω Q(ω, x), (12)

where the function Q(ω, x) is defined as

Q(ω, x) =
[

ε′
eff(x)

(ω − εeff(x))2 + �2

]2

. (13)

Note that in the derivation of Eq. (11) we have utilized
(− ∂ωfα) = fα(1 − fα)/T and lim

T →0
(−∂ωfα) = δ(ω − μα).

Equations (9), (11), (12), and (10) are the main equations
of our model. Their solution provides us with the parameters
of the Langevin equation (6). Note that εeff(x) in (10) itself
depends on n(x), through Eq. (9). Therefore, both equations
should be solved self-consistently. The main variables in our
model are the applied voltage V and the asymmetry coeffi-
cient g = �L/�R. The asymmetry coefficient g controls the
relative strength of the coupling to left and right electrodes.
Replacing g by 1/g is equivalent to reversing the applied
voltage.

In Fig. 2 the effective single particle energy εeff(x) and
the population n(x) are depicted for two values of the applied

FIG. 2. Effective single particle energy level εeff(x) and population n(x) as
a function of the reaction coordinate x for different values of the asym-
metry coefficient g = �L/�R and applied voltage V . We chose εeff(xmin)
= −9.8 eV, where xmin = 1.66 a.u. corresponds to the minimum of the equi-
librium potential energy of the molecule. The Fermi energies of the electrodes
are set to zero.
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FIG. 3. Friction coefficient ξ (x) and noise intensity D(x) as a function of the
reaction coordinate x. All the parameters are the same as those in Fig. 2.

voltage, small (V = 0.27 eV) and large (V = 1.36 eV), and
for different values of the asymmetry coefficient g. The refer-
ence point for the effective molecular orbital energy is chosen
to be εeff(xmin) = −9.8 eV (relative to the electrode Fermi en-
ergy), where xmin = 1.66 a.u. determines the minimum of the
H2 ground state energy (see Eq. (A3)). This reference point
can be shifted by the real part of the electrode self-energy, if
we revoke the wide-band approximation, or by the applica-
tion of a gate voltage Vg . The dependence of the results on
gate voltage will be discussed below. As seen from the figure,
at small values of the reaction coordinate, i.e., when the elec-
tron level is well below the electrode Fermi levels, both εeff(x)
and n(x) are nearly independent of the applied voltage and the
asymmetry coefficient. The situation changes with increasing
x, i.e., when εeff(x) comes into resonance with the electrode
Fermi levels. In that case, the electron population is strongly
affected by the asymmetry coefficient and the effect becomes
more pronounced at larger values of V . As a result, at large
x and V the effective single particle energy εeff(x) grows with
increasing g.

In Fig. 3 the friction coefficient ξ (x) and the noise in-
tensity D(x) are plotted for the same parameters as those in
Fig. 2. The friction coefficient grows with increasing x and
reaches its maximum value when εeff(x) is close to the chemi-
cal potentials of the electrodes, i.e., when the resonant regime
is approached. The friction ξ (x) becomes smaller when the
molecule starts to fall apart (due to the decrease of ε′

eff(x)).
As seen from the figure, the friction coefficient grows as the
asymmetry coefficient is reduced and this dependence is more
pronounced for larger values of V . Besides, for small values
of g the friction is more sensitive to changes in the applied
voltage.

The noise intensity D(x) also reaches its maximum value
when εeff(x) is close to the chemical potentials of the elec-

FIG. 4. (Upper panels) Effective temperature Teff as a function of the re-
action coordinate x for two values of the applied voltage x. (Lower panels)
Effective temperature Teff as a function of the applied voltage V for two val-
ues of the reaction coordinate x. All the parameters are the same as those in
Fig. 2.

trodes. However, in contrast to the previous case, D(x) is
maximal for symmetric coupling to the electrodes, i.e., when
g = 1. Moreover, because of the integral in Eq. (12) the order
of magnitude of D(x) is proportional to the applied voltage.

Motivated by the fluctuation-dissipation theorem, we can
also introduce an effective “temperature” which depends on
the reaction coordinate,

Teff(x) = D(x)

2ξ (x)
=

�−1�R�L

∫ μL

μR
Q(ω, x)dω

�LQ(μL, x) + �RQ(μR, x)
. (14)

Assuming that Q(ω, x) ≈ const. for μL > ω > μR we can
approximate (14) by

Teff(x) ≈ T (V, g) = V
�R�L

�2
= V

g

(1 + g)2
. (15)

The effective temperature (15) has a maximum of V/4 when
g = 1. Note that the current is also maximal when the cou-
pling to the electrodes is symmetric. In upper panels of Fig. 4
the effective temperature Teff(x) is shown for the same param-
eters as those in Fig. 2 for two values of the applied voltage.
As seen, for small applied voltages Teff(x) is nearly indepen-
dent of x and can be approximated by Eq. (15). When the ap-
plied voltage increases the effective temperature also grows
and Teff becomes dependent on the reaction coordinate in a
rather nontrivial way. Lower panels of Fig. 4 depict the effec-
tive temperature as a function of V for two particular values
of the reaction coordinate. The point x = 2.0 a.u. is close to
the minimum of the effective potential, while x = 5.0 a.u. is
near the top of the barrier. We emphasize that by reversing the
applied voltage polarity (i.e., replacing g by 1/g) we can vary
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the effective temperature and the effect is more pronounced
the larger the value of V .

III. REACTION RATES

A. Fokker-Planck equation for the reaction coordinate

Since ∂H/∂x = ε′
eff(x)

∑
σ nσ + V ′

N (x) in mean-field
approximation, Eq. (6) becomes

mẍ = −2ε′
eff(x)n(x) − V ′

N (x) − ξ (x)ẋ + δf (x, t). (16)

The Langevin equation (16) is equivalent to the Fokker-
Planck equation for the distribution function F(x, p, t),

∂

∂t
F = −

{
U ′

eff(x)
∂

∂p
− p

m

∂

∂x

}
F

+ ξ (x)

m

∂

∂p
(pF ) + D(x)

2

∂2

∂p2
F. (17)

Here the effective nonequilibrium potential energy surface
is defined via integration of the nonequilibrium force in the
Langevin equation,

Ueff(x) = VN (x) + 2
∫ x

x0

ε′
eff(y)n(y)dy. (18)

In Fig. 5 the nonequilibrium effective potential is shown
as a function of the reaction coordinate for different values of
the asymmetry coefficient g, applied voltage bias V , and gate
voltage Vg . The current flow through the molecule changes

FIG. 5. Effective nonequilibrium potential Ueff(x) as a function of the reac-
tion coordinate x for two values of the applied voltage V . The panels corre-
spond to different positions of the effective molecular orbital energy relative
to the electrode Fermi energy εeff(xmin) = −9.8 eV + Vg . All other parame-
ters are the same as those in Fig. 2.

the height of the potential barrier: for g < 1 the current re-
duces the barrier height and for g > 1 the current increases
it. The explanation is the following: when the coupling to
the left electrode is stronger (g > 1) the current pumps elec-
trons into the molecule and enhances the chemical bond. Con-
versely, when the coupling to the right electrode is stronger
the current depletes the molecular electrons, thereby weaken-
ing the chemical bond. Thus, by reversing the voltage polarity
we can vary the height of the potential barrier. But it should
be stressed that the effective temperature Teff also changes
with reversing the voltage polarity and the barrier growth is
accompanied by a temperature increase. We also see from
Fig. 5 that the height of the potential barrier can be decreased
by increasing the gate voltage. The resonant tunneling regime
Vg = 0 and Vg = 1.36 eV is physically most interesting, since
the nonequilibrium potential energy profile exhibits a clear
barrier between product and reactant states. We focus on the
resonant tunnelling regime in our calculations of the reaction
rates.

Now we want to reduce the Fokker-Planck equation (17)
to the Smoluchowski equation for the distribution function
which depends either on the reaction coordinate x (over-
damped motion) or on the energy E = p2

2m
+ Ueff(x) (under-

damped motion). To find which case is realized for the con-
sidered model, we compare the oscillation period along the
reaction coordinate and the relaxation time due to friction.
The oscillation period is given by

τp(E) = 2
∫ x2

x1

dx

ẋ
= 2

∫ x2

x1

dx√
2
m

(E − Ueff(x))
, (19)

where x1 and x2 are left and right turning points, i.e.,
E = Ueff(x1, 2). If E ≈ Ueff(xmin) then τ p ≈ 2π /ω0, where
ω0 = √

U ′′
eff(xmin)/m is the oscillation frequency near the bot-

tom of the effective potential. In Table I, the oscillation period
is computed for various values of the bias voltage, gate volt-
age, and asymmetry coefficient. Since τ p � 1/� (� = 0.05
a.u.) the assumption behind the derivation of the Langevin
equation (Appendix B), namely, the assumption that the elec-
tronic degrees of freedom are much faster than the motion
along x is fulfilled. In Fig. 3, the friction ξ (x) is shown for
different values of asymmetry coefficient g and applied volt-
age V . It is evident that the relaxation time due to the friction
m/ξ (x) is much larger than the oscillation period. Therefore,
the energy dissipation per period of the motion is small, which
means that we deal with underdamped motion.

TABLE I. The period of motion (Eq. (19), a.u. of time) in the nonequilib-
rium effective potential (the bias voltage V = 1.36 eV) for different values of
the asymmetry coefficient g and the gate voltage Vg . The parameter k defines
the energy, k = (E − Emin)/(Emax − Emin). All other parameters are the same
as those in Fig. 2.

Vg = 0.0 Vg = 1.36 eV

k g = 0.1 g = 1.0 g = 10 g = 0.1 g = 1.0 g = 10

0.1 400 405 393 435 414 407
0.5 498 496 497 515 500 491
0.9 781 806 817 744 752 776
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B. Calculations of the reaction rates

The solution of the Fokker-Planck equation is not trivial
in our case, since the effective temperature depends on the
reaction coordinate. Using the method described by Coffey
et al.16 the Fokker-Planck equation is reduced to the equation
for the distribution function for the energy, P(E, t),

∂

∂t
P (E, t) = ∂

∂E
[ξ (E)P (E, t)]

+ 1

2

∂

∂E

[
D(E)

∂

∂E
P (E, T )

]
, (20)

where

ξ (E) = 1

T (E)

∫ x2

x1

ξ (x)ẋdx (21)

and

D(E) = 1

T (E)

∫ x2

x1

D(x)ẋdx. (22)

By introducing

α(E) = 1

2

∂

∂E
D(E) − ξ (E), (23)

we re-write this equation as the Smoluchowski equation,

∂

∂t
P (E, t) = − ∂

∂E
[α(E)P (E, t)] + 1

2

∂2

∂E2
[D(E)P (E, T )] .

(24)
The same equation was obtained in Ref. 17, though the theory
was applied only to a nano-mechanical harmonic oscillator
and thus did not consider dissociation processes. Then, the
mean time for a particle with initial energy Emin = Ueff(xmin)
to arrive at the top Emax = Ueff(xmax) of the potential barrier is
given by (see, for example, Eq. XII.3.7 in Ref. 18)

τ = 2
∫ Emax

Emin

dEe�(E)
∫ E

Emin

dE′

D(E′)
e−�(E′), (25)

where

�(E) = −
∫ E

E0

2α(E′)
D(E′)

dE′. (26)

Note that the choice of E0 is not relevant since it does not
contribute to the escape time (25). Using relation (23), we can
rewrite (25) as

τ = 2
∫ Emax

Emin

dE

D(E)
e�(E)

∫ E

Emin

e−�(E′)dE′, (27)

where

�(E) =
∫ E

E0

1

Teff(E′)
dE′ (28)

in terms of the effective temperature Teff(E) = D(E)/2ξ (E).
Equation (27) gives us the exact escape time (mean first

passage time) for the Brownian particle in the underdamped
regime with coordinate-dependent effective temperature. In
our particular case it can be further simplified, because our
calculations show that the effective temperature Teff(E) de-
pends only slightly on energy when Emin < E < Emax and
can be approximated by Eq. (15), i.e., Teff(E) = T (V, g).

FIG. 6. Escape time computed for various values of the asymmetry coeffi-
cient g as a function of the applied voltage. The left and right panels corre-
spond to different positions of the effective molecular orbital energy relative
to the electrode Fermi energy εeff(xmin) = −9.8 eV + Vg . All other parame-
ters are the same as those in Fig. 2.

With this approximation, the integral (28) becomes �(E)
≈ E/Teff(E). Substituting this into Eq. (27) we obtain

τ ≈ 2Teff(Emin)
∫ Emax

Emin

dE

D(E)
exp

{
E − Emin

Teff(E)

}
. (29)

This formula gives us the escape time from the nonequilib-
rium potential barrier with the effective temperature which
depends on the energy of the particle.

In Fig. 6 we show the escape time (29) computed for var-
ious values of the asymmetry coefficient g as a function of
the applied voltage V . For all values of g the escape time
decreases with increasing applied voltage. We also see that
moving the molecular orbital closer to the Fermi energy of the
electrodes facilitates the dissociation. When the noise is bal-
anced by the viscosity, i.e., when the fluctuation-dissipation
relations are forced for the nuclear degrees of freedom,13 the
dependence of the reaction rates on asymmetry coefficient is
more complicated. For example, it was shown that the chem-
ical reaction can be catalysed or stopped depending on the
direction of the electric current.13 In contrast, the absence of
the fluctuation-dissipation relation leads to a rise of the effec-
tive temperature Teff(x) (or Teff(E)) which always overrides the
increase of the nonequilibrium potential barrier. We also see
from the figure that for asymmetric coupling the escape time
can be controlled by changing the applied voltage polarity,
i.e., by replacing g by 1/g.

In experiments on STM induced molecular dissociation,
the applied voltage bias is usually fixed while the electric cur-
rent is varied by changing the distance between STM tip and
molecule.1 In the following, we apply our approach to model
this experimental scenario. Similar to the experimental condi-
tions, we keep the coupling to the surface, �R, and the applied
bias voltage fixed. Then we compute the reaction rate (inverse
escape time) as a function of the electric current by changing
the coupling to the left electrode �L, which is equivalent to
changing the distance between STM tip and molecule. The
results of the calculation are shown in Fig. 7. Our calcula-
tions predict a rather nontrivial dependence of the reaction
rate on the tunnelling current. Note that these results reveal
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FIG. 7. Reaction rate for the molecule dissociation computed at the fixed
applied voltage as a function of the electric current. The left and right pan-
els correspond to different positions of the effective molecular orbital energy
relative to the electrode Fermi energy εeff(xmin) = −9.8 eV + Vg . In our cal-
culations we choose the right coupling fixed, �R = 1.36 eV, and vary the left
coupling to change the current at constant applied voltage. All other parame-
ters are the same as those in Fig. 2.

much more structure than the power law dependence on cur-
rent reported experimentally for a related but different sys-
tem, namely, O2.1 The main reason for this is the following.
The simple estimation shows that the coupling to the STM
tip, �L, which reflects the experimental conditions,1 is of or-
der 0.001 eV. This makes the electronic tunneling rate small
compared to the vibrational frequency of the molecule. In this
limit, a simple Fermi golden rule calculation applies and gives
a power law dependence of the reaction rate.1 In contrast, we
treat the interesting limit of larger electronic currents where
the molecule is in fully developed nonequilibrium. It is in this
regime that we predict a highly nontrivial current dependence
of the dissociation rate. This reflects the fact that our approach
is geared towards fully developed nonequilibrium, while pre-
vious work effectively treated systems close to thermal equi-
librium. Therefore, the absence of a simple power low depen-
dence of the reaction rate and the appearance of nontrivial
nonlinear behaviour as shown in Fig. 7 may serve as an indi-
cation of fully developed electronic nonequilibrium.

IV. CONCLUSIONS

In this paper, we have formulated and solved Kramers
problem for current-induced, out of equilibrium chemical re-
actions. As a general model of covalent bond breaking, we
have considered the dissociation of diatomic molecules in-
duced by the tunnelling current from a STM tip. We have
proposed a model Hamiltonian for the system and, by pro-
jecting out the electronic degrees of freedom, we have de-
rived a Langevin equation for the time evolution of the
reaction coordinate. The Langevin equation leads to Fokker-
Planck dynamics with an effective temperature which de-
pends on the reaction coordinate. The reaction rate for the
dissociation is computed by solving the Fokker-Planck equa-
tion for the escape time. In the resonant tunnelling regime,
two processes play equally important roles in the molecular
dissociation: the decrease of the potential energy barrier and
reaction-coordinate-dependent local heating of the molecule.
The current induced catalytic reduction of the barrier accom-
panied by the local heating is an alternative mechanism for
current-induced bond breaking, which is very different from

the widely accepted paradigm of merely pumping vibrational
degrees of freedom.
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APPENDIX A: PARAMETRIZATION
OF THE HAMILTONIAN

In our calculations we take ε(x) in the form of the bond-
ing orbital for the H+

2 molecule in the gas phase19

ε(x) = −1

2
+ J (x) + K(x)

1 + S(x)
, (A1)

where the functions J(x), K(x), S(x) are given by

J (x) = e−2x

(
1 + 1

x

)
− 1

x
,K(x) = −e−x(1 + x),

(A2)

S(x) = e−x

(
1 + x + x2

3

)
.

The Coulomb interaction between electrons UC(x) is chosen
such to reproduce, within the equilibrium (n(x) = 1, Vg = 0)
mean-field Hamiltonian (2), the energy of the H2 molecule
obtained within the molecular orbital theory (see Appendix
on page 543 in Ref. 19), i.e.,

〈H mf
M 〉 = EMO(x) = 2ε(x) + UC(x) + 1

x
. (A3)

Here we neglect the nuclear kinetic energy contribution.
Therefore, UC(x) can be written as follows:

UC(x) =
5
16 + 0.5Jp(x) + Kp(x) + 2L(x)

(1 + S(x))2
, (A4)

where the functions L(x), Jp(x), Kp(x) are listed in Table 10.8
of Ref. 19.

APPENDIX B: DERIVATION OF THE LANGEVIN
EQUATION FOR THE REACTION COORDINATE
VIA NEGF

The Langevin equation for nuclear degrees of freedom
coupled to out-of-equilibrium electrons has recently been
given in various contexts.17, 20–24 To make this paper self-
contained, we provide here an explicit derivation which is
directly adapted to the Hamiltonian under consideration.
Our starting point is the Heisenberg equation of motion
for the reaction coordinate as obtained from the mean-field
Hamiltonian (2),

mẍ + ∂VN

∂x
= −ε′

eff(x)
∑

σ

a†
σ aσ . (B1)

Here, the right-hand side contains the operator describing the
current-induced forces. Given that the molecular dissociation
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dynamics is slow compared to the electronic degrees of free-
dom, we calculate these forces within a nonequilibrium adi-
abatic approximation. In this approximation, the reaction co-
ordinate is taken as classical. The electronic state should be
computed for a given trajectory x = x(t) while in turn, the elec-
trons affect this trajectory through adiabatic reaction forces.

In the nonequilibrium adiabatic approximation, one av-
erages the force appearing on the right-hand side of Eq. (B1)
over times which are long on the scale of the electronic dy-
namics, but short on the scale of the dissociation dynam-
ics. The average adiabatic reaction force is thus given by
the expectation value 〈ε′

eff(x)a†
σ aσ 〉x(t), evaluated for a given

trajectory x(t) of the reaction coordinate. The fluctuation-
dissipation theorem implies that we need to include a fluc-
tuating Langevin force δf(t) in addition to the friction force.
Hence, Eq. (B1) becomes

mẍ + ∂VN

∂x
= 2iε′

eff(x)G<(t, t) + δf (t), (B2)

where we have introduced the lesser Green’s function

G<(t, t ′) = i〈a†
σ (t ′)aσ (t)〉x(t) , (B3)

and the factor of two accounts for spin. Thus, except for
the stochastic noise force, the current-induced forces are
encoded in 2iε′

eff(x)G<. Below we demonstrate that the
current-induced forces can be represented as a sum of two
contributions: the adiabatic force and a velocity-dependent
contribution,

2iε′
eff(x)G< � F (x) − ξ (x)ẋ. (B4)

The variance of the stochastic force δf(t) is governed
by the symmetrized fluctuations of the operator ε′

eff(x)a†
σ aσ .

Given that the electronic fluctuations happen on short time
scales, δf(t) is locally correlated in time,

〈δf (t)δf (t ′)〉 = D(x)δ(t − t ′) . (B5)

Since we are dealing with a mean-field Hamiltonian, D(x) can
be evaluated using Wick’s theorem,

〈δf (t)δf (t ′)〉 = 2[ε′
eff(x)]2G>(t, t ′)G<(t ′, t) , (B6)

where

G>(t, t ′) = −i〈aσ (t)a†
σ (t ′)〉x(t) (B7)

is the greater Green’s function. These expressions show that
we need to evaluate the electronic Green’s function for a given
classical trajectory x(t).

We start with the Keldysh equation for lesser Green’s
function:

G<(t, t ′) =
∫

dt1

∫
dt2 GR(t, t1)�<(t1, t2)GA(t2, t

′) , (B8)

where the retarded and advanced Green’s functions are given
by the standard expressions

GR(t, t ′) = −iθ (t − t ′)〈{aσ (t), a†
σ (t ′)}〉x(t) , (B9)

GA(t, t ′) = GR(t ′, t)∗. (B10)

The Keldysh equation (B8) involves the lesser self-energy,

�<(ω) = 2i
∑

α

fα(ω)�α(ω) , (B11)

where fα(ω) = [1 + eβα (ω−μα)]−1 is the Fermi-Dirac electron
distribution in the left (α = L) or the right (α = R) electrode,
and �α(ω) is the imaginary part of the retarded self-energy
due to interaction with the electrodes

�R
α (ω) =

∑
k∈α

|tk|2
ω − εk + i0+ = �α(ω) − i�α(ω). (B12)

The adiabatic expansion of Keldysh equation is carried
out in the Wigner representation, given by

Ã(t, ω) =
∫

dτ eiωτA(t + τ/2, t − τ/2) (B13)

for a general function A(t, t′), in which fast and slow time
scales are easily identifiable. For the Green’s function GA,R,<,
the slow mechanical motion implies that GA,R,<(t1, t2) varies
slowly with the central time t = t1+t2

2 , but oscillates fast with
the relative time τ = t1 − t2. As usual, the Wigner transform
of a convolution C(t1, t2) = ∫

dt3 A(t1, t3)B(t3, t2) is given by

C̃ = exp

[
i

2

(
∂Ã
ε ∂B̃

t − ∂Ã
t ∂B̃

ε

)]
ÃB̃

� ÃB̃ + i

2
∂εÃ∂t B̃ − i

2
∂t Ã∂εB̃, (B14)

where we have dropped higher order derivatives in the last
line, exploiting the slow variation with the central time t.

Expanding Eq. (B8) up to the leading adiabatic correc-
tion according to Eq. (B14) and taking into account that �<

depends only on ω and is independent of the central time, we
obtain G< to first order in ẋ,

G̃< =G< + i

2
ẋ ε′

eff(x)
[
G<∂ωG> + G>∂ωG<

]
. (B15)

Here G̃ denotes full Green’s functions in Wigner represen-
tation, while G denotes the strictly adiabatic (or “frozen”)
Green’s functions that are evaluated for a fixed value of x:
GR(x, ω) = [ω − εeff(x) − �R(ω)]−1, �R(ω) = ∑

α �R
α (ω),

GA = (GR)†, G< = GR�<GA, G> = G< + GR − GA.
Let us now compute the current-induced forces appearing

in the Langevin equation (6). In the strictly adiabatic limit,
i.e., retaining only the first term on the RHS of Eq. (B15),
G̃< � G<, we obtain the mean force

F (x) = −2ε′
eff(x) n(x), (B16)

where n(x) is the nonequilibrium population of the electronic
level

n(x) =
∫

dω

2πi
G<(x, ω). (B17)

The leading order correction in Eq. (B15) gives a
velocity-dependent contribution to the current induced forces,
which determines the friction ξ (x) in the Langevin equation.
After integration by parts we obtain the explicit expression

ξ (x) = 2[ε′
eff(x)]2

∫
dω

2π
G<(x, ω)∂ωG>(x, ω). (B18)
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We evaluate the noise intensity D(x) (B6) for the stochastic
force δf to the lowest order in the adiabatic expansion, so that

D(x) = 2[ε′
eff(x)]2

∫
dω

2π
G>(x, ω)G<(x, ω). (B19)

Equations (B18) and (B19) can be simplified if we use
the wide-band approximation for the electrodes. Namely, the
wide-band limit employs that the retarded self-energy is en-
ergy independent, �R

α (ω) = −i�α . In that case

G<(x, ω) = 2i

∑
α fα�α

(ω − εeff(x))2 + �2
(B20)

and we obtain the following expressions for the friction:

ξ (x) = 4�

∫
dω

2π
Q(ω, x)

∑
α=L,R

(−∂ωfα)�α (B21)

and the noise intensity

D(x) = 8
∫

dω

2π
Q(ω, x)

∑
αα′=L,R

�α�α′fα(1 − fα′ ). (B22)

Here, the factor Q(ω, x) is given by Eq. (13).
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