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Abstract: Nanotechnology provides new opportunities in human medicine, mainly for 

diagnostic and therapeutic purposes. The autoimmune disease rheumatoid arthritis (RA) is 

often diagnosed after irreversible joint structural damage has occurred. There is an urgent 

need for a very early diagnosis of RA, which can be achieved by more sensitive imaging meth-

ods. Superparamagnetic iron oxide nanoparticles (SPION) are already used in medicine and 

therefore represent a promising tool for early diagnosis of RA. The focus of our work was to 

investigate any potentially negative effects resulting from the interactions of newly developed 

amino-functionalized amino-polyvinyl alcohol coated (a-PVA) SPION (a-PVA-SPION), that 

are used for imaging, with human immune cells. We analyzed the influence of a-PVA-SPION 

with regard to cell survival and cell activation in human whole blood in general, and in human 

monocytes and macrophages representative of professional phagocytes, using flow cytometry, 

multiplex suspension array, and transmission electron microscopy. We found no effect of 

a-PVA-SPION on the viability of human immune cells, but cytokine secretion was affected. 

We further demonstrated that the percentage of viable macrophages increased on exposure to 

a-PVA-SPION. This effect was even stronger when a-PVA-SPION were added very early in 

the differentiation process. Additionally, transmission electron microscopy analysis revealed 

that both monocytes and macrophages are able to endocytose a-PVA-SPION. Our findings 

demonstrate an interaction between human immune cells and a-PVA-SPION which needs to 

be taken into account when considering the use of a-PVA-SPION in human medicine.
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Introduction
Rheumatoid arthritis (RA) is a chronic, systemic, inflammatory autoimmune disease 

of connective tissues, which mostly affects synovial joints. The inflammatory process 

leads to a local release of pro-inflammatory cytokines, including TNFα and IL-1, that 

activate enzymes involved in the degradation of articular cartilage and subchondral 

bone. Other tissues and organs may also be harmed as a result of the disease.1–9

Between 0.5% and 1% of the human population within industrialized countries 

suffer from RA (three times as many women as men), with the average age of dis-

ease onset between 40 and 50 years.10 The causes of RA are not completely clarified, 

but the development of the disorder seems to result from a combination of genetic 

factors and environmental triggers.11–14 The typical clinical signs of RA (symmetric 

joint swellings, morning stiffness, pain, and asthenia) are important for diagnosing 

this disease. Additionally, imaging techniques like X-ray, ultrasound and magnetic 

resonance imaging (MRI) as well as laboratory tests (such as inflammatory markers, 

rheumatoid factors, and anti-citrullinated protein antibodies) complete the diagnosis 

and permit surveillance of disease activity, progress and therapy success.15–18 There is 

no cure for RA, but the treatment can improve symptoms and quality of life, and can 

Correspondence: Cindy Strehl
Department of Rheumatology and 
Clinical Immunology, Charité University 
Hospital, Charitéplatz 1, 10117 Berlin, 
Germany
Tel +49 30 450 513364
Fax +49 30 450 513917
Email cindy.strehl@charite.de 

Journal name: International Journal of Nanomedicine
Article Designation: Original Research
Year: 2015
Volume: 10
Running head verso: Strehl et al
Running head recto: Effects of PVA coated nanoparticles
DOI: http://dx.doi.org/10.2147/IJN.S75936

http://www.dovepress.com/permissions.php
http://creativecommons.org/licenses/by-nc/3.0/
www.dovepress.com
www.dovepress.com
www.dovepress.com
http://dx.doi.org/10.2147/IJN.S75936
mailto:cindy.strehl@charite.de


International Journal of Nanomedicine 2015:10submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

3430

Strehl et al

reduce or even stop the progress of the disease. Typically, 

disease-modifying anti-rheumatic drugs, biological agents, 

glucocorticoids and non-steroidal anti-inflammatory drugs 

are used for treatment.5,19–21 Nevertheless, some patients do 

not respond adequately to the prescribed drug, requiring 

3 months of treatment before a lack of response becomes 

apparent. Only after this period of time has elapsed can 

treatment strategy be modified, with further progress of the 

disease potentially occurring due to the loss of this treatment 

time. Additionally, all treatment strategies involve some side 

effects.8,9,22–24

It has been shown that the earlier patients with RA are 

treated the more effective is the treatment.25,26 Thus there is an 

urgent need for a very early diagnosis of RA in order to enable 

earlier treatment and to reduce or even to stop the progress 

of the disease. Furthermore, an early diagnosis can prevent 

joint damage, thereby lowering the additional therapeutic 

and disability costs which arise from reduced work capacity 

of the patients: nearly 30% of patients give up work within 

1 year as a result of their condition and almost 60% within 

6 years of diagnosis.27 Thus, there is a considerable need 

for highly sensitive and specific diagnostic tools to detect 

early disease. Such tools could also facilitate further drug 

development and enable health professionals to distinguish 

between responders and non-responders before and after 

onset of therapy.

One promising approach to generate such a tool is the use 

of nanotechnology employing superparamagnetic iron oxide 

nanoparticles (SPION). These have been intensively inves-

tigated over the last 20 years for various in vitro and in vivo 

biomedical applications.28,29 Promising studies have been 

performed with SPION as contrast enhancers for MRI.30–35 

Currently, SPION are used as contrast agents for liver func-

tion. For example, the product Feridex® was approved by 

the US Food and Drug Administration (FDA) in 1996.36,37 

MRI has been used for many years in cross-sectional and 

observational studies in RA and in controlled clinical trials 

to identify early cartilage loss in osteoarthritis and RA.38,39 

This method is also useful to assess and monitor disease 

activity in order to detect and follow pre-erosive features of 

RA (such as synovitis, bone marrow edema or osteitis, and 

tendon and ligament abnormalities) that other methods like 

radiography cannot detect.17,40,41 Detection of early cartilage 

and bone erosion is essential so that therapy can be initiated 

as early as possible following reliable diagnosis.42

The contrast agents that are normally used in MRI 

are based on either particles with paramagnetic (like 

gadolinium) or superparamagnetic behavior (like iron oxide 

nanoparticles).43 As a gold standard for synovial imaging, 

gadolinium-enhanced MRI is used for the detection of 

synovial hypervascularity of arthritic joints and early car-

tilage degeneration without structural change. Gadolinium-

enhanced MRI has limitations, as the synovial contrast 

enhancement is nonspecific and the enhancement patterns 

of normal and inflamed joints often overlap. The need for 

selective tissue-, cell-, and receptor-specific contrast agents 

is obvious since they should i) provide much improved detec-

tion of earlier degenerative events and responses to therapy, 

ii) better define and characterize the inflammatory and 

degradative processes, and iii) be more efficient ie, at lower 

doses. Targeted SPION offer a significant opportunity for 

improved diagnostic MRI imaging.44

Similar to gadolinium, which is highly toxic as an element 

so needs to be given as a complex, iron oxide nanoparticles 

also need to be covered by a coating to guarantee safe applica-

tion. The size of the particles and their coating characteristics 

determine pharmacokinetics, biodistribution and specificity, 

and possibly toxicity. SPION-based contrast agents have 

been developed as liver specific contrast agents because of 

their specificity for reticuloendothelial cells. Depending on 

their size, SPION of a larger hydrodynamic size are prefer-

entially taken up by liver Kupffer cells. In contrast, smaller 

sizes of SPION are mostly taken up by macrophages of the 

lymph nodes, or are directed to liver, lung, or spleen, or may 

cross the blood–brain barrier.45 SPION are mostly taken up 

intracellularly by endocytosis.46–48 Various studies show 

that dextran coated SPION uptake is driven by scavenger 

receptors, which are then metabolized in the lysosomes into 

ferritin or hemoglobin and as a result of this become part of 

the normal blood pool.43,47,49

SPION coated with vinyl-alcohol/vinyl-amine copolymer 

(amino-polyvinyl alcohol [a-PVA]), as used in our study, are 

taken up in vitro by synovial cells, chondrocytes, and osteo-

blasts after a 2 hour incubation.50 Furthermore, a very recent 

study revealed that amino-polyvinyl alcohol coated super

paramagnetic iron oxide nanoparticles (a-PVA-SPION) were 

also taken up by human mesenchymal stromal cells (MSCs), 

which are of considerable interest in cell-based therapies. The 

study also demonstrated that these high contrast particles are 

non-toxic and suitable for MSC visualization in MRI, in vitro 

as well as in vivo, in rats.51

The colloidal stability and, therefore, cell uptake and 

cytotoxicity are strongly influenced by the composition 

of the SPION polymer coat (eg, polyvinyl alcohol, vinyl 

alcohol/vinyl amine copolymer, or polyethylenimine). 

Although these polymer-coated SPION are stable in water 
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and phosphate buffered saline (PBS), the choice of medium 

largely influences the cellular uptake of these particles.52,53

Although various industrially produced SPION are 

being investigated in clinical trials and seem to produce 

very low side effects, the potential for cytotoxicity of these 

particles is still an important issue of debate. Investigation 

of the immune responses of dendritic cells to PVA coated 

SPION show a certain degree of immunomodulation.54 Such 

properties – but also the impact of SPION on cell proliferation 

and cell functionality – depend upon the physicochemical 

properties of the particle surfaces and the cells used for 

such tests.55,56

Therefore, we have investigated the interactions of amino 

functionalized SPION, developed for early diagnosis in 

arthritis, with different human immune cells obtained from 

patients suffering from RA and from healthy donors (HD). 

We investigated potential effects on specific immune cell 

viability as well as cytokine secretion as an indicator of 

immune cell activation.

Materials and methods
Materials
In this study we used a-PVA-SPION which were synthesized 

and characterized following a protocol previously described.51 

The mean diameter of the magnetic cores (d
core

 in nm) of the 

a-PVA-SPION was determined by counting 400 diameters 

observed in transmission electron microscopy (TEM; CM12 

from Philips Electron Optics, Zürich, Switzerland). Hydrody-

namic size (d
H
 in nm) and Zeta potential (Z potential in mV) 

were measured at around pH 7 by dynamic laser scattering 

using a Malvern NanoZS (Nanosizer 7.2 software) using the 

theoretical refractive index of 2.42 of magnetite.57 The satu-

ration magnetization (Sat mag in emu/g) was obtained from 

freeze dried powder of SPION before PVA coatings using a 

superconducting quantum interference device.58

Antibodies and reagents
Lipopolysaccharide (LPS), lectin from Phaseolus vulgaris 

(PHA), Brefeldin A, Saponin, and carboxyfluorescein diacetate 

N-succinimidyl ester (CFSE) were from Sigma-Aldrich Co., 

St Louis, MO, USA. Paraformaldehyde was from Carl Roth 

GmbH + Co. KG (Karlsruhe, Germany). recombinant human 

macrophage colony stimulating factor (rhM-CSF) was from 

ImmunoTools GmbH (Friesoythe, Germany).

For flow cytometry, Privigen® human immunoglobulin 

from CSL Bhering, (King of Prussia, PA, USA) was used. 

Anti-human-IL1β-PE, anti-human-CD3-Pacific-blue, anti-

human-CD14-APC-Cy7, anti-human-CD19-PE-Cy7, and 

Annexin V/7AAD apoptosis kit were from BD Biosciences 

(San Jose, CA, USA) and anti-human-CD15-APC was from 

Miltenyi Biotech GmbH (Bergisch Gladbach, Germany).

Whole blood survival analysis, sample 
preparation, and stimulation
Venous blood (obtained from RA patients or HD) was col-

lected in heparinized tubes. All patients met the American 

Rheumatism Association criteria (1987) for RA.59 The char-

acteristics of RA patients are summarized in Table S1. The 

study protocol was approved by the responsible local admin-

istrative body and ethics committee. RA patients as well as 

HD provided written informed consent before enrollment.

Immediately after retrieval of the blood samples, 100 µL 

of whole blood was diluted with 100 µL Roswell Park 

Memorial Institute (RPMI) 1640 culture medium (Thermo 

Fisher Scientific, Waltham, MA, USA) supplemented with 

100 U/mL penicillinG, 100 μg/mL streptomycin (both from 

PAA Laboratories) and 50 μM β-mercaptoethanol (Sigma-

Aldrich Co.) in deep-well-plates (Sarstedt AG & Co., Nuem-

brecht, Germany). Cells were stimulated with LPS (1 µg/mL), 

PHA (5 µg/mL), a-PVA-SPION (1 µg/mL, 10 µg/mL, 

100 µg/mL, 1,000 µg/mL) or left untreated and incubated 

for 20 hours in a humidified incubator at 37°C (18% O
2
/5% 

CO
2
). Afterwards, supernatants were collected, immediately 

frozen, and stored at -80°C for cytokine secretion analysis 

and cells were prepared for flow cytometry (see section Flow 

cytometric analysis). For intracellular IL1β analysis, secre-

tion was blocked by adding 10 µg/mL Brefeldin A followed 

by an additional incubation for 3 hours at 37°C.

Quantification of secreted cytokines
Secreted cytokines were quantified by Bio-Plex® Pro Cytokine 

27-Plex Panel Human Group I on a Bio-Plex® 200 system 

with high-throughput fluidics (all Bio-Rad Laboratories Inc., 

Hercules, CA, USA). Intracellular IL1β concentration was 

determined via flow cytometry as described below.

Isolation and stimulation of human 
CD14+ monocytes
Peripheral blood mononuclear cells were isolated from leuko-

cyte apheresis filters of healthy blood donors by density gra-

dient centrifugation using the Ficoll-Paque™ Plus technique 

(Amersham Biosciences Europe GmbH, Freiburg, Germany). 

CD14 positive monocytes were enriched up to 99% purity 

and 95% viability (data not shown) by MACS® Technology 

(Miltenyi Biotec GmbH) using anti-human CD14 conjugated 

magnetic beads as described by the manufacturer.
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Fresh isolated CD14 positive monocytes were labeled 

with 0.3125 mM CFSE for 3.5 minutes at room tem-

perature (RT) and cultured at 2×106 cells/mL in RPMI 

1640 culture medium supplemented with 10% (v/v) heat-

inactivated fetal calf serum (FCS) (Sigma-Aldrich Co.), 

100 units/mL penicillinG, 100 µg/mL streptomycin, and 

50 µM β-mercaptoethanol for 20 hours in 24-well cell culture 

plates. Cells were stimulated with LPS (1 µg/mL), a-PVA-

SPION (1 µg/mL, 10 µg/mL, 100 µg/mL, and 1,000 µg/

mL) or left untreated for 20 hours in a humidified incubator 

at 37°C (18% O
2
/5% CO

2
). Afterwards, cells were detached 

with Accutase (PAA Laboratories GmbH, Cölbe, Germany) 

and further prepared for flow cytometry (see section Flow 

cytometric analysis).

Generation of monocyte-derived 
macrophages (MDMs)
Freshly isolated CD14 positive monocytes (see section 

Isolation and stimulation of human CD14+ monocytes) as 

6 mL of 2×106 cells/mL PBS were added to a covered 10 cm 

diameter Petri dish. Cells were incubated for 2 hours at 37°C 

(18% O
2
/5% CO

2
). Afterwards, supernatants were carefully 

removed and 6 mL fresh RPMI 1640 medium containing 

50 ng rhM-CSF was added to the adherent cells. After 24 and 

72 hours at 37°C (18% O
2
/5% CO

2
) medium was refreshed 

by adding 6 mL of RPMI 1640 containing 50 ng rhM-CSF. 

After a total of 6 days incubation, the differentiated MDMs 

were detached with Accutase and the remaining adherent 

cells were removed with a cell scraper.

Stimulation of monocytes/MDMs 
with a-PVA-SPION
Two different approaches have been followed: I) MDMs 

were labeled with 0.3125 mM CFSE for 3.5 minutes at RT 

and 5×104 cells/200 µL RPMI 1640 medium/well were incu-

bated for 20 hours in 48-well cell culture plates. MDMs were 

stimulated with LPS (1 µg/mL), a-PVA-SPION (1 µg/mL,  

10 µg/mL, 100 µg/mL, and 1,000 µg/mL) or left untreated 

in a humidified incubator at 37°C (18% O
2
/5% CO

2
) and 

afterwards prepared for flow cytometry (see section Flow 

cytometric analysis). II) Monocytes were labeled with 

0.3125 mM CFSE for 3.5 minutes at RT and 2×105 cells/100 

µL PBS/well were incubated for 1 hour in 48-well cell 

culture plates for attachment. Afterwards, the PBS-buffer 

was removed and 200 µL RPMI 1640 medium contain-

ing 50 ng rhM-CSF was added. The cells were stimulated 

with 1 µg/mL LPS or left untreated for 6 days. Stimulation 

with a-PVA-SPION during the differentiation process to 

MDMs was performed as follows: a-PVA-SPION (1 µg/mL,  

10 µg/mL, 100 µg/mL, and 1,000 µg/mL) were added at 

day zero within the first addition of RPMI 1640 medium 

containing 50 ng rhM-CSF or 24 hours later, when refreshing 

the medium or 72 hours later, when refreshing the medium 

again. Addition of fresh medium was performed as described 

in the section Generation of monocyte-derived macrophages 

(MDMs). Cells were incubated in a humidified incubator at 

37°C (18% O
2
/5% CO

2
) until MDMs could be harvested after 

6 days and prepared for flow cytometry.

Flow cytometric analysis
Whole blood extracellular staining
After lysis of erythrocytes, with a solution of potassium 

bicarbonate (KHCO
3
) 0.01 M pH 7.5, ammonium chloride 

(NH
4
Cl) 0.155 M, ethylenediaminetetraacetic acid (EDTA) 

0.1 mM, cells were washed with PBS and transferred to 

96-well V-bottom assay plates. Non-specific binding was 

blocked by pre-incubation with human immunoglobulin 

(5 mg/mL) for 10 minutes at 4°C. After washing the cells with 

PBS, an antibody-mix (anti-CD3, anti-CD14, anti-CD19, and 

anti-CD15) was added (all antibodies diluted 1/50 in PBS or 

1/10 when additionally stained intracellularly) and incubation 

was performed for 15 minutes at 4°C in the dark. Cells were 

washed twice and cells were analyzed within 1 hour by flow 

cytometry using the MACSQuant analyzer equipped with 

plate MACSQuant MiniSampler. The acquired data were 

analyzed using FlowJo 7.6.1 software. For the investigation 

of survival of positive cells for the surface markers (CD3, 

CD14, CD19 or CD15), Annexin V-PE/7-AAD staining was 

performed according to the manufacturer’s instructions after 

cell washing (to determine apoptosis). After data acquisition 

by flow cytometry, these populations were analyzed for 

the percentage of Annexin V (apoptotic) or 7-AAD (dead) 

positive cells.

Whole blood intracellular staining
After extracellular antibody staining, cells were fixed with 

2% paraformaldehyde and subsequently cell membranes 

were permeabilized by washing twice with 0.5% Saponin-

PBA (PBS/BSA/Acid). Non-specific binding was blocked 

with human immunoglobulin (5 mg/mL) for 10 minutes 

at RT. The washed (Saponin-PBA) cell pellets were resus-

pended in 10 µL of undiluted anti-human-IL1β-PE antibody 

and incubated for 15 minutes at RT in the dark. After two final 

washing steps cells were analyzed by flow cytometry using 

the MACSQuant analyzer equipped with plate MACSQuant 

MiniSampler. The acquired data were analyzed using FlowJo 
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7.6.1 software, where positive cells for the according surface 

marker (CD3, CD14, CD19 or CD15) were selected and these 

populations were analyzed for the percentage and number 

of IL1β positive cells.

Monocyte/MDM survival analysis
After detachment of the cells with Accutase and cell scraper, 

Annexin V-PE/7-AAD staining was performed according 

to the manufacturer’s instructions and cells were analyzed 

within 1 hour by flow cytometry using the MACSQuant 

analyzer equipped with plate MACSQuant MiniSampler.

TEM analysis
Human monocytes (2×106 cells/mL) and MDMs 

(1×106 cells/mL) were incubated for 24 hours with PVA-

SPION (1,000 µg/mL) or left untreated. Cells were prepared 

for TEM analysis as previously described.60 Ultrathin sec-

tions were analyzed using routine TEM (EM 906; Carl Zeiss 

AG Oberkochern, Germany) techniques; micrographs were 

prepared and further processed using Adobe Photoshop CS 

software.

Statistical analysis
Statistical tests for the flow cytometry were performed using 

Graph Pad Prism Software. Data are presented as box and 

whiskers, whiskers from minimum to maximum or mean with 

standard deviation of at least four independent experiments. 

Multiple comparisons were analyzed by one-way or two-way 

analysis of variance (ANOVA) as indicated with Bonferroni’s 

multiple comparison post hoc tests for normally distributed 

data. Probability values of P0.05 were considered to be sta-

tistically significant (***P0.001; **P0.01; *P0.05).

Results
Physicochemical characterizations 
of a-PVA-SPION
The d

core
 of the a-PVA-SPION (Table 1) is approximately 7 nm  

which is small enough to have superparamagnetic proper-

ties confirmed by Sat mag of 54 emu/g and the absence of 

hysteresis.58,61 The hydrodynamic size of the a-PVA-SPION 

is approximately 30 nm at pH 7 and the Zeta potential is 

approximately 22 mV indicating the positive initial charges 

of these nanoparticles at physiological pH.

a-PVA-SPION do not affect the survival 
of human immune cells within  
whole blood
We obtained venous blood from 19 patients with RA and  

18 HD. To analyze the influence of a-PVA-SPION on human 

immune cells, we quantified the number of Annexin V 

(apoptotic) or 7AAD (dead) positive cells in combination 

with the cell specific extracellular markers (CD-antigens). 

For both RA (Figure 1A) and HD (Figure 1B), and for all cell 

types analyzed, we did not find any significant influence of 

a-PVA-SPION on apoptosis and viability. Furthermore, we 

found that CD3 positive T cells show the lowest apoptosis 

and necrosis rates as demonstrated by the low percentages of 

Annexin V and 7AAD positive cells (median values between 

20% and 42%) whereas CD19 positive B cells showed the 

highest percentages of apoptosis and necrosis within their 

cell population (median values of Annexin V and 7AAD 

positive cells between 52% and 78%).

For RA patients (Figure 1A) we observed a non-significant 

a-PVA-SPION concentration-dependent increase in Annexin 

V positive CD14 monocytes (median value for a-PVA-

SPION at 1 µg/mL =45.9% and at 1,000 µg/mL =68.2%). 

This was not observed in HD (Figure 1B), where we found 

a minimal non-significant a-PVA-SPION concentration-de-

pendent decrease of Annexin V positive CD15 granulocytes 

(median value for PVA-SPION at 1 µg/mL =60.5% and at 

1,000 µg/mL =45.5%).

a-PVA-SPION trigger cytokine secretion 
by dose-dependent cell activation 
in whole blood
From whole blood viability experiments, supernatants 

were collected prior to sample preparation for flow 

cytometry and secreted cytokines were analyzed using 

the Bio-Plex® Suspension array system. We examined 

supernatants from nine RA patients and four HD and 

found significantly increased secretion of the following 

cytokines in the presence of a-PVA-SPION (at 100 µg/mL)  

when compared to the untreated control (Figure 2): 

RA patients – IL1β, IL4, IL6, IL8, IL9, IFN-γ, MCP-1, 

MIP1a, MIP1b, and PDGF; HD – IL1β, IL4, IL6, IL8, 

MIP1b, and RANTES. One example is given in Figure 2A: 

Table 1 Physicochemical characterizations of a-PVA-SPION

Nanoparticles dcore (nm) dH (nm) Z potential (mV) Sat mag (emu/g)

a-PVA-SPION 7.2±2.5 31±10 22±6 54

Abbreviations: dcore, mean diameter of the magnetic cores; dH, hydrodynamic diameter; Z potential, Zeta potential; Sat mag, the saturation magnetization; a-PVA-SPION, 
amino-polyvinyl alcohol coated superparamagnetic iron oxide nanoparticles.
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unstimulated cells secrete IL1β at a median concentration of  

55 pg/mL whereas 20 hours incubation with a-PVA-

SPION led to median values of 67.2 pg/mL (at 1 µg/mL), 

1,075 pg/mL (at 10 µg/mL), 2,076 pg/mL (at 100 µg/mL),  

and 1,573 pg/mL (at 1,000 µg/mL) in blood samples obtained 

from RA patients. For HD we found similar results: control 

cells secrete IL1β at median concentration of 96.3 pg/mL 

whereas a-PVA-SPION incubation resulted in IL1β median 

values of 155.4 pg/mL (at 1 µg/mL), 1,105 pg/mL (at 

10 µg/mL), 1,860 pg/mL (at 100 µg/mL), and 3,025 pg/mL 

(at 1,000 µg/mL) (Figure 2A; Tables S2 and S3). The secre-

tion of G-CSF was found to be significantly increased at 

β

γ

α

β

γ

α

Figure 2 Comparison of the influence of a-PVA-SPION on whole blood cytokine secretion by immune cells of RA patients and healthy donors.
Notes: Supernatants were collected from whole blood survival assays (blood samples obtained from patients with RA [n=9, left] or healthy donors [n=4, right]). One example 
for IL1β secretion is given in detail in (A), and a tabular overview for all measured cytokines is presented in (B). Red arrow: cytokines that were significantly increased at 
SPION concentration 100 µg/mL compared to untreated control; black arrow: cytokines significantly increased at any other SPION concentration than 100 µg/mL compared 
to untreated control; green arrow: cytokines that remained unchanged; nd: not detectable; data are given as box and whiskers; whiskers represent minimum to maximum; 
one-way ANOVA: ***P0.001; **P0.01; *P0.05.
Abbreviations: RA, rheumatoid arthritis; ANOVA, analysis of variance; Ctrl, control; LPS, lipopolysaccharide; PHA, Phaseolus vulgaris; HD, healthy donors; a-PVA-SPION, 
amino-polyvinyl alcohol coated superparamagnetic iron oxide nanoparticles.
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1,000 µg/mL of a-PVA-SPION for both, RA patients and 

healthy subjects, whereas IL10 was found to be significantly 

increased at 1,000 µg/mL of a-PVA-SPION in RA patients. 

All other cytokines were unaffected by a-PVA-SPION treat-

ment (see Tables and Figure 2B; all median concentrations 

are listed in Tables S2 and S3).

IL1β secretion is increased due to 
a-PVA-SPION treatment, with human 
monocytes and granulocytes being the 
primary sources of induced IL1β
To identify the cell population(s) responsible for the increased 

IL1β secretion, we separated CD4 positive T cells, CD14 posi-

tive monocytes, and CD15 positive granulocytes from whole 

blood obtained from HD and incubated them for 20 hours at 

varying a-PVA-SPION concentrations followed by subsequent 

IL1β measurement. Surprisingly, there was no influence of 

a-PVA-SPION on IL1β secretion in each of the single cell pop-

ulations (data not shown), ie, IL1β was not detectable (except 

within the corresponding controls). This was in contrast to 

findings with whole blood experiments. So we repeated the 

whole blood assay and stained for both specific extracellular 

cell identity markers and for intracellular IL1β that accumu-

lated in the presence of Brefeldin A. We found a significant or 

numerical a-PVA-SPION-induced increase in the percentage 

of IL1β positive cells for all cell types (Figure 3). Granulocytes 

represented the most commonly stained cell type followed, in 

descending order, by T cells, monocytes, and B cells, the lat-

ter representing the smallest cell population in the blood. The 

results were normalized to the respective cell counts. Thus both 

CD15 positive granulocytes and CD14 positive monocytes 

were identified as the major populations of IL1β producing 

cells (Figure 3). A low a-PVA-SPION concentration (1 µg/mL)  

did not influence IL1β secretion, whereas medium a-PVA-

SPION concentrations led to a strong numerical (10 µg/mL) or 

significant (100 µg/mL, one-way ANOVA, P0.05) increase 

in the number of IL1β positive cells compared to untreated 

control. A decline in the number of IL1β positive cells 

was found for the highest a-PVA-SPION concentration 

(1,000 µg/mL) compared with concentrations of 100 μg/mL 

or 10 μg/mL (Figure 3).

a-PVA-SPION do not affect the viability 
of human monocytes but induce 
increased survival of MDMs in a dose 
dependent manner
The main task of monocytes and macrophages is the clear-

ance of pathogens and toxins from the human body. Thus, 

we analyzed the effects of a-PVA-SPION on the survival of 

i) isolated monocytes and ii) MDMs (Figure 4). In general, 

monocytes as well as MDMs exhibit a decrease in numbers 

over 20 hours. Thus, we have normalized the results to the 

unstimulated control (considered to be 100%). When adding 

a-PVA-SPION to human CD14 positive monocytes at vary-

ing concentrations for 20 hours (n=8), the viability was not 

affected by nanoparticles compared to the unstimulated 

control. However, we found a significant decrease in the 

percentage of viable human monocytes when stimulated with 

a positive control, namely LPS (38.9% Annexin V/7AAD 

negative cells) (Figure 4A). Interestingly, MDMs (n=10) 

showed a significant increase in the percentage of viable 

cells at medium and high a-PVA-SPION concentrations 

compared to the unstimulated control (311.5% Annexin 

V/7AAD negative cells for a-PVA-SPION at 100 µg/mL and 

450.7% Annexin V/7AAD negative cells for a-PVA-SPION 

at 1,000 µg/mL) (Figure 4B).

a-PVA-SPION affect the survival 
of MDMs primarily when added very 
early during the differentiation process
Next we analyzed the influence of nanoparticles on the 

naturally occurring differentiation process by adding 

Figure 3 Impact of a-PVA-SPION on the number and distribution of IL1β positive 
cells.
Notes: Whole blood samples obtained from healthy donors (n=6) were incubated 
for 20 hours at varying a-PVA-SPION concentrations. Cellular transport was 
blocked by adding Brefeldin A and cells were stained for extracellular markers as 
well as for intracellular IL1β. Normalization according to cell count was performed 
and data were visualized with the help of a heat map. Data are given as number of 
IL1β positive cells.
Abbreviations: Ctrl, control; LPS, lipopolysaccharide; PHA, Phaseolus vulgaris; 
a-PVA-SPION, amino-polyvinyl alcohol coated superparamagnetic iron oxide 
nanoparticles.
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a-PVA-SPION at different time points during this process. 

In summary, we found that the survival of MDMs (n=7) 

was significantly increased in a dose dependent manner, 

especially when a-PVA-SPION were added very early in 

the differentiation process (Figure 4C [0 days]). The later the 

nanoparticles were added, the weaker the observed increase 

in cell survival (Figure 4C).

a-PVA-SPION at 1,000 µg/mL are 
internalized by human monocytes 
and MDMs
Monocytes and macrophages are professional phagocytes. 

Thus, we expected that the a-PVA-SPION are internalized 

within these cells. However, we aimed to investigate the 

exact intracellular location of the SPION within the cells, 

and the extent of their accumulation. To this end, we per-

formed TEM analyses of both untreated (Figure 5A, C) and 

a-PVA-SPION (1,000 µg/mL) treated monocytes and MDMs 

(Figure 5B, D). We found a-PVA-SPION to be present in 

phagosomes within both monocytes (Figure 5B) and MDMs 

(Figure 5D). Interestingly, we observed phagosomes that 

were only partly filled, whereas others were tightly filled 

with a-PVA-SPION.

Discussion
There is considerable interest in the use of nanoparticulate 

materials in the fields of pharmaceuticals and health care 

industries, as well as in clinical medicine, either for soft 

materials like liposomes (mostly used for drug delivery) or 

inorganic hard materials (developed mainly for in vitro or 

in vivo diagnostics) like SPION. RA is a chronic, systemic, 

inflammatory autoimmune disease that in large part is diag-

nosed only after irreversible joint damage is observed using 

existing imaging modalities. One promising opportunity to 
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Figure 4 Influence of a-PVA-SPION on the viability of isolated monocytes and monocyte-derived macrophages (MDMs).
Notes: Human monocytes (A) n=8 or MDMs (B) n=10 were incubated for 20 hours with or without SPION at varying concentrations and the percentage of Annexin V/7AAD 
negative cells was determined. In another experiment the SPION were added during the differentiation process from monocytes to MDMs at the beginning (0 d), after 
24 hours (1 d) or after 72 hours (3 d) and the percentage of Annexin V/7AAD negative cells was determined after a total of 6 days (C) n=7. Results are normalized to cell 
counts and untreated control. Data are given as mean ± standard deviation; two-way ANOVA: ***P0.001; **P0.01; *P0.05.
Abbreviations: d, day(s); ANOVA, analysis of variance; Ctrl, control; LPS, lipopolysaccharide; 7AAD, 7-amino-actinomycin D; a-PVA-SPION, amino-polyvinyl alcohol coated 
superparamagnetic iron oxide nanoparticles.
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achieve an early diagnosis of RA and other inflammatory 

and degenerative joint diseases, before significant joint 

destruction occurs, is represented by the use of SPION as 

MRI contrast agents. SPION are internalized in cells of the 

mononuclear phagocyte system, in tumor cells as well as 

in MSCs, which makes these particles of interest for use 

in MRI.51,62,63 The main advantage is that SPION are taken 

up by immune cells like monocytes, which differentiate 

to macrophages while migrating into the inflamed tissue. 

Thus, tissue inflammation can be visualized by MRI in very 

early disease which enables early therapeutic intervention 

prior to onset of significant joint damage. This approach 

is very much in agreement with current treat-to-target 

guidelines that recommend early and rigorous treatment to 

achieve low disease activity or remission targets as rapidly 

as possible.

However, prior to routine usage of novel engineered 

SPION formulations in medical applications, it is essential 

to determine any potential toxic effects of these particles.64,65 

Therefore, in this study we investigated in vitro the interac-

tion between a-PVA-SPION and human immune cells. We 

aimed to clarify possible toxic effects of a-PVA-SPION on 

human immune cells using a whole blood system to retain the 

interaction between the different blood cells and/or soluble 

Figure 5 Transmission electron microscopy (TEM) of human monocytes and monocyte-derived macrophages (MDMs) incubated with a-PVA-SPION.
Notes: Human monocytes were incubated for 24 hours without (A) or with (B) a-PVA-SPION (1,000 µg/mL). (C, D) Human MDMs were incubated for 24 hours without 
(C) or with (D) a-PVA-SPION (1,000 µg/mL). Both cell types showed uptake of SPION in phagosomes; some are scattered but others were tightly filled with nanoparticles 
(scale indicated on the figure).
Abbreviation: a-PVA-SPION, amino-polyvinyl alcohol coated superparamagnetic iron oxide nanoparticles.
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factors, thereby mimicking as far as possible the in vivo situ-

ation. Moreover, the influence of a-PVA-SPION was further 

analyzed in greater detail using isolated pure cell populations 

of monocytes or MDMs.

The following major findings emerged from this study: 

i) a-PVA-SPION had no effect on the survival of human 

immune cells in the whole blood analysis but ii) the cytokine 

secretion was dose-dependently increased in this short term 

study. iii) Using the example of IL1β, we were able to show 

that monocytes and granulocytes were the primary source 

for this cytokine. Furthermore, when analyzing monocytes 

and MDMs as pure cell populations in more detail, we found 

that iv) a-PVA-SPION improved the survival of MDMs in 

a dose dependent manner and that v) an early addition of 

a-PVA-SPION during the differentiation process led to the 

strongest impact on macrophage survival. Additionally, we 

were able to show that vi) a-PVA-SPION were internalized in 

human monocytes and MDMs. The main conclusion of these 

findings is that there is indeed a potentially clinically relevant 

interaction of a-PVA-SPION with human immune cells.

Immune cells represent the primary defense system 

against pathogens. Cells bearing phagocytic functions 

(especially professional phagocytes such as monocytes, 

macrophages, and polymorphonuclear granulocytes or neu-

trophils) are equipped with receptors that recognize foreign 

invaders.66 One reaction after the detection of external sub-

stances within the human body is the secretion of cytokines 

and chemokines to alert and attract further immune cells that 

migrate into the affected area. In this study we demonstrated 

that the secretion of different cytokines is increased due to 

a-PVA-SPION treatment in a whole blood system. This is 

in contrast to the results on isolated human MDMs, which 

found no difference in the production of several cytokines 

(IL12, IL6, TNF-α, and IL1β) in MDMs that were stimulated 

with dextran coated ultrasmall superparamagnetic iron oxide 

particle (Ferumoxtran-10) compared to untreated controls.67 

Whether or not the effect of the SPION in our study is persis-

tent or short-lived is not known. Further studies are required 

to examine this.

Another interesting study revealed that LPS pre-treated 

monocyte-derived dendritic cells co-cultured with CD4 

T cells show a SPION dependent decrease in IL1β secre-

tion.54 When analyzing the IL1β secretion in more detail in 

our study, we first incubated isolated T cells, monocytes and 

granulocytes with a-PVA-SPION in order to quantify the 

supernatants with regard to this cytokine. Interestingly, with 

the exception of the respective control, there was no measur-

able amount of IL1β in the supernatants after a-PVA-SPION 

stimulation (data not shown). But for both the whole blood 

cytokine secretion assay and the whole blood intracellular 

IL1β staining the results on cytokine production were precise 

and reproducible. Thus, we assume that analysis of isolated 

single cell populations is not representative of the complex 

human in vivo situation where interactions between immune 

cells and other cells and soluble factors exist. Neverthe-

less, the question arises whether this effect on cytokine 

secretion (especially IL1β) is of importance for the assess-

ment of SPION toxicology. In freshly drawn blood, IL1β 

serum levels of 5.5 pg/mL for RA patients and 2.6 pg/mL  

for HD have been reported.68 After incubation, we found 

median values of 96.3 pg/mL and 54.9 pg/mL IL1β for RA 

patients and HD in the untreated control, respectively. The 

difference with regard to freshly drawn blood may result 

from the incubation time of 20 hours, when apoptosis and 

consequently cell lysis may take place (see results of the 

whole blood survival assay), which mediate the release of 

soluble factors. These serum values were increased up to 

2,000 pg/mL in our positive control, which is represented by 

LPS at high dosages. Similar values could be observed for 

a-PVA-SPION used at concentrations 10 µg/mL. These 

results show that the batch of a-PVA-SPION used does 

indeed trigger a dose-dependent effect that is comparable 

to an inflammatory process. Thus, for some in vitro stud-

ies these SPION are usable but they are not feasible for in 

vivo imaging techniques that exceed local a-PVA-SPION 

concentrations of 10 µg/mL. Further modulation of the for-

mulation may possibly reduce this cytokine secretion thereby 

overcoming this problem, since we were able to show that 

there is no toxic effect with regard to survival and since we 

do not expect our immune cells to be totally inert when in 

contact with a-PVA-SPION. Furthermore, when thinking 

of the in vivo situation, one has to keep in mind that the 

properties of the peripheral blood and the tissues, especially 

in the case of inflammation, vary strongly. One example is 

oxygen availability, which is sufficient in the blood stream 

but deficient in inflamed tissues. Thus, immune cells have to 

adapt to these changes when infiltrating the inflamed area.69 

These environmental changes could result in a completely 

different behavior of immune cells, compared to our findings 

for peripheral blood cells. Another important consideration 

is the concentration of SPION that is attained in vivo when 

used as a contrast agent in clinical studies. Both questions 

remain to be analyzed in future studies.

A key immune cell, whose principal task is the recogni-

tion, uptake and lysis of foreign invaders, is the professional 

phagocyte.66 Such cells do not distinguish between microbes, 
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foreign cell debris, apoptotic cells or nanoparticles. Our 

results indicate that a-PVA-SPION are endocytosed by 

monocytes and MDMs, which is in accordance with other 

studies.67,70 When nanoparticles enter the cell, they can 

sometimes directly interact with the cytosol while during 

phagocytosis these particles are retained within vesicles.71–73 

Hence, the intracellular location of nanoparticles depends on 

the uptake mechanism, which in turn depends on the type and 

the charge of the nanoparticle. For example Schweiger et al 

reported that negatively charged SPION were found firstly 

in endosomes and later in lysosomes, whereas positively 

charged particles were found exclusively in lysosomes.71 

Since we used a-PVA-SPION in RPMI media without FCS, 

the Zeta potential of the particles is slightly positive, which 

leads to the assumption that the a-PVA-SPION are located 

in lysosomes. Rich in digestive enzymes, the lysosomes 

are responsible for the dissolution of pathogens. In general, 

monocytes are patrolling cells within the bloodstream that 

recognize pathogens or respond to inflammatory stimuli.69 

Once activated, a differentiation process is initiated that leads 

to the development of macrophages. These cells primarily 

ingest the pathogens for rapid killing and elimination and 

further regulate inflammatory reactions by producing pro-

inflammatory or anti-inflammatory cytokines.74–76 Incubation 

with nanoparticles clearly triggers an activation process, 

whereas monocyte survival is not influenced. But when 

considering macrophages, it became obvious that the num-

ber of differentiated, viable cells was increased by a-PVA-

SPION contact. Our results indicate that more monocytes 

are triggered to become macrophages, thereby assimilating 

and removing the foreign invader and enhancing immunity. 

This may facilitate further uses of nanoparticles. Monocytes 

and macrophages have recently been identified as interest-

ing targets for both diagnosis and treatment of inflamma-

tory diseases such as RA.77 A directed uptake of specific 

nanoparticle formulations by monocytes and macrophages, 

which migrate into the inflamed tissue, is desirable on the 

one hand for imaging as shown by the NanoDiaRA project 

results, thereby enabling early diagnosis of RA.78 On the 

other hand, conjugation of nanoparticles that invade inflamed 

tissue with disease modifying drugs may optimize treatment 

strategies in the future.

Conclusion
Our study clearly demonstrates that there are mixed effects 

of a-PVA-SPION on human immune cells. Thus they do not 

appear to have any observable toxic effects on the survival 

of the immune cells investigated. However, they promote 

differentiation to and increased survival of MDMs, which 

are important human professional phagocytes and thus favor 

the expression of immunity. The analysis of cytokine secre-

tion revealed that a-PVA-SPION trigger dose-dependent 

release of some cytokines that is comparable to an acute 

inflammatory process of unknown duration. Moreover, the 

concentration of a-PVA-SPION that would be used in imag-

ing remains to be determined. It may be similar or lower 

than the dose range used here. Therefore, we have obtained 

a nuanced conclusion, where the expected cytokine secre-

tion as an immune response from professional phagocytes 

to a foreign substance was present but to a lesser extent than 

anticipated. SPION particles of this kind, which have already 

been generated with different surface modifications, will 

require examination in studies of this kind to determine the 

nature of the human immune responses they might gener-

ate. That these in vitro studies are of importance is apparent, 

especially once the local in vivo concentrations of SPION 

have been determined.

Outlook
In future, the use of nanomaterials is likely to increase since 

these substances open up previously unforeseen opportunities 

due to their special properties. In particular, nanoparticles 

represent a promising tool in the field of human medicine, for 

example as MRI contrast agents. It has been recently demon-

strated that these particles are taken up by human MSCs and 

therefore could probably be used for cell-based therapies.51 

Interestingly, we were able to demonstrate that these particles 

are also taken up by human macrophages, which are known 

to migrate into inflamed tissue. This might facilitate very 

early visualization of tissue inflammation by MRI, thereby 

enabling an early therapeutic intervention prior to onset of 

significant joint damage. Some studies using these nanopar-

ticles proved their efficiency to target and monitor in vivo 

the inflammation of knee joints treated with dexamethasone 

using a-PVA-SPION labeled macrophages.79

However, as with any novel technology, a number of 

critical issues must be resolved before using these a-PVA-

SPION in human medicine. Specifically, these particles have 

first to be modified to a certain degree to be usable in vivo in 

the human system. One possibility would be to use the PVA 

coating properties to cross-link the polymer on the surface of 

the SPION or to functionalize them with reactive groups to 

target specific diseases.80 Of course, these new modifications 

will need further in vitro studies. However, once a suitable 

formulation has been established, it may facilitate prevention 

of joint damage arising from RA.
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Table S2 Influence of a-PVA-SPION on the concentration of secreted cytokines in whole blood samples obtained from RA patients

Cytokine Ctrl LPS PHA a-PVA-SPION  
1 µg/mL

a-PVA-SPION  
10 µg/mL

a-PVA-SPION  
100 µg/mL

a-PVA-SPION  
1,000 µg/mL

Norm-serum- 
level*

IL1ra [pg/mL] 146 1,164 740 106 546 588 277 133
IL1b [pg/mL] 13 706 125 15 57 1,661 1,303 3
1L2 [pg/mL] nd nd nd nd nd nd nd 1 
IL4 [pg/mL] 8 18 18 7 12 20 15 3
IL5 [pg/mL] nd nd nd nd nd nd nd 4
IL6 [pg/mL] 16 22,147 5,242 46 474 18,818 20,102 5
IL7 [pg/mL] nd nd nd nd nd nd nd 21
IL8 [pg/mL] 81 8,025 7,460 508 5,762 17,279 20,050 4
IL9 [pg/mL] 52 129 129 39 68 118 139 12
IL10 [pg/mL] 3 290 220 3 9 70 125 4
IL12 [pg/mL] 31 67 66 36 37 68 82 16
IL13 [pg/mL] nd nd nd nd nd nd nd 4
IL15 [pg/mL] nd nd nd nd nd nd nd 1
IL17 [pg/mL] 17 101 182 17 74 128 120 21
Eotaxin [pg/mL] 91 115 87 103 86 101 86 31
FGF basic [pg/mL] 17 24 24 13 17 26 20 7
G-CSF [pg/mL] 35 189 82 29 75 627 1,040 52
GM-CSF [pg/mL] 158 118 121 114 99 145 147 6
IFN-γ [pg/mL] 380 1,249 901 357 487 1,110 1,055 77
MCP1 [pg/mL] 131 1,924 7,455 553 8,911 11,732 10,834 16
MIP1a [pg/mL] 21 1,708 1,381 24 115 1,886 1,845 7
MIP1b [pg/mL] 178 9,369 9,639 467 2,472 11,227 7,897 35
IP10 [pg/mL] 1,267 8,238 11,175 913 1,524 1,372 682 592
PDGF [pg/mL] 1,445 2,496 3,135 1,518 1,963 4,096 2,824 1,571
RANTES [pg/mL] 4,732 8,659 7,048 4,892 6,878 8,491 8,788 204&

TNFα [pg/mL] 40 1,273 661 30 118 348 113 35
VEGF [pg/mL] 48 145 136 70 45 77 203 11

Notes: Supernatants were collected from whole blood survival assays (blood samples obtained from patients with RA) after 20 hours with or without SPION treatment and 
analyzed by multiplex suspension array. Supernatants from nine RA patients were analyzed, median values are shown for the controls (LPS, PHA) and the different SPION 
concentrations (1–1,000 µg/mL). *Adapted from Up-regulation of cytokines and chemokines predates the onset of rheumatoid arthritis, Arthritis & Rheumatism, John Wiley 
and Sons. Copyright © 2010 by the American College of Rheumatology.1 &Copyright © 2010. Bio-Rad Laboratories, Inc. Adapted from Chapman P, Reyes C, Gupta V. Normal 
Physiological Levels of Human Cytokines Using Bio-Plex Pro™ Cytokine Assays. Bio-Rad Tech Note. 2010;6029. Available from: http://www.bio-rad.com/webroot/web/pdf/
lsr/literature/Bulletin_6029.pdf. Accessed January 29, 2015.2

Abbreviations: nd, not detectable; Ctrl, control; RA, rheumatoid arthritis; LPS, lipopolysaccharide; PHA, Phaseolus vulgaris; a-PVA-SPION, amino-polyvinyl alcohol coated 
superparamagnetic iron oxide nanoparticles.

Supplementary materials

Table S1 Characteristics of patients with RA at screening visit

Characteristics RA patients (n=19)

Female:male 16:3
Age (years)* 56.42 (24/75)
Duration of RA (years)* 10.3 (0.2/37.6)
RF* 231 (1/1,600)
ACPA* 241.7 (0/1,000)
DAS28* 4.81 (2.72/6.86)
ESR (mm/h)* 22.68 (2/60)
CRP (mg/dL)* 0.98 (0.03/6.56)
Glucocorticoid treatment 13 (68%)
DMARDs 19 (100%)
NSAIDs 11 (58%)
Note: Data are given as *mean (minimum/maximum) or number (%).
Abbreviations: RF, rheumatoid factor; ACPA, anti-citrullinated peptide antibodies; DAS28, disease activity score of 28 joints; ESR, erythrocyte sedimentation rate; CRP, 
c-reactive protein; DMARDs, disease modifying antirheumatic drugs; NSAIDs, non-steroidal anti-inflammatory drugs; RA, rheumatoid arthritis.
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Table S3 Influence of a-PVA-SPION on the concentration of secreted cytokines in whole blood samples obtained from HD

Cytokine Ctrl LPS PHA a-PVA-SPION  
1 µg/mL

a-PVA-SPION  
10 µg/mL

a-PVA-SPION  
100 µg/mL

a-PVA-SPION  
1,000 µg/mL

Norm-serum- 
level*

IL1ra [pg/mL] 48 971 1,095 241 333 603 371 133
IL1β [pg/mL] 2 816 528 6 881 2,117 3,233 3
IL2 [pg/mL] nd nd nd nd nd nd nd 1
IL4 [pg/mL] 3 15 20 4 19 21 20 3
IL5 [pg/mL] nd nd nd nd nd nd nd 4
IL6 [pg/mL] 5 30,184 23,901 165 14,755 30,615 22,398 5
IL7 [pg/mL] nd nd nd nd nd nd nd 21
IL8 [pg/mL] 110 15,261 14,485 731 19,613 18,145 15,709 4
IL9 [pg/mL] 161 225 327 198 237 290 317 12
IL10 [pg/mL] 5 600 497 6 62 80 203 4
IL12 [pg/mL] 24 84 79 30 57 47 84 16
IL13 [pg/mL] nd nd nd nd nd nd nd 4
IL15 [pg/mL] nd nd nd nd nd nd nd 1
IL17 [pg/mL] 53 144 299 51 148 143 156 21
Eotaxin [pg/mL] 66 91 93 80 85 98 82 31
FGF basic [pg/mL] 6 36 28 27 29 23 30 7
G-CSF [pg/mL] 47 371 256 27 386 538 1,672 52
GM-CSF [pg/mL] 137 198 199 103 134 159 112 6
IFN-γ [pg/mL] 546 3,291 2,710 1,165 799 2,487 1,729 77
MCP1 [pg/mL] 111 2,305 4,509 409 6,419 7,188 6,121 16
MIP1a [pg/mL] 17 7,241 11,755 51 2,257 7,059 5,808 7
MIP1b [pg/mL] 214 14,073 16,550 786 11,718 16,665 12,236 35
IP10 [pg/mL] 551 24,929 26,849 5,744 890 742 689 1,388
PGDF [pg/mL] 1,098 2,310 2,828 1,178 3,100 3,335 2,319 1,571
RANTES [pg/mL] 6,267 10,547 11,419 8,913 10,289 10,928 9,433 204&

TNFα [pg/mL] 61 4,863 3,186 75 1,083 1,315 220 35
VEGF [pg/mL] 32 136 191 59 76 64 125 11

Notes: Supernatants were collected from whole blood survival assays (blood samples obtained from healthy donors) after 20 hours with or without SPION treatment 
and analyzed by multiplex suspension array. Supernatants from four HD were analyzed: median values are shown for the controls (LPS, PHA) and the different SPION 
concentrations (1–1,000 µg/mL). *Adapted from Up-regulation of cytokines and chemokines predates the onset of rheumatoid arthritis, Arthritis & Rheumatism, John Wiley 
and Sons. Copyright © 2010 by the American College of Rheumatology.1 &Copyright © 2010. Bio-Rad Laboratories, Inc. Adapted from Chapman P, Reyes C, Gupta V. Normal 
Physiological Levels of Human Cytokines Using Bio-Plex Pro™ Cytokine Assays. Bio-Rad Tech Note. 2010;6029. Available from: http://www.bio-rad.com/webroot/web/pdf/
lsr/literature/Bulletin_6029.pdf. Accessed January 29, 2015.2

Abbreviations: nd, not detectable; Ctrl, control; HD, healthy donors; LPS, lipopolysaccharide; PHA, Phaseolus vulgaris; a-PVA-SPION, amino-polyvinyl alcohol coated 
superparamagnetic iron oxide nanoparticles.
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