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We haven’t got the money, so we’ve got to think!
— Ernest Rutherford, 1871-1937

Preface

A physics professor, teaching quantum mechanics, once said that one is not al-
lowed to ask where the electrons are during the transition between two states. But
nevertheless: How does a chemical bond such as a triple bond break? One knows
from chemisty or molecular physics courses that there are bonding and anti-bonding
states. But what happens exactly at which time. We know that the breaking of
bonds happens on a time-scale of hundreds of attoseconds, which is the time-scale
of the electrons. With the advance of attosecond spectroscopy, one might even be
able two answer some of these questions experimentally.

For tackling this problem, we describe the system using the density-functional theory
which enables us to calculate molecules with many electrons and propagate such a
system in time. We therefore give a short introduction into this theory in chapter 1,
which is necessarily short and incomplete.

Before we can ask how a chemical bond breaks, we need to know what actually
defines a bond. This is not as simple as it seems, in the real world the atom
does not know about orbitals which have been used to visualize and to understand
the concept of a bond. The orbitals that stem from calculations, however, can be
lineary combined or may be delocalized over several atoms. Using the density does
not help much, either: The only maxima of the density are located at the nuclei
and while there is density between bond atoms, it is hard to classify or even only to
visualize the chemical bonds. The solution is to make use of the localizability of the
electrons instead of utilizing the density directly. This does the the so-called electron
localization function (ELF) which we cover in chapter 2. Up to now, the ELF had
only been used for static systems or for those which can be described adiabatically.
We have devised a version which can be utilized for time-dependent systems. This
TDELF has then be used to scrutinize the effects of a strong laser (electric field)
on ethyne and for scattering of fast protons by ethene. We were able to see how a
transition from the 7 bonding to the 7* anti-bonding state was building up, bonds
were breaking and re-forming, and lone-pairs emerging.

Preparing a certain state, such as the 7* anti-bonding state, can be tricky if the
exact transition energy is unknown or, in other cases, intermediate states exists.
One possibility to create a tailored laser is provided by the various optimal control
theories. We look at a functional based on optimal control theory in chapter 3.
Since doing optimal control for a larger molecule requires a lot of book-keeping and
computational resources, we started with a simpler example: The HOMO-LUMO
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transition of a cylinder-symmetric diatomic molecule. Using a such tailored laser,
we achieved a population transfer of over eighty per cent from HOMO to LUMO in
lithium fluoride.

The final part of this thesis, chapter 4, contains conclusions and aspects which need
further investigation.

Throughout the thesis, two kind of units are used: the SI units and the atomic
units (see appendix D for the conversion factor). Using the former, the numbers
can easily be compared with experimental results. On the other hand, atomic units
drop a lot of constants and the numerical results of atomic calculations can usually
be written without exponentials. This makes atomic units ideal for both numerics
and lengthy calculations. I hope that I found the right balance between these two
common unit systems.
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A new scientific truth does not triumph by convincing its op-
ponents and making them see the light, but rather because its
opponents eventually die, and a new generation grows up that is
familiar with it. — Max Planck, 1858-1947

1 Density functional theory

While traditional many-particle wave-function methods perform well for a wide
range of systems, they come to their limits for non-symmetric or periodic systems
with many (chemically active) electrons. That is because the numerical effort to
calculate and store multi-particle wave functions grows exponentially with the num-
ber of electrons. Therefore, these methods can currently only be applied to systems
with about ten chemically active electrons [1]. A solution to this exponential wall is
density-functional theory (DFT). Several introductory texts on DFT can be found
in the literature. Among them are Kohn’s Nobel lecture [1], the lecture notes by
Perdew and Kurth [2], Burke’'s ABC of DFT [3], or Taylor and Heinonen’s DFT
chapter in [4]. For time-dependent DFT, the TD-Review by Grof} et al. [5] provides
a clear and in-depth introduction.

This chapter provides a short overview of the theory but is not meant to give a
complete and self-contained account about all aspects. The next section covers the
Hohenberg—Kohn theorem, which proves that every observable can be written as
a unique functional of the electron density. The Kohn-Sham theory, described in
section 1.2, states that the density of an interacting system can be obtained using
an effective single particle potential. This is then generalized to the time-dependent
regime by the Runge—Grof3 theorem in section 1.3. The numerical effort can be
further reduced by pseudopotentials described in section 1.4.

1.1 The Hohenberg—Kohn theorem

A quantum system of N particles can be completely described! by its Hamiltonian
H =T+ V + W. The Hamilton operator consists of the kinetic part

T=-——) V2 (1.1)

the interaction W, which — for the case of Coulomb interactions between electrons
— has the form

1 In this thesis we completely neglect effects which can only be described by quantum electrodynamics

(QED).



Chapter 1: Density functional theory

N N
1 e? 11 e?
W= SN 1.2
471'60; |y — 75 24#50; |y — 7y (1.2)
i<j i#j

and of the so-called external potential V', which contains for instance the potential
created by the nuclei.

The ground-state wave function ¥, obtained by solving the static Schrodinger equa-
tion

HY, = B9, (1.3)

can be used to calculate the ground-state electron density

n(r) =N Z /d3r2~~/d37’N|\Ifo(ral,x2,...,:cN)|2, (1.4)

01,--,ON

where x; is a short hand for spatial and spin variables. Hohenberg and Kohn have
shown [6] that one can also take the reverse route: the ground-state density de-
termines the external potential (and thus the Hamiltonian) which in turn can be
used to obtain the wave functions. Or mathematically rigorous: The ground-state
density n(7) of a bound system of interacting electrons in some external potential
V determines the potential uniquely (up to a purely additive constant).? The im-
plication of this theorem is that we can in principle determine any observable and
all eigenfunctions ¥; (including excited states) from the ground-state density.

Note that the Hohenberg—Kohn theorem assumes non-degenerate ground states, a
version for degenerate ground states exists.

We first show by reductio ad absurdum that different potentials lead to different
wave functions. Be V and V'’ two potentials which differ by more than an additive
constant and Wy and ¥ be their associated ground-state wave functions. The
Schrodinger equations for ¥y and U{ are

H|Wg) = (T +W +V)|[¥) = Ep|¥y) (1.5)
H'|Wo) = (T + W + V)| Wy) = Ey|Ty),

where Ey and E|) are the respective ground-state energies. Suppose now that Ug
and U{ are the same. We can then substract Eq. (1.6) from Eq. (1.5) to obtain

(V = V)W) = (E — E')[Wy). (1.7)

Starting from the density, one might ask whether any well-behaved, positive function n(r) is a
possible ground-state density to some potential V', i.e. whether n is V-representable. While this
is indeed not the case, this issue has so far not imposed any limits on practical applications [1].



1.1 The Hohenberg—Kohn theorem

But E — E' is a real number, so that means that the two potentials differ at most
by a constant which is a contradiction to our hypothesis. We have thus shown that
if V# V' then ¥y # U. We now look at the relation ship between the density
and the wave function. Be n the ground-state density in the potential V' with its
corresponding ground-state wave function W. Then the total energy is

E = (U|H|T) = (U|(T + W)|T) +/V(r)n(r) d&3r. (1.8)

Be V' another potential which differs from V' by more than an additive constant
and U’ be its associated wave function, which yields the same density n as ¥ does.
The Rayleigh—Ritz minimal principle states that

E < (V|H|V) = (V'|(T + W)|V') + /V(r)n(r) d’r
=FE + /(V(r) —V'(r))n(r)d’r, (1.9)
where we have used that n’ = n by assumption. Analogously we find for F’,
E' < E+ /(V’(r) —V(r))n(r)d’r. (1.10)
Adding Eq. (1.9) and Eq. (1.10), gives
E+E <E+FE+ /(V(r) —V'(r)+V'(r) = V(r))n(r)d*r=E+E. (111)

This is a contradiction to the assumption that both ¥ and ¥’ have the same ground-
state density. We have thus established that two different, non-degenerate ground
states lead to different ground-state densities. We further know that different po-
tentials lead to different wave functions. Therefore, we proved that knowing the
ground-state density n(7) of a system is sufficient to construct the external poten-
tial (if n is V-representable).

There is also an important variational principle associated with the Hohenberg—
Kohn theorem. We know that the electronic ground-state energy can be obtained
by making use of the Rayleigh—Ritz principle,
E = min (V|H|T), (1.12)
Ue{U}

where {\i/} is the set of all normalized, antisymmetric N-particle wave functions.
Hohenberg and Kohn showed that the Rayleigh—Ritz principle can also be applied
to the energy functional,



Chapter 1: Density functional theory

E[n] = (Yo[n||(T + W + V)|Vg[n]) = Fuk|[n] + / V(r)n(r)d3r, (1.13)
where Uy is the ground-state wave function and
Fax[n] = (Woln][(T[n] + Win])|Wo[n]). (1.14)

The ground-state energy can be found by varying the density, i.e.

E:mm(ﬂmmyb/ﬁ&ﬂqﬂd%), (1.15)

neN

where N is the set of all V-representable trial densities. In other words, the minimum
of this functional can only be reached with the ground-state density corresponding
to the potential V(7). In this case the value of the functional is the ground-state
energy.

Note that the functional Fyk[n] is a universal functional. By this we mean that it
is the same functional of the density n(r) for all N-particle systems, which have
the same kind of interaction (e.g. Coulomb). Especially, it is independent of the
external potential V. Therefore, we need to approximate it only once and can then
apply it to all systems.

1.2 The Kohn-Sham formalism

While the Hohenberg—Kohn theorem establishes that we may use the density alone
to find the ground-state energy of an N-electron problem, it does not provide us
with any useful computational scheme. This is accomplished by the Kohn-Sham
(KS) formalism [7]. The idea is to use an auxiliary, non-interacting system and to
find an external potential Vkg such that this non-interacting system has the same
electron density as the real, interacting system. This density can then be used in the
energy functional (Eq. (1.13)). The ground-state of the Kohn—-Sham system is given
by a Slater determinant of the N lowest, single-particle states of the Hamiltonian
which contains Vkg. While this provides us with a route for calculations, there
is a drawback. The potential Vkg depends on the electron density (see below).
Therefore, the potential has to be found iteratively in a self-consistent way:.

Let us start with the non-interacting N-particle system described by the external
potential Vkg. The Hamiltonian of the system is given by

H =T+ Vgs. (1.16)

The ground-state density of this system has the form



1.2 The Kohn-Sham formalism

N
n(r) = 3 loi(r)P, (117
i=1
where the N single-particle orbitals ¢; in Eq. (1.17) satisfy the Schrodinger equation

2
(—h—VQ + UKS(T)> oi(r) = eidi(r), (1.18)

2m

and have the N lowest eigenenergies ;. The total energy of the ground-state of the
non-interacting system is therefore

N
FExg = Zsi. (1.19)
1=1

Note that the value of this energy does not correspond to the ground-state energy
of the interacting system. According to the Hohenberg—Kohn theorem, it exists a
unique energy functional

&wmﬂmm+/wwwm&r (1.20)

We note that Tkg[n] is the kinetic energy functional of the non-interacting system
and it is therefore different from the functional T'[n| in Eq. (1.14). In order to solve
the interacting system, we need to find a form of Vig, so that the ground-state
densities of the non-interacting and the interacting system are the same. Since we
are really interested in the interacting system, we rewrite Eq. (1.13) as

En] =T[n|+ Wn] + /n(T)V(’I") d3r (1.21)
e? n(r)n(r’
= Tks[n] + %&05//—?7" >_ 7(n,| ) d3r a3’ + /n(r)V(’r) d3r + Exe[n).

Here, the second term is the direct, or Hartree, term and the last term is the so-called
exchange-correlation (xc) energy functional, defined as

2 !
Fueln] = Fux[n] — Flgo% / / % &r d¥’ — Tys|n). (1.22)

With this formalism at hand, one only needs to develop reasonable approximations
for Fy., which contain the electron—electron interaction beyond the Hartree term
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and the difference in the kinetic energy functionals 7'[n] — Tkg[n]. Since the ground-
state density n minimizes the functional E[n], we obtain by varying Eq. (1.21) in
terms of the density,?

JE[n] _ 0Tks [n]
on(r) on(r)

I n(r') 5, B
’ dmeg” / lr — 7| &+ V(1) + vxeln)(r) =0, (1.23)

where we defined the exchange-correlation potential as

d Exc[n]
< = . 1.24
() i= 5250 (1.24)
Analogously, for the auxiliary system we obtain from Eq. (1.20)
(STKs [n]
_— = 0. 1.2
5n(r) + Vks(r) =0 (1.25)

Subtracting Eq. (1.23) from Eq. (1.25), we see that the effective, or Kohn—Sham,
potential has to satisfy

Vies(r) = V() + e? [ a3 4 vt (126

Now we could start implementing the self-consistent Kohn—Sham scheme. Note
that this formalism is in principle exact, supposing that we find the exact exchange-
correlation potential vy.. Solving a Kohn—Sham system with single-particle orbitals
is feasible even for systems with a few hundred electrons (cf. [1, 4]). Formally,
the Kohn—-Sham equations look similar to the self-consistent Hartree equations, the
only difference is the exchange-correlation potential. Neither ¢; nor ; have any
known, directly observable meaning, except that the ¢; yield (in principle) the true
ground-state density and that the magnitude of the highest occupied ¢;, relative to
the vacuum, equals the ionization energy [8].

One famous approximation for the exchange-correlation energy is the local density
approximation (LDA) by Kohn and Sham [7].

ELPA[p] = / n(r)emi(n(r)) d3r, (1.27)

where e, denotes the exchange-correlation energy per particle of a uniform elec-
tron gas with the density n. eyni(n) can be obtained using quantum Monte Carlo
calculations [9].

Note though that ‘the KS scheme does not follow from the variational principle. [...] The KS
scheme follows from the basic 1-1 mapping (applied to non-interacting particles) and the assump-
tion of non-interacting V-representability.” [5]



1.8 Time-dependent DFT — the Runge—Grof§ theorem

1.3 Time-dependent DFT — the Runge—Grof§ theorem

The time-dependent density-functional theory (TDDFT) extends the stationary
DFT in a way that not only makes time-dependent phenomena available to com-
putation, but it also provides a natural way to calculate excitations of a system.
For static systems, we have seen how the Hohenberg—Kohn theorem establishes a
one-to-one correspondence between the external potential and the density. We now
look at systems, where the external potential V' depends explicitly on time. We
start with the time-dependent Schrodinger equation

1hoy(t) = H(t)U(t). (1.28)
For the theorem, a fixed initial state
U(to) = Vo (1.29)

is required, which is not required to be an eigenstate of the initial Hamiltonian.
While the kinetic part 7" and the electron—electron interaction W remain unchanged
compared to static DF'T, the potential V' becomes time-dependent

V(t) = v(ri.b) (1.30)

=1

The theorem by Runge and Gross [10] now states: If the potentials V and V' (both
Taylor expandable around tg) differ by more than a purely time-dependent but
spatially uniform function, i.e.

Vi(r,t) # V'(r,t) +ct), (1.31)

then the densities n(7,t) and n/(r,t), evolving from the common initial state ¥q
under the influence of the two potentials, are different. For the proof, both potentials
are Taylor expanded in time. Then a k£ € N exists so that the difference beween
the k-th Taylor coefficients is not constant, i.e. the difference is 7 dependent. The
proof [5, 10] shows next that under these circumstances the current densities become
different and then that the densities are different.

For any given time-dependent density n (and initial state W) the external potential
can be determined uniquely up to an additive purely time-dependent function; and
this potential uniquely determines the wave function, up to a purely time-dependent
phase. This phase cancels if we calculate the expectation value of any quantum
mechanical operator Oln|(t) = (¥[n](t)|O(t)|¥[n](t)). Thus any observable is a
unique functional of the time-dependent density and of the initial state W.
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Once the Runge-Grofl theorem is established, one can continue and derive the
Kohn-Sham equations [5, 10]. The density of the interacting system can be ob-
tained from

N
n(r,t) =Y |oi(r, 1) (1.32)
=1

with the orbitals ¢; satisfying the time-dependent Kohn—Sham equation

. h?
10¢i(r,t) = (—%VQ + va[n](r,t)> oi(r,t). (1.33)
The Kohn-Sham, or single-particle, potential can be written as
2 /
t
vsf)(r, 1) = V(1) + —— [T 0y () (1.34)

deg ) |r—r'|

where V' (r,t) is the time-dependent external field.

1.4 Pseudo potentials

Chemical reactions and excitations with energies below X-ray wavelengths hardly
affect closed inner shells. Therefore, the many-particle Schrodinger equation can be
simplified to a great extent by dividing the electrons into two groups: valence and
inner core electrons. Since the inner core electrons are strongly bound, the chemical
properties are almost completely determined by the valence electrons. Formally,
one can create an effective interaction of the valence electrons with the ionic core,
which consists of the nuclei and the inner core electrons. This pseudopotential
approximates the potential felt by the valence electrons. The main advantage of
pseudopotentials is the reduced numerical effort. This is the case since one has to
consider only the valence orbitals. In addition, the problems with the 1/r potential
(Coulomb singularity for » — 0) is eliminated. Therefore, a wider grid is viable.
The tutorial by Nogueira et al. [11] and Pickett’s article [12] are good primers on
pseudopotentials. In the following, a brief summary of the important properties and
downsides is given.

Modern pseudopotentials (PP) are obtained by inverting the Schrodinger equation
for a given reference electronic configuration and forcing the pseudo wave function
to coincide with the all-electron valence wave function beyond a certain distance r;.
The pseudo wave functions are also forced to have the same norm as the all-electron
wave functions. This can be written as
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RI"(r) = Ry(r), ifr>n,

Tl Tl
/ PR () dr = / r?|RAE(r)|dr, ifr <1y, (1.35)
0 0

where R;(r) is the radial part of the wave function with angular momentum I. AE
denotes the all-electron wave function and the index n the valence level. Note that
the distance r;, beyond which the all-electron and the pseudo wave function are
equal, depends on the angular momentum [. Moreover, pseudo wave functions shall
not have nodal surfaces and the pseudo energy eigenvalues g}jp should match the
all-electron valence eigenvalues 5ﬁlE. Potentials constructed in this way are called
norm conserving, and are semi-local potentials that depend on the energies of the
reference electronic levels ef\E. Unfortunately, pseudopotentials may introduce new,
non-physical states (so called ghost states) into the calculation, so care must be
taken while generating the pseudopotential.

The choice of the cut-off radii establishes only the region where the pseudo and the
all-electron wave function coincide. They can thus be considered as a measure of
the quality of the pseudopotential. Their smallest possible value is determined by
the location of the outermost nodal surface of the all-electron wave functions. For
cut-off radii close to this minimum, the pseudopotential is very realistic and strong;
for large r;, the potential is smooth, almost independent of angular momentum, but
not very realistic. Since the pseudopotentials have no nodal surface and are smooth,
much fewer grid points are needed near the core and thus uniform grids are feasible.

octopus [13], which has been used for the ELF calculations in this work (see
section 2) and for obtaining a Kohn—Sham potential (optimal control, section 3),
supports the Hartwigsen—Goedecker—Hutter (HGH) [14] and the Troullier—Martins
(TM) [15] pseudopotentials. The HGH pseudopotentials are norm-conserving, dual-
space Gaussian pseudopotentials. The coefficients for all elements between H and
Rn can be found in [14]. Troullier and Martins defined the pseudo wave functions
as

AE :
PP, . ) RY(r), ifr>mn
Ry (r) = {rzgpm fr<r’ (1.36)

where
p(r) = Co + 027"2 + C47"4 + 067"6 + 087"8 —+ 0107”10 + 6127’12. (1.37)

The coefficients of p(r) are adjusted by imposing norm conservation, the continuity
of the pseudo wave functions and their first derivative at r = r;. Furthermore, it is
required that the screened pseudopotential has zero curvature at the origin.
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What I cannot create, I do not understand.
— Richard Phillips Feynman, 1918-88

2 The time-dependent
electron localization function

The electron localization function (ELF) is used to classify and visualize chemical
bonds. In the next section, an introduction into the description of chemical bonds
and the usefulness of the ELF is given. Afterwards, we look at the definition of
the static ELF, constructed by Becke and Edgecombe, in section 2.2. Next, in
section 2.3 we derive a time-dependent generalization of the ELF. This TDELF is
then used to visualize the m—7* transition of ethyne in a strong laser pulse and the
breaking and formation of bonds in a scattering process of a proton with ethene in
section 2.4. Finally, the conclusions of this chapter can be found in section 2.5.

2.1 Introduction

Already in the chemistry classes of secondary schools chemical bonds are introduced.
The concept of a bond presented there and also in the undergraduate courses is
reasonable clear and comprehensive; they are typically defined [16] as:

chemical bond. A strong force of attraction holding atoms together in a
molecule or crystal. Typically chemical bonds have energies of about 1000 kJ -
mol~! and are distinguished from the much weaker forces between molecules
([...] van der Waals’ forces). There are various types. lonic (or electrovalent)
bonds can be formed by transfer of electrons. [...] Covalent bonds are formed
by sharing of valence electrons rather than by transfer. [...] A particular type
of covalent bond is one in which one of the atoms supplies both the electrons.
These are known as coordinate (semipolar or dative) bonds |[...]. Covalent
or coordinate bonds in which one pair of electrons is shared are electron-pair
bonds and are known as single bonds. Atoms can also share two pairs of
electrons to form double bonds or three pairs in triple bonds.

The idea of a bond is thus the sharing of electrons of neighbouring atoms whose
orbitals overlap. This is the classical Lewis picture of bonding [17]. Transforming
this concept into a mathematically rigorous scheme for classifying chemical bonds
turns out to be astonishingly difficult. While using orbitals works well for small
systems, this becomes cumbersome for larger systems. Especially, since the one-
electron wave functions that stem from Hartree-Fock or density-functional theory
calculations are generally quite delocalized over several atoms and do not represent
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Chapter 2: The time-dependent electron localization function

a unique bond. In addition, Hartree—Fock orbitals are ambiguous with regard to
unitary transformations among the occupied orbitals. The total energy does not
change under such transformations. Kohn-Sham orbitals are ambiguous only if
they are degenerate.

In the density, which contains all observable information, the bonds and their nature
are only barely visible; features like lone pairs are especially hidden. Moreover, the
density plots differ from the classical Lewis picture, where the charge is accumulated
in the mid of covalent-bond atoms. Density plots show no local maxima in the bond
region between the nuclei. There are basically two approaches which are nowadays
used to classify chemical bonds: The Laplacian of the density —V?2n introduced by
Bader in 1984 [18] and the electron localization function constructed by Becke and
Edgecombe in 1990 [19]. Both methods show essential similarities in their structure.
(For a comparison of the two, see Bader’s article [20].) The Laplacian of the electron
density seems to be superior for partial pairing of electrons as in acid—base reactions,
while the ELF is more useful for comparing bonds [20]. In the following we focus
on the ELF which is widely used in chemistry [21].

The ELF is a functional of the density and the orbitals, designed to visualize the
bonding properties. It was originally used for electronic shells of atoms, where it
shows all shells (while other methods like the Laplacian of the density —V?n fail
to show more than five shells), and for covalent bonds [19]. Subsequently, it has
been used to analyze lone pairs, hydrogen bonds [22], surfaces [23], ionic and metal-
lic bonds [23], and solids [23-25]. In addition, the ELF has the nice property of
being rather insensitive to the method used to calculate the wave functions of the
system: Hartree—Fock, density-functional theory or even extended Hiickel methods
yield quantitatively similar results [23]. The ELF can also be constructed from
experimentally measured electron densities using X-ray data [25], utilizing an ap-
proximate functional for the dependence of the kinetic energy density on the electron
density.

The (static) ELF as constructed by Becke and Edgecombe can only be used to study
systems in their ground state. Extending it to the time-dependent regime opens the
possibility to study the creation, breaking or changing of bonds [26]. Examples of
these include scattering processes (see section 2.4.2) and the excitation by a laser
(see section 2.4.1), where a wealth of non-linear phenomena such as multi-photon
ionization or high-harmonic generation can occur. Such phenomena happen on a
time-scale of few femtoseconds, which can be examined using ulta-short laser pulses
[27-29].
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2.2 The static electron localization function

2.2 The static electron localization function

The (static) electron localization function, developed by Becke and Edgecombe [19],
is a descriptor of chemical bonding based on the Pauli exclusion principle. The
correlation between the ELF and chemical bonding is a topological and not an
energetic one, i.e. the ELF represent the organization of chemical bonding in real
space [21, 30]. The local maxima of the function define localization attractors, which
can be attributed to bonds, lone pairs, atomic shells and other elements of chemical
bonding [21]. The resulting isosurfaces of the ELF densities tend to conform to the
classical Lewis picture of bonding.

In Slater determinant formulation?, the probability of finding two particles with the
same spin, located at  and 7/, is

Do(r, 7) = ng(T)ng(r') = |ng(r, )|, (2.1)

where Dy (7, r') is the same-spin pair probability and n,(r) is the o-spin single-
particle density matrix,

Z Bl (T)Bir (1), (2.2)

The probability to find an electron at r’, knowing with certainty that a like-spin
reference electron is at r, is given by the conditional pair probability
o (r, )2

Py(r,r") = ny(r') — ()

(2.3)
which is invariant with respect to unitary transformations. Since only the local,
short-range behaviour is of interest, the spherically averaged conditional pair prob-
ability p, is Taylor expanded. We obtain

Po( (Z Vo] — ! ‘vn"| ) 5%+ O(s%), (2.4)

where (7,s) denotes the spherical average on a shell of the radius s around the
reference point . In the Taylor expansion, the first s-independent term vanishes
due to the Pauli principle, also the term linear in s vanishes (see section 2.3.1 or
[31]). We define 7, as the positive-definite kinetic energy density

This means, the wave function is written as determinant of single-particle wave functions; this
single-particle picture encompasses the Kohn—Sham and Hartree—-Fock formalism.
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Chapter 2: The time-dependent electron localization function

Ng
7o =Y Vil (2.5)
i=1
and can now write the s? coefficient of Eq. (2.4) as
1|Vn,|?
Co(r) =7y — -0l 2.6
(1) = 7o — 7 20

This function, evaluated at the reference point, contains information about the elec-
tron localization. The smaller the probability of finding a second like-spin electron
near r, the higher localized is this reference electron. C, is not bounded from above,
and approaches zero for strongly localized systems.

Becke and Edgecombe defined [19] the electron localization function as
1

F= 2.7
2 . 2 Y .
Lt (o) () 20
where C%™ denotes the kinetic energy density of the uniform electron gas
. 3 .
Cri(r) = £ (67 g (r) = 7" (). (2.8)

Contrary to C,, the ELF is restricted to values between zero and one. A value of
1 stands for perfect localization and 1/2 for the complete delocalization (uniform
electron gas).

Since this derivation [19] of the ELF assumes that the ¢;, are real, Eq. (2.6) is only
valid for the static case, where the ¢;, can be chosen to be real. In the next section,
we derive a C, and thus an ELF without this restriction.

2.3 Derivation of the time-dependent ELF

In this section, we generalize the static electron localization function to complex wave
functions, which is required for a time-dependent treatment. We follow essentially
the steps by Becke and Edgecombe [19], but do not assume Hartree-Fock, i. e. Slater
determinant, wave functions from the start (cf. [32]).

The reduced single-particle density matrix is defined as

ne(r,r',t) = N, Z /d3r2~--/d3rN U*(ro, ro9, ..., PNON, )

020N

X‘IJ(T‘/O', 209,...,TNON,t), (2.9)

where ¥ is an N-electron wave function. For » = 7/, it is known as spin density
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2.3 Derivation of the time-dependent ELF

ne(r,t) :=ne(r,r t). (2.10)

Eq. (2.10) gives the probability of finding a particle with spin ¢ at  and is normal-
ized to the particle number N,. For the ELF we need the spin-diagonal (01 = 09)
of the reduced two-particle density matrix

Dalag(rla ’I"Q,t) = N(N — 1) Z /d37‘3 s /dS’I“N |\I/('r'101, ™09,..., 'I"NO'N,t)|2,
030N

(2.11)

which describes the probability of finding an electron with spin o at r; and another
electron at ro with spin 9. For g1 = 09, it is known as the same-spin pair probab-
ility. Central for the electron localization function is the so-called conditional pair
probability. 1t is defined analogously to the static case as

Dyo(r, 7', 1)

P, 1) =
o(r 7 1) ne(r,t)

(2.12)

and gives the probability of finding an electron with spin ¢ at =’ at time ¢ knowing
with certainty that another electron with the same spin is at r at that time.

2.3.1 Spherical average and Taylor expansion of P, (r,r + s,t)

Since we are only interested in the probability of finding an electron in the vicinity
of r, we substitute ' by r + s and do a spherical average of the Taylor expansion
in s for small s, s :=|s]|.

Expanding the wave function in terms of s (in the second argument) gives

U(ro,(r+s)o,...,ryon,t) =¥(ro,(r+ s)o,...,rNon, t)|s:0
3
oV
: O(s?). 2.13
+ ;Sl 6(9@ 81_0 + (S ) ( )

The first term surely vanishes since two electrons with the same spin cannot be at
the same location (Pauli exclusion principle). Thus we get

3
U oc Y sispeir + O(s7), (2.14)
i k=1

where ¢;;, contains the factors and the s-independent derivative of ¥ and ¥*. s can
be written in spherical coordinates as s = (s1, s2,53)T = 5 (cos ¢s sin 0, sin ¢ sin O, cos 0) .
Doing the spherical average of Eq. (2.14) leads to
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(|w|?) sph.av. ocz:cu/szsZ dQ + Z czk/szsk dQ + O(s?). (2.15)

i,k=1

i#k
Evaluating the integrals gives
1 .,
(5i5j)sph.av. = E/Sisj dQ=0, i#] (2.16)
and
2 1 2
<Si>sph.av. = 53 ) (2.17)

and thus <|\If|2>sph‘av.o'<s2. We define p, as the spherical average of P,
Po(r,s,t) = (Py(r,m + 5,1))sph.av.- (2.18)

and do a Taylor expansion

po(T, s)
_ 1 _ 3
=D 1) GgZ;N/d Ty - / N (1) sphav. (2.19)
e 5 fo a2 (20)_(89).,
ne(r,t) o 0s; o \9si ). o

Since ¥|g—p = 0 and hence

: (2.20)

r=r

3
220&\1}*6&\1/‘8:0 - v§|\11|2‘s:0 = V2, |U(ro,1'0, .. )2
=1

Eq. (2.19) can be simplified to

1V2,D,(r, 7 t)
t _ = 2 - r ) )
Po(r,s,t) = 35 (2 1o (1) )

The term in the bracket

s2Cy(r,t) + O(s%). (2.21)

o - 1V2,Dy(r, 7', t)
72 ng(r,t)

)
!/

r=r

(2.22)

is a measure of the electron localization (cf. section 2.2). A small value of C,(r)
denotes a small probability of finding another electron near . Thus there is a high
electron localization at r which repels other like-spin electrons. In order to use C,
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2.3 Derivation of the time-dependent ELF

in density-functional calculations, we need to express D, and n, (7', 7 t) in terms
of single-particle wave functions, which we do in the next sections.

2.3.2 Derivation of D, in the single-particle picture

We now evaluate D, and n, using Slater determinant wave functions. In the fol-
lowing, 7= and p denote permutations, m; and pu; the i-th component of a given
permutation (i.e. m = (m1,...,7n)), and sgn 7 the sign of the permutation 7.
With these definitions, a determinantal wave function containing N = N, orbitals,
®,, = P;, is given by

1 ¢1(r1at) ¢1(TN7t)

VNI

\I/det(’l"l, cee 'l"N,t) =

1
det{ei(r;, 1)} = : - :
VNI on(r1,t) - on(rn,t)
— \/% ngn T O1(Try 1) - ON(Try, T).
' (2.23)

By definition, the following identities are true: (sgn 7)? = 1 and
/@('f’,t)@'(r,t) &’r = 6. (2.24)

We now insert the Slater determinant wave function into the single-particle density
matrix Eq. (2.9) and obtain

ne(r,r',t)

=i d37“2--'/dngngﬂﬂSgnuﬁb;l(ﬁ,t)ﬁ%(ﬁ,t),'"¢§N(TN,75)¢MN(7‘NJ)
. "

N
= 3 S senw sen 1 65, (7, )y (1) ( / dry ¢;:2<r2,t>%<r2,t>)
L N _

-~

5772“2

X (/d3rN ¢;‘;N(rN,t)¢uN(rN,t)>. (2.25)

~~

dnnuN

We therefore know that all terms with m; # pu;, ¢ = 2,..., N vanish, and due
to the definition of permutations, m; and p; have to be identical. Thus 7 = pu,
sgn ™ = sgn u, and Eq. (2.25) simplifies to
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N
ne(r, v’ t) =N Z¢m ' ), (T, t)H(Swm
=2
N! terms
N N N (2.26)
= WV - DG D) = 3 i ()
N tgrms
Following an analogous route for D, we obtain
N(N —-1) X *
DO’(Tv ’l"/, t) - T Z Sgn 7 sgn p ¢7‘rl (T/7 t)¢u1 (Tv t)¢ﬂ2(r/7 t)¢ﬂ2(r7 t)
L
H / &Pri o (r], )by, (rist) . (2.27)
1=3 X J/
67"1}%

There are only two types of permutations which contribute to this sum. They are:
T = p1, m2 = po (with sgnmwsgn p = 1) and w1 = po, mo = py (with sgn 7wsgn p =
—1). Thus Eq. (2.27) simplifies to

N
Dyt 1y = YA (Z 62 (1, 1) Pl (12, 1) H%) (2.29

1=3

N
_ N(]jV'— 1) (Z ébjn (7’1,t)¢7r2(?’1,t)¢;2(’r‘2,t)¢m(r2,t) Héﬂﬂi) i

1=3

Each sum has N! terms, and we know that

n(r, ting(r' 1) = (Zmrt ) Z|¢th Z|¢zrt||@<r t)7,

1,7=1
i#]

(2.29)

where i # j comes from the Pauli exclusion principle. The sum in Eq. (2.29)
therefore has N(IV — 1) terms and the first term of Eq. (2.28) simplifies to

Dy(r, 7' t) = ng(r,t)ne(r',t) + (second term). (2.30)

We further know that

18



2.3 Derivation of the time-dependent ELF

(ne(r, r’,t)) (ng(r,r',t)) Z ¢i(r, t)gi(r, t)d; (r,t)p;(r, 1)

= (2.31)
i7#]
has N (N — 1) terms which yields as final result of the derivation
Do(r, 7', t) = ng(r,t)ng(r',t) — |ng(r, v, )% (2.32)

This is the same-spin pair probability in the single-particle picture. It gives the
probability of finding two particles with the same spin, located at = and 7’

2.3.3 Calculation of C,

We now calculate C,, (see Eq. (2.22)),
V2 Dy (7', r,t)

Col(r,t) = ne(r,t)

(2.33)

r'=r

using the single-particle formulation of n, Eq. (2.26) and D, Eq. (2.32). In the
following, ¢;, denotes the single-particle wave function and n;, := |¢Z~U\2.

Inserting D, from Eq. (2.32) gives

gy Inolr'm0f

1
Co’(T,t) = §V%/n0(’r‘/,t)|r,:r ('r t)

(2.34)

r'=r

The second term can be simplified as shown in appendix A, using this result we
L (o2 2 [ng (v, 7, 1)
Co(r,t) = 3 (V ng(r/,t)‘r,: Ve

obtain
(’I" t) r’:r)

B , 1 (Vno(r,0)”  j2(r,)
_§<v2na(r,t)—v2na(r,tl—§ (7 ) —QHG(T’Q (2.35)

=0

‘ Vi (1 2
+22;1w _Z( 1/2( )) )’
w i=1 (T>t)

10

where j, denotes the absolute value of the current density, j2/n = (Va)?n. This
can be rewritten by introducing

No N, e (i ()
TU=Z|v¢w<r,t>|2=Z<i (Vi (r2))”  (ialr.2) ) (2.36)

i=1 i=1 Nio(T,1) Nio (7, 1)

which represents the kinetic energy of a system of N, non-interacting electrons,
described by the single-particle orbitals ¢;,. The final result is thus
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B 1 (Vng('r‘,t))2 Jo(r,t)
Co(r,t) =75 — 4 ng(rt)  ng(rt)

(2.37)

Cy is a measure of the electron localization and ranges from zero (perfect local-
ization) to infinity. The main difference to the ground-state C, Eq. (2.6) is the
appearance of the term proportional to j2. The existence of this term can be made
plausible for a system with one electron (per spin channel): here, D, has to van-
ish by definition. If we evaluate 7, for N, = 0, the second and the third term of
Eq. (2.37) appear. Section A.2 of the appendix contains an alternative derivation
for a simplified, two electron case, which gives the same result.

The electron localization function itself is defined as before (cf. Eq. (2.7))

1
ELF = .
14 (Cy(r, t))2 / (C};ﬂi(r))2 (2.38)

where C™™ denotes the kinetic energy density of the uniform gas,

g (67223 03 (r) = 73 (r). (2.39)

Cyti(r) = -
The ELF returns values between zero and one. One stands for perfect localization
and 1/2 for complete delocalization (uniform electron gas). (Note that only the ELF
not C, ‘shows all the exciting structuring in direct space that makes ELF such a
valuable tool.” [21]). For systems with only one electron per spin channel (such as
H, or parahelium) the ELF is meaningless since it is constant and equal to one.

As already stated above there is (counter-intuitively) no direct relation between the
electron density (the probability of finding an electron at point r) and the ELF (the
electron localization), in fact the density can be high when the ELF is low.

2.3.4 Comparison with the static ELF

For static problems, one can choose the wave function to be real, then o = 0 and
thus j = 0, in addition n(r,t) — n(r). Therefore,

1 (Vg (r))? & & (Vnig(r)?
R Ta—;W@a(T‘)F—ZZ Mo (1)

=1

Co(r) = 75 — (2.40)

This is exactly the same result which Becke and Edgecombe have obtained Eq. (2.6).
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2.4 Application of the TDELF

We shall now illustrate the time-dependent electron localization function by two
examples: The excitation of ethyne in a laser pulse and the scattering of a proton
with ethene (FIG. 2.1). Supplementary information such as the movies of the ELF
and the density and more examples can be found at http://www.net-b.de/ burnus
/thesis/.

H H
AN /
H— C=C —H C=2¢C
(a) Ethyne (acetylene) (b) Ethene (etylene)

Fig. 2.1 Structure of used molecules.

All calculations have been performed in the framework of time-dependent density-
functional theory using the real-space, real-time program octopus [13] with a Troul-
lier—Martins pseudopotential (cf. section 1.4). The motion of the cores is treated
classically. There exists a kind of colour standard for ELF plots [23] which we fol-
low (see colourbar in FIG. 2.3). The isosurfaces and the contourlines are drawn at
ELF = 0.8.

2.4.1 FExcitation of molecules

12

T T T
10 -

8

..‘.mﬂm“ “ j ““““hm

0

[=2}
T

Intensity I in 10'3/(W cm~2)

8 9 10
Time [fs]

Fig. 2.2 Intensity of the laser, used to excite ethyne. The laser
has a frequency of 17.15 eV/h (A = 72.3 nm) and a maximal
intensity of Iy = 1.19 x 10 W - cm 2.

We used a strong laser to excite ethyne (acetylene, FIG. 2.1a) and observed the
reaction of the electron system, especially of the triple bond. The laser is polarized
along the molecular axis (see right image on the title page). The system has been
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excited using the following laser frequencies: (i) v = 17.15 eV /h = 4146 THz, A =
72.3 nm, (ii) v = 13.35 eV /h = 3010 THz, A = 99.6 nm and (iii) v = 9.55 eV /h =
2309 THz, A = 129.8 nm. The intensity of the laser was chosen to be either Fy =
3eV/A, Ip=1.19x 10"* W-cm2 or By = 0.5 eV/A, Iy = 3.318 x 1013 W - cm~2.
Since the resulting ELF movies show essentially the same features, only the results
using a laser with v = 17.15 eV /h, Ey = 3 eV/A (F1G. 2.2) are shown.

Calculation settings: We used a spherical mesh with radius » = 8.2 A and
A = 0.15 A as spacing. The bond lengths (cf. [33]) are d(H-C) = 1.06 A
and d(C-C) = 0.6612 A. Absorbing boundaries with a mask of width 1.0 A
were used. The calculation was done using the local-density approximation for
exchange and Perdew and Zunger's parametrization of the correlation part [34].

For time-evolution the Suzuki-Trotter method [35] was used with a time-step of
At = 0.0008 h/eV = 0.53 x 10718 s for T = 20 h/eV = 13.2 fs. The laser had
the frequency v = 17.15 eV /h = 4146 THz and the wavelength A\ = 72.3 nm,
a maximal amplitude of Ey = 3 ¢V/A and therefore a maximal intensity of
Ip = 1.19 x 10 W - ecm™2. The laser had a cosine envelope and was turned
on from t = 0 to Taser = 12h/eV = 7.9 fs, reaching its maximal intensity at
t=6h/eV =39 fs.

1.5692 fs

| 2738 3.8861 fs

Fig. 2.3 Snapshots of the time-dependent ELF for the excitation of ethyne (acetylene) by
a 17.15 eV (A = 72.3 nm) laser pulse. The pulse had a total length of 7 fs, a maximal
intensity of 1.2 x 10'* Wem™2, and was polarized along the molecular axis. Ionization and
the transition from the bonding 7 to the anti-bonding 7* are clearly visible.

FIG. 2.3 depicts snapshots of the ELF of acetylene in form of slabs through a plane of
the molecule. At the beginning (FIG. 2.3a) the system is in the ground state and the
ELF visualizes these features: The torus between the carbon atoms, which is typical
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for triple bonds (in the Lewis picture, they are formed by the two 7 orbitals), and the
blobs around the hydrogen atoms (cf. [23]). As the intensity of the laser (FIG. 2.2)
increases, the system starts to oscillate and then ionizes (FI1G. 2.3b,¢). Note that
the ionized charge leaves the system in fairly localized packets (the blob on the left
in b and on the right in ¢). The central torus then starts to widen (FIG. 2.6d) until
it breaks into two tori centered around the two carbon atoms (FIG. 2.3¢,f). This
can be interpreted as a transition from the 7 bonding to the 7* non-bonding state.
The system then remains in this excited state for some time after the laser has been
switched off.

-290

-300

-310

Energy [eV]
Number of electrons
T

-320

-330

-340

Time [fs] Time [fs]

(a) (b)
Fig. 2.4 Ethyne excited by a laser. (a) Total energy of the electron system which shows that about
60 eV are absorbed. (b) Number of electrons in the system, about 1.8 electrons are lost due to ionization.

The molecule absorbs about 60 eV of energy due to the laser (FIG. 2.4a) and looses
1.8 electrons through ionization (this has to be interpreted statistically; FIG. 2.4b).
The absorption spectra (FIG. 2.5b) of ethyne, using a laser with v = 17.15 eV/h,
shows a strong absorption at 16.5 eV /h below the laser frequency and a smaller peak
at v = 18.5 eV /h which matches the calculated excitation energies (FIG. 2.5a). Note
that the absorption spectra could be a bit distorted due to the ionization.

2.4.2 Proton scattering

In the second type of application, a fast (i.e. non-thermic), but still non-relativistic
proton (Fyi, = 2 keV, v = 1.02 x 10° m/s) is sent against an ethene (etylene)
molecule. The proton is scattered by one of the carbon atoms (FIG. 2.6). The
initial configuration is shown in F1G. 2.6a. While the proton approaches the carbon,
it accumulates some charge around it (FIG. 2.6b). It then scatters and leaves the
system (FIG. 2.6¢), taking some charge (about 0.2¢) with it, i.e. in about every fifth
scattering process a hydrogen atom forms. The ethene molecule is thus excited and
the molecule starts to disintegrate. In panels d,e the leftmost carbon has already
broken the two bonds with the hydrogens (that will later form a H,, molecule (left)
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Fig. 2.5 (a) Excitation energies of ethyne. (b) The absorptions
when excited using a laser with v = 17.15 eV /h.

and two CH molecules (middle and right). Finally, the rightmost CH molecule
breaks, yielding a carbon and a hydrogen atom. The ELF shows how the double
bond between the carbons is distorted, breaks and lone pairs form. The breaking of
the CH bond and the formation of a lone pair can be seen in panel (d).

The electronic system absorbs a bit less than 30 eV (F1G. 2.8a). The peak around
7 fs is due to numerical errors in the time propagation when the proton comes close
to the carbon nucleus. Because of the rapid change of protonic momentum at this
point in time, a much finer time step is needed to prevent this error. In total, about
two electron charges get ionized (FIG. 2.8b). During the first 1.5 fs, the time the
proton is in the box, about 0.2 electron charges are lost, mainly as electron cloud
around the proton. Towards the end of the simulation, electrons are also absorbed
because the nuclei are close to boundaries of the box.
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200

°.0 OY()
()

0.0099 fs 0.5381 fs

2.9471 fs 4.3886 fs

Fig. 2.6 Snapshots of the time-dependent ELF for the scattering of a fast, non-relativistic proton
(Exin = 2 keV, white dot in the mid bottom of a) by ethene (etylene). The molecule breaks in several
pieces. During this fragmentation process, the breaking of bonds and the subsequent creation of
lone pairs becomes clearly visible.

If one carefully examines the moment when the proton hits the carbon (F1G. 2.7), one
observes that even before the proton hits the carbon, ionization occurs (FIG. 2.7a).
This blob of localized electrons leaves the system downwards, roughly into the dir-
ection of the approaching proton. Shortly after, another blob leaves the system
(FIG. 2.7b,c¢) this time upwards. This is quite surprising since it seems as if the
proton repels the electrons while it attracts them in reality. We believe that this
phenomon is due to an overshooting of the electron oscillation between the approach-
ing proton and the ethene.

Calculation settings: We used a spherical mesh with a radius r = 7 A and
A = 0.14 A as spacing. The used bond lengths are d(C-C) = 1.339 A and
d(C-H) = 1.085 A. The angle between the hydrogen atoms was £ (H-C-H) =
117.8°. Absorbing boundaries with a mask of the width of 0.5 A were used.
The calculation was done using the local-density approximation for exchange and
Perdew and Zunger's parametrization of the correlation part [34].

For the time-evolution the Suzuki-Trotter method [35] was used with a time-
step of At = 0.0005h/eV = 0.33 x 10718 s for T = 150 h/eV = 9.8 fs. The
ion movement used Newton dynamics with the velocity Verlet algorithm. The
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Fig. 2.7 Tonisation details scattering of a proton by ethene. (a) Even before the proton scatters,
ionization occurs which is roughly directed downwards, in the direction of the proton. Soon after (b,
¢) one can also see ionization in the opposite direction.
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Fig. 2.8 Proton scattering by carbon. (a) The total energy of the electronic system is shown.
The peak around 7 fs is due to numerical errors when the proton is close to the carbon. The
proton transfers about 20 eV to the system. (b) Number of electrons in the box (using pseudo-

potentials), the drop by about 0.2 in the first 2 fs is mostly due to the charge picked up by the
proton; the drop by another 0.4 is mostly caused by ionization.

scattering proton was initially in the middle, 4 A below the C—-C axis of the
molecule and had an initial velocity of 4.67 x 10710 eV /A = 0.709 x 10% m/s.

2.5 Conclusions

These examples illustrate the wealth information which can be obtained from the
time-dependent electron localization function by simply looking at it. It visualizes
the m—7* transitions, the breaking and forming of bonds, the creation of lone pairs.
The time-dependent ELF is expected to be a valuable tool in the analysis of other
physical processes as well, such as creation and decay of collective excitations or
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2.5 Conclusions

the scattering of electrons by atoms and molecules. The key feature is the time-
resolved observation of the formation, modulation and creation of chemical bonds,
thus providing a visual understanding of the dynamics of excited electrons.
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It is more important to have beauty in one’s equations than to
have them fit experiment . . . It seems that if one is working from
the point of view of getting beauty in one’s equations, and if one
has a really sound insight, one is on a sure line of progress.
If there is not complete agreement between the results of one’s
work and experiment, one should not allow oneself to be too
discouraged, because the discrepancy may well be due to minor
features that are not properly taken into account and that will
get cleared up with further developments of the theory.

— Paul Dirac, 1902-84

3 Optimal control

We are interested in maximizing the transfer of population to a particular molecular
state, such as the 7" state as depicted in the previous chapter (section 2.4.1). This
state optimization can be used not only to stimulate chemical reactions, but also to
trigger molecular switches. In this chapter, we concentrate on the HOMO-LUMO
transition of lithium fluoride, which bears some of the hallmarks needed for trans-
port. After a short introduction, we describe the used algorithm in section 3.2, which
is based on the idea to maximize a suitable functional. In section 3.3 we look at the
actual implementation of this algorithm for molecules having cylindrical symmetry.
This encompasses the discretization and the time-propagation. Section 3.4 contains
the results obtained for lithium fluoride and section 3.5 contains the conclusion and
an outlook.

3.1 Introduction

In subjects reaching from mathematics, engineering and physics to chemistry and
economics optimal control theories (OCT) are used. In physics, such theories are
applied to prepare quantum bits (gbits), align and orient molecules, select reaction
pathways, increase the yield of chemical reactions or to control molecular transport.
Several optimal control techniques are used [36], among them are genetic alogrithms,
feedback-control of experimental systems [37-38], and ab-initio, functional based
methods [39-40]. Coming from a density-functional theory background, we focus on
the last method in this chapter.

3.2 Algorithm

Since we want to use a laser for optimal control, we assume that the Hamilton
operator is of the following form
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H=T+YV —eu=: Hy— epu, (3.1)

where € = €(t) denotes the electrical field and p the dipole operator, which can be
written as

N
= Z er;. (3.2)
i=1

Note that the dipole approximation is only valid if the system of regard is small
compared to the wavelength. Then the field is approximately constant in space.

The idea is that a tailored laser takes the system from the initial state W; to the
final state ®; within a given time 7. In other words, the overlap [(¥;(T)|®¢)|? has
to be maximized. In order to reduce ionization, the energy of the laser should be as
small as possible, i.e. the energy density (energy per area)

1T,

E =ceo- le(t)]” dt, (3.3)
2 Jo

has to to be minimized. Here, ¢ denotes the speed of the light and g the electric

constant. Summarizing, we want to find a laser field which maximizes the overlap

of the propagated wave function with a given final state and minimizes the applied

laser energy. This can achieved by maximizing the following functional

T
J = [(W(T)[ ) — o /0 ()P, (3.4)

where « is a Lagrange multiplier which controls the importance of the energy min-
imization. Therefore, it is known as penalty factor. A wide range of values of « are
sensible, depending on the system. In order to make the second term dimensionless,
1/a has the unit of a squared electric field (V2 - m™2) times the unit of time (s), in
atomic units o has therefore the unit e2a3/hEy,.

In order to tackle the problem of maximizing J, we subtract a carefully chosen zero.
Since V; is a wave function, it fulfils the Schrodinger equation

1hor; = HY;
= (—H + ihat)lpi =0
= <%(H0 — ,LLG) + 8t) U, =0 (35)

for all times and spatial coordinates. We multiply Eq. (3.5) from the left with an
arbitrary wave function ¥} and integrate. The functional is now
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3.2 Algorithm

T
J = [(W(T)[ ) — a /0 ()P dt - /0 (Ut|[ 1 (Hy — ) + D] [ (1) . (3.6)

where Uy can be viewed as a Lagrange multiplier density, ensuring that Wy satisfies
the time-dependent Schrodinger equation at each point in space and time. In order
to determine a stationary point of J, we do a functional derivative and set it to
zero. Unfortunately, the differential equations obtained have coupled boundary
conditions. Zhu et al. [39] have therefore multiplied the third term of Eq. (3.6)
by (U;i(T)|®¢). Then they subtract the complex conjugate of this term. The new
functional is therefore

J=J1+Jo+ Js, (3.7a)
Ji = [(W(T)| @), (3.7b)

:—a/ le(t ‘ dt, (3.7¢)
T .
() [ (o] (0 - pett) + o)) dt] (37

Before we continue, a few remarks are in order: a can be replaced by an «(t) to
impose time-dependent constraints on the laser shape, e.g. to force a cosine shaped
envelope. The Lagrange multiplier Wy can be regarded as a backward propagated
wave function with W¢(T) = ®¢ (see below). In J3, the order of ¥; and Uy in the
prefactor is reversed compared with the integral, which cancels time-independent
phases.

Calculating the derivative of the functional (for a detailed derivation, see [41]) and
setting it to zero (i.e. extremum of .J), the following equations are obtained

10703 = (Ho — pe(t)) Ui(t),  ;(0) = ;(0), (3.8)
10, Wg = (Ho — pe(t))We(t), Wi(T) = @(T),
e(t) = —Tm ({05 (0)) (05(0) |5 (1) ). (3.10)

This coupled system of non-linear equations can now be solved iteratively [37]. We
start with a guessed initial field (9)(¢) which can be arbitrary.”

Using €(®) = 0 may lock the system in the initial state [42]. While using a constant field (i.e. a
potential with the form of a wedge) seems to be a good starting point [private communication with
Jan Werschnik].
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3.2.1 TIteration algorithm

In the first step, WUy, Ug(T') = Py, is propagated backwards from ¢t = T to t = 0 using
the guessed field. In the second step, W¢(¢) is propagated from ¢ = 0 to 7" using the
same field €(©). Concurrently, the new field

D) = —élm(<%<t>|\lff<t>><@f<t>|u|\m<t>>) (3.11)

is calculated and used for the propagation of W;. In the third step, ¥; is propagated
backward from t = T to t = 0 using 6(1), the field is updated and used to propagate
W¢. In the fourth step, Wy is propagated back with 6(1), €@ is calculated and used
for propagating Vi, and so on. Graphically,

A
v (0) v vO(T) = @y
A
v%(0) 8 w(T)
eti=—a Mm@ 1o”) (0" lul”)
®; =: V(0 (DT ™) gy
v (0) o v (7)
e@:=—a=1m (@M [P (1) (2 |l (1))

etc.

Zhu et al. showed that this algorithm has the following convergence properties with
regard to the functional J [39]: (i) The iteration sequence converges monotonically
and quadratically in terms of the neighbouring field deviations. (ii) A larger devi-
ation of the field between neighbouring iteration steps leads to faster convergence
of the objective functional.

In fact, we could observe this behaviour in our calculations. In the first steps, the
overlap and the functional increases a lot, while later iteration steps introduce only
minor changes.

While we sticked to the above outlined algorithm, there are several modifications of
the algorithm possible. One modification proposed by Zhu et al. [39] is to evaluate
the first wave function bracket only at t =0 and t =T,

€= —élm((@ﬂlﬂf(()))<\I/f(t)|,u|\lfi(t)>>, First, third, . .. step,

e:—élm(<\I/i(T)]q)f)(‘llf(t)\u]\lfi(t»), Second, fourth,. ..step.  (3.12)
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Zhu et al. expect that this algorithm has generally a faster convergence. Another
possible modification is to revert the order of the propagations by first forward
propagating ¥;,%. In order to optimize (¥;(T)|O|®¢), with O being a positive definite
operator, the functional [40)]

T
J =(I;(T)|0|D¢) —a/o le(t)]” dt
T .
—2Re < /0 <Xf(t)‘[%(H0 — pe(t)) +8t} Iwi(t)> dt) : (3.13)

can be used, where X¢(7T") = OW;(T'). However, in the following we restrict ourselves
to the functional of Eq. (3.7).

3.3 Optimizing the HOMO-LUMO transition of LiF

We now apply the optimal control formalism, introduced in the last section, to a
system which is as small and as realistic as possible. Lithium fluoride is well suited
since it only contains two atoms and is rotationally invariant. This reduces the
three dimensional problem to an effective two dimensional one, which we describe
in cylindrical coordinates. To a certain extent, LiF' also shows the hallmarks needed
for transport since the HOMOT is located near the fluorine while the LUMO has an
appreciable contribution of the density near the lithium atom.

The Kohn-Sham potential of LiF has been calculated with octopus [13] using
pseudopotentials. The KS potential was then imported in optwo, a program which
has been written specially for this thesis to do the optimal control of molecules with
cylinderical symmetry. The potential exported by octopus lacks the non-local part
of the pseudopotential, which may yield wrong eigenvalues and orbitals. In addition,
in optwo we do not propagate the imported Kohn—Sham potential (it is therefore
frozen in time). As further simplification, no other orbitals are propagated.

3.3.1 Calculation of Hi; = g;1;

While we can simply calculate LiF with the octopus package, it cannot (yet) be used
to do optimal control. Therefore, the Kohn—Sham potential of octopus is exported
and the optimal control is done by an external program. In the following, we show
what is needed to do optimal control using the imported KS potential.

Initial results by Jan Werschnik show a slower convergence.
HOMO stands for the highest occupied molecular orbital (‘ground state’) and LUMO for the lowest
unoccupied molecular orbital (‘first excited state’).
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HOMO, E = —5.68 eV LUMO, E = —1.86 eV

Fig. 3.1 Isosurfaces of the HOMO and LUMO of lithium fluoride. (Lithium is on the
left, fluorine on the right.) The HOMO is doubly-degenerate and located near the fluorine
(combining both HOMOs makes the HOMO ¢ independent in cylindrical coordinates) while
the LUMO has some density located around the lithium atom. Note that the LUMO has
still parts close to the fluorine which are only barely visible in this isosurface plot. [Gaussian
calculations by courtesy of Angelica Zacarias.]

Orbital Energy (Ha)  Energy (eV)

1 HOMO—-4 —24.12993 —656.6088 m =0
2 HOMO-3 —1.85919 —50.5911 m =0
3 HOMO-2 —0.88686 —24.1327 m=0
4 HOMO-1 —0.21886 —5.9555 m =0
5, 6 HOMO —0.20891 —5.6847 m = =*£1
7 LUMO —0.06841 —1.8615 m =0
8,9 LUMO-1 0.01082 0.2944 m=4=£1
10 LUMO-2 0.03950 1.0748 m =0
11 LUMO-3 0.11062 3.0101 m=20
12,13 LUMO—-4 0.13091 3.0622 m = %1

Table 3.1 Molecular orbital eigenvalues of lithium fluoride. LiF has twelve elec-
trons, four of which are inner core electrons. The orbitals with magnetic quantum
number |m| = 1 are doubly degenerate. [Gaussian calculations by courtesy of Angelica
Zacarias.]

First, we need to obtain the orbitals and eigenenergies. Since we use a KS potential,
a single-particle Schrodinger equation has to be solved. The Hamiltonian has the
form H =T + V + Vex, where T' denotes the kinetic part, V' the KS potential and
Vext the potential induced by the external laser. For the calculation of the states,
Vext = 0. The kinetic energy operator can be written as
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2 2
|
r=2 :ﬁnﬁ—VQ@?—§v? (3.14)

 2me 2Me

In the remainder of this chapter, we use atomic units (cf. appendix D). Using
Eq. (3.14) and cylindrical coordinates, the following Schrédinger equation needs to
be solved

Ho = (~5V3+Vrnd) ) onsd) —cinze. (1)

In cylindrical coordinates, the Laplacian has the form [43]

, 1
cyl r

v @vw+%%+$
r

1 1
AV 2 2
=0: + ;& + 3 d5 + 0. (3.16)
Inserting Eq. (3.16),

1
Hy = (_Evgyl + V(T, Z, @))

1 1 1

5 (04204 504 02) 4 Vi) vl = 0l 0. ()
Since lithium fluoride is a molecule with cylinderical symmetry, i.e. the wave func-
tion is ¢ independent, we can replace 1(r, z, p) by ¥(r,2)e"™¥, m € Z. Multiplying
Eq. (3.17) by e™"™? we obtain as new Schrédinger equation

Hﬁn@:{—%Gﬁ+%ﬁ+@—%§)+Vma}ﬂn@:swn@. (3.18)

Note that the eigenvalues of Eq. (3.17) and (3.18) are the same. By writing ¢ (r, z, ¢)
as (r, z)eimw, we can only do transitions were the magnetic quantum number m
does not change, transitions with Am = +1 are thus not possible. This is because a
linearly polarized laser can only do Am = 0 transitions while a circularly polarized
one is needed for Am = +1. By construction, our laser can only be polarized along

the cylinder axis, i.e. along the axis of the molecule. We now set U(r,z) = Y(r, 2)
and V(r,z) =: V(r, 2).

In order to discretize Eq. (3.18) properly, we need to look at the boundary conditions
and therefore at the asymptotics. For bound states, (¢|¢)) has to be finite (namely
one) and therefore the wave function has to vanish for |r| — oo, i.e. for |z] — oo
and r — oo. Using cylindrical coordinates, we have also to look at r = 0 (cf. [44]).
As an ansatz, we use
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U(r, 2) = 18 (r, 2). (3.19)

If we insert Eq. (3.19) in the Schrédinger equation, we obtain

Ergq/;(r, z)= — % (rﬁ—%(r, 2) ({2 - m2) + r5—1ar@2(r, 2) (14 2{))

w0 (250 - 3024 V(2) ) D) (320)

Since we use pseudopotentials, the potential is smooth and V(r = 0, z) is finite.
Therefore, we may Taylor-expand V' in r around r = 0

1
Vir,z)=V(r, Z)‘T:O + 0,V (r, z)‘rzor + 583‘/(1”, z)|7,:07"2 +O(r). (3.21)
We also Taylor-expand the wave function @Z) in r around r =0
- - - 1 .-
W(r, z) = (r, Z>‘7‘:0 + Op)(r, z)|T:Or + 5831&(7’, z)‘T:0r2 + 0(7’3). (3.22)

We now insert Eq. (3.22) and (3.21) in the Schrodinger equation (3.20), neglect terms
of higher order and collect the coefficients of the leading term, which is propotional
to r$~2. One can then deduce

£ =|m|. (3.23)
Reinserting this into Eq. (3.20), one obtains the boundary condition
p(r) 0 0, m=#0. (3.24)

For m = 0, we need to look at the term proportional to ré~1 and see then that
(dv/dr)|y=0 = 0, therefore

dy

=0 = 0. 3.25
2l =0, m (325)

r=0

With these two boundary conditions, Eq. (3.24) and (3.25), and the condition that
1 vanishes at infinity, the discretized Schrodinger equation will be solved.

3.3.2 Discretization

In order to solve the Schrodinger equation numerically in real-space, we have to

discretize the Hamiltonian. The coordinates are written as r;, ¢« = 1,..., N, and
2j, j = 1,...,N;. We use a two dimensional, uniform grid with a mesh width of
A = |zj41 — zj| = |rig1 — ri| (FIG. 3.28). The wave function will be written as

;.; = (ri, zj) and the potential as
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2

m
Vij =V(ri,z) + . (3.26)
2r;

Since we do not want to calculate the kinetic part T of the Hamiltonian in momentum
space, the derivatives in 1" have to be approximated.

Tmax 1 (NT7 Nz)
r
- 0 o
(1,1) =

Fig. 3.2 Used coordinates

Using the three-point discretization formula (e.g. [45]), namely

1

Orthij = ﬂw}i—&-l,j —Pi_1;) + O(A?), (3.27a)
1

02 = P(wm,j — ;i + Pim1) + O(AY), (3.27b)
1

O2pi g = P(wz‘,jﬂ — 25 + ¥ijo1) + O(AY), (3.27¢)

yields the discretized Schrodinger equation

1 1
H(i, j)ig = (—5 <03 + -0 + 83) + Vij) i (3.28)

.1 /1 11
=5 <—(¢z‘+1,j + im1,j + Vi1 + i1 — Wig) + = (Yig1, — %‘—1,j)> + Vijvij

2 \ a? 2ar
= <—%%> Vi j—1
+ (—% (;12 - %%)) Y1y F (%j“z + Vm‘) vij + (—% (a_12 + %%)) Vit1
+ <_%a_12> Vi j+1-

There is a tricky point in this equation: The resulting matrix is not symmetric
due to the different sign of ¢;_1; and ;11 ; in the first derivative. Therefore,
the eigenvalues may be complex. In our calculations the imaginary part was zero,
though. However, one can symmetrize the matrix by substituting ¢» by 11/ but this
symmetization only works for the three-point formula (cf. [44]). In the following, we
only look at the non-symmetric matrix using three- and five-point finite-differences.
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Before we check the boundary conditions, we first construct a Hamilton matrix.
In principle, the eigenvectors are matrices of the size N, x N,, but since common
eigensolvers expect a vector, we transform 1); ; into a vector of the size N = N, N..

We set
Y =1  with l(i,7) := N,(i — 1)+ j. (3.29)
The indices ¢ and j can be regained from [ using

i) = [ =1)/N.] + 1,
i) = (—1)mod N, + 1. (3.30)

The resulting matrix has a band structure with tridiagonal entries and a sub-/super-
diagonal N, rows below/above the diagonal (FI1G. 3.3). Since this is a sparse matrix
it should not be stored fully.

N,
DN Z ut
v o\ UV
v o\ UV
20N F‘+
wo AV ut
= v
=,
Il
v o\ UV
"o 2 ut
no AV
v o\ VvV
v o\ UV
no v\
N = NN,

Fig. 3.3 Schematic Hamilton matrix using the three-point formula.
In this figure, A = 2/A? +V;;, p* = —1/2(1/A? £ 1/2r;A) and
v=—1/2A%

We now need to check the boundary conditions. For |z| — oo and r — oo they are
automatically fulfilled since the matrix has a finite size. Since points outside the
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3.3 Optimizing the HOMO-LUMO transition of LiF

box are treated as zero, one has to to ensure that the box is big enough. We now
look at r — 0. The point 1 couples (Eq. (3.28)) to the non-existing point at rg.
We introduce an offset for the radial coordinate, and start at r; = Ar instead of at
r1 =0 (i.e. 7 = (i —1)A + Ar). We choose now Ar = A/2 and evaluate H1y ;.
One observes then that the term with ¢y ; cancels. We therefore fulfil the boundary
conditions.

3.3.3 The five-point discretization

The accuracy of the obtained eigenvalues can be be enhanced by using a higher
order of finite-differences or going into Fourier space. But there is also a downside:
The numerical effort increases and new errors due to the transformation or the
larger matrices may occur. For the two-dimensional Harmonic oscillator in polar
coordinates, the three-point formula shows errors up to about one per cent and the
five-point up to 0.2 per mille [44]. In optwo both schemes are implemented, for the
results shown, 