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Wars2 is a determinant of angiogenesis
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Coronary flow (CF) measured ex vivo is largely determined by capillary density that reflects

angiogenic vessel formation in the heart in vivo. Here we exploit this relationship and show

that CF in the rat is influenced by a locus on rat chromosome 2 that is also associated with

cardiac capillary density. Mitochondrial tryptophanyl-tRNA synthetase (Wars2), encoding an

L53F protein variant within the ATP-binding motif, is prioritized as the candidate at the locus

by integrating genomic data sets. WARS2(L53F) has low enzyme activity and inhibition of

WARS2 in endothelial cells reduces angiogenesis. In the zebrafish, inhibition of wars2 results

in trunk vessel deficiencies, disordered endocardial-myocardial contact and impaired heart

function. Inhibition of Wars2 in the rat causes cardiac angiogenesis defects and diminished

cardiac capillary density. Our data demonstrate a pro-angiogenic function for Wars2 both

within and outside the heart that may have translational relevance given the association of

WARS2 with common human diseases.
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A
ngiogenesis describes the formation of new vessels from
the existing vasculature1 and is a critical physiological
process for matching oxygen and nutrient supply to

tissue metabolic demands. In disease, pathological angiogenesis
often occurs and this is an important process for cancers,
retinal diseases and inflammatory conditions2,3. In the diseased
heart, cardiac myocyte metabolic needs can exceed capillary
vessel growth leading to diminished oxygen delivery and
cardiac ischaemia4–6. While coronary flow (CF) is highly
heritable7, large-scale genetic studies of CF in humans have
not been possible due to the complexities and limitations of CF
phenotyping8, although increasing CF remains an attractive target
for therapeutic intervention9.

During angiogenesis, the angiogenic sprouting process requires
the recruitment of tip and stalk cells from existing endothelium,
followed by migration and proliferation of these cells in response
to a chemoattractive tissue gradient. One of the most important
pro-angiogenic signals is provided by vascular endothelial
growth factor (VEGF), which activates quiescent endothelial
cells (ECs) and promotes new vessel formation. The phenotypic
fate determination of ECs into leading tip cells or supporting
stalk cells depends on a highly regulated balance between
VEGF-receptor and Notch-dependent signalling10, which
remains incompletely understood. Cardiac vessels develop via
angiogenic processes, although there is controversy regarding
their EC origin11–13.

The limitations of effective ways to regulate angiogenesis relate,
in part, to our incomplete understanding of the underlying
biology that we postulated, may be improved through genetic
studies of CF in the ex vivo rat heart, which provides a model for
an indirect, quantitative measurement of capillary density and, by
inference, angiogenesis.

In this work, we identify mitochondrial tryptophanyl-tRNA
synthetase (Wars2) as a novel gene for cardiac capillary density
and CF in the rat. The pro-angiogenic effect of Wars2 is
confirmed by loss- and gain-of-function approaches in vitro and
in two in vivo models. Our findings describe a novel gene for
angiogenesis both within and outside the heart.

Results
Determinants of CF in the rat. The rat is an excellent model of
human cardiovascular physiology14,15 and CF has been determined
in a large number of rat strains (http://pga.mcw.edu and16 ) with
the Brown Norway (BN) rat having the highest CF of all rat strains
(Supplementary Fig. 1). We took advantage of this knowledge and
the fact that CF measurements provide an indirect but highly
accurate and quantitative read out of capillary density to initiate
genetic studies of CF in the rat. Using a controlled cardiac pacing
protocol we confirmed the difference in CF between the BN rat
and the Spontaneously Hypertensive Rat (SHR), which we have
studied extensively14,15 (Fig. 1a). On the basis of these data, we
hypothesized that CF in the rat is under genetic control as it is in
humans7, and set out to dissect the genetic determinants
underlying CF in a genetic intercross between the SHR
(with low CF) and the BN rat (with high CF).

We generated a large F2 intercross (n¼ 172) between BN and
SHR strains and measured blood pressure (BP) in vivo
followed by CF indexed to heart weight and left ventricular
(LV) contractility and relaxation ex vivo in this population.
CF occurs primarily during heart relaxation and, as expected,
we observed that slower LV relaxation was associated with
lower CF (r¼ � 0.34, P¼ 4.6� 10� 6, Pearson’s correlation
coefficient). There was no effect of BP on CF ruling out
BP-related effects on CF in our experimental model
(Supplementary Fig. 2).

Mapping of CF to the rat genome. We carried out genome-wide
genotyping of the F2 rats and used a multivariate Bayesian
regression model that is an established tool for genome-wide
genetic mapping of complex traits17 to identify the genetic
control points of CF. Maximal CF (CFmax) mapped to a genetic
locus on rat chromosome 2q34 (posterior probability40.89;
single-nucleotide polymorphism (SNP) location: 191.7 Mbp;
flanking markers: 189.3 Mbp and 194.5 Mbp) at all three
experimental time points (Fig. 1b). The association of CFmax

with the locus (þ 1.43 ml g� 1 min� 1 per BN allele, effect size
B13%; Supplementary Fig. 3) was independent of BP, myocyte
size or cardiac relaxation (Supplementary Figs 3 and 4) and was
confirmed in a congenic rat strain (SHR.BN2q34; congenic
interval 116.9–221.3 Mbp) (Fig. 1c). Two consomic strains, where
the BN chromosome 2 has been introgressed to the Salt Sensitive
(SS) or Fawn Hooded Hypertensive (FHH) backgrounds16, have
higher CFs than respective parental strains further establishing a
role for rat chromosome 2 on CF, which in the context of normal
epicardial coronary arteries in the laboratory rat in the absence of
neuro-humoral tone in the ex vivo heart would be expected to
reflect cardiac capillary density.

Wars2 regulates capillary density in the heart. Cardiac
capillaries are small radius vessels present at variable densities in
the heart that are important determinants of CF in the absence of
arterial disease4,5,8, hence, we examined whether capillary density
in the heart was influenced by the peak CFmax SNP. We observed
reduced capillary density associated with the SHR allele (low CF)
at the locus, an effect that was confirmed in the SHR.BN2
congenic (Fig. 1d,e). Taken together, these studies identify and
replicate a discrete genetic locus for CF on rat 2q34 that also
determines capillary density in the heart.

To identify protein coding variation at the CF locus with
potential deleterious effects, we used whole-genome sequence
data18 of the parental mapping strains (BN and SHR) and of the
consomic strains (SS and FHH) (Fig. 1f,g). This prioritized two
strongly protein damaging variants in low flow strains (SHR, SS
and FHH) but not the high-flow strain (BN) within refined
regions of the larger locus. These variants were encoded in
Cathepsin-S, with variation at a partially conserved protein
site (Supplementary Fig. 5) and a missense variant (L53F;
common in rat strains (Supplementary Data 1)) in
mitochondrial tryptophanyl-tRNA synthetase (Wars2, expressed
in the heart (Supplementary Fig. 6)). The Wars2(L53F) variant
occurred within a highly conserved ATP-binding ‘HXGH motif’
19 that defines class I aminoacyl tRNA synthetases (ARSs)
(Fig. 1h). During evolution many ARSs have acquired
non-canonical functions, which can be enzyme activity
independent20. It is established that while constitutively
expressed, ARS loss-of-function can cause tissue-specific human
disease19,21,22. Of potential relevance, the cytosolic tryptophanyl-
tRNA synthetase (WARS) has been shown to influence
angiogenesis23,24 although it is highly dissimilar to WARS2
(12.6% identity). Thus, we prioritized Wars2 as the candidate
gene for CF and capillary density at the locus based on its
biological candidacy and the L53F mutation within its highly
conserved ATP-binding site.

Characterization of WARS2(L53F). Both wild-type WARS2 and
the WARS2(L53F) mutant localized to the mitochondria
and were detected as two immunoreactive bands in whole-cell
lysates (Fig. 1i and Supplementary Fig. 6). The WARS2(L53F)
mutant exhibited a greater proportion of the lower molecular
weight band, which reflected an increased localization of the
mutant protein to the mitochondria (Supplementary Fig. 7).
Given the L53F mutation lies within a highly conserved
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Figure 1 | Mapping of coronary flow to the rat 2q34 locus and identification of Wars2 as the candidate gene at the locus. (a) Coronary flow (CF) under

intrinsic heart rate conditions in the Brown Norway (BN) and Spontaneously Hypertensive rat (SHR) (left panel, n¼ 12) and under cardiac pacing conditions

(right panel, n¼ 20). (b) Genome-wide Evolutionary Stochastic Search (ESS) mapping17 of CF at three distinct experimental time points in an F2 cross

(n¼ 172) between the SHR and BN strains (x axis, rat autosomes; posterior probabilities for the peak SNP shown). (c) Replication of the CF QTL by

congenic rescue in an SHR strain (SHR.BN2q34) encoding the BN genotype at the CF locus (P¼ 3.2� 10� 6; n¼6, SHR and 8, congenic; two-way analysis

of variance (ANOVA) with Tukey’s multiple comparisons test). (d) Capillary density (shown in arbitrary optical units) in the heart in SHR.BN2q34 strain

(n¼8) and the parental SHR (n¼ 6) strain. (e) Capillary density (shown in arbitrary optical units) in F2 rats by BN/SHR genotype of the peak-associated

SNP (n¼ 10–16 per genotype). One-way ANOVA with Tukey’s multiple comparisons test. (f) Refinement of the 2q34 locus using flanking markers to the

QTL (Chromosome 2: 189.3 Mb and 194.5 Mb) and all protein damaging variation at the locus in SHR, Salt Sensitive (SS) or Fawn Hooded Hypertensive

(FHH) rats (black squares; grey squares, no variation). (g) Candidate gene prioritization using BN, SHR, SS and FHH whole-genome sequences and

PolyPhen2 prediction of protein damaging variants effect (y-axis) from (f). Grey dashed lines indicate physical position of genes. (h) Sequence alignments

of Wars2(L53F) protein variation in the ‘HXGH motif’19 in the SHR, the BN rat and other species (zebrafish, ZFish). (i) Western blot of wild-type WARS2

and WARS2(L53F) protein. Arrows indicate WARS2- specific immunoreactive band (upper arrow, high molecular weight isoform; lower arrow, low

molecular weight isoform); bottom panel, GAPDH immunoblot as loading control. (j) In vitro assay of canonical enzymatic activities (arbitrary optical units)

of WARS2 and WARS2(L53F) (red line, mean). t-test: *Po0.05; ***Po0.001.
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ATP-binding motif we tested WARS2 enzyme activity and
observed a B40% reduction in activity of the WARS2(L53F)
mutant (Fig. 1j and Supplementary Fig. 7). These data show that
the WARS2(L53F) mutation affects post-translational processing
of WARS2 and impairs its canonical enzymatic activity.

WARS2 regulates EC biology. Cardiac angiogenesis has an
absolute requirement for EC proliferation, migration and
capillary formation4,5, hence, we studied the effects of WARS2 in
ECs. Inhibition of WARS2 in vitro was associated with notable
changes in EC morphology and a reduction in EC proliferative
capacity (Fig. 2a–c). However, inhibition of other AARS2 family
members (HARS2 and LARS2) did not affect EC morphology or
proliferative capacity showing gene-specific effects as opposed to
gene family-generic effects (Supplementary Fig. 8). Confocal
and super-resolution microscopy revealed that WARS2 silencing
caused EC spreading, abnormal membrane ruffling and a
marked reduction in EC actin fibres that are centrally
important for EC motility, division and polarity (Fig. 2b, d)3,25.
We tested the effects of WARS2 in an established in vitro model
of angiogenesis: WARS2 loss-of-function resulted in impaired
angiogenesis (Fig. 2e-g) whereas WARS2 gain-of-function
enhanced angiogenesis (Fig. 2h-j).

Wars2 is a critical pro-angiogenic factor in zebrafish. To test
the effects of wars2 on cardiac angiogenesis in vivo we first used
the zebrafish (ZF), a preferred model system for studying vascular
biology with well-developed transgenic lines and optical imaging
techniques for the analysis of EC biology26. Morpholino-
mediated wars2 knockdown (titrated to effect; Supplementary
Fig. 9) was associated with pericardial oedema and early ZF death
(Fig. 3a–c and Supplementary Fig. 10), which could be rescued by
transgenic hsaWARS2 expression (Supplementary Fig. 11). Wars2
inhibition caused marked cardiac contractile failure (Fig. 3d–f) as
seen previously following the inhibition of vegfa27 or ve-
cadherin28, prototypical determinants of angiogenesis.

There was a marked defect in the patterning of intersegmental
vessels (ISVs) throughout the trunk of zebrafish embryos and in
dorsal longitudinal anastomotic vessels (DLAVs) after wars2
inhibition showing a direct effect of wars2 on angiogenesis
outside the heart (Fig. 3g and Supplementary Fig. 12). Time-lapse
recordings of Tg(flk:EGFP) embryos starting at 20 h post
fertilization showed that wars2 knockdown leads to delayed, or
in some cases absent, elongation of ISVs and missing connections
of DLAV segments (Supplementary Movies 1–6). This observa-
tion following wars2 inhibition is similar to previous findings of
incomplete growth of multiple ISVs during early development
after disruption of vegfa, vegfc, the vegfr-2 orthologs kdra and
kdrb or the vegfr-3 ortholog flt4 (ref. 29), suggestive of interaction
of wars2 with these genes or their downstream pathways.

Using myocardial- and endothelial-specific fluorescence
protein-expressing ZF lines, we studied the heart phenotype in
greater detail and observed that wars2 knockdown led to
pathological separation of the EC endocardial layer from the
myocardial cell layer (Fig. 3h; Supplementary Fig. 13 and
Supplementary Movies 7,8), as seen previously following
inhibition of ve-cadherin28. There was markedly less infiltration
of ECs in myocardial trabeculae in the ventricle after wars2
knockdown (Supplementary Fig. 14). The endocardium is a
major source of ECs for the development of the coronary
vasculature in zebrafish30 and also important in mammals31.
Taken together, these data demonstrate that disrupted wars2
function leads to impaired angiogenesis outside the heart and
disrupted endocardial to myocardial apposition and interaction
within the heart, reminiscent of vegfa effects27,29.

Wars2 inhibition in the rat causes cardiac angiogenesis defects.
To investigate the effects of Wars2 in a mammalian model, we
generated a Wars2 targeted rat on the BN (wild-type Wars2)
background using zinc finger nucleases (ZFN) (Supplementary
Fig. 15). Heterozygote (Wars2� /þ ) rats were born in usual
Mendelian ratios and appeared normal, in keeping with
the recessive nature of ARS2 mutations in humans and their
counterparts in mice19,21,22. Homozygous deletion (Wars2� /� )
was embryonic lethal (oE8.5), which has also been documented
in the uncharacterized Wars2� /� mouse (www.jax.org).
In an attempt to avoid embryonic lethality, we crossed BN
(Wars2� /þ ) to SHR (Wars2L53F/L53F) to generate F1 animals
that were genetically identical apart from the Wars2 locus:
F1(Wars2þ /L53F) or F1(Wars2� /L53F), respectively. Given the
loss-of-function associated with the L53F allele we reasoned that
the F1 (Wars2� /L53F) would represent a compound hypomorph
as compared with the F1(Wars2þ /L53F).

Histological analyses of the heart revealed very large
sub-epicardial veins in the F1(Wars2� /L53F) as compared with
F1(Wars2þ /L53F) (Fig. 3i,j), a phenomenon previously observed
in the Vegfa-deleted mouse heart11. F1(Wars2� /L53F) rats had
fewer and smaller capillary vessels than the F1(Wars2þ /L53F)
controls (Fig. 3k and l and Supplementary Fig. 16), in keeping
with our data from the F2 mapping and congenic strains (Fig. 1).
Our foundational genetic experiments in the rat identified a
CFmax QTL at the rat 2q34 locus, hence we examined CFmax in F1
(Wars2þ /L53F) and F1(Wars2� /L53F) rats. As compared with
the F1(Wars2þ /L53F) rats, the F1(Wars2� /L53F) rats had
significantly lower CFmax (Fig. 3m) in the absence of cardiac
dysfunction (Supplementary Table. 1). These data confirm that
Wars2 loss-of-function is causally related to diminished cardiac
angiogenesis and reduced CF.

Inhibition of WARS2 impairs EC proliferation. To begin to
explore the cellular mechanisms underlying WARS2 effect in ECs,
we used in vitro approaches to test whether the reduction in EC
number observed following WARS2 inhibition (Fig. 2c) was due
to impaired EC proliferation and/or increased EC death.
Following WARS2 inhibition, ECs frequently contained
incompletely separated nuclei (Fig. 4a) and this was associated
with an early increased number of ECs in the G2/M phase of
the cell cycle (Fig. 4b), consistent with EC cell cycle arrest
and incomplete cytokinesis32. We then examined cell death
and observed that inhibition of WARS2 promoted EC cell death
at later time points (Fig. 4c and Supplementary Fig. 17). Overall
these data show that an effect of WARS2 inhibition is on EC cell
cycle arrest in G2/M, perhaps related to impaired cytokinesis,
followed by later onset activation of pro-apoptotic pathways and
cell death.

Inhibition of WARS2 reduces mitochondrial oxygen consumption.
For molecular studies, we began by performing unbiased WARS2
gene-centric co-expression analysis using a large (n¼ 128)
human heart RNA sequencing data set (Accession Number:
PRJEB8360). This revealed that WARS2 gene expression was
most highly positively correlated with COX15 (r¼ 0.57,
P¼ 3.2� 10� 08, Pearson’s correlation coefficient) and COX11
(r¼ 0.55, P¼ 4.2� 10� 07, Pearson’s correlation coefficient)
(Supplementary Data 2). The observed co-expression, and
inferred interaction, between WARS2 and COX11 was
substantiated in separate, genome-wide yeast two-hybrid
experiments that identified a single WARS2-interacting protein:
COX11. We confirmed the WARS2/COX11 interaction by
co-immunoprecipitation and detected that this interaction was
diminished for the WARS2(L53F) mutant (Fig. 4d). Given
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Figure 2 | WARS2 regulates endothelial cell morphology and angiogenic potential. (a) Bright field micrographs of endothelial cells (ECs) following

transfection with either control siRNA (siNT) or siRNA against WARS2 (siWARS2). Scale bar¼ 200 mm. (b) Confocal microscopy of ECs transfected with

siNT or siWARS2 (red, mitochondria; green, actin; blue, nucleus; scale bar ¼ 30 mm). (c) EC number in EC cultures transfected with siNT or siWARS2

(n¼ 3 per condition, t-test). (d) Super-resolution microscopy of ECs transfected with siNT or siWARS2 and stained for actin (left), mitochondria (middle)

and composite images with nuclear stain (right). Scale bar ¼ 25 mm. (e–j) Effects of WARS2 in an in vitro model of EC angiogenesis. (e–g) WARS2 loss of

function; (h–j) WARS2 gain-of-function. Total tubes (e, h), total tube length (in pixel) (f, i) and total branching points (g, j). n¼ 8,

t-test. **, Po0.01; ***, Po0.001.
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the canonical role of WARS2, we tested the effect of WARS2
inhibition on mitochondrial respiration in ECs. Following
WARS2 knockdown there was a reduction in oxygen
consumption rates (Fig. 4e,f), which would be expected to inhibit
proliferating ECs that have a low respiratory reserve
during angiogenesis33. However, it remains to be ascertained
whether mitochondrial dysfunction is the major determinant
of WARS2 effect on angiogenesis or whether other non-canonical
functions are at play.

Discussion
Here we identify Wars2 as a new gene for angiogenesis both
within and outside the heart. In human genome-wide association
studies, heritable WARS2 gene expression was identified in
breast cancers34 and the WARS2 locus was associated with
cardio-metabolic phenotypes35 that were also linked to the
VEGFA locus35. Intriguingly, genetic studies in the mouse
implicated Wars2 in capillary formation in the skin36. The
WARS2(L53F) variant we identified is associated with reduced
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or non-targeting MO (Control) and imaged at 72 h post fertilization (72 hpf). Scale bar¼ 1 mm. (b, c) Percentage of fish with cardiac oedema (b) and

normal, decreased or absent blood flow (c) at 72hpf. n¼ 55, 62, 54, and 42 fish for doses of 0, 0.5, 1, and 2 ng wars2 MO, respectively; Chi-square test.

(d–f) Inhibition effect of wars2 on heart rate (d), cardiac stroke volume (e) and cardiac output (f). n¼ 15, 13, 16, and 15 fish for doses of 0, 0.25, 0.5, and

1 ng wars2 MO, respectively; Dunnett’s multiple comparison test after one-way analysis of variance (ANOVA). (g) 3D reconstruction of 2-photon Z-stack

images of 24–26 hpf (top) and 48–50 hpf (bottom) Tg(flk:EGFP) transgenic zebrafish embryos. Green fluorescent trunk vessels are shown from controls and

embryos with 0.5 or 1 ng of the wars2 morpholino. Defects of intersegmental vessels (ISV, arrowheads) become obvious at 24 h.p.f.; disruptions of dorsal

longitudinal anastomotic vessels (DLAV, arrows) occur at 48 hpf Fish anterior end is located to the left in all images. DA: dorsal aorta; PCV: posterior

cardinal vein. Scale bar¼ 100mm. (h) Optical slice through 3D-reconstructed images of hearts of zebrafish embryos 5 days post fertilization using in vivo

2-photon microscopy. Tg(myl7:GFP;flk:dsRed) zebrafish, showing green fluorescence in myocardium and red fluorescence in endocardium, with separation

(arrows) of cell layers after wars2 knockdown (a: atrium, o: outflow tract, v: ventricle.). Scale bar, 30 mm. (i–m), Effects of Wars2 loss-of-function on

capillary density and coronary flow in rat heart. (i) Histological section of rat hearts stained for CD31 showing very large sub-epicardial veins in

F1(Wars2� /L53F) rats but not F1(Wars2þ /L53F) rats. Scale bar¼ 500mm. (j) Sub-epicardial venule areas (log scale, arbitrary units) in F1 rats (n¼ 5, red line,

mean). (k) Relative capillary density in F1 rats (n¼ 5). (l) Relative capillary area in the heart F1 rats (n¼ 5). (m) Ex vivo quantification of coronary flow under

paced conditions in wild-type BN(Wars2þ /þ ), n¼ 9; BN(Wars2� /þ ), n¼ 7; F1(Wars2þ /L53F), n¼ 7 and F1(Wars2� /L53F), n¼ 11. j–i, t-test; m,

one-way ANOVA with Tukey’s multiple comparisons test. **Po0.01; ***Po0.001.
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Figure 4 | Effects of WARS2 on endothelial cell viability and oxygen consumption. (a) SiRNA-mediated inhibition of WARS2 in endothelial cells (ECs)

results in multiple cells with two or more incompletely separated nuclei. Left panel, nuclei (arrow heads); right panel, nuclei (blue) and actin (green). Scale

bar¼ 50mm. (b) FACS analysis of the cell cycle in proliferating ECs treated with non-targeting siRNA (siNT) or siRNA against WARS2 (siWARS2) shows a

reduction in ECs in the S phase and an increased number in the G2/M phase with siW2. The experiment was repeated (n¼ 3) with similar results (c) FACS

analysis of caspase-3/7 activation and cell death over a 72-h time course. ECs were transfected with non-targeting siRNA (siNT) or siRNA against WARS2

(siWARS2). The experiment was repeated with similar results (and see Supplementary Fig. 14). (d) Immunoblot (IB) of COX11 and Flag in Cox11

immunoprecipitates (IP: COX11) and of whole cell lysates (WCL) from cells expressing either vector alone (V), Flag-tagged wild-type WARS2 (WT) or

Flag-tagged mutant WARS2(L53F) (L53F). (e) Oxygen consumption rates (OCRs) in ECs transfected with non-targeting siRNA (siNT, blue boxes) or siRNA

against WARS2 (siWARS2, red circles). A representative experiment is shown; the experiment repeated 5 times with similar results. (f) Quantification of basal

(upper panel) and maximal (lower panel) OCRs. n¼ 3, t-test. **, Po0.01. ***, Po0.001.
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enzymatic activity, which can unveil non-canonical effects of
ARSs that are often, perhaps surprisingly, tissue specific. We note
that, in particular in the zebrafish, there are several mutations in
other ARS genes that cause vascular defects. Interestingly,
deficiency in several ARS genes (iars, sars and tars) lead to
increased branching of ISVs, showing that ARS genes can have
both pro- and anti-angiogenic effects37–40. On the other hand,
other zebrafish models with profoundly impaired mitochondrial
function do not show the cardiovascular phenotypes41–43 that we
observed (Fig. 3a-h) indicating that the effects of wars2 disruption
may be not due to a generic effect of mitochondrial dysfunction.

The effects of wars2 knockdown in zebrafish embryos are
similar to what has been observed previously in mutants with
disrupted VEGF function29. More specifically, the defects in
angiogenic sprouting of ISVs, likely due to a lack of migration
and/or proliferation of tip and stalk cells, respectively, suggest
that WARS2 might play a role in the signalling mechanisms
downstream of the VEGFR responsible for tip and stalk
cell behaviour44, potentially involving the balance between
VEGF- and Notch-dependent signalling. VEGF is known to be a
major regulator of cardiac angiogenesis45, and deletion of either
myocardial Vegf-a or endocardial Vegfr-2 has been shown to
prevent normal coronary vasculature development in mice11.
Interestingly, disruption of VE-cadherin, an endothelial-specific
adhesion molecule mediating downstream effects of Vegf-a
(vegf-a), prevented sprouting angiogenesis in mice46 and led to
a separation between the myocardium and endocardium in
zebrafish embryos28. A recent study also showed that Notch1
activation promotes the tight interaction between endocardium
and myocardium, leading to cardiac trabeculation via ephrin B2
and neuregulin activation47. Our comparable observations of
decreased cardiac capillary density in Wars2(� /L53F) rats as
well as the myocardial–endocardial separation after wars2
knockdown in zebrafish support a hypothesis that WARS2
interacts with pathways downstream of VEGF and Notch.
Overall, our data show that WARS2 is a novel determinant of
angiogenesis in the heart and other tissues perhaps acting as an
integrator of pro-angiogenic signalling, directing cell motility and
division to enable EC migration and proliferation.

Methods
Publically available CF data. Previously derived CF data from rat strains was
obtained from Physgen via the web resource (http://pga.mcw.edu/)

Parental strains and BN X SHR F2 population. BN and SHR strains were used to
validate publically available data. Rats were bred by a monogamous mating system.
BN females were crossed with SHR males to produce BN X SHR (BXH) F1 animals
and a reciprocal cross was performed to obtain SHR X BN (HXB) animals. F1 BXH
animals were intercrossed to generate F2 BXH animals and F1 HXB animals were
intercrossed to generate F2 HXB animals. Animals were maintained at the Central
Biomedical Services facility, Imperial College, London, and housed at a maximum of
five rats per cage. The animals had ad libitum access to standard rat chow and sterile
water. Except for breeding, animals were separated according to sex. Rats were
maintained on a twelve-hour diurnal cycles by automatic light switching. All pro-
cedures were performed in accordance with the UK Animals (Scientific Procedures)
Act of 1986. All rats for baseline and mapping studies were purchased from Charles
River UK Limited (Margate, UK). Male rats aged 10–16 weeks were used throughout.

Blood pressure. BP was measured by cannulation of the carotid artery before
cardiac excision. An ultra-miniature 2 mm pressure catheter (MPVS-Ultra Single
Segment Foundation System, ADI instruments) was used. Animals were
anaesthetized using inhaled 4% Isoflurane. Data were captured using LabchartPro
software (ADI instruments). After carotid cannulation, the concentration of
inhaled Isoflurane was reduced from 4% to 1.5% to eliminate BP lowering effects of
high Isoflurane concentrations.

Coronary flow. CF was measured using a Langendorff preparation. Following
excision, the heart was placed in ice-cold Kreb’s buffer and transferred to apparatus.
The aorta was secured using 3/0 silk. The heart was perfused with a modified
Krebs–Henseleit buffer solution48 at 37 �C in a jacketed reservoir and continuously

gassed with carbogen solution (95% Oxygen, 5% CO2). The left atrium (LA) was
removed and a fluid-filled latex balloon was placed in the left ventricular (LV) cavity.
LV contractility (LV dP/dtmax) and LV relaxation (dP/dtmin) were derived from LV
pressure. Hearts were paced at 360 beats per minute (b.p.m.). The perfusate was
maintained at constant pressure (90 mm Hg). CF was measured by an inline
ultrasonic flowmeter. Hemodynamic data was captured continuously by LabchartPro
software (ADI instruments). The isolated heart preparation was studied at baseline
for 15 min, following one minute of global ischaemia and during reperfusion
following ligation of the proximal left anterior descending artery for 35 min.

Genotype data. DNA from F2 rats was extracted from tail tissue. High-
throughput genotyping was performed using Illumina’s GoldenGate assay on a
custom genotyping beadchip. 16,543 SHR SNPs reported by Consortium et al.49

and the surrounding 160 bp sequence for each SNP were retrieved based on SHR
genome sequence50. SNPs and their surrounding sequence were submitted to
Illumina for bioinformatic assessment, and attributed a quality score. 768
high-quality SNPs that were uniformly distributed throughout the genome were
selected for the custom beadchip. Following hybridization and imaging, genotypes
were called using the GenomeStudio software, and the GenCall algorithm51.
Parental and F1 samples were added to the F2 samples as controls of genotyping
quality. SNPs with low mean normalized intensity (Ro0.2), low MAF (MAFo0.1)
or deviation from Hardy–Weinberg equilibrium were excluded. SNPs were also
manually curated. The overall call rate was of 93%. Missing genotypes were
imputed using fastPhase. Following all QC steps, 172 genotypes were sued for
mapping experiments.

CF mapping. CF QTLs were mapped to the rat genome using a Matlab
implementation of ESS17, an established tool for genome-wide genetic mapping of
complex traits. This is based on a fully Bayesian ’variable selection’ strategy that is
aimed to identify the best set of predictors using a linear regression framework,
which, here has been used to identify genome-wide the best set of SNPs
(‘predictors’) that predict variation in CF (‘phenotype’), which have measured in
the F2 cross between the SHR and BN strains. Six CF phenotypes (mean and
maximum; at the three experimental time points) were included in the model as
dependent variables and SNP genotypes were used as regressors in the model. To
increase robustness to outliers, fixed effect for each individual were added to the
regressors and included in the variable selection process. Default parameters were
used for ESS. A marginal posterior probability of 0.8 was required to identify
genetic regulation of the phenotype by a SNP. The corresponding haplotype was
obtained, by taking the range between the two markers surrounding the marker
selected by ESS.

Prioritization of genes at the locus using genomic sequences. Deleterious
potential of non-synonymous variants was assessed using polyphen 2 prediction52

for all genes at the locus in the BN, SHR, FHH and SS rats using whole-genome
sequence data18. Variants with a predicted probability of being deleterious over 0.5
were considered as potentially damaging.

SHR.BN chromosome 2 congenic strain. The SHR.BN-(D2Rat171/D2Arb24)
congenic strain was derived by selective backcross breeding to the progenitor SHR
strain (SHR/Ola) by transferring a differential segment of chromosome 2 from a
normotensive BN (BN/Crl) strain (Charles River Laboratories, Wilmington,
Massachusetts, USA). After 10 generations of selective backcrossing to the SHR
progenitor strain, the differential segment was fixed by intercrossing heterozygotes
and selecting for offspring inheriting the homozygous BN chromosome segment53.
Rats were housed in an air-conditioned animal facility and allowed free access to
diet and water. Male rats were used (aged 8–16 weeks) All experiments were
performed in agreement with the Animal Protection Law of the Czech Republic
and were approved by the Ethics Committee of the Institute of Physiology, Czech
Academy of Sciences, Prague.

CF studies of congenic rats. Animals were anaesthetized with intraperitoneal
injection of thiopental, hearts were rapidly excised and perfused according to
Langendorff under initial constant pressure of 70 mm Hg with non-recirculating
modified Krebs–Henseleit solution48 gassed with 95% O2 and 5% CO2 (pH 7.4)
and maintained at 37 �C. After 10-min perfusion at spontaneous heart rate a
co-axial bipolar electrode was placed on the right atrium and pacing was
commenced at 360 b.p.m. Five minutes later the perfusion pressure was increased
stepwise up to 150 mm Hg. CF was measured after 5-min stabilization at each step
by timed collection of coronary effluent and then normalized to heart weight.

Rat cardiac capillary and vein histo-morphometry. After fixation (4%
Formaldehyde), short-axis heart slices were processed (n¼ 5 for each group) for
paraffin embedding. Multiple 4-mm-thick sections were de-paraffinized, rehydrated
and stained with hematoxylin and eosin for microscopic evaluation of morphology.
To assess capillary density immune-histochemistry examination was performed
using mouse anti-RECA1 antibody (1:500, ab22492, Abcam). All the animals were
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examined by a dedicated pathologist, blinded to genotype. Mid ventricular
myocardial region was selected to measure capillary density in each heart for every
single genotype. Particle thresholding was manually determined for each heart to
avoid staining intensity bias that could arise from different staining batch. Briefly
background subtraction was applied using the ‘rolling ball radius’ algorithm to
remove light inconsistency of the background. Particle thresholding was afterwards
determined using default method on ImageJ, after splitting red, green and blue
(RGB) channels and selecting the green channels (which provide better contrast on
peroxidase staining) to avoid any non-capillaries specific thresholding. Cardiac
myocyte size was determined by planimetry. Assessment of capillary density was
performed using ImageJ software (NIH): briefly colour images of 10 random fields
at � 40 original magnification were taken, avoiding intramural arterioles, fibrosis
and other potentially biased structure, colour thresholding was used to identify
capillaries and automated particle analysis was performed. Sub-epicardial venules
were planimetered. Data are reported as arbitrary optical units or relative to
control levels.

Production of recombinant WARS protein. WARS2 wild-type and WARS2(L53F)
mutant proteins were prepared and purified by Genscript using the Baculovirus
expression system. Recombinant WARS was prepared in house using an overnight
Rosetta (Novagen) culture transformed with pEX-N-GST-WARS diluted in 1 L
Luria-Bertani broth, shaking at 180 r.p.m. at 37 �C. Protein expression was induced
with 1 mM IPTG and incubated at 16 �C for 16 h. The induced culture was harvested
by centrifugation at 5,000g for 15 min, followed by resuspension in lysis buffer
(50 mM Tris pH 7.5, 150 mM NaCl, 1% sodium deoxycholate, 1% triton, 25%
glycerol, 1 mg ml� 1 lysozyme, 1 mM DTT and complete protease inhibitor cocktail
(Roche)) followed with sonication. The lysate was cleared by centrifugation and the
supernatant mixed with 2 ml of glutathione sepharose 4B resin (GE Healthcare) and
resuspended in buffer (50 mM Tris pH 7.5, 150 mM NaCl, 25% glycerol, 1 mM
DTT). The mixture was then applied to a glass econo-column (BioRad) and
resin-bound WARS washed and then eluted in fractions of 2 ml elution buffer
(50 mM Tris pH 8.0, 150 mM NaCl, 25% glycerol, 20 mM of L-glutathione reduced
(Sigma) and 1 mM DTT). Fractions were run on SDS–PAGE gel and stained with
Coomassie blue to check for purity and pure fractions pooled and buffer exchanged
with 10 mM HEPES pH 7.5, 150 mM NaCl, 10% glycerol and 0.005% P20.

Alkaline Phosphatase Treatment (Bandshift assay). Cell lysates of HEK293 cells
(CRL-1573, ATCC) transfected with FLAG-SPRY2, FLAG-WARS2, FLAG-WARS2
(L53F) or the empty vector control were harvested in lysis buffer without sodium
orthovanadate and subjected to incubation with calf intestinal phosphatase
(CIP, New England Biolabs) for 2 h at 37 �C using bovine serum albumin as control.

siRNA and adenovirus. Small interfering RNA (siRNA) targeting WARS2
(50-CCGACAUUCUGUUGUACAAdTdT-30 , 50-UUGUACAACAGAAUGUC
GGdTdT-30), HARS2 (50-CCAACUGAAAGCACAUCAAdTdT-30 , 50-UUGAUG
UGCUUUCAGUUGGdTdT-30), LARS2 (50-CCACAAAGUUGGACACAAA
dTdT-30 , 50-UUUGUGUCCAACUUUGUGGdTdT-30) and non-targeting control
(SN001-10D) were purchased from SABio. WARS2 adenovirus (SL179531) and
GFP adenovirus (SL100708) were purchased from SignaGen Laboratories.

Cell culture and genetic manipulation. HEK293 cells were purchased from
ATCC (CRL-1573). They were cultured and maintained in DMEM containing 10%
fetal bovine serum (FBS), 6 mM L-Glutamine, 100 U ml� 1 Penicillin and
100mg ml� 1 Streptomycin in a humidified incubator with 5% CO2. Cells were
transfected using Lipofectamine 2000 (Invitrogen) according to the manufacturer’s
instructions. Human vein vascular ECs (HUVECs) were purchased from Lonza
(C2519A) and were cultured with EGM-2 BulletKit medium (Lonza) in a humi-
dified incubator with 5% CO2. HUVECs (P3 to P4) were harvested at confluence of
80–90% and subcultured into six-well plate (Falcon), m-Slide 8 Well (ibidi) or
100 mm petri-dish (Falcon) at the density of 5,000 cells per cm2. WARS2 siRNA
and non-targeting control siRNA were transfected into HUVECs by using lipo-
fectamine RNAiMAX transfection reagent (Invitrogen) according to the manu-
facturer’s instruction. Medium was replaced with fresh EGM-2 BulletKit medium
after 24 h. At B50% confluence, HUVECs were changed into low serum medium
(EBM-2 supplemented with 1% FBS, Lonza). Adenovirus expressing human
WARS2 or GFP was added at a multiplicity of infection of 100.

Yeast two-hybrid screening. Screening was performed by Hybrigenics Services
SAS (Paris, France) using WARS2 (aa 20-360; N-LexA-WARS2-C fusion) against
human ventricle and embryo heart library.

Cellular phenotyping and microscopy. White field images were acquired by
Eclipse TS100 inverted microscope (Nikon) with DS-Fi2 camera (Nikon). Images
were acquired 72 h after transfection. Adherent HUVECs were harvested by
trypsinization and counted using an automated cell counter (Countess Automated
Cell Counter; Invitrogen).

Tube formation assay. After 48 h siRNA transfection or 48 h adenovirus trans-
duction, HUVECs were harvested and seeded in 96-well plates, pre-coated with 50ml
matrigel (Corning Matrigel matrix, growth factor reduced) per well, at the density of
8,000 cells per well. After culturing in full EGM-2 medium for 8 h, images were
acquired for each well (at central position) at � 5 objective (DM3000 inverted
microscope, Leica). Images were analysed by WimTube (Wimasis Image Analysis).

Cell cycle analysis by flow cytometry. HUVECs were harvested and counted.
Cells were washed in PBS and fixed in 70% cold ethanol while vortexing, stained
using � 1 Propidium Iodide/RNase Staining Solution (Cell Signalling Technology)
and analysed by FACS (BD LSR II flow cytometer system, BD Biosciences). Cells
were gated and analysed by FlowJo software.

Cell death analysis by flow cytometry. HUVECs were collected and counted.
Cell were stained with CellEvent Caspase-3/7 green flow cytometry assay kit
(Molecular Probes) according to manufacturer’s instruction. Cells were then
analysed by FACS (BD LSR II or FACSARIA III system; BD Biosciences). Cells
were gated and analysed by FlowJo software. In separate experiments, HUVECs
were harvested at 48 h and labelled with Image-iT DEAD Green viability stain
(Molecular Probes) and subjected to FACS analysis as above.

Seahorse assay of mitochondrial function. After 48 h of siRNA transfection,
HUVECs were harvested and seeded into XF cell culture microplate (XF24
FluxPak, Seahorse Biosciences) at the density of 40,000 cells per well. Oxygen
consumption rate was then recorded by using XF24 extracellular flux analyser
(Seahorse Biosciences). Drugs sequentially: oligomycin (1 mM), FCCP (3 mM) and
antimycin (2.5 mM).

Confocal and super-resolution microscopy. HUVECs cultured in 8 well chamber
slides were fixed with 4% formaldehyde. Cells were permeabilized with 0.1% Triton
X100 and incubated with Alexa Fluor 488 phalloidin (Molecular Probes, 1:200 in
PBS, 30 min). Cell nuclei were stained with DAPI (Molecular Probes, 1:1,000 in PBS,
5 min) and cells mounted with ProLong gold antifade mountant (Molecular Probes)
or VECTASHIELD mounting medium (Vector Laboratories). Images were acquired
using a confocal laser scanning microscope (LSM 710, Zeiss) and super-resolution
structured illumination microscope (ELYRA PS.1, Zeiss). Super-resolution images
were post processed by ZEN software (Zeiss) with SIM module according to man-
ufacturer’s instruction. Scale bar was added to all images by ImageJ software.

Immunostaining. After permeablization with 0.1% Triton X-100 for 30 min, cells
were washed three times by PBS and blocked in 1% bovine serum albumin for
30 min. Primary antibody (mouse anti-COX4, 1:1,000, Abcam) was then applied
and kept overnight at 4 �C, followed by washing three times in PBS and staining
with secondary antibody (goat anti-mouse Alexa Fluor-555, 1:1,000, Molecular
Probes) for 30 min at room temperature. Samples were washed three times again in
PBS and mounted in ProLong gold antifade. Finally, samples were stored in
humidified chamber and stored in 4 �C until imaging.

RNA extraction and quantitative PCR studies of cell samples. For tissues:
50 mg of tissue was homogenized in 1 ml TRIzol Reagent (Invitrogen) with
homogenizing beads using MagNA Lyser (Roche) at 6,000 r.p.m. for 20 to 30 s,
following 5 min incubation at room temperature. For cultured cells: 1 ml TRIzol
reagent was directly applied to the cells in the culture dish per 10 cm2. Chloroform
was then added (0.2 ml per 1 ml of TRIzol Reagent from tissue or cell extracts). The
RNA-containing aqueous phase was separated by centrifugation, mixed with equal
volume of 100% ethanol and applied to an RNeasy mini column (Qiagen). RNA
was eluted in 50 ul of RNase-free water and quantified by Nanodrop 1000 (Thermo
Fisher Scientific). Taqman probes against WARS2 or 18S were purchased from
Applied Biosystems. After RNA extraction, High-Capacity RNA-to-cDNA Kit
(Applied Biosystems) was used for reverse transcription reaction. Quantitative PCR
process was carried using TaqMan Fast Advanced Master Mix (Applied
Biosystems) on the StepOnePlus system (Applied Biosystems). The data was
analysed by comparative computed tomography methods.

Protein studies. Cells were lysed in cell lysis buffer (Cell Signalling Technology)
containing protease/phosphatase inhibitor cocktail (Cell Signalling Technology) and
PMSF (Cell Signalling Technology). Rat tissues were rinsed in ice-cold PBS and
snap-frozen in liquid nitrogen. Tissues (B50 mg) were homogenized (MagNA Lyser;
Roche) in 1 ml of cell lysis buffer (Cell Signalling Technology) containing protease
inhibitors (Roche), phosphatase inhibitors (Roche) and homogenizing beads.
Supernatants were then cleared by centrifuging homogenate for 20 min at
14,000 r.p.m., 4 �C. Protein concentrations were determined using the BCA protein
assay reagent (Thermo Scientific). Protein samples (16–20mg) were separated on
10–13% SDS–PAGE, transferred to PVDF membranes,and probed with antibodies.
Immunoreactive bands were visualized using pierce ECL Plus western blotting
substrate (Pierce) or SuperSignal west femto maximum sensitivity substrate (Pierce).
HEK293 cells expressing various plasmids were harvested in 20 mM HEPES (pH 7.4),
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137 mM sodium chloride, 1.5 mM magnesium chloride, 1 mM EGTA, 10%
(v/v) glycerol, 1% Triton X-100, a mixture of protease inhibitors (Roche), and
0.2 mM sodium orthovanadate. Cell lysates were precleared by centrifugation at
16,000g for 15 min, and supernatants were incubated with FLAG M2 agarose-con-
jugated beads (A2220, Sigma) for 2 h at 4 �C. Immunoprecipitates were collected by
centrifugation and washed three times with lysis buffer. The resulting immunopre-
cipitates were separated on SDS–PAGE and immunoblotted with various primary
antibodies below: rabbit anti-WARS2 (1:1,000, NBP1-54653, Novus), mouse anti-
WARS2 (1:1,000, clone 2E3E8, GenScript), rabbit anti-GAPDH (1:1,000, 2118, Cell
Signalling Technology), rabbit anti-FLAG (1:5,000, F7425, Sigma), rabbit anti-
TOM20 (1:1,000, sc-11415, Santa Cruz), rabbit anti-COX11 (1:1,000, sc-98918, Santa
Cruz) and mouse anti-b-Actin antibody (1:5,000, A5441, Sigma). All western blot
data shown are representative of at least three separate individual experiments, unless
otherwise stated. Full scans of western blots are available in Supplementary Fig. 16.

WARS and WARS2 AMP-glo enzyme assay. The WARS and WARS2 enzyme
assay was performed using an ATP depletion assay based on a chemilumines
optimized with the AMP-GloTM reagent (Promega) using 96-well format assay.
Reaction buffer contained 25 mM Tris-HCL pH7.2, 10 mM MgCl2, 50 mM KCl,
2.5 mM dithiothreitol, 0.1 mg ml� 1 bovine serum albumin, 0.2 mM spermine,
10 U ml� 1 pyrophosphatase and enzyme concentration used was 200 nM. Substrate
concentrations were as follows: L-tryptophan 100mM, bulk E. coli tRNA (Sigma)
200mg ml� 1 and ATP 100mM. Reaction was carried out at 37 �C for 1 h, followed by
adding reagent I (AMP-glo kit). The plate was incubated at room temperature for
another hour. At the end of the hour the AMP detection solution was added to all
the samples and incubated for one hour at room temperature. Data was collected by
measuring the luminescence with the Infinite M200 microplate Reader (Tecan).

Zebrafish studies. Zebrafish were maintained according to Institutional Animal
Care and Use Committee protocols. Wild-type AB and Tupfel long fin fish were used
throughout the study. In certain experiments, transgenic lines expressing GFP or
dsRed under control of the vascular/endothelial growth factor receptor
(Tg(kdrl:GFP)) and (Tg(kdrl:dsRed)) or the cardiac myosin light chain 7
(Tg(myl7:GFP)) promoter were used to delineate ECs and cardiomyocytes,
respectively.

Zebrafish gene knockdown and rescue. A morpholino antisense oligonucleotide
(Gene Tools, LLC) was designed to knock down gene expression of wars2
(Genbank accession number NM_001013323). The wars2ATG morpholino with
sequence 50-TCCACCTTATGGACAGCGCCATCTT-30 blocks translation of
wars2 mRNA by interfering with ribosome binding to the translation start site. The
morpholino was resuspended in sterile water to a concentration of 1 mM. After
further dilution in Danieau’s solution (58 mM NaCl, 0.7 mM KCl, 0.4 mM MgSO4,
0.6 mM Ca(NO3)2, 5 mM Hepes ) to the desired concentration, 1 nl was injected
into fertilized eggs at the single cell stage using an Eppendorff FemtoJet. After
injection, the embryos were kept at 28 �C in E3 solution (5 mM NaCl, 0.17 mM
KCl, 0.33 mM CaCl2, 0.33 mM MgSO4).The human wild-type WARS2 coding
sequence was cloned downstream of the upstream activating sequence (UAS)
enhancer into the Tol2kit expression system using Gateway technology (Life
Technologies). To rescue the phenotype of wars2 knockdown, the human WARS2
construct (20 ngml� 1) together with 10 ng ml� 1 capped Tol2 transposase mRNA
were coinjected with wars2 morpholino into one-cell-stage zebrafish embryos
expressing the yeast transactivator protein Gal4 under control of the ubiquitin
promoter Tg(ubi:Gal4).

Zebrafish imaging. Zebrafish embryos were observed for up to 14 days after
fertilization using an SZX16 stereomicroscope (Olympus). Images were recorded
using an Axiocam MRc digital camera (Zeiss). Fluorescent images were obtained
using an Eclipse Ti-E inverted microscope (Nikon) with a Neo 5.5 sCMOS camera
(ANDOR). Time-lapse fluorescent recordings were performed using automated
imaging of lightly anaesthetised (150 mg l� 1 tricaine) zebrafish embryos embedded
in 0.5% low-melt agarose in a 96-well plate, enabling simultaneous recordings of
multiple embryos. Confocal images of isolated hearts were captured on a Leica SP5X
laser scanning confocal microscope. Two-photon imaging of hearts and blood vessels
in anaesthetised zebrafish embryos fixed in 1% agarose was performed using a Zeiss
LSM710 NLO Confocal/Multiphoton upright microscope equipped with a Mai Tai
Ti-Sapphire laser (Spectraphysics). Images were processed and analysed using
NIS-Elements Ar (Nikon), Imaris (Bitplane) and ImageJ (NIH) software.

Zebrafish cardiac function. For analysis of cardiac function, embryos were
laterally positioned. Video microscopy was performed on an Axioplan (Zeiss)
upright microscope with a FastCam-PCI high-Speed digital camera (Photron). A
total of 1,000 frames were digitally captured at identical frame rates (250 frames
per second) and magnification (� 5). Heart rate and cardiac output were calculated
by analysis of sequential images using NIH ImageJ. Three consecutive measure-
ments were made from each heart.

Western blot on zebrafish samples. Whole zebrafish embryos were
homogenized in RIPA buffer (50 mM Tris-HCl, 150 mM NaCl, 1% NP-40, 0.5%
sodium deoxycholate, and 0.1% SDS, pH 7.4), containing protease inhibitors
(Sigma). Protein samples were separated on 10% SDS–PAGE and transferred to
PVDF membranes. Blots were then probed with rabbit antibodies raised against
human Wars2 (1:1,000; Aviva Systems Biology) or GAPDH (1:5,000; Cell Signal-
ling Technologies), and secondary anti-rabbit antibody coupled to horseradish
peroxidase (Cell Signalling Technologies). Immunoreactive bands were detected
using ECL Select Western Blotting Detection Reagent (GE Life Sciences).

WARS2 gene targeting and studies of F1 rats. All experiments using Wars2
targeted rats and the F1 rats derived from crossing this to the SHR were carried out
at the Duke-NUS Graduate Medical School Singapore. Animals were housed at a
maximum of five per cage with ad libitum access to standard rat chow and sterile
water. With exceptions to breeding purposes, animals were separated according to
sex. Rats were maintained on a twelve-hour diurnal cycles by automatic light
switching. All procedures were performed in accordance with local IACUC
approvals granted by National University of Singapore. Male rats aged 10–16 weeks
were used for all studies.

Disruption of Wars2 in the rat. The BN rat Wars2 locus (wild-type allele) was
targeted in the terminal region of the first exon with ZFN against the ZFN Target
site: ACCCACAGCTACTGCggctcCCCAGGTAACCCGAG (Sage laboratories, PA,
USA). Gene disruption was screened by sequencing and an 8 bp deletion identified in
exon 1 at the ZFN target site. This resulted in a frame shift after amino acid 27 of
Wars2 protein and a premature stop in exon 2 after amino acid 53 of Wars2.

Genotyping of mutant strains. Genomic DNA was extracted from toe clip
samples using E.Z.N.A Tissue DNA kit (OMEGA Bio-Tek) according to manu-
facturer’s protocol. Following purification, PCR was performed on each sample
consisting of JumpStart Taq ReadyMix (Sigma) and 1 mM of the following primers:
(i) 50-GTGAGTGCTGGCGCTTCATC-30 and (ii) 50-GGCCTAAAGCAGAAGG
TCGG-30 . PCR cycling conditions: (i) 95 �C for 5 min; (ii) 95 �C for 30 s; (iii) 65 �C
for 30 s; (iv) 72 �C for 30 s; (v) repeat cycles 2 to 4 for 30 times; (vi) 72 C for 5 min;
(vii) 4 �C hold. PCR products were run on a 5% agarose gel. Expected band
sizes were (i) wild-type¼ 92 bp (ii) heterozygous deletion¼ 92 bp and 84 bp
(ii) homozygous deletion¼ 84 bp.

F1 rats derived from BN (Wars2þ /� ) x SHR. BN rats carrying Wars2� /þ were
backcrossed to wild-type BN rats (Wars2þ /þ ) to produce F1 BN (Wars2� /þ )
rats for intercrossing. BN (Wars2þ /� ) F1 female rats were crossed with male SHR
that are homozygous for the Wars2(L53F) mutation to produce a F1 population:
F1(Wars2þ /L53F) or F1(Wars2� /L53F).

CF measurements in F1 animals. Rats were anaesthetised with Ketamine
(80 mg kg� 1) and Xylazine (10 mg/kg) cocktail via intraperitoneal injection.
Heparin (1,000U) was administered subcutaneously. Experimetns were performed
largely as described above for the mapping strains with the modification that the
perfusion pressure was set to 70 mm Hg, which was better tolerated in F1 animals.
CF was measured at baseline for 15 min and indexed to heart weight. Data were
acquired and analysed using LabchartPro software (ADInstruments).

Echocardiography. Rats were anaesthetised with 3% isoflurane during induction
and were maintained at 1.6 to 2.0% isoflurane during images acquisition. Heart
rates were maintained at the average of 360 b.p.m. Echocardiograms were
performed on Vevo 2100 system (VisualSonics) with a linear array transducer
(MS250 13–24 MHz, VisualSonics). An average of 10 cardiac cycles were stored in
cine loops for subsequent offline analysis using the same system.

RNA sequencing studies. Human heart LV tissues (n¼ 128) from the Royal
Brompton and Harefield Trusts transplant programme were collected with ethical
approval and prepared for RNA Sequencing studies as previously described54.
After sequencing, reads were de-multiplexed and mapped to the human genome
(GRCh37) and transcriptome using TopHat 1.4.1. Read numbers were
quantile-normalized for correlation analyses of WARS2 expression. RNA
Seq data have been deposited in EMBL-EBI under accession code: PRJEB8360
(http://www.ebi.ac.uk/ena/data/view/PRJEB8360 (data available online).

Statistical analyses. Statisitcal analyses were carried out in R, Matlab or
GraphPad Prism. Comparisons between groups were performed using
Mann-Whitney, Student’s t-Test or analysis of variance as appropriate. CF QTLs
were mapped using a Matlab implementation of ESS17. To compute robust
pairwise correlations between ARS2 genes and others genes, Tukey’s biweight
method was used as implemented in WGCNA package for R.
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Data availability. The RNA sequence data were deposited at EMBL-EBL under
Accession code: PRJEB8360. All other relevant data are available from the authors
on request.
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