
Chapter 3

Classical LS-category

3.1 Introduction

In this chapter by “space” we mean a path-connected pointed CW-complex, whose base-
point is denoted ∗. By “map” we mean a continuous pointed map.

The Lusternik-Schnirelmann category and the cone-length of a space are two homotopy
invariants which have been thoroughly studied since 1934, when the LS-category was
introduced by Lusternik and Schnirelmann [LS34]. The original definition was given as
the number of open sets needed to cover a space X while being contractible in X. Later a
second definition was given by G. Whitehead [Whi56] in terms of a possible deformation
of the diagonal map, then a third one by Ganea [Gan67] asking for a homotopy section
to some maps he defined. A great amount of work has been dedicated to LS-category, as
is apparent in the reviews of James [Jam78], [Jam95]. This invariant was even studied in
the rational homotopy context by Félix and Halperin [FH83].

As for the cone-length it was originally called strong category [Fox41] and was defined
as the minimum number of open subsets, contractible in themselves, which are needed
to cover X. For it to be homotopy invariant one then had to minimize this value for all
spaces of the same homotopy type as X. The main results about cone-length were given
by Ganea [Gan67] and Cornea [Cor95], [Cor94].

In section 3.2 we state the three equivalent definitions for LS-category and the most
commonly used definition for the cone-length of a space. We finish by giving upper bounds
for the LS-category and the cone-length of a product of spaces. In section 3.3 we extend the
LS-category first to a cofibration, then to any map. We give three possible generalizations:
the F-category, which was first given by Fox [Fox41], the LS-category, introduced by Fadell
and Husseini [Fad85], [FH96] and the R-category, a slight modification of LS-category. For
each one of them we give three equivalent definitions: in terms of coverings, of homotopy
sections to Ganea maps and of deformations of the diagonal. Finally we give the definition
of the cone-length of a map as it was introduced by Marcum [Mar98].

3.2 Absolute LS-category and cone-length

The Lusternik-Schnirelmann category of a topological space was first introduced by Lus-
ternik and Schnirelmann [LS34] to give a lower bound on the number of critical points
of a smooth function f : X → R, where X is a manifold. The definition that is most
commonly accepted nowadays is
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36 CHAPTER 3. CLASSICAL LS-CATEGORY

Definition. Let X be a space, then the LS-category of X, noted cat(X), is m, where
(m + 1) is the minimum number of open subsets of X that are contractible in X which
are needed to cover X.

An equivalent definition was given later by G. Whitehead [Whi56] in terms of a possible
deformation of the diagonal map, then a third one by Ganea [Gan67], asking for the
existence of a homotopy section to a certain map. To state them we first need to introduce
fat wedges and Ganea spaces and maps.

Definitions.

• The n-th fat wedge of a space X, noted T n(X) is defined inductively as follows:

T 1(X) := {∗}; T n(X) := (T n−1(X)×X) ∪ (Xn−1 × {∗}).

That is, T n(X) is the subset of Xn whose elements have at least one coordinate
equal to the basepoint.

• The n-th Ganea map associated to X, gn(X) is defined inductively as follows:

g0(X) : G0(X) ≡ {∗} → X; gn(X) ≡ gn−1 1 g0(X) : Gn(X)→ X,

whereby the source space Gn(X) ≡ Gn−1(X) 1X G0(X) of the n-th Ganea map is
called the n-th Ganea space of X.

We can now state a theorem about the equivalence of the three definitions of LS-
category we have hinted at.

Theorem 3.2.1 The following assertions are equivalent:

• cat(X) ≤ n,

• there exists a map θ such that the following diagram commutes up to homotopy:

T n+1(X)

incl.

##HHHHHHHHHHHHHHHHH

X

θ

<<

4
// Xn+1,

where 4 is the diagonal map: 4(x) = (x, x, ..., x) for all x ∈ X.

• the n-th Ganea map admits a homotopy section.

We prove this well-known result in a more general form in the next section, when
dealing with the category of maps.

We now give the most commonly used definition for cone-length, which was proved to
be equivalent to the original one for the class of spaces we are considering.

Definition. Let X be a space. Suppose there exist cofibration sequences of spaces

Z(i) −→ X(i) −→ X(i+ 1) where 0 ≤ i ≤ n

such that X(0) ' ∗, X(n) ' X. Then we say that X has cone length smaller or equal
to n, and we write Cl(X) ≤ n.
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If there exist no such cofibration sequences for any n, we say that the cone length of
X is infinite: Cl(X) =∞.

Cl(X) is strongly related to cat(X) since it is always equal either to cat(X) or to
cat(X) + 1.

There exist a “product inequality” for LS-cat as well as for cone-length

Theorem 3.2.2 Let X and Y be spaces, then

• cat(X × Y ) ≤ cat(X) + cat(Y );

• Cl(X × Y ) ≤ Cl(X) + Cl(Y ).

Deciding when equality or strict inequality holds has been largely studied, for example
while trying to prove the famous Ganea conjecture: cat(X×Sn) = cat(X)+1, where X is
any space and Sn is a sphere of dimension n ≥ 1. While shown to hold for simply connected
rational topological spaces by Jessup [Jes87] and Hess [Hes91], a counter-example was given
by Iwase in [Iwa98], showing how intuition can sometimes fail us in this field.

3.3 Relative LS-category and cone-length

There have been several generalizations of LS-category and cone-length from spaces to
maps. We will speak about absolute category or cone-length when meaning the category
or cone-length of a space, and about a relative invariant when considering maps.

The first extension of LS-category was given by Fox [Fox41] and studied by Bernstein
and Ganea [BG12]. However we are more interested in a second relativization of LS-
category and choose therefore to call this first invariant F-category, keeping the name
LS-category for the second one.

Definition. Let f : E → X be a map. We say that its F-category is smaller or equal
to m (Fcat(f) ≤ m) if the space E can be covered by m+1 open subspaces: E =

⋃m
i=0 Ui

such that for each i, f |Ui
' ∗.

As it is the case for the absolute category, there are equivalent definitions.

Theorem 3.3.1 For a map f : E → X we have equivalence between:

1. Fcat(f) ≤ m;

2. there exists a map θ such that the following diagram commutes up to homotopy:

T n+1(X)

incl.

##HHHHHHHHHHHHHHHHH

E

θ

<<

f
// X

4
// Xn+1;

3. there exists a map s : E → Gm(X) such that gm(X) ◦ s ' f .

This is a well-known result, whose proof is analogous to the proof of theorem 3.3.2.
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Instead of keeping the “absolute” fat wedge and Ganea spaces, another way of pro-
ceeding to extend LS-category is to generalize them to “relative” fat wedge and Ganea
spaces. Moreover, depending on how many conditions we impose in the definition, we
obtain two different relative categories: the relative LS-category cat, which was intro-
duced by Fadell and Husseini [FH96], [Fad85], and Cornea [Cor98], and the R-category
Rcat, which is always smaller than or equal to the previous one. We begin by consider-
ing the special case of a cofibration and then relate to this case to give a general definition.

Let f : E → X be a cofibration.

Definitions.

• The R-category of f , Rcat(f), is m, where (m + 1) is the minimum number of
open subsets of X that are necessary to cover X, under the condition that one of
these subsets can be continuously deformed into E while the other open sets are
contractible in X. What we mean by “an open subset U ⊂ X can be continuously
deformed into E” is that there exists a homotopy H : U×I → X such that H0 = idU
and Im(H1) ⊂ E. The subset U does not necessarily contain E.

• If in the definition of R-category we add the condition that the open set which is
deformed into E must contain E and that the homotopy must be relative to E, then
we obtain the LS-category of f , cat(f). It is a somewhat weaker statement than
saying that E is a strong deformation retract of U , because the deformation takes
place in X.

• The n-th fat wedge of the map f , or n-th relative fat wedge of f , is denoted
T n(f) and is defined as being E for n = 1, and

T n(f) := (T n−1(f)×X) ∪ (Xn−1 × {∗}),

i.e. it is the subspace of Xn such that its elements have either the first coefficient in
E, or one of the other coefficients equal to the base point.

• The n-th Ganea map of f is defined as being f itself for n = 0, and inductively:

gn(f) := gn−1(f) 1 g0(X),

with gn(f) : Gn(f) → X, where Gn(f) is the n-th Ganea space of f . The map
qn : E → Gn(f), which is part of the homotopy push-out forming the join, is such
that gn(f) ◦ qn ' f .

Remarks.

• The R-category and the LS-category of the map ∗ → X and the F-category of
the identity idX are all equal to cat(X), which explains why we speak about a
“generalization”.

• When it is clear whether we are considering absolute or relative categories, and for
which space, respectively for which map, we will drop the indices X or f .

• Up to now we have defined category only for cofibrations. The next two theorems
will allow us to give a more general definition.
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Theorem 3.3.2 Let f : E → X be a cofibration. The following propositions are equiva-
lent:

1. Rcat(f) ≤ n;

2. there exists a map θ : X → T n+1(f) such that the following diagram commutes up
to homotopy:

T n+1(f)

incl.

##GGG
GG

GG
GG

GG
GG

GGG
G

X

θ

<<

4
// Xn+1

3. gn(f) admits a homotopy section.

Proof.

1 ⇔ 2 Let X =
⋃n

0 Ui with h0 : U0 × I → X, such that h0(x, 0) = x and h0(x, 1) ∈ E for
all x ∈ U0, hi : Ui × I → X, such that hi(x, 0) = x and hi(x, 1) = ∗ for all x ∈ Ui,
1 ≤ i ≤ n, which is possible because X is path connected. Since CW-complexes are
normal, for each Ui there exist closed subspaces Fi and Gi and an open subspace Oi,
such that Fi ⊂ Oi ⊂ Gi ⊂ Ui and X =

⋃n
0 Fi. Moreover there are maps fi : X → I

such that fi(x) = 1 for all x ∈ Fi and fi(x) = 0 for all x ∈ X −Gi. We can define a
map θ : X → T n+1(X) as follows:

θ(x) = (θ0(x), θ1(x), ..., θn(x)),

θi(x) =

{
x x ∈ X −Gi
hi(x, fi(x)) x ∈ Ui

.

It is well-defined because there exists an i such that x ∈ Fi, and therefore either
h0(x, 1) ∈ E, if i = 0, or hi(x, 1) = ∗. It remains to verify that there exists a
homotopy H : X × I → Xn+1 such that incl ◦ θ ' ∆. We define it as

H(x, t) := (H0(x, t),H1(x, t), ...,Hn(x, t)),

Hi(x, t) =

{
x x ∈ X −Gi
hi(x, fi(x) · t) x ∈ Ui

.

Inversely let us suppose that H = (H0, ...,Hn) is an homotopy between ∆ and incl◦θ,
with θ : X → T n+1(X). There exists an open set U containing the base point which
is contractible in X and an open set V containing E which can be continuously
deformed into E. We take U0 := H−1

0 (V, 1), Ui := H−1
i (U, 1) and h0 := H0|(U0 × I)

hi := Hi|(Ui× I) for all i. Therefore if x ∈ X we have θ(x) ∈ T n+1 or more precisely
either H0(x, 1) ∈ E ⊂ V , i.e. x ∈ U0, or there exists an i such that Hi(x, 1) = ∗ ∈ U ,
i.e. x ∈ Ui.

2 ⇔ 3 We show that there exists a homotopy pull-back:

Gn(f)
λn //

gn(X)

��

T n+1(f)

incl

��
X

∆ // Xn+1.
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– First of all we notice that the join of the inclusions X k × T l(X) → Xk+l and
T k(f)×X l → Xk+l is homotopy equivalent to the inclusion T k+l(f)→ Xk+l.
We follow [Cuv98] and construct the standard homotopy pull-back of the two
inclusions:

M := {(w1, w2, ..., wk+l) ∈ (XI)k+l|(w1(0), w2(0), ..., wk(0)) ∈ T
k(f),

(wk+1(1), ..., wk+l(1)) ∈ T
l(X)}.

It is then possible to define a homotopy equivalence ϕ : M → T k(f) × T l(X)
as being

ϕ(w1, w2, ..., wk+l) := (w1(0), ..., wk(0), wk+1(1), ..., wk+l(1)).

It is indeed possible to contract each path wi to its beginning- or end-point.
We can therefore use the space T k(f)× T l(X) to complete the construction of
the join, i.e. construct a homotopy push-out of the inclusion of T k(f)× T l(X)
in T k(f) ×X l and in Xk × T l(X). Since these last two maps are cofibrations
we obtain the inclusion

(T k(f)×X l)
⋃

T k(f)×T l(X)

(Xk × T l(X)) ≡ T k+l(f) −→ Xk+l.

Of course if we choose E = ∗, we obtain that the join of the inclusions X k ×
T l(X)→ Xk+l and T k(X)×X l → Xk+l is homotopy equivalent to T k+l(X)→
Xk+l.

– We now define G̃n(f) as the standard homotopy pull-back of incl : T n+1(f)→
Xn+1 and ∆ : X → Xk+1. We show that G̃n(f) ' Gn(f).

It is easy to see that G̃n(f) is homotopy equivalent to the homotopy pull-back
of incl : T n+1(f) × X1 → Xn+2 and ∆ : X → Xn+2. Similarly, G̃0(X) is
homotopy equivalent to the homotopy pull-back of Xn+1×T 1(X)→ Xn+2 and
∆ : X → Xn+2. Applying the join theorem I [Doe98] to these two homotopy
pull-backs, we obtain a new homotopy pull-back

G̃n(f) 1X G̃0(X) //

��

(T n+1(f)×X1) 1Xn+2 (Xn+1 × T 1(X))

��
X

∆ // Xn+2

where the vertical maps result from the two joins. Therefore we have shown
that

G̃n+1(f) ' G̃n(f) 1X G̃0(X)

for all n ≥ 0. On the other hand we already know that

Gn+1(f) ' Gn(f) 1X G0(X) .

Actually G̃0(f) = {(x,w, y) ∈ X×XI ×E|w(0) = x,w(1) = y}. Since G0(f) =
E is homotopic to G̃0(f) through the map e 7→ (e, conste, e), which also means
that G0(X) ' G̃0(X), a simple induction gives Gn(f) ' G̃n(f) for all n.
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From now on we can therefore consider Gn(f) as the standard homotopy pull-back
of the first diagram of the proof. It remains to show that the definition in terms of
fat wedge and the one in terms of Ganea spaces are equivalent. If θ : X → T n+1 is
such that incl ◦ θ ' ∆ the following diagram homotopy commutes:

X
θ //

idX

��

T n+1(f)

incl

��
X

∆ // Xn+1.

By the properties of homotopy pull-backs there exists therefore a map s : X → Gn(f)
such that gn(f) ◦ s ' idX as desired.

If inversely we have a homotopy section s for gn(f), we define θ := λn ◦ s and we
verify that incl ◦ θ = incl ◦ λn ◦ s ' ∆ ◦ gn(f) ◦ s ' ∆.

ut

There exist a Whitehead-type and a Ganea-type definition for the LS-category of a
cofibration too:

Theorem 3.3.3 Let f : E → X be a cofibration. The following propositions are equiva-
lent:

1. cat(f) ≤ n;

2. there exists a map θ : X → T n+1(f) such that the following diagram commutes up
to a homotopy H = (H0,H1, ...,Hn) : X × I → Xn+1:

T n+1(f)

incl.

##GGG
GG

GGG
GG

GG
GG

GGG

X

θ

<<

4
// Xn+1,

with H such that H0(−, t)|E = f for all t ∈ I;

3. gn(f) admits a homotopy section s, such that s ◦ f ' qn.

Proof.

1 ⇔ 2 The proof is similar to the one for the corresponding case of Theorem 3.3.2. The only
differences are first of all that, given an appropriate covering for X, the homotopy
h0 has the additional property h0(e, t) = e for all e ∈ E ⊂ U0 and t ∈ I. Moreover,
we must have E ⊂ Fi, which is possible because of the normality of CW-complexes.
We define θ and H like in the previous proof and we verify that if e ∈ E, H0(e, t) =
h0(e, f0(e)t) = h0(e, t) = e = f(e).

In the other direction ifH is a homotopy between incl◦θ and ∆ with pr1◦H(−, t)|E =
f , then E ⊂ U0 = H−1

0 (E, 1) and for all e ∈ E, h0(e, t) = H0(e, t) = f(e) = e.
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2 ⇔ 3 Here also the proof is similar to the one of Theorem 3.3.2. It was shown that Gn(f)
can be considered as the standard homotopy pull-back of ∆ : X → Xn+1 and
incl : T n+1(f)→ Xn+1, i.e.

Gn(f) = {(x,w, (y0, ..., yn)) ∈ X×X
n+1I×T n+1(f) |w(0) = ∆(x), w(1) = (y0, ..., yn)}.

In this case the natural inclusion qn : E → Gn(f) can be taken as being qn(e) =
(e, const(e,...,e), e, ..., e), where constx is the constant path at the point x. Indeed if
we go back to the proof of Theorem 3.3.2, we deduce that q0(e) = (e, conste, e). On
the other hand it is possible to follow step by step a proof of Cuvilliez in [Cuv98], 1.5,
to show that the inclusion Gk(f)→ Gn(f) is homotopic to jk,n : (x,w, y0, ..., yk) 7→
(x, (w, constx, constx, ..., constx), y0, ..., yk, x, ..., x) . Since we are only interested on
a condition stating that the composition of two maps should be equal to qn up to
homotopy, we can take qn := j0,n ◦ q0.

Let us now suppose that there exists a map θ as in condition 2. It induces a map
s : X → Gn(f), s(x) = (x,H(x,−), incl◦θ(x)), where H is the homotopy between ∆
and incl ◦ θ. There is a homotopy between qn and s ◦ f given by G : E× I → Gn(f),
G(e, t) := (e, γtH ,H(e, t)), where γtH is the portion of the path H(e,−) between 0 and
t. The homotopy is well-defined since H0(−, t)|E = f ensures that H(e, t) ∈ T n+1(f)
for all t.

On the other hand suppose we are given a homotopy section s′ : X → Gn(f) for
gn(f) such that s′ ◦ f ' qn. We show that gn(f) can be considered as a fibration,
which means that there exists a map s ' s′ which is an exact section for gn(f). Let
us replace the map incl : T n+1(f)→ Xn+1 by its associated fibration mn : T̄ n+1 →
Xn+1, with T̄ n+1 = {(yo, ..., yn, γ) ∈ T n+1(f) × (Xn+1)I |γ(0) = (y0, ..., yn)} and
mn(y0, .., yn) = γ(1). Then the pull-back of ∆ and mn is

Bn
δn //

pn

��

T̄ n+1

mn

��
X

∆
// Xn+1

with Bn := {(x, y0, ..., yn, γ) ∈ X×T̄
n+1|γ(1) = ∆(x)} and pn : (x, y0, ..., yn, γ) 7−→ x

is a fibration. Is is evident that Bn is homeomorphic to Gn(f) over X by the

homotopy equivalence (x, y0, ..., yn, γ)
φ
7−→ (x, γ−1, (y0, ..., yn)) with obvious inverse

ψ, while gn(f)◦φ = pn and pn◦ψ = gn(f), therefore gn(f) is equivalent to a fibration.

We now use the following classical result: if p : E → B is a fibration and we are
given a map α : A → B and maps β1 ' β2 : A → E such that p ◦ β1 = p ◦ β2 = α
then there exists a homotopy H between β1 and β2 such that p ◦ H(−, t) = α. In
our case, take p = gn(f), α = f , β1 = s ◦ f and β2 = qn. Let us now construct a
new map s̄ which is homotopy equivalent to s, and such that s̄ ◦ f = qn: consider
the solid arrows diagram

(E × I) ∪ (X × {0})
H∪s //

(f×id)∪(id×incl)

��

Gn(f)

X × I

F

88
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Since f is a cofibration, there exists a homotopy F that makes it commute exactly.
We take s̄ := F (−, 1). Therefore F is a homotopy between s and s̄. Moreover if
we restrict F to E × I it is equal to H, i.e. it is of the form F (e, t) = H(e, t) =
(e,H1(e, t),H2(e, t)) for all e ∈ E. We can now choose for θ := λn ◦ s̄, where λn is
the projection Gn(f)→ T n+1(f) from the pull-back, and we verify

incl ◦ θ = incl ◦ λn ◦ s̄
K◦s̄
' ∆ ◦ gn(f) ◦ s̄

∆◦gn(f)◦F−1

' ∆ ◦ gn(f) ◦ s = ∆.

The homotopy G between incl ◦ θ and ∆ is given by K ◦ s̄+ ∆ ◦ gn(f) ◦ F−1, where
K is the homotopy between incl ◦λn and ∆ ◦ gn(f). We check that pr1 ◦G|E×I = f :

– K(s̄(e), t) = K((e, id∆e,∆e), t) for all e ∈ E because s̄ ◦ f = qn. On the other
hand K((x, γ, yo, ..., yn), t) = γ(t) for ((x, γ, yo, ..., yn), t) ∈ Gn(f)× I, therefore
K((e, id∆e,∆e), t) = id∆e(t) = ∆e.

– ∆◦gn(f)(F−1(e, t)) = ∆◦gn(f)(F (e, 1−t)) = ∆◦gn(f)(e,H1(e, 1−t),H2(e, 1−
t)) = ∆(e).

ut

To show that Rcat and cat are homotopy invariants we need to define a homotopy
retract for a map f and to show that it has R-category less than or equal to Rcat(f), and
LS-category less than or equal to cat(f)..

Definitions.

• Let f : E → X be a map between spaces X and Y . We say that a map g : A → Y
is a homotopy retract for f if there exists a homotopy commutative diagram

A
i //

g

��

E
j //

f

��

A

g

��
Y

k
// X

l
// Y

such that the horizontal lines are homotopic to idA and idY respectively.

• If moreover in the previous diagram we have i ◦ j ' idA and k ◦ l ' idY we say that
f is homotopically equivalent to g.

Lemma 3.3.4 Suppose the cofibration g : A→ Y is a homotopy retract for the cofibration
f : E → X, then

1. Rcat(g) ≤ Rcat(f);

2. cat(g) ≤ cat(f).

Proof. We use notations as in definition 3.3. For all n ≥ 0 we build a homotopy
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commutative diagram

A
i //

qn(g)

��

E
j //

qn(f)

��

A

qn(g)

��
Gn(g)

in //

gn(g)

��

Gn(f)
jn //

gn(f)

��

Gn(g)

gn(g)

��
Y

k
// X

l
// Y

such that l ◦ k ' idY using functoriality of standard homotopy pull-backs and push-outs
applied to the diagram from definition 3.3 (see lemma 1.2.1).

1. If there is a map s : X → Gn(f) with gn(f) ◦ s ' idX we can define s′ ≡ jn ◦ s ◦ k
and verify

gn(g) ◦ s
′ = gn(g) ◦ jn ◦ s ◦ k ' l ◦ gn(f) ◦ s ◦ k ' l ◦ k ' idY .

2. Moreover if s ◦ f ' qn(f), then

s′ ◦ g = jn ◦ s ◦ k ◦ g ' jn ◦ s ◦ f ◦ i ' jn ◦ qn(f) ◦ i ' qn(g) ◦ j ◦ i ' qn(g).

ut

An easy consequence of this lemma is the invariance under homotopy of the R-category
of a map.

Theorem 3.3.5 Let f, g : E → X be homotopically equivalent cofibrations, and f ′, g′ :
E′ → X ′ be homotopic cofibrations, then

Rcat(f) = Rcat(g), Rcat(f ′) = Rcat(g′)

and

cat(f) = cat(g), cat(f ′) = cat(g′).

Proof. The map f is a retract of g and g is a retract of f , so according to lemma
3.3.4, Rcat(g) ≤ Rcat(f) and Rcat(f) ≤ Rcat(g), and analogously for cat(f) and cat(g).
Moreover we can build a homotopy commutative diagram

E′
idE′ //

g′

��

E′
idE′ //

f ′

��

E′

g′

��
X ′

idX′

// X ′
idX′

// X ′

therefore f ′ and g′ are homotopically equivalent. ut
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Remark. Notice that if one takes as definition for LS-category, respectively for R-
category the definition in terms of Ganea spaces, it can be applied to any map, not
necessarily a cofibration, and the previous theorem is still valid.

We can now give a general definition of the category of a map for maps that are not
necessarily cofibrations.

Definition. Let f : E → B be any map. It admits a standard associated cofibration
f̃ : E → X. We say that the R-category, respectively the LS-category, of f is equal to
n if the R-category, respectively the LS-category of f̃ is equal to n.

Equivalently, one can construct Ganea spaces and maps starting from f because this
construction does not require f to be a cofibration. We then apply the Ganea definition
for relative category to f .

The equivalence between the two definitions follows from theorem 3.3.5 because f and
f̃ are homotopically equivalent. Of course one can choose any cofibration associated to f
as the map f̃ .

The cone-length of a space was generalized to maps by Marcum [Mar98].

Definition. Let f : A → X be a map between spaces A, X. Suppose there exist
cofibration sequences

Z(i) −→ X(i) −→ X(i + 1)

where 0 ≤ i ≤ n, X(0) ' A, X(n) ' X. If the composition

A −→ X(i) −→ X is homotopic to f

with A → X(i) the map resulting from composition of all cofibrations X(k) → X(k + 1)
for 0 ≤ k ≤ i, with the homotopy equivalence between A and X(0), then we say that f
has cone length smaller or equal to n and we write Cl(f) = Cl(X,A) ≤ n.

If there exist no such cofibration sequences for any n, we say that the cone length of
X relative to A is infinite: Cl(X,A) =∞.

Again we see here immediately that Cl(∗ → X) = Cl(X) and therefore this relative
cone-length is a generalization of the absolute one.
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