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Controlling the properties of materials by driving them out of equilibrium is an exciting prospect that

has only recently begun to be explored. In this Letter we give a striking theoretical example of such

materials design: a tunable gap in monolayer graphene is generated by exciting a particular optical

phonon. We show that the system reaches a steady state whose transport properties are the same as if the

system had a static electronic gap, controllable by the driving amplitude. Moreover, the steady state

displays topological phenomena: there are chiral edge currents, which circulate a fractional charge e=2 per

rotation cycle, with the frequency set by the optical phonon frequency.
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Nonequilibrium quantum systems constitute a natural
frontier in physics that is only beginning to be probed by
theory and experiment. Nonequilibrium methods can be
used to study [1] and control [2,3] the properties of con-
densed matter systems. Particularly exciting is the possi-
bility of engineering the properties of novel materials, like
graphene, by driving them out of equilibrium, paving the
way for applications to devices. Graphene’s gaplessness
poses a critical challenge to such applications, as the
development of graphene-based semiconductors is predi-
cated on the ability to induce a gap.

In this Letter we present a theoretical study in graphene
of this nonequilibrium approach to materials design. We
demonstrate the possibility of inducing a gap in monolayer
graphene by the excitation of optical phonon modes. The
gap is controlled by a time-dependent Kekulé-pattern bond
density wave, which appears in the effective field theory as
a complex-valued order parameter � that rotates with the
frequency � of the driven phonon mode. The time depen-
dence in this order parameter is completely removable by
an axial (valley) gauge transformation, which can be
viewed as a kind of ‘‘boost’’ to a comoving ‘‘reference
frame.’’ The gauge transformation has no effect on the
coupling of the system to a heat bath, thereby guaranteeing
thermal equilibration in the new frame, and leaves the
fermion currents invariant. This implies that the electric
response of the system is equivalent to that of one with a
static gap; all nonequilibrium aspects of the problem are
removed and the system can be studied as if it were at
equilibrium.

The topological consequences of the Kekulé gap have
been studied in the static case, revealing that fractionally
charged states can emerge that are bound to vortices in the

order parameter � [4]. In the driven case, we show that
further topological phenomena arise: the system supports
chiral edge currents of magnitude Jedge ¼ e�=4�, while

the current in the bulk vanishes. These results suggest the
possibility that driven graphene could be used as a tunable
semiconductor with nontrivial topological properties.
Let us consider spinless electrons hopping on a honey-

comb lattice � according to the time-dependent tight-
binding Hamiltonian

H ¼ � X
r2�A

X3
j¼1

½tþ �tr;jð�Þ�ayr brþsj þ H:c:; (1)

where � is time and ayr and byrþsj
are fermionic creation

operators at sites r 2 �A and rþ sj 2 �B, with �A and

�B the two triangular sublattices forming the hexagonal
lattice�. The vectors sj (j ¼ 1, 2, 3) connect a site r 2 �A

to its three nearest neighbors at rþ sj 2 �B located a

distance jsjj ¼ d away. The uniform hopping amplitudes

t are modulated by time- and site-dependent perturbations
�tr;jð�Þ. In the absence of such perturbations [�tr;jð�Þ¼0],

the Hamiltonian (1) can be diagonalized in momentum
space, and the single particle spectrum has two Dirac
points at k ¼ K� ¼ � 4�

3
ffiffi
3

p
d
ð1; 0Þ.

We shall now consider the perturbations �tr;jð�Þ that

result from the excitation of the highest-energy optical
phonon modes at wave vectors K� with frequency �.
The atomic displacements from the lattice sites rA;B 2
�A;B are

uA;BK� ðrA;B; �Þ ¼ c�eirA;B�K�e�i��uA;B� þ c:c: (2)
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The coefficients c� are the amplitudes of the excited

waves. The normal mode vectors uA;B� for the highest-
energy optical modes with frequency � at wave vectors
K� can be determined from a classical analysis of the
lattice displacements [5,6] and are given by

uA� ¼ 1

2

1

�i

 !
and uB� ¼ 1

2

1

�i

 !
: (3)

To determine the form of the hopping modulations �tr;jð�Þ
resulting from the phonons, we consider the changes in
bond lengths due to the atomic displacements (2) when the
mode at either Kþ or K� is excited. For small displace-
ments, the change in the length dr;jð�Þ of the bond con-

necting site r and rþ sj is [7]

�d�r;jð�Þ
d

� � sj
d
�
�uAK�ðr; �Þ

d
� uBK�ðrþ sj; �Þ

d

�
: (4)

Substituting (2) and (3) into (4) and using eiK��sj ¼
e�ið2�=3Þðj�1Þ, one obtains

�d�r;jð�Þ
d

¼ �i
c��
d

eiK��sje�iG�re�i�� þ c:c:; (5)

where the vector G ¼ Kþ � K� ¼ 2Kþ connects the two
Dirac points. The modulation in the hopping amplitude is
related to the change in bond length through �tr;jð�Þ=t ¼
��d�r;jð�Þ=d, where � � 3:7 is the dimensionless electron-

phonon coupling [7]. The resulting �tr;jð�Þ can be

written as

�tr;jð�Þ ¼ 1

3
�ð�ÞeiKþ�sjeiG�r þ c:c:; (6)

where

�ð�Þ ¼
(
i3�t

c�þ
d eþi�� for theK þmode

i3�t c�d e�i�� for theK� mode:
(7)

The hopping modulations (6) have the form of a Kekulé
distortion with an order parameter �ð�Þ [4] that is time
dependent. Therefore, exciting either the Kþ or the K�
mode independently yields a Kekulé order parameter that
rotates in time with frequency � in opposite directions for
the two modes.

Without loss of generality, we henceforth consider the

case where the Kþ mode is excited, and write �ð�Þ ¼
j�jei�ð�Þ, where �ð�Þ ¼ ��þ ’. All the results for the
K� mode are obtained from those below by taking
� ! ��.

We study the consequences of this rotating order pa-
rameter in the context of the effective Dirac field theory of
the system, which is valid in the limit where the fermions
have relativistic (hyperbolic) dispersion. In order to ensure
the validity of this approximation, we require j�j=t � 1

and�=t � 1, where the uniform hopping amplitude t sets
the kinetic energy scale of the problem. In this regime the
Hamiltonian (1) corresponds, to first order in a gradient
expansion, to the Dirac Lagrangian density [4,8]

L ¼ ��½��ði@� þ �5A5�Þ � j�je�i�5�ð�Þ��; (8)

with � ¼ 0, 1, 2, �� ¼ �y�0, and 4	 4 Dirac matrices

�0 
 0 1

1 0

 !
; �i 
 0 ��i

�i 0

 !
;

�5 
 i�0�1�2�3 ¼ 1 0

0 �1

 !
;

where 1 is the 2	 2 unit matrix and �i are the three Pauli

matrices. The Dirac spinor �y
p ¼ ðbyp;þayp;þayp;�byp;�Þ col-

lects the creation operators ayp;� and byp;� for the� species

on sublattices A and B, respectively. The axial gauge field
A5�, examined in a different context in Ref. [8], plays an

important role in the discussion of the asymptotic steady
state of the driven system. The spatial components A5i

correspond physically to acoustic phonons and strain in
the graphene lattice. If the lattice is strained uniaxially, the
hopping amplitudes change, and the Dirac points shift
away from K�. In this case, the A5i acquire a nonzero
average value. In addition, acoustic phonons, either in
plane or out of plane, dynamically stretch the bonds, lead-
ing to fluctuations of A5i around the average. These acous-
tic phonons provide a thermal bath and their coupling to
the electronic degrees of freedom provides a system-bath
interaction, which enables the system to reach an out-of-
equilibrium steady state.
We now observe that the time-dependent mass term in

the Lagrangian (8) can be made constant by the axial
(valley) gauge transformation

~� ¼ e�i�5ð�=2Þ��; ~A50 ¼ A50 ��

2
; ~A5i ¼ A5i;

(9)

where i ¼ 1, 2. The transformed Lagrangian is found to be

~L ¼ �~�½��ði@� þ �5
~A5�Þ � j�je�i�5’� ~�; (10)

where we used f�5; �
�g ¼ 0. This transformation maps the

problem to a frame of reference which is ‘‘comoving’’ with
the Kekulé mass, so that the Lagrangian is no longer
explicitly dependent on time.

The vector current operator j� ¼ �����, which is asso-
ciated with the electric response of the system, and the

axial current operator j�5 ¼ �����5� are invariant under

(9). Furthermore, the spatial components A5i of the axial
gauge field are also invariant under (9). Since we have
taken the fluctuations in A5i to act as a heat bath, we
conclude that this transformation leaves the bath invariant.
Moreover, it also leaves the system-bath coupling A5ij

i
5
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invariant. Therefore, the transformation (9) removes all
time dependences—those of the system, the bath, and the
system-bath interactions. The remarkable consequence is
that the nonequilibrium steady state of the time-dependent
system corresponds to a thermal equilibrium state in the
comoving frame.

Consequently, the HamiltonianH corresponding to the
transformed Lagrangian (10) can be analyzed in the time-
independent Schrödinger picture at thermal equilibrium.
H takes a particularly simple form in the absence of

strain, in which case A5� ¼ 0, i.e., ~A50 ¼ ��=2 and
~A5i¼0:

H ¼ � � pþ �
2 1 j�jei’1

j�je�i’1 �� � p� �
2 1

0
@

1
A; (11)

where � is the 2D vector of Pauli matrices and p ¼ �ir.
The eigenvalue problem H c ¼ Ec has been solved in
Ref. [9] in the context of the superconducting proximity
effect in topological insulators [10]; the four energy eigen-
values of the Hamiltonian (11) are given by

E�;� ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp��=2Þ2 þ j�j2

q
: (12)

Evidently the gauge transformation (9) maps the time-
dependent problem of Eq. (8) to a time-independent
problem with an energy gap 2j�j.

It is important to observe that, because the vector current
operator j� is invariant under (9), all observables associ-
ated with j� can be calculated from the static Lagrangian
(10) without dealing with the original time-dependent
mass. In particular, the conductivity tensor �ij obtained

from the Kubo formula written in terms of the current
operator j� can be computed from (10). Consequently,
the driven graphene system effectively behaves as a semi-
conductor with a gap 2j�j tunable by the amplitude of the
optical phonon mode.

We shall next demonstrate that the rotating Kekulé mass
in the Lagrangian (8) gives rise to topological phenomena
beyond those that have been found in the static case. To do
this, we follow Ref. [11] in studying a variant of (8):

L ¼ ��½��ði@� þ �5A5�Þ � j�je�i�5� � �3���; (13)

where the scalar field� ¼ �ðxÞ corresponds to a staggered
chemical potential that establishes an energy imbalance

between the sites of �A and �B. The Kekulé field � ¼
j�ðxÞjei�ðx;�Þ, where �ðx; �Þ ¼ ��þ ’ðxÞ, now carries an
explicit spatial dependence. The fields� and� correspond
to independent masses in the Lagrangian (13); i.e., the total

effective mass of the charge carriers is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ j�j2p

. The
vector current density in the presence of (space- and time-
dependent) masses � and � is given by [11]

hj�i¼e
i

2�
	��
f@���@
�� i@�½ð1�2j�j2ÞA5
�g; (14)

where e is the electron charge, 	��
 is the Levi-Civita
symbol, and the complex-valued auxiliary field � 

sinð�=2Þei�, where

cos� ¼ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ j�j2p ; sin�ei� ¼ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 þ j�j2p ; (15)

with 0 � � < � and 0 � �< 2�. Equations (14) and (15)
form the basis of our discussion of the topological currents
resulting from the time dependence of the Kekulé mass
term in (13). We use � to define an edge, setting � ! 0 in
the bulk and using the limit j�j ! 1 to define an insulat-
ing region outside the sample [12].
The current density in (14) is gauge invariant, so one can

compute it in the reference frame where � has a time
dependence or in the comoving frame where � (and �)
are time independent. It follows that the averaged charge
and current densities are

h
i ¼ e
i

2�
	0ij@i�

�@j� ¼ h
istatic; (16a)

hji ¼ �e
�

2�
ẑ	 rj�ðxÞj2; (16b)

where ẑ is the unit vector perpendicular to the plane of
the sample.
Several observations are in order. First, the charge den-

sity in the case of the time-dependent Kekulé mass is
identical to that in the static case. Second, the current
density is nonvanishing and proportional to the rotation
frequency �. Notice that the rotating mass breaks time-
reversal symmetry, and therefore it is possible to have a
nonvanishing current. Third, if j�j does not vary spatially,
the current vanishes; this is the case in the bulk of a
uniform graphene sample, where we take j�j to be con-
stant. Fourth, there are necessarily edge currents, which we
shall now discuss in detail.
It follows from (16b) that the currents flow perpendicu-

lar to the gradient of j�j. At the boundary of the sample j�j
must go from constant to zero. Therefore, an edge current
should flow parallel to the boundary, within the region
where j�j varies in space, (see Fig. 1). The edge current
is given by

FIG. 1. Chiral edge current resulting from the out-of-
equilibrium steady state arising from the excitation of optical
phonons at wave vector Kþ. The direction of the current is
inverted for K� phonons, for which � ! ��.
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Jedge ¼
Z out

in
ðẑ	 d‘Þ � hji ¼ �e

�

2�
ðj�outj2 � j�inj2Þ;

(17)

where ‘ is a path that traverses the boundary. In the
interior of the sample j�j is nonvanishing, so we can
set � ! 0, and using Eq. (15) we obtain that j�inj2 !
1=2. Outside the sample, j�j ! 0 and j�j ! 1.
Depending on whether �> 0 or �< 0, we obtain
j�outj2 ! 0 or 1, respectively. Therefore, we arrive at
the edge current

Jedge ¼ e

2

�

2�
sgn�: (18)

The linear relation between Jedge and � has a quantized

coefficient. Note that because � ¼ 2�=T, where T is the
rotation period, the current Jedge carries a fractional

charge �e=2 per rotation cycle [13]. This chiral current
at the boundary of the steady state bulk insulator is a
topological property of the out-of-equilibrium system; the
currents are quantized and protected against details at the
edge, including disorder.

The chirality of the edge currents depends on whether
the Kþ or K� phonon mode is excited. However, the
chirality of the current also depends on sgn�. We now
offer a physical explanation of this fact. The mass � was
included in the Lagrangian (13) as a means of terminating
the sample with an insulating region. In a physical gra-
phene flake, our findings therefore indicate that the sign
of the edge current is determined by the specific shape of
the sample. Notice that the direction of the current
obtained from the field theory cannot change unless �
changes sign outside the sample. But if this is the case,
there will be domain walls separating these regions that
support gapless modes. Indeed, these walls serve as quan-
tum wires [14] attached to the sample, as shown in Fig. 2.

The direction of the edge currents reverses at the contacts,
as shown in the figure. Current conservation requires that
currents of magnitude Jwire ¼ e�=2� flow in the wires,
splitting equally at the contacts and traveling around the
edges of the sample. The graphene flake in this scenario
becomes a pump [15] that transports a charge e per
rotation period T.
The next observation concerns zero modes in graphene,

which are supported in the presence of vortices in the
order parameter � [4]. An external chiral gauge potential
A5 was added to render finite the vortex energies, thereby
deconfining them [8]. Such a vortex background can
also exist in our time-dependent scenario. In the comoving
frame this involves adding A50 ¼ ��=2 to the static
problem. We find that zero-energy modes persist both
with and without A5, consistent with the findings of
Refs. [16,17].
Our final observation concerns the size of the gap that

can be achieved by excitation of the optical phonon
modes at K�. From Eq. (7) we obtain that j�j ¼
3�tjc�j=d, where jc�j=d measures the relative displace-
ment of the atoms from their equilibrium positions due
to the phonons and is controlled by the intensity of the
excitations. Using � � 3:7 and t � 2:8 eV for graphene,
one obtains for a relative displacement jc�j=d � 0:04%
that 2j�j � 0:025 eV, corresponding to room tempera-
ture scales.
In summary, we have illustrated a mechanism for

opening a tunable Kekulé gap in graphene by exciting
an optical phonon mode at Kþ or K�. This gap corre-
sponds to a complex-valued order parameter � in the
continuum theory that rotates in time with frequency �.
The time dependence of � is completely removable by a
gauge transformation which has no effect on bath
degrees of freedom and leaves the current operators
unaffected. The electric response of the system is there-
fore equivalent to that of one with a static gap.
Furthermore, the system is found to support chiral quan-
tized currents that are localized in regions where j�j
varies spatially. In particular, there are edge currents
whose chirality depends on the shape of the sample
and on which of the K� phonon modes is excited.
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FIG. 2. Currents in the presence of domain walls between
regions with �> 0 and �< 0. The edge currents have opposite
chiralities to either side of the wires. The current pumped per
cycle is an integer multiple of e, while a fraction e=2 goes
around each side during the cycle.
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