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Abstract

We show theoretically by numerically solving the Landau-Lifshitz-Gilbert equation with a clas-

sical spin model on a two-dimensional system that both magnetic skyrmions and skyrmion lattices

can be moved with microwave magnetic fields. The mechanism is enabled by breaking the axial

symmetry of the skyrmion, for example through application of a static in-plane external field. The

net velocity of the skyrmion depends on the frequency and amplitude of the microwave fields as

well as the strength of the in-plane field. The maximum velocity is found where the frequency of

the microwave coincides with the resonance frequency of the breathing mode of the skyrmions.
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Skyrmions, topologically stable magnetization textures with particle-like properties, have

recently attracted great attention [1–4] due to their potential use in future spintronic de-

vices [5]. The manipulation of skyrmions is of great importance and interest: skyrmions can

be driven using spin-polarized current [6–9], magnetic or electric field gradients [10, 11], tem-

perature gradients [12–14] and magnons [15–17]. Microwaves, on the other hand, have been

broadly used in studying various magnetic phenomena, such as the ferromagnetic resonance

(FMR) and spin wave excitations in skyrmion crystals [18–21]. However, the possibility of

creating translational motion of skyrmions has not been explored in these experiments [19–

21]. In this Rapid Communication, we show that both a single skyrmion and a skyrmion

lattice can be moved by microwave fields if the axial symmetry of skyrmions is slightly

broken by a static in-plane external field.

We employ skyrmions stabilized by the Dzyaloshinskii-Moriya Interaction (DMI) [22,

23]. More precisely, the bulk DMI is considered so that a chiral skyrmion (vortex-like)

rather than a hedgehog (radial) skyrmion configuration emerges [2, 24, 25]. We start with a

classical Heisenberg model on a two-dimensional regular square lattice with nearest-neighbor

symmetric exchange interaction, the bulk-type DMI, and the Zeeman field [12, 18, 26]. In

addition, a time-dependent magnetic field h(t) is applied in the +z-direction. Accordingly,

the system’s Hamiltonian can be written as

H =− J
∑
〈i,j〉mi ·mj +

∑
〈i,j〉Dij · [mi ×mj]

−
∑

i |µi|(H + h(t)) ·mi, (1)

where 〈i, j〉 represents a unique pair of lattice sites i and j, mi is the unit vector of the

magnetic moment µi = −~γSi with Si being the atomic spin and γ(> 0) the gyromagnetic

ratio, and J is the symmetric exchange energy constant. In the case of bulk DMI, the DMI

vector Dij can be written as Dij = Dr̂ij, where D is the DMI constant and r̂ij is the unit

vector between Si and Sj. We use the DMI value with D/J = 0.18, which results in the

spiral period λ ∼ 2πJa/D ∼ 25 nm for a typical lattice constant a = 0.5 nm [8]. We consider

two nonzero components for the static external field H: an in-plane component Hy and a

perpendicular component Hz, i.e., H = (0, Hy, Hz). A nonzero Hz is essential for stabilizing

the skyrmion crystal [18].

The spin dynamics at lattice site i is governed by the Landau-Lifshitz-Gilbert (LLG)

2



x

y z

(a)

(b) (c)

(d)

y

x

-0.0021

-0.0015

-0.0009

-0.0003

0.0003

FIG. 1. (a) Skyrmion configuration in the presence of an in-plane field Hy = 0.006 with D = 0.18,

J = 1 and Hz = 0.02. (b) The symmetric topological charge density distribution of a skyrmion

when Hy = 0. (c) The corresponding topological charge density for the skyrmion shown in (a)

when Hy > 0. (d) The skyrmion lattice with 12 skyrmions in a sample of size N = 174× 150 sites,

with an in-plane field Hy = 0.004.

TABLE I. Unit conversion table for J = 1 meV, S = 1 and a = 0.5 nm.

Distance x x̂ = a = 0.5 nm

Time t t̂ = ~S/J ≈ 0.66 ps

Velocity v v̂ = Ja/(hS) ≈ 7.59× 102 m/s

Frequency ω ω̂ = J/(~S) ≈ 1.52× 103 GHz

Magnetic field H Ĥ = J/(~γS) ≈ 8.63 T

equation,

∂mi

∂t
= −γmi ×Heff + αmi ×

∂mi

∂t
(2)

where α is the Gilbert damping and Heff is the effective field that is computed as Heff =

−(1/|µi|)∂H/∂mi. The Hamiltonian (1) associated with the LLG equation (2) can be

understood as a finite-difference-based micromagnetic model. Therefore, our simulation

results are reproducible by setting the saturation magnetization Ms = ~γS/a3, exchange

constant A = J/2a and DMI constant for continuum form Da = −D/a2 (corresponding to

the energy density εdmi = Dam · (∇ ×m)) in micromagnetic simulation packages such as

OOMMF [27]. We have carried out simulations with and without dipolar interactions, and

the results are qualitatively the same. We report results without dipolar interactions for

clarity of the model assumptions.

3



A two-dimensional system of size N = 160× 160 sites with periodic boundary conditions

is selected to study the dynamics of a single skyrmion, Fig. 1(a), and N = 174 × 150 sites

for the skyrmion lattice, as shown in Fig. 1(d). We have chosen J = ~ = γ = S = a = 1

as simulation parameters [18, 28], therefore, the coefficients to convert the external field H,

time t, frequency ω and velocity v to SI units are Ĥ = J/~γS, t̂ = ~S/J , ω̂ = J/~S and

v̂ = Ja/~S, respectively. Table I shows the expressions, and particular values for the case

of J = 1 meV, S = 1 and a = 0.5 nm. We use simulation units throughout the paper.

The perpendicular component Hz is fixed as Hz = 0.02 which corresponds to 0.173 T for

S = 1 and J = 1 meV. We use Gilbert damping α = 0.02 for all simulations except for

the magnetic spectra shown in Fig. 2 where α = 0.04 is chosen. For the single skyrmion

dynamics, we apply the absorbing boundary conditions for damping [29] by setting α = 1.0

for the 20 spins at the edges of a simulated domain.

The configuration of a skyrmion in the presence of an in-plane field Hy = 0.006 is shown

in Fig. 1(a). It is found that the radial symmetry is broken. Indeed, as shown in Fig 1(c), the

corresponding distribution of the topological charge density q(x, y) = (1/4π)m·(∂xm×∂ym)

is asymmetric. However, the total topological charge of a single skyrmion remains constant

Q =
∫
qdxdy = −1. As a comparison, Fig. 1(b) shows the topological charge density q for

a skyrmion with radial symmetry when Hy = 0. Similar to the vortex [30], the distortion of

the skyrmion is along the x-axis when an external field is applied in the y-direction.
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FIG. 2. Imaginary parts of the Hy-dependent dynamical susceptibility χzz as a function of fre-

quency for (a) a single skyrmion, and (b) a skyrmion lattice. The spectra are obtained by applying

a sinc-field pulse h = h0sinc(ω0t) to the system with h0 = 1 × 10−5 and ω0 = 0.1π in the z-axis,

the magnetization dynamics is recorded every dt = 5 for 8000 steps.
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The excitation of internal modes depends on the static external field Hz as well as

the frequency and direction of microwaves [18, 31]. The typical excited modes are the

clockwise/counterclockwise rotation and breathing modes [18–20]. To study how the in-

plane applied field Hy affects the excitation mode of a skyrmion, we calculate the mag-

netic absorption spectrum of the skyrmion. After applying a sinc-function field pulse

h = h0sinc(ω0t) = h0 sin(ω0t)/(ω0t) to the stable skyrmion state we record the spatially

averaged magnetization evolution and from that we compute the dynamic susceptibility χ

via a Fourier transformation [32, 33]. For instance, the component χzz is computed using

mz when the pulse is parallel to the z-axis.

Figure 2 shows the imaginary part of the dynamical susceptibility χzz for a single skyrmion

(a) and a skyrmion lattice (b); each calculated for different in-plane fields Hy. We see in (b)

for the skyrmion lattice and Hy = 0 that the mode with frequency ω ≈ 0.0246 is dominant.

This is the so-called breathing mode [18, 19]. The resonance angular frequency ω ≈ 0.0246 in

simulation units corresponds to the frequency f = ω/2π ≈ 5.95 GHz (using ω̂ from Table I).

The breathing mode frequency decreases slightly as the in-plane field Hy increases. A second

peak emerges with increasing Hy, and the frequency of the new mode is ω ≈ 0.0278 when

Hy = 0.006. Similar to the skyrmion lattice, a breathing mode with ω ≈ 0.0168 is found

for a single skyrmion, as shown in Fig. 2(a). In general, the resonance frequency of a single

skyrmion is lower than that for the skyrmion lattice. As for the skyrmion lattice, a new

mode with frequency around 0.02 emerges for the single skyrmion case as Hy is increased.

This second mode is the uniform mode with frequency ω = γH where H ' (H2
y +H2

z )1/2 is

the amplitude of the external field.

In the presence of an in-plane applied field Hy, the skyrmion is deformed, as shown

in Fig. 1(a) and Fig. 1(c). Therefore, instead of the geometric center we measure the

so-called guiding center [34] R = (X, Y ) of a skyrmion: X =
∫
xqdxdy/

∫
qdxdy and

Y =
∫
yqdxdy/

∫
qdxdy, where q is the topological charge density. For a symmetric

skyrmion, the guiding center is the same as its geometric center. In the rest of this work, we

consider the scenario that a linearly polarized microwave is applied in the z-direction, i.e.,

h(t) = h0 sin(ω0t)ez, where h0 and ω0 are the amplitude and frequency of the microwave,

respectively.

Figure 3(a) shows the displacement of the guiding center for a single skyrmion with

ω0 = 0.017 and in-plane field Hy = 0.004. The microwave amplitude is h0 = 2×10−4, which
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FIG. 3. (a) The displacements of the guiding center (X,Y ) for a single skyrmion. The simulation

parameters are ω0 = 0.017, h0 = 2× 10−4 and the in-plane field Hy = 0.004. (b-d) The velocities

vx and vy as functions of (b) the microwave frequency ω0, (c) the microwave amplitude h0, and (d)

the in-plane field Hy. The fixed simulation parameters are the same as in (a).

corresponds to 1.73 mT for J = 1 meV and S = 1. It can be seen that the x-component of

the guiding centre, X, changes significantly as a function of time, while the displacement of

Y is relatively small. Fig. 3(b) plots the frequency-dependent skyrmion velocity and shows

that a single skyrmion has maximum velocity when ω0 = 0.017, which is the breathing

mode resonance frequency. Therefore, exciting the breathing mode can move the skyrmion

effectively in the presence of an in-plane field Hy. Using the conversions presented in Table I,

the maximum velocity is vx ≈ 2.8 cm/s. While vx is positive for frequency ω0 = 0.017, it

is negative for ω0 = 0.023, where the former corresponds to the breathing mode, and the

latter to coherent rotation. The relation between the velocities and the amplitude of the

microwave is shown in Fig. 3(c), and the dependence of vx on h0 is nonlinear: vx ∝ h2
0 which

is proportional to the power of the microwaves.

Figure 3(d) describes the relation between the skyrmion velocity and the in-plane field

Hy. The velocity is zero if Hy = 0, which is expected due to the symmetry of the skyrmion.

The velocity of the skyrmion also depends on the direction of the in-plane field Hy: the

velocity is reversed when the direction of in-plane field is reversed. Similarly, a change in

the sign of the DMI constant will also reverse the sign of the velocity, which is different from

the case of driving skyrmions with spin-polarized currents, where the sign of perpendicular

velocity (with respect to the current direction) of the skyrmion motion is related to the sign
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of topological charge rather than the DMI constant sign.

(a) (b)

FIG. 4. The total spatial force density fi = m̃s · [∂im̃s × 〈m × Heff〉] for (a) Hy = 0, and (b)

Hy = 4 × 10−3, where we have used ms = 〈m〉 and n ≈ m − 〈m〉. The microwave frequency is

ω0 = 0.017.

To understand why the skyrmion moves in the presence of an in-plane field, we split the

magnetization unit vector m into a slow part ms and a fast part n, i.e., m = ms + n,

where the slow part represents the equilibrium profile of the skyrmion while the fast part is

responsible for the excited spin wave mode [12, 35]. In the continuum approximation, the

effective field is Heff = Ã∇2m−D̃∇×m+H+h(t), where Ã = 2A/Ms and D̃ = 2Da/Ms. In

the presence of the microwaves with specific frequency, bound spin-wave modes are excited,

and thus we expect 〈ṅ〉 = 0 and 〈n〉 = 0 due to the microwave synchronization, where

T = 2π/ω0 is the period of microwaves and the notation 〈f〉 = 〈f〉(t) ≡ T−1 ·
∫ t+T

t
f(t′)dt′

represents the time average of function f(t) over a single period T . Furthermore, one obtains

〈ms× ṅ〉 ≈ 0 and 〈n× ṁs〉 ≈ 0 since ms is the slow part. Therefore, by averaging the LLG

equation (2) over a period T we arrive at

〈ṁs〉 = −γ〈m×Heff〉+ α〈ms × ṁs〉. (3)

where 〈n × ṅ〉 = 0 is used since basically n is a sine or cosine function in time. We then

consider the possible translational motion of the skyrmion such that ms(r, t) = ms(r−vst),

i.e., ṁs = −(vs ·∇)ms, where the skyrmion velocity vs = dR/dt is assumed to be a constant.

If the skyrmion moves slowly, i.e., vsT � L (L is the typical skyrmion size), we have

〈ṁs〉 ≈ −(vs ·∇)m̃s (see Appendix A) where m̃s = 〈ms〉. Similarly, 〈ms×ṁs〉 ≈ m̃s×〈ṁs〉,

and thus Eq. (3) can be rewritten as

(vs · ∇)m̃s = γ〈m×Heff〉+ αm̃s × (vs · ∇)m̃s. (4)

7



Following Thiele’s approach in describing the motion of magnetic textures [36], we replace

the dots in
∫

m̃s · (∂im̃s × · · · )dxdy by Eq. (4) to obtain [10, 12, 35]

G× vs + D̂vs = F, (5)

where i = x, y and G = 4πQez. The tensor D̂ij = αηij is the damping tensor in which

ηij =
∫

(∂im̃s ·∂jm̃s)dxdy = δijη is the shape factor of the skyrmion and η is close to 4π [35].

The force F is given by

Fi = −γ
∫

m̃s ·
[
∂im̃s × 〈m×Heff〉

]
dxdy. (6)

Figure 4(a) and (b) depict the total spatial force density for Hy = 0 and Hy = 4× 10−3,

respectively, where we have used m̃s = 〈m〉. The force density is symmetric if Hy = 0

and thus the total force F is zero. However, when Hy is nonzero the force distribution is

asymmetric which results in the skyrmion motion due to the nonzero net force. For small

damping α � 1, we have vx ≈ Fy/(4πQ). The total force calculated with parameters

ω0 = 0.017, Hy = 0.004 and h0 = 2 × 10−4 is Fy = −4.7 × 10−4, therefore, the established

velocity is vx = 3.7×10−5, which fits the simulation result (∼ 3.8×10−5) well. Similarly, for

ω = 0.023 using Eq. (6) we obtain Fy = 5.7× 10−5 and find vx ≈ −4.5× 10−6 from Eq. (5);

in agreement with the simulation results (minimum of vx is −4.7× 10−6).

It is of interest to circumstantiate the contributions of the total force F. In Appendix B

we show that there are three nontrivial terms

〈m×Heff〉 ≈ 〈n× [Ã∇2n− D̃∇× n + h(t)]〉. (7)

The exchange term n × Ã∇2n corresponds to magnon currents [12, 35]. Compared to

the skyrmion motion induced by the temperature gradient, where the magnon current is

generated by the temperature gradient, here the magnon current originates from the external

microwave fields. Another difference is that in our case the contributions from DMI and

microwave fields are also significant.

We repeat the velocity study for the skyrmion lattice. Fig. 5(a) plots the velocities vx and

vy of the skyrmion lattice as functions of the in-plane external field Hy. The dependencies

are similar to the single skyrmion case. The frequency-dependent velocities vx and vy are

shown in Fig. 5(b). As for the single skyrmion case, the velocity peak coincides with the

dominant dynamical susceptibility peak in Fig. 2(b).
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FIG. 5. (a) The velocities vx and vy as a function of an in-plane field Hy for the skyrmion lattice

at frequency ω0 = 0.023. (b) The velocities as a function of frequency ω0 with Hy = 4× 10−3. The

microwave amplitude is h0 = 2× 10−4.

In closing, we briefly comment on the importance of symmetry breaking in driving the

skyrmions. The driving force originates from the microwave field, which is periodic in time

and averages to zero. The symmetry-breaking field converts the periodic microwave field into

a net force and thus moves skyrmions effectively. A related field with periodic driving forces

is that of ratchet-like transport phenomena [37–39], where the net motion is obtained by

breaking the spatial symmetry [37] or temporal symmetry [39]. We also note that preliminary

simulation results suggest that for magnon-driven skyrmions [15, 16] the introduction of a

symmetry-breaking in-plane field affects the skyrmion’s motion and changes the Hall angle

significantly.

In summary, we have studied the skyrmion dynamics driven by microwaves in the presence

of an in-plane external field. We found that both a single skyrmion and a skyrmion lattice

can be moved by a linearly polarized microwave field if the axial symmetry of skyrmions

is slightly broken. These results suggest a novel method for skyrmion manipulation using

microwaves fields.
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Appendix A

Assume that a well-behaved function f(x, t) = f(x − vt) describes the dynamics of a

soliton where v is a constant. As we can see, f satisfies ḟ = −vf ′. For given time T , if

vT � L where L is the typical size of the soliton (for example, L could be the domain wall

width for a magnetic domain wall), we can find that

〈ḟ〉(0) =
1

T

∫ T

0

ḟdt =
1

T
[f(x− vT )− f(x)]

≈ −vf ′(x− vT/2), (A1)

where we have used the Taylor series for f(x) and f(x− vT ):

f(x) ≈ f(x− vT/2) + f ′(x− vT/2)vT/2 (A2)

f(x− vT ) ≈ f(x− vT/2)− f ′(x− vT )vT/2. (A3)

Similarly, we can see that f̃0 ≡ 〈f〉(0) ≈ f(x−vT/2) and thus we have 〈ḟ〉(0) ≈ −vf̃0. This

relation actually holds for arbitrary t

〈ḟ〉 ≈ −vf̃ . (A4)

Appendix B

By using the effective field explicitly and notice that m = ms + n, the term 〈m×Heff〉

can be splited into 4 parts

〈m×Heff〉 = 〈T1 + T2 + T3 + T4〉, (B1)

where T1 = n×[Ã∇2n−D̃∇×n+h(t)] is shown in Eq (7), T2 = ms×(Ã∇2ms−D̃∇×ms+H),

T3 = n×(Ã∇2ms−D̃∇×ms+H) and T4 = ms×[Ã∇2n−D̃∇×n+h(t)]. We expect T2 = 0

since ms represents the equilibrium state of the skyrmion. For the slow skyrmion motion,

replacing ms by m̃s and noticing that 〈n〉 = 0, we obtain 〈T3〉 ≈ 〈n〉×(Ã∇2m̃s−D̃∇×m̃s) =

0 and 〈T4〉 ≈ m̃s × 〈Ã∇2n − D̃∇× n + h(t)〉 = 0. In this slow motion approxmation, the

fast part n can be computed as n ≈m− 〈m〉.
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