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We show that all so(N)1 universality class quantum criticalities emerge when one-dimensional gen-
eralized cluster models are perturbed with Ising or Zeeman terms. Each critical point is described by
a low-energy theory of N linearly dispersing fermions, whose spectrum we show to precisely match
the prediction by so(N)1 conformal field theory. Furthermore, by an explicit construction we show
that all the cluster models are dual to non-locally coupled transverse field Ising chains, with the
universality of the so(N)1 criticality manifesting itself as N of these chains becoming critical. This
duality also reveals that the symmetry protection of cluster models arises from the underlying Ising
symmetries and it enables the identification of local representations for the primary fields of the
so(N)1 conformal field theories. For the simplest and experimentally most realistic case that corre-
sponds to the original one-dimensional cluster model with local three-spin interactions, our results
show that the su(2)2 ' so(3)1 Wess-Zumino-Witten model can emerge in a local, translationally
invariant and Jordan-Wigner solvable spin-1/2 model.

A striking property of quantum phase transitions is
that of universality. Near a critical regime separating
distinct quantum states of matter, the system specific
microscopic details are lost and the system acquires uni-
versal behavior that is characterized by scaling exponents
of distinct observables near the transition [1]. A crucial
step in putting order to the zoo of distinct universali-
ties was made by noting that the diverging correlation
length at the critical point implies conformal invariance,
and thus a description by a conformal field theory (CFT)
[2, 3]. This approach is particularly powerful in one spa-
tial dimension (1D), where the relevant CFT fully de-
scribes (the scaling of) the correlation functions.

1D quantum models with critical points are thus the
natural playgrounds for quantum criticality. The sim-
plest and the most celebrated ones are the transverse field
Ising (TFI) chain [4], that at criticality is described by the
Ising CFT, and the XY chain [5] where the anisotropic
transition is described by the so called so(2)1 CFT. So
ubiquitous are these universality classes that criticality
beyond them is often filed under “exotic”. Still, consid-
ering this ubiquitous nature these simple models have
played in various fields of physics, it was only rather
recently when the details of the criticality of the TFI
chain were experimentally probed [6]. The challenge of
probing quantum criticality beyond these simple models
owes to the lack of tractable models that admit acces-
sible experimental realization. To go beyond them, of-
ten higher spins [7–12], infinite range couplings [13, 14],
broken translational invariance [15], strongly interacting
systems [16–18], or combinations there of [19, 20], are
required. Here we show that a hierarchy of local, ex-
actly solvable and translationally invariant spin-1/2 mod-
els provides the simplest setting to generalize the Ising

universality class by realizing all so(N)1 criticalities, that
were previously considered in manifestly so(N) symmet-
ric higher spin chains [7, 9] or in models with broken
translational invariance [15]. Furthermore, we show that
the universality manifests itself microscopically through
every quantum critical point being dual to N non-locally
coupled critical transverse field Ising chains.

Our hierarchy can be viewed as a generalization of 1D
cluster models [21] – a class of stabilizer models with
a symmetry protected degenerate ground state manifold
[22, 23] – whose ground states in 2D were first proposed
as a universal resource for one-way quantum computa-
tion [24]. While in 1D these models are universal re-
sources only for a single qubit, they have proven acces-
sible settings to study the entanglement [21–23, 25–30]
and the computational power [31–33] of symmetry pro-
tected states, as well as the robustness of edge states in
a many-body localized phase [34]. Perturbing the pure
stabilizer models with Ising and Zeeman terms, we define
the generalized cluster models with periodic boundary
conditions by the Hamiltonians (the original 1D cluster
model corresponds to A = 3)

H
(A)
cluster =

L−1∑
i=0

( CAi + Jσxi σ
x
i+1 + hσzi ) , (1)

where CAi = σyi σ
z
i+1 · · ·σzi+(A−2)σ

y
i+(A−1) acts on A adja-

cent sites and J and h are the magnitudes of the Ising
and Zeeman terms, respectively. The cluster stabilisers
CAi commute with each other and thus for J = h = 0
one obtains the cluster state as the unique ground state
that satisfies CAi |Ψ〉 = − |Ψ〉 for all i. Anologous to
the spin-1 Haldane phase [35–37], these states are sym-
metry protected topological (SPT) phases protected by

global Z×A−1
2 symmetries Zn =

∏(L−1)/(A−1)
i=0 σz(A−1)i+n
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FIG. 1. Phase diagram of the 3-cluster model exhibiting
gapped cluster (C), polarised (P ) and anti-ferromagnetic
(AFMx,y) phases [27]. The solid (dashed) lines indicate sec-
ond order quantum phase transitions along which the spec-
tral gap closes at two (one) distinct Fermi momenta. The
insets show the spectrum (3) at the multi-critical points
(J, h) = (±1, 0) and (J, h) = (0,±1) where the critical spec-
trum exhibits two (circles) and three (squares) Majorana
cones, respectively.

for n = 0, . . . , A− 2, and characterized by a string order
parameter and edge states [22, 23, 38]. We show below
that even if these symmetries are broken, the perturbed
Hamiltonians can still exhibit global Z×N2 symmetries,
where N depends on the perturbation in question.

To study the phase diagrams of the A-cluster models
(12), we map (12) to a problem of free fermions by intro-
ducing two Majorana fermions per physical site

ai =

(∏
k<i

σzk

)
σxi , bi =

(∏
k<i

σzk

)
σyi . (2)

Assuming a chain of L sites with periodic boundary
conditions, in momentum space the Hamiltonian takes

the form H
(A)
cluster = i

∑
k

[
εka
†
kbk − ε∗kb

†
kak

]
, where εk =

−h+ J exp(−ik) + exp[i(A− 1)k] and the Majorana op-

erators satisfy in the momentum space c†k = c−k. The
momentum takes the values k = (2m + 1 − P )π/L,
where m = 0, . . . , L − 1 and P = ±1 is the eigen-
value of the parity operator Pcluster =

∏L−1
i=0 σzi . The

spectrum can be brought to the diagonal form H =∑
k |εk|(2γ

†
kγk − 1) by moving to the complex fermion

basis γk = 1√
2

(
i |εk|ε∗k

ak + bk

)
with the eigenvalues given

by

|εk| =
[
1 + h2 + J2 + 2J cos(Ak)

−2h(J cos(k) + cos((A− 1)k))]
1/2

. (3)

The resulting phase diagram for the simplest 3-cluster
model, that was first studied in Ref [27], is shown in
Figure 1. While the phase diagrams become in general
more complex for A > 3 (presented in the Supplementary

Material [39]), they all share a common feature: One al-
ways finds multi-critical points at (J, h) = (±1, 0) and
(J, h) = (0,±1), where there is a second order quan-
tum phase transition from the cluster phase to an anti-
ferromagnetic or a spin polarised phase, respectively. De-
termining the CFT describing these critical points for
general A is our main result.

To gain insight into these critical points, we focus first
on (J, h) = (±1, 0) where the dispersion reduces to |εk| =√

2± 2 cos(Ak). This vanishes at the N = A Fermi
points Kn = π/N + 2πn/N (J = 1) or Kn = 2πn/N
(J = −1), where n = 0, . . . , N − 1. Expanding around
each Fermi momenta by writing k = Kn + p with p� 1,
one finds linear dispersion |εKn+p| = Np + O(p2) im-
plying a low-energy description in terms of N fermions
of velocity N . Carrying out a similar analysis for the
(J, h) = (0,±1) critical points, one finds N = A − 1
Fermi points with linearly vanishing dispersion, as illus-
trated in Figure 1. It is well known that at low energy,
the spectrum of the critical TFI chain is described by a
single linearly dispersing fermion and that the critical-
ity is described by the Ising CFT with central charge
c = 1/2 [3]. Thus the low-energy description in terms
of N fermions with a linear dispersion naively suggests
that the corresponding critical points are described by
a product theory of N Ising CFTs with c = N/2. In-
deed, central charges of c = 1 and c = 3/2 have been
obtained for the 3-cluster model at (J, h) = (0,±1) [30]
and (J, h) = (±1, 0) [23], respectively.

However, neither the number of linearly dispersing
fermions nor the central charge uniquely fix the CFT. In
addition to the product CFT Ising×N , the central charge
of c = N/2 and the spectrum of N fermions are also
consistent with the so called so(N)1 CFTs [7–9, 15]. As
these theories have dramatically different primary field
content [3, 39], they can be distinguished by the energy
levels and degeneracies in the finite-size energy spectrum
that is fully determined by the field content of the corre-
sponding CFT. For non-chiral models such as ours, the
spectrum of an L site chain takes the form [3]

E = E0L−
πvc

6L
+

2πv

L
(2hα + n), (4)

where the on-site energy E0 and the velocity v are non-
universal numbers and n is a non-negative integer. On
the other hand, the central charge c and the scaling di-
mension hα of each primary field α are universal and
determined by the CFT. The spectrum can be simplified
by setting the ground state energy to E = 0 and scaling
the spectrum such that the first excited state has energy
E = 2hα′ , with hα′ being the smallest non-zero scal-
ing dimension. The spectrum assumes then the simple
form E = 2hα+n where the energies arrange themselves
into integers offset by the scaling dimensions that char-
acterise the CFT. The predictions of the energy levels
and degeneracies by both so(N)1 and Ising×N CFTs are
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FIG. 2. Matching of the CFT spectra E = 2hα + n for the
so(3)1 and so(2)1 critical points of the N = 3 cluster model.
The so(3)1 CFT has three primary fields {1, ψ, σ} with scaling
dimensions h1 = 0, hψ = 1/2 and hσ = 3/16, while the so(2)1

CFT has four primary fields {1, ψ, λ, λ̄} with scaling dimen-
sions h1 = 0, hψ = 1/2 and hλ = hλ̄ = 1/8. In both cases the
rescaled energies follow the predicted pattern (4), with the
degeneracies (not indicated) at each energy level matching
those predicted for so(N)1 CFTs, see [15].

presented in the Supplementary Material [39]. In Fig-
ure 2, we plot the spectra for the 3-cluster model at the
critical points (J, h) = (1, 0) and (0, 1), which match pre-
cisely the prediction by the so(3)1 and so(2)1 CFTs, re-
spectively. We have verified that this structure holds for
general A-cluster models, which leads to our main result:
The multi-critical points (J, h) = (±1, 0) and (±1, 0) of
every A-cluster model have low-energy theories in terms
N = A and N = A − 1 fermions, respectively, and they
are described by so(N)1 CFTs.

To analytically demonstrate the universality of these
critical points, we now turn to show that at each so(N)1

critical point the system can be mapped to N non-locally
coupled TFI chains with Z×N2 symmetry. These symme-
tries correspond to different decompositions of the parity
sectors Pcluster =

∏A−1
n=1 Zn =

∏N
n=1 Pn into hidden sym-

metry sectors labeled by Pn = ±1. The canonical spin
duality transformations we employ are inspired by Refs
[15, 21] and exist for general N (presented in the Supple-
mentary Material [39]). For the sake of clarity we focus
here on the 3-cluster model. When h = 0 we employ first
the canonical transformations

σy3j = Q<j τx3j+1, σz3j = τy3jτ
y
3j+1Q

>
j , (5)

σy3j+1 = −τx3jτx3j+1τ
x
3j+2, σz3j+1 = Q<j τz3jτx3j+1τ

x
3j+2Q>j

σy3j+2 = τx3j+2Q>j , σz3j+2 = Q<j τ
y
3jτ

y
3j+2,

where Q<j =
∏
i<j(τ

z
3iτ

z
3i+2) and Q>j =

∏
i>j(τ

z
3iτ

z
3i+1).

Assuming that L is a multiple of three, applied to (12)
we obtain

H
(3)
cluster =

L/3−1∑
j=0

(
Jτx3jτ

x
3j+3 +τz3j + JP1P2τ

x
L−3τ

x
0 +

τx3j+1τ
x
3j+4 +Jτz3j+1 + P0P2τ

x
L−2τ

x
1 +

τx3j+2τ
x
3j+5 +Jτz3j+2 + P0P1τ

x
L−1τ

x
2

)
,

(6)

where the duals of Pn =
∏L/3−1
m=0 τz3m+n are hidden global

Z×3
2 symmetries of the perturbed cluster model (all the
Zn symmetries are broken by J 6= 0). A simpler duality
exists for h 6= 0, but J = 0 when the Zn symmetries are
preserved. Assuming that L is even, we introduce

σy2j = Q<j τ
y
2j , σy2j+1 = Q>j τ

y
2j+1, σzi = τzi , (7)

where now Q<j =
∏
i<j τ

z
2i+1 and Q>j =

∏
i>j τ

z
2i, which

directly give

H
(3)
cluster =

L/2−1∑
j=0

(
τy2jτ

y
2j+2 +hτz2j + P1τ

y
L−2τ

y
0 +

τy2j+1τ
y
2j+3 +hτz2j+1 + P0τ

y
L−2τ

y
1 ,

(8)

where Pn =
∏L/2−1
m=0 τz2m+n now coincide with the Zn

symmetries.
Along both cuts of the phase diagram that contain the

multi-critical points we thus find the same structure: The
A-cluster models with Ising or Zeeman perturbations are
dual to TFI chains that are non-locally coupled such that
the boundary condition for the nth TFI chain depends
on the product

∏
m6=n Pm of the Ising symmetry sectors

of all the other chains. This coupling is precisely of the
general form that, based on the framework of condensate-
induced transitions between topological phases [40], has
been recently shown to change the criticality between
Ising×N and so(N)1 universality classes [15]. In the sec-
tor where Pn = 1 for all n, or for open chains with free
boundary conditions, the spectrum is indeed equal to de-
coupled TFI chains and at criticality the spectrum is
indistinguishable from that of Ising×N CFT. The cru-
cial point is that this sector is only a single subsector
of the Pcluster = 1 symmetry sector. To construct the
full so(N)1 critical spectrum, one needs to appropriately
combine the spectra of N critical TFI chains using all
Ising symmetry sectors. This subtle mixing of the spectra
from different symmetry sectors underlies the emergence
of the so(N)1 instead of the Ising×N universality class
and highlights the need to consider all symmetry sectors
when identifying the relevant CFT by spectral means.

These results can be generalized to the critical points
between arbitrary cluster phases. Consider the critical
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(J,h)=(±1,0)

(J,h)=(0,±1)

FIG. 3. The Majorana representation of the H
(3)
cluster clus-

ter model. The ellipses denote the physical spin sites that
are represented by two Majoranas. The solid lines corre-
spond to Majorana terms originating from σxi σ

x
i+1 = ibiai+1

or σzi = −iaibi terms, while dashed lines correspond to clus-
ter terms σyi σ

z
i+1σ

y
i+2 = iaibi+2. Along the h = 0 (J = 0)

cut the system decouples locally into three (two) Majorana
wires. The wires are coupled non-locally though through their
boundary conditions that for each chain are either periodic or
anti-periodic depending on Pcluster =

∏
j(iajbj) = ±1.

Hamiltonian H =
∑
i(C

A
α,i + CBβ,i), where we have in-

troduced two non-commuting cluster stabilizers CAα,i =
σαi σ

z
i+1 · · ·σzi+(A−2)σ

α
i+(A−1) with α = x, y (we define

C1
α,i = −σzi ). Employing the mapping to Majorana

fermions (2), one immediately finds that for α 6= β the
system maps into |(A − 1) + (B − 1)| Majorana chains,
which are only coupled through their boundary condi-
tions given by Pcluster (see Figure 3 for the Majorana rep-
resentation of the 3-cluster model with A = 3 and B = 1
or 2). For α = β one finds |A−B| such chains. Since Ma-
jorana chains are well known to be dual to TFI chains,
their coupling through their boundary conditions trans-
lates precisely into the non-local coupling between TFI
chains discussed above. Thus we conclude that the criti-
cal points between arbitrary cluster phases are always de-
scribed by the so(N)1 CFT with N = |(A−1)± (B−1)|.
That all critical points due to arbitrary competing cluster
stabilizers can be mapped to the Hamiltonian

Hso(N)1 =

L−N∑
i=1

τxi τ
x
i+N+

N∑
n=1

(
∏
m 6=n

Pm)τxL−N+nτ
x
n+

L∑
i=1

τzi

(9)
with Z×N2 symmetry, is the microscopic manifestation of
the universality of so(N)1 criticality and provides a full
classification of criticalities in this set of exactly solvable
models.

This universal microscopic description can be em-
ployed to identify candidates for the spin representa-
tions for fields related to the chiral primaries ψ and σ
of the so(N)1 CFT with scaling dimensions hψ = 1/2
and hσ = N/16, respectively. If a field with scaling di-
mension ∆α = 2hα is represented by a local operator Oαi ,
then the ground state correlator at the critical point is
expected to decay as 〈Oαi Oαj 〉 ∼ |i− j|−2∆α . For a criti-
cal TFI chain, which can be viewed as the special N = 1

case of the hierarchy, the non-chiral combinations of the
ψ (hψ = 1/2) and σ (hσ = 1/16) primaries are related
to local operators through ψLψR ∼ τz and σLσR ∼ τx

(the chiral left (L) and right (R) moving parts require
non-local operators)[3]. Thus local operators in the A-
cluster models with the scaling h = 1 of the ψLψR field
are given by the duals of the τzj operators, while a natu-
ral candidate for a local operator with scaling dimension
2N/16 of σLσR is the dual of the product of N adjacent
τxj operators. For the so(3)1 critical point of the 3-cluster
model at (J, h) = (±1, 0) these would explicitly be given
by, for instance, ψLψR ∼ σxj σ

x
j+1 and σLσR ∼ σyj . We

leave the explicit verification, either analytically [4, 5] or
numerically [30, 41, 42] for future work.

Finally, we show that the dual picture in terms of N
boundary coupled TFI chains is consistent with and use-
ful also to study the perturbed gapped cluster phases
[21–23]. For J = h = 0 and for periodic boundary condi-

tions, for A odd (even) there holds
∏L
i=1 C

A
i =

∏L
i=1 σ

z
i

(1), which implies L (L−1) independent constraints and
thus a unique (two-fold degenerate) ground state. In the
cluster phase A− 1 TFI chains are in the ferromagnetic
phase, but the unique ground state for A odd arises from
the boundary coupling enforcing that there is only one
sector (Pn = 1 for all n) where all chains have periodic
boundary conditions (the lowest energy contribution per
TFI chain), while for A even this occurs for two sec-
tors (Pn = ±1 for all n). For free boundary conditions
the boundary coupling is removed and there are only
L−(A−1) stabiliser constraints. This gives rise to a 2A−1

fold ground state degeneracy that is consistent with A−1
out of the N unconstrained TFI chains being in the fer-
romagnetic phase. While the Zn symmetries protecting
the pure cluster state are in general broken by Zeeman,
Ising or competing cluster term perturbations, the dual
TFI chain picture with hidden Z×N2 symmetry persists
throughout the cluster phase. Since this picture enables
to isolate the hidden degrees of freedom that contribute
to the properties of perturbed cluster states (regardless
of N only A − 1 TFI chains contribute to the A-cluster
state), it can be valuable for studying the computational
power of symmetry protected topological states [31–33].

We have shown that transitions between symmetry
protected cluster phases realize all quantum critical
points in the universality class of so(N)1 CFTs. We
explicitly demonstrated the microscopic universality of
the transitions by mapping every multi-critical point to
N non-locally coupled TFI chains with Z×N2 symmetry.
Thus in addition to being of interest to quantum infor-
mation [21–23, 25–33], cluster models are also accessible
platforms for probing quantum criticality beyond Ising
universality class that can emerge between distinct SPT
states. Experimental realizations of these models has
been proposed in optical lattices [25] and with trapped
ions [43]. Furthermore, an important corollary of our
results is the discovery that the su(2)2 ' so(3)1 critical-
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ity, which has previously been discovered only in spin-1
or higher systems [7, 16, 19, 20], can emerge also in a
translationally invariant spin-1/2 chain with local inter-
actions. A full classification of criticalities between SPT
phases beyond the Z2 protection of the integrable cluster
models remains an interesting open question.
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Supplementary Material

In the supplementary material we present the phase
diagrams and give the duality transformations for general
A-cluster models. We also briefly review how the CFT
predicts the spectrum at a critical point and give the
predictions by so(N)1 and Ising×N CFTs.

Phase diagrams for arbitrary A-cluster models

The spectrum of the A-cluster model is in general given
by

|εk| =
[
1 + h2 + J2 + 2J cos(Ak)

−2h(J cos(k) + cos((A− 1)k))]
1/2

. (10)

To find the parameters J and h for which the gap closes,
we complete squares to obtain |εk|2 =

(
h − J cos(k) −

cos((A − 1)k)
)2

+
(
J sin(k) − sin((A − 1)k)

)2
. We find

that there is gap closing point at k = 0 when J = h− 1
and at k = π when J = −h−(−1)A. In addition, the gap
closes along a curve in (h, J), that can be parametrized
by the momentum 0 ≤ p ≤ π for which εp = 0. This
curve is given by

(h, J)(p) =
( sin(Ap)

sin(p)
,

sin((A− 1)p)

sin(p)

)
. (11)

Along this curve, the gap closes at both k = p and
k = 2π − p. The multi-critical points at (h, J) = (±1, 0)
and (h, J) = (0,±1) occur when this line intersects it-
self and/or the two lines with a gap closing at a fixed
momentum.

The phase diagrams for some of the smallest A are
illustrated in Figure 4. As A increases, the A-cluster
phase becomes sharply bounded by J + h < 1. Several
fine-tuned gapped phases also emerge due to the compe-
tition between all the three Hamiltonian terms. These
are magnetic phases similar to the incommensurate anti-
ferromagnetic phases of the 3-cluster model studied in
Ref [27].

Duality transformations for arbitrary A-cluster
models

A system of N locally decoupled TFI chains can be
realised on a single 1D system by considering a single
TFI chain with Nth nearest neighbour interactions only.
When they are coupled together non-locally such that the
boundary condition (periodic or anti-periodic) of chain n
depends on the product

∏
m 6=n Pm of the Ising symme-

try sectors of all other chains, it has been argued in Ref
[15] that the criticality, when all the TFI chains are si-
multaneously critical, changes from the Ising×N to the

so(N)1 universality class. With the aid of duality trans-
formations a hierarchy of local, but staggered spin models
with these criticalities were constructed. Here we show
that this scheme can be simplified considerably by using
another set of duality transformations that gives directly
the translationally invariant N -cluster models considered
in the main text.

The appropriately boundary coupled system of N crit-
ical TFI chains is described by the Hamiltonian

H
(N)
cTFI =

N−1∑
n=0

L/N−2∑
j=0

(
τxNj+nτ

x
N(j+1)+n + τzNj+n

)
+

∏
m 6=n

Pm

 τxL−N+nτ
x
n + τzL−N+n

 , (12)

where Pm =
∏L/N−1
j=0 τzNj+m are the Ising symmetry op-

erators of chain m. That this Hamiltonian is equivalent
to the N -cluster model with J = 1 and h = 0 can be
shown by using the following duality transformation

τzNj =σyNj

N(j+1)−2∏
i=Nj+1

σzi

σyN(j+1)−1, (13)

τzNj+n =σxNj−1+nσ
x
Nj+n, (14)

and

τxNj =−

∏
m 6=0

P<jm

σxNj , (15)

τxNj+n =

(∏
m<n

Pm

)∏
m6=n

P<jm

Nj−2+n∏
i=Nj

σzi

σyNj−1+n,

(16)

where now n = 1, . . . , N − 1 and we have defined the
string operators P<jm =

∏
i<j τ

z
Ni+m. Note that these

P<jm are defined in terms of τ Pauli operators! Inverting
these duality transformations gives the transformations
given in the main text for the 3-cluster model.

On the other hand, the N -cluster model with h = 1

and J = 0 is obtained from H
(N−1)
cTFI by directly identi-

fying σz(N−1)j+n = τz(N−1)j+n and introducing the dual
operators

τy(N−1)j+n =

(∏
m<n

Pm

)∏
m 6=n

P<jm


Nj+n−1∏

i=Nj

σzi

σy(N−1)j+n, (17)

where now P<jm =
∏
i<j τ

z
(N−1)i+m, j = 0, . . . , L/(N −

1)− 1 and n = 0, . . . , N − 2.
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Example: 3-cluster model with Ising perturbation

To illustrate the general duality transformations, for
the 3-cluster model with Ising perturbations they are ex-
plicitly given by

τz3j =σyNjσ
z
Nj+1σ

y
Nj+2,

τz3j+1 =σxNjσ
x
Nj+1, (18)

τz3j+2 =σxNj+1σ
x
Nj+2

and

τx3j =

∏
i<j

σyNiσ
y
Ni+1σ

z
Ni+2

σyNjσ
y
Nj+1σ

y
Nj+2∏

i>j

σzNiσ
y
Ni+1σ

y
Ni+2

 ,

τx3j+1 =

∏
i<j

σyNiσ
y
Ni+1σ

z
Ni+2

σyNj , (19)

τx3j+2 =σyNj+2

∏
i>j

σzNiσ
y
Ni+1σ

y
Ni+2


for j = 0, . . . , L/3 − 1. Inserting these into (12) with
N = 3 we obtain the translationally invariant critical
Hamiltonian

H
(3)
cluster =

L−1∑
i=0

σyi σ
z
i+1σ

y
i+2 + σxi σ

x
i+1 (20)

with a hidden Z×3
2 global symmetry described by the

symmetry operators

P0 =

L/3−1∏
i=0

σyNiσ
z
Ni+1σ

y
Ni+2,

P1 =

L/3−1∏
i=0

σxNjσ
x
Nj+1, (21)

P2 =

L/3−1∏
i=0

σxNj+1σ
x
Nj+2

that satisfy P0P1P2 =
∏L−1
i=0 σzi .

The spectra of so(N)1 critical points

Conformal field theory gives a detailed prediction for
the spectra of one-dimensional critical systems [3]. When
the finite-size spectrum is rescaled as described in the
main text, the CFT predicts the energy levels and their
degeneracies. This information is encoded in the par-
tition function of the CFT, which is composed of the
partition functions of the left and right moving pieces,
one for each primary field. In general, for a primary field
φi, with scaling dimension hi, the left moving part of the
partition function reads

Zl(φi) = qhil

∞∑
nl=0

cnlq
nl
l (22)

(and similar for the right moving part), where the cnl are
constants, depending on the primary field, and we view
ql as a formal variable. The total partition function takes
the form

Ztot =
∑
i

Zl(φi)Zr(φi), (23)

where the sum runs over all primary fields in the theory.
In the sector corresponding to primary field φi, one can
expand in powers of q to obtain

Zl(φi)Zr(φi) = qhil q
hi
r ·

(1 + c1,0ql + c0,1qr + c2,0q
2
l + c1,1qlqr + c0,2q

2
r + · · · ).

(24)

We assumed that the left and right scaling dimensions
are equal: hl,i = hr,i = hi, as is the case for the CFTs we
consider. The coefficients cnl,nr = cnlcnr and the powers
n of the q variables encode the spectrum as follows: Each
term in this expansion correspond to cnl,nr degenerate
states of energy E = 2hi + n.

The primary field content of so(N)1 CFTs depends on
the parity of N . For odd N the so(N)1 CFTs contain
three primary fields 1, ψ and σ with scaling dimensions
h1 = 0, hψ = 1/2 and hσ = N/16, respectively. On the
other hand, for even N there are four primary fields 1, ψ,
λ and λ̄ with scaling dimensions h1 = 0, hψ = 1/2 and
hλ = hλ̄ = N/16, respectively. A thorough derivation of
the partition functions of so(N)1 CFTs can be found in
Ref. [15]. Here we just present the predictions for the
few lowest lying energy levels and their degeneracies that
are summarized in Tables I and II. For comparison, we
also present in Table III the CFT prediction for the low
lying energy levels of the Ising×N CFTs.
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A = 1 A = 2

A = 3 A = 4

A = 5 A = 6

A = 7 A = 8

FIG. 4. Phase diagrams for general A-cluster models with
colour encoding the magnitude of the spectral gap. The cases
A = 1 and A = 2 correspond to the transverse field Ising and
XY chains, respectively. For A > 2 The cluster phase occurs
always around J, h � 1, while the (anti-)ferromagnetic and
the polarized phases occur again for J � h, 1 and h � J, 1,
respectively. The fine-tuned incommensurate phases arising
from the competition between all three terms are gapped mag-
netic phases.
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N=1 N=3 N=5
φi E cnl,nr

0 1
1 1 0

2 2
1 1

ψ 2 2
3 3

1/8 1
σ 9/8 2

17/8 3

φi E cnl,nr
0 1

1 1 6
2 27
1 9

ψ 2 24
3 88

3/8 4
σ 11/8 24

19/8 84

φi E cnl,nr
0 1

1 1 20
2 160
1 25

ψ 2 150
3 785

5/8 16
σ 13/8 160

21/8 880

TABLE I. The lowest lying energy levels E = 2hi+n and their
degeneracies cnl,nr for the primary field sectors φi ∈ {1, ψ, σ}
of so(N)1 CFTs with N odd. The relevant scaling dimensions
are h1 = 0, hψ = 1/2 and hσ = N/16. Degeneracy of cnl,nr =
0 denotes no state at this energy.

N=2 N=4 N=6
φi E cnl,nr

0 1
1 1 2

2 9
1 4

ψ 2 8
3 20

1/4 1
λ, λ̄ 5/4 4

9/4 10

φi E cnl,nr
0 1

1 1 12
2 70
1 16

ψ 2 64
3 288

1/2 4
λ, λ̄ 3/2 32

5/2 144

φi E cnl,nr
0 1

1 1 30
2 327
1 36

ψ 2 312
3 1900

3/4 16
λ, λ̄ 7/4 192

11/4 1248

TABLE II. The lowest lying energy levels E = 2hi + n and
their degeneracies cnl,nr for the sectors φi ∈ {1, ψ, λ, λ̄} of
so(N)1 CFTs with N even. The relevant scaling dimensions
are h1 = 0, hψ = 1/2 and hλ = hλ̄ = N/16. The fields λ
and λ̄ are spectrally indistinguishable, which means that the
energy levels for these primary fields are degenerate by an
additional factor of 2.
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N=1 N=2 N=3 N=4 N=5 N=6

E deg.
0 1
1 1
2 4

1/8 1
9/8 2
17/8 3

E deg.
0 1
1 2
2 9

1/8 2
9/8 6
17/8 18
1/4 1
5/4 4
9/4 10

E deg.
0 1
1 3
2 15

1/8 3
9/8 12
17/8 48
1/4 3
5/4 15
9/4 54
3/8 1
11/8 6
19/8 21

E deg.
0 1
1 4
2 22

1/8 4
9/8 20
17/8 96
1/4 6
5/4 36
9/4 162
3/8 4
11/8 28
19/8 124
1/2 1
3/2 8
5/2 36

E deg.
0 1
1 5
2 30

1/8 5
9/8 30
17/8 165
1/4 10
5/4 70
9/4 370
3/8 10
11/8 80
19/8 420
1/2 5
3/2 45
5/2 240
5/8 1
13/8 10
21/8 55

E deg.
0 1
1 6
2 39

1/8 6
9/8 42
17/8 258
1/4 15
5/4 210
9/4 720
3/8 20
11/8 180
19/8 1080
1/2 15
3/2 150
5/2 915
5/8 6
13/8 66
21/8 414
3/4 1
7/4 12
11/4 78

TABLE III. The lowest lying energy levels E < 3 and their degeneracies of the Ising×N CFTs, for N = 1, . . . , 6. For each
Ising×N CFT the spectrum splits into 3N primary field sectors, which, for the sake of clarity, are not presented.
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