
Chapter 1

A few tools

1.1 Introduction

One of the definitions of LS-category is given in terms of Ganea spaces and Ganea maps,
which can be constructed as consecutive joins of some chosen maps. Joins are in turn
made up of a homotopy pull-back followed by a homotopy push-out. In section 1.2 we
introduce homotopy push-outs and homotopy pull-backs in the sense of Mather [Mat76],
and give a few important properties. Then in section we define joins and state Doeraene’s
two “join theorems”.

1.2 Homotopy push-outs and homotopy pull-backs

Let us restrict our study to the category of topological spaces, while keeping in mind that
everything can be easily translated in a “pointed” context. To work on a clear basis we
must define homotopy commutative diagrams:

Definition. Consider a diagram W of continuous maps together with collection A of
homotopies between maps or composites of maps in W . It is called homotopy commu-
tative if

• for any two composites f1 ◦ f2 ◦ ... ◦ fn : X → Y and g1 ◦ g2 ◦ ... ◦ gk : X → Y of maps
fi, gj ∈ W , 1 ≤ i ≤ n, 1 ≤ j ≤ m with same source and target spaces, there exists
a homotopy H ∈ A between them;

• if it is possible to build two different homotopies H and G between two maps f
and g by mixing sums and composites of the homotopies in A, then there exists a
homotopy relative to (f, g) between H and G.

We can now recall the definition of fibrations and Serre fibrations, as well as the
definition of cofibrations and NDR-pairs.

Definition. We consider a commutative diagram of topological spaces:

A
f //

i

��

X

p

��
Z g

// Y.
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• The map p : X → Y is a Serre fibration if for any A = K × {0} and Z = K × I
with K a CW-complex there exists a continuous map r : Z → X such that p ◦ r = g
and r ◦ i = f , i.e. p has the lifting property with respect to (K × I,K × {0}).

• The map p : X → Y is a fibration if it has the lifting property with respect to any
(K × I,K × {0}) with K a topological space.

Definitions.

• Let A ⊂ X be topological spaces, such that for any map f : X → Y and any
homotopy H : A×I → Y with H(a, 0) = f(a) for all a ∈ A there exists an extension
G : X × I → Y such that G(a, t) = H(a, t) for all a ∈ A, t ∈ I and G(x, 0) = f(x)
for all x ∈ X, then the pair (X,A) is called a cofibration and is said to have the
homotopy extension property

• If the pair (X,A) is a cofibration and A is closed inX then it is called an NDR-pair.

In the category of topological spaces pull-backs and push-outs do not always exist,
unless one of the maps involved is a fibration, respectively a cofibration. We therefore
introduce homotopy pull-backs and homotopy pushouts, which possess the pull-back, re-
spectively the push-out, property “up to homotopy”.

Definitions.

• Let us consider a homotopy commutative diagram

P
b //

a

��

B

g

��
A

f
// C

and a homotopy H : P × I → C between g ◦ b and f ◦ a. Together they are called a
homotopy pull-back when for any homotopy commutative diagram

W
β //

α

��

B

g

��
A

f
// C

equipped with a homotopy G between g ◦ β and f ◦ α we have:

1. there exists a map w : W → P (we say whisker map) and homotopies L : α '
a ◦ w, K : β ' b ◦ w such that the following diagram

W
w

  A
AA

AA
AA

A β

##
α

��

P
b //

a

��

B

g

��
A

f
// C
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with the homotopies H, G, K, L is homotopy commutative, i.e. g ◦ K + H ◦
w + f ◦ L ' G relative to (g ◦ β, f ◦ α);

2. if there exists another map w′ : W → P and homotopies L′ : α ' a ◦ w′,
K ′ : β ' b ◦ w′ such that the previous diagram homotopy commutes when one
replaces w with w′, L with L′ and K with K ′, then there exists a homotopy
M : w ' w′ such that the previous diagram homotopy commutes when one
adds to it the map w′ and the homotopies M , L′, K ′, i.e. K + b ◦M ' K ′

relative to (β, b ◦ w′) and a ◦M + L′ ' L relative to (α, a ◦ w).

• To obtain the notion of homotopy push-out one must simply “dualize”, i.e. reverse
all arrows in, the notion of homotopy pull-back, as follows: a homotopy push-out
is a diagram such as the following one:

C
g //

f

��

B

b

��
A a

// R

together with a homotopy H : C × I → R between a ◦ f and b ◦ g, such that for any

other diagram C
g //

f ��

B
β��

A α
// U

and homotopy G between α ◦ f and β ◦ g,

1. there exists a whisker map u : R → U and homotopies L : α ' u ◦ a,
K : β ' u ◦ b making the diagram

C
g //

f
��

B

b
�� β

��

A a
//

α
++

R
u

  @
@@

@@
@@

U

together with the homotopies H, G, K, L, homotopy commutative;

2. if there exists another map u : R → U ′ and homotopies L′ : α ' a ◦ u′,
K ′ : β ' b ◦ u′ such that the previous diagram homotopy commutes when one
replaces u with u′, L with L′ and K with K ′, then there exists a homotopy
M : u ' u′ such that the previous diagram homotopy commutes when one adds
to it the map u′ and the homotopies M , L′, K ′.

Homotopy pull-backs and homotopy push-outs do exist. We can actually construct
at least one homotopy pull-back for any two maps with the same target space and
one homotopy push-out for any two maps with the same source space, as follows:

• A standard homotopy pull-back is a homotopy commutative diagram

Ef,g
b //

a

��

B

g

��
A

f
// C
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where
Ef,g ≡ {(x, ω, y) ∈ A× C

I ×B | f(x) = ω(0) and g(y) = ω(1)},

a(x, ω, y) = x, b(x, ω, y) = b for all (x, ω, y) ∈ Ef,g and there is a homotopy H :
Ef,g × I → C, H((x, ω, y), t) ≡ w(t). It is easy to verify that such a homotopy
commutative diagram is a homotopy pull-back.

• There is the dual notion of standard homotopy push-out, which is a homotopy
commutative diagram

C
g //

f

��

B

b

��
A a

// Zf,g

and a homotopy K : C × I → Zf,g such that

Zf,g ≡
A t (C × I) tB

f(c) ∼ (c, 0) and g(c) ∼ (c, 1) ∀c ∈ C
,

a(x) = [x], b(y) = [y] for all x ∈ A, y ∈ B, and K(c, t) = [c, t]. Any standard
homotopy push-out is a homotopy push-out.

It is interesting to note that the standard homotopy pull-back and push-out construc-
tions are functorial.

Lemma 1.2.1 Suppose there exists a homotopy commutative diagram of spaces and maps

A′ i //

f ′

��

A

f

��
C ′

j // C

B′

g′

OO

k // B.

g

OO

Let Ef,g
b //

a
��

B
g
��

A
f

// C

, respectively Ef ′,g′
b′ //

a′ ��

B
g′��

A
f ′

// C

be the standard homotopy pull-backs of the

maps f, g, respectively f ′, g′, then there exists a map w : Ef ′,g′ → Ef,g such that the
following diagram commutes up to homotopy:

A′ i //

f ′

��

A

f

��

Ef ′,g′
w //

a′
<<yyyyyyy

b′

��

Ef,g

a
=={{{{{{{

b

��

C ′
j // C

B′
g′

;;xxxxxxx k // B.

g

==zzzzzzz
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Proof. We simply build the whisker map w. ut

Of course the correspondent dualized lemma for homotopy push-outs is also true.

It is important to notice that if one replaces one of the original maps of a homotopy
pull-back by its associated fibration in the standard way and uses it to construct a pull-
back, then it is easy to show, using the following lemma, that there exists a homotopy
equivalence between the pull-back and the homotopy pull-back.

Lemma 1.2.2 Suppose the following square is a homotopy commutative diagram

A //

f1

��

!!B
BB

BB
BB

B

!!C
CC

CC
CC

f2

��

C //

f3

��

D

f4

��

A′ //

  A
AA

AA
AA

B′

  B
BB

BB
BB

C ′ // D′

If the top and bottom squares are homotopy pull-backs and f2, f3, f4 are homotopy equiv-
alences, then f1 is also a homotopy equivalence.

In our case we have:

Corollary 1.2.3 Let Ef, g
b //

a
��

B

g
��

A
f

// C

be a standard homotopy pull-back, and A
λ
'

//

f ��?
??

??
? Ā

f̄������
��

��

C

be a commutative diagram, where f̄ is a fibration and λ is a homotopy equivalence, then
the following diagram is homotopy commutative

Ef, g
b //

w

��

a !!D
DD

DD
D

B
g

��?
??

??
?

A //

λ'

��

C

PB p2
//

p1 ""D
DD

DD
DD

B
g

��@
@@

@@
@

Ā
f̄

// // C

where the bottom square is the pull-back of f̄ and g, and w is a whisker map. Moreover,
w is a homotopy equivalence.

Analogously one can replace a map by its associated cofibration and show that the
push-out and the homotopy push-out are homotopic.

We now state two classical results about homotopy push-outs and pull-backs.
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Lemma 1.2.4 (Prism lemma) Let us consider a homotopy commutative diagram:

A //

w !!B
BB

BB
BB

��

C

��

B

==|||||||

��

A′ //

  A
AA

AA
AA

C ′

B′
w′

>>||||||

• If the right face is a homotopy pull-back and w is the whisker map, then the left face
is a homotopy pull-back if and only if the back face is a homotopy pull-back.

• If the left face is a homotopy push-out and w′ is the whisker map, then the right face
is a homotopy push-out if and only if the back face is a homotopy push-out.

Before stating the next lemma we need the notion of fibration sequence and cofibration
sequence.

Definitions.

• Let f : A → X be a map between spaces A, X. By its homotopy cofibre C(f)
we mean the space X ∪f CA, where CA is the cone over A. The obvious inclusion
X → C(f) is then a cofibration.

• A sequence A
f
→ X → C is called a cofibration sequence if C is the homotopy

cofibre of f and X → C is the obvious inclusion.

• Let X be a pointed space. The Moore path space of X is

PX ≡ {(γ, l) ∈ X [0,∞) × [0,∞) | γ(t) = γ(l) = ∗, ∀t ≥ l}

and the Moore loop space of X is

ΩX ≡ {(γ, l) ∈ PX | γ(0) = ∗}.

Lemma 1.2.5 If X is pointed and path connected, then the map p : PX → X, defined as
p(γ, l) ≡ γ(0) is a fibration with fibre ΩX. It is called the Moore path space fibration
for X.

Definitions.

• Let f : X → Y be a map between pointed path connected spaces. By its homotopy
fibre F (f) we mean the space X ×Y PY resulting from the pull-back of f and the
Moore path space fibration p : PY → Y .

• A sequence F
p
→ X

f
→ Y is called a fibration sequence if F is the homotopy fibre

of f and p is the projection on the first factor.
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Lemma 1.2.6 (Four fibrations lemma) Let the following diagram be homotopy com-
mutative

A //

||yyy
yy

��

B

||xxx
xx

��

C //

��

D

��

A′ //

||zz
zz

��

B′

||yy
yy

��

C ′ //

��

D′

��

A′′ //

||zz
zz

B′′

||yy
yy

C ′′ // D′′

where the two squares A′B′D′C ′, A′′B′′D′′C ′′ are homotopy pull-backs, B → B ′ → B′′,
C → C ′ → C ′′ and D → D′ → D′′ are fibration sequences and A → A′, A′ → A′′ are the
whisker maps induced by the diagram, then the square ABDC is a homotopy pull-back if
and only if A→ A′ → A′′ is a fibration sequence.

Again the dual lemma is true. It can be obtained by reversing all arrows, replacing
pull-backs by push-outs and fibration sequences by cofibration sequences.

1.3 Joins

To construct Ganea maps and spaces like in the following chapter it is necessary to take a
homotopy pull-back of two maps, followed by a homotopy push-out of the two maps that
were obtained in the process. We can choose standard homotopy pull-backs and push-outs
to obtain a well-determined induced map and call this operation a join.

Definition. Let f : A→ C and g : B → C be two maps. We first build their standard
homotopy pull-back

P
pA //

pB

��

A

f

��
B g

// C,

where pA and pB are the projection on A and B respectively. We then take the standard
homotopy push-out of pA and pB

P
pA //

pB

��

A

iA

��
B

iB
// A 1C B,

where iA, iB are the inclusions. The whisker map A 1C B −→ C is called the join of f
and g and is denoted f 1 g. As for the space A 1C B it is called the join of A and B
over C.
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Remark. The join of two maps X → {∗}, X ′ → {∗} whose target space is {∗} is
usually called the join of spaces X and X ′ and is denoted X ∗X ′.

Dually one could define the cojoin, but we are not going to need it when dealing
with topological spaces. However we are going to define a rational cojoin in the category
of commutative cochain algebras (see 6.2). One can verify that the join operation is
transitive; we therefore omit any parenthesis hereafter.

We now proceed with the statement of the two join theorems from Doeraene (see [Doe98])
which show that the join of homotopy pull-backs is a pull-back and the join of a homotopy
pull-back and a homotopy push-out is a homotopy push-out.

Theorem 1.3.1 (Join theorem I) Let us consider a homotopy commutative diagram
made up of two homotopy pull-backs:

A
f //

α

��

C

γ

��

B
goo

β

��
A′

f ′
// C ′ B′.

g′
oo

Then there exists a homotopy pull-back

A 1C B
f1g //

φ

��

C

γ

��
A′

1C′ B′
f ′1g′

// C ′.

Moreover there exist two homotopy pull-backs

A //

α

��

A 1C B

φ

��
A′ // A′

1C′ B′

B //

β

��

A 1C B

φ

��
B′ // A′

1C′ B′.

Theorem 1.3.2 (Join theorem II) Let the following diagram be homotopy commuta-
tive

A //

α

��

C

γ

��

Boo

β

��
A′ // C ′ B′oo

wth the left square being a homotopy push-out and the right square a homotopy pull-back,
then there exist two homotopy push-outs

A 1C B //

φ

��

C

γ

��
A′

1C′ B′ // C ′

A //

α

��

A 1C B

φ

��
A′ // A′

1C′ B′


