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Topological insulators and their intriguing edge states can be understood in a single-
particle picture and can as such be exhaustively classified. Interactions significantly com-

plicate this picture and can lead to entirely new insulating phases, with an altogether

much richer and less explored phenomenology. Most saliently, lattice generalizations of
fractional quantum Hall states, dubbed fractional Chern insulators, have recently been

predicted to be stabilized by interactions within nearly dispersionless bands with non-zero

Chern number, C. Contrary to their continuum analogues, these states do not require
an external magnetic field and may potentially persist even at room temperature, which

make these systems very attractive for possible applications such as topological quantum

computation. This review recapitulates the basics of tight-binding models hosting nearly
flat bands with non-trivial topology, C 6= 0, and summarizes the present understanding

of interactions and strongly correlated phases within these bands. Emphasis is made on

microscopic models, highlighting the analogy with continuum Landau level physics, as
well as qualitatively new, lattice specific, aspects including Berry curvature fluctuations,

competing instabilities as well as novel collective states of matter emerging in bands with

|C| > 1. Possible experimental realizations, including oxide interfaces and cold atom im-
plementations as well as generalizations to flat bands characterized by other topological

invariants are also discussed.

Keywords: fractional Chern insulators; flat bands; topological insulators; topological or-
der; anyons; fractional quantum Hall effect.

1. Introduction and scope

The discovery of the quantum Hall (QH) effect,1,2 manifested by a remarkably

precise quantization of the transverse conductance in effectively two-dimensional

electron systems in presence of strong perpendicular magnetic fields, has had pro-

found implications for the understanding of matter. The integer QH effect,1 is the

first example of a topological insulator,3,4 and can as such be understood in a single

particle framework:5,6 charged particles in a magnetic field form Landau levels with

energy splitting that is proportional to the strength of the magnetic field, and when

an integer number of Landau levels are filled a band insulator with a bulk gap forms.

In contrast to ordinary band insulators, filled Landau levels come with gapless chiral
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edge states that each carries a quantum of conductance, e2/h. Mathematically, the

number of edge states is given by the value of a topological invariant, namely the

Chern number, that can only assume integer values similar to a winding number.

The integer nature of the Chern number is what makes the edge states, and hence

the quantization of the (off-diagonal) conductivity, so remarkably robust—they are

”topologically protected” and as such entirely insensitive to disorder as long as the

bulk gap does not close.7,8,9 In fact this quantization is so precise that it has lead

to a new laboratory definition of resistance in terms of the von Klitzing constant,

RK = h/e2 = 25812.807557(18)Ω.10

The fractional quantum Hall (FQH) effect,2 observed when the number of filled

Landau levels is a fraction ν = p/q, is, albeit showing strikingly similar transport

features, of a very different origin:11 it is entirely stabilized by interactions within

the exponentially large manifold of states which are (exactly) degenerate at the

single particle level due to dispersionless nature of Landau levels. In contrast to the

topological insulators, the FQH states fall within the realm of topological order12,13

and are as such characterized by non-trivial ground state degeneracies depending

on the genus of the manifold on which they live,14 long-range entanglement15,16

and fractionalized excitations.11,17 Motivated by the fundamental interest in find-

ing new types of particles, as well as by the search for robust quantum computational

devices,18 much of the recent interest in FQH physics has focused on phases with

non-Abelian excitations.17 In contrast to fermions, bosons, or Abelian anyons19

for that matter, the non-Abelian quasiparticles have the property that the wave

function in general becomes linearly independent from the starting state when the

positions of two (or more) of them are adiabatically interchanged (braided). This

potentially provides excellent degrees of freedom to store information (the quantum

bit) that is immune to local perturbations such as disorder and can only be altered

by non-local braiding operations of the excitations.18 Although these theoretical

ideas are well developed and sophisticated, topological quantum computation re-

mains a rather remote dream to this date. Despite old ideas in the context of

high-energy physics,20 and more recently impressive solid state experiments, in the

quantum Hall regime21 as well as in quantum wires,22 there is so-far no firmly es-

tablished realization of non-Abelian (quasi)particles in nature. Moreover, the large

scale manipulation needed for actually performing quantum computation is posing

an enormous technological challenge. In the conventional quantum Hall setup us-

ing semiconductor heterostructures, two main limitations are the need for a very

strong magnetic field B ∼ 10 Tesla, and the fact that the gap nevertheless remains

very small ∆E . 1 Kelvin. Another key issue is the need for ultra clean samples

with extremely high mobility, especially for more fragile FQH phases, including the

non-Abelian ones.

A conceptually important step towards high-temperature topological phenom-

ena was provided by Haldane in a seminal work, published already in 1988, where

he explicitly showed that an integer quantum Hall effect can in fact appear also
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without an external magnetic field, by constructing a simple tight-binding model

on the honeycomb lattice.23 In this model, which was the first lattice construction

of a Chern insulator, time-reversal symmetry is broken by a magnetic field of zero

average flux, which can, for instance, be emulated by spin-orbit coupling. In fact, the

Haldane model also underlies the recent developments in topological insulators—

the lattice version of the archetypical Kane-Mele model24,25 is essentially built by

two (time-reversed) copies of the Haldane model.

On a lattice the effect of a magnetic flux through a plaquette is actually phys-

ically indistinguishable when an integer number of flux quanta, Φ0 = h/(2e) is

added. This observation reveals a close link between the Haldane model and the

problem of charged particle hopping on a (square) lattice in presence of a perpen-

dicular magnetic field which was studied already in 1969 by Hofstadter26 and is

known to exhibit an intriguing fractal spectrum, the famous ”Hofstadter Butter-

fly”, as a function of the flux per plaquette. In the limit of small flux this recovers

Landau levels in the continuum.

The recent interest in fractional Chern insulators (FCIs) was ignited27 by the

insight that the topological bands can be made flat for suitable short-range tight-

binding parameters,28,29,30,31 thus greatly increasing the effect of interactions. Early

numerical works31,32,33 indeed confirmed the existence of electronic FCI analogues

of the Laughlin state.11 [See Refs.28,34 for corresponding results for bosons.] These

results opened a number of intriguing possibilities. First, the gap, which is mainly

controlled by the Coulomb interaction, ∆E ∼ e2/(ε`), may be greatly increased com-

pared to the continuum as it is stabilized by interactions on the lattice scale, rather

than on the order of the magnetic length which is typically two orders of magnitude

larger. In fact, a naive estimate does not rule out FCIs at room-temperature.31

Second, there is no need for a strong external magnetic field. The two effects of the

magnetic field in the continuum, namely the breaking of time reversal symmetry and

the formation of flat bands, can be replaced by a suitable combination of e.g., spin-

orbit coupling and ferromagnetism. Third, lattice systems can harbor qualitatively

new phases of matter. An exciting example thereof is the existence of relatively

realistic flat band models with Chern number larger than one, |C| > 1,35,36,37 some

of which have been confirmed to host a plethora of new FCIs markedly beyond the

FQH paradigm.38,39,40 A particularly intriguing possibility is that lattice defects in

these systems may act as worm-hole-like objects, suitably dubbed ”genons”, that

change the geometry of space and obey non-Abelian exchange statistics.41

Along with the new possibilities the topological flat band systems also pose a

number of important new theoretical challenges that arise due to the combined

effects of interactions, band topology and the underlying lattice. One of the ways in

which this is manifested is through a varying Berry curvature which is a necessary

complication compared to the continuum case. A related general lattice feature is

the lack of translational invariance (in reciprocal space), and a resulting absence of

particle hole symmetry in a band and the emergence of qualitatively new competing

phases.42
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The search for experimental realizations of FCIs is arguably the most press-

ing issue in the field. In this context, it is encouraging to consider recent history.

The success story of topological insulators nicely illustrates that wild ideas,24,25

followed by detailed theoretical predictions43 can lead indeed to ground-breaking

experiments.44 Moreover, in analogy with the development in the quantum Hall

context it is very encouraging to note that, very recently, the first experimental

realization of a Chern insulator was reported in a magnetic topological insulator45

and that signatures of the Hofstadter butterfly have been observed in graphene

superlattices46,47 as well as in a cold atom experiment48. Indeed, there is a rapidly

growing list of more or less detailed suggestions for realizing FCIs ranging from

solid state materials such as oxide interfaces49,50 to cold atom realizations51 and

so-called optical flux lattices.52

Although the recent interest in these systems has uncovered plenty of new

physics, there is a rich history of earlier works that are worth mentioning. In par-

ticular, it was noticed almost twenty years ago that a periodic potential in addition

to the Landau level structure can lead to qualitatively new insulating phases, most

saliently with an unexpected value of the quantized conductance.53 Moreover, var-

ious FQH states have been found in the context of the Hofstadter model, first in

the weak field limit54 (i.e. close to the continuum) and later also when the effect

of the lattice is considerablea.55,56 Yet another line of precursor studies stems from

the idea of chiral spin liquids57 in the context of frustrated magnetism.

The present review aims to fill two main purposes. First, it provides a detailed

introduction to many of the basic concepts that should serve as a useful reference

for anyone entering the field. Second, it provides a snapshot of the state of the art

in the field and a collection of references to the relevant original works. To illustrate

the general points that we want to make, we include a number of explicit exam-

ples with previously unpublished data and our interpretations thereof. In addition

to this we highlight a number of directions that we feel deserve future attention.

Recently another introduction to the field, albeit with a different focus, appeared.58

The excellent discussion in Ref.58 regarding the algebra of band projected density

operators is recommended as a complementary reading as this topic is only briefly

touched upon here. Another omission in our work is parton constructions and effec-

tive field theory approaches, partly because of space limitations, but also because at

least some of these approaches are associated with considerable unsolved technical

as well as conceptual issues when applied to the lattice systems. Nevertheless, some

of this stream of works are interesting and we direct the interested readers to a

selection of original publications.59,60 Also worth mentioning is the recent review

in Ref.61 that surveys various recent studies on effects of electron correlations in

topological insulators, mainly focusing on the integer regime and on time-reversal

aThe early evidence for lattice FQH states was not quite as unambiguous as in later works due to

the limitations to very small systems sizes and, more importantly, since the bands of the Hofstadter
model are not very flat.



September 10, 2013 1:9

Topological Flat Band Models and Fractional Chern Insulators 5

invariant systems.

The rest of this review is organized as follows. In Section 2 we give a rather de-

tailed account of topological flat band models, with focus on Chern bands, including

comments on technical details and subtleties. In Section 3, we introduce interactions

and band projections. Section 4 reviews the present understanding of interaction

phases in |C| = 1 bands, highlighting both the similarities, e.g. through adiabatic

continuity, as well as differences including new competing phases, compared to the

conventional Landau level phenomena in the continuum. In Section 5 we move on to

flat band physics qualitatively beyond the FQH paradigm by reviewing very recent

works on models with |C| > 1. In Section 6 we discuss some of the most promising

ideas that have been put forward for the experimental realization of FCIs. Finally,

in Section 7, we close by a discussion of a number of intriguing future directions in

this field.

2. Tight-binding models, Berry curvature, and flat bands

Consider a translation invariant quadratic hopping Hamiltonian,

H0 =
∑
n,m

tabnmc
†
n,acm,b , (1)

where a, b = 1, . . . , Nc label the states in the unit cell, and n,m = 1, . . . , Ns
label the sites on the Bravais lattice (at positions Rn and Rm). With c†k,a =

1√
Ns

∑
n e

ik·Rnc†n,a, one finds

H0 =
∑
a,b,k

Habk c†k,ack,b , (2)

where k = (k1, k2) is the single-particle momentum restricted to the first Brillioun

zone (BZ) and Habk ≡ 1
Ns

∑
n,m t

ab
nme

−ik·(Rn−Rm) =
∑
n t

ab
n1e
−ik·(Rn−R1) [R1 can be

set to zero for convenience]. In reciprocal space, the single-particle (Bloch) Hamil-

tonian, Hk, is diagonalized,∑
a,b
Habk c†k,ack,b|ψs(k)〉 = Es(k)|ψs(k)〉 , (3)

for each k separately, by the states |ψs(k)〉 =
∑
b ψ

b
s(k)c†k,b|0〉. The energies

Es(k), s = 1, . . . , Nc, are the eigenvalues of the matrix Hk and constitute the band

structure of the model (1) with k ∈ BZ.

To characterize the topological properties of a given band it is useful to calculate

the Chern number,

C =
1

2π

∫
BZ

F s12(k)d2k ∈ Z , (4)

which is an integer valued quantity. In Eq. (4), C is defined for an isolated band, s,

in terms of the wave functions |ψs(k)〉, via the Berry curvature,

F sαβ(k) = ∂kαA
s
β(k)− ∂kβAsα(k) , (5)
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where

Asβ(k) = −i〈ψ̃s(k)|∂kβ |ψ̃s(k)〉 (6)

is the Berry connection, α, β = 1, 2 and |ψ̃s(k)〉 ≡ e−ik·r̂|ψs(k)〉 =
1√
Ns

∑
n,b e

−ik·δrbψbs(k)c†n,b|0〉. Here δrb is the relative position with respect to the

center of the unit cell (i.e., the sites of the lattice are located at Rn + δrb). There

is a subtle, often overlooked, difference between using |ψ̃s(k)〉 and |ψs(k)〉 in the

Berry connection: while both choices give the same Chern number, the resulting

Berry curvature is not identical. In the case of the Hofstadter butterfly26 only the

former gives a well behaved weak field continuum limit (constant Berry curvature).

Thus the details of the embedding of the lattice model and its orbitals in real-space

have observable effects as it influences the Berry curvature distribution.

Eqs. (5,6) highlight the fact that the (gauge independent) Berry curvature and

the (gauge dependent) Berry connectionb are solely dependent on the eigenstates

of the band (and their embedding in real-space), but are in principle independent

of the band energy structure. It is important to note that some care is needed when

evaluating expressions including derivatives of the eigenstates, as in Eqs. (5,6),

since they implicitly assume a consistent (smooth) choice of gauge throughout the

Brillioun zone. In practical calculations it is therefore preferable to use a formula

where the energy eigenvalues of the model nevertheless show up:62

F sαβ(k) =
∑
s′ 6=s

〈ψ̃s(k)|∂Hk

∂kα
|ψ̃s′(k)〉〈ψ̃s′(k)|∂Hk

∂kβ
|ψ̃s(k)〉 − (α↔ β)

[Es(k)− Es′(k)]2

= 2
∑
s′ 6=s

Im

{ 〈ψ̃s(k)|∂Hk

∂kα
|ψ̃s′(k)〉〈ψ̃s′(k)|∂Hk

∂kβ
|ψ̃s(k)〉

[Es(k)− Es′(k)]2

}
. (7)

Eq. (7) can be derived by noting that 〈ψ̃s′(k)|∂kβ |ψ̃s(k)〉[Es(k) − Es′(k)] =

〈ψ̃s′(k)|∂Hk

∂kβ
|ψ̃s(k)〉, for s 6= s′.

Physically, the Chern number counts the number of current carrying chiral edge

states, and comes with a sign which indicates the direction of propagation of the chi-

ral modes. Consequently, the Chern number is in direct proportion to the quantized

Hall conductivity of a filled band,7

σH = C
e2

h
. (8)

When several bands are filled the Hall conductivity is the sum of the individual band

contributions, each given by Eq. (8). For a gapped many-body state at fractional

band filling, the Hall conductance is not generally quantized. However, an intuitive

and appealing expression for the Hall conductivity was provided in Ref.63 as

σH =
1

2π

∫
BZ

F s12(k)〈nk〉d2k, (9)

bNote that a gauge transform |ψ̃s(k)〉 → eiφ(k)|ψ̃s(k)〉 changes the Berry connection (6): Asβ(k)→
Asβ(k)+∂kβφ(k), while the Berry curvature (5) remains unchanged as long as φ(k) is differentiable.
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where 〈nk〉 is the occupation number averaged over (quasi-) degenerate ground

states and is as such containing information about the correlations in the systemc.

Although interesting counterexamples exist,53,60,63 Eq. (9) typically gives σH =

Cν e
2

h for an incompressible state at fractional band filling, ν.

Topologically non-trivial bands, with C 6= 0, can appear when the hopping

parameters, tabnm, are allowed to assume complex values which naturally arises in a

number of systems including spin-orbit coupled materials and systems with effective

gauge fields. It has also been argued (at the mean-field level) that effective complex

hopping parameters can occur spontaneously due to strong frustrated interactions.64

It is crucial to realize that the local Berry curvature and the (energy) disper-

sion are fundamentally independent. To see this it is instructive to consider a non-

degenerate band, with energy Es(k) 6= 0, without any touching points with other

bandsd. Now, a flat band model can be trivially constructed by the replacement

Hk → Hflat
k = Hk/Es(k). (10)

While the dispersion of the band corresponding toHflat
k is entirely flat, the eigenstate

|ψs(k)〉 and thus the Berry curvature remain unaltered [cf. Eqs. (5,6) and note

that Es(k) ∈ R]. It is not possible to have an entirely flat Berry curvature in any

lattice model except in the limit of an infinitely large unit cell—in the latter limit

one can obtain the continuum Landau levels which have asymptotically flat energy

dispersion and Berry curvature.

In real-space, the flattened Hamiltonian,

Hflat
0 =

∑
a,b,m,n

tab,flat
nm c†n,acm,b ; tab,flat

nm ≡ 1

Ns

∑
k

Habk
Es(k)

eik·(Rn−Rm) , (11)

includes arbitrary long-range processes even if the original Hamiltonian (1) is short-

range. What makes flat band models more than a curiosity is that the hopping

amplitudes (asymptotically) decay exponentially and that keeping only a few short-

range terms already often gives almost flat bandse.

To quantify how good a flat band model is, it is useful to define the flatness

ratio, F = ∆/W , in terms of the bandwidth, W = max
k,k′∈BZ

[Es(k)−Es(k′)], and the

energy gap, ∆ = min
k,k′∈BZ

[Es(k) − Es−1(k′), Es+1(k′) − Es(k)]. While only F > 0

is needed to have an insulator at the non-interacting level, a separation of energy

scales at large F � 1 implies that there is a window of interaction strength, V ,

such that

∆ (band gap)� V (interaction scale)�W (band width), (12)

cReliable finite size results can be achieved by averaging over the boundary conditions, i.e. inserting

flux through the handles of the torus on which the system is defined.
dNote that the condition Es(k) 6= 0 can always be met by adding an appropriate constant to the
Hamiltonian without changing the eigenstates.
eA model where exponentially decaying hopping elements are explicitly written out was con-
structed in Ref.28.
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where it is reasonable to expect strongly correlated phases, such as FCIs, confined

to a given topological band. However, as we shall discuss later, a large F is only one

of several criteria for a ’good’ topological flat band: the existence of FCIs is also

crucially dependent on the structure of the Bloch states |ψs(k)〉 (e.g., through the

Berry curvature), the topology/coordination of the underlying lattice as well as the

range of the interaction. See Section 4.6 for a more detailed discussion.

There has been a flurry of recent works engineering topological flat band models

with various benefits. To mention a few, there are useful |C| = 1 models on the

checkerboard lattice,30,31 the honeycomb lattice,31,34,65 the kagome lattice,29 the

ruby lattice,66 the triangular lattice,50,67 and the Kapit-Mueller construction28 (ex-

act Landau level structure with long-range hopping) which can be formulated on

various lattices. Models with |C| = 2 flat bands were found on the dice lattice,35

and in a triangular lattice model,39 while systematic generalizations to any Chern

number, |C| = N , are given by the pyrochlore slab model (multilayer kagome lattice

model),36 multi-orbital square lattice models37 and optical flux lattices52,68 (formu-

lated as hopping models in reciprocal space). Given the experience gained from

the construction of these and other models it is straight-forward to create further

examples on essentially any lattice.f

To illustrate the general concepts introduced above we will now go on to describe

a three-band model with spin-orbit coupled particles on the kagome lattice29 (Fig. 1)

in more detail.

Example: Kagome lattice model

To construct the Bloch Hamiltonian of the kagome modelg , as illustrated in Fig. 1,

we note that the definition in Eq. (2) implies that hopping inside one unit cell

does not give rise to a phase factor, while hopping a distance δR = na1 + ma2

(to another unit cell) gives rise to a phase factor eik·δR. With this convention, and

ki = k · ai, i = 1, 2, k3 = k1 − k2, the Hamiltonian in the reciprocal space reads

fThe precise lattice structure is however often important for the topological properties of natural
short-range models. This fact is well illustrated for time-reversal invariant models in Ref.69 and

for the models with variable Chern number in Refs.36,37.
gThe effective model only includes spin-polarized/spin-less particles. In electronic systems, this

can be realized e.g. by proximity to ferromagnetic substrates or by applying a weak (or in-plane)
Zeeman field.
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Figure 1. The spin-orbit coupled kagome lattice model. The unit cell has three sites (green

numbers) and the Bravais lattice is generated by the lattice vectors a1 and a2. The red arrows

indicate the considered nearest and next-nearest hopping processes, for which the sign of the spin-
orbit terms, λ1, λ2, depend on the orientation of the process within a given hexagon (see the text).

The Bloch Hamiltonian corresponding to this tight-binding model is given in Eq. (13).

Hk = t1

 0 1 + eik1 1 + eik2

1 + e−ik1 0 1 + e−ik3

1 + e−ik2 1 + eik3 0


+ iλ1

 0 1 + eik1 −(1 + eik2)

−(1 + e−ik1) 0 1 + e−ik3

1 + e−ik2 −(1 + eik3) 0


+ t2

 0 eik2 + eik3 eik1 + e−ik3

e−ik2 + e−ik3 0 e−ik1 + eik2

e−ik1 + eik3 eik1 + e−ik2 0


+ iλ2

 0 −(eik2 + eik3) eik1 + e−ik3

e−ik2 + e−ik3 0 −(e−ik1 + eik2)

−(e−ik1 + eik3) eik1 + e−ik2 0

 . (13)

For t1 < 0, t2 = λ1 = λ2 = 0, the spectrum of (13) is built up by the well-

known spectra of (spinless) graphene, including two Dirac cones, and, in addition,

a perfectly flat band, which can neatly be understood in terms of localized modesh,

hTo see this, note that a state prepared with amplitudes of equal magnitude but alternating signs
around a hexagon cannot leak out of the hexagon (all such amplitudes cancel) and the prepared
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(a) (b) (c)

Figure 2. Band structure of the kagome model. Energy spectra Es(k); s = 1, 2, 3 for the

kagome lattice model, defined in Eq. (13) for three different sets of tight-binding parameters: (a)
with only real nearest neighbor hopping, t1 = −1, (b) also including complex nearest neighbor

terms, −t1 = λ1 = 1, (c) including also next-nearest neighbor terms, t1 = −1, t2 = 0.3, λ1 =

0.28, λ2 = 0.2, leading to a flatness ratio of F ≈ 52 for the lowest band.

as shown in Fig. 2(a). The flat band is not isolated—one of the dispersive bands has

a quadratic dispersion around the touching point located at k = 0. The ambiguity

of assigning a band index within the two-dimensional degenerate manifold of states

at k = 0 makes the Berry curvature ill-defined at this point and it is hence not

meaningful to assign a Chern number to either of the bands.

Including finite spin-orbit coupling immediately opens a gap at the touching

points and assigns a well defined Chern number for each of the bands—by adiabatic

continuity these Chern numbers cannot be altered without a closing of the gap. In

Figs. 2(b,c) the lowest bands have C = 1, the middle bands have C = 0 and the

upper bands have C = −1. For the band structure in Fig. 2(b) we have used nearest

neighbor hopping only which limits the flatness ratio F ≤ 1 (we have −t1 = λ1 = 1

which saturates the flatness limitation, i.e. F = 1). In Fig. 2(c), a very large flatness

ratio, F ≈ 52, is obtained by including also next-nearest hopping (t1 = −1, t2 =

0.3, λ1 = 0.28, λ2 = 0.2) which shows how rapidly the bands in this model can be

flattened by including longer range terms (and fine-tuning).29

In Figs. 3(a,b) we display the Berry curvature of the lowest band, which is

readily computed numerically using Eq. (7), for the same parameter sets as used

in Figs. 2(b,c) respectively. These plots illustrate the general property that the

Berry curvature in lattice models is necessarily inhomogeneous, which is especially

prominent in models with a low number of bands (or equivalently, a low number of

orbitals per unit cell).

In Section 5.1 we will use above results and show how the kagome model can

be used as a building block for flat band models with arbitrary Chern numbers, by

considering stacked kagome layers in the form of a pyrochlore slab.

3. Interactions and band projection

What makes the flat bands so interesting is that they amplify the effect of in-

teractions. This Section provides detailed steps needed for describing interactions

state is therefore an eigenstate of the nearest neighbor hopping model.
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(a) (b)

Figure 3. Berry curvature in the lowest kagome band with (a) nearest neighbor hopping

only (−t1 = λ1 = 1) and (b) for the very flat band obtained by t1 = −1, t2 = 0.3, λ1 = 0.28, λ2 =

0.2. These parameter sets are the same as for the dispersion shown in Figs. 2(b,c). In both cases the
integrated Berry curvature gives C = 1, and one may note that the non-flat band corresponding to

(a) actually has a slightly less peaked Berry curvature compared to the very flat band corresponding

to (b) (standard deviation σF12 = 0.045 vs. σF12 = 0.071). In fact, numerical simulations indicate
that the Berry curvature in (a) is more favorable for finding FCIs (assuming band flattening, cf.

Section 3).

efficiently in the language of second quantization. To this end we consider the most

natural (diagonal) lattice interactions of the form

Hint =
∑

n,m,a,b

V abnmc
†
n,ac

†
m,bcm,bcn,a . (14)

In reciprocal space this amounts to

Hint =
∑

k1,k2,k3,k4
a,b

V abk1k2k3k4
c†k1,a

c†k2,b
ck3,bck4,a , (15)

where the interaction matrix elements read

V abk1k2k3k4
=
δ′k1+k2,k3+k4

N2
s

∑
n,m

V abnme
−i(k1−k4)·(Rn−Rm)

=
δ′k1+k2,k3+k4

Ns

∑
n

V abn1 e
−i(k1−k4)·(Rn−R1), (16)

where δ′k,k′ is the two-dimensional periodic Kronecker delta function (with period

2π) and we have again assumed translation invariance. A number of numerical

studies have managed to extract useful information about the full model

H = H0 +Hint =
∑
a,b,k

Habk c†k,ack,b +
∑

k1,k2,k3,k4
a,b

V abk1k2k3k4
c†k1,a

c†k2,b
ck3,bck4,a , (17)

at various filling fractions including strong evidence for FCI phases, see e.g.,

Refs.31,32,37,39,50,34,65,67,70,71. It should be noted that a corresponding option to
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numerically study the full problem is not available in the continuum FQH case—a

discrete finite size problem only results after Landau level projection.

Nevertheless, to gain more insights about the underlying lattice physics, its

relation to the continuum problem, and to motivate approximation schemes, it is

useful to go on and introduce new (projected) creation operators, d†k,s, such that

d†k,s =
∑
a

ψas (k)c†k,a ; c†k,a =
∑
s

ψa∗s (k)d†k,s . (18)

Clearly, d†k,s creates a particle with momentum k living in band s. In terms of these

new operators one finds

H =
∑
s,k

Es(k)d†k,sdk,s +
∑

k1,k2,k3,k4

s,s′,s′′,s′′′

Ṽ ss
′s′′s′′′

k1k2k3k4
d†k1,s

d†k2,s′
dk3,s′′dk4,s′′′ , (19)

where

Ṽ ss
′s′′s′′′

k1k2k3k4
=
∑
a,b

V abk1k2k3k4
ψa∗s (k1)ψb∗s′ (k2)ψbs′′(k3)ψas′′′(k4) . (20)

Eq. (19) makes it evident that, in addition to the band preserving single particle

terms, the interactions give rise to scattering between different bands. However,

in the case of large band gaps compared to the interaction strength [cf. Eq. (12)],

it makes sense to project the problem onto the lowest partially filled band—this

is where all the action takes place and it is the situation that we are primarily

interested in. Furthermore, if the interaction is nevertheless much stronger than the

bandwidth, an effective model of the form

Hproj,s
flat =

∑
k1,k2,k3,k4

V proj,s
k1k2k3k4

d†k1,s
d†k2,s

dk3,sdk4,s , (21)

with

V proj,s
k1k2k3k4

≡ Ṽ ssssk1k2k3k4
=
∑
a,b

V abk1k2k3k4
ψa∗s (k1)ψb∗s (k2)ψbs(k3)ψas (k4)

=
δ′k1+k2,k3+k4

Ns

∑
a,b,n

V abn1 e
−i(k1−k4)·(Rn−R1)ψa∗s (k1)ψb∗s (k2)ψbs(k3)ψas (k4),(22)

describing interactions in the flattened band s, is well motivated.

There are several benefits of studying Eq. (21) compared to the full problem

defined by Eq. (17). In particular, it nicely isolates the effect of interaction, makes

the study of considerably larger systems sizes tractable in numerics, and makes

the comparison to the continuum FQH more explicit. After the initial work of

Ref.33 (see also Ref.72), there have indeed been a number of successful works using

the projected interactions leading to a deepened understanding of the connection

between conventional Landau level physics and the interacting phase diagram in a

partially filled flat Chern band, see e.g., Ref.42. The projection has also been crucial

in studies38,40,73 of interactions in bands with |C| > 1.
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We would also like to briefly mention that there is interesting work74,75,76,77,78

on the algebraic structure obeyed by the projected density operators

ρq,s =
∑
k

[∑
a

e−iq·δraψa∗s (k)ψas (k + q)
]
d†k,sdk+q,s . (23)

In the long wave-length limit (small |q|) one can make direct contact with the

Girvin-MacDonald-Platzman (aka W∞ or GMP) algebra,79

[ρq1,s, ρq2,s] = 2i sin
(q1 × q2

2
`2
)
ρq1+q2,s , (24)

known to hold for the projected density operators in a Landau level. For the Chern

bands Eq. (24) holds in the limit of flat Berry curvature (and small |q1|, |q2|) which is

increasingly realistic in models with larger unit cells. Here one is lead to the useful

identification between the magnetic length, `, and the average Berry curvature,

〈F s12(k)〉 ∝ C ∝ `2 which highlights the fact that the Berry curvature plays a role

similar to the magnetic field in the Landau level case. Further insights into the band

geometry of Chern bands have been obtained by Roy77 who stressed the importance

of the Fubini-Study metric, which occurs in higher-order expansions (beyond linear

in |q|) of the density commutators [cf. Eq. (24)]. It is worth notice that these

seemingly quite abstract quantities have direct experimental consequences—while

the connection between the Berry curvature and the (anomalous) Hall effect has

been discussed above, it has also been suggested that the (symmetric part of the)

Fubini-Study metric tensor also has measurable consequences, e.g., in the current

noise spectrum.80 For a more in depth discussion of the algebraic properties of

Chern bands we refer to the recent review in Ref.58 and the references therein.

4. Interactions in |C| = 1 models and the FQH analogy

In this Section we consider the effect of interactions within flat bands with unit

Chern number. In particular, we focus on the analogy with conventional Landau

level physics as well as new competing phases that are specific to the lattice setting.

4.1. Basic identification of FCIs

A standard approach to uncover interaction-induced new insulating phases in flat

bands is to extract the low-energy physics of (21) on a finite system—Ne electrons

(or Nb bosons) in a lattice with N1 and N2 unit cells in two primary directions

(Ns = N1×N2), by numerical algorithms such as exact diagonalization and density

matrix renormalization group (DMRG). A pressing question immediately arises:

how can we actually identify FCI phases based on numerical data?

Generally speaking, the most obvious numerical evidence of FCIs is the topo-

logical degeneracy of ground states on the torus. At band filling ν = Ne/Ns = p/q,

where p and q are coprime, at least q (quasi-) degenerate ground states are ex-
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pectedi. The ground-state manifold should be separated from excited levels by a

many-body gap that does not vanish in the thermodynamic limit and, ideally, the

ground state splitting should vanish exponentially with system size. Moreover, the

topological degeneracy should be robust to the twisted boundary conditions, which

can be demonstrated by calculating the spectral flow (i.e. the energy spectra as a

function of boundary conditions): the ground states should never mix with the ex-

cited levels under the insertion of magnetic flux Φ through the handle of the torus.

Typically, the ground states evolve into each other in the spectra flow for an appro-

priate flux insertion, which also suggests a non-trivial quantized Hall conductance.

Because of the translation invariance in the lattice, the total momentum K =

(K1,K2) is a good quantum number [this can also be seen from the Hamiltonian

matrix elements (22)] and provides convenient labels for the many-body states. In

most cases (but not always), one can simply deduce the momentum sectors where

the FCIs are expected to occur by first folding K into K1D = K1 +N1K2
33 and then

applying an exclusion rule known from the thin-torus limit82 (or equivallently, ”root

configuration”83 or ”pattern of zeros”84) of the corresponding FQH states, which

implies that there are no more than p particles in q consecutive orbitals at, and

slightly below, ν = p/q. A technically more involved prescription was proposed in

Ref.76, by which one can precisely predict the ground-state momenta as well as the

quasihole counting in each momentum sector of the FCIs, which can be compared

with the numerical data to examine whether the numerical ground states are indeed

in the FCI phase.

Besides the energetic evidence, entanglement measures, especially the particle-

cut entanglement spectrum85 can provide more insights into the identification of

the ground states.33 The quasihole excitation properties reflected by the particle-

cut entanglement spectrum can be used as an indication of the topological order and

sometimes to rule out other competing phases. A complementary way to study the

quasihole excitations is, quite naturally, to change the lattice size so that Ne < νNs,

which can add holes into the system.

As a typical example, the numerical data for Ne = 8 interacting electrons at

ν = 1/3 with a nearest neighbor repulsion projected to a flattened band in the

N1 ×N2 = 4× 6 kagome lattice model is shown in Fig. 4. The excellent finite size

three-fold ground-state quasi-degeneracy and the large gap are characteristic for

the ν = 1/3 FCI which is known to generally be the most stable electronic state,

and moreover, the kagome lattice model stands out as a good lattice models for

realizing several C = 1 FCIs, see e.g., the discussion by Wu et al.86 and Sections

4.2-4.6. The three quasi-degenerate ground states evolve into each other without

mixing with exited levels during the spectral flow, which clearly shows the robustness

of topological degeneracy and strongly suggests the quantized Hall conductance

iThe number of quasi-degenerate states is equal to q for Abelian FCIs, but larger than q for non-

Abelian FCIs. In Landau levels all eigenstates of a translation invariant operator are at least q-fold
degenerate81. In Chern bands, however, a q−fold quasi-degeneracy is nontrivial.
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Figure 4. Numerical observation of a FCI in a C = 1 band. Ne = 8 interacting electrons
projected to the flattened C = 1 band (−t1 = λ1 = 1) on a kagome lattice with N1 ×N2 = 4× 6

unit cells. Note that the underlying kagome lattice has N1×N2×Nc = 4×6×3 = 72 sites and the

band filling is ν = Ne/(N1 ×N2) = 1/3. (a) shows the low lying energies with periodic boundary
conditions (no flux) in each (center of mass) momentum sector. There is a three-dimensional

manifold of quasi-degenerate states (colored red, green, blue for clarity) whose momenta can be

deduced from a simple (one particle in three consecutive orbitals) exclusion rule in close analogy
with the FQH exclusion rules. (b) shows the spectral flow under flux insertion (see the main text).

On the scale of the main plot all three ground states appear to be degenerate throughout, but
zooming as shown in the inset reveals that the ground states flow into each other. This spectral

flow, where the ground states evolve without mixing with the higher states also makes a strong

case for the quantized conductance, σxy = ν h
e2

. (c) The ground-state particle-cut entanglement
spectrum with a clear entanglement gap. The total number of levels below the gap is the same as

the corresponding quasihole excitation counting of the ν = 1/3 FQH Laughlin state.

σxy = 1
3
h
e2 . The total number of levels below the clear entanglement gap in the

particle-cut entanglement spectrum matches the counting of ν = 1/3 FQH Laughlin

quasihole excitations, indicating the ground states are indeed topological nontrivial

and belong to the same phase as the ν = 1/3 FQH Laughlin state.

Further evidence used to confirm that the ground states are FCIs, include the

adiabatic continuity to the FQH states (as discussed later in Section 4.3.2) and the

modular matrices that contain the information of statistics of quasiparticles.87,88

4.2. Numerically observed states

Based on numerical evidence described above, a large number of FCIs have been

observed in |C| = 1 modelsj. They appear as the lattice analogues of the most well-

known FQH states, such as the Laughlin,11 composite fermion (CF),89 Moore-Read

(MR),17 and Read-Rezayi (RR)90 states.

The Laughlin analogues at ν = 1/m are the first FCIs that were discovered. In

the initial papers of FCIs, ν = 1/3 and ν = 1/5 fermionic states in the checkerboard

lattice model were reported,31,32,33 and subsequent works86 confirmed the ν = 1/3

fermionic states in various lattice models, such as the honeycomb lattice model, two-

orbital square lattice model, kagome lattice model and ruby lattice model. Besides

an early work in the Kapit-Mueller model,28 the ν = 1/2 bosonic states were also

jThe numerical criteria described above to identify FCIs also work in |C| > 1 models.
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observed in the honeycomb lattice model and checkerboard lattice model for two-

body hard-core bosons.34

After the discovery of FCIs at Laughlin filling fractions, ν = 1/q, the members

of the FCI family naturally extend to CF states at ν = n/(2n + 1) for fermions

and ν = n/(n + 1) for bosons. The existence of such states was briefly mentioned

in Ref.50, and convincing evidence of CF FCIs for fermions in the checkerboard

lattice model was provided in Ref.42 while Ref.91 reported compelling indications

of bosonic CF FCIs in the ruby lattice model.

Beyond Abelian states, non-Abelian FCIs at ν = k/(k+ 2) for fermions and ν =

k/2 for bosons (k > 1) were also observed. Initially, (k+1)–body interactions seemed

necessary to stabilize these states, such as ν = 1/2 fermionic MR FCI and ν = 3/5

fermionic RR FCI in the checkerboard lattice model,76 ν = 1/2 fermionic MR FCI

in the kagome lattice model,86 and ν = 1 bosonic MR FCI in the honeycomb lattice

model for three-body hard-core bosons.65 More recently, it has been shown that

some non-Abelian FCIs can also appear with significantly more realistic two-body

interactions. Tentative evidence was first provided for the ν = 1 bosonic MR FCI in

the optical flux lattice model with a simple on-site repulsion.52 Stronger evidence,

including finite size scaling of gaps, has been found is a so-far unpublished work

for the ν = 1 bosonic MR FCI as well as for the ν = 3/2 bosonic RR FCI in the

Kapit-Mueller model with longer range interactions.92 Moreover, it has been shown

that a confining potential can significantly help to stabilize non-Abelian FCIs.93

Most of the above FCIs are found for short-range interactions, i.e. between

nearest neighbor sites for fermions and onsite in the case of bosons. Inclusion of

longer range terms, such as Coulomb or dipolar interactions typically weaken, or

destroy, the Abelian FCIs. However, in certain cases, non-Abelian FCIs can be

stabilized by longer-range interactions.92

4.3. Wannier mapping – a bridge between FCIs and FQH states

The similarity of emergent features suggests that the observed FCIs in |C| = 1 mod-

els and the corresponding FQH states are in the same topological phase. However,

FCIs and FQH states exist in two markedly different systems. It is a natural ques-

tion how well the FCIs described by model wave functions which have historically

been instrumental for the understanding of the FQH effect. The key procedure for

answering this question is to find a basis of one-particle states in Chern bands and

in Landau levels respectively, so that these two basis have similar properties and

can be mapped to each other. Then, the FCI and FQH problem can be put on equal

footing and quantitatively compared. In Ref.72, Qi constructed the Wannier states

in Chern bands that can mimic the Landau gauge one-particle states in Landau

levels, and this construction was generalized by Wu et. al. to a gauge-fixed version

appropriate for numerical finite size studies.94 As discussed in detail below, the

mapping between the Wannier states and the Landau gauge one-particle states is

greatly helpful for the direct comparison of FCI and FQH bulk wave functions, the
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Figure 5. Wannier mapping from Chern bands to Landau levels. The Wannier states,

living in a Chern band of a tight-binding model, have similar localization properties as the orbitals

in a Landau level, enabling a one-to-one mapping between the two systems.

establishment of adiabatic continuity, and even the investigation of the edge physics

in FCI systems.

4.3.1. Wannier states construction

It is well known that it is not possible to construct a complete basis set of expo-

nentially localized wave functions for a band with C 6= 0, see e.g Ref.95. In fact, in

any system supporting a Hall current, the orbitals cannot (asymptotically) decay

faster than 1/r2 as shown by Thouless.96 Precisely this absence of a basis of local-

ized states is at the heart of why FQH (and FCI) states can at all be favored over

Wigner crystals although the kinetic energy is entirely quenchedk.

However, in Chern bands as in the case of Landau levels, it is generally possible

to construct basis states that are localized in one of the two spatial directions while

being delocalized in the other direction.72,98,99 To make the discussion as transpar-

ent as possible, we consider a system with a simple rectangular unit cell and refer the

interested reader to existing literature for more general constructions.94,100,101,102

The states

ψtorus
p,j (x, y) =

+∞∑
m=−∞

ψcylinder
p,j+mNφ

(x, y) (25)

with

ψcylinder
p,j (x, y) =

(
1√
πL2

) 1
2

Hp

(
x− 2π

L2
j
)
ei

2π
L2
jye−(x− 2π

L2
j)2/2 (26)

form a basis of one-particle states localized in the x−direction (usually called as

orbital basis) in the pth Landau level on the torus, where L2 is the circumference in

the y−direction, Nφ is the number of magnetic flux quanta penetrating the torus,

and Hp, p = 0, 1, 2, . . . are the Hermite polynomials.

kIn the QH systems Wigner crystals are nevertheless expected to be favored at very low filling
fractions, ν . 1/7.97
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Following Qi,72 analogous Wannier functions describing the Chern band in the

continuum can be constructed on the torus by introducing

|Ws(k2, x)〉 =
1√
L1

∑
k1

e−i
∫ k1
0 As1(p1,k2)dp1−ik1[x−θ(k2)/2π]|ψs(k)〉 , (27)

where L1 is the circumference in the x−direction, θ(k2) =
∫ 2π

0
As1(p1, k2)dp1 and

the gauge is chosen so that As2(k) = 0. The states in Eq. (27) are defined such

that they are maximally localized in the x−direction similar to the Landau level

orbitals (Fig. 5). It is useful to think of Eq. (27) as a partial Fourier transform of

the momentum eigenstates which is additionally taking into account the parallel

transport resulting from the Berry connection.

The center-of-mass position of these states is

〈x̂〉 = 〈Ws(k2, x)|x̂|Ws(k2, x)〉 = x− θ(k2)/2π , (28)

which motivates the interpretation of θ(k2)/2π as the ”charge polarization”. Con-

sidering C = − 1
2π [θ(k2 +2π)−θ(k2)] which follows from Eq. (4) invoking the gauge

condition As2(k) = 0, we have 〈x̂〉 → 〈x̂〉 + C when k2 → k2 + 2π. Thus we can

regard the center of mass position of |Ws(k2, x)〉 as a continuous function of K̃2,

where K̃2 ≡ 2πx+ Ck2 is a pseudomomentum with k2 ∈ [0, 2π). Noticing that the

center of mass of Eq. (25) also depends on a pseudomomentum 2πj/L2, we can ten-

tatively build a mapping between |Ws(k2, x)〉 and |ψtorus
p,j 〉: |Ws(k2, x)〉 ↔ |ψtorus

p,j 〉
with K̃2 = 2πx+Ck2 = 2πj/L2. Then, the FCIs and FQH states can be compared

by expanding them in the Wannier basis {|Ws(k2, x)〉} and orbital basis {|ψtorus
p,j 〉},

respectively.

At the conceptual level, the mapping established above is very satisfying.

However, upon closer inspection, it suffers from two problems that are impor-

tant to tackle before making quantitative comparisons between FCI and FQH

states. It is important to notice that, as it stands, Eq. (27) is not uniquely de-

fined due to a remaining gauge degree of freedom in choosing the Bloch states:

|ψs(k)〉 → eiφ(k1)|ψs(k)〉 can change As1(k) without breaking the gauge condition

As2(k) = 0. It is unclear which gauge is the most suitable one for implementing

the mapping consistentlyl. Moreover, the maximally localized Wannier states are

not orthogonal in a finite system. A direct application of Qi’s mapping mapping

therefore usually leads to small overlaps between the exact diagonalization ground

states in the lattice and the FQH model states, underscoring the need for a solution

of the gauge and orthogonality problems (see however Ref.100 for a successful appli-

cation thereof). These issues were indeed considered in some detail in Ref.94 where

an efficient and systematic (albeit technically involved) procedure for obtaining well

behaved gauge-fixed Wannier states that can be used for direct numerical compari-

son between FCIs in generic lattice models and FQH model states was obtained. In

lWe have θ(k2)→ θ(k2) +φ(2π)−φ(0) and |Ws(k2, x)〉 → eiφ(0)|Ws(k2, x− [φ(2π)−φ(0)]/(2π))〉,
under the gauge transform |ψs(k)〉 → eiφ(k1)|ψs(k)〉.
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essence, the work of Ref.94 traded the maximal localization of the Wannier states

for orthogonality in finite systems, and provided an explicit recipe for this purpose.

Using the gauge fixed version of the Wannier mapping, we can successfully com-

pare the FCIs as exact diagonalization ground states in lattice models with FQH

model states, establish the adiabatic continuity between them, and study the FCIs

by similar methods to those developed for FQH states (such as the orbital-cut en-

tanglement spectrum103).101

A natural question is, given that Eq. (27) as well as its gauge-fixed version in

finite systems corresponds to the Landau-level-like wave-functions (25), then for

which Landau level? The numerics discussed below clearly hints that they typically,

at least for short-range interactions, correspond to the lowest Landau level, signaled

e.g., by very impressive overlaps between the FCI wave functions in the gauge-

fixed Wannier basis and the FQH model states in the lowest Landau level orbital

basis.101,94

4.3.2. Adiabatic continuity and bulk-edge correspondence

In the Wannier basis, two-body interactions projected to the flat band labeled by s

[Eq. (21)] can be written as

H̃proj,s
flat =

Ns−1∑
j1,j2,j3,j4=0

Ṽ proj,s
j1j2j3j4

d†j1,sd
†
j2,s

dj3,sdj4,s, (29)

where d†j,s (dj,s) creates (annihilates) a particle in the jth Wannier orbital of band

s, and Ṽ proj,s
j1j2j3j4

is nonzero only if j1 + j2 = j3 + j4 (mod N2). This form is very

similar to that of a FQH two-body Hamiltonian in the lowest Landau level:

HFQH =

Nφ−1∑
j1,j2,j3,j4=0

V FQH
j1j2j3j4

c†j1c
†
j2
cj3cj4 , (30)

where c†j (cj) creates (annihilates) a particle in the jth orbital of the lowest Landau

level and V FQH
j1j2j3j4

is nonzero only if j1 + j2 = j3 + j4 (mod Nφ).

Although possessing different symmetries, these two Hamiltonians have the same

structure of the Hilbert space if Ns = Nφ, so that an interpolating Hamiltonian

H(λ) = λwFCIH̃
proj,s
flat + (1− λ)wFQHHFQH (31)

is well defined with λ ∈ [0, 1] the interpolation parameter. Here wFCI and wFQH are

energy rescaling factors to make the energy gap at λ = 0 and λ = 1 equal to 1m.

The adiabatic continuity between FCIs and FQH states requires that for any

intermediate λ, the energy gap of H(λ) remains finite in the thermodynamic limit.

This requirement is satisfied for fermions at ν = 1/3 in the kagome lattice model,

mIn the cases where the adiabatic continuity holds it is well established that the gap survives in
the thermodynamic limit at λ = 0 and λ = 1 respectively.
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Figure 6. Adiabatic continuity between FCIs and FQH states. Results of the interpolation

Eq. (31) for electrons at ν = 1/3 with Ne = 4 (red dot), Ne = 6 (green triangle), and Ne = 8 (blue
square). In the FCI part, the lattice size is N1×N2 = 4×3, N1×N2 = 6×3 and N1×N2 = 4×6,

respectively; and −t1 = λ1 = 1. (a) The energy gap ∆E does not close for any intermediate λ.

(b) The total overlap Otot is still close to 1 at λ = 1. These results indicate that the adiabatic
continuity holds for fermions at ν = 1/3.

hence firmly establishing the adiabatic continuity between the FCI phase (the exact

diagonalization ground states in the lattice, as shown in Fig. 4) and FQH Laughlin

model states (Fig. 6). When λ varies from 0 to 1, there are always three nearly-

degenerate states separated from excited levels by a sizable energy gap ∆E which

does not vanish. The total overlap Otot = 1
3

∑3
i=1 |〈Ψi(λ)|Ψi

FQH〉|2 between the

(quasi-) degenerate ground states |Ψi(λ)〉 of H(λ) and FQH Laughlin model states

|Ψi
FQH〉 is close to 1 for any intermediate λ, which further corroborates that the

ground states do not undergo a phase transition during the interpolation. The same

analysis can be done at other filling fractions so that the adiabatic continuity be-

tween FCIs and FQH states can also be established for ν = 1/2 fermionic Moore-

Read phase, ν = 1/2 bosonic Laughlin phase, and ν = 1 bosonic Moore-Read

phase.101 In a somewhat different vein, the adiabatic continuity between FCI and

FQH phases has also been argued to hold by passing to the Hofstadter model and

continuing it to the low flux limit.104

In addition to the establishing the adiabatic continuity between bulk states,

the Wannier mapping is also useful to study the bulk-edge correspondence in FCI

systems.93 By appropriately generalizing the Wannier interaction matrix elements

in Eq. (29) to a finite cylinder setupn, it is possible to utilize the advantageso of

nIn the Wannier setup, the cylinder matrix elements are exponentially localized with a localization

length proportional to the circumference of the cylinder and they coincide with the corresponding
torus matrix elements in the limit of a long torus.
oA bipartitioning on the cylinder involves a single spatial cut rather than two as is natural on the
torus. This enables the study of a single edge in the orbital-cut entanglement spectrum, and it is

very favorable for application of entanglement based algorithms such as DMRG due to the lower
(≈ half) entanglement resulting from the single cut.93
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Figure 7. Bulk-edge correspondence. (a) The orbital-cut entanglement spectra of the bosonic

FQH Laughlin model state (blue dashes) and the Laughlin FCI (red dots) at ν = 1/2 for 25 bosons.

The size of the Ruby lattice is N1 × N2 = 7 × 7. (b) The edge excitation spectrum of the FCI
system at ν = 1/2 for 8 bosons. The size of the Ruby lattice is N1×N2 = 5×5. (c) The orbital-cut

entanglement spectra of the bosonic FQH Moore-Read model state (blue dashes) and the Moore-

Read FCI (red dots) at ν = 1 for 16 bosons. The size of the Ruby lattice is N1 × N2 = 3 × 5.
(d) The edge excitation spectrum of the FCI system at ν = 1 for 10 bosons. The size of the Ruby

lattice is N1 ×N2 = 5× 3.

the cylinder geometry to investigate the correspondence between the bulk entan-

glement and edge excitations of FCIs in analogy to FQH systems. In Ref.93 it was

demonstrated that the counting structure in the orbital-cut entanglement spectrum

is the same as in the edge excitation spectrum, thereby establishing the nontriv-

ial bulk-edge correspondence of both Abelian [Figs. 7(a,b)] and non-Abelian FCIs

[Figs. 7(c,d)].

A so-far less explored alternative to the Wannier state mapping is to instead

transfer the FQH problem to the Bloch basis. In Ref.73, the authors first constructed

a Bloch-like lowest Landau level basis by appropriately superposing the usual orbital

basis states in Eq. (25). Then, this new basis is mapped to the Bloch basis in the

C = 1 Chern band. This ’inverse’ mapping from FQH problem to the Bloch basis

provides an alternative way to compare the FCIs with FQH states, making use of

more symmetries for numerical simulations compared to the gauge-fixed Wannier

mapping.

4.4. Pseudopotential analogy

As discussed above, the existence of various FCIs in |C| = 1 models was well

established already in early numerical works. However, a systematic explanation

for why just some certain states appear for a specific interaction would still be

highly rewarding. An important step in that direction was taken by Läuchli et al.,42
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who developed a heuristic based on the analogy with Haldanes pseudopotentials,105

which is a well-esthablished tool in the continuum Landau levelsp.

To make the discussion self-contained, we start by considering a single Landau

level and write the Hamiltonian describing any two-body interaction projected to a

Landau level in terms of Haldane’s pseudopotentials:105

H =
∑
i<j

∞∑
m=0

VmP ijm , (32)

where P ijm projects onto a state where particles i, j have relative angular momentum

m and Vm is the pseudopotential parameter, which is a real number determined by

the specific interaction. More generally, the pseudopotentials project onto compo-

nents of the many-body wave function with certain vanishing properties and can

as such be defined in generic (non-rotationally invariant) geometries such as the

torus,107 where the (yet unprojected) interaction takes the form

H =
∑
i<j

∞∑
m=0

VmLm(−∇2
i )δ(ri − rj).

For any realistic interaction projected to nth Landau level one can obtain the pseu-

dopotential parameters as

Vm =

∫
Fn(q)V (q)Lm(q2)e−q

2

d2q, (33)

where V (q) is the Fourier transform of the interaction potential and Lm is the

Laguerre polynomial with L0(q2) = 1, L1(q2) = 1−q2, . . . and the Landau level form

factor is Fn(q) = [Ln(q2/2)]2.q Once the dominant pseudopotential parameters are

known, it is often possible to refer to the literature for candidate ground states. In

fact, the most prominent FQH states—the Laughlin states at ν = 1/q—are exact

and unique highest density zero energy eigenstates for Vm > 0,m ≤ q − 2 and

Vm = 0,m > q − 2.r

Alternatively, one can also numerically extract the pseudopotential parameters,

Vm, directly from the energy spectrum of two-interacting particles without using

the analytical formula Eq. (33). In a Landau level on the torus, there are 2Nφ finite

energy levels for each pseudopotential and their values coincide with the respective

pseudopotential parameterss. This immediately generalizes to the Chern band and

provides a way to extract analogues of the pseudopotential parameters for lattice

systems despite the lack of an analytical expression like Eq. (33).42

pRef.106 attempted to extract the pseudopotential parameters (semi-)analytically using the Wan-
nier basis. Unfortunately, however, it seems that the outcome thereof lacks predictive power in its
present formulation.
qIn the relativistic case of graphene this is modified to Fn(q) = [Ln(q2/2) + Ln−1(q2/2)]2/4.108
rIn the non-Abelian cases this scenario is generalized to multi-body pseudopotentials.109
sFinite-size corrections (level splitting) occur if the torus is too thin (in either direction). The

projector property of the pseudopotentials is however insensitive to this.
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Figure 8. Two-particle spectrum and single-hole dispersion in (a,b) checkerboard lat-

tice and (c,d) kagome lattice of N1 × N2 = 8 × 8 unit cells. The data are shown along spe-
cific paths in the BZ. The interaction includes nearest-neighbour and next-nearest-neighbour re-

pulsion VNN
∑
〈i,j〉 ninj + VNNN

∑
〈〈i,j〉〉 ninj , with VNN = 1 and VNNN = 0.2. (a) The two-

particle spectrum and (b) single-hole dispersion in the checkerboard lattice with the parameters

t1 = 1, t2 = 0.3, φ = π/4. The interaction is projected to the flattened C = −1 band. (c) The
two-particle spectrum and (d) single-hole dispersion in the kagome lattice with the parameters

t1 = −1, λ1 = 0.9. The interaction is projected to the flattened C = 1 band.

As an example, we first consider the two-particle spectrum of nearest-neighbour

and next-nearest-neighbour repulsion projected to the flattened C = −1 band on a

checkerboard lattice in Fig. 8(a). The spectrum depends on the total momentum K,

underscoring the lack of translation invariance in reciprocal space (in the Landau

levels the corresponding eigenvalues are independent of the center of mass motion).

There are only six finite levels, forming three approximately degenerate pairs (for

the appropriate tight-binding parameters used in this example). By direct analogy

to the two-particle spectrum in the lowest Landau level, these pairs can be labeled

as V1, V3 and V5 from top to bottom, respectively. The separation of energy scales

V1 � V3 � V5 terms suggests stable FCIs above ν & 1/7; for ν ≥ 1/3 they should

be stabilized by the large energy scale, ∼ V1, in the range 1/5 ≤ ν < 1/3 the gap

scale is set by V3 and for 1/7 ≤ ν < 1/5 the gaps are tiny, at the order of V5.

This is consistent with our numerical observations for the particular model. In the

original work of Ref.42, it was shown by large scale exact diagonalization studies

that a similar prediction for the nearest neighbor interaction on the checkerboard

holds true; including solid evidence for the existence of a plethora of FCIs above

ν = 1/5.



September 10, 2013 1:9

24 Emil J. Bergholtz and Zhao Liu

Depending on the tight binding parameters, the two-particle spectrum does not

always look as nice and suggestive as in Fig. 8(a). Typically, the pairs of energy

values are split and the dispersion as a function of the center of mass momentum,

K, can be significant. An example thereof is given by the two-particle dispersion of

the nearest and next-nearest neighbor interactions projected to the lowest flat band

of the kagome lattice model, as shown in Fig. 8(c). In this context there appears to

be a genuine difference in the lattice between FCIs stabilized by interactions that

mimic the corresponding FQH pseudopotentials, and those that do not have exact

parent Hamiltonians in the continuum, such as the composite fermion89 states (or

more generally the hierarchy states105,110). The states that are genuine zero modes

of special pseudopotential Hamiltonians are not particularly sensitive to the precise

details of the two-particle spectrum as long as there is an appropriate separation of

energy scales [as is also the case in the kagome spectrum of Fig. 8(c)]. In contrast,

the states that are not of this kind tend to be more sensitive to the details. In our

two examples of the checkerboard and kagome lattice models, this is consistent with

the observations of many hierarchy states in the former42 while certain model states

are particularly stable in the latter.86

4.5. Deviations from Landau level physics and new competing

phases

Within a Landau level, any translation invariant two-body interaction is particle-

hole symmetric. However, multi-body interactions—either in the form of psedopo-

tential parent Hamiltonians or originating from perturbative corrections due to

Landau level mixing—break this symmetry. In fact, at half-filling in the second

Landau level this symmetry breaking is believed to be crucial for the low-energy

physics favoring either the Moore-Read state17 or its particle-hole conjugate, the

so-called anti-Pfaffian state.111,112

In Chern bands, the effect of particle-hole symmetry breaking is in fact even more

pronounced and occurs already at the level of the projected two-body interaction.42

This is a direct consequence of the lack of translation invariance in the band, and

is readily seen by performing a particle-hole transformation, dk,s → d†k,s within the

band. Focusing on fermions, the projected Hamiltonian transforms to

H →
∑

k1,k2,k3,k4

(V proj,s
k1k2k3k4

)∗d†k1,s
d†k2,s

dk3,sdk4,s +
∑
k

Eh(k)d†k,sdk,s, (34)

which includes an effective single-hole energy

Eh(k) =
∑
m

(V proj,s
mkmk + V proj,s

kmkm − V
proj,s
kmmk − V

proj,s
mkkm) . (35)

Within a Landau level, Eh(k) is simply a constant shift (chemical potential) while

Eh(k) is generically dispersive in a Chern band due to the breaking of translation

invariance in reciprocal space [cf. Figs. 8(b,d)]. It is crucial to note that this effec-

tive hole-dispersion arises in a completely flat band and is entirely induced by the

collective behavior (interactions) and not due to a remnant kinetic term.42
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Figure 9. Illustration of the compressible states with an emergent Fermi surface at

high filling fractions in (a) checkerboard lattice and (b) kagome lattice. The plots show the

behavior of ns(k) as a function of the single-hole dispersion, Eh(k). The data are obtained by
using the same interaction and tight-binding parameters as in Fig. 8. The numerical simulation is

done for electrons in N1 × N2 = 5 × 6 lattices at ν = 1/5 and ν = 4/5, and in N1 × N2 = 5 × 7

lattices at ν = 1/7 and ν = 6/7. The dashed horizontal lines indicate the constant reference
occupation 〈ns(k)〉 = ν. The ν = 4/5 and ν = 6/7 states are very likely compressible because of

the clearly visible Fermi-surface like feature in ns(k) when plotted versus Eh(k).

The non-constant hole dispersion leads to the absence of the particle-hole con-

jugate states of some stable low-filling FCIs. For example, FCIs are not observed

at ν = 4/5 or ν = 6/7, even though they clearly exist at ν = 1/5 and ν = 1/7.

At large filling fractions, the hole dispersion becomes dominant compared with the

more conventional (two-hole) interaction term in Eq. (34), and the ground states

are expected to be compressible. In order to see this more clearly, we consider the

momentum space occupation ns(k) ≡ 〈d†k,sdk,s〉 as a function of the hole dispersion

Eh(k) (Fig. 9). At low filling factors, ns(k) only slightly tracks Eh(k) with a roughly

linear decrease, without deviating too much from the constant occupation ν. This

feature is perhaps somewhat unexpected, but is nevertheless completely consistent

with an incompressible phase. However, as the filling fraction increases, the shape of

ns(k) is qualitatively distorted by Eh(k) and finally the Fermi-surface like structure

appears, namely, ns(k) ≈ 1 for large Eh(k) but then markedly drops at some small

Eh(k). This Fermi-surface like structure strongly suggests that the ground states

are compressible Fermi-liquid like states (albeit supporting a non-quantized Hall

effect). Large-scale exact diagonalizations for the checkerboard lattice model with

the nearest neighbor repulsion demonstrate that FCIs are absent at ν & 2/3.42 The

similar behaviors in the kagome and checkerboard lattice models displayed in Fig. 9

confirm that this instability is generic to the lattice case rather than an artifact of

a specific flat band model.

As observed in Ref.113, an ad hoc addition of a single particle dispersion can in

principe restore particle-hole symmetry in the Chern band. Although this can in

principle help stabilizing further FCIs,113 it typically weaken, or even destroy, the
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FCIs observed at low filling fractions.101

Charge density waves (CDWs) is another class of important competing phases.

In particular, these are competitive when the interactions are relatively strong at

the same time as the combination of the filling fraction and lattice geometry allows

for favorable commensurate CDWs.71 A further deviation compared to the Landau

level case is that the physics is typically more sensitive to changes in the aspect ratio

in Chern bands.114 This is particularly clear when local interactions are considered,

as the lattice comes with a minimal length scale, namely the lattice constant, while

there is no such minimal length in the continuum (the magnetic length plays a

somewhat different role there). For numerical investigations of interacting Chern

band models it is therefore often desirable to focus on samples near unit aspect

ratio.

4.6. What characterizes a ”good” flat band model?

The most obvious feature of a good flat band model is a large flatness ratio, and

an interaction strength in a window such that Eq. (12) is fulfilled. However, in

analogy with the FQH effect in conventional semiconductor heterostructures, FCIs

might prevail far beyond this naive limit. In fact, in the conventional FQH setting,

Eq. (12) is not fulfilled as the characteristic interaction strength, V ∼ e2/(ε`), is in

fact typically similar to, or larger than, the cyclotron (band) gap, ∆ = ~ωc, while

FQH states are nevertheless unambiguously observedt. There is also solid evidence

confirming that FCIs can be stabilized in lattice models also when the interaction

strength is substantially larger than the band gap, see e.g., Ref.32. In fact, for the

states that are zero modes of the interaction, the ratio V/∆ can be arbitrary large

yet the band projection is (nearly) perfect as is the case for the FCI phases of

hard-core bosons. For instance, for ν = 1/2 bosons in the lowest band of the Kapit-

Mueller model,28 the band projection is exact even for an infinite on-site repulsion

in the limit that the exponential tail of arbitrary long-range hopping terms is taken

into account. When the hopping is truncated, e.g., at the next-nearest-neighbor, the

band projection is still excellent for any strength of the (on-site) interaction.

A second criterion often mentioned in the literature is a smooth Berry curvature.

While this might often serve as a rule of thumb for a given lattice model, it can

also lead to somewhat misleading conclusions. Again, this is most transparent in

the Kapit-Mueller model28 where the Berry curvature is strongly varying92, but

the model states [Laughlin (k = 1), Moore-Read (k = 2), Read-Rezayi (generic k)]

are nevertheless exact gapped ground states for bosons with on-site (k + 1)−body

interactions. Nevertheless, if a close similarity to the full phase diagram of Landau

level as a function of the filling fraction is the goal, a nearly constant Berry curvature

and Fubini-Study metric77,58 often serve as useful indicators.

tFor instance, the experimental investigation of FQH states in the second Landau level reported
in Ref.115 has [e2/(ε`)]/~ωc ≈ 1.4 in the vicinity of the ν = 5/2 plateau.
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Furthermore, the details of the actual lattice interaction are crucial for which

FCIs are realized. An often useful diagnostic for a given flat band model is to ana-

lyze the two-body spectrum42 and its relation to the pseudopotentials as explained

in Section 4.4. Most FCIs have indeed been found for short-range lattice interac-

tions that closely mimic the respective continuum pseudopotentials, and long-range

interactions, albeit potentially crucial in actual realizations, have been reported to

weaken or destroy these phases. However, an upshot is that new phases may in-

stead be stabilized in presence of longer-range interactions, in close analogy with

the effectively longer-range interactions occurring in higher Landau levels where

non-Abelian states might eventually be stabilized by very realistic two-body in-

teractions (in contrast to the not particularly realistic multi-body nature of their

respective pseudopotential parent Hamiltonians)92.

Another factor to take into account, especially for strong interactions comparable

to the band gap, is whether or not there is a commensurate charge density wave

(CDW) competing with the FCI phase.71 The existence of such competing states

crucially depend on the combination of lattice geometry and the filling fraction.

Finally, on general grounds we expect that a not too strong single-hole dispersion is

desirable to avoid the gapless, albeit entirely interaction induced, states42 discussed

in Section 4.5.

Summarizing, while there is no known single general diagnostic that immedi-

ately tells us how ”good” a flat band model is, a combination of the flatness ratio,

the two-particle spectrum, the single-hole dispersion, and when appropriate, also a

consideration of possible competing CDW phases, typically gives a quite accurate

idea of which FCI phases can be realized.

5. Higher-C models and new collective states of matter

While the flat bands with |C| = 1 mimic Landau levels, lattice models are known

to host bands with arbitrary integer Chern number, C ∈ Z. In this section we will

first show that very flat bands with |C| > 1 can also be achieved with short-range

hopping termsu and then go on to discuss what is known about interacting phases in

these bands, including FCIs with no direct continuum analogues. Finally, we briefly

comment on the prospects of finding new non-Abelian types of excitations bound

to lattice dislocations in the |C| > 1 FCIs.

5.1. Flat band models with |C| > 1

Historically, the first higher C model with flat bands proposed was a C = 2 model

on the dice lattice.35 Next, a C = 2 model was constructed on the triangular

uNote that given that dispersive |C| > 1 models were known for a long time, Eq. (10) would have
provided a somewhat trivial but direct path to flat |C| > 1 bands. However, a head-on application

of this procedure leads to models that are necessarily long-ranged in the sense that they cannot be

truncated to include only a few nearest neighbors while leaving the Chern number invariant.116,117
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Figure 10. The spin-orbit coupled pyrochlore slab model, here including N = 3 kagome

layers which are colored differently for clarity. The kagome layers are connected via sites living on

N−1 intermediate triangular layers (sites of which are colored yellow). In general, the unit cell has
Nc = 4N − 1 sites (green numbers) and the Bravais lattice is generated by the lattice vectors a1

and a2. The red arrows indicate considered nearest and next-nearest hopping processes, for which

the signs of the spin-orbit terms, λ1, λ2, depend on the orientation of the process within a given
hexagon in the pertinent kagome layer precisely as in the single layer case discussed in Section 2.

The Bloch Hamltonian corresponding to the full pyrochlore slab tight-binding model is given by

Eq. (36).

lattice.39 A systematic construction of flat bands with arbitrary Chern number was

first given in Ref.36 (see the example below). The spirit of this approach is easy to

appreciate: given a system of N decoupled layers, each supporting a flat C = 1 band,

it is possible to couple them in a way such that the N initially degenerate bands

hybridize to form a single topological band with C = N while the others go trivial

(C = 0). In Ref.36 this was realized on a slab of the frustrated pyrochlore lattice

which is composed of corner-sharing tetrahedra. In a subsequent publication37 it

was shown that the geometric frustration could be traded against the combination

of inclusion of periodic hopping terms between top bottom layersv (and assigning

different phase factors to the hopping processes in each layer).

Example: Pyrochlore slab model

Here we focus on the pyrochlore slab model36 (Fig. 10) and describe it in some

detail. In addition to being the first flat band model with arbitrary C, it has a highly

intriguing structure including a nontrivial relation between layer localization and

momentum36 and it harbors novel forms of FCIs with no continuum analogue.38,40

For an arbitrary number of layers, N , the (4N−1)×(4N−1) Bloch Hamiltonian

vAlternatively this model can be re-written in terms of N completely decoupled layers.118
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Figure 11. Band structure of the pyrochlore slab model. Bulk dispersion for a system with
N = 1, 2, 3, 8, 12, 50 stacked kagome layers, respectively. In each case there is a very flat band

(bold orange line) with Chern number C = N . The parameters are chosen as t1 = −1, t2 = λ1 =

0.3, λ2 = 0.2, t⊥ = 1.3. As described in the text, the value of t⊥ is not affecting the flat band but
can be tuned to move the other bands (thin blue).

reads

HNk =



HN=1
k H⊥,a 0 0 0 0

H†⊥,a 0 H†⊥,b 0 0 0

0 H⊥,b HN=1
k . . . 0 0

0 0
...

. . . H⊥,a 0

0 0 0 H†⊥,a 0 H†⊥,b
0 0 0 0 H⊥,b HN=1

k


, (36)

where HN=1
k is the Bloch Hamiltonian of a single kagome layer given in Eq. (13)

and H⊥,a,H⊥,b encode the hopping processes to the triangular layers as

H⊥,a = t⊥

1

1

1

 , H⊥,b = t⊥

 eik2

e−ik3

1

 . (37)

The bulk spectrum of the pyrochlore slab model, with a fixed set of tight binding

parameters and various number of layers, N , is displayed in Fig. 11. The most

striking feature is a very flat band (thick orange line) appearing at the same energy

irrespective of the value of N . This strongly suggests an ansatz of the form

|ψs(k)〉 =

N∑
m=1

αm(k)|φC=1
m (k)〉 (38)

in terms of the single layer eigenstates |φC=1
m (k)〉. It is clear that, to be of the form

of Eq. (38), the eigenstates, |ψs(k)〉 =
∑
b ψ

b
s(k)c†k,b|0〉, have to have amplitudes of
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Figure 12. Layer-momentum coupling in the high Chern band in the pyrochlore slab

model. (a) is a plot of log(|r(k)|) for the flat band parameters t1 = −1, t2 = 0.3, t⊥ 6= 0, λ1 =
0.3, λ2 = 0.2, which give a very flat C = N band in the N−layer pyrochlore slab model. (b) shows

the angle arg(r(k)) for the same model and parameters. The lower panel (c),(d) show the resulting
momentum dependent probability distribution, Pm(k) = |αm(k)|2, to be within a given layer m

in the C = N = 2, 4 cases respectively. The complete localization to the top or bottom layers at

the K-points corresponds to a divergence in log(|r(k)|) and the equal layer population on the ray
connecting the M and Γ-points follows from log(|r(k)|) = 0.

being on the triangular sites that vanish, i.e.

ψ4t
s (k) = 0, t = 1, . . . , N − 1 . (39)

Now, such states can only be eigenstates if the amplitudes of all hopping processes

hopping to each of the sites in the triangular add up to zerow. Using the basis

indicated in Fig. 10, this constraint implies

ψ4t−3
s (k)+ψ4t−2

s (k)+ψ4t−1
s (k)+e−ik2ψ4t+1

s (k)+eik3ψ4t+2
s (k)+ψ4t+3

s (k) = 0 . (40)

Together with the ansatz Eq. (38) this has a simple solution

αm+1(k)

αm(k)
= − ψ1

s(k) + ψ2
s(k) + ψ3

s(k)

e−ik2ψ1
s(k) + eik3ψ2

s(k) + ψ3
s(k)

≡ r(k) . (41)

which uniquely determines the eigenstates in the flat band. By explicit calculation

one may check that these states provide a band with C = N . It is a crucial fact

wThis is in complete analogy with how flat bands are built by localized states in usual nearest
neighbor hopping problems (without spin-orbit coupling) on geometrically frustrated lattices.
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that the coefficients, αm(k), are non-trivial in the sense that they depend on both

m and k—if not the wave functions in Eq. (38) would result in a C = 1 band.

Note however that the (complex) ratio r(k) = αm+1(k)
αm(k) does not depend on m, and

that r(k) can simply be extracted from the single-layer kagome model discussed in

Section 2. This makes it easy to exhibit the intriguing structure of the eigenstates.

Most saliently, for fixed k the states are exponentially localized, with a localization

length given by log(|r(k)|) to either the top or the bottom layer—which one is

given by the sign of log(|r(k)|) (cf. Fig. 12). This intricate connection between layer

index and momentum is somewhat reminiscent of the momentum spin correlation

in time-reversal invariant topological insulators.3

Before closing this example we point out that it is useful to think about the band-

structure as a function of t⊥. As soon as t⊥ is non-vanishing the bands hybridize;

N − 1 of them go trivial and become dispersive while a single band stays flat

and acquires a finite Chern number, C = N , i.e., it ’absorbs all of the topology’.

Although the analytical understanding of the structure of states in the C = N

bands crucially depended on the fact that the model was fine-tuned in the sense

that the kagome layers are only coupled via a simple nearest neighbor hopping to

the sites of the triangular layers, the gross features of the single particle states are

very robust to the inclusion of more generic terms due to the topological nature of

the band.

5.2. Interactions and new bulk insulating states

Novel bulk insulating states are formed due to the crucial effect of interactions

in the C = N > 1 Chern bands. In Ref.38, a whole series of Abelian FCIs were

discovered systematically at ν = 1/(2N + 1) for fermions and ν = 1/(N + 1) for

bosons given local interactions in the pyrochlore slab model discussed in Section 5.1.

Moreover, a subsequent publication reported the observation of non-Abelian bosonic

FCIs at ν = k/(N + 1), k > 1 in the same model by introducing local (k + 1)-body

interactions.40 In other lattice models, FCIs that belong to the above series were

also reported, partly independently, such as the ν = 1/5 fermionic state39,113,119

and the ν = 1/3 bosonic statex.37,39,119

As an example,38 the numerical evidence of the ν = 1/5 fermionic FCIs in the

C = 2 band is shown in Fig. 13. Here the band is flattened and the interaction is

projected onto the flat band. A five-fold ground-state quasidegeneracy is observed

for each system size, which is a necessary condition for the ν = 1/5 FCIs. The

finite-size scaling analysis indicates that the gap, which is significantly larger than

the ground state splitting, is very likely to survive in the thermodynamic limit. The

evolution of states in the spectral flow suggests the Hall conductance σH = 2
5
e2

h ,

which can also be confirmed by calculating the many-body Chern number. The total

xThe ”composite fermion” states found earlier in an optical lattice setup with a uniform magnetic
field56 are close relatives of the C = 2 FCIs. See also Ref.120 for related results.
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Figure 13. Numerical observation of FCIs in the C = 2 band. Results for the ν = 1/5, C =
2 fermionic FCIs in a bilayer kagome system with N1 = 5 and N2 = Ne. (a) The low-lying energy

spectrum for Ne = 4, Ne = 6, and Ne = 8. (b) The finite-size scaling analysis for both energy

gap and ground state splitting. (c) The x-direction spectral flow for Ne = 7. (d) The quasihole
excitations for Ne = 5, N1 = 3, and N2 = 9 (two holes are added, 81 states below the gap). (e)

The quasihole excitations for Ne = 5, N1 = 5, and N2 = 6 (five holes are added, 756 states below

the gap). (f) The particle-cut entanglement spectrum probing the NA = 3 quasihole excitations
for Ne = 7 (2695 states below the gap).

number of quasihole states of the system reflected by the quasihole excitation spectra

and the particle-cut entanglement spectrum is the same as the one predicted by the

generalized counting rule (no more than one electron in consecutive five 1D orbitals).

All of the energetic and entanglement evidences above confirm the existence of the

the ν = 1/5 fermionic FCIs in the C = 2 flat band.

A quick glance at the results above will give a naive impression that the Abelian

FCIs in higher Chern number bands are very similar to the spinless FQH Laughlin

states in a single Landau level: they have the same topological degeneracy and

the same total counting of quasihole states. However, closer inspection reveal some

important differences: the counting in each momentum sector does not match that

of the Laughlin states,40 and the total counting in the particle-cut entanglement

spectrum is lower than expected in some |C| > 2 cases,38,40 which suggest a colorful

explanation of these novel Abelian FCIs: they are related to the color-dependent

magnetic-flux inserted version of Halperin statesy.73,40 Moreover, although e.g., ν =

1/5 is not a very surprising fraction for finding a fermionic FCI, it should be noted

that there is no evidence that the C = 2 bands harbor a fermionic FCI at ν = 1/3.

yIt is suggested that those non-Abelian FCIs in higher Chern number bands can be related to
color-dependent magnetic-flux inserted version of the non-Abelian spin-singlet states.73
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Also, the discovered bosonic FCIs appear at anomalous (odd denominator) filling

fractions in striking contrast to the Landau level case.

A very exiting suggestion41 due to Barkeshli and Qi is that lattice dislocations

could act like ’wormholes’ changing the geometry of space when appearing in |C| >
1 bands hosting FCIs. Moreover, the dislocations would also carry a non-trivial

quantum dimension and behave as non-Abelian excitations. A simple geometric

picture captures the gist of the (field theory based) argumentation by thinking of the

initial system as a multilayer system. Each ’layer’ can then be thought of as a torus

(periodic boundary conditions), and a dislocation connects different tori and thereby

increases the genus, g, of space (the genus simply counts the number of topologically

inequivalent loops). Now, since FQH states are known to have a degeneracy that

depends on the genus of the underlying manifold, for the ν = 1/q Laughlin states the

degeneracy is qg,14 adding more dislocations increases the ground state degeneracy

and makes it meaningful to assign a quantum dimension, d > 1, which counts how

quickly the ground state manifold grows as a excitations at fixed positions are added

to the system, to each dislocation. We note that the many-body states assumed by

Barkeshli and Qi were different from the states reported so-far in the numerical

literature. However, by tuning the interactions one can indeed realize the starting

point of Ref.41.121 Nevertheless, microscopic tests the predictions in actual strongly

correlated lattice models including dislocations are still lacking.

6. Paths toward experimental realization

Realizing the rich phenomenology offered by FCIs in actual experiments is arguably

a most pressing issue. There are several more or less feasible routes towards achiev-

ing this. Below we give some brief comments on a few selected ideas divided into

the two main directions, namely suggested solid state implementations and cold

atom/molecule engineering.

6.1. Solid state implementations

The possibility of realizing FCIs in spin-orbit coupled solid state materials was

discussed already in one of the initial works focusing on tentative kagome lat-

tice candidates.29 Significant steps towards realistic flat band models were taken

in Refs.35,49,67 focusing on transition-metal oxides. The quite realistic first princi-

ple calculations of Ref.49 were particularly encouraging. Here, it was found that

sandwich structures of certain perovskite materials grown in the [111] direction,

where buckled honeycomb structures would ideally form, can support relatively flat

bands carrying C = 1. Although there is an intense activity in the materials science

community aiming to grow such heterostructures, a significant hurdle to overcome is

that the (111) planes are not natural cleavage planes, thus growing clean perovskites

[111] direction is very challenging. This, and resulting reconstruction processes, may

explain why there is, to the best of our knowledge, no experimental realization of

these topological flat bands even though interesting experimental progress, notably
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including epitaxial growth of ultra thin (111)-oriented LaAlO3/LaNiO3 superlat-

tices, was recently reported.122 A natural alternative to the perovskites is to grow

pyrochlore based transition-metal oxides along the [111] direction.36,123 A major

advantage compared to the (111) perovskite slabs is that the pyrochlore structure

naturally admits growth/cleavage along the [111] direction (cf. Fig. 10). Moreover,

this would, at least in principle, open the door towards an experimental realizations

of exotic |C| > 1 phenomena.36,41

As an (integer) anomalous Hall effect, and hence the first Chern insulator (in

absence of an external magnetic field), was experimentally reported very recently in

thin films of chromium-doped (Bi,Sb)2Te3,45 similar systems may also be of interest

in the pursuit for FCIs. To mention a few other solid state proposals, we note

that recent materials considerations suggest that ’organometallic frameworks’ as

potential hosts of topological flat bands124,125 and that strained graphene provides

yet another suggested FCI platform.126

6.2. Cold atom and molecule engineering

As often when some degree of fine tuning of parameters is desirable, implementa-

tions using cold atom systems offer intriguing possible routes towards implementing

fractional Chern insulators in experiments. It should however be noted that the cele-

brated tunability in these systems is essentially always limited to the strength of the

on-site interaction and, more crucially, typically to nearest neighbor hopping pro-

cesses only. Nevertheless, recent ideas in the context of ’artificial gauge fields’,127

whereby the complex internal structure of the atoms interacting with externally

controlled laser fields is used to simulate the effect of a magnetic field, undoubtedly

provides a promising route towards possible realizations of FCIs.

Lately there are two more detailed suggestions that seem particularly

interesting51,52 (see also Ref.128). The first approach is based on polar molecules

and the FCI would not be a collective state involving itinerant molecules (they are

pinned on their respective lattice position), rather their rotational degrees of free-

dom are suggested to form an FCI51,129 (see Ref.130 for a somewhat similar sugges-

tion to realize topological flat band of phonons in trapped-ion systems). Neighboring

molecules can exchange local rotational states, similar to a spin-flip, and while doing

so crucially pick up a phase factor. Now, the ’spin flips’ behave like hard-core bosons

and they form two bands with non-zero Chern numbers, C = ±1.129 At half-filling

in the lower band, the interactions indeed lead to an FCI state with Laughlin-like

character, which can be possibly detected and characterized by measuring the single

spin-flip response of the system.51 In the second approach, the ’optical flux lattices’,

several laser beams are used to produce a spatially inhomogenous (periodic) atom-

laser coupling which induces resonant transitions between different internal atomic

states and can be described as a tight-binding model in reciprocal space.68 This

gives flat bands with variable Chern numbers suitable for realizing various FCIs, a

signal of the formation of which would be the appearance of density plateaus in in
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situ images of the atom gas.52

7. Discussion and outlook

In this review we have provided a rather detailed account of the recent flurry of

works on topological flat band models characterized by non-zero Chern numbers, as

well as the crucial effect of interactions within these bands. Our focus has been on

microscopic models and we have attempted to provide a holistic view on the inter-

acting phase diagram by combining insights from numerical investigations coupled

with analytical considerations, with an emphasis on the connection to continuum

Landau levels and their FQH phases, as well as on new lattice specific instabilities

and phenomena. Before closing we now wish to share some of our thoughts on a few

directions that we believe deserve extra attention.

Competing phases

Quite naturally, the initial focus in the study of topological flat band models has

been on the incompressible phases, the FCIs. However, a broader understanding of

the phase diagram is desirable for several reasons. It would deepen our understand-

ing on the circumstances needed for realizing FCIs, and competing phases might

represent new intriguing interesting phases of matter in their own right. Moreover,

once topological flat bands are realized experimentally (as we hope and believe will

happen) it might very well be that phases other than the FCIs are easier to realize.

Perhaps the most interesting FCI competitors are the interaction induced com-

pressible states42 discussed in Section 4.5. Although a Fermi surface like feature is

clearly visible as a function of the ’single-hole dispersion’, the nature of these states

are not that well explored. This appears to be a pressing question given that these

states are generic to topological flat band models rather than features of certain

models. Most saliently, it would be interesting to quantitatively understand how

these phases would be manifested in transport measurements, and what instabili-

ties the ’Fermi surfaces’ allow. In transport, there is presumably a non-quantized

anomalous Hall effect but the details thereof, including the response to external

probes such as electric and magnetic fields, remain to be studied. A better un-

derstanding of the structure of Fermi surfaces (or pockets etc.) in reciprocal space

would lead to new interesting questions such as: what is the the effect of residual

interactions, lattice vibrations (phonons) and/or (proximity induced) superconduc-

tivity? It would also be interesting to investigate possible connections to earlier

studies of Berry curvature effects in more conventional time reversal broken Fermi

liquids131,132 and to composite fermion Fermi liquids known from half-filling in the

lowest Landau level.133

Another interesting, but so-far scarcely studied, class of states are those that do

not admit a single band description but are nevertheless topologically non-trivial

(see Ref.134 for an example). Further, it would be of interest to understand if new

competing phases emerge in the limit of high Chern numbers.
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Microscopic models for dislocations

The predicted non-Abelian statistics of lattice dislocations,41 which are ubiquitous

in solid state materials, is arguably one of the most exciting possible phenomena in

topological flat band models beyond conventional FQH physics. On a fundamental

level, two hurdles remain to establish this idea in microscopic models. First, the

starting point for the analysis of Ref.41 assumes a type of bi-layer states that have

not yet been found in the FCI literature. Preliminary results however show that this

first hurdle can be vanquished.121 More importantly, it is not clear to what extent

short-distance physics arising due to the introduction of lattice defects (dislocations)

in actual microscopic models might qualitatively modify the long-distance (field

theoretic) considerations in Ref.41. On a practical level, there is a definite need for

more detailed predictions where to find these phenomena (see however Section 6.1).

New perspectives, quantum geometry and tensor networks

In this review we have shown many examples of how well FQH model wave functions

and pseudopotential analogies can be used to describe FCIs. However, albeit being

very enlightening, certain new aspects of the physics beyond the FQH paradigm

are somewhat hidden by this success. As emphasized lately by Haldane (see e.g.,

Ref.135), the fundamental problem to solve in Chern bands is not involving nicely

behaved analytic wave functions, as in ideal Landau levels, but rather the ’quantum

geometric’ problem of minimizing the mutual interaction between band projected

density operators. One may therefore ask, are there solvable models beyond the

realm of pseudopotentials, e.g., in models that do not (exclusively) yield transla-

tionally invariant ground states (in reciprocal space)? At the level of toy-models the

answer is clearly yes as was shown in Ref.136, where a parameter family of models

relevant for a ladder version of a topological flat band model, which does not require

translation invariance, was solved exactly. It is an open problem how to extend this

to more realistic, truly two-dimensional models. An interesting framework in this

context was outlined in Ref.137 and makes use of an intriguing connection to pairing

problems which have a rich history in the context of superconductivity.

Another natural idea would be to use matrix product states (MPS) approaches.

In fact, the ground states of the model studied in Ref.136 have an exact MPS repre-

sentation, and moreover, there has recently been significant progress in understand-

ing the connection between MPS states and FQH states (including both the model

states138,139 and the ground states of generic two-body interactions140). Indeed, re-

cent works focusing on |C| = 1 FCIs have demonstrated that MPS based numerical

approaches can significantly extend the range of system sizes reachable by conven-

tional exact (numerical) diagonalization techniques also for these systems.93,141,142

Clearly, extending this to |C| > 1 models would be highly desirable.

Despite impressive progress with MPS representations, their one-dimensional

nature implies a fundamental limitation due to the area law of entanglement
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entropyz.143 The tensor-network algorithms,144,145 such as the projected entan-

gled pair states (PEPS) or the multi-scale entanglement renormalization ansatz

(MERA), are developed to in principle overcome the fundamental limitations of

MPS approaches in higher dimensions, and may therefore offer intriguing possi-

bilities for the simulation of truly large topological flat band systems. Although

a naive estimate of the entanglement content (density) of FCIs suggests that this

should be possible, there is no successful application thereof to this date. A common

conception is that chiral phases, such as the FCIs, cannot be simulated efficiently

using tensor networks for a seemingly fundamental reason: in general, the tensors

can be used to construct the edge theory given any spatial cut of the ground state

wave function, but at the same time the edge states are gapless and chiral which

means that the tensor dimension would have to be infinite (moreover, the chiral

edge states need a two-dimensional bulk to exist in the first place). Nevertheless,

even if there are limitations obstructing the study of truly infinite systems, tensor

network methods may still be a valuable tool, and lead us to a better understanding

of the microscopics of the FCIs. Promisingly, when finalizing this we learned that

the ’fundamental’ hurdle might perhaps be possible to overcome, at least in some

cases.146,147 See also Ref.148 for a precursor study.

Finally, we note that topological flat band models allow a local Hamiltonian with

a finite-dimensional local Hilbert space, as they can be studied without invoking

band projection. This is in sharp contrast to the conventional FQH setting, where

band projection is crucial for formulating a lattice problem in the first place. With

the band projection, the unavoidable algebraic tail of the wave functions would

present a tremendous complication—thus, in this sense the topological flat band

problem is much more amenable to numerical simulation than the Landau level

problem.

Other types of fractional topological insulators

Fractional Chern insulators are arguably the most natural strongly correlated phases

to expect in topological flat band models due the rich history of the fractional

quantum Hall effect. They are, however, not the only possibility of topologically

ordered phases with concomitant new phenomena including fractionalized excita-

tions, induced by strong interactions in systems with topologically non-trivial band

structure. Let us comment on these possibilities in ascending dimensions (and ex-

citement).

There has been a lot of recent activity aiming to understand the interplay be-

tween interactions and topology in various one-dimensional systems. We note that,

contrary to recent claims that these systems harbor faithful analogues of FQH states,

zThe computational cost using MPS approaches scales exponentially in the linear width of the
sample. This is much better than being exponential in both dimensions as in exact diagonalization

approaches, but is still a fundamental limitation of the method when applied to two-dimensional

samples.
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these strictly one-dimensional interacting phases are, at best, CDWs with symmetry

protected nontrivial Berry phase, as clarified in Ref.149. Similarly, one-dimensional

non-interacting quasi-crystals have been argued to possess higher-dimensional topo-

logical phases. However, these are also not topological in the conventional sense150—

rather, assuming no symmetries, only families of one-dimensional Hamiltonians,

aka pumps, may faithfully represent topological phases in higher dimensions as is

known since the work of Thouless.151 Note that this does not contradict that a one-

dimensional point of view can be very helpful for understanding various aspects of

FQH phases.82,83,84,152

The situation is more promising in two dimensions. Beyond the time reversal

broken phases (such as the FCIs), symmetry protected fractional phases are easy to

imagine. Levin and Stern153 noticed that FCIs can be used as building blocks for

time-reversal symmetric topological insulators by combining copies of time reversed

FQH/FCI states and formulated a simple criteria for which states of this type that

can in principle topological in the sense that the edge modes are stable (see also

Ref.154). Despite very interesting investigations,155,156 however, all time reversal

symmetric fractional topological insulators found in microscopic models so far seem

to be essentially simple combinations of FCIs. A possible twist on this approach

would be to combine FCIs living in bands with variable |C|, e.g., as done at the

non-interacting level in Ref.157. Moreover, that qualitatively new physics has not

yet been uncovered in the studies of time reversal symmetric fractional topological

insulators does by no means imply that it does not exist. Rather, in our view, it

should be perceived as an encouragement for further studies of these systems.

If anything, the situation seems even more exciting in three spatial dimensions.

A recently pointed out possibility is that flat surface bands of three-dimensional

topological insulators give rise to new physics.158 Most saliently, it is in principle

possible that the surface states, which have previously been believed to be neces-

sarily gapless, can instead form gapped states of matter provided that they possess

non-Abelian topological order.159,160,161,162 Thus interactions can have profound

implications on the physics of topological insulators also in three dimensions.163

Even more ambitiously, one may think about phases with bulk topological order

in three-dimensional systems. Although ideas on the level of effective field theories

exist in the literature,164,165 and the fact that there exist tight-binding models with

three-dimensional topological flat bands,166 the demonstration of a topologically

ordered fractional topological insulator in three spatial dimensions would represent

a significant leap in the theory of quantum matter.
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