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Abstract
Quantum thermodynamics is a researchfield that aims atfleshing out the ultimate limits of
thermodynamicprocesses in thedeepquantumregime.A complete picture of thermodynamical
processes naturally allows for auxiliary systemsdubbed ‘catalysts’, i.e., any physical systems facilitating
state transformationswhile remaining essentially intact in their state, like an auxiliary system, a clock, or
an actual catalyst. In thiswork,wepresent a comprehensive analysis of the power and limitationof such
thermal catalysis. Specifically,we provide a family of optimal catalysts that canbe returnedwithminimal
trace distance error after facilitating a state transformationprocess. To incorporate the genuinephysical
role of a catalyst, we identify very significant restrictions on arbitrary state transformations under
dimensionormean energy bounds, usingmethods of convex relaxations.Wediscuss the implicationof
thesefindings onpossible thermodynamic state transformations in the quantumregime.

1. Introduction

In chemical reactions, it is common that a certain reaction should in principle be allowed, but in reality cannot
take place (or occurs at extremely low rates) because of the presence of some large energy barrier. Fortunately,
the situation is sometimes redeemed by the presence of certain chemical substances, referred to as catalysts,
which effectively lower the energy barrier across the transformation. That is to say, catalysts significantly increase
the reaction rates. Importantly, these catalysts can remain unchanged after the occurrence of the reaction, and
hence a small amount of catalytic substance could be used repeatedly and is sufficient to facilitate the chemical
reaction of interest.

The basic principles of chemical reactions are governed by thermodynamic considerations such as the
second law. There have specifically been a number of recent advances in the quest of understanding the
fundamental laws of thermodynamics [1–6]. These efforts are especially focused on the quantumnano-regime,
where finite size effects—either induced by systemof interest, environment [7], or externalfields used to govern
time dependent interactions [8]—and quantum coherences are becoming increasingly relevant. One
particularly insightful approach is to cast thermodynamics as a resource theory [2, 3, 9, 10], reminiscent of
notions in entanglement theory [11–13]. In this framework, thermodynamics can be seen as the theory that
describes conditions for state transformation S Sρ σ→ from some quantum state to another under thermal
operations (TO). The notion of TOmeans allowing for the full set of global unitaries which are energy preserving
in the presence of some thermal bath. This is a healthy and fruitful standpoint, and allows the application of
many concepts and powerful tools derived from information theory [14–16]. This class specifically entails all
those thermodynamic processes that one can realistically physically implement in the presence of thermal baths,
when encompassing real-world situations [17]. This seems amost natural view particularly in light of the
emerging limitations5.
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In the context of thermal operations, catalysts emerge as ancillatory systems that facilitate state transformation
processes: there are caseswhere S Sρ σ→ is not possible, but there exists a state Cω such that C S C Sω ρ ω σ⊗ → ⊗
ispossible. Themetaphor of catalysis is appropriate indeed: by using such a catalyst Cω , one is enabled to perform
the thermodynamic transformation S Sρ σ→ , while returning the catalyst back in its exactoriginal form.This is
called exact catalysis. The inclusionof catalyst states in thermal operations serves as an important step in an eventual
complete picture of quantum thermodynamics; it allows us to describe transformations in the full picture,where the
system is interactingwith an experimental apparatus, for example a clock system.Themathematical conditions for
catalytic transformationshavebeen studied [18, 19] in the context ofmajorization [20]. Theseworkswere extended
to the thermodynamic setting in [1] by showing that one canobtain necessary and sufficient conditions for exact
catalysis in termsof awhole family of generalized free energies [1]. The ordinary second lawof ever-decreasing free
energy is but a constraint ononeof these free energies.

Naturally, for physically realistic scenarios inexact catalysis is anticipated, where the catalyst is returned
except for a slight degradation. The loss of catalytic ability over time is often observed in chemical reactions,
suggesting that catalytic substances often undergo slight changes in thermodynamic processes. In the quantum
nano-regime, uncertainties such as in the initial state, imperfections in implementation of quantumoperations,
orfluctuations induced by quantumnoise can serve to induce small changes in the catalyst. On physical
grounds, it is unreasonable to suggest that the catalyst is returned in exactly the sameway. Surprisingly, it has
been shown [1] that in some cases, the conditions for catalytic transformations are highly non-robust against
small errors induced in the catalyst. The formof the second law thus depends crucially on themeasure used to
quantify inexactness. In particular, if inexactness is defined in terms of small trace distance, then there is no
second law at all: for any 0ε > , there exists a state Cω such that for any two states Sρ and Sσ , starting from

C Sω ρ⊗ , one can get to some C Sω σ′ ⊗ via thermal operations, where Cω′ is ε-close in terms of trace distance to

Cω .We refer to this effect as thermal embezzling: instead ofmerely catalyzing the reaction, energy/purity has
possibly been extracted from the catalyst and used to facilitate thermodynamic transformations, while leaving
the catalyst state arbitrarily close to being intact [21]. On physical grounds, such a setting seems implausible,
even though it is formally legitimate. A clarification of this puzzle seems verymuchwarranted.

Afirst hint towards a resolutionmay be provided by looking at how the error depends on the system size. The
trace distance error ε depends on the dimension of the catalyst states ndim( )Cω ≔ ; nevertheless one can find
examples of catalysts where 0ε → as n approaches infinity.While examples show that in principle thermal
embezzlingmay occur [1], hardly anything else is known otherwise. Indeed, it would be interesting to
understand the crucial properties that distinguish between a catalyst and a non-thermal resource in
thermodynamics. From a physical perspective, it seems highly desirable to understand towhat extent the effect
of embezzling can even occur for physically plausible systems.

In this work, we highlight both the power and limitations of thermal catalysis, by providing comprehensive
answers to the questions raised above. Ourfirst result is derived in the regimewhere both theHamiltonians of
the system and catalyst are trivial, in otherwords, proportional to the identity operator. This result concerns the
analytical construction of universal catalyst states, which are able to facilitate any state transition on the system S
(with some fixed dimensionm).We show that for a catalyst to be universal, it is equivalent to facilitating a
specific state transition, intuitively speaking, the hardest possible transition on system S. By analyzing such a
problem,we then construct a family of universal catalyst states depending on catalyst dimension n, that achieves
the optimal trace distance error.

The second part of our results is derived for general Hamiltonians of the system and catalyst H H,S C .We
identify two reasonable constraints on the catalyst such that once these constraints are satisfied, thermal
embezzling cannot happen: (1)when the dimension of the catalyst is bounded, and (2)when the expectation
value of energy of the catalyst state isfinite. For both cases, we are able to derive non-zero bounds on the trace
distance error, therefore showing that ε cannot be arbitrarily small. These boundswere derived under the
assumption that the catalyst states are diagonal in the energy eigenbasis. Case 2 is especially interesting, since it
holds for catalystHamiltonians with unbounded energy eigenvalues, as long as the partition functionZC isfinite.
These results have been derived bymaking use of splitting techniques to simplify the optimization problems of
interest. The techniques can also be used to obtainmore specific results: not only canwe prevent thermal
embezzling (whichmakes a statement about the ability of a catalyst to facilitate any state transition), but given a
pair of states ,S Sρ σ , one can obtain state-dependent lower bounds on the trace distance error aswell.

2. Results

2.1. The power of thermal embezzling
Webegin by exploring the case for trivialHamiltonians, where it is known that thermal embezzling can occur.
This is also the simplest case of thermodynamics in resource theory [1], when all energy levels are fully
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degenerate, and theHamiltonian is simply proportional to the identity operator. In this regime, thermal states
are simplymaximallymixed states, and all unitary operations are allowed, a setting otherwise known as noisy
operations. Entropy and information, instead of energy, become themain quantity thatmeasures the usefulness
of resources. In such cases, the sole conditions governing a transition from some quantum state ρ to σ is that the
eigenvalue vector of ρmajorizes that of σ [2].Majorization is commonly denoted as ρ σ≻ ; it also implies that
entropy can never decrease under noisy operations [1].

To investigate thermal embezzling in this setting, one asks if given fixed m n, , what is the smallest ε such that
there exists a catalyst state Cω that satisfies

m
0 0 , (1)C Cω ω⊗ ≻ ′ ⊗ ∣ 〉〈 ∣

where the trace distance d ( , )C Cω ω′ between the initial catalyst Cω andfinal catalyst Cω′ is not greater than ε.
This trace distance is used as ameasure of catalytic error throughout our analysis. If some catalyst pair ( , )C Cω ω′
satisfies the condition in equation (1) with trace distance ε, then it also facilitates C Cω ρ ω σ⊗ → ′ ⊗ for anym-
dimensional states ,ρ σ . This is because a pure statemajorizes any other state, while themaximallymixed state

m ismajorized by any other state.
Sincemajorization conditions depend solely on the eigenvalues of the densitymatrices Cω and Cω′ , one can

phrase this problemof state transformation in terms of a linearminimization programover the catalyst states,
diagonal and ordered in the same basis (see appendix). In fact, the eigenvalues of ,C Cω ω′ which give rise to the
optimal trace distance error can be solved by such a linear program, although for general values of n andm, these
eigenvalues are non-unique, and it is harder to construct an analytical solution.Whenever m 2⩾ and n ma=
where a 1⩾ is an integer, we provide an analytic construction of catalyst states, whichwe later show to be

optimal for the state transformation in equation (1). Let the initial catalyst state be i iC
i

n
i

1
∑ω ω= ∣ 〉〈 ∣

=
, where

m m a(1 ( 1) )1ω = + − , and

m i n m
i n m

if 2 ,
0 if .

(2)i
i

1
logm

⎧⎨⎩
⎡⎢ ⎤⎥

ω ω= ⩽ ⩽
>

−

Note that our catalyst state Cω does not have full rank, and this is crucial for themajorization condition in
equation (1) to hold, since ρ σ≻ implies that rank( ) rank( )ρ σ⩽ , and the joint state 0 0Cω′ ⊗ ∣ 〉〈 ∣can have at
most rank n. Thefinal state of the catalyst Cω′ can be obtained from Cω , by subtracting a small value ε from the
largest eigenvalue 1ω and distributing the amount ε equally over the indices i n m> . This causes Cω′ to be a state
of full rank n.We show that this family achieves trace distance error

d
m

m n

1

1 ( 1)log
, (3)m n

m
, = −

+ −

whichwe prove bymathematical induction to be optimal, givenfixed m n, where n ma= (see section B.1 of the
appendix). The scenario n ma= can be seen as follows: if the system is a particle in anm-dimensionalHilbert
space, the catalyst consists of a number of such particles. The optimal error as presented in equation (3) scales
with the number of particles a in the catalyst.

Figure 1 compares our final catalyst statewith the state

C n j
j j˜

1

( )

1
, (4)C

j

n

1

∑ω = ∣ 〉〈 ∣
=

with C n j( ) 1
j

n

1
∑=

=
being the normalization constant. The family ˜Cω was proposed in [21] for embezzling in

the LOCC setting. Infigure 2, we compare the trace distance error achieved by catalyst ˜Cω from [21]with the
error achieved by our catalyst Cω .We see that for small dimensions, our catalyst outperforms ˜Cω , however
asymptotically the error scales with nlog for both catalysts.

2.2. The limits of thermal embezzling
In this section, we are interested infinding additional physical restrictions which prevent thermal embezzling.
To do so, we look at general Hamiltonians H H,S C of both the system and catalyst, where the energy of the
system comes into play. The totalHamiltonian is simply H H Ht S C= + , without any interaction terms. In [1], it
is shown that themonotonicity of quantumRényi divergences [22] (for 0α ⩾ ) form the necessary conditions
for state transformations.More precisely, for arbitrary Sρ and Sρ′, if S Sρ ρ→ ′ is possible via catalytic thermal
operations, then for all 0α ⩾ ,

( ) ( )D D (5)S S S Sρ τ ρ τ∥ ⩾ ′ ∥α α

holds, where Sτ is the thermal state of system S, at temperatureT of the thermal bath.
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Equation (5) implies that one can use themonotonicity of Rényi divergences tofind lower bounds on
thermal embezzling error for state transformation between arbitrary states Sρ and Sρ′. For simplicity, we present
the casewhere Sρ and Sρ′ are diagonal (in the energy eigenbasis ofHS). The case for arbitrary states can be treated
similarly, and details are given in appendices C.2 andD.2.

For the case where two states ρ and σ are diagonal, the Rényi divergences are defined as

D ( )
1

1
log , (6)

i
i i

1∑ρ σ
α

ρ σ∥ ≔
−α

α α−

where { }, { }i iρ σ are the eigenvalues of ρ, and σ.
Again, for states Sρ and Sρ′diagonal, it suffices to look at a single transformation

, (7)C S C
S
maxω τ ω⊗ → ′ ⊗ Π

where E ES S S
max max maxΠ = ∣ 〉〈 ∣ is the pure energy eigenstate with energy E S

max , themaximumenergy eigenvalue
of system S. Note that both Sτ and S

maxΠ are diagonal in the energy eigenbasis. Simila to the case of trivial
Hamiltonians, the process in equation (7) is a sufficient condition for arbitrary diagonal state conversions.More
precisely, if equation (7) holds, then for any Sρ and Sρ′diagonal in the same energy eigenbasis,

C S C Sω ρ ω ρ⊗ → ′ ⊗ ′ is also possible. This is stated formally and proven in lemmaA.3, found in the appendix.
We also assume Cω and Cω′ to be diagonal in the energy eigenbasis ofHC [1]. This can bewritten as the following
minimization problem

( ) ( )D D

min
1

2

s. t. 0, , 0 , , (8)

C C

C S CS C
S

CS C C

1

max

ε ω ω

α ω τ τ ω τ ω ω

≔ ∥ − ′ ∥

∀ ⩾ ⊗ ∥ ⩾ ′ ⊗ Π ∥ ⩽ ′ ⩽α α 

where CS C Sτ τ τ= ⊗ is the thermal state of the catalyst and system. The systemHamiltonian HS is assumed to be
finite.

Figure 1.The eigenvalues of ourfinal catalyst state Cω′ (blue) versus those of ˜Cω proposed in [21] (red, dashed), for (a) m n2, 8= =
and (b) m n3, 27= = . Similarities can be observed in the structure of both constructions.

Figure 2.The comparison of trace distance error for our state (blue, solid) and the catalyst state in figure 1 (red, dashed), for the case
wherem=2.
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Afirst step towards solving equation (8) is to relax the problem to consider only afixedα.

( ) ( )D D

min
1

2

s. t. , 0 , . (9)

C C

C S CS C
S

CS C C

1

max

ε ω ω

ω τ τ ω τ ω ω

≔ ∥ − ′ ∥

⊗ ∥ ⩾ ′ ⊗ Π ∥ ⩽ ′ ⩽

α

α α 

Weknow that any ( , )C Cω ω′ feasible for equation (8) is also feasible for equation (9). Therefore, for any 0α ⩾ ,
ε ε⩾ α. By choosing α one can arrive atmuch simpler optimization problems that provide lower bounds for the
trace distance error.We apply this to study two cases, detailed as below.

1. Bounded dimension:Consider the case where both the systemHS and catalystHamiltonians HC havefixed
dimensions, and denote themaximum energy eigenvalues as E E,S C

max max respectively. By choosing α → ∞, we

can obtain a lower bound for ε in equation (8) based on these parameters. For α → ∞, D ( ) logmaxi
p

q
i

i

ρ σ∥ =∞ ,
where p q,i i are eigenvalues of the states ,ρ σ respectively. Recall that we have assumed that Cω and Cω′ are
diagonal in the same basis, whichwe take to be the energy eigenbasis. equation (9) can be rewritten as

Z
i

min
1

2

s. t. max
e

max , , 0 , 1, (10)

i

i i

i

i

i

S

E i

i

i
i i

i

i

i

iS
max

∑

∑ ∑

ε ω ω

ω
τ

ω
τ

ω ω ω ω

= ∣ − ′∣

⩾
′ ′ ⩾ ∀ = ′ =

β

∞

−

where Z ei C
E1 i

Cτ = β− − are the probabilities defined by the thermal state of the catalystHamiltonian, and Z Z,S C

are partition functions of the system and catalyst respectively. To solve this problem,we note that the optimal
strategy tomaximize the quantity maxi i iω τ within the ballε − of Cω′ is to increase one of the eigenvalues by ε,
so that the quantity max ( )i i iω ε τ+ ismaximized.With further details in the appendix, we show that the trace
distance error can therefore be lower bounded by

( )d H H
Z

Z
,

e
1

e
. (11)S C

S

E

E

C
opt S

C

max

max⎛
⎝⎜

⎞
⎠⎟ε= ⩾ −

β

β

−

−

The bound in equation (11) depends on both theminimal population of the thermal state for system and
catalyst. Although this bound is valid for arbitrary finite-dimensional Hamiltonians, it is not tight. Indeed, in the
case of trivialHamiltonianswhere all states have constant energy value, normalized to 0, the partition functions
Z Z,S C reduce to the dimension m n, of the system and catalyst. This bound then yields
d m n0 0( , ) ( 1)S Copt ⩾ − , which ismuchweaker than the optimal trace distance (which scales with nlog ) that
we derived in equation (3).

2.Hamiltonians with unbounded energy levels:Amore general result holds for unbounded dimension and
energy levels where the partition functionZC isfinite.More precisely, for such cases, we show that setting an
upper bound on the average energy of the catalyst state limits thermal embezzling.

Let us now explain the proof of our results. Consider some catalystHamiltonian HC with unbounded energy
levels E{ }j

C . For simplicity, we restrict ourselves to the case where the catalyst states are diagonal in the energy
eigenbasis, and assume the systemHamiltonian to be trivial with dimensionm=2. The resulting bound is found
in equations (19) and (22). Amore general derivation involving arbitrary systemHamiltoniansmay be found in
the appendix.

A) Formulation of the problem:Consider theminimization of catalytic error under the relaxed constraint that
monotonicity for theα-Rényi divergence is satisfied. Using equation (9) with 1 2α = , for diagonal states ,ρ σ
with eigenvalues p q,i i, equation (6) can be evaluated as D p q( ) 2 log

i i i1 2 ∑ρ σ∥ = − . By substituting

H 0S S= , the first constraint can be simplified as follows

D D
2 2

0 0
2

, (12)C C C C1 2 1 2⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠ω τ ω τ⊗ ∥ ⊗ ⩾ ′ ⊗ ∣ 〉〈 ∣∥ ⊗  

( ) ( )D D D 0 0
2

, (13)C C C C1 2 1 2 1 2 ⎜ ⎟⎛
⎝

⎞
⎠ω τ ω τ∥ ⩾ ′ ∥ + ∣ 〉〈 ∣∥ 

2 e e . (14)
i

i
E

i

i
E1 2 2 1 2 2i

C
i
C∑ ∑ω ω⩽ ′β β− −

Equation (13) follows by the additivity of all Rényi divergences, and equation (14) is obtained by evaluating all
D1 2 terms. Furthermore, wewant that the initial catalyst state to have an expectation value of energy no larger
than somefiniteE. In summary, we now look at theminimization of trace distance under the following
constraints
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i E E

min
1

2

s. t. 2 , , 0 , , (15)

i

i i

i

i
E

i

i
E

i i

i

i
C

ii
C

i
C

∑

∑ ∑ ∑

ε ω ω

ω γ ω γ ω ω ω

≔ ∣ − ′∣

′ ⩾ ′ ⩾ ∀ ⩽

where e (0, 1)2γ = ∈β− . As such, this is an intricate problem, as it is a non-convex problemboth in iω and iω′.
In the subsequent steps, our goal is to show that ε is lower bounded by a non-zero constant, bymaking use of the
techniques of convex relaxations of optimization problems.

B) Splitting a relaxedminimization problem:The key idea to proceed is to suitably split the problem into two
independent optimization problems in a relaxation, which can be individually assessed. The starting point of this
approach is rooted in the observation that for any , [0, 1]i iω ω′ ∈ , the following inequality holds true,

2 3. (16)i i i i i
1 2 1 2 1 2

ω ω ω ω ω′ − ⩽ ′ − −

Since requiring the rhs of equation (16) to be positive is less stringent compared to the lhs, one can now further
use it to obtain a lower bound for theminimization in equation (15). By defining a new variable xi i iω ω= ∣ − ′∣,
we can define a newminimization problem

x

x x i E E

min
1

2

s. t.
1

3
, , 0 , , (17)

i

i

i

i
E

i

i
E

i i

i

i
C

ii
C

i
C

∑

∑ ∑ ∑

ζ

γ ω γ ω ω

≔

⩾ ⩾ ∀ ⩽

and note that ε ζ⩾ . One can see now that the variables x ,i iω are independent from each other. This allows us to
first perform aminimization of the function

i
i

Ei
C∑ ω γ for constraints involving iω only.

C) Invoking energy constraints to provide lower bound:The energy constraint on Cω plays a crucial role in
lower bounding ζ. Intuitively, when such a constraint is placed for somefiniteE, it implies that the probability of
populating some relatively low energy levels cannot be vanishingly small.We prove this withmore rigour in the
appendix. Along this line of reasoning, one concludes that for theminimization

i E E

min

s. t. 0 , , (18)

i

i
E

i

i

i
C

i

1 i
C∑

∑

ε ω γ

ω ω

≔

⩾ ∀ ⩽

01ε > has to be strictly positive.More precisely,

Wmax , (19)
W

E
1

(0,1)
j W
C
( )ε γ=

∈

where j W j E E W( ) min { : (1 )}j
C

1= > −+ . A derivation of this expression can be found in the appendix.
D)Merging both problems:After obtaining a lower bound for the problem in equation (18), we recombine

the two problems into equation (17) to obtain

x

x x i

min
1

2

s. t.
1

3
, 0 . (20)

i

i

i

i
E

i1i
C

∑

∑ γ ε⩾ ⩾ ∀

This is a quadratic optimization problem in the variables xi , hence it is easy to obtain the Lagrange dual of this
problem,which takes on a very simple form

min
1

4
s. t. 0, (21)

i

E2 2
1j

C∑λ γ λε λ− + ⩾

involving the simpleminimization of a quadratic functionw.r.t. λ. Solving this we arrive at a lower bound

Z

1

2
·

1

9
0, (22)

C

1
2

ε ζ
ε⩾ ⩾ >

where Z eC
i

E
i

E2 i
C

i
C∑ ∑γ= = β− is the partition function ofHC.We summarize ourfindings in table 1.

3.Discussion and conclusion

In summary, we have carefully investigated the power and limitations of thermal embezzling under different
physical scenarios, a setting that should be taken into account when considering the ultimate limits of
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thermodynamic transformations andwork extraction under any physicalmechanism.While in the fully
degenerateHamiltonian case, we have seen that the effect can be powerful, under physically ubiquitously
common settings, it is verymuch limited. Based on very physical considerations, i.e. that catalysts have
Hamiltonians, we resolve the puzzle of thermal embezzling, for all catalysts diagonal in the energy eigenbasis. In
this way, wemake a significant contribution to the quest for achieving a complete understanding of
thermodynamic laws in the quantumworld.

The bounds on dimensionality are closely related to energy restrictions.While placing an upper bound on
the dimension directly implies an upper bound on the average energy, the reverse statement is not generally true.
However, if one restricts not only the expectation value of the energy distribution, but also its variance to be
finite, then this is almost equivalent to placing a dimension restriction. For example, given any non-degenerate
Hamiltonian HC with unbounded eigenvalues, consider the set of catalyst states such that the average energy and
variance of a given catalyst isfinite. Then by theChebyshev inequality one can understand that this is equivalent
to introducing a cut-off on themaximum energy eigenvalue (and therefore on the dimension).We note that it is
easy to see that e.g. for the harmonic oscillator the variance is not always boundedwhenever themean energy is
bounded.

In the case of infinite-dimensional Hamiltonians, we have also shown that for certain classes of catalyst
Hamiltonians, explicit bounds can be derived on the trace distance error of a catalyst when the average energy is
finite. Our results have covered a large range ofHamiltonianswhich are commonly found in physical systems,
including the important case of theHarmonic oscillator in free systems, with theminimal assumption that
partition functionZC isfinite, which holds for all systems forwhich the canonical ensemble is well-defined.
However, we know that thermal embezzling can be arbitrarily accurate as the dimension grows, at least in the
simplest case of the trivial Hamiltonian. This implies that therewill be specific cases of infinite-dimensional
Hamiltonianswhere simple bounds on average energy do not give explicit bounds on the thermal embezzling
error.We suspect that thismay be true for systemswith unbounded dimension, but boundedHamiltonians. The
reason is that if dimension is unbounded, then theremust exist an accumulation point in the energy spectrum.
The subspace of this accumulation point will be very similar to the trivialHamiltonian.
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Appendix

In these appendices we fully elaborate our findings on thermal catalysis.We begin in sectionA.1 by explaining
the similarities and subtle differences between thermal embezzling and embezzling in the LOCC setting. The
Rényi divergences and their relation to thermal operations are detailed in sectionA.2. Proceeding to section B,
we focus on thermal embezzling for trivialHamiltonians withfixed dimensions. On the one hand, we investigate
the problemoffinding a catalyst which allows us to perform thermal embezzling withminimumpossible error
in trace distance.We detail the proofs on our construction of a catalyst family (given dimension parameters for
both systemof interest and catalyst), and prove that our construction achieves the optimal embezzling error.

On the other hand, by placing restrictions on the dimension, we derive non-zero lower bounds for the
embezzling error, considering the arbitrary system and catalystHamiltonians. The proofs are detailed in
sectionC. Some technical background on α−Rényi divergences and their relation to thermodynamic
operations are given. Lastly, in sectionDwe focus on infinite-dimensional Hamiltonians, with unbounded

Table 1.The occurrence of thermal embezzling (inducing any arbitrary state transitions) with arbitrary precision, under different settings.
For regimes labeled ‘No’, explicit bounds on the trace distance error (in the catalyst) can be found in equations (3), (11) and (22), where
these bounds are derived for the case where initial/final states of the system are diagonal.

Dimension of catalyst

Energy of levels ofHC Bounded Unbounded

Fully degenerate No Yes

Bounded No Probably, true at least for fully degenerateHamiltonians

Unbounded N/A No, if average energy and partition function isfinite
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energy levels (andfinite partition function).We show that as long as the average energy of the catalyst isfinite,
explicit lower bounds on accuracy of embezzling can be obtained.

AppendixA. Embezzling and catalysis

A.1. Thermodynamics as a resource theory
Resource theories are frameworks useful in identifying states which are valuable, under specific classes of
allowed operations and states given for free. A state is a valuable resource if one can use it to createmany other
states under the set of allowed operations. Thermodynamics can be viewed as a resource theory [2, 3], where the
allowed operations are the so-called thermal operations. They are summarized as follows: considering a system S,
given a state Sρ and theHamiltonianHS, one can

1. For any bath system B with Hamiltonian HB, attach any thermal state e tr[e ]B
H HB Bτ = β β− − to Sρ , where

kT1β = is the inverse temperature,

2. Perform any unitary U over the global system SB that commutes with the total Hamiltonian, i.e.
U H H[ , ] 0S B+ = ,

3. Trace out the bathB.
Recently, the framework of thermal operationswas used to prove a second law [1] by including catalytic
effects. This is because there exist certain states ρ and σ such that via thermal operations ρ σ↛ , but

C Cρ ω σ ω⊗ → ⊗ for some state Cω .More precisely, catalytic effects can be accounted for by adding a
fourth rule, i.e.

4. for any catalyst systemCwithHamiltonianHC, attach any additional catalyst state Cω , as long as the returned
state Cω′ is ε-close to its original state Cω ,

to the set of allowed operations. One can now ask, given Sρ , what are the states Sρ′ such that S Sρ ρ→ ′ is
possible via inexact catalytic thermal operations?More precisely, do there exist ,C Cω ω′ which are ε-close to each
other, such that C S C Sω ρ ω ρ⊗ → ′ ⊗ ′?

Depending on ε and themeasure of closeness used, the conditions for S Sρ ρ→ ′ to occur can vary. For
example, if ε is required to be zero, i.e. the catalystmust be returned in its exact form, then [1] shows for any Sρ
and Sρ′ such that S Sρ ρ→ ′ is possible via catalytic thermal operations, a whole set of Rényi divergencesmust
necessarily decrease. In the next sectionA.2, we define the Rényi divergences and state the results of [1] in detail.
On the other hand, if ε ismeasured in terms of trace distance between the initial and final catalyst only, [1] also
proves that for any 0ε > , the state transformation conditions are trivial, i.e. any Sρ can be transformed to any

Sρ′.We denote thermal embezzling as the phenomenonwherein by requiring only the initial and final catalyst to
be close in terms of trace distance, one can achieve S Sρ ρ→ ′ for any ,S Sρ ρ′.

Another well-studied example of a resource theory is entanglement theory, where the allowed operations are
those that can be implemented using local operations and classical communiaction (LOCC), while free states are
the set of separable states. The interconversion of resource states in entanglement theory has been studied
intensively, and has also provided insight into the resource theory of thermodynamics.

Embezzling states were originally introduced for the LOCC setting in [21]. An entangled state
n( ) AB

n n ν∣ 〉 ∈ ⊗ shared between two partiesA andB can be used as a resource to prepare some other state
(ofmuch smaller dimension),

n n( ) ( ) , (A.1)AB A B A B1ν ν ψ∣ 〉 → ∣ 〉 ∣ 〉ε− ′ ′ ″ ″

where A B ABdim( ) dim( )″ ″ ≪ and A B ABdim( ) dim( )′ ′ ≈ . Thefidelity between the actualfinal statewith
n( ) A B A Bν ψ∣ 〉 ∣ 〉′ ′ ″ ″ is denoted by 1 ε− , such that ε goes to zerowhen n goes to infinity. This enables the

approximate preparation of the state ABψ∣ 〉 , while the embezzling resource state is also left close to its original
state. Such a preparation can even be achieved simply via local operations (LO). The family n( ) ABν∣ 〉 is called a
universal embezzling state if it enables the preparation of any A Bψ∣ 〉 ″ ″.While this seemingly violates entanglement
monotonicity under LOCCoperations, one quickly realizes that it is really because the closeness in entanglement
content of n n( ) , ( )AB A Bν ν∣ 〉 ∣ 〉 ′ ′ depend not only on thefidelity, but also the dimension. Hence entanglement is
exhausted to prepare A Bψ∣ 〉 ″ ″, while A Bν∣ 〉 ′ ′ remains close to intact on thewhole. However, there is also something
special about embezzling states, in the sense that amaximally entangled state does not serve as a good embezzling
state. In [13], a comprehensive study about the general characteristics of embezzling states was conducted,
providing insight into the necessary structure of a state to be a good embezzler. The power of embezzling in
LOCChas been applied in several areas of quantum information, such as coherent state exchange protocols [12],
projection games [23], or as a theoretical tool in proving the quantum reverse Shannon theorem [24].
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There are some similarities between thermal embezzling and LOCC embezzling; however, alsomany
distinctive features exist.Most significantly, in thermodynamic systems, theHamiltonianwhich determines the
evolution of the systemplays an important role in state conversion conditions [25]. This feature is absent in
LOCC embezzling.We summarize the similarities and differences of LOCC and thermal embezzling in
table A1 .

A.2. Rényi divergences as thermalmonotones
In this sectionwe detail the conditions for state transformation under catalytic thermal operations, which are
closely related to the Rényi divergences. The simplest case of catalytic thermal operations is when all
Hamiltonians H H,S C are trivial. For arbitrary states ρ and σ, ρ σ→ is possible if and only if ρ σ≻ [2]. In the
case whereHS orHC are generally non-trivial, state conversion conditions are affected by the involved
Hamiltonians.More precisely, instead ofmajorization, we need to consider themonotonicity of Rényi
divergences as a (necessary) condition for state transformations. These conditions are used later in sections C
andD to investigate the limits of thermal embezzling. Let usfirst define these quantities in definitionA.1.

DefinitionA.1 (Rényi divergences [22]).Given arbitrary states , 0ρ σ ⩾ , for [0, ]α ∈ ∞ , the Rényi divergence
of ρ relative to σ is defined as

( )D ( )
1

1
log tr (A.2)

1
2

1
2

⎡
⎣⎢

⎤
⎦⎥ρ σ

α
ρ σρ∥ ≔

−α
α

α
α

α
α− −

For ,ρ σ diagonal in the same basis, let p p p p( , ,..., )n1 2= and q q q q( , ,..., )n1 2= denote the eigenvalue vectors
of the ,ρ σ respectively. Then the Rényi divergences reduce to the form

D D p q p q( ) ( )
1

1
log . (A.3)

i

n

i i
1∑ρ σ

α
∥ = ∥ ≔

−α α
α α−

It has been shown that for diagonal states ρ, the quantities D ( )ρ τ∥α are thermalmonotones for all 0α ⩾ ,
where τ is the thermal state of the systemof interest. For arbitrary quantum states, D ( )ρ τ∥α are thermal
monotones for 1 2α ⩾ aswell. Intuitively, this implies that thermal operations can only bring the systemof
interest closer to its thermal state with the same temperatureT as the bath [1].We detail this in lemmaA.2.

LemmaA.2 (Monotonicity under thermal operations [1]).Given someHamiltonianHA, consider arbitrary
states ,A Aρ ρ′ , where A Aρ ρ→ ′ is possible via catalytic thermal operations. Denote by Aτ the thermal state of systemA.
Then for any [1 2, )α ∈ ∞ ,

( ) ( )D D . (A.4)A A A Aρ τ ρ τ∥ ⩾ ′ ∥α α

Furthermore, for any ,A Aρ ρ′ diagonal inHA, equation (A.4) holds for all 0α ⩾ if and only if A Aρ ρ→ ′ is possible via
catalytic thermal operations.

In essence, lemmaA.2 implies that themonotonicity of Rényi divergences are necessary conditions for
arbitrary state transformation, and for the case of states diagonal (in the energy eigenbasis), they are also
sufficient. Let us also use a notationwhichwas introduced in [25] for diagonal states: we say that there exists a
catalystω such that C S T C Sω ρ ω ρ⊗ ≻ ⊗ ′, if ρ σ→ via catalytic thermal operations.We refer to the notion T≻
as thermo-majorization.

Now, let us consider the scenario of preparing a pure excited state ofmaximumenergy
E ES S S

max max maxΠ = ∣ 〉〈 ∣ from a thermal state Sτ . Intuitively, if we concern ourselves only with diagonal state
transformations, then this is the hardest thermal embezzling scenario possible. This is because S

T S Tmax ρ τΠ ≻ ≻

TableA1.Anoverview of differences between LOCC and thermal embezzling.

LOCC embezzling Thermal embezzling

State conversion conditions Related tomajorization

Phenomena The usage of a catalyst state of large dimension/energy while tolerating slight degradation allows

the preparation of any desired target state to arbitrary precision

Hamiltonians Not of interest Ofmuch physical significance

States (catalyst and system) Pure,multipartite states Mixed states in general

Commonly usedmeasure of

closeness

Fidelity of global state (system and embezzling

state)

Trace distance between initial and final

catalyst state

Allowed operations Catalytic LOCC/LOoperations Catalytic thermal operations

Accuracy limited by Dimension of catalyst Dimension and energy
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is possible for any diagonal Sρ . Therefore, whenever we investigate the case where involved states are diagonal, it
suffices to analyze the preparation of such a pure excited state. The necessary and sufficient conditions are

. (A.5)C S T C
S
maxω τ ω⊗ ≻ ′ ⊗ Π

In the next lemma, we show that given fixedHamiltonians and dimensions, any catalyst state that succeeds in
preparing such a state can also be used to facilitate any other state transformation.

LemmaA.3 (Universal embezzlers for diagonal states). Suppose there exists ,C Cω ω′ diagonal (inHC) such that

C S T C
S
maxω τ ω⊗ ≻ ′ ⊗ Π holds, and C C 1ω ω ε∥ − ′ ∥ = . Then for any states ,S Sρ ρ′diagonal (inHS),

C S T C Sω ρ ω ρ⊗ ≻ ′ ⊗ ′holds as well.

Proof.This can be proven by noting that

(A.6)C S T C
S
maxω τ ω⊗ ≻ ′ ⊗ Π

is equivalent to the existence a thermal operation denoted by , such that ( )C S C
S
max ω τ ω⊗ = ′ ⊗ Π . It

remains to show that for any ,S Sρ ρ′, there exists a thermal operation ′ such that ( )C S C S ω ρ ω ρ′ ⊗ = ′ ⊗ ′.
Since the thermal state S T Sρ τ≻ is thermo-majorized by any state Sρ , and S

T Smax ρΠ ≻ ′ thermo-majorizes any
other state Sρ′, there exist thermal operations ,1 2  such that ( )S S1 ρ τ= and ( )S2 max ρ = Π . Finally,
consider

( ) ( ), (A.7)C C2 1   ′ = ⊗ ◦ ◦ ⊗ 

then one sees that ( )C S C S ω ρ ω ρ′ ⊗ = ′ ⊗ ′. This implies that C S T C Sω ρ ω ρ⊗ ≻ ′ ⊗ ′. □

Appendix B.Optimal thermal catalyst for trivialHamiltonians

In this sectionwe look at a specific thermodynamic transformation involving system (S) and catalyst (C) states of
any dimensionm and n ma= respectively. For the trivial Hamiltonianwhere all states have same energy, the
thermal state of the system is simply the fullymixed state

m

 , while any pure state corresponds to S
maxΠ , sowe

simply pick 0 0∣ 〉〈 ∣without loss of generality. Note that thermo-majorization conditions are reduced to the
simplest form, i.e. that

m

1
0 0 (B.1)C S C Sω ω⊗ → ′ ⊗ ∣ 〉〈 ∣

is possible if and only if the initial statemajorizes the latter, i.e.

m

1
0 0 . (B.2)C S C Sω ω⊗ ≻ ′ ⊗ ∣ 〉〈 ∣

In this sectionwe give a construction of catalyst states which allow this transformation, and prove that our
construction achieves the optimal trace distance d ( , )C C C C

1

2 1ω ω ω ω′ = ∥ − ′ ∥ in any fixed dimension n ma= .

Furthermore, these states are universal embezzlers, since any catalyst which successfully creates 0 0 S∣ 〉〈 ∣ from
mS would also allow to obtain any Sρ′ from any Sρ , as shown in lemmaA.3.

DefinitionB.1.Consider integers m 2⩾ and n ma= where a 1⩾ . Let m n, be the set of n-dimensional catalyst
state pairs ( , )C Cω ω′ enabling the transformation

m

1
0 0 . (B.3)C m Cω ω⊗ → ′ ⊗ ∣ 〉〈 ∣

Let d dmin{ ( , ) ( , ) }m n C C C C m n, ,ω ω ω ω= ′ ∣ ′ ∈ .

B.1. A family of catalyst states

LemmaB.2.Consider a system S such that S mdim( ) = , and a catalyst C such that C n mdim( ) a= = for some

integer a 1⩾ . Consider the following catalyst state pair ( , )C Cω ω′ : the state i iC i

n

i1
∑ω ω′ = ′∣ 〉〈 ∣

=
, where

m a
m

1

1 ( 1)
and . (B.4)i

i
1 1

1 logm
⎡⎢ ⎤⎥ω ω ω′ =

+ −
′ = ′ −
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On the other hand, i iC

i

n

i

1

∑ω ω= ∣ 〉〈 ∣
=

, where

m i

i

i

if 1,

if 2 ,

0 if .

(B.5)i i
n

m
n

m

1
⎧
⎨⎪

⎩⎪
ω

ω
ω=

′ =
′ ⩽ ⩽

>

Then the pair ( , )C C m n,ω ω′ ∈ as defined in definition B.1, and therefore

( )d d
m

m a
,

1

1 ( 1)
. (B.6)m n C C, ω ω⩽ ′ = −

+ −

Proof.Beforewe begin the proof, itmight be helpful to gain some intuition of what the structure of ,C Cω ω′ looks
like. For Cω′ , a simpleway to visualize this is as follows: for the firstm elements, the distribution is uniformwith
some probability 1ω ; for the next m 1+ up tom2 elements the distribution is uniform again, with probability

m1ω ; and so on up to n ma= . The initial 1ω is then chosen so that the full distribution is normalized. As for Cω ,
such a state is obtained from Cω′ by setting all the probabilities for i n m> to be zero, while renormalizing by
increasing the largest peak of the probability distribution.

Here, we prove that 0 0C m C
1ω ω⊗ ≻ ′ ⊗ ∣ 〉〈 ∣ , themajorization relation as stated in definition B.1. It is very

easy to see that this is true, once the eigenvalues of Cω and Cω′ are compared

( ) ( ) ( )

diag , , ,
m

, ,
m

,
m

, ,
m

, ,
m

, ,
m

,
m

, ,
m

(B.7)

C

a a a a1 1

m

1 1

m(m 1)

1
2

1
2

m m m

1
2

1
2

m m m

1
1

1
1

m m ma a a a2 2 3 1 2

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
  

           

ω

ω ω
ω ω ω ω ω ω ω ω

′ =

′ ⋯⋯⋯ ′ ′
⋯

′ ′
⋯

′
⋯⋯

′
⋯

′ ′
⋯

′

− −

− −

−

− −

−− − − −

diag m , , , ,
m

, ,
m

,
m

, ,
m

, ,
m

, ,
m

, 0, , 0 , (B.8)

C

a a1 1 1

m 1

1 1

m m

1
2

1
2

m m

1
2

1
2

m m
m m

a a
a a

2 3 2 1 2
1

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟  
        

  

ω

ω ω ω
ω ω ω ω ω ω

=

′ ′ ⋯ ′ ′
⋯

′ ′
⋯

′
⋯⋯

′
⋯

′
⋯⋯⋯⋯

−
− −

− −

−
−

− −
−

wherewe havewritten this bymaking use of the fact that m m m m m( )k k k k1 1 2− = −− − − .
Firstly, one canobserve that since 0 0∣ 〉〈 ∣ is a pure statewith a single eigenvalue 1, 0 0Cω′ ⊗ ∣ 〉〈 ∣has the same

eigenvalues as Cω′ . On the other hand, for any twoeigenvalues in Cω , if one is greater than theother, then it is greater

by at least a factor ofm. This implies thatwhenweconsider C m

1ω ⊗ , the order of these eigenvalueswill not change.

One canobtain the eigenvalues of C m

1ω ⊗  simplyby dividing each eigenvalue of Cω by a factorm, while increasing

itsmultiplicity also by a factor ofm.However, bydoing sousing equation (B.8), one sees thatwe obtain a set of
eigenvalues exactly equal to those in equation (B.7). Since any vectormajorizes itself, we conclude that 0 0Cω′ ⊗ ∣ 〉〈 ∣.

Note that 1 1ω ω> ′while i iω ω⩽ ′ for all i 2> . The trace distance between Cω and Cω′ can be calculated to be

( ) ( )d
m

m a
,

1

2

1

1 ( 1)
. (B.9)C C

i

n

i i

i

i i

1 :

1 1

i i

∑ ∑ω ω ω ω ω ω ω ω′ = ∣ − ′∣ = − ′ = − ′ = −
+ −ω ω= > ′

This shows that

d
m

m a

1

1 ( 1)
, (B.10)m n, ⩽ −

+ −

sincewe have constructed a specific state pair achieving this trace distance. In the next sectionwewill see that for
catalysts satisfying equation (B.2), smaller values of trace distance cannot be achieved, which implies that
equation (B.10) is truewith equality, and the family presented above is optimal. □

B.2.Optimal catalysis
In this sectionwe showby induction that

d
m

m a

1

1 ( 1)
. (B.11)m n, ⩾ −

+ −

Recall that our problem is tominimize over states ,C Cω ω′ the trace distance d ( , )C Cω ω′ such that equation (B.2)
is satisfied.Wefirst show that it suffices tominimize over states which are diagonal in the same basis.
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LemmaB.3 (States diagonal in the same basis).Consider fixed n-tuples of eigenvalues ( , , )n1ω ω⋯ and
( , , )n1ω ω′ ⋯ ′ , such that e eC

i
i i i∑ω ω= ∣ 〉〈 ∣and f fC i i i i∑ω ω′ = ′∣ 〉〈 ∣are diagonal in two different bases

e f{ }, { }i i∣ 〉 ∣ 〉 . If ( , )C Cω ω′ satisfies equation (B.2), then there exists e e˜ ˜C
i

i i i∑ω ω= ∣ 〉〈 ∣ such that
d d( , ) ( , ˜ )C C C Cω ω ω ω′ ⩾ and that ( , ˜ )C Cω ω also satisfies equation (B.2).

Proof.There are two steps in this proof:firstly, we construct ˜Cω from Cω′ and show that the trace distance
decreases by invoking data processing inequality. Then,we use Schurʼs theorem to show thatmajorization holds.
Let ˜ ( )C Cω ω= ′ , where e e e e( )

i
i i i i ∑ρ ρ= ∣ 〉〈 ∣ ∣ 〉〈 ∣ is the fully dephasing channel in the basis e{ }i∣ 〉 . Note

that since Cω is already diagonal in e{ }i∣ 〉 , ( )C C ω ω= . Because the trace distance is non-increasing under
quantumoperations [26], we have

( )( ) ( ) ( )d d d, ( ), , ˜ . (B.12)C C C C C C ω ω ω ω ω ω′ ⩾ ′ =

On the other hand, wewill show that ˜C Cω ω′ ≻ . For anymatrixM, let M( )λ be the vector of its eigenvalues.We
want to show that ( ) ( ˜ )C Cλ ω λ ω′ ≻ . Recall that ˜ ( )C Cω ω= ′ and, from the definition of  , observe that the
eigenvalues ( ˜ )Cλ ω are precisely the diagonal elements of Cω′ in the basis e{ }i∣ 〉 . Schurʼs theorem ([27], chapter 9,
theoremB.1) says that for anyHermitianmatrixM, the diagonal elements ofM aremajorized by M( )λ .
Therefore, ( ) ( ˜ )C Cλ ω λ ω′ ≻ and thus ˜C Cω ω′ ≻ .Making use of the initial assumption

m 0 0C S C Sω ω⊗ ≻ ′ ⊗ ∣ 〉〈 ∣ , we now see that

m

1
0 0 ˜ 0 0 , (B.13)C S C S C Sω ω ω⊗ ≻ ′ ⊗ ∣ 〉〈 ∣ ≻ ⊗ ∣ 〉〈 ∣

which concludes the proof. □

Weare now ready to establish our lower bound on dm n, fort n ma= , wewill use fact established in
lemmaB.3, i.e. that we can take both states to be diagonal in the same basis. For the case of general m n, , optimal
initial/final catalyst and the corresponding trace distance can be found numerically.

TheoremB.4.Consider integers m 2⩾ and n ma= where a 1⩾ . Then

d
m

m a

1

1 ( 1)
, (B.14)m n, = −

+ −

where dm n, is defined in equation (B.1). Hence, the family of catalyst states from section B.1 is optimal.

Proof.Themajorization condition

m

1
0 0 (B.15)C S C Sω ω⊗ ≻ ′ ⊗ ∣ 〉〈 ∣

only depends on the eigenvalues ofω and ω′. Forfixed eigenvalues, the trace distance d ( , )ω ω′ isminimized if
the two states share the same eigenbasis and the eigenvalues are ordered in the sameway, e.g. in decreasing order,
as discussed in lemmaB.3.Hence, fromnowonwe consider only diagonal states diag( , , )n1ω ω ω= … and

diag( , , )n1ω ω ω′ = ′ … ′ , where n1 2ω ω ω⩾ ⩾ … ⩾ and n1 2ω ω ω′ ⩾ ′ ⩾ … ⩾ ′. Here, diag( )⋯ denotes the
diagonalmatrix with the corresponding diagonal elements. To prove the theoremwe only need to show that

d
m

m a

1

1 ( 1)
(B.16)m n, ⩾ −

+ −

as the other inequality follows from the family of embezzling states exhibited in section B.1.We use induction on
the power a. For the base case a=1,we need to show that d m1 1m m, ⩾ − . Consider any feasible solution
( , )ω ω′ in dimension n=m. From themajorization condition

( )
m m m m m

1
0 0 , , , , , , , , , 0, , 0 (B.17)m

m m
m

1 1
1

⎜ ⎟⎛
⎝

⎞
⎠ω ω ω ω ω ω ω ω⊗ ≻ ′ ⊗ ∣ 〉〈 ∣ ⇔ … … … ≻ ′ … ′ …

it follows that m1 1ω ω⩾ ′ and 0iω = for i 2⩾ . Hence, 11ω = and m1 1ω⩾ ′. Since 1ω ′ is the largest of them
values iω′, we get m1iω′ = for all i. Finally, a simple calculation reveals that d m( , ) 1 1ω ω′ = − , which
establishes the base case.

For the inductive step, we assume that

d
m

m a

1

1 ( 1)
(B.18)m n, = −

+ −
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for some n ma= and aim to show that

d
m

m a

1

1 ( 1)( 1)
(B.19)m k, = −

+ − +

for k ma 1= + . Themain idea is to consider an optimal catalyst pair ( , ) m k,ω ω′ ∈ and from it construct a
catalyst pair ( , ) m n,σ σ′ ∈ in dimension n ma= . Since our constructionwill allow us to relate d d( , ) m n,σ σ′ ⩾
to d d( , ) m k,ω ω′ = , we then obtain a lower bound on dm k, in terms of dm n, as in equation (B.18).

Let us start by using the state pair that satisfies equation (B.15) and achieves dm k, , and from it derive some
useful properties. Firstly, pick ( , ) m k,ω ω′ ∈ so that d d( , ) m k,ω ω′ = . As before, without loss of generality, we
assume that diag( , , )k1ω ω ω= … and diag( , , )k1ω ω ω′ = ′ … ′ where k1ω ω⩾ … ⩾ and k1ω ω′ ⩾ … ⩾ ′. The
majorization condition

( )
m m m m m

1
0 0 , , , , , , , , , 0, , 0 (B.20)m

k k
k

1 1
1

⎜ ⎟⎛
⎝

⎞
⎠ω ω ω ω ω ω ω ω⊗ ≻ ′ ⊗ ∣ 〉〈 ∣ ⇔ … … … ≻ ′ … ′ …

again implies that 1 1ω ω> ′ and 0iω = for i k m ma> = . To further simplifymatters, we can also assume that

i iω ω⩽ ′ for all i 2⩾ . This is becausewe can always replaceωwith ˜ diag( ˜ , , ˜ )k1ω ω ω= … , where

˜
if ,

otherwise,
(B.21)i

i i i

i

⎧⎨⎩ω ω ω ω
ω

=
′ > ′

for i 2⩾ and ˜1ω is chosen so that ˜ 1
i

i∑ ω = . In essence, all themajorization advantage ofω against ω′ can be
piled upon thefirst, largest eigenvalue ofω. The reader is referred tofigure B1 for a visual comparison. This
replacement is valid since ( ˜ , )ω ω′ still satisfies themajorization condition. Furthermore,

( ) ( )d d, ˜ , (B.22)
i

i i

: i i

∑ω ω ω ω ω ω′ = − ′ = ′
ω ω> ′

implies that the distance is unchanged.
Subsequently, we proceed to bound dm n, . To do this, construct a catalyst pair ( , ) m n,σ σ′ ∈ in dimension

n m k ma= = . Essentially, this is done by directly applying a cut to the dimension of the final catalyst state ω′,
reducing it to having dimension k m n= . Similarly, the same amount of probability is cut from the initial state,
and both states are renormalized.

Let us decribe this inmore detail: denote
i k m i∑δ ω= ′
>

and pick index s and value ˆs sω ω⩽ so that

ˆ 1
i s

i s∑ ω ω δ+ = −
<

. Note that s k m2⩽ , since themajorization condition equation (B.20) implies that

m
1 . (B.23)

i k m j

m
i

i k m

i

i k m

i

12 2

∑ ∑ ∑ ∑ω ω ω δ= ⩾ ′ = −
⩽ = ⩽ ⩽

This inequality is obtained by summing up the first k m elements of both distributions in the lhs and rhs of
equation (B.20).We nowdefine

( )1

1
diag , , , ˆ , 0, , 0 , (B.24)s s1 1σ

δ
ω ω ω=

−
⋯ ⋯⋯−

( )1

1
diag , , , , , , . (B.25)s s s k m1 1 1σ

δ
ω ω ω ω ω′ =

−
′ ⋯ ′ ′ ′ ⋯ ′− +

Since ˆ 1
i s

i s
i k m i∑ ∑ω ω ω δ+ = ′ = −

< ⩽
the states σ and σ′ are properly normalized. To establish that

( , ) m n,σ σ′ ∈ , we need to show that themajorization condition holds true.We consider two separate cases:
when ˆs sω ω= , andwhen ˆs sω ω≠ .

Figure B1.Avisual comparison between an example of states ,ω ω′ and ω̃, as defined in the proof of theoremB.4.We see that
whenever ω ω⩾ ′ (yellow bar larger than brown), we can define ω̃ (blue) such that ω̃ ω= , and renormalize ω̃ by increasing ˜1ω . Also
from this visualization one can observe that the trace distance as described in equation (B.22) does not change.
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If ˆs sω ω= , then the inequalities in themajorization condition for ( , )σ σ′ have already been enforced by the
majorization condition of ( , )ω ω′ . Hence, ( , )σ σ′ is a valid catalyst pair in dimension n k m= , i.e.
( , ) m k,σ σ′ ∈ . Let us nowmake the following two observations.

1. d ( , )ω ω δ′ ⩾ . To see this, recall that 0iω = for i k m n> = , and thus

( )d , . (B.26)
i

i i

i k m

i

: i i

∑ ∑ω ω ω ω ω δ′ = ′ − ⩾ =
ω ω′> >

2. d d1( , ) ( ) ( , )ω ω δ σ σ′ = − ′ . To see this, note that

( )
( )

d
d

,

1

1

1 1
, (B.27)

i

i i

:

1 1

i i

∑
ω ω

δ δ
ω ω

ω ω
δ

σ σ
′

−
=

−
− ′ = − ′

−
= ′

ω ω> ′

since only thefirst diagonal element of σ is strictly larger than the corresponding diagonal element of σ′.

Combining observations 1 and 2 gives

( ) ( ) ( ) ( ) ( )d d d d d d d, (1 ) , 1 , , 1 , (B.28)m k m k m n, , ,
⎡⎣ ⎤⎦ω ω δ σ σ ω ω σ σ= ′ = − ′ ⩾ − ′ ′ ⩾ −

since

( )d d
m

m a
,

1

1 ( 1)
. (B.29)m n,σ σ′ ⩾ = −

+ −

Rearranging gives us

d
d

d

m

m a1

1

1 ( 1)( 1)
(B.30)m k

m n

m n
,

,

,
⩾

+
= −

+ − +

andwe have completed the inductive step.
If ˆs sω ω≠ , then themajorization inequalities involving ˆsω might fail to hold. Therefore, instead of ( , )σ σ′ we

consider the following, slightly different, pair of states

( )1

1
diag , , , ˆ , 0, , 0 , (B.31)s s1 1ζ σ

δ
ω ω ω= =

−
⋯ ⋯−

( )l
1

1
diag , , , , , ¯ , , , , (B.32)s m sm k m1 ( 1) 1ζ

δ
ω ω ω ω ω′ =

−
′ ⋯ ′ ⋯ ′ ⋯ ′− +

where

( )l
m

1
. (B.33)s m sm( 1) 1ω ω= ′ + … + ′− +

The diagonal elements of ζ′ are still in descending order, and the state is properly normalized. To argue that
( , )ζ ζ′ is a valid pair of catalyst states, we need to verify themajorization inequalities that are not directly implied
by themajorization condition for ( , )ω ω′ . That is, we need to verify that for all j m1 ⩽ ⩽ ,

C
j

m
C jlˆ , (B.34)sω+ ⩾ ′ +

where C
i

s
i

1

1∑ ω=
=

−
and C

i

s m

i1

( 1)∑ ω′ = ′
=

−
.

We can see that this is true for the state pair ( , )ζ ζ′ because in this regime of equation (B.34), both sides
increase linearly with the indices j, and for the endpoints j=0 and j=m, the lhs is higher than the rhs, which is
guaranteed by themajorization condition for ( , )ω ω′ ,

C C C C mland ˆ . (B.35)sω⩾ ′ + ⩾ ′ +

Therefore, p C p C p C p C ml(1 ) ( ˆ ) (1 ) ( )sω− + + ⩾ − ′ + ′ + for any p0 1⩽ ⩽ . Taking p j m= yields the
desired inequality (B.34) and hence ( , )ζ ζ′ is a valid catalyst pair. Lastly, note that reasoning similar to the one in
equation (B.27) can be used to deduce that

( )
( )

d
d

,

1
, . (B.36)

ω ω

δ
ζ ζ

′

−
= ′

Therefore, d d( , ) ( , )ζ ζ σ σ′ = ′ andwe can use the argument from the previous case to complete the inductive
step. By this proof of inductionwe have shown that d m m a1 (1 ( 1) )m n, ⩾ − + − for all m n m, a= and
a 1⩾ . This togetherwith the conclusion in lemmaB.2 that d m m a1 (1 ( 1) )m n, ⩽ − + − proves that
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d
m

m a

1

1 ( 1)
, (B.37)m n, = −

+ −

and the state pair described in equation (B.4) and (B.5) is optimal. □

AppendixC. Limits of thermal embezzling from constraints on dimension

C.1.Diagonal states
In ourwork, we use two particular quantities, which are the Rényi divergences for 1 2α = and α = ∞, which
for classical probability distributions have the following form:

D p q p q D p q D p q
p

q
( ) 2 log , ( ) lim ( ) log max . (C.1)

i
i i

i

i

i
1 2 ∑∥ = − ∥ = ∥ =

α
α∞

→∞

Asmentioned in sectionA.2, givenHamiltoniansHS andHC, it suffices to consider

. (C.2)C S C
S
maxω τ ω⊗ → ′ ⊗ Π

Here, we prove whenever the dimensions of the catalyst (and system) are finite, there exists a lower bound on the
accuracy of thermal embezzling. Such a bound is dependent onHS andHC. To do so, consider the problem

min
1

2

s. t. , 0 , . (C.3)

C C

C S C
S

1

max

ε ω ω

ω τ ω ω σ

= ∥ − ′ ∥

⊗ → ′ ⊗ Π ⩽ ⩽ 

In [1], it was shown that for initial and target states commutingwith theHamiltonianHS, it is sufficient to
consider catalyst states commutingwithHC. Therefore, since Sτ and S

maxΠ both commutewithHS, it is sufficient
to consider initial andfinal catalyst states which are diagonal in the basis ofHC. Since allαRényi divergences are
thermalmonotones according to lemmaA.2, in particular themin-relative entropy (D∞), for α → ∞,

( )D max log (C.4)
i

i

i

ρ ρ
ρ
ρ

∥ ′ =
′∞

where iρ and iρ′ are the eigenvalues of ,ρ ρ′ respectively. Therefore, satisfying the thermo-majorization
conditions in equation (C.3) implies that

( ) ( )D D .C S CS C
S

CSmaxω τ τ ω τ⊗ ∥ ⩾ ′ ⊗ Π ∥∞ ∞

To further simplify this expression, note that CS C Sτ τ τ= ⊗ and that
D D D( ) ( ) ( )ρ ρ σ σ ρ σ ρ σ⊗ ′∥ ⊗ ′ = ∥ + ′∥ ′α α α . The additivity of Rényi divergences under tensor products
holds for all states. Furthermore, D ( ) 0ρ ρ∥ =α for any ρ. Therefore, we arrive at the expression

( ) ( )D D
Z

0 log
e

, (C.5)C C C C
S

E S
max

ω τ ω τ∥ + ⩾ ′ ∥ +
β∞ ∞ −

whereZS is the partition function of the system. The spectral values of Cω and Cω′ are denoted as { }jω and { }jω′ ,
respectively. Using the definition of D∞ as shown in equation (C.1), we obtain

Z
max

e
max ,

i

i

i

S

E j

j

j
S
max

ω
τ

ω
τ

⩾
′

β−

where

Z

e
(C.6)j

E

C

j
C

τ =
β−

are the eigenvalues of the thermal state for the catalyst, for the energy eigenstate with energy eigenvalue Ei
C , with

normalizationZC, the partition function of the catalyst. Since ε̂ is theminimum trace distance between states
,C Cω ω′ , and D∞ depends only on themaximumof i iω τ′ across the distribution, the optimal strategy to increase

D∞while going from Cω′ to Cω is to increase a specific iω′by an amount ε̂. Therefore, we can consider a
relaxation of equation (C.3)

ˆ min
1

2
(C.7)C C 1ε ω ω= ∥ − ′ ∥

Z
s. t. max

ˆ

e
max , (C.8)

i

i

i

S

E j

j

j
S
max

ω ε
τ

ω
τ

′ + ⩾
′

β−

j, 0 1. (C.9)jω∀ < ′ ⩽

In the next lemma, we show that ˆ 0ε ε δ⩾ ⩾ > whenever E E,C S
max max < ∞.
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LemmaC.1 (lower bound to error in catalysis).Consider system and catalyst Hamiltonians which are finite-
dimensional, and denote E{ }i

S
i
m

1= , E{ }i
C

i
n

1= to be the set of energy eigenvalues respectively. Then for some fixed
E E,C S

max max , consider any probability distribution r (which corresponds to eigenvalues of a catalystω), and ε̂ such
that

r Z r
j rmax

ˆ

e
max , , 0 1, (C.10)

i

i

i

S

E j

j

j
jS

max

ε
τ τ
+ ⩾ ∀ < ⩽

β−

where Zei
E

Ci
Cτ = β− . Note that index i runs over all energy levels Ei

C . Then

Z

Z
ˆ

e
1

e
0. (C.11)S

E

E

C
S

C

max

max⎛
⎝⎜

⎞
⎠⎟ε ⩾ − ≠

β

β

−

−

In other words, thermal embezzling of diagonal states with arbitrary accuracy is not possible.

Proof. Firstly, let r*, *τ indicate the pair such that r r* * maxj j jτ τ= . Then

r r r Z
max max

ˆ
max

ˆ *

* e
.

i

i

i i i i

i

i

S

E S
maxτ

ε
τ

ε
τ τ

+ ⩾ + ⩾
β−

Thefirst termof lhs is equal to r* *τ , and therefore can be groupedwith the rhs to form

r Z Z
max

ˆ *

* e
1

e
1,

i i

S

E

S

ES S
max max

⎛
⎝⎜

⎞
⎠⎟

ε
τ τ

⩾ − ⩾ −
β β− −

sincewe know that D r q r r( ) log max log * * 0i i iτ τ∥ = = ⩾∞ , therefore r* * 1τ ⩾ . Finally, taking the
maximization of 1 iτ over i gives 1/ minτ , recall that iτ corresponds to probabilities of the thermal state being in
the eigenstate with energyEi. Therefore, Ze E

Cmin
C
maxτ = β− , andwe get

Z

Z
ˆ

e
1

e
. (C.12)S

E

E

C
S

C

max

max⎛
⎝⎜

⎞
⎠⎟ε ⩾ −

β

β

−

−

□

C.2. Arbitrary states
The case of arbitrary states are treated separately, since our lemmaA.3 on universal embezzlers hold only for
diagonal states, where necessary and sufficient conditions are known for state transformations. Nevertheless,
since themonotonicity of Dα is necessary for arbitrary state transformations S Sρ ρ→ ′, one can use techniques
very similar to those in sectionC.1 to lower bound the embezzling error, if weminimize over diagonal catalysts.

More precisely, denote ( , )S Sε ρ ρ′ to be the solution of

( ) ( )D D

min
1

2

s. t. , 0 , . (C.13)

C C

C S CS C S CS

1ω ω

ω ρ τ ω ρ τ ω σ

∥ − ′ ∥

⊗ ∥ ⩾ ′ ⊗ ′ ∥ ⩽ ⩽∞ ∞ 

Recall that CS C Sτ τ τ= ⊗ , and that Dα is additive under tensor products. Therefore, by defining

( ) ( ) ( )D D, , (C.14)S S S S S S1κ ρ ρ ρ τ ρ τ′ ≔ ′ ∥ − ∥∞ ∞

we can rearrange the first constraint in equation (C.13)

( ) ( ) ( )D D , . (C.15)C C C C S S1ω τ ω τ κ ρ ρ∥ ⩾ ′ + ′∞ ∞

Note that this is almost equivalent to equation (C.5), except the constant Zlog eS
E S

maxβ− previously is now
replacedwith ( , )S S1κ ρ ρ′ . By following the same steps used to prove lemmaC.1, we obtain a lower bound
depending on ,S Sρ ρ′.

LemmaC.2.Consider system and catalyst Hamiltonians which are finite-dimensional, and denote E{ }i
S

i
m

1= and
E{ }i

C
i
n

1= to be the set of energy eigenvalues respectively. Then for some fixed E E0 ,C S
max max⩽ , consider any probability

distribution r (which corresponds to eigenvalues of a catalystω), and ε̂ such that

( )r r
j rmax

ˆ
2 · max , , 0 1, (C.16)

i

i

i j

j

j
j

,S S1
ε

τ τ
+ ⩾ ∀ < ⩽κ ρ ρ′

where Zei
E

Ci
Cτ = β− and D D( , ) ( ) ( )S S S S S S1κ ρ ρ ρ τ ρ τ′ = ′ ∥ − ∥α α . Note that index i runs over all energy levels Ei

C .
Then

( )
Z

ˆ 2 1
e

0. (C.17)
E

C

,S S

C

1
max⎡⎣ ⎤⎦ε ⩾ − ≠κ ρ ρ

β
′

−
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This implies thermal embezzling with arbitrary accuracy, using a diagonal catalyst is not possible.

Comparing lemmasC.1 andC.2, which are very similar, one sees that for non-diagonal states lemmaC.2
gives a state-dependent lower bound on the embezzling error.However for diagonal states, the bound in
lemmaC.1 can bemade state-independent because of the existence of universal embezzlers.

C.3. Relation to energy constraints
Rather than bounding the dimension of the catalyst, one can ask if restrictions on other physical quantities such
as the average energy of the catalyst would indefinitely prevent accurate embezzling fromoccurring.While this
by itself is an independently interesting problem,we can first note that such restrictions are sometimes related to
restrictions on the dimension. In one direction this is straightforward: if the catalyst isfinite-dimensional, then
the average energy and all othermoments of energy distributionwould befinite as well.

Here, we show that by restricting the first and secondmoments of the energy distribution of the catalyst to be
finite, this implies that the states involved are always close tofinite-dimensional states. In other words, if we
consider the set of catalysts such that the average and variance of energy isfinite, then for any such catalyst state
from this set, there always exists afinite-dimensional state ε-close to it. This can be shown by invoking a simple
theorem, namely theChebyshev inequality which says that for given anyfinite non-zero error ε, the support of
the energy distributionmust befinite.

LemmaC.3 (Chebyshev inequality).Consider a random variable Xwith finitemean X̄ and finite variance X
2σ ,

then for all k 0> ,

X X k
k

¯ . (C.18)X
2

2
⎡⎣ ⎤⎦ σ− ⩾ ⩽

TheoremC.4 (Chebyshev inequality applied to energy distributions).Consider a probability distribution p over
some non-degenerate energy values E, where bothmean E E¯ = 〈 〉, and variance E E[ ¯]E

2 2σ = 〈 − 〉are finite. Then for
any 0ε > , there exists Emax < ∞ such that E E[ ]max ε⩾ ⩽ .

Proof. For any 0ε > , let some k Eσ ε= . Denote E E k¯max = + . Then by lemmaC.3,

E E E E k¯ . (C.19)max
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ ε⩾ ⩽ − ⩾ ⩽ 

□

AppendixD. Limits of thermal embezzling from energy constraints

In this sectionwe provide lower bounds for the error in catalysis, given constraints on the average energy of the
catalyst state.We do so by adding a constraint on the average energy of the catalyst to the problem stated in
equation (C.3). By looking at the Rényi divergence for 1 2α = , we can show a non-zero lower bound on the
catalytic error, for cases where the partition function of the catalystHamiltonianZC isfinite. Thisminimal
assumption coversmost physical scenarios, especially if wewant the thermal state to be a trace class operator to
beginwith. Againwe start with diagonal states, then later generalize to arbitrary states.

D.1.Diagonal states
Firstly, let us recall the problem stated in equation (C.3).We aim atminimizing the trace distance between all
initial and final the catalyst states, such that themost significant thermal embezzlement of a smaller system S can
be achieved.We denote again the initial and final catalysts by Cω and Cω′ with spectral values { }jω and { }jω′ .
Again, by restricting ourselves to look at the catalyst diagonal in theHamiltonian basis, and by invoking only the
thermalmonotone D (. . )1 2 ∥ , one can find the alternative relaxed problem
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( )A

j E E

min
1

2
,

s.t. 0, 1, 1,

, 0 , and , (D.1)

j

j j

j

j j
E

j

j

j

j

j j

j

j
C

j

1

1

1 2 1 2 1 2

1 1

1

j
C

∑

∑ ∑ ∑

∑

ω ω

ω ω γ ω ω

ω ω ω

∣ − ′∣

′ − ⩾ ′ = =

′ ⩾ ∀ ⩽

=

∞

=

∞

=

∞

=

∞

=

∞

where

A
Z

e
(D.2)S

E S
max

=
β−

and e 12γ = <β− . Furthermore, since A 1 mini iτ= with iτ forming a probability distribution (that of a
thermal state), one can deduce that whenever the dimension of system S is m 2⩾ , A m 2⩾ ⩾ holds
as well.

The solution of thisminimization problem serves as a lower bound to the optimal trace distance error.
This problem can be relaxed to a convex optimization problem.We can arrive at a simple bound, however,
with rather non-technicalmeans. In essence, we introduce split bounds, so that the optimization can be
written as two independent, individually significantly simpler optimization problems.Wemake use of the
inequality

x a y x y f a y( ) , (D.3)1 2 1 2 1 2 1 2− ⩽ ∣ − ∣ −

which holds true for x y a, [0, 1], 2∈ ⩾ andwith f : →+ +  defined as

f a
a

a
( )

1

2 1
. (D.4)

2

2
=

+
Wecan then relax the problemby replacing the first constraint in equation (D.1), with xj taking the role of

j jω ω∣ − ′∣, to arrive at

x

x f A

x j E E

min
1

2
,

s.t. ( ) e 0, 1,

, 0 , and . (D.5)

j

j

j

j j
E

j

j

j j

j

j
C

j

1

1

1 2 2

1

1

j
C⎡⎣ ⎤⎦

∑

∑ ∑

∑

ω ω

ω ω

− ⩾ =

⩾ ∀ ⩽

β

=

∞

=

∞
−

=

∞

=

∞

These are now two independent optimization problems, by treating xj and jω as independent variables. Define

Cε to be the solution of the simple linear problem involving only variables { }jω , which we explicitly write out in
corollary D.2. In this subproblem, one notes that the constraint on expectation value of the energy implies that
the total probability of having relatively low energy eigenvalues cannot be vanishingly small, whichwe prove
in lemmaD.1. One can then use this fact to place a lower bound on the quantity Cε , which we detail in
corollary D.2.

LemmaD.1 (lower bound to sums of eigenvalues).Consider any probability distribution { }iω over ascendingly
ordered energy eigenvalues E{ }i

C , with the property that the energy eigenvalues are unbounded, i.e. Elimn n
C = ∞→∞ .

If the expectation value of energy E E
i

i i
C

1
∑ ω ⩽

=

∞
for some finite constant E, define for any W0 1< <

{ }j W j E
E

W
( ) min :

1
. (D.6)j

C
1= >

−+

Then

W . (D.7)
i

j W

i

1

( )

∑ ω ⩾
=

Proof.One can easily prove this by contradiction. Assume that

W (D.8)
i

j W

i

1

( )

∑ ω <
=
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and therefore W1
i j W

i
( ) 1

∑ ω > −
= +

∞
. This violates the energy constraint, since

E W
E

W
E(1 )

1
. (D.9)

i j W

i i
C

( ) 1

∑ ω > −
−

=
= +

∞

□

CorollaryD.2 (lower bound to Cε ). For a set of unbounded energy eigenvalues E{ }i
C , consider theminimization

problem

j E E

min e ,

s. t. 1, 0 , and .

C

j

j
E

j

j j

j

j
C

j

1

1 1

j
C∑

∑ ∑

ε ω

ω ω ω

=

= ⩾ ∀ ⩽

β

=

∞
−

=

∞

=

∞

Denote e (0, 1)γ = ∈β− . Then for j W j E E W( ) min{ : 1 }j
C

1= > −+ ,

Wmax . (D.10)C
W

E

(0,1)

j W( )ε γ⩾
∈

Proof.This is a direct application of lemmaD.1, since thefirst and second constraints are satisfied automatically

by any probability distribution. Given someW (0, 1)∈ , by lemmaD.1we know that W
i

j W
i

1

( )∑ ω ⩾
=

. The

objective function then can be lower bounded as

We e , (D.11)
i

i
E

i

j W

i
E E

1 1

( )

i j W
C

j W
C

( ) ( )∑ ∑ω ω γ⩾ ⩾β β

=

∞
−

=

−

for any suchW. To obtain the best lower bound, onemaximizes over allW (0, 1)∈ . □

RemarkD.3 (temperature dependence).The bound obtained in corollaryD.2 is dependent on temperature of
the bath, and goes to zero in the limitT 0→ .

We have now solved the subproblem involving variables { }iω . Inserting the solution into the former
optimisation problem,we arrive at the lower bound for ε,

x x f A x jmin
1

2
s.t. e ( ) , 0 .

j

j

j

j
E

C j

1 1

1 2 2j
C∑ ∑ ε⩾ ⩾ ∀β

=

∞

=

∞
−

The optimal solution for thisminimization can easily be lower bounded by considering the Lagrange dual, which
is

f Amax
1

4
e ( ) , s. t. 0.

j

E
C

2

1

j
C∑λ λ ε λ− + ⩾β

=

∞
−

In fact, this can obviously be immediately solved as a quadratic problem in one variable. Let

g ( ) e , (D.12)
j

E
C

1

2j
C∑λ λ λε= +β

=

∞
−

and consider the stationary point of the function by setting first derivative w.r.t. λ to zero,

f A
1

2
e ( ) 0, (D.13)

i

E
C

i∑λ ε− + =β−

where the second derivative is negative, hence implying amaximumpoint. Substituting this into the objective
function gives f A Z( ) C C

2ε , and hencewe conclude that

f A

Z

1

2

( )
.C

C

2 2

ε
ε

⩾

In this way, we arrive at themain result.

TheoremD.4 (energy constraint limits the accuracy of thermal catalysis).Consider the transformation

E EC S C
S S
max maxω τ ω⊗ → ′ ⊗ ∣ 〉〈 ∣, where d

1

2

1

2
C Copt 1ω ω ε= ∥ − ′ ∥ = is the error induced on the catalyst. Then

for all catalyst states with finite average energy, dopt is lower bounded by
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d
f A

Z

1

2

( )
,C

C
opt

2 2ε
⩾

where f x( ) is defined in equation (D.4), A Z eS
E S

max= β− , WmaxC W
E

(0,1) j W
C
( )ε γ= ∈ and

j W j E E W( ) min{ : (1 )}j
C

1= > −+ .
In other words, thermal embezzling of diagonal states with arbitrary accuracy is not possible.

D.2. Arbitrary states
Similar to our previous discussions in sectionC.2 , when the states Sρ or Sρ′ are non-diagonal, we can still obtain a
state dependent lower bound for the embezzling error. For any state ,S Sρ ρ′, let us define the quantity

( ) ( ) ( )D D, . (D.14)S S S S S S2 1 2 1 2κ ρ ρ ρ τ ρ τ′ ≔ ′ ∥ − ∥

Then a lower bound can be obtained by following the steps as proved in sectionD.1, only now replacing the
constantA defined in equation (D.2) with a state-dependent function.

LemmaD.5. For arbitrary states Sρ and Sρ′, consider the transformation C S C Sω ρ ω ρ⊗ → ′ ⊗ ′, where

d
1

2

1

2
C Copt 1ω ω ε= ∥ − ′ ∥ = is the error induced on the catalyst. Then for all catalyst states with finite average

energy, dopt is lower bounded by

( )( )
d

f

Z

1

2

2
,

C

C
opt

,
2

2S S2 ε
⩾

κ ρ ρ′

where f x( ) is defined in equation (D.4), D D( , ) ( ) ( )S S S S S S2 1 2 1 2κ ρ ρ ρ τ ρ τ′ = ′ ∥ − ∥ , WmaxC W
E

(0,1) j W
C
( )ε γ= ∈

and j W j E E W( ) min{ : 1 }j
C

1= > −+ . This implies that thermal embezzling with arbitrary accuracy using a
diagonal catalyst is not possible.
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