
Chapter 7

Applications

7.1 Introduction

Theorem 5.4.1 gives a definition of relative rational LS-category depending only on the
relative Sullivan model of the considered map. It is nevertheless difficult to compute it
generally, owing to the difficulty to determine Ker (h) precisely. Still, there are a few cases
where it is possible to simplify the problem, for example if the map is the inclusion of a
fibre. We deal with it in section 7.3.

On the other hand it was shown by D. Stanley in [Sta00] that for a spherical fibration
with fibre an odd sphere the rational sectional category of the fibration depends only on
the order of its Euler class. We show in section 7.4 that the analogous assertion for rational
relative category is not true.

First of all however we consider two simple examples that show that the R-category
can take up any value, including infinity.

7.2 Two elementary examples

7.2.1 Example 1

The first example that interests us is an odd spherical fibration Sn → E
f
→ B, such that

the Sullivan model for B is generated by a single element with even degree: x. A Sullivan
model for f is therefore given by

Λ(x)→ Λ(x)⊗ Λ(a) with|x| = k, even; |a| = n, odd; dx = 0, and da = xt

(if da = 0, there exists a retraction in dimension 0: the morphism which is the identity
on Λ(x) and which sends a to 0). We construct the standard surjective model h : Λ(x)⊗
Λ(a, ã) → Λ(x) ⊗ Λ(a) and compute its kernel: it is the ideal generated by ã − xt. By
computing the homology of Fm it is possible to find a Sullivan model for Λ(x)→ Fm:

Λ(x)→ Λ(x)⊗ Λ(wm), with dwm = xt+m.

Let us suppose that there exists a retraction r : Λ(x) ⊗ Λ(wm) → Λ(x), then we must
have that r(wm) = 0 for degree reasons. But r(dwm) = r(xt+m) = xt+m because r is
a retraction. We therefore obtain a contradiction, which means that there cannot be a
homotopy retraction for any dimension m, or that the R-category, and therefore also the
relative category, is infinite.
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7.2.2 Example 2

As in the first example, we consider an odd spherical fibration Sn → E
f
→ B, but this

time the Sullivan model for B is given by Λ(x, y), with |x| = k even, dx = 0, dy = xm. A
relative model for f is

Λ(x, y)→ Λ(x, y) ⊗ Λ(a)

with da = xt. As in the first example, we exclude da = 0 because then a retraction exists
trivially in dimension zero.

Lemma 7.2.1 For this fibration we have

• if t ≥ m, Rcato(f) = 0;

• if t ≤ m, Rcato(f) = m− t.

Proof. Let us begin with the case t ≥ m. We can then define r : Λ(x, y) ⊗ Λ(a) →
Λ(x, y) as being r(x) = x, r(y) = y, r(a) = xt−my. If m ≥ t we proceed by induction on
s ≡ m− t. The case s = 0 has just been considered. In case s > 0, there is no homotopy
retraction possible for the morphism Λ(x, y)→ Λ(x, y) ⊗ Λ(a).

We suppose that for s ≤ q− 1, Rcato(f) = s and that for s > q− 1, Rcato(f) > q− 1.
We show: if s = q, Rcato(f) = s and if s > q, Rcato(f) > q. Using theorem 5.4.1, we
look for a homotopy retraction for Λ(x, y) → Fq. The standard surjective model for f
is h : Λ(x, y) ⊗ Λ(a, ã) → Λ(x, y) ⊗ Λ(a), which has kernel < xt − ã >. For s ≥ q, the

elements of the homology of Fq = Λ(x,y)⊗Λ(a,ā)
Λ≥q(x,y)·<xt−ã>

are the homology classes of

[x], [x2], ..., [xt+q−1]; [y − xsa], [x(y − xsa)], ..., [xt+q−2(y − xsa)];

and of all elements of type [xpt+ly−xlyãp] such that p, l ∈ Z, l+ pt > q+ t− 1, p ≥ 1 and
0 ≤ l ≤ q − 2, all other products being equal to zero. To build a model for Λ(x, y) → Fq
we use a method given in section 2.4. We construct a graded vector space V degree by
degree in order to obtain a quasi-isomorphism Φ : Λ(x, y)⊗ΛV

'
→ Fq such that Φ(x) = [x]

and Φ(y) = [y]. We define Φn ≡ Φ|Λ(x,y)⊗ΛV ≤n .

• We call Φ0 the morphism of cdgas Λ(x, y) → Fq, with Φ0(x) = [x], Φ0(y) = [y].
We check that for 0 ≤ n ≤ (t + q)k − 2, Hn(Φ0) : Hn(Λ(x, y)) → Hn(Fq) is an
isomorphism. Moreover KerH (t+q)k−1(Φ0) = 0.

• We extend Φ0 to Φ(t+q)k−1 : Λ(x, y)⊗ΛV ≤(t+q)k−1 → Fq by setting V (t+q)k−1 ≡< z >,
dz = xt+q, Φ(t+q)k−1(z) = [xqa], because

KerH(t+q)k(Φ0) = Q · [xt+q],

H(t+q)k−1(Fq) = ImH(t+q)k−1(Φ0).

• We now proceed by induction, exactly like in section 2.4: supposing that Φn is
constructed, that H l(Φn) is an isomorphism for 0 ≤ l ≤ n, and that Hn+1(Φn)
is injective, we extend to Φn+1 by the following procedure. We choose cocycles
ξα ∈ Fn+1

q , α ∈ A and ψβ ∈ (Λ(x, y)⊗ ΛV ≤n)n+2, β ∈ B so that

Hn+1(Fq) = ImHn+1(Φn)⊕
⊕

α∈A

Q · [ξα],
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KerHn+2(Φn) =
⊕

β∈B

Q · [ψβ ].

Note that this means that for every β ∈ B there exists a λβ ∈ Fq such that Φn(ψβ) =
dλβ .

We extend Φn by choosing the degree n+ 1 of V to be the vector space

V n+1 ≡< vα, ṽβ >α∈A,β∈B,

with
dvα = 0 Φn+1(vα) = ξα
dṽβ = ψβ Φn+1(ṽβ) = λβ

Since d2 = 0 in Λ(x, y) ⊗ ΛV ≤n and in V n+1, then it is zero for any product in
Λ(x, y)⊗ ΛV ≤n+1. Similarly we can show dΦn+1 = Φn+1d.

A model for Λ(x, y) → Fq is then given by Λ(x, y) → Λ(x, y) ⊗ Λ(z, v0, v1, ...) with
dz = xt+q, dv0 = xt+q−1(y − xs−qz). The generators are listed in increasing degree order
with |vi| ≥ (q + t+m− 1)k − 1.

If s > q, since a homotopy retraction r must have r(x) 6= 0, and by degree reasons
r(z) = 0, we obtain a contradiction 0 = dr(z) = r(dz) = r(xt+q) 6= 0, therefore Rcat(f) >
q.

If s = q, we know by hypothesis that Rcat(f) ≥ q. Then a homotopy retraction r can
be defined if for all i the differential dvi is either equal to zero or is a sum of products of
generators containing always at least an element y − z, yz or vj , j < i. Indeed we could
then take r to be the identity on Λ(x, y), r(z) = y, and zero on Λ(v0, v1, ...).

Let us show the last assumption by induction. It works for v0, and we suppose it
working for n ≤ i− 1.

Without loss of generality we suppose dvi 6= 0. For reasons of degree, the differential
of vi can be only one of two types:

dvi =

{
βxb + ξ
βxby + γxbz + ξ

where β, γ ∈ Q, b is an integer ≥ 0, and ξ denotes all terms containing at least a yz or
a vj . Since we have constructed our model following the method in [FHT01], we notice
that dvi does not contain any term of type βxb. Indeed if dvi = βxb + ξ, then vi would
have been introduced to “kill” βxb + ξ because its differential is zero but it does not
correspond to an element of the cohomology of Fq. But d(βxb + ξ) = dξ and it would
suffice to set dvi ≡ ξ. Indeed we would then have βxb + ξ = d(βxb−my+ vi), where b ≥ m
because |vi| ≥ (m + t)k − 1. In case dvi = βxby + γxbz + ξ, since d2vi = 0, we deduce
(β + γ)xm+b + dξ = 0. But we have just shown that dξ does not contain any term of type
βxb, so we must have β = −γ and dξ = 0. ut

7.3 Inclusion of a fibre

Let us suppose in this section that the map we are considering is the inclusion of a fibre

F
f
→ E for a fibration E

p
→ B. In this case it is possible to give a sufficient condition

for cato(f) ≤ m that is fairly simpler than the definition. Although this condition is not
necessary, it can be successfully used to compute relative categories in a few examples.
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Proposition 7.3.1 Let F
f
→ E be the inclusion of the fibre for a fibration E

p
→ B,

(ΛW,d)→ (ΛW⊗ΛV, d) be a relative Sullivan model for p and f̃ : (ΛW⊗ΛV, d)→ (ΛV, d)
a representative for f . We define

(Km, d) ≡

(
ΛW ⊗ ΛV

Λ≥m(W ⊕ V ) · Λ+W
,d

)

and denote by π̃′ : (ΛW ⊗ ΛV, d)→ (ΛX, d) a representative of the projection π ′ : (ΛW ⊗
ΛV, d) → (Km, d). We also denote by k̃′ : (ΛX, d) → (ΛV, d) a representative of the
morphism k′ : (Km, d)→ (ΛV, d), induced by f̃ . Then k̃′ ◦ π̃′ is homotopic to f̃ .

• If there exists a homotopy retraction r of π̃ ′ then Rcato(f) ≤ m;

• If moreover f̃ ◦ r ' k̃′ then cato(f) ≤ m.

Proof. The long fibration sequence

...→ ΩB → F
f
→ E

p
→ B,

becomes the following sequence in rational homotopy:

(ΛW,d) → (ΛW ⊗ ΛV, d)
f̃
→ (ΛV, d)→ (ΛW̄ , d̄)→ ...,

where (ΛW,d) → (ΛW ⊗ ΛW̄ , d) is a model of the augmentation (ΛW,d) → (Q, 0). We
begin by constructing a relative Sullivan model f̄ of f̃ , and then the standard surjective
model h of it

ΛW ⊗ ΛV
f̃ //

� s

f̄

&&MMMMMMMMMMMMMMMMMMMM� n

g
'

��;
;;

;;
;;

;;
;;

;;
;;

;;
;;

;;
;;

;;
;;

;;
;

ΛV

ΛW ⊗ ΛV ⊗ ΛW̄

φ

'

::vvvvvvvvvvvvvvvvvvv

Λ(W ⊕ V )⊗ Λ(W̄ ⊕ ˜̄W.)

h

OOOO

The diagram commutes exactly. Notice that with these notations

(Fm, d) =

(
Λ(W ⊕ V )⊗ Λ(W̄ ⊕ ˜̄W )

Λ≥m(W ⊕ V ) ·Ker (h)
, d

)

There exists moreover a morphism j which is a lift in the following commuting diagram:

ΛW ⊗ ΛV
� _

' g

��

ΛW ⊗ ΛV

f̃

����
ΛW ⊗ ΛV ⊗ Λ(W̄ ⊕ ˜̄W )

h
// //

j

'

44

ΛW ⊗ ΛV ⊗ ΛW̄
'

φ
// ΛV.
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Therefore j(Ker (h)) ⊂ Ker (f̃) = Λ+W ⊗ ΛV and j(Λ≥m(W ⊕ V ) ·Ker (h)) ⊂ Λ≥m(W ⊕
V ) · (Λ+W ⊗ΛV ) = Λ≥m(W ⊕ V ) ·Λ+W . The morphism j therefore induces a morphism
Ψ : (Fm, d) −→ (Km, d). From the previous diagram it is easy to see that

ΛW ⊗ ΛV

π

zztttttttttttttttttt

π′

��?
??

??
??

??
??

??
?

Fm Ψ
//

k

��

Km

k′

��
ΛW ⊗ ΛV ⊗ ΛW̄

φ

' // ΛV

commutes, where k and k′ are induced respectively by h and f̃ . Choosing now Sullivan
models for Fm and Km and representatives for the various morphisms of the last diagram,
we obtain

ΛW ⊗ ΛV

π

zztttttttttttttttttt

π′

��?
??

??
??

??
??

??
?

π̃

uujjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

π̃′

&&MMMMMMMMMMMMMMMMMMMM

ΛM '
λ //

k̃

""FFFFFFFFFFFFFFFF Fm Ψ
//

k

��

Km

k′

��

ΛX
'

λ′
oo

k̃′

����
��

��
��

��
��

�

ΛW ⊗ ΛV ⊗ ΛW̄
φ

' // ΛV

where everything commutes at least up to homotopy. As usual there exists a morphism
Ψ̄ : (ΛM,d)→ (ΛX, d) such that λ′ ◦ Ψ̄ ' Ψ ◦λ. Since λ′ ◦ Ψ̄ ◦ π̃ ' Ψ ◦λ ◦ π̃ ' λ′ ◦ π̃′, then
Ψ̄ ◦ π̃ ' π̃′. Let us now suppose the existence of a homotopy retraction r ′ : (ΛX, d) →
(ΛW ⊗ ΛV, d) for π̃′. We show that r := r′ ◦ Ψ̄ is a homotopy retraction for π̃:

r ◦ π̃ = r′ ◦ Ψ̄ ◦ π̃ ' r′ ◦ π̃′ ' idΛW⊗ΛV .

Moreover if f̃ ◦ r′ ' k̃′, then

φ ◦ k ◦ π ◦ r′ ◦ Ψ̄ ' k′ ◦Ψ ◦ π ◦ r′ ◦ Ψ̄ ' k′ ◦ π′ ◦ r′ ◦ Ψ̄ =

f̃ ◦ r′ ◦ Ψ̄ ' k̃′ ◦ Ψ̄ ' k′ ◦ λ′ ◦ Ψ̄ ' k′ ◦Ψ ◦ λ = φ ◦ k ◦ λ ' φ ◦ k̃.

Moreover we notice that k̃ is a lifting for the diagram

ΛW ⊗ ΛV ⊗ ΛW̄

φ'

��
ΛM

'

λ
//

k̃

55

Fm
Ψ // Km

k′ // ΛV
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and is then unique up to homotopy. Therefore k̃ ' k ◦ π ◦ r′ ◦ Ψ̄ = k ◦ π ◦ r as wished and
cato(f) ≤ m. ut

Remark. Let us consider a spherical fibre sequence F
i
→ E

p
→ B with fibre an

odd-dimensional sphere S2n+1. Since F is an Eilenberg-MacLane space K(Q, 2n + 1), p
is a principal fibration, and therefore it is the inclusion of the fibre of a fibration B →
K(Q, 2n+ 2). This means that the previous proposition can be applied to a large class of
morphisms.

To compute the R-category or the rational LS-category of an example we need a few
properties of classical relative LS-category.

Lemma 7.3.2 Let f : E → X be a map, then

1. Rcat(f) ≤ cat(X);

2. cat(f) ≥ cat(X ∪f CE).

Proof. Without loss of generality we can suppose that f is a cofibration.

1. Let us suppose that cat(X) ≤ n. This means that it is possible to cover X with
n+ 1 open sets Ui which are contractible in X. Since the base point is contained in
E, any one of the Ui is contractible into E as requested by the definition of Rcat.

2. If cat(f) ≤ n, there exists a covering of X by n + 1 open sets Ui, 0 ≤ i ≤ n, such
that U0 contains E and can be continuously deformed into E relatively to E. The
other open sets are contractible in X. We can now choose an open covering {Vi}

n
i=0

for X ∪f CE as follows: Vi = Ui for 1 ≤ i ≤ n and V0 = U0 ∪f CE. To contract V0

it suffices to first deform U0 into E. Since the deformation occurs relatively to E it
can be extended to all of U0 ∪f CE by keeping it constant on CE. At the end of
this deformation we are left with CE, which is a cone, and therefore contractible in
itself.

ut

Example.

• Let us consider the Hopf fibration S5 → CP (2) → CP (∞). We are going to deter-
mine the rational relative LS-category of the inclusion of the fibre f̂ : S5 → CP (2).
It is well-known that cat(CP (2)) = 2 and therefore Rcato(f) ≤ Rcat(f) ≤ 2 thanks
to lemma 7.3.2. It is now a matter to decide whether the rational R-category is
equal to 0,1 or 2. A model for the fibration is

(Λ(x), d) −→ (Λ(x, y), d)
f̃
−→ (Λ(y), d),

with |x| = 2, dx = 0, |y| = 5 and dy = x3 in (Λ(x, y), d). Unfortunately if in this
case we try to use the simplified model described in proposition 7.3.1 (Λ(x, y), d) →
(K1, d), we find no possible retraction, which gives us no supplementary information.
It is therefore necessary to work on a model for (Λ(x, y), d) → (F1, d).

• We consider the Sullivan model for f̃ : (Λ(x, y), d) → (Λ(x, y, z), d), where dz = x,
and φ : (Λ(x, y, z), d) → (Λ(y), d) is a weak equivalence such that φ(x) = φ(z) = 0
and φ(y) = y. We are here in the case considered in lemma 7.2.1 and therefore
Rcato(f) = 2, which implies that Rcat(f) = 2.
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• Let us now determine cato(f). It is obviously equal to or greater than the rational
R-category. We show that it is equal to 3. We begin by showing that it is smaller
or equal to 3 by using proposition 7.3.1. Let us point out that we cannot use
this proposition to show cato(f) = 2 since there is no convenient retraction for
(Λ(x, y), d) → (K2, d). In the case we are considering, we have

(K3, d) =

(
Λ(x, y)

Λ≥3(x, y) · Λ+(x)
, d

)
.

As a vector space, a basis for the homology is given by the homology classes of
the elements [x], [x2], [xy], [x2y]. Since H1(K3) = 0, we can use the same method
as described in section 2.4 and in lemma 7.2.1 and we find that a Sullivan model
for π : (Λ(x, y), d) → (K3, d) is (Λ(x, y), d) → (Λ(x, y) ⊗ Λ(w, v1, v2, ...), d), with
dw = x4. A set of generators for the homology of (Λ(w, v1, v2, ...), d) is given by
{x, x2, xy−w, x2y−xw}. The elements vi are there only to eliminate any superfluous
element and have increasing degree, with |v1| = 10. The quasi-isomorphism φ :
(Λ(x, y) ⊗ Λ(w, v1, v2, ...), d) → (K3, d) is therefore given by

φ(x) = [x], φ(y) = [y], φ(w) = 0, φ(vi) = 0 ∀ i.

A representative for K3 → Λ(y) is given by

k̃′ : (Λ(x, y)⊗ Λ(w, v1, v2, ...), d) → (Λ(y), d),

with k̃′(y) = y and k̃′ ≡ 0 for all other elements. Since the derivative of any vi is
a sum of products which always contain either xy − w or a vj with j < i, we can
define a retraction r : (Λ(w, v1, v2, ...), d)→ (Λ(x, y), d) as being

r(x) = x, r(y) = y, r(w) = xy, r(vi) = 0 ∀ i.

It is easy to check that f̃ ◦ r = k̃′ and therefore cato(f) ≤ 3.

• To show that cato(f) 6= 2 we use the standard surjective model for (Λ(x, y), d) →
(Λ(x, y) ⊗ Λ(z), d) which is (Λ(x, y), d) → (Λ(x, y, z, z̃), d), with |z| = 1 dz = z̃,
dz̃ = 0. First of all we derive the homology algebra of

(F2, d) =

(
Λ(x, y) ⊗ Λ(z, z̃)

Λ≥2(x, y)· < x− z̃ >
, d

)
,

where < x − z̃ > is the ideal generated by x − z̃. We find that the homology is
generated as a vector space by the homology classes of

[x], [x2], [x2z − y], [x3z − xy], [xy − yz̃], [x3z − yz̃].

Since H1((F2, d)) = 0, we use again the method of lemma 7.2.1 to derive a Sullivan
model for (Λ(x, y), d) → (F2, d). We find the following relative cdga:

(Λ(x, y), d) → (Λ(x, y)⊗ Λ(w, v1, v2, ...), d))

with dw = 0, |w| = 5, dv1 = x2w, dv2 = xv1 − yw. The quasi-isomorphism

Φ : (Λ(x, y)⊗ Λ(w, v1, v2, ...), d) → (F2, d)

is given by

Φ(x) = [x], Φ(y) = [y], Φ(w) = [y − x2z], Φ(v1) = [−xyz], Φ(v2) = 0.
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If there exists a homotopy retract r : (Λ(x, y)⊗Λ(w, v1, v2, ...), d) → (Λ(x, y), d), for
reasons of degree or of compatibility with the differential we must have

r(x) = x, r(y) = y, r(w) = r(v1) = r(v2) = 0.

Let us now check if f̃ ◦ r can be homotopic to a representative k : (Λ(x, y) ⊗
Λ(w, v1, v2, ...), d) → (Λ(x, y) ⊗ Λ(z), d) for the morphism (F2, d) → (Λ(x, y) ⊗
Λ(z), d). We choose k to be

k(x) = x, k(y) = y, k(w) = y − x2z, k(v1) = −xyz, k(v2) = 0.

On the other hand we have (f̃ ◦ r)(w) = 0. If f̃ ◦ r ' k there exists a morphism of
degree -1,

h : (Λ(x, y)⊗ Λ(w, v1, v2, ...), d) → (Λ(x, y) ⊗ Λ(z), d)

such that
y − x2z = dh(w) − h(dw) = dh(w).

Since by inspection y−x2z is not a boundary, such a morphism h does not exist and
therefore cato(f) > 2.

7.4 Euler class

Don Stanley showed in [Sta00] that the rational sectional category of an odd spherical
fibration depends only on the order of its Euler class. We prove in this section that this
is not the case for R-category.

Definition. Let E
p
→ B be a fibration with fibre an odd sphere S2n+1, whose Sullivan

model is of type Λ(a), with |a| = 2n+1. If (ΛX, d)→ (APL(B), d) is a Sullivan model for
B, there exists a Sullivan model for p which looks as follows: (ΛX, d) → (ΛX ⊗ Λ(a), d),
with w ≡ da ∈ Λ+X.

We consider the cofibration f : (Λ(ã), d) → (Λ(ã)⊗ ΛX ⊗ Λ(a), d), with |ã| = 2n+ 2,
da = w − ã ∈ Λ(ã)⊗ ΛX ⊗ Λ(a) in order to obtain the following diagram

Λ(ã)
ψ //

� r

f

$$IIIIIIIIIIIIIIIII
ΛX

i // ΛX ⊗ Λ(a)

Λ(ã)⊗ ΛX ⊗ Λ(a).

' φ

OO

g

99rrrrrrrrrrrrrrrrrrr

Here φ(a) = 0, φ(ã) = w and φ acts as the identity on ΛX. The morphism g is defined
as the identity on (ΛX ⊗ Λ(a), d) and g(ã) =, while ψ(ã) = w. If we define a morphism
h : (Λ(ã)⊗ ΛX ⊗ Λ(a), d)→ (ΛX ⊗ Λ(a), d) of degree -1 in the following way:

h(ã) = a, h(a) = 0, h(x) = 0 ∀x ∈ ΛX,

then we check that
i ◦ Φ− g = hd+ dh.

We verify therefore that the diagram commutes up to homotopy.
Moreover φ is a weak equivalence: let γ : ΛX → Λ(ã)⊗ΛX⊗Λ(a) denote the inclusion.

Since φ ◦ γ = idΛX it is enough to show that γ is a weak equivalence. This is the case
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because γ is a model for a fibration whose fibre is modeled by Λ(ã) ⊗ Λ(a), which is a
contractible algebra.

Hence g is a representative for p and f represents a map B → K(Q, 2n + 2) which
corresponds to a cohomology class α ∈ H2n+2(B). From our construction we deduce that
w is a representative for α. We call α = [w] the Euler class of the fibration p.

To compute the category of a spherical fibration p we can slightly simplify theo-
rem 5.4.1.

Proposition 7.4.1 Let (ΛX, d)
f
→ (ΛX⊗Λ(a), d) be the relative Sullivan model of a map

p, where da = w ∈ Λ+X. We construct a surjective model h : ΛX ⊗Λ(a, ã)→ ΛX ⊗Λ(a)
of p by setting da = w − ã, dã = 0, in (ΛX ⊗ Λ(a, ã), d), and defining h as being the
identity on ΛX⊗Λ(a) and h(ã) = 0. We have then Ker (h) =< ã >= ΛX⊗Λ(a)⊗Λ+(ã).

The following composition

ΛX
ηm
→ ΛX ⊕ Λ≥mX ⊗ Λ+(a)

sm→ ΛX ⊗ Λ(a),

where ηm and sm are inclusions, is equal to f . Choosing a Sullivan model ΛM for ΛX ⊕
Λ≥mX ⊗ Λ+(a) and representatives η̃m : (ΛX, d) → (ΛM,d) and s̃m : (ΛM,d) → (ΛX ⊗
Λ(a), d) for ηm and sm respectively, we have s̃m ◦ η̃m ' f . Then

• Rcat(p) ≤ m if and only if η̃m admits a homotopy retraction;

• cato(p) ≤ m if and only if η̃m admits a homotopy retraction r such that f ◦ r ' s̃m.

Proof. We have already shown that (ΛX, d) → (ΛX⊗Λ(a, ã), d) is a weak equivalence,
and therefore that h is a surjective model for p.

The kernel of h takes a particularly simple form: Ker (h) =< ã >= ΛX⊗Λ(a)⊗Λ+(ã).
Indeed, in case |a| is odd, if ξ = γ + αa +

∑s
i=1 βiã

i +
∑r

i=1 δiaã
i is such that h(ξ) = 0,

we must have h(ξ) = γ + αa = 0 and therefore γ = 0, α = 0. On the other hand, if |a| is
even and h(γ +

∑s
i=1 αia

i + βã+
∑r

i=1 δia
iã) = γ+

∑s
i=1 αia

i = 0 then γ = αi = 0 for all

i. In this situation Fm = ΛX⊗Λ(a,ã)
Λ≥mX⊗Λ(a)⊗Λ+(ã)

.

Let us now consider the following commutative diagram

Λ≥mX⊗Λ(a,ã)
Λ≥mX⊗Λ(a)⊗Λ+(ã)

// // ΛX⊗Λ(a,ã)
Λ≥mX⊗Λ(a)⊗Λ+(ã)

α // // ΛX/Λ≥mX ⊗ Λ(a, ã)

Λ≥mX ⊗ Λ(a) // // Fm ×ΛX/Λ≥mX⊗Λ(a,ã) ΛX/Λ≥mX // //

β

OO

ΛX/Λ≥mX

'j

OO

Λ≥mX ⊗ Λ(a) // i // ΛX ⊕ Λ≥mX ⊗ Λ+(a)
q // // ΛX/Λ≥mX,

where all lines are short exact sequences, α is induced by the morphism proj ⊗ idΛ(a,ã) :
(ΛX ⊗ Λ(a, ã), d) → (ΛX/Λ≥mX ⊗ Λ(a, ã), d), i and j are inclusions, q is the restriction
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of proj ⊗ idΛ(a) : (ΛX ⊗ Λ(a) → ΛX/Λ≥mX ⊗ Λ(a), d), and the upper right square is a
pull-back. Using the long exact sequences associated to the upper two lines, we deduce
that β is a weak equivalence. We now construct a morphism

ψ : (ΛX ⊕ Λ≥mX ⊗ Λ+(a), d)→ (Fm ×ΛX/Λ≥mX⊗Λ(a,ã) ΛX/Λ≥mX, d) ≡ (P, d)

by using the universal property of pull-backs. It therefore suffices to construct a morphism

ζ : (ΛX ⊕ Λ≥mX ⊗ Λ+(a), d)→

(
ΛX ⊗ Λ(a, ã)

Λ≥mX ⊗ Λ(a)⊗ Λ+(ã)
, d

)

such that α◦ ζ = j ◦ q. We take ζ(γ) = [γ] for all γ ∈ (ΛX⊕Λ≥mX⊗Λ+(a), d). We verify
that ζ is compatible with the differential: let ξ ∈ ΛX, then

• ζ(dξ) = [dξ] = d[ξ] = dζ(ξ);

• if γ ∈ Λ≥mX, ζ(d(γ ·an)) = ζ(dγ ·an±nγ ·w an−1) is equal to [dγ ·an]± [nγ ·w an−1]
while dζ(γ · an) = d[γ · an] = [dγ · an]± n[γ · (w − ã)an−1] = [dγ · an]± n[γ · wan−1].

Notice that ζ is well-defined in both cases |a| odd and |a| even. Moreover for ξ =
∑

i γi ⊗
δi ∈ (ΛX⊕Λ≥mX⊗Λ+(a), d), where γi ∈ ΛX, δi ∈ Λ(a) then α ◦ ζ(ξ) = α([

∑
i γi⊗ δi]) =∑

i[γi]⊗ δi =
∑

[i|δi∈Q] δi[γi], and j ◦ q(ξ) = j(
∑

[i|δi∈Q] δi[γi]) =
∑

i|δi∈Q δi[γi].
Again we deduce from the long exact sequences in homology that ψ is a weak equiva-

lence. It is also easy to control that there exists a commutative diagram

ΛX
ηm

uukkkkkkkkkkkkkkkk

%%LLLLLLLLLLL

ΛX ⊕ Λ≥mX ⊗ Λ+(a)
'

β◦ψ
//

sm ))SSSSSSSSSSSSSS
Fm

yyssssssssss

ΛX ⊗ Λ(a).

The proposition is therefore proved. ut

The existence of a homotopy retraction for (ΛX, d) → (ΛX ⊕ Λ≥mX ⊗ Λ+(a), d) has
some consequence for the Euler class’ behaviour.

Proposition 7.4.2 With notations from proposition 7.4.1, if there exists a homotopy
retraction r for (ΛX, d)→ (ΛX ⊕Λ≥mX ⊗Λ+(a), d), then for all classes {αi}1≤i≤m with
αi ∈ H

+(ΛX, d) we have
α1 · ... · αm · [w] = 0

in H(ΛX, d).

Proof. Let λi be a representative for the homology class αi. The element λ1 · λ2 ·
...λm ·a ∈ Λ≥mX⊗Λ+(a) has differential ±λ1 ·λ2 · ...λm ·w because λi is a cycle. Therefore
ξ := λ1 · λ2 · ...λm · w is a border in (Λ≥mX ⊗ Λ+(a), d).

On the other hand we can build a weak equivalence (ΛX ⊗ ΛY, d)
φ
→ (ΛX ⊕Λ≥mX ⊗

Λ+(a), d), a cofibration π : (ΛX, d) → (ΛX⊗ΛY, d) such that φ◦π = ηm, and a retraction
r : (ΛX ⊗ΛY, d)→ (ΛX, d). Since ξ ∈ (ΛX, d) we have ξ = φ(ξ̄), where ξ̄ = λ1 ·λ2 · ...λm ·
w ∈ (ΛX⊗ΛY, d). But ξ is a border, so ξ̄ must be one too: ξ̄ = dµ, with µ ∈ (ΛX⊗ΛY, d).
On the other hand dr(µ) = r(dµ) = r(ξ̄) = r ◦ π(λ1 · λ2 · ...λm · w) = λ1 · λ2 · ...λm · w, so
λ1 · λ2 · ...λm · w is a border in (ΛX, d). ut
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D. Stanley has shown in [Sta00] that if α is the Euler class of an odd spherical fibration
p, and r is the least integer such that αr = 0, then the rational sectional category of p is
equal to r. By analogy one would expect that if r is the minimal integer such that for all
{αi}1≤i≤r with αi ∈ H

+(ΛX, d) we have α1 · ... · αr · [w] = 0, then Rcato(p) ≤ r. This is
nevertheless false, as is shown by the following counter-example:

Example. Let (ΛX, d) = (Λ(x1, x2, ..., xn, y), d) be a Sullivan algebra such that dxi = 0
for all i, dy = x1 · ... · xn, n even, |xi| = 3, |y| = 3n − 1, odd. Let us consider a relative
Sullivan algebra (ΛX, d) → (ΛX ⊗ Λ(a), d), with da = x1x2 = w, |a| = 5. It is clear that
w · x3 · ... · xn−1 is a cycle but not a border in (ΛX, d). Therefore the previous proposition
allows us to infer that Rcato(p) ≥ n− 2. On the other hand w · xi1 · xi2 · ...xin−2 is equal
to zero or is a border for is ∈ {1, 2, ..., n}. Indeed if an index is equal to 1 or 2, or if
any two indices are equal the product is zero, and w · x3 · ... · xn = dy. We show that
Rcato(p) 6= n− 2 nevertheless.

By proposition 7.4.1 Rcato(p) = n − 2 is equivalent to the existence of a homotopy
retraction for (Λ(x1, ..., xn, y), d)→ (Λ(x1, ..., xn, y)⊕Λ≥n−2(x1, ..., xn, y)⊗a, d) ≡ (M, d).
We now examine a Sullivan model (ΛX, d)→ (ΛX⊗ΛM,d) for this morphism, constructed
in the standard way (see [FHT01]). We notice that before dimension 3(n−2)+5 = 3n−1,
(ΛX, d) is weakly equivalent to (M, d).

In dimension 3n − 1, among other things, d(a · x3 · ... · xn) = x1 · ... · xn = dy and
d(a · x2 · x4 · x5 · ... · xn) = 0 in (M, d), therefore (ΛM,d) must contain basis elements
v , z, such that dv = x1 · ... · xn and dz = 0. If ϕ denotes the weak equivalence between
(ΛX ⊗ ΛM,d) and (M, d), then ϕ(v) = ax1...xn and ϕ(z) = ax2x4x5...xn. Moreover in
(ΛX ⊗ ΛM,d)

d(vx2 + zx3) = 0

and
ϕ(vx2 + zx3) = (−1)n−2ax2...xn + (−1)n−1ax2...xn = 0,

therefore there exists a ξ ∈ (ΛX ⊗ ΛM,d) such that dξ = vx2 + zx3.
Let us now suppose there exists a retraction r : (ΛX ⊗ ΛM,d) → (ΛX, d). Then the

only possibility is r(v) = y. By degree reasons the image of z by r can be either zero or y.
Since dz = 0 it must be zero. We then have r(vx2 + zx3) = yx2 = r(dξ) = dr(ξ) and thus
yx2 must be a border in (ΛX, d), which is not the case. This means that there cannot be
a retraction at this point.
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