
Chapter 6

Proof of the main theorem

6.1 Introduction

To prove theorem 5.4.1 we introduce a few tools: first of all in section 6.2 we define
the rational cojoin of two morphisms and show that it models a join of two maps. We
can then use it to introduce Ganea algebras and Ganea morphisms in section 6.3. They
actually model relative Ganea spaces and maps as defined in section 3.3. We also construct
explicitely the first Ganea algebra. Our proof begins in section 6.4 by showing that for
each m ≥ 0 there exists a morphism which has the m-th Ganea algebras as source and a
certain algebra Fm as target while letting some diagram commute (up to homotopy). The
advantage of this procedure is that while the Ganea algebras are very difficult to actually
describe, the cca’s Fm can be easily built as soon as one chooses a surjective model for
the m-th Ganea map, for example the standard surjective model. Of course for the proof
of theorem 5.4.1 to be complete we must also exhibit a morphism with Fm as source and
Gm as target, which is what we accomplish in section 6.5, but first we use what is shown
in section 6.4 to specialize to the rational LS-category of a space and obtain a new proof
of Félix and Halperin’s theorem 5.2.3 in subsection 6.4.1.

6.2 Rational cojoin

We begin by defining the rational cojoin construction, which we will use repeatedly during
our proof.

Definition. Let (ΛX, d)
α
→ (B, d) be a morphism of cca’s, and (ΛX, d)

β
→ (ΛX⊗ΛY, d)

be a relative Sullivan cca. We can construct the Sullivan cca (B⊗ΛX ΛX ⊗ΛY, d) = (B⊗
ΛY, d) and the inclusion maps α̃ : (B, d)→ (B ⊗ ΛY, d), β̃ : (ΛX ⊗ ΛY, d)→ (B ⊗ ΛY, d).
If neither α̃ nor β̃ is surjective, we choose one of them, say α̃, and construct its associated
standard surjective morphism as follows:

B
α̃ //

j

'

""E
EEEEEEEEE

EEEEEE B ⊗ ΛY

B ⊗ ΛZ,

k

:: ::uuuuuuuuuuuuuuuuuu

where j is the inclusion of the base, Z = Y ⊕ Ỹ , with d : Y p
∼=
→ Ỹ p+1, dy = ỹ, and k(b) := b

for b ∈ B, k(y) := y for y ∈ Y and k(ỹ) := dy for ỹ ∈ Ỹ .
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The map k is surjective, hence a fibration, and we can construct the pull-back of k
and β̃, which we call the rational cojoin of (ΛX ⊗ ΛY, d) and (B, d) under (ΛX, d):

(B, d)
(ΛX,d)

1 (ΛX ⊗ΛY, d). The induced morphism (ΛX, d)→ (B, d)
(ΛX,d)

1 (ΛX ⊗ΛY, d) is
the rational cojoin of α and β: α 1 β

ΛX

**

��

α1β

''

B
ΛX

1 (ΛX ⊗ ΛY ) //

��

B ⊗ ΛZ

k

����
ΛX ⊗ ΛY

β̃ // B ⊗ ΛY.

The relation between usual join and rational cojoin becomes clear thanks to the fol-
lowing lemma.

Lemma 6.2.1 Using notations as in the definition of rational cojoin, if α represents a
map a : E → X and β is a Sullivan model for b : M → X, then any Sullivan representative

of α 1 β also represents a 1 b. Henceforth (B, d)
(ΛX,d)

1 (ΛX⊗ΛY, d) has the same rational
homotopy type as (E 1X M,d).

Proof. The proof is straightforward using modelization of adjunction spaces and
pull-backs from section 2.6. ut

An important property of the rational cojoin is that it is a functorial construction,
as the topological join is. We show this in the special case where one of the morphisms
involved in the cojoin is an augmentation ε : (ΛX, d)→ (Q, 0).

Lemma 6.2.2 Let (ΛX, d) → (ΛX ⊗ ΛY, d), (ΛX, d) → (ΛX ⊗ ΛM,d) and (ΛX, d) →
(ΛX ⊗ ΛW,d) be three relative Sullivan models. Let us suppose that there exist such
morphisms between these cca’s that make the following diagram commute.

ΛX
L l

a

zzvvvvvvvvvv
� r

b

$$H
HHHHHHHHH

ΛX ⊗ ΛW
f //

c
%%KKKK

KK
KK

KK
ΛX ⊗ ΛM

dyyssss
sss

ss
s

ΛX ⊗ ΛY.

Then we can take the cojoin of a, respectively b with the augmentation ε : (ΛX, d)→ (Q, 0)
and we obtain another commutative diagram:

ΛX
K k

ψ

yyrrrrrrrrrrrr
� s

φ

&&LLLLLLLLLLLL

(ΛX ⊗ ΛW )
ΛX

1 Q
ω //

µ
''NNNNNNNNNNN

(ΛX ⊗ ΛM)
ΛX

1 Q

ν
wwppppppppppp

ΛX ⊗ ΛY.
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Moreover ν ◦ φ = d ◦ b and µ ◦ ψ = c ◦ a.

Proof. Following the rational cojoin construction, we first form cca’s ((ΛX ⊗
ΛW ) ⊗(ΛX,d) Q, d) ∼= (ΛW,d), ((ΛX ⊗ ΛM) ⊗(ΛX,d) Q, d) ∼= (ΛM,d). The morphism
f induces a morphism f ⊗ idQ : ((ΛX ⊗ ΛW )⊗(ΛX,d) Q, d)→ ((ΛX ⊗ ΛM)⊗(ΛX,d) Q, d),

hence a morphism f̃ : (ΛW,d)→ (ΛM,d) such that the diagram

ΛX ⊗ ΛM

yyrrrrrrrrrrrr
d

))TTTTTTTTTTTTTTTTT

ΛX

ε

||xx
xx

xx
xx

xx

' �

b

44iiiiiiiiiiiiiiiiiiii
� w

a

UUU

**UUUUUUUUUUUUUUUU
ΛM ΛX ⊗ ΛY

Q

55kkkkkkkkkkkkkkkkkkkkk

**UUUUUUUUUUUUUUUUUUUU ΛX ⊗ ΛW

f

OO

wwppppppppppp

c

55jjjjjjjjjjjjjjjjj

ΛW

f̃

OO

commutes. Since the morphisms (ΛX ⊗ΛW,d)→ (ΛW,d) and (ΛX ⊗ΛM,d)→ (ΛM,d)
are surjective, we can immediately proceed with the second part of the construction, i.e.
the pull-back. We obtain the following commuting diagram

ΛX

b

((

ε

!!

φ ++
(ΛX ⊗ ΛM) 1 Q

b̃ //

vvmmmmmmmmmmmm
ΛX ⊗ ΛM

wwnnnnnnnnnn

ΛX
a

((

ε

!!

ψ ++

Q // ΛM

(ΛX ⊗ ΛW ) 1 Q
ã

//

vvmmmmmmmmmmmm

ω

OO

ΛX ⊗ ΛW

f

OO

wwnnnnnnnnnn

Q // ΛW,

f̃

OO

where all dotted arrows are induced by the universal property of pull-backs. The lemma
is proved by taking µ := c ◦ ã and ν := d ◦ b̃. ut

Remarks.

• Notice that if in the previous lemma we have that d◦f ' c, then we obtain ν ◦ω ' µ,
while the rest of the diagram still commutes exactly.

• With a few modifications, it can be verified that the proof works also for the cojoin
with any morphism (ΛX, d) → (B, d). The main difference is that after the first
part of the construction we do not generally obtain surjective maps, and we must
therefore replace them by surjective ones as has been done in the definition of relative
cojoin.
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6.3 Ganea algebras

Using the rational cojoin construction we can in a way analogous to the one used to
construct Ganea spaces, build Ganea algebras, which are cca’s with the same rational
homotopy type as the corresponding Ganea space (absolute or relative).

Definition. Let f : (ΛX, d) → (ΛX ⊗ ΛY, d) be a relative Sullivan model. We define
the m-th rational Ganea morphism of f , gm(f) : (ΛX, d) → (Gm(f), d), as being the
cojoin of f with the augmentation ε : (ΛX, d) → (Q, 0) m-times.

Since, according to the definition of rational cojoin we need one of the morphisms
involved to be a relative Sullivan model, we replace gm−1(f) by a relative Sullivan model
before constructing gm(f). The cca (Gm(f), d) is called the m-th Ganea cca of f .

Lemma 6.2.2 shows that there exists a morphism qm : (Gm(f), d) → (ΛX ⊗ ΛY, d)
such that qm ◦ gm = f . Thus for example, g0(f) : (ΛX, d) → (G0(f), d) = (ΛX ⊗ ΛY, d)
is just f , and q0 is the identity id(ΛX⊗ΛY,d). It is clear from lemma 6.2.1 that (Gm(f), d)
has the same homotopy type as Gm(f) and that any representative for gm(f) is also a
representative for gm(f). Moreover, a representative of qm is a representative of qm(f).

Remark. If a morphism f represents a map {∗} → X, we write (Gm(X), d) =
(Gm(f), d), and say that it is the m-th Ganea cca of X.

Lemma 6.3.1 Using the same notations as in the previous definition, we have that

(G1(f), d) ∼= (Q⊕ Λ+X ⊗ ΛY, d).

Moreover, g1(f) : (ΛX, d) → (G1(f), d) is isomorphic to the inclusion of (ΛX, d) and q1

is isomorphic to (Q⊕ Λ+X ⊗ ΛY, d)→ (ΛX ⊗ ΛY, d) where q ⊕ γ 7−→ q + γ.

Proof. According to the definition of the rational cojoin, taking (B, d) = (Q, 0), we
first obtain morphisms (Q, 0)→ (Q⊗ΛY, d) = (ΛY, d) and (ΛX⊗ΛY, d)→ (ΛY, d). Notice
that the second map is surjective. We can therefore immediately build the pull-back of the
two maps: (G1(f), d) = (Q×(ΛY,d) (ΛX ⊗ ΛY, d), and g1(f)(ξ) = (ε(ξ), ξ), while q1 is the
projection on (ΛX⊗ΛY, d) .We now construct an isomorphism φ : (Q×ΛY (ΛX⊗ΛY ), d)→
(Q⊕ Λ+X ⊗ΛY, d). Let (q,

∑
i αi ⊗ βi) ∈ Q×ΛY (ΛX ⊗ ΛY ), where q ∈ Q, αi ∈ ΛX and

βi ∈ ΛY for all i. Any element of the cojoin can be written under this form. We define

φ : (q,
∑

i

αi ⊗ βi) 7−→ q ⊕ (
∑

i

αi ⊗ βi − q).

The morphism φ is well-defined, because q =
∑

i ε(αi)⊗βi, and therefore
∑

i αi⊗βi− q ∈
Λ+X ⊗ ΛY . One can easily verify that φ is a morphism of cca’s. Moreover it is an
isomorphism, because it admits an inverse ψ : q ⊕ γ 7−→ (q, q + γ), where q ∈ Q and
γ ∈ Λ+X⊗ΛY . Finally we notice that φ◦g1(f) is the inclusion of ΛX and (q1◦ψ)(q⊕γ) =
q1(q, q + γ) = q + γ as claimed. ut

Remark. From now on we will abuse notation and denote by (G1(f), d) the cca
(Q⊕ Λ+X ⊗ ΛY, d) and by g1(f) and q1 the isomorphic morphisms.
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6.4 First part of the proof

We can now prove one part of the equivalence of the main theorem. It is a consequence
of the following proposition:

Proposition 6.4.1 Let us use the same notations as in theorem 5.4.1, then for each

m there exists a morphism of cca’s φm : (Gm(f), d) →
(

ΛX⊗ΛZ
Λ≥mX·Ker(h)

, d
)

which lets the

following diagram commute exactly, but for the lower right triangle, which only commutes
up to homotopy:

ΛX
gm(f) //

πm

��

� r

f̃

JJ
JJ

JJ
JJ

JJ

$$J
JJJJJJJJJ

Gm(f)

φm

zzttttttttttttttttttt

qm

��
ΛX⊗ΛZ

Λ≥mX·Ker(h) km

// ΛX ⊗ ΛY

Corollary 6.4.2 Using notations from theorem 5.4.1,

• if πm admits a homotopy retract r, then Rcato(f) ≤ m;

• if moreover f̃ ◦ r ' k̃m then cato(f) ≤ m.

Proof. [of corollary] For simplicity, let us adopt the notation Fm := ΛX⊗ΛZ
Λ≥mX·Ker(h)

. We

now choose a relative Sullivan model for gm(f) and πm in order to obtain a diagram
with solid arrows which commutes exactly, but for the lower right triangle, which only
commutes up to homotopy:

ΛX
gm(f) //

πm

��

µ

))

ν

��

� r

f̃

JJJJJJJJJ

$$J
JJJJJJJJ

Gm(f)

φm

zztttttttttttttttttttt

qm

��

ΛX ⊗ ΛW'

δmoo

q̃m

zz
Fm km

// ΛX ⊗ ΛY

ΛX ⊗ ΛM

'

λm

OO

k̃m

99

and where moreover km ◦ λm ' k̃m and qm ◦ δm ' q̃m. By the elementary properties of
relative Sullivan models, there exists a lift φ̃m : (ΛX ⊗ΛW,d)→ (ΛX ⊗ΛM,d) such that
φ̃m ◦ µ = ν and φm ◦ δm ' λm ◦ φ̃m. Therefore we have also that

ΛX ⊗ ΛW

φ̃m

yyrrrrrrrrrrrrrrrrrrr

q̃m

��
ΛX ⊗ ΛM

k̃m

// ΛX ⊗ ΛY
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commutes up to homotopy. If πm admits a homotopy retract, there exists a morphism
r : (ΛX ⊗ ΛM,d) → (ΛX, d) such that r ◦ ν ' idΛX and then defining r′ := r ◦ φ̃m, we
verify r′ ◦ µ = r ◦ φ̃m ◦ µ = r ◦ ν ' idΛX i.e. Rcato(f) ≤ m. If moreover f̃ ◦ r ' k̃m, then
f̃ ◦ r′ = f̃ ◦ r ◦ φ̃m ' k̃m ◦ φ̃m ' q̃m. Therefore cato(f) ≤ m. ut

To prove proposition 6.4.1 we are going to need two lemmas: the first one states the
same result in a special case: when the surjective model involved is the standard surjective
model of f̃ andm = 1. In this situation it is indeed possible to construct φ1 explicitely. The
second lemma constructs morphisms in both directions between the standard surjective
model and any other surjective model, allowing for a generalization of the first lemma
to any surjective model. It will then be used to implement an induction process in the
general case.

Lemma 6.4.3 Let f : E → X be a cofibration and f̃ : (ΛX, d)→ (ΛX⊗ΛY, d) a Sullivan
model for it. Let hs : (ΛX ⊗ΛS, d)→ (ΛX ⊗ΛY, d) be the standard surjective model of f̃ .

Then there exists a morphism φs1 : (G1(f), d) →
(

ΛX⊗ΛS
Λ+X·Ker(hs)

, d
)

which lets the following

diagram commute exactly:

ΛX
g1(f) //

πs
1

��

� r

f̃

II
II

II
II

II

$$I
IIIIIIIII

G1(f)

φs
1

zzuuuuuuuuuuuuuuuuuuu

q1

��
ΛX⊗ΛS

Λ+X·Ker(hs) ks
1

// ΛX ⊗ ΛY

Proof. We have shown in lemma 6.3.1, that G1(f) ∼= Q ⊕ Λ+X ⊗ ΛY . Let us now
define φs1 : Q⊕ Λ+X ⊗ ΛY → ΛX⊗ΛS

Λ+X·Ker(hs)
as follows: for q ⊕ γ ∈ Q⊕ Λ+X ⊗ ΛY

φs1(q ⊕ γ) := [q + γ].

We verify that φs1 commutes with the differential:

• If γ ∈ Λ+X, then dγ ∈ Λ+X and we have

φs1(dγ) = [dγ] = d[γ] = dφs1(γ).

• If γ = ξ ⊗ y, with ξ ∈ Λ+X and y ∈ Y , let us write z := dy ∈ ΛX ⊗ ΛY . Then

φs1(d(ξ ⊗ y)) = φs1(dξ ⊗ y ± ξ ⊗ z) = [dξ ⊗ y]± [ξ ⊗ z].

On the other hand we have

dφs1(ξ ⊗ y) = d[ξ ⊗ y] = [dξ ⊗ y]± [ξ ⊗ ỹ].

Since however hs(ỹ− z) = dy − z = 0, we have ξ ⊗ (ỹ − z) ∈ Ker (hs), and [ξ ⊗ ỹ] =
[ξ ⊗ z]. We can proceed similarly for γ = ξ ⊗ α with ξ ∈ Λ+X and α ∈ ΛnY .

We also verify that φs1(γ) = [γ] = πs1(γ) for γ ∈ ΛX. It remains to show that ks1 ◦φ
s
1 = q1:

for q ⊕ γ ∈ Q⊕ Λ+X ⊗ ΛY ,

(ks1 ◦ φ
s
1)(q ⊕ γ) = ks1([q + γ]) = h(q + γ) = q + γ = q1(q ⊕ γ).

ut
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Lemma 6.4.4 If hs : (ΛX ⊗ ΛS, d)→ (ΛX ⊗ ΛY, d) is the standard surjective model for
the morphism f̃ : (ΛX, d) → (ΛX ⊗ ΛY, d) from lemma 6.4.3, and h : (ΛX ⊗ ΛZ, d) →
(ΛX⊗ΛY, d) is any surjective model, then there exist morphisms ϕ, ψ making the following
diagram commute exactly:

ΛX
� _

'

��

� � ' // ΛX ⊗ ΛZ

h

����

ϕ

zzttttttttttttttttttt

ΛX ⊗ ΛS
hs

// //

ψ

::ttttttttttttttttttt

ΛX ⊗ ΛY

Proof. It is a straightforward consequence of the lifting properties of fibrations and
trivial cofibrations, see section 2.7. ut

Corollary 6.4.5 Let f : E → X be a cofibration and f̃ : (ΛX, d) → (ΛX ⊗ ΛY, d) a
relative Sullivan model for it. Let h : (ΛX ⊗ ΛZ, d) → (ΛX ⊗ ΛY, d) be any surjective

model of f̃ . Then there exists a morphism φ1 : (G1(f), d) →
(

ΛX⊗ΛZ
Λ+X·Ker(h)

, d
)

which lets

the following diagram commute exactly:

ΛX
g1(f) //

π1

��

� r

f̃

IIIIIIIII

$$I
III

II
III

I

G1(f)

φ1

zzuuuuuuuuuuuuuuuuuuu

q1

��
ΛX⊗ΛZ

Λ+X·Ker(h) k1
// ΛX ⊗ ΛY

Proof. From lemma 6.4.4 we deduce that ϕ(Ker (hs)) ⊂ Ker (h). The morphism ϕ

induces therefore a morphism ϕ̃ :
(

ΛX⊗ΛS
Λ+X·Ker(hs)

, d
)
→
(

ΛX⊗ΛZ
Λ+X·Ker(h)

, d
)
, such that k1 ◦ ϕ̃ =

ks1. We take φ1 := ϕ̃ ◦ φs1 and verify that, for any γ ∈ ΛX,

φ1(γ) = ϕ̃ ◦ φs1(γ) = ϕ̃([γ]) = proj ◦ ϕ(γ) = [γ].

On the other hand we have also that

k1 ◦ φ1 = k1 ◦ ϕ̃ ◦ φ
s
1 = ks1 ◦ φ

s
1 = q1

as desired. ut

Proof. [of proposition 6.4.1] Here we can consider directly the general case of h being
any surjective model of f̃ . We proceed by induction. For m = 0 the morphism h :

(ΛX ⊗ ΛZ, d) → (ΛX ⊗ ΛY, d) induces an isomorphism h̃ : (Fm, d) =
(

ΛX⊗ΛZ
Ker(h)

, d
)
→

(ΛX ⊗ ΛY, d) = (G0(f), d). Its inverse gives us φ0.
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Let us now proceed with the induction step. We assume that the proposition is true
for a certain m. We have therefore the following diagram:

ΛX
gm(f) //

πm

��

µm

))

νm

��

K k

'

yysssssssssssssssssssss
� s

f̃ KKKKKKKKK

%%KKKKKKKKKK

Gm(f)

φm

yyssssssssssssssssssss

qm

��

ΛX ⊗ ΛWm'

δmoo

q̃m

yy
ΛX ⊗ ΛZm

hm

&& &&MMMMMMMMMMMMMMMMMMMM
Fm km

// ΛX ⊗ ΛY

ΛX ⊗ ΛMm,

'

λm

OO

k̃m

88

where µm and νm are relative Sullivan models for gm(f), πm respectively; hm is a surjective
model of νm. The part of the diagram that is made up of solid arrows commutes exactly,
but for the lower right triangle, which only commutes up to homotopy. Moreover we have
km ◦ λm ' k̃m and qm ◦ δm ' q̃m. In addition there exists a lift φ̃m : ΛX ⊗ ΛWm →
ΛX ⊗ ΛMm such that φ̃m ◦ µm = νm and λm ◦ φ̃m ' φm ◦ δm. Therefore we deduce that
k̃m ◦ φ̃m ' q̃m.

We apply now lemma 6.2.2 to the diagram

ΛX
µm //

νm

��

ΛX ⊗ ΛWm

q̃m

��

φ̃m

xxqqqqqqqqqqqqqqqqqqqq

ΛX ⊗ ΛMm
k̃m

// ΛX ⊗ ΛY

where the upper triangle commutes exactly and the lower one commutes up to homotopy.
and use the remark after the lemma to obtain a diagram

ΛX
µm1ε=gm+1 //

νm1ε

��

(ΛX ⊗ ΛWm)
ΛX

1 Q

φ̃m1ε

wwnnnnnnnnnnnnnnnnnnnnnnn

qm+1

��
(ΛX ⊗ ΛMm)

ΛX

1 Q ψ
// ΛX ⊗ ΛY

after taking the cojoin with the augmentation ε : ΛX → Q. Here again the upper triangle
commutes exactly, while the lower triangle commutes up to homotopy. We can now apply
lemma 6.4.5 to νm to obtain another commutative diagram:

ΛX⊗ΛZm

Λ+X·Ker(hm)

k′1

��

ΛX
π′
1oo

νm1ε

��

ΛX ⊗ ΛMm (ΛX ⊗ ΛMm)
ΛX

1 Q.

φ′1

ffNNNNNNNNNNNNNNNNNNNNN

q′1

oo
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By construction we have in addition that

ΛX ⊗ ΛMm

'

λm

'' ''OOOOOOOOOOOOOOOOOOOOOOOO (ΛX ⊗ ΛMm)
ΛX

1 Q
q′1oo ψ // ΛX ⊗ ΛY

Fm

km

88ppppppppppppppppppppppp

commutes up to homotopy. To complete the proof it is now sufficient to find a morphism

θ :
(

ΛX⊗ΛZm

Λ+X·Ker(hm)
, d
)
→
(

ΛX⊗ΛZ
Λ≥m+1X·Ker(h)

, d
)

such that θ ◦ π′1 = πm+1 and km+1 ◦ θ =

km ◦ λm ◦ k
′
1. If such a morphism exists we can indeed define φm+1 := θ ◦ φ′1 ◦ (φ̃m 1 ε),

and we verify:

φm+1 ◦ gm+1 = θ ◦ φ′1 ◦ (φm 1 ε) ◦ gm+1 = θ ◦ φ′1 ◦ (νm 1 ε) = θ ◦ π′1 = πm+1

and

km+1 ◦ φm+1 = km+1 ◦ θ ◦ φ
′
1 ◦ (φm 1 ε) = km ◦ λm ◦ k

′
1 ◦ φ

′
1 ◦ (φm 1 ε) =

km ◦ λm ◦ q′1 ◦ (φm 1 ε) ' ψ ◦ (φm 1 ε) ' qm+1,

as wished.

Notice first of all that we can construct a lift χ in the following commuting diagram:

ΛX
' //

� _

'

��

ΛX ⊗ ΛZ

proj

����

h

%%JJJJJJJJJJJJJJJJJJJJJ

ΛX ⊗ ΛZm hm

// //

χ

44

ΛX ⊗ ΛMm
'

λm

// ΛX⊗ΛZ
Λ≥mX·Ker(h) k′1

// ΛX ⊗ ΛY.

Since (proj ◦ χ)(Ker (hm)) = (λm ◦ hm)(Ker (hm)) = 0, we deduce that χ(Ker (hm)) ⊂
Ker (proj) = Λ≥mX ·Ker(h) and therefore χ(Λ+X ·Ker (hm)) ⊂ Λ≥m+1X ·Ker(h). We can
then choose for θ the induced morphism. Consider now the commutative diagram

ΛX
lL

'

zzuuuuuuuuuuuuuuuuuu
� r

'

%%J
JJJJJJJJJJJJJJJJJJ

ΛX ⊗ ΛZm
χ //

proj

��

ΛX ⊗ ΛZ

proj

��
ΛX⊗ΛZm

Λ+X·Ker(hm)
θ // ΛX⊗ΛZ

Λ≥m+1X·Ker(h)
.

It shows that θ ◦π′1 = πm+1. On the other hand we see immediately that km+1 ◦θ ◦proj =
km ◦ λm ◦ k

′
1 ◦ proj and therefore km+1 ◦ θ = km ◦ λm ◦ k

′
1. ut
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6.4.1 Special case: absolute rational category

Before continuing the proof of theorem 5.4.1, we consider here the special case of the map
{∗} → X, or rather its relative Sullivan model (ΛX, d) → (ΛX ⊗ ΛX̄, d) in the rational
context. Here the differential d is induced by the differential in (ΛX⊗ΛX⊗ΛX̄, d), where
(ΛX ⊗ ΛX, d) → (ΛX ⊗ ΛX ⊗ ΛX̄, d) is the cofibration associated to the multiplication
(ΛX ⊗ ΛX, d)→ (ΛX, d).

Notice first of all that in this case the requirement that a homotopy retract r of
(ΛX, d) → (Gm(f), d) has to fulfill in the definition of the relative rational category is
superfluous because, if we denote by δ the quasi-isomorphism (ΛX ⊗ ΛX̄, d) → (Q, 0),
then for any two morphisms α, β : (ΛX, d) → (ΛX ⊗ ΛX̄, d) we verify δ ◦ α = δ ◦ β = ε,
(the augmentation). By the unicity of the homotopy class of liftings, we have therefore
that α ' β, that is, every two morphisms from (ΛX, d) into (ΛX ⊗ΛX̄, d) are homotopic.

We have therefore cato(f) = Rcato(f) = cato(X) and we can show theorem 5.4.1 by
making use of theorem 5.2.3 and proposition 6.4.1: we suppose X is simply connected as

usual. We use the standard surjective model (ΛX ⊗ΛX̄ ⊗Λ ˜̄X, d)
h
→ (ΛX ⊗ΛX̄, d). Since

(ΛX⊗ΛX̄ ⊗Λ ˜̄X, d) = (ΛX ⊗ΛZ, d) has no generators in dimension 0, it is an augmented
cca, with augmentation ideal ΛX ⊗ ΛZ = Λ+(X ⊕ Z). This ideal being maximal, it
contains Ker (h). We can therefore build the following commuting diagram, where α and
β are Sullivan models:

ΛXH h

α

uukkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk

{{wwwwwwwwwwwwwwwwww

�� !!C
CC

CCC
CC

CC
CC

CC
CC
� u

β

((PPPPPPPPPPPPPPPPPPPPPPPPPPPPP

ΛX ⊗ ΛM
'
νm

// ΛX⊗ΛZ
Λ≥mX·Ker(h)

proj // ΛX⊗ΛZ
Λ≥mX·ΛX⊗ΛZ

Z→0
s

// ΛX
Λ>mX ΛX ⊗ ΛW

'
µm

oo

We infer from it the existence of a lift τ : (ΛX⊗ΛM,d)→ (ΛX⊗ΛW,d) such that τ ◦α = β
and µm ◦ τ ' s ◦ proj ◦ νm. Now if there exists a morphism r : (ΛX ⊗ ΛW,d) → (ΛX, d)
such that r ◦ β ' idΛX we define r′ := r ◦ τ and we verify r′ ◦α = r ◦ τ ◦α = r ◦ β ' idΛX .
This proves

Proposition 6.4.6 If cato(X) ≤ m then there exists a homotopy retract for (ΛX, d) →
(Fm, d).

The opposite direction of this inference being shown in section 6.4.1, we have obtained:

Theorem 6.4.7 The rational LS-category of X is equal to or smaller than m if and only
if there exists a homotopy retract for (ΛX, d) → (Fm, d).

6.5 Second part of the proof

Let us now proceed with the second and final part of the proof of theorem 5.4.1. We are
going to need the following property of the Ganea cca:

Lemma 6.5.1 Let f : (ΛX, d)→ (ΛX ⊗ ΛY, d) represent a map E → X. Then

(Gm(f), d) ' (Gm−1(X), d)
(ΛX,d)

1 (G0(f), d).
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Proof. We know that for “classical” Ganea spaces we have

Gmf ∼= Gm−1(X) 1X G0(f).

We now use lemma 6.2.1 to obtain the wished result. ut

On the other hand, by theorem 5.2.3, we can build morphisms

(ΛX/Λ>m−1X, d)
// (Γm−1(X), d)oo

such that the diagram

ΛX

||yy
yy

yy
yy

yy
yy

yy
yy

  A
AA

AA
AA

AA
AA

AA
A

ΛX/Λ>m−1X
// Γm−1(X)oo

commutes. Bearing in mind that (Γm−1(X), d) is weakly equivalent to (Gm−1(X), d), we
can state the

Proposition 6.5.2 With the same notations as in section 6.4, if there exists a morphism

ζ : (Fm, d) → ((ΛX/Λ>m−1X), d)
(ΛX,d)

1 (ΛX ⊗ ΛY, d) that lets the following diagram
commute:

ΛX

πm

~~~~
~~

~~
~~

~~
~~

~~
~

proj1f

''OOOOOOOOOOOOOOOOOOOOOOO

f

��

Fm
ζ //

km

��@
@@

@@
@@

@@
@@

@@
@@

(ΛX/Λ>m−1X)
ΛX

1 (ΛX ⊗ ΛY )

bm

wwoooooooooooooooooooooo

ΛX ⊗ ΛY,

where bm is the obvious projection into ΛX⊗ΛY coming from the pull-back, then we have
that Rcato(f) ≤ m implies the existence of a homotopy retract r : (ΛX ⊗ ΛMm, d) →
(ΛX, d) for πm. If moreover cato(f) ≤ m, then f ◦ r ' k̃m.

Proof. We use lemma 6.2.2, as well as the second remark following it, and we obtain
a commuting diagram

ΛX

proj1f

wwooooooooooooooooooooooo

ηm1f

&&MMMMMMMMMMMMMMMMMMMMM

f

��

(ΛX/Λ>m−1X)
ΛX

1 (ΛX ⊗ ΛY )
//

bm

''OOOOOOOOOOOOOOOOOOOOOO
Γm−1(X)

ΛX

1 (ΛX ⊗ ΛY )oo

cm

xxqqqqqqqqqqqqqqqqqqqq

ΛX ⊗ ΛY,
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where bm and cm are determined in an obvious way by the pull-backs. By composing this
diagram with the one from the hypothesis of the proposition, we obtain a morphism from

(Fm, d) into (Γm−1(X), d)
(ΛX,d)

1 (ΛX ⊗ ΛY, d), which according to lemma 6.5.1 is weakly
equivalent to (Gmf, d), with all the necessary properties that allow a demonstration of the
proposition in the usual way (see for example corollary 6.4.2). ut

Therefore it is now sufficient to construct a suitable morphism

ζ : (Fm, d)→ (ΛX/Λ>m−1X, d)
(ΛX,d)

1 (ΛX ⊗ ΛY, d)

. We begin by giving an explicit construction of the relative cojoin (ΛX/Λ>m−1X, d)
(ΛX,d)

1

(ΛX ⊗ ΛY, d). After the first step of the definition we obtain a commutative diagram

ΛX
� � //

��

ΛX ⊗ ΛY

p

����
ΛX/Λ>m−1X

q // ΛX/Λ>m−1X ⊗ ΛY.

Even though the morphism p is surjective, we can use instead of q an equivalent
surjective morphism:

(ΛX/Λ>m−1X ⊗ ΛS, d)
h

// // (ΛX/Λ>m−1X ⊗ ΛY, d),

where hs : (ΛX ⊗ ΛS, d) → (ΛX ⊗ ΛY, d) is the standard surjective model for f . The
morphism h is defined as h(

∑
i[xi] ⊗ si) = (p ◦ hs)(

∑
i xi ⊗ si) =

∑
i[xi] ⊗ (p ◦ hs(si)),

where xi ∈ ΛX, si ∈ ΛS. It is obviously well-defined. Let us also define a morphism
p′ : (ΛX⊗ΛS, d)→ (ΛX/Λ>m−1X⊗ΛS, d) as being proj⊗ idΛS. Therefore h◦p′ = p◦hs.
We can now take the pull-back of h with proj ⊗ idΛY : (ΛX ⊗ ΛY, d)→ (ΛX/Λ>m−1X ⊗

ΛY, d) to obtain (ΛX/Λ>m−1X, d)
(ΛX,d)

1 (ΛX ⊗ΛY, d). To take advantage of the universal
property of pull-backs we must build morphisms α and β that make the following diagram
commute:

Fm
α //

β

��

ΛX ⊗ ΛY

p

����
ΛX/Λ>m−1X ⊗ ΛS

h
// // ΛX/Λ>m−1X ⊗ ΛY

They would therefore induce the sought after morphism ζ.

• We take α := km, i.e. the morphism induced by h.

• To define the morphism β we need the map ψ between the surjective model ΛX⊗ΛZ
and the standard surjective model ΛX ⊗ΛS which was constructed in lemma 6.4.4.
We can now define β([

∑
i xi ⊗ zi]) := (p′ ◦ ψ)(

∑
i xi ⊗ zi), because (p′ ◦ ψ)(x) =

p′(x) = 0 if x ∈ Λ≥mX.

Let us verify that the preceding diagram commutes: any element of ΛX⊗ΛZ is of the
form

∑
i xi ⊗ zi with xi ∈ ΛX and zi ∈ ΛZ.

• (p ◦ α)([
∑

i xi ⊗ zi]) = p ◦ h(
∑

i xi ⊗ zi)
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• (h◦β)([
∑

i xi⊗zi]) = (h◦p′◦ψ)(
∑

i xi⊗zi) = (p◦hs◦ψ)(
∑

i xi⊗zi) = (p◦h)(
∑

i xi⊗zi).

To prove that the upper triangle of the diagram of proposition 6.5.2 commutes, it
suffices to notice that the two maps that induce proj 1 f commute with α◦πm and β ◦πm
respectively. That the lower triangle commutes is evident from the construction of ζ.
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