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Proposal for an on-demand source of polarized electrons into the edges of a topological insulator
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We propose a device that allows for the emission of pairs of spin-polarized electrons into the edge states
of a two-dimensional topological insulator. Charge and spin emission is achieved using a periodically driven
quantum dot weakly coupled to the edge states of the host topological insulator. We present calculations of the
emitted time-dependent charge and spin currents of such a dynamical scatterer using the Floquet scattering matrix
approach. Experimental signatures of spin-polarized two-particle emission can be found in noise measurements.
Here a new form of noise suppression, named Z2 antibunching, is introduced. Additionally, we propose a setup
in which entanglement of the emitted electrons is generated. This entanglement is based on a postselection
procedure and becomes manifest in a violation of a Clauser-Horne-Shimony-Holt inequality.
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I. INTRODUCTION

Recent experiments have shown the possibility to emit
quantized charges by mesoscopic capacitors1–3—these sys-
tems are also known as single-particle sources (SPSs). The
indistinguishable nature of the emitted charges has been proven
via a quantum interference experiment.4 A mesoscopic capac-
itor consists of a quantum dot (QD) that can exchange carriers
only via a quantum point contact (QPC) with an external
electron reservoir—usually a two-dimensional electron gas
(2DEG). The carrier emission from the QD to the 2DEG is
obtained by driving the QD’s energy levels periodically around
the Fermi level of the 2DEG via a gate coupled capacitively to
it.3,5 A perpendicular magnetic field is applied to the sample, so
to be in the regime of the integer quantum Hall effect (IQHE).
Thus, the system works by using the edge channels of the
IQHE.

Since 2005, a new class of materials known as topological
insulators (TIs) have attracted the attention of the physics
community because they show conductive edge states, even in
absence of external magnetic fields.6 Two-dimensional (2D)
TIs have been theoretically predicted7 and experimentally
verified8 first in HgTe/CdHgTe quantum wells at a cryostat
temperature of 4.2 K. However, these systems did not show
a perfect quantization of the edge states—this problem has
been recently addressed in terms of charge puddles.9 The
conductive edge states have a linear gapless energy dispersion.
These can be described by a Dirac-like Hamiltonian where the
chemical potential can be shifted by opportune gating of the
system, similarly to graphene.7,8 The edge nature of the particle
transport in this material has been further addressed by specific
experiments investigating the current distribution along the
transversal direction of the sample.10,11 Nowadays, a race for
finding new 2D TIs is underway; one of the most promising
candidates is InAs/GaSb quantum wells.12,13 In these types
of heterostructure quantum wells the edge state quantization
is more accurate. Further, they present a protection against
time-reversal symmetry (TRS) perturbations, e.g., external

magnetic fields.14 In 2D TI systems, charge carriers with
opposite spins move dissipationless in opposite directions on
a given edge.8,10,11,15

In this article, we extend the concept of the SPS beyond the
IQHE paradigm. Contrary to the SPS, we plan to use the edge
states of a 2D TI, thus without external magnetic fields. The
device we propose emits two charge particles at the same time.
However, our device differs from a double SPS4,16,17 because
the two emitted particles are not only correlated in time but
also in spin: their reciprocal spin polarization is fixed by TRS,
thus forming a Kramers’ pair. Because of these properties we
name our device the Spin Particles Source (SpPS).

We believe the SpPS can represent the analog of the
spin-polarized photon source used in quantum optics.18 In this
respect, we propose a scheme for the entanglement of the
two emitted particles by virtue of a postselection procedure.
This paves the way to test the Clauser-Horne-Shimony-Holt19

(CHSH) inequality in condensed matter physics complement-
ing the various schemes already presented for the IQHE
setups20–22 and Cooper pair splitters.23–27 Therefore we are
confident that the SpPS could represent a novel approach to
electron quantum optics. Further, we believe that the SpPS can
also be an important building block of spintronics.28 It can be
used for creating on-demand pure spin current.29–33

The article is structured in the following way: We start
by presenting the SpPS setup (Sec. II), then we show the
results for the emitted current and noise (Secs. III and IV,
respectively). Finally, we propose a scheme for entangling
the Kramers’ partners emitted by the SpPS and we propose
a scheme for violating the CHSH inequality—that is known
as a reformulation of the Bell inequality (Sec. V). The article
concludes with some final remarks and a discussion about the
experimental feasibility of the SpPS. Many technical details
are summarized in the conclusive Appendices.

II. MODEL AND FORMALISM

The system, represented in Fig. 1, is constituted by a QD
shaped in a 2D TI structure, e.g., by etching or opportune
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FIG. 1. (Color online) Sketch of the Spin Particles Source. The
quantum dot is supposed to be of circular shape with a perimeter of
length L. The Kramers’ partners are indicated by the ket states |↑〉
and |↓〉 (see main text for further details).

gating of a HgTe/CdHgTe or InAs/GaSb quantum well. A QPC
separates the QD and the part that is connected to macroscopic
electrodes, named the external part. Furthermore, a metallic
gate is placed on top of the QD.

We start by considering the edge states of the 2D TI. In
the low-energy approximation, these can be described by
an effective Hamiltonian, characterizing the spin-polarized
fermionic modes with linear dispersion:34

H0 = −ih̄vF

∑
σ,σ̄=↑,↓

∫
dx[: �

†
Rσ (x)∂x�Rσ (x) :

− : �
†
Lσ̄ (x)∂x�Lσ̄ (x) :]. (1)

Here x denotes the longitudinal coordinate along the edge,
vF is the Fermi velocity of the edge states, and �R,σ and
�L,σ are the right and left mover electron fields, respectively.
The index σ = ↑,↓ is the spin component with respect to
the a generic quantization axis. In fact, we neglect the Rashba
spin-orbit interaction between the valence and the conductance
band; thus we consider constant the spin projection of the two
edge channels.35 In this representation, the spin eigenstates
σ and σ̄ form Kramers’ pairs. At equilibrium, we assume
the Fermi level to be at the Dirac point of the spectrum. The
symbol : : in Eq. (1) denotes normal ordering with respect to
the ground-state density.

The QD is characterized by a set of discrete levels cor-
responding to quantized counterpropagating edge states–the
quantization is related to the perimeter L of the QD itself. The
time for a complete round trip along the edge of the QD is
τ = L/vF. Thus, the QD level spacing is � = h/τ = hvF/L.

The metallic gate couples capacitively to the QD; this allows
for shifting its energy levels periodically in time:

Hg(t) =
∫ L

0
dy eVg(t)[ρR↑(y) + ρL↓(y)], (2)

where ρασ (y) =:�†
ασ (y)�ασ (y) : is the electron density op-

erator, and y the coordinate along the QD perimeter. The
gate potential Vg(t) = V0 + Vext(t) contains two terms: a
time-independent one V0, used for tuning the position of the
energy levels of the QD with respect to the Fermi energy of the
external part, and a periodic time-dependent part Vext(t) that
shifts these energy levels in time.

Experimental data for the case of the SPSs1–4 has shown
that Coulomb interaction for dots of size ∼1 μm in diameter
has as a main effect the renormalization of the Fermi velocity,
but does not affect qualitatively the particle emission. Recent

experiments have shown that the edge states are characterizing
by a width on the order of 5 μm.10,11 In order to avoid
overlap between the edge states, we estimate that the radius
of the SpPS QD should be greater than the experimental
measured width of the edge states. Within this assumption the
screening of the Coulomb interaction induced by the top gate
enables us to treat the system as noninteracting. Thus, we pro-
ceed using a Landauer-Büttiker treatment as underpinned by
Ref. 36.

We start by analyzing the QPC. Due to TRS, only three
processes at a QPC are allowed, namely, (1) a spin-preserving
forward scattering, (2) a spin- and edge-flipping forward
scattering, and (3) a spin-preserving edge-flipping backscat-
tering. The relevant Hamiltonians at the QPC were already
investigated in previous works36–38 (for clarity we recall them
in Appendix A).

The calculation of the energy-independent scattering matrix
of a QPC in a 2D TI is straightforward (cf. Appendix A) and
reads

	 =

⎛
⎜⎜⎜⎝

0 λpb λff λpf

λpb 0 λpf λff

λ∗
ff λpf 0 λpb

λpf λ∗
ff λpb 0

⎞
⎟⎟⎟⎠, (3)

where λpb, λff , λpf are the scattering amplitudes for the
spin-preserving back-scattering, the spin-flipping forward-
scattering, and the spin-preserving forward-scattering, respec-
tively. The structure of this scattering matrix is imposed by
TRS. A simple Hamiltonian model allows us to parametrize
the elements of the scattering matrix (cf. Appendix A and
Ref. 37):

λpb = −2i
γsp

1 + γ 2
sf + γ 2

sp

, λff = 2i
γsf

1 + γ 2
sf + γ 2

sp

,

λpf = 1 − γ 2
sf − γ 2

sp

1 + γ 2
sf + γ 2

sp

,

where γsf and γsp are dimensionless amplitudes for spin-
flipping processes and spin-preserving backscattering pro-
cesses, respectively.

Next, we evaluate the time-dependent two-terminal scatter-
ing matrix of the QD—Fig. 1. Therefore the wave functions
turning clockwise (spin-up) and anticlockwise (spin-down)
inside the QD are matched to the edge-state wave function
of the external region. The additional time-dependent gate
voltage is accounted for by using the Floquet scattering matrix
(FSM) (cf. Appendix B and Ref. 39; an alternative approach is
based on a time-dependent tight-binding approach in Ref. 40).
The Fourier transform of the FSM is a time-dependent 4 × 4
matrix S(t,E) corresponding to the scattering amplitude
for a particle incident on the time-dependent scatterer with
energy E and leaving the scattering region at a time t . Due
to the distinctive spin-momentum locking of 2D TI, the S
matrix reduces to a 2 × 2 form. Furthermore, conservation of
TRS implies S11 = S22 = 0 and S12 = S21. The off-diagonal
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elements read

S12(t,E) = λpb + (|λff|2 + λ2
pf

)
×

∞∑
q=1

λ
q−1
pb eiqkEL−iφq (t), (4)

where kE = E/(h̄vF) is the momentum and

φq(t) = e

h̄

∫ t

t−qτ

Vg(t ′)dt ′ (5)

is a time-dependent phase factor due to the gate.
The matrix element S12 represents Fabry-Pérot modes with

an additional phase due to the time-dependent gate φq(t). The
first term corresponds to direct reflection, the other parts to
multiple tours clockwise or counterclockwise within the QD
(cf. Fig. 7). It is interesting to notice that—as reflected by the
vanishing diagonal elements of the S matrix and the helical
nature of the edge states—although a particle with spin-up
incident on the QD can leave it only as a spin-up, the spin
state within the QD is not defined. The states inside the QD
are in a superposition of spin-up and spin-down propagating
clockwise or anticlockwise, respectively.

III. EMITTED CURRENTS

Here we evaluate the charge and spin currents in terms of
the time-dependent scattering matrix S(t,E). It is important
to note that in each lead, spin and charge currents are not
separated. An electron emitted by the SpPS towards lead
one/two will always be a spin-up/down state (cf. Appendix C).

Low-noise, single-carrier emission of quantized
spins/charges is obtained under the so-called conditions
of optimal driving. These are met if the static part of the gate
potential V0 shifts one QD level at resonance with the Fermi
energy of the external part and the peak-to-peak distance
of the time-dependent potential equals exactly one level
spacing of the dot; cf. Fig. 2. The current in lead α can be

Vg t
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FIG. 2. (Color online) Zero-temperature emitted charge as a
function of the height of the driving step U0. The various lines
correspond to different values of the reflection probability of the QPC
|λpb|2: |λpb|2 = 0.95 (solid red line), |λpb|2 = 0.5 (dashed blue line),
and |λpb|2 = 0.1 (dotted green line). Please note that the steps are
given in units of twice the electron charge. Upper inset: The density
of states of the QD for various values of |λpb|. Lower inset: Model of
driving we consider: the driving of the gate is switched on at time t0
and the potential is changed by a quantity U0.

expressed as a sum of two contributions:5 Iα(t) = I d
α + I od

α ,
where the contribution I d

α and I od
α arise from the diagonal and

off-diagonal elements in the double sum of the product of
scattering matrices, respectively. The diagonal contribution
reads

I d
α = e2(1 − |λpb|2)

h

∞∑
q=1

|λpb|2q−2δVg(qτ ), (6)

where δVg(qτ ) = [Vg(t) − Vg(t − qτ )]. This element of the
emitted current is temperature-independent and cannot yield
any robust quantization of the emitted charge.39

The off-diagonal elements in the double sum yield a
temperature-dependent expression with a fast suppression at
high temperatures:

I od
α = e(1 − |λpb|2)2

τπ
Im

{ ∞∑
s=1

(
η
(
s T

T ∗
)(

λpbe
ikFL

)s

s

)

×
∞∑

q=1

|λpb|2q−2(e−iφs (t−qτ ) − e−iφs (t))

}
, (7)

where Im[· · · ] stands for the imaginary part and the de-
pendence on the effects of the gate potential are included
in the phase factors (5). In Eq. (7) we have introduced
the Fermi momentum as kF = μ/(h̄vF) with μ the chemical
potential of the external part, the function η(x) = x/ sinh(x),
and the crossover temperature T ∗ = �/(2π2kB), with kB the
Boltzmann constant.5,39

We assume the experimentally relevant case of a square-
shaped time profile of the gate voltage with a driving frequency
smaller compared to all other relevant time scales. In this
regime the emission of holes and particles can be treated
independently.41 Therefore it is enough to consider a step
potential (cf. lower inset of Fig. 2):

Vext(t) = U0

[
1

2
− θ (t0 − t)

]
,

where θ (x) is the Heaviside function.
In Fig. 2 the total emitted charge propagating towards

the leads is plotted as a function of the height of the step
U0 for different values of the reflection probability of the
QPC |λpb|2. It shows the quantization of the charge emitted
to a single lead. For small transparencies of the QPC, the
quantization on the plateaus is almost perfect. Only for
higher transmission probabilities (above ≈0.3), the density
of states for the dot is broadened, resulting in a blurring of
the quantization. We deduce that the SpPS emits two fully
time-correlated charge particles in a fashion very similar to
a double SPS.4,17 However, the two emitted particles have
also opposite spin-polarization as imposed by TRS, forming a
Kramers’ doublet. The corresponding emitted spin charge
accumulated per lead is quantized in units of h̄/2. Plugging
a two-terminal spintronics device between the two contacts 1
and 2 in Fig. 1 allows us to operate the SpPS as a pure spin
current generator. The total spin current provided by the SpPS
per half cycle is then equal to h̄ corresponding to two spin
quanta.29
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FIG. 3. (Color online) After the emission, the two spin-polarized
electrons are separated spatially, propagating along the upper and
the lower edge. A second QPC (C) allows for interference of the two
particles. The QPC is tuned in a regime, where only forward scattering
processes are allowed (λpb = 0 for C). No reabsorption processes are
considered.

IV. NOISE

Single electron or spin detection at the experimental rele-
vant frequencies of ∼1 GHz still remains a challenging task.
However, signatures of the quantization can be found in noise
measurements.3,42 The autocorrelation function of the current
measured in one of the leads allows for a characterization of
one of the emission channels. We consider the correlation
function between the two contacts as defined in Ref. 42.
At finite temperatures T , the only contribution to noise is
thermal noise. It does not contain any information about the
quantization of the emitted charge. This noise is independent
of the QD and can therefore not provide any information about
the SpPS. Interestingly the same result can be obtained in a
slightly more complicated setup—Fig. 3. Here, the two emitted
particles are propagating towards a second QPC—called C—
tuned in a regime where only forward-scattering processes
contribute. Such a regime can be obtained by changing the
details of the QPC.38 Then, higher order processes involving
reabsorption of particles by the SpPS can be neglected. This
setup is an electronic solid-state realization of the Hong-Ou-
Mandel optics experiment.43 Specifically, C is now acting as
a beam splitter. If two electrons, emitted by the SpPS, are
simultaneously incident onto C, two scenarios are possible:
(i) The two electrons are identical, i.e., possess the same
quantum numbers. In this case the Pauli principle gives rise
to a phenomenon known as (electronic) antibunching. In this
case, the electrons propagate towards different directions after
scattering at C. This is in contrast to the case of the standard
(optical) Hong-Ou-Mandel experiment in which photons tend
to bunch. (ii) The two electrons are not identical, i.e., possess
different quantum numbers. Then, after scattering at C, in
lack of any quantum mechanical restriction, both electrons
can move in the same direction. Experimentally, the former
corresponds to an arrival at two different detectors and the
latter to an arrival at the same detector.42

There has been a theoretical41 and experimental analysis4

of the electronic antibunching for two synchronized SPSs.
This corresponds to the discussed former case where fermionic
statistics lie at the heart of an antibunching effect. A distinctive
feature of 2D TI is an effect, known as theZ2 peak of noise.44 It
predicts an electronic antibunching in the case of two electrons
with opposite spin, propagating in the edges of a 2D TI as long
as TRS is conserved. For the case of the SpPS, these two
effects interplay and lead to a complete noise canceling. This
is somewhat surprising as one expects the two single-particle

excitations arriving at C to occupy different spin states. Hence,
the Pauli principle does not apply and thus the two particles
could still bunch; however, TRS conservation prevents them
from moving along the same edge resulting therefore in an
effective antibunch. Indeed, if they were propagating along
the same edge, they would have to occupy the same spin state,
which is ruled out by fermionic statistics. This is a new form
of antibuching typical of TI; thus we name this phenomenon
Z2 antibunch.

In our setup the synchronization is included in the emission
of the two particles. Thus, measuring zero correlations is
a signature of synchronized emission of the two particles.
Deviations from the zero noise are introduced by a magnetic
field applied locally to the QD45,46, or by changing the
arrival time of the two electrons with respect to each other.
The latter case can in principle be realized by changing the
length of the upper Lup or the lower Ldown arm in Fig. 3 or
equivalently by altering the Fermi velocity in a finite region
of one of the arms. This might be realized by application
of an out-of-plane electrical field that introduces a Rashba
spin-orbit interaction.47 In this case, the spin projections are not
constant anymore; however, the two particles remain Kramers’
partners with opposite spin polarization. By introducing such
a time delay δτ , the diagonal elements of the scattering matrix
become finite leading to a nonzero cross-correlator at zero
temperature similar to the case studied in Ref. 41. Assessment
of the typical longitudinal width of the wave packet shows that
they are rather broad (on the order of microns), corresponding
to an uncertainty in the arrival time of the electrons at C. Hence,
experimentally, one should expect a small deviation from the
zero-noise feature, characteristic of perfect synchronization.

V. ENTANGLEMENT

The two-particle state emitted by the SpPS and propagating
to the right in Fig. 4 is characterized in second quantization by

|�〉 = a
†
S1

a
†
S2

|0〉, (8)

where a
†
S1/2

are creation operators for the SpPS-created
wave packets in the output arms S1 (upper edge) and S2

(lower edge). This state is a Slater determinant and thus not
entangled.48 In the following we propose a setup allowing for

FIG. 4. (Color online) The SpPS creates two particles propagat-
ing along the edges of the 2D TI. Two QPCs allow for an exchange
of these two particles, redistributing them to two parties “Alice” and
“Bob.” Postselection after these two QPCs yields a nonvanishing
concurrence. Two additional QPCs, the analogs of “local” polarizers,
are characterized by angles ϑA/B allowing for violation of the CHSH
inequality.
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the entanglement of the two emitted particles. We consider
bipartite entanglement between two parties where we adopt
the standard notation of quantum information, calling the two
parties Alice (A) and Bob (B). In the setup, Fig. 4, A (B)
corresponds to the upper (lower) branch. The internal degree
of freedom is a two-level system realized by the one-particle
degree of freedom to propagate on the upper or lower edge of
each party’s output branch. Due to spin-momentum locking
in 2D TI, this corresponds to spin qubits. The two particles
are scattered by two additional QPCs, 1 and 2, realizing a
6-terminal setup whose scattering matrix reads

S(6) =
(
S (1)

d Sod

S†
od S (2)

d

)
. (9)

This is a block matrix with elements defined by

S (i)
d =

⎛
⎜⎝

0 λ
(i)
pf λ

(i)
ff

λ
(i)
pf 0 λ

(i)
pb

λ
(i)∗
ff λ

(i)
pb 0

⎞
⎟⎠ (10)

and

Sod =

⎛
⎜⎝

λ
(1)
pb λ

(2)
pf λ

(1)
pb λ

(2)∗
ff λ

(1)
pb λ

(2)
pb

λ
(1)∗
ff λ

(2)
pf λ

(1)
ff λ

(2)
ff λ

(1)∗
ff λ

(2)
pb

λ
(1)
pf λ

(2)
pf λ

(2)∗
ff λ

(1)
pf λ

(2)
pb λ

(1)
pf

⎞
⎟⎠, (11)

where the quantities λ
(α)
i describe exactly the same processes

as before. The superscript α indicates the QPC, to which
the quantity is assigned. In the following, we assume two
symmetric QPCs; i.e., λ

(1)
i = λ

(2)
i . This allows us to erase the

which path information from the two emitted particles. On the
output side (i.e., right-hand side in Fig. 4), each particle lives
in a four-dimensional Hilbert space spanned by propagating
modes in the output arms. In this case, we can calculate
the concurrence C of the state produced by the SpPS and
subsequently scattered by the 6-terminal setup composed of
QPC1 and QPC2, using a formula derived in Ref. 48:

C = 8
√

det w̃.

This gives a quantitative measure for the entanglement:
C = 1 (C = 0) indicates maximum (no) entanglement. After
scattering, the two-qubit state is reexpressed as

|�〉 =
6∑

i,j=1

wi,j b
†
i b

†
j |0〉 (12)

with

wi,j = 1
2

(
S

(6)
i,1S

(6)
j,6 − S

(6)
i,6S

(6)
j,1

)
, (13)

where the b† operators correspond to creation in one of the
output arms. Direct evaluation of the concurrence for the
outgoing state yields zero, indicating a lack of entanglement.
However, it has been shown49 that a certain component of
the wave function addressed in a postselection procedure
corresponds to a maximally entangled state. Therefore, the
two-particle state is projected on the part of the wave function
corresponding to simultaneous detection of particles by A and
B. This postselection restricts the coefficient matrix w to the
off-diagonal blocks. After this projection, the coefficients are

FIG. 5. (Color online) The concurrence after postselection of
simultaneous detection events for symmetric QPCs as a function
of the spin-preserving amplitude γsp for different values of the
spin-flipping amplitude γsf , ranging from γsf = 0 to γsf = 3 in steps
of 0.5. The arrow indicates the direction of increasing γsf . Inset:
Concurrence as a function of γsf and γpf .

renormalized in order to restore a unit modulus for the wave
function. Experimentally, this corresponds to choosing a subset
of detection events. The emerging nonclassical correlations
are reflected in a nonvanishing concurrence as depicted in
Fig. 5. We observe that for a specific choice of the QPC-
characteristic amplitudes γ , the concurrence is nonzero (equal
to 1) indicating partial (maximum) entanglement.

For experimental detection of this entanglement, we pro-
pose a setup that allows for violation of the CHSH inequality.19

Therefore, A and B have analogs of light polarizers at their
disposal. These can be realized by two further QPCs, tuned
in a regime, where only forward scattering is allowed. These
local transformations are parametrized in an S matrix as(

bA/B1

bA/B2

)
=

(−i cos(ϑA/B) sin(ϑA/B)

sin(ϑA/B) −i cos(ϑA/B)

)
·
(

b′
A/B1

b′
A/B2

)

(14)

with the local “polarization angles” ϑA/B. Here, the primed
operators are the annihilation operators for particles on the
left of the local QPCs and the unprimed operators correspond
to the states propagating to detectors A and B. Standard
combination techniques of the different scattering matrices
allow us to derive the two-particle state after local rotations and
postselection. Such a tunability of transmission probabilities
is predicted to be achievable using electrostatical side gates
on constrictions.38 In the qubit picture, the effect of the two
polarizer QPCs corresponds to local rotations on the Bloch
sphere. The CHSH inequality reads

|E(ϑA,ϑB) + E(ϑ ′
A,ϑB) + E(ϑA,ϑ ′

B) − E(ϑ ′
A,ϑ ′

B)| � 2.
(15)

Here, the normalized particle-number-difference correlators
are defined by

E(ϑA,ϑB) =
〈(
n̂A1 − n̂A2

)(
n̂B1 − n̂B2

)〉
ϑA,ϑB〈(

n̂A1 + n̂A2

)(
n̂B1 + n̂B2

)〉
ϑA,ϑB

, (16)

where 〈· · · 〉ϑA,ϑB stands for averaging over the state produced
by the four QPCs, provided the incident state is given by Eq. (8)
and Alice’s and Bob’s polarizers characterized by the angles
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ϑA and ϑB. In Eq. (16), n̂i = b̂
†
i b̂i with (i ∈ {A1, . . . ,B2}) is

the electron number operator of output arm i. The envisioned
detection scheme based on particle counting restricted to joint
detection events implements the above-mentioned postselec-
tion in a natural way. For symmetric QPCs and the parameters
γsf = 0,γsp = 1, the CHSH inequality takes a particularly
simple form:∣∣cos

[
2
(
ϑA1 + ϑB1

)] + cos
[
2
(
ϑA1 + ϑB2

)]
+ cos

[
2
(
ϑA2 + ϑB1

)] − cos
[
2
(
ϑA2 + ϑB2

)]∣∣ � 2. (17)

For the angles ϑA1 = 0, ϑA2 = 3π/4, ϑB1 = −3π/8, ϑB2 =
3π/8 the left-hand side evaluates to 2

√
2, thus maximally

violating the inequality. As expected the maximum violation
of the CHSH inequality corresponds to the maximum concur-
rence as shown in Fig. 5. However, this result has to be handled
with care. Strictly speaking, for γsf = 0,γsp = 1, the particles
cannot reach A’s and B’s detectors, as in this regime the 6-
terminal scattering matrix includes only back-reflection terms.
The presented result is therefore only valid in the limit γsf =
0,γsp → 1, where the normalization of the particle-number-
difference correlator, Eq. (16), ensures convergence. Hence,
the postselection brings the disadvantage, that only a fraction
of the particle pairs produced by the SpPS shows nonclassical
(entangled) correlations. Interestingly the maximal violation
of the CHSH inequality is obtained in a regime where the
fraction of particles reaching the two detectors is vanishingly
small. Therefore, in the proposed setup, one has to weigh
between the rate of production of entangled particle pairs and
the quality of the entanglement. Similar results are obtained
in the proposal of Ref. 49. However, the polarization angles
leading to maximum violation are slightly different.

VI. CONCLUSIONS AND DISCUSSION

We have extended the concept of single-particle sources to
a system with time-reversal symmetry. The proposed device
emits pairs of spin-polarized charged particles into the edges
of a two-dimensional topological insulator, justifying the name
Spin Particles Source. Additionally, the two emitted particles
are simultaneously moving in opposite directions. We have
suggested a noise measurement that permits us to investigate
the helical nature of the two electrons in a new phenomenon,
called Z2 antibunch. In addition, such a noise measurement
can prove the simultaneous emission of two particles. Finally,
we have proposed a setup allowing for the entanglement
of the two emitted particles, manifested in a nonvanishing
concurrence and a violation of a CHSH inequality. Our scheme
is based on postselection, even if this is a very debatable
point in the quantum information community.50 It is especially
questionable whether entanglement produced by postselection
is useful, in the sense that destruction of the entangled particles
is required in order produce the entanglement. Hence, the
entanglement is not available for further quantum information
usage. However, we are convinced that postselection is pre-
serving the original spirit of the EPR gedanken experiment.51

We further believe that our setup might be useful for quantum
cryptography in the spirit of, e.g., the BB84 protocol.52 Other
setups for the entanglement of the edge states of 2D TI using
superconductors have been also investigated.53

An important remark has to be made regarding the
feasibility of the SpPS. It is based on the possibility of
separating a QD from the external part via a QPC. As
stated in the introduction, at the moment only two 2D
TIs are known, i.e., HgTe/CdHgTe and InAs/GaSb quantum
wells. For these materials, no experimental results for QPCs
have been reported so far. However, InAs/GaSb contrary
to HgTe/CdHgTe has the advantage that the transition to
the TI phase can be tuned via electrostatic gating of the
material.12,13 Therefore, this property could be exploited in
order to realize quantum constrictions by electrostatic gating.
A gate provides a modulation of the electrostatic profile in
the heterostructure. In a standard semiconducting mesoscopic
device this corresponds to a quantum constriction; however
in the case of InAs/GaSb quantum wells this would create a
boundary between a topological and a trivial insulator.54

Even though experimental know how on 2D TIs is limited
so far, we believe that experimental implementation of the
SpPS has a twofold interest: First, it can have applications in
spintronics, where pure spin currents are a key tool. Second, it
could be a realization of a Bell test on a chip in a framework
different from the IQHE. Thus our proposal could allow one to
transfer quantum optics paradigms to solid state systems, com-
plementing the field of the so-called electron quantum optics.
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APPENDIX A: THE SYSTEM SCATTERING MATRIX

For determining the scattering matrix of the QPC, the dot
is enlarged allowing us to consider a four-terminal setup
as depicted in Fig. 6. The relevant Hamiltonians at the

FIG. 6. (Color online) The quantum point contact (QPC) connect-
ing the edge states to the quantum dot. Propagation along the edges
is spin polarized, such that on the upper edge spin-up [spin-down]
propagates to the right [left] and vice-versa on the lower edge. A
constriction in the bulk structure makes the edge states overlapping
which allows for different scattering processes described by the
Hamiltonians (1) and (A1).
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constriction are expressed by

Hsp
tun =

∑
σ=↑,↓

∫
dx [�sp(x)�†

Rσ (x)�Lσ

+�∗
sp(x)�†

Lσ (x)�Rσ (x)], (A1a)

Hsf
tun =

∑
α=L,R

ξα

∫
dx [�sf(x)�†

α↑(x)�α↓

+�∗
sf(x)�†

α↓(x)�α↑(x)]. (A1b)

Here ξα = ±1 depending on wether the state is a right-mover
(+/R) or a left-mover (−/L) that accounts for chirality of the
edge states. In Eqs. (A1), the functions �sp(x) and �sf(x)
are space-dependent tunneling amplitude profiles for the
spin-preserving backscattering and the spin-flipping forward-
scattering process, respectively. We assume that the length
scale λQPC over which the effects of the QPC are nonnegligible
is small compared to all other relevant system length scales.37

Therefore the potential of the QPC can be assumed to be point
like. This allows to write down the tunneling amplitudes as

�sp/sf(x) = 2h̄vFγsp/sfδ(x),

with γsp/sf being real-valued dimensionless tunneling ampli-
tudes for the QPC. The strength of the coefficients γi can be
modulated by changing the length of the QPC channel and
also by side gate potentials that change the strength of the
spin-orbit interaction.38

The Heisenberg equations of motion are obtained by
calculating

ih̄∂tψα,σ = [ψα,σ ,H], (A2)

whereH = H0 + Hsp
tun + Hsf

tun is the full Hamiltonian [Eqs. (1)
and (A1)], α = L, R stands for right- and left-movers, and σ =
↑,↓ is the spin. Note that spin and direction of propagation are
correlated (Fig. 6). They read

i∂tψR,↑(x) = −ivF∂xψR,↑(x)

+ 2vFδ(x)[γspψL,↑(x) + γsfψR,↓(x)], (A3a)

i∂tψR,↓(x) = −ivF∂xψR,↓(x)

+ 2vFδ(x)[γspψL,↓(x) + γ ∗
sfψR,↑(x)], (A3b)

i∂tψL,↑(x) = +ivF∂xψL,↑(x)

+ 2vFδ(x)[γ ∗
spψR,↑(x) − γsfψL,↓(x)], (A3c)

i∂tψL,↓(x) = +ivF∂xψL,↓(x)

+ 2vFδ(x)[γ ∗
spψR,↓(x) − γ ∗

sfψL,↑(x)]. (A3d)

For a fixed energy, the solutions are found via the ansatz37 of
plane waves

ψR,σ (x) = e−i E
h̄
t

√
hvF

{
aR,σ eikEx x < 0,

bR,σ eikEx x > 0,

(A4)

ψL,σ (x) = e−i E
h̄
t

√
hvF

{
bL,σ e−ikEx x < 0,

aL,σ e−ikEx x > 0,

with kE = E
h̄vF

.

The scattering matrix of the QPC 	 is defined via

(bL↑,bL↓,bR↑,bR↓)T = 	 · (aR↓,aR↑,aL↓,aL↑)T , (A5)

where T stands for transposition.
Plugging the ansatz (A4) into Eqs. (A) and solving the set

of linear equations yields the result presented in the main text,
Eq. (3).

APPENDIX B: THE TIME-DEPENDENT
SCATTERING MATRIX

Here, we calculate the full time-dependent scattering matrix
of the quantum dot. The potential applied to the gate is
assumed to be periodic in time with period T . According to
the Floquet theorem, the dot can thus change the energy E of
a particle to energies En = E + nh̄�0 with �0 = 2π/T . The
theoretical framework for describing such scattering processes
was developed in Ref. 39 and goes under the name of Floquet
scattering matrix. The states inside the QD are given in the sz

basis by

�QD(y,t) = e−iEt/h̄Y(t)

(
a
(
t + y

vF

)
e−ikEy

b
(
t − y

vF

)
eikEy

)
, (B1)

where a(t) and b(t) are time-dependent amplitudes andY(t) =
exp[−i e

h̄

∫ t

−∞ U (t ′)dt ′] accounts for the time-dependent gate-
voltage applied to the dot. For the moment, consider a spin-up
electron with energy E incident from the left lead: The edge
state in the left half (x > 0) in its most general form can be
written as

� left(t,x) =
(

e−iEt/h̄+ikEx∑∞
n=−∞ e−iEnt/h̄−iknxSF,22(En,E)

)
. (B2)

The underlying linear dispersion (kn = kE + n�0/vF) allows
us to write

� left(t,x) = e−i Et
h̄

−ikEx

×
(

e2ikEx∑∞
n=−∞ e−in�0(t+x/v)SF,22(En,E)

)
. (B3)

Introducing the time-dependent function

S (in)(t,E) =
∞∑

n=−∞
e−in�0tSF (En,E) (B4)

this reads

� left(t,x) =
(

e−iEt/h̄+ikEx

e−iEt/h̄−ikExS (in)
22

(
t + x

vF
,E

)
)

. (B5)

Correspondingly the state in the right half reads

�right(t,x) =
(

e−iEt/h̄+ikExS (in)
12

(
t − x

vF
,E

)
0

)
. (B6)

As the time origin can always be chosen such that the gate
voltage does not break time-reversal symmetry, we expect
S22(t,E) to vanish. This is shown explicitly here.

Consider the loop to have circumference L and the QPC
to be located at x = y = 0. Then the states are related via the
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scattering matrix 	 of the QPC Eq. (3) as follows:⎛
⎜⎜⎜⎝

S (in)
12 (t,E)

S (in)
22 (t,E)

Y(t)a(t + τ )e−ikEL

Y(t)b(t)

⎞
⎟⎟⎟⎠ = 	 ·

⎛
⎜⎜⎜⎝

0

1

b(t − τ )Y(t)eikEL

a(t)Y(t)

⎞
⎟⎟⎟⎠. (B7)

This yields the defining equations for b(t) and a(t):

b(t)Y(t) = λ∗
ff + λpbY(t)b(t − τ )eikEL, (B8a)

a(t + τ )Y(t)e−ikEL = λpf + λpbY(t)a(t), (B8b)

where the classical time for one turn inside the dot τ = L/vF

was introduced.
These equations allow for the following solutions:

b(t) = λ∗
ff

∞∑
q=0

λ
q

pbe
iqkELY∗(t − qτ ), (B9a)

a(t) = λpf

∞∑
q=0

λ
q

pbe
i(q+1)kELY∗(t − (q + 1)τ ). (B9b)

Together with Eq. (B7), the expressions for the scattering
matrix elements are found:

S (in)
12 (t,E) = λpb + (|λff|2 + λ2

pf

)
×

∞∑
q=0

λ
q

pbe
i(q+1)kELY∗(t − (q + 1)τ )Y(t),

(B10a)

S (in)
22 (t,E) = λpf(λ

∗
ff + λff)

×
∞∑

q=0

λ
q

pbe
i(q+1)kELY∗(t − (q + 1)τ )Y(t).

(B10b)

From this expression, one directly sees that S22 is proportional
to

λff + λ∗
ff = 2Re[λff]. (B11)

If λff is purely imaginary—as requested by TRS–the diagonal
elements of the scattering matrix vanish.55 The case of the
incident particle being a spin-down electron propagating to
the left is done analogously and yields the results presented in
the main text. The various processes constituting the scattering
matrix element S12(E,t) are illustrated in Fig. 7. The first term
proportional to λpb corresponds to back-reflection at the QPC,
Fig. 7(a). The other processes correspond to turning clockwise

FIG. 7. (Color online) In the figure are shown the processes
contributing to the time-dependent scattering matrix Eqs. (B10). Panel
(a) shows the back-reflection, proportional to λpb, panels (b) and (c)
(green line) are the forward spin conserving processes proportional
to λff , and panels (d) and (e) (red line) are the forward spin flipping
processes proportional to λpf . Each time the edge states are arriving
to the QPC they get a contribution proportional to λpb.

[Figs. 7(b) and 7(c)] or anticlockwise inside the QD [Figs. 7(d)
and 7(e)] and are proportional to λpf and to |λff|2, respectively.

APPENDIX C: THE TIME-DEPENDENT CURRENT

The current operator in lead α is given as56

Îα = e

h

∫∫ ∞

0
dEdE′ei

(E−E′)t
h̄ [b̂(E)b̂(E′) − â(E)â(E′)], (C1)

where a(E) [b(E)] is an annihilation operator for an electron
with energy E incident on [scattered off] the scattering region.
In the time-dependent case, the b(E) operators are related to
the a operators via the Floquet scattering matrix

b(E) =
∞∑

n=−∞
SF(E,En)a(En). (C2)

Due to the symmetries of the considered setup, the current
flowing in lead 1 is the same as the current flowing in lead
2. We assume here the case of identical leads, characterized
by Fermi distributions f0(E). In terms of the time-dependent
scattering matrix Sij (t,E), the current reads then

I1(t) = e

h

∫ ∞

−∞
dE

∞∑
n=−∞

[f0(E) − f0(En)]

×
∫ T

0

dt ′

T ein�0(t−t ′)S12(t,E)S∗
12(t ′,E). (C3)

Plugging Eq. (4) into this equation yields the result Iα(t) =
I d
α + I od

α .
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