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Transport in graphene superimposed by a moving electrical superlattice potential
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We calculate dc conductivities of ballistic graphene undulated by an overlying moving unidirectional electrical
superlattice (SL) potential whose SL velocity is smaller than the electron velocity. We obtain no dependence of
the conductivity on the velocity along the direction of the superlattice wave vector. In the orthogonal direction
however, the dependence is strong on the velocity especially at voltages where a new Dirac point emerges for
zero velocity. It is shown that the infinite graphene system can serve as an ideal motion detector at potentials
where the first new Dirac point emerges. There the conductivity is zero at vanishing SL velocities and jumps to
infinity when the SL starts moving. For finite systems at voltages where the number of new Dirac points is of the
order of the ratio of the electron velocity by the SL velocity, the modifications to the conductivity of a moving
SL is at least of similar magnitude as the conductivity of the stagnant SL.
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I. INTRODUCTION

The electrical conductivities in suspended graphene sam-
ples show high mobilities where ballistic transport is seen for
samples up to the micron length.1–3 Due to the quasirelativistic
behavior of its electrons, graphene has a density of states
proportional to the electronic energy, which is zero at the
neutrality point. As a consequence, this leads in ballistic
graphene to the phenomenon that the conductivity shows a
universal finite behavior4 whose precise value is still under
debate.5 It seems now that the universal conductivity in a
wide range of graphene samples with highly doped leads has
the value σ̃ = 4e2/πh,6,7 whereas in a system with vanishing
small doped leads, it is σ̃ = e2π/2h.8 Numerically, these two
values are quite close to each other. A small perturbation of the
chemical potential of the graphene sample may be caused by
applying an external gate voltage; this conductivity can change
drastically, due to the now finite density of states at the Fermi
energy. For an infinite large ballistic system, it becomes even
infinite. Such an extreme sensitivity of the neutral graphene
system on the environmental parameters makes it attractive
as a building block for nanodetectors. It was experimentally
shown that graphene is a good chemical sensor which is able
to detect the dc-response changes due to the adsorption of even
single gas molecules on its surface.9 This high sensitivity is
mainly due to the intrinsic low-noise properties of graphene.
A more general review of possible graphene sensors can be
found in Ref. 10.

Here we consider a ballistic graphene sample with an
overlying slowly moving unidirectional electrical superlattice
(SL). We calculate the longitudinal conductivities along and
orthogonal to the SL wave vector as a response of a small
external dc field. This system is considered as a possible model
for a graphene-based nanomechanical motion detector.

In the direction orthogonal to the wave vector of the
SL we obtain, especially at SL voltages where new Dirac
points emerge in the nonmoving SL, a high sensitivity of the
conductivity values on the SL motion. In the parallel direction
our approximation produces no dependence on the SL velocity.

Graphene under the effect of a moving SL can be realized,
for example, by placing periodically patterned gate electrodes

on either a moving underlying substrate or on a rested sub-
strate where now the individual gate electrodes are activated
appropriately with time such that an effective moving SL is
simulated. More directly, the experimental realization could
also be carried out by using the coupling of the graphene
sheet to the electrical field of a surface acoustic wave on a
piezoelectric substrate11 or to a charged moving membrane
with ripples.

It was recently shown explicitly for graphene that new Dirac
points in the energy spectrum can be opened by imposing
a nonmoving SL on the graphene lattice.12–14 This leads to
unusual conductivity properties in such systems.15–20 These
new Dirac points are accompanied with new energy valleys.
Due to the technical complications in handling transport in a
moving SL we will first consider the transport contributions
of the inner valleys near the K and K′ points in Sec. III,
then those of the outer valleys in Sec. IV. Note, that such a
separation is not useful for the nonmoving SL, as will be seen
in Sec. IV. We start in Sec. II by first reconsidering the lowest-
band eigenvalues and eigenfunctions for the nonmoving SL.

We discuss here the most simple representation of a SL, a
symmetric two-step Kronig-Penney potential with a superlat-
tice potential V (x) = V χ (x), where χ (x) = sg[sin(2πx/d)]
(cf. Fig. 1). The function sg[x] is the sign of x, and d is
the wavelength of the SL. In the continuum approximation,
the graphene Hamiltonian under consideration near the Dirac
point K is given by Hvs

= h̄vF (σx∂x/i + σy∂y/i) + V (x +
vst).4 Here vF is the Fermi velocity and σx,y are the Pauli
matrices, while vs is the velocity of the moving SL. Before
starting, we mention here that we kept track of the most
important in-line formulas in this paper in Table I. This should
enable the reader to better capture the structure of the paper.
Furthermore, we give a short guideline for reproducing the
formulas used in this paper in Appendix B.

II. LOWEST-BAND EIGENVALUES
AND EIGENFUNCTIONS

In the following, we solve the eigenvalue equation
Hvs

uvs (r′) = εuvs (r′) for a nonmoving SL (vs = 0) by using
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FIG. 1. (Color online) Lowest Bloch band energy spectrum for
kx = 0 as a function of dimensionless momenta ky for various SL
potential strengths Ṽ (the full lowest-band energy spectrum can
be obtained by using its mirror symmetry with respect to the x,y

axis). Here we used the transfer-matrix method (Refs. 21 and 16).
Inset shows a graphene layer with an overlying moving SL in the x

direction.

the transfer-matrix method.16,21 For the energy dispersion
in the lowest band we restrict ourselves to the lowest-lying
oscillatory regime |εs |d/h̄vF � Ṽ ,α̃0 and obtain22

εs =sh̄vF α̃2
0

√
k2
x + |�|2k2

y , (1)

with

αεs
(x) = ({[εs − V (x)]/h̄vF }2 − k2

y

)1/2
d/2. (2)

Here � = sin[α0]eiα0/α0 and α̂0 = α0/Ṽ , where Ṽ =
V d/2h̄vF . The Bloch momentum in the x direction is restricted
to −π/d � kx � π/d. The parameter s = 1 denotes the
conduction band and s = −1 the valence band.

The corresponding lowest-band eigenfunctions are
uvs (x,y)=eikyyuvs (x), in the fundamental zone 0 � x � d and
for vs = 0 reduces to

u0
s (x) = 	(x)u0

s (0) (3)

with

	(x) = λ0(x)�

(
d

2
− x

)
+ λd/2(x)λ0

(
d

2

)
�

(
x − d

2

)
,

(4)

TABLE I. Overview of the most important in-line formulas in this
paper.

χ (x) = sg[sin(2πx/d)] ξ (x) = ∫ x

0 dx ′ χ (x ′)
� = sin[α0]eiα0/α0 α̂0 = α0/Ṽ

Ṽ = V d/2h̄vF k̃y = h̄vF ky/V

Inner valleys Outer valleys

α̂0 ≈ πn

Ṽ
α̂0 = πn

Ṽ

kn
yd ≈ 2[2Ṽ (Ṽ − πn)]1/2, k0

y = 0 kn
yd = 2[Ṽ 2 − (πn)2]1/2

�n ≈ 2
(
1 − πn

Ṽ

)
, �0 = sin(Ṽ )

Ṽ
�n = 1 − ( πn

Ṽ

)2

where

λx0 (x) = cos

[
αεs

(x)2(x − x0)

d

]
E + sin

[ αεs (x)2(x−x0)
d

]
αεs

(x)
M.

(5)

Here E is the unit matrix and

M = kyσ3 + i[εs − V (x)]σ2/h̄vF . (6)

u0
s (0) is given in the oscillatory region |εs |d/h̄vF � Ṽ ,α̂0 by

u0
s (0) ≈ 1

Nu

⎛
⎝ cos(α0) sin(α0)

α0
kyd + ikxd

i 1
α̂2

0

εsd

h̄vF
+ i sin2(α0)

α2
0

Ṽ kyd

⎞
⎠ , (7)

where Nu in (7) denotes a normalization factor. From (1) we
obtain an oscillatory behavior of the lowest-band eigenvalues
as a function of ky (cf. Fig. 1). New Dirac points emerge at
k = 0 for Ṽ ∈ Nπ . These are shifted along the y axis in k space
for increasing Ṽ . Note that the lowest-band energy values
beyond the oscillatory regime with momenta k2

y � (V/h̄vF )2

scale like |εs | ∼ h̄vF |ky |.16,21

In the following, we discuss the transport contributions of
electrons in the inner-energy valleys where ky � V/h̄vF and
the outer valleys where α̂0 � 1 separately. Such a separation
is possible for dc transport since as we will see in the
following, the dc electric field couples only electron states
in the conduction and valence bands having the same Bloch
momentum. Note that the Bloch momentum is conserved for a
moving SL. The resulting time-dependent state then performs
a similar movement as is known under the Zitterbewegung in
relativistic physics.8 Taking into account all electrons in the
valence band we obtain for large times an effective dc current.

III. INNER-VALLEY TRANSPORT CONTRIBUTIONS

In the inner-valley regime ky � V/h̄vF , the lowest-band
eigenfunctions u0

s (x) [(3)–(7)] for the nonmoving system
above are given by

u0
s (x,t) = 1

Nu

[(
1

1

)(−ikx

ky�∗ − iεs

h̄vF ky�∗

)
φ+(x)

+
(−1

1

)
φ−(x)

]
, (8)

where Ñu in (8) denotes a normalization factor. �∗ is the
complex conjugate of �. The phase factor φ±(x) is given by

φ±(x,t) = exp[iSvs± (x,t)/h̄] (9)

with

S0
±(x,t) = ∓ih̄

∫ x

0
dx ′ sg [V (x ′)]αεs

(x ′)/(d/2) − iεs t (10)

for vs = 0 where we extended (8) by the last term in (10)
chosen such that u0

s solves simultaneously the corresponding
time-dependent Schrödinger equation (TSE). From (8) we de-
duce the remarkable observation that the inner-valley electrons
do not backscatter at the potential steps. This phenomenon is
well known for ordinary Dirac fermions as Klein paradox.

In the following, we use the inner-valley approximation

α0(x) ≈ Ṽ
(
1 − k̃2

y/2
)

(11)
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with k̃y = h̄vF ky/V in (1) and (8), which is a good approxima-
tion of the overall oscillatory behavior of the energy dispersion
in Fig. 1. Similar approximations will also be used when
solving the TSE for vs 
= 0 below. Finally we note that the
missing of the kx,ky dependence in the vector part (∓1,1)T

of both spinor components in (8) is due to the inner-valley
restriction k2

y � (V/h̄vF )2.
We obtain from (1) that an entire set of 2[Ṽ /π ] + 1

Dirac points exists near K where [x] is the lowest in-
teger number smaller than x. By using the inner-valley
approximation (11), these new Dirac points are located at
kn
yd ≈ 2[2Ṽ (Ṽ − πn)]1/2 with n = 1, . . . ,[Ṽ /π ] and k0

y =
0 (restricting ourselves to positive ky). The linearized en-
ergy spectrum around these Dirac points is given by εn

s =
sh̄vF [k2

x + �2
n(ky − kn

y )2]1/2 where the effective y-velocity co-
efficient is given by �n ≈ 2(1 − nπ/Ṽ ) for n = 1, . . . ,[Ṽ /π ]
and �0 = sin(Ṽ )/Ṽ for the central valley. The magnitude
α̂0 for ky = kn

y is given by πn/Ṽ . Below, we shall also
need the ky-momentum spacings between the right- and
left-energy crest and the Dirac point. The spacing for the
right crest is given by �kn,R

y d ≈ π [Ṽ /2(Ṽ − πn)]1/2 for n =
1, . . . ,[Ṽ /π ] and �kn,L

y = �kn,R
y for the left crest positions

where n = 1, . . . ,[Ṽ /π ] − 1. For the central crest distance we

obtain �k0,R
y d = �k0,L

y d ≈ (k[Ṽ /π]
y d)3/[(k[Ṽ /π]

y d)2 + 4�0Ṽ
2]

and �k
[Ṽ /π],L
y = k

[Ṽ /π]
y − �k0,L

y . Finally we note that the
inner-valley formula with k̃2

y � 1 considered in this section
is valid for the valleys 1 − πn/Ṽ � 1 with n 
= 0 and also the
central valley n = 0.

In the following we solve the TSE ih̄∂tuvs
s (x,t) =

Hvs
uvs

s (x,t) with the initial condition uvs
s (x,0) = u0

s (x) for t =
0 in the oscillatory regime by using the above approximations.
Note that by using the characteristic method we can solve
the TSE without approximation for ky = 0. This leads again
to (8) where now S

vs± is vs dependent. Instead of doing this
explicitly, we can generalize this procedure to any nonzero
k2
y � (V/h̄vF )2 by the Hamilton-Jacobi ansatz

−∂S
vs±

∂t
= −h̄vF sg[V (x + vst)]

√
(∂xS

vs± )2 + k2
y + V (x + vst)

(12)

with the boundary condition that S
vs± (x,0) = S0

±(x,0). Due to
the local uniformity of V (x + vst) in position and time we
obtain local uniform solutions of (12). That this approach
leads to a TSE solution in the oscillatory regime is due to the
fact that the general solution can be written as

uvs

s (x,t) ≈
∑
s,kx

as,kx

(
s kx

|kx |
1

)
e
−(i/h̄)t[h̄vF s

√
k2
x+k2

y+V (x+vs t)]eikxx

(13)

in the inner-valley regime k2
y � k2

x . The complex variables
as,kx

are local uniform functions in the (x,t) plane. We will
show below that as,kx

is nonzero for only two special kx

values which moreover fulfill the inner-valley regime condition
k2
y � k2

x .
We now solve (12) by using a generalized characteristic

method for the Hamilton-Jacobi equation that is well known
in the semiclassical approach to quantum mechanics.23 This is

based on the one-particle mechanical trajectory of a relativistic
particle and antiparticle in a step potential. The calculation is
outlined in Appendix A.

After some manipulation we obtain the result

S
vs± (x,t) ≈ S

vs,x± + S
vs,t± (14)

with

S
vs,t±
h̄

= −t
εs

h̄
,

S
vs ,x±
h̄

= ±[A±ξ (x∗ + v∗
s t) + B±ξ (x∗ ∓ v∗

F t) (15)

+C±tχ (x∗ ∓ v∗
F t)].

Further we have ξ (x) = ∫ x

0 dx ′ χ (x ′), x∗ = x − (v∗
s − vs)t ,

and

A± = ∓ V

h̄(vs ± vF )

[
1 − k̃2

y

vs ± 1
2vF

vs ± vF

+ k̃2
yZ

2
±

]
,

B± = − V

h̄(vs ± vF )

[
vs

vF

− k̃2
yvs

2vF

vs

vs ± vF

∓ k̃2
yZ

2
±

]
,

(16)

C± = ±V

h̄
k̃2
yZ

1
±, v∗

F = vF

[
1 − k̃2

y

2

(v2
s + v2

F )2

(v2
s − v2

F )2

]
,

v∗
s = vs

[
1 − k̃2

y

v2
F

(
v2

s + v2
F

)
(
v2

s − v2
F

)2
]

,

where Z1
± = v3

s (vs ± vF )/(v2
s − v2

F )2 and Z2
± = v2

s /(v2
s −

v2
F ). Here we restrict the solution of (12) to small velocities

vs � vF .
Next we calculate the dc response in the moving SL system.

This is done in the gauge A = −cE(t − t0)�(t − t0) assuming
t0 � 0, in general. Since σ̃ii(t) does not depend on t0 for
t � 0 we set immediately t0 = 0. The total Hamiltonian in
the continuum approximation is then given by HA = Hvs

+
h̄vF (e/c)(σxAx + σyAy). The corresponding TSE solution
which we expand to first order in A and assume it to satisfy
the initial condition uA(t = 0) = u0

s is denoted by uA. From
this solution we obtain the conductivity in the ith direction
by σ̃ii = limE→0 evF (〈uA(t)σiuA(t)〉/E) where A = −cEei t .
Here ei is the unit vector in the ith direction. The conductivity
in the ith direction in the lowest energy level approximation
valid for t → ∞ and vs � vF ,V d/h̄ is then given by8

σ̃ii(t) = −4evF

(2π )2

∫
BZ

d2k Re
[〈

uvs

−1(t)
∣∣σi

∣∣uvs

+1(t)
〉
ξ+(t)

]
(17)

with

ξ+(t) = i
evF

h̄

∫ t

0
dt ′ t ′T vs (t ′)

= i
evF

h̄

(
t

∫ t

t ′′=−∞
dt ′′ −

∫ t

t ′=0
dt ′
∫ t ′

t ′′=−∞
dt ′′
)
T vs (t ′′)

(18)

and the transition matrix element T vs (t) = 〈uvs

1 (t)|σi |uvs

−1(t)〉.
By inserting (18) in (17) the term proportional to t cancels
in an improved tight-binding approximation since it can be
written as t

∫
BZ d2k ∂ki

〈uvs

−1(t)|Ji |uvs

−1(t)〉 = 0, where Ji is the
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tight-binding current operator for A = 0.8 Here we used the
fact that the exact tight-binding wave functions are smooth
at the Brillouin zone boundary. Summing the Fourier series∑

ωn
T̂ vs

r (ωn)eiωnt ≡ e−it�ε/h̄T vs (t) where �ε = ε1 − ε−1, we
obtain for large times

ξ+(t) = i
evF

h̄

∑
ωn

{ T̂ vs
r (ωn)

(ωn + �ε/h̄ − iδ)2
(ei[(�ε/h̄)+ωn]t − 1)

− it

[
T̂ vs

r (ωn) − T̂ 0
r (ωn)

]
ωn + �ε/h̄ − iδ

}
. (19)

Here δ is an infinitesimal positive number.

In the following we calculate the contribution of every
energy valley to the momentum integral in (17) separately,
i.e.,

σ̃ii(t) =
∑

n=0,...,[Ṽ /π]

σ̃ n
ii(t)(2 − δn,0). (20)

For large times one can restrict the ky integrals of Eq. (17) to
the neighborhood of the valley center kn

y setting immediately

ky ≈ kn
y in T̂ vs

r . This leads then with (8), (17), and (19)
to the following momentum integrals during the calculation
of σ̃ n

ii :

∫
nth valley

d2k
(2h̄vF kx)2

(�ε)2
e−(i/h̄)�εt ξ+(t) = ie

2h̄

1

�n

{∫ +∞

−∞
dkx

∫ �kn,R
y �n

−�k
n,L
y �n

dky

k2
x

k3
Fvs (k) −

∫ 2π

0
dϑkϑ sin2(ϑ)[Fvs (kϑ ) − F 0(kϑ )]

}

(21)

with

Fvs (k) = T̂ vs
r (ωn)eiωnt

ωn + 2vF k − iδ
(1 − e−i(2vF k+ωn)t ) (22)

and kϑ = [tan2(ϑ) + 1]1/2�n{�kn,R
y �[cos(ϑ)] + �kn,L

y �[− cos(ϑ)]} where �(x) is the Heaviside function. The right-hand side
of Eq. (21) was calculated by the help of a partial integration.

In the calculation of σ̃ii via (17), the quantities

P ≡ 1

d

∫ d

0
dx exp[i(Svs,x+ − S

vs,x− )], Cm ≡
∑

ωn≈2mπv∗
F /d

ˆ|P|(ωn)(2 − δn,0)eiωnt (23)

are relevant where ˆ|P|(ωn) are the Fourier components of |P|(t). More precisely, Cm with m > 0 are the positive components
for frequencies 2π (m − 1/2)v∗

F /d � ωn � 2π (m + 1/2)v∗
F /d under the restriction that ωn � 0 for m = 0. A straightforward

calculation leads with (15) for vs � vF to

Re[Cm] =
∑

σ∈{±}
cos(C−t)B−X(m,m,m,σ ) − sin(C−t)

[
σ

2πm

d
+ ξ̇ (2v∗

s t)B+

]
X(m,m,m + 1,σ ) + Ex,

(24)

Im[Cm] =
∑

σ∈{±}
σ cos(C−t)B−X(m,m,m + 1,σ ) + σ sin(C−t)

[
σ

2πm

d
+ ξ̇ (2v∗

s t)B+

]
X(m,m,m,σ ) + Ex,

where

X(nω,n1,n2,σ ) ≈ − 1

Ad2

8(2 − δnω,0)

B2− − [ξ̇ (2v∗
s t)B+ + σ 2πnω

d

]2 sin

[
A

d

4
+ n1

π

2

]

× sin

[
− B

d

4
+ B+ξ (2v∗

s t) − C+tχ (2v∗
s t) − σnω

2πv∗
F t

d

(
1 − v∗

s

v∗
F

)
+ n2

π

2

]
. (25)

The term Ex in (24) stands for the foregoing expressions with interchanged B+ ⇔ B−, C+ ⇔ −C−, and switched sign of v∗
s .

Furthermore, we used the abbreviation A ≡ A+ + A−, B ≡ B+ + B−.
We are now able to calculate the conductivity contribution σ̃ n

ii of the nth energy valley by using (17), (21), and (24), leading to

σ̃ n
xx ≈ e2

h

π

2
α̂2

0
1

�n

, σ̃ n
yy ≈ e2

h

π

2

1

α̂2
0

1

�n

∑
σ∈{L,R}

Re[C0 + C1]

{
Re[C0] + Re[C1]

[
1

π

{
ϑn

σ − 1

2
sin
(
2ϑn

σ

)}− I2

(
�n�kn,σ

y d

π
,ϑn

σ

)]

− Im[C1]

[
I1

(
�n�kn,σ

y d

π

)
+ I3

(
�n�kn,σ

y d

π

)]}
. (26)
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Terms containing Cm with m � 2 are neglected here which can be justified numerically. The angle ϑn
σ is given by tan(ϑn

σ ) =
(�nd�kn,σ

y )/[π2 − (�nd�kn,σ
y )2]1/2. The functions I1, . . . ,I3 are calculated from (21) for t → ∞ as

I1(x) = 2

π2
x + 2

π2
sgn[1 − x2]Re

{
a(x)

4

[
csc2

(
a(x)

2

)
− sec2

(
a(x)

2

)]
−
∑

σ∈{±}
σ [a(x) log(1 + σeia(x)) + iLi2(σeia(x))]

}
,

I2(x,ϕ) = 2

πx2
sin3(ϕ)| cos(ϕ)|, I3(x) = 4

π2
x(
√

x2 − 1 a(x) − 1), (27)

where a(x) ≡ arctan(1/
√

x2 − 1) and Li2 is the dilogarithm
function.

Here the term I1 is calculated from the first summand in the
integral on the right-hand side of (21). For the calculation of
I2,I3 we used the last term in (21). Furthermore we took into
account in Eq. (26) the degeneracy of the K and K′ valleys and
the spin degeneracy.

We obtain from (26) that the conductivity σ̃ n
xx does not

depend on vs , whereas σ̃ n
yy shows a strong vs dependence.

Equation (23) shows that for vs = 0 the only finite term in
σ̃ n

yy is the term proportional to Re[C0]2 in (26). In order
to derive this term we made use of the following integral
limt→∞

∫∞
0 dk sin(2kt)/k = π/2. With the help of Re[C0] =

|�| for vs = 0, σ̃ n
yy is reduced to σ̃ n

yy = δn,0�ne
2π/2h. Fur-

thermore we find for σ̃ 0
xx a divergence at SL potentials where

Ṽ ∈ Nπ for general velocities. The same thing holds for σ̃ 0
yy

but here we must demand vs > 0 where now Re[C0] 
= |�|, i.e.,
Re[C0] 
= 0 in general. The origin of these divergences comes
from the vanishing of �0 in the denominator in the right-hand
side of (26). This term is already existent in (21). The reason
for this vanishing is based on the flatness of the energy band (1)
at the central Dirac point in the ky direction at SL potentials
where Ṽ ∈ Nπ . In the next section [cf. Eq. (39)] we show
for the vs = 0 conductivity, by going beyond the inner-valley
approximation used here, that σ̃yy is exactly vanishing only for
Ṽ = π . All this leads us to the following remarkable fact: An
infinite large SL graphene sample is an ideal motion detector
at SL potentials where the first new Dirac point emerges, i.e.,
at Ṽ = π . There σ̃yy is vanishing for vs = 0 and jumps to
infinity for vs 
= 0.

From (19) and (21), the divergence of σ̃ 0
yy at Ṽ ∈ Nπ has

its origin in the approximation that we used an infinite ballistic
time t ∼ tb in calculating the response. This is not really valid
for a finite system where tb ∼ L/vf and L is the length of
the sample. By repeating the discussion below (18) but now
using the energy (1), εs ≈ sh̄vF (k2

x + d4k6
y/64Ṽ 4)1/2 at small

momenta for Ṽ ∈ Nπ leads to σ̃ 0
ii in (26) with a finite cutoff

at 1/�0 ∼ (Ṽ tb)2/3. In the following we calculate from (19)
the conductivities σ 0

ii at Ṽ ∈ Nπ in leading order in 1/tb for
tb → ∞. The results are σ̃ii ≈ σ̃ 0

ii with

σ̃ 0
xx = e2

h

√
3

42/3
√

π

�(1/6)�(1/3)

�(2/3)

(
Ṽ

vF tb

d

)2/3

,

σ̃ 0
yy = e2

h

√
3

42/3
√

π

�(1/6)�(1/3)

�(2/3)

(
Ṽ

vF tb

d

)2/3

× Re[C0 + C1]Re[C00], (28)

where C00 = (vs/d)
∫ d/vs

0 dt C0. By using (24) we obtain

Re[C00] = 32 sin
(
Ad

4

)
B+B−Ad3

[
cos

(
{B+−B−}d

4

)
−cos

(
B

d

4

)]
.

(29)

In Fig. 2 we plot σ̃yy for vs/vF = 0.1 (left panel) and
vs/vF = 0.01 (right panel), as well as for vs = 0 (horizontal
curves) at various Ṽ values. The most interesting Ṽ values are
where for a certain vs the signal σ̃yy is largest. In particular,
the signal-to-background ratio, i.e., σ̃yy divided by σ̃yy for
vs = 0, should be large. We obtain from the figure and (26)
as well as (28) that for a finite system and vs � vF , the SL
potential region where Ṽ ∼ vF /vs and Ṽ ∈ Nπ gives the best
results. We plot this in Fig. 2 for Ṽ = [0.3vF /vs]π . This is
chosen so that the curves do not show a higher-order vs-Fourier
behavior according to (24). We note that, in principle, a
graphene velocity detector based on a SL considered here
could also attain a large signal-to-background conductivity
for small velocity differences by using large SL potentials
Ṽ ∼ vF /�vs . This is due to the phase factors in (24).

In addition to the oscillation frequencies ∼ 2πv∗
F /d and

∼ 2πv∗
s /d we also find from (24) and Fig. 2 a much smaller

oscillation frequency ∼ C± for the conductivity contribution
of the side valleys becoming relevant only on very large
time scales. One can show that due to its nonzero velocity,
the SL transfers additional energy and momentum to an
electron passing its potential steps such that the electron
velocity oscillates between ±vF (1 − k̃2

y/2) and ±vF [1 −
k̃2
y(vF ± vs)2/2(vF ∓ vs)2]. Due to this velocity difference the

electron picks up an additional oscillating phase proportional
to t represented by the last term in (15). This leads to the long
wave-conductivity oscillations shown in Fig. 2.

To complete our discussion, we finally calculate the
quasiparticle velocities in the x and y directions for electrons
in the uvs

±1 state where now Edc = 0. The knowledge of these
velocities is useful in quantum pumping experiments.24,25 We
obtain from (1) and (8)

vx = vF

〈
uvs

±1

∣∣σxx

∣∣uvs

±1

〉 = ∂ε±
h̄∂kx

, vy = vF

〈
uvs

±1

∣∣σyy

∣∣uvs

±1

∣∣〉
= ∂ε±

h̄∂ky

|P| ≈ ∂ε±
h̄∂ky

Re[C0 + C1]. (30)

This means that similar to the above conductivity considera-
tions we obtain no time dependence of vx , in contrast to vy . As
in the nonmoving system26 there is a collimation of the electron
motion in the x direction, i.e., |vy | � |vx | for potentials were
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FIG. 2. (Color online) We show the conductivity σ̃yy orthogonal to the SL calculated for velocities vs/vF = 0.1 (left panel) and vs/vF = 0.01
(right panel) as a function of the dimensionless time. We plot the curves for various SL potentials Ṽ by using (26) for Ṽ /∈ Nπ , (28) for Ṽ ∈ Nπ ,
and ballistic times (vF tb/d)2/3 = 1000. The horizontal curves show σ̃yy for vs = 0. Insets in both panels show a zoom in of the corresponding
curves in the main panels (upper left: Ṽ = 3π/2; lower left: Ṽ = π/2; lower right: Ṽ = π ). We also add for Ṽ = 3π/2 in the upper right
insets σ̃yy for larger times.

Ṽ ≈ Nπ and momenta ky near the central Dirac point. Here
we use |P| � 1.

IV. OUTER-VALLEY TRANSPORT CONTRIBUTIONS

Next, we discuss the conductivity contributions of the outer-
energy valleys where α̂0 � 1. We obtain from (1) that the new
Dirac points are located at kn

yd = 2[Ṽ 2 − (πn)2]1/2 where the
linearized energy spectrum around these points is given by
εs = sh̄vF [α̂4

0k
2
x + �2

n(ky − kn
y )2]1/2. The effective y-velocity

coefficient is now given by �n = [Ṽ 2 − (πn)2]/Ṽ 2 and α̂0 =
πn/Ṽ . This means that the outer-valley regime α̂0 � 1 is
fulfilled for those valleys where πn/Ṽ � 1.

We obtain now from Sec. II for the space evolution operator
(5) of the nonmoving system

λx0 (x) ≈ 1

αεs
(x)

M sin

[
2αεs

(x)
(x − x0)

d

]
(31)

to leading order in α̂0. The corresponding lowest-band eigen-
functions u0

s can be interpreted by electrons which are fully
backscattered close to the potential steps for |εs |d/h̄vF � α̂0.
This is just the opposite situation of the inner-valley transport
contributions discussed in Sec. III where we got a complete
transmission through the potential steps. This interpretation is
even justified by discussing the scattering of electrons on a
single potential step in the momentum regime α̂0 � 1. In this
regime uvs

s can now be written as in (13) with the substitution of
the spinor part (skx/|kx |,1) → (−isky/|ky |,1). For the moving
lattice we concentrate, in the following, on a particle moving
in a potential ±V in the region −vst � x � d/2 − vst .

We now determine a complete set of functions v
j
±(x,t)

fulfilling the quasirelativistic Klein-Gordon equation with
a potential V (x) = ±V in the region −vst � x � −vst +
d∗/2. They further satisfy the zero-boundary conditions
v

j
±(−vst,t) = v

j
±(−vst + d∗/2,t) = 0. These properties un-

ambiguously define the functions v
j
±(x,t). The distance d∗ has

a small modification to the distance d for |εs |d/h̄vF � α̂0 de-
termined by αεs

d∗/d = πn for the nth energy valley, i.e., α0 =
πn. The wave functions v

j
±(x,t) consist of a superposition of

two Klein-Gordon wave-function solutions. The momenta of
both Klein-Gordon wave functions can be formally derived
from the zero-boundary conditions. More concretely, the two
corresponding momenta are given by a particle initial momen-
tum and its reflected momentum at the boundary. In the quasi-
non-relativistic limit valid for vF |kj

x/ky |,|vs | � vF we obtain
for these momenta k

j
x ± vs |ky |/vF and −k

j
x ± vs |ky |/vF with

j ∈ N and k
j
x = 2πj/d∗ in the potential V (x) = ±V . The

restriction on the quasi-non-relativistic limit is justified for the
outer-valley transport contributions in the case vs � vF . This
leads to

v
j
±(x,t) = 2√

d∗ e
±i(h̄vF

√
k

j
x+k2

y−V )t/h̄
e∓i(1/2)(v2

s /vF )|ky |t

× e±i(vs |ky |/vF )(x+vs t) sin
[
kj
x (x + vst)

]
. (32)

By using (31) with (3)–(7), the wave function uvs
s is then

given by

uvs

s (x,t) = −i
d

2α0

{
sg[kyV (x + vst)]

cos(α0) sin(α0)

α0
k2
yd

+ 2 sg[ky]
εsṼ

h̄vF α̂2
0

+ i sg[V (x + vst)]|ky |kxd

}

×
(

sg[kyV (x + vst)]i

1

)∑
j

c
sg[V (x+vs t)]
j

× v
j

sg[V (x+vs t)]
(x,t) (33)

with

c
sg[V (x+vs t)]
j =

∫ d∗/2

0
dx
(
v

j

sg[V (x+vs t)]

)∗
(x,0) sin

(
αεs

2x

d

)
.

(34)

With this wave function in hand we are now prepared to
calculate the conductivities σ̃ n

ii for the outer valleys πn/Ṽ �
1. By using (17) with (19) and (33) we obtain for the
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FIG. 3. (Color online) Left panel: Outer valley conductivities σ̃ n
yy (35) of the nth electron side valley as a function of vs/vF for certain SL

potentials. For Ṽ = 5π/2 and Ṽ = 3π , which both consist of two side valleys, the upper curve corresponds to the valley index n = 1 and the
lower curve to n = 2. Inset shows a zoom in of σ̃ 1

yy for Ṽ = 3π/2. Right panel: σ̃ n
yy for Ṽ = 30π as a function of the valley index n for certain

SL velocities vs/vF .

conductivities,

σ̃ n
xx ≈ 0, σ̃ n

yy ≈ e2

h

π

2

1

α̂2
0

�nY (vs) (35)

with Y (vs) given by

Y (vs) =
∑
i,j>0

n2

i2
|ci |2|cj |2(δi,j + 2δi>j ). (36)

Here we use |ci | = |c±
i | and ci,cj in (36) and (34) are

calculated with d∗ → d.
We find from (35) that the transport contributions of

the outer valleys corresponding to α̂0 � 1 show no time
fluctuations. This is not based on the quasi-non-relativistic
approximation used above. We show in Fig. 3 σ̃ n

yy for the
outer valleys and various SL potentials Ṽ and velocity
fractions vs/vF . Most pronounced, the curves in the right
panel show a conductivity peak at valley indices where n ≈ n0.
Here n0 is given by n0 = [|vs/vF |(Ṽ 2 − (πn)2)1/2/π ]. This
conductivity peak is also observed from (35) and (36) by
taking into account that in a rough approximation we have
|ci |2 ≈ (δi,n+n0 + δi,|n−n0|)/2 leading to

Y (vs) ≈ 1

4

n2

|n − n0|2 + 3

4

n2

|n + n0|2 . (37)

All this means that for Ṽ � πvF /vs with Ṽ � 1 we obtain a
large conductivity signal where the conductivity modification
due to the motion of the SL is of similar magnitude as the
conductivity value of the nonmoving SL. Something similar
applies for the detection of small velocity differences �vs

where now we have Ṽ � πvF /�vs in order to obtain a large
signal-to-background value. By comparing the conductivity
values σ̃ n

yy for the inner valleys (26) (Fig. 2) and the outer
valleys (35) (Fig. 3) we find, at least for Ṽ � 1 and Ṽ 
≈ Nπ ,
that the outer-valley contributions are dominant.

Next, we calculate the effective particle velocities for
electrons in the outer valleys defined in (30), where now again
Edc = 0. By using (32) and (33) we obtain

vx = ∂ε±
h̄∂kx

, vy = ∂ε±
h̄∂ky

. (38)

This shows that there is no vs-correction term in contrast to
the inner-valley case (30) for vy . This is caused by the fact that
in the outer-valley regime electrons are approximately fully
reflected, and thus the total probability of finding an electron
between −vst and −vst + d/2 is conserved.

The nontrivial dependence of the conductivities on the SL
velocity forced us to treat the conductivity contributions for
the inner and outer valleys separately. This separation is no
longer necessary when calculating the conductivities for the
nonmoving SL. For this we use the full oscillatory wave
function (3)–(7) with (17) and (21). This leads us to the
following vs = 0 conductivities

σ̃ n
xx = e2

h

π

2
α̂2

0
1

�n

, σ̃ n
yy = e2

h

π

2

1

α̂2
0

�n. (39)

Note here that the magnitudes of α̂0 and �n correspond to
the outer-valley values discussed above Eq. (32) for n 
= 0
and to the n = 0 values discussed above Eq. (12). Similar
expressions as in (39) were calculated before within the dc
vector potential gauge A = 0, leading as in pristine graphene
to a small overall numerical prefactor correction to our result
(39).18 The disadvantage of the calculation in Ref. 18 lies in
the strong dependence of this prefactor on the order of taking
the zero-temperature, zero-frequency, and zero-damping limit.
This does not happen in our calculation.8

V. SUMMARY

Summarizing, we have considered the dc transport in
neutral graphene undulated by a unidirectional moving su-
perlattice potential with vs � vF ,V d/h̄. While the response
along the direction of the SL wave vector is vanishing,
the dependence is dramatic in the orthogonal direction. In
particular, we find for potentials where the first new Dirac
point emerges, i.e., at Ṽ = π , that the infinite large graphene
sample is a perfect motion detector. The orthogonal dc
conductivity is vanishing for zero velocity and jumps to infinity
at nonzero SL velocity. A large conductivity signal with a
high signal-to-background ratio is reached for the finite but
large graphene system when Ṽ ∈ Nπ . The time fluctuating
contribution to the conductivity is largest when Ṽ ∼ vF /vs .
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All this was derived from the inner-valley contributions to the
conductivities.

Next we have calculated the conductivity contributions of
the outer valleys. The conductivity contributions parallel to the
SL wave vector are vanishing. In the orthogonal direction they
are large, time-independent, and exhibit a peak as a function of
the valley index. For Ṽ � 1 and Ṽ � πvF /vs the conductivity
modifications due to a moving SL are of similar magnitude as
the conductivity values of the stagnant SL. Note that for Ṽ � 1
the outer-valley conductivity contributions are dominant
over the inner-valley contributions, at least for Ṽ 
≈ Nπ .
Finally, we have calculated the conductivities of the non-
moving SL without the need of a separate calculation for the
inner and outer valleys. Due to its intrinsic low-noise level,9

our results could be useful for graphene as a nanophysical
motion detector device, or even for general sensors based on
the surface acoustic wave technology.27

APPENDIX A: SOLVING THE HAMILTON-JACOBI
EQUATION (12)

Here we outline the calculation of (15) by solving the
Hamilton-Jacobi Equation (12) to first order in k̃2

y . This is
done with the help of a generalized characteristic method.23

The solution is based on the one-particle quasirelativistic orbit
x(t) in a moving potential V (x + vst). With the help of this
solution, S

vs± (x,t) is given by the action integral

S
vs± (x,t) =

∫ t

0
dt ′

⎧⎨
⎩ vFh̄2k2

y√
p2(t ′) + h̄2k2

y

sg{V [x(t ′) + vst
′]}

−V [x(t ′) + vst
′]

⎫⎬
⎭+ S0

±(x0,0). (A1)

Here x(t ′) is the particle trajectory with x(0) = x0, x(t) = x.
The particle momentum is given by

p(t ′) = ∂xS
vs± (x(t ′),t ′) (A2)

and the quasirelativistic velocity by

ẋ(t ′) = −vF sg{V [x(t ′) + vst
′]} p(t ′)√

p2(t ′) + h̄2k2
y

. (A3)

We note now that it is much easier to determine x(t ′) by solving
the set of equations above for small k̃y , instead of solving the
second-order quasirelativistic Newton equation. From this we
obtain (15).

APPENDIX B: A GUIDELINE TO REPRODUCE
THE FORMULAS

Here we give a short guideline for readers who would like
to reproduce the formulas in this paper.

1. Equations (14)–(16)

We first solve (A1)–(A3) in leading order in k̃2
y , i.e., for

ky = 0. This leads with (A3) to the particle velocities up to the
next leading order in k̃2

y . We obtain

ẋ(t) = v0δsg[V (x0)],sg{V [x(t)+vs t]} + v1(1 − δsg[V (x0)],sg{V [x(t)+vs t]})
(B1)

with v0 = ±vF (1 − k̃2
y/2) and v1 = ±vF [1 − k̃2

y(vF ±
vs)2/2(vF ∓ vs)2]. With these velocities in hand one can derive
the particle’s action S

vs± to order k̃2
y by using (A1) and (A3).

Here we have used the identity x0 = x − (v0 + v1)t/2 + �x0

where

�x0 ≈ −sg[V (x0)]
v2

F vs

vs ∓ vF

1

v2
s − v2

F

×{ξ (x + vst) − ξ [x − (v0 + v1)t/2]} (B2)

during the derivation. Equation (B2) is valid in the next-to-
leading order in k̃2

y . It connects the starting point x0 of the
trajectory with its end point x.

We calculated v0,v1 in (B1) by using the approximation
|εs | � V . Going beyond this approximation could lead for
S

vs,t± (15) to small possible additional terms of the order
±tεs k̃

2
y(vs/vF ). Such terms would then result in a small

time-independent numerical prefactor correction in the os-
cillatory side-valley conductivity σ̃ n

yy for n > 0 of the order
(kn

yd/Ṽ )2(vs/vF )2 (26). The conductivities σ̃ n
xx would get a

similar small prefactor correction. Finally we note, that by
setting Z1

±,Z2
± = 0 in (14)–(16), the corresponding action S

vs±
is given by (A1) where now the particle trajectory and the
particle momentum is calculated from the uniform velocity
v1 = v0 = ±vF (1 − k̃2

y/2).

2. Equations (23)–(25)

In order to derive (24) and (25) from (23) we used |A| � |B|
for vs � vF . Then we obtain for not too large ballistic times
C±tb � 1 but also for large times C±tb � 1 where now we
have to restrict ourselves to the most relevant low-frequency
Fourier components Cm with m � 1, such that

|P |(t ′,t) ≈ 4

Ad
sin

[
(A + B)

d

4
− B+ξ (−v∗

F t ′ − v∗
s t)

−B−ξ (v∗
F t ′ − v∗

s t) − C+tχ (−v∗
F t ′ − v∗

s t)

−C−tχ (v∗
F t ′ − v∗

s t)

]
, (B3)

where |P |(t) = |P |(t,t). In order to calculate Cm (23)
we can use for vs � vF the approximation Cm ≈
(d/v∗

F )
∫ v∗

F /d

0 dt ′|P |(t ′,t)e−i2πmv∗
F t ′/d , which then leads to the

expressions (24) and (25).

3. Equations (26) and (27)

The integrals I1(x) and I3(x), which are the terms propor-
tional to Im[C1] at the right bottom of Eq. (26), are calculated
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by using (21) and (22),

I1(x) = 1

2π2

∫ +x

−x

dky

∫ +∞

−∞
dkx

k2
x√

k2
x + k2

y

3

×
∑

σ∈{±}

σ√
k2
x + k2

y − σ
, (B4)

I3(x) = 1

2π2

∫ 2π

0
dϑ

∑
σ∈{±}

σ
sin2(ϑ)

√
1 + tan2(ϑ)√

1 + tan2(ϑ) − σ/x
.

The terms proportional to Re[C1] in Eq. (26) were also
derived from (21) with (22) by making use of the identity
limt→∞ 1

f (k) sin[f (k)t] = πδ[f (k)] for an arbritary function
f . Here δ(x) is the Dirac δ function.

4. Equations (34)–(36)

Here we use (33) with (32) in (19) and (17). With the
help of a small εs expansion of the exponents in (32) we
obtain (34)–(36) by using limt→∞

∫∞
0 dk sin(2kt)/k = π/2.

Note that we get a contribution only from the first term in
Eq. (19) in this calculation, which leads to the final result (35)
for t → ∞.
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