
CHAPTER 2

Light as a material structuring tool

When an external electric field ε penetrates a dielectric material, ionic cores and electrons

tend to separate one from another, as positive charges experience a force driving them in

the direction of the field while negative charges move in the opposite direction. As a result,

ε induces a local polarization of the material. Due to the mass of the ions, the movement of

the ionic cores is negligible for high frequency fields and the study of the electron motion is

sufficient to depict the response of the material in a good approximation.

The movement of the electrons is the result of a competition between ε and the intra

atomic field εat. When ε � εat, the electrons experience a slight displacement before recover-

ing their initial location. The movement of the electrons and therefore the local polarization

is proportional to the electric field amplitude. Conversely, when the amplitude of ε is not to-

tally negligible with respect to εat, the resulting polarization reads as a combination of powers

of ε and nonlinear effects appear. In Sec. 2.1, we present a mathematical description of the

electric field provided by an ultrafast laser source and the expression of the corresponding

laser pulse intensity. Some fundamentals about the spectral properties of femtosecond pulses

are also given. In Sec. 2.2, the consequences of the laser-induced nonlinear polarization on

the refractive index and on the pulse propagation (self-focusing and self phase modulation)

are presented.

One condition for light to become a processing tool lies in the possibility to deposit

energy at chosen locations so that a threshold for material modification is surpassed. Based

on this advantage, ultrafast laser irradiation has recently become a tool of choice for genuine

3D processing by confining energy deposition and restricting thermal diffusion. In order to
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induce absorbance, absorption centers (e.g. free electrons) have to be created by the action of

the incoming light. Section 2.3 provides a simplified discussion about laser generation of free

carriers. We also describe the consequence of free carrier generation on the dielectric function

of the material in the frame of the Drude model. In Sec. 2.4.1, we propose a model based on

the Schrödinger equation to predict the evolution of the pulse envelope along propagation,

taking into account both nonlinear effects and free carrier generation. Solving this equation

provides insight into the energy deposition scheme in a transparent material.

After the laser pulse energy has been deposited into the bulk, energy relaxation pro-

cesses take place. In the last section, we present the relaxation channels that have a direct

consequence on the permanent refractive index of the irradiated material.

2.1 Mathematical description of the laser pulse

Expression of the electric field and of the laser pulse intensity

In the following, we consider the electric field ε(z, r, t) delivered by a femtosecond laser

source. The laser pulse can be described as the product of an oscillating electric field at the

frequency ω0 + dϕ(t)/dt with an envelope ε̄(z, r, t) [11]:

ε(z, r, t) = ε̄(z, r, t)ei(ω0t+ϕ(t)) (2.1)

where z corresponds to the propagation axis, r corresponds to the radial coordinates in a

transverse plane with respect to the propagation axis, φ is the relative phase and t is the

time variable.

Assuming that the field envelope ε(r, t) in a plane perpendicular with respect to the

propagation axis has a Gaussian temporal profile, the corresponding intensity reads:

I(r, t) =
1

2
cn0ε0|εext(r, t)|2 = Imax exp

[
−4 ln 2

(
r/d1/2

)2
]
exp

[
−4 ln 2 (t/τ)2]. (2.2)

The peak intensity Imax can be expressed as

Imax = 0.83
E

τd2
1/2

, (2.3)

where E is the total pulse energy, d1/2 and τ correspond to the full width at half maximum

(FWHM) of the spatial and temporal intensity distributions, respectively. It is sometimes

more convenient to characterize the size of the beam with respect to w, the radius at which

the intensity drops by 1/e2. The relationship between d1/2 and w is given by

w =
d1/2√
2 ln 2

. (2.4)
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In Eq. 2.2, the dependence of the pulse profile along the z axis is not treated. In the

frame of our experiment, the evolution of the pulse along the propagation axis is determined

by the focusing conditions. This aspect is detailed in Sec. 3.2.1.

Spectral properties

Assuming constant spatial phase, the spectral expression of the pulse ε(ω) is related to ε(t)

through a Fourier transform according to

ε(ω) = F{ε(t)} =

∫ +∞

−∞
ε(t)e−iωtdt = ε̄(ω)eiΦ(ω), (2.5)

where ε̄(ω) and Φ(ω) correspond to the pulse spectral amplitude and spectral phase, respec-

tively. As a result, the pulse duration τ and the FWHM of the laser pulse spectrum ∆ω are

not independent [11], and

∆ωτ ≥ 2πcB, (2.6)

where cB is a coefficient depending on the pulse shape. The laser sources used in this thesis

(see Tab. 3.1) are assumed to deliver Gaussian pulses for which cB = 0.441.

For ∆ωτ = 2πcB, the pulse is Fourier limited and exhibits the shortest pulse duration.

All the different spectral components are in phase at the center of the pulse. When the

different spectral components are out of phase, ω0 + dϕ(t)/dt = f(t) and the pulse is said to

be chirped. A linear chirp (i.e., f(t) = at) corresponds to a simple pulse broadening. With

the help of a pulse shaping apparatus, it is possible to intervene selectively on the respective

time delays between the different spectral components by affecting the spectral phase Φ(ω),

in order to reach arbitrary pulse shapes. This point will be further detailed in Sec. 3.1.2.

2.2 Nonlinear propagation

The pulse propagation in a dielectric medium depends on the spatial and temporal charac-

teristics of intensity and on the self-action exercised by nonlinear coupling between light and

matter. Some of the factors affecting propagation are given below. The pulse propagation

in a dielectric medium depends on the spatial and temporal characteristics of intensity and

on the self-action exercised by nonlinear coupling between light and matter. Some of the

factors affecting propagation are given below

2.2.1 Origin of the nonlinear refractive index

At the laser intensities used in our experiments (∼ 1013 W.cm−2), it is adequate to describe

the nonlinear polarization as a combination of terms up to the third power of the electric
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field only. In a material with an inversion symmetry, χ(2) = 0 and the nonlinear polarization

PNL can be expressed as [12]:

PNL = ε0

[
χ(1) +

3

4
χ(3)|εext|2

]
εext (2.7)

where χ(m) is the m-th order susceptibility of the material. Whenever the linear absoption

can be neglected, the corresponding refractive index n reads [12, 13]

n =

√
1 + χ(1) +

3

4
χ(3)|εext|2 = n0

√
1 +

3

4n2
0

χ(3)|εext|2. (2.8)

Considering that the nonlinear term is small compared to the linear susceptibility, the last

equation can be rewritten as :

n = n0(1 +
3χ(3)

4n3
0ε0c

1

2
cn0ε0|εext|2) = n0 + n2I, (2.9)

leading to a dependence of the refractive index on the laser pulse intensity (Kerr effect). The

nonlinear refractive index n2 is related to the third order material susceptibility χ(3) and to

n0 by

n2 =
3χ3

4ε0cn2
0

(2.10)

and has typically values making it negligible at low intensities. For instance, n2 = 2.48 ×
10−16cm2/W in fused silica [14]. Equation 2.9 shows the importance of the laser intensity

I(r, t), defined by Eq. 2.2, as the refractive index seen by the pulse follows the local and

temporal intensity profile. In our experimental conditions, the spatio-temporal dependence

of the refractive index results in dramatic alterations of the spatial phase (self-focusing) and

of the temporal phase (self-phase modulation) of the incoming pulse.

2.2.2 Self-focusing

Qualitatively, the spatial Gaussian profile of the beam involves a Gaussian refractive index

profile. It results in a lens-like response of the media, provoking an auto-induced collapse of

the incident beam and preventing further propagation [15]. This beam self-trapping occurs

for a critical power given by [16]

Pcr = η(
λ2

4πn0n2

) (2.11)

where λ is the wavelength of the beam and η is a constant independent of the material. The

value

η =
1.22π2

8
(2.12)
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given in [17] is generally adopted. Interestingly, the threshold for self-focusing depends on

the peak power and not on the laser intensity. As explained in [13], this happens because

an increase in the size of the beam translates in a smaller refractive index change which is

compensated by a variation in the area of the self-focusing lens. Those two effects balance

and result in a refractive power of similar amplitude, despite of the drop of the local intensity.

In fused silica, at a 800 nm wavelength, n0 = 1.453, n2 = 2.48 × 10−16cm2/W and the

critical power for self focusing Pcr = 2.1 MW. For a 100 fs pulse duration, this threshold

is reached for a laser pulse energy higher than 0.2 µJ. Practically, whereas the laser pulse

energy we normally use (typically between 0.2 and 10 µJ) results in peak powers exceeding

the self-focusing critical power, beam self-trapping and catastrophic collapse do not occur in

our experiments, due to the consequences of free carriers generation which arrests the collapse

due to plasma defocusing [18]. For a converging beam, the self-focusing contribution comes

in addition to the external focusing and results in a displacement of the focal point toward

the laser [19]. When dealing with pulses of light, this displacement varies in time with the

instantaneous intensity of the pulse and results in a moving focal point [20]. In the case

of weak self-focusing, i.e. when the peak power is less than a quarter of the critical beam

power, the influence of the self-focusing on the transverse dimension of the beam leads to an

increase of the intensity (see for instance [21] and references therein)

Isf =
I

1− P
Pcr

, (2.13)

where I is the intensity in absence of self-focusing (see Eq. 2.2).

2.2.3 Self-phase modulation

As mentioned in [13], self-phase modulation is the counterpart of self-focusing in the tem-

poral domain. Self-phase modulation is due to the time dependence of the beam intensity

provoking a temporal dependence of the refractive index. The propagation through a length

L translates to a phase

ϕ = kL− ω0t =
2π

λ0

n(I)L− ω0t, (2.14)

where ω0 and λ0 are the carrier frequency and the central wavelength, respectively, of the

pulse in vacuum. Remembering that the instantaneous frequency ωins and the phase are

related through

ωinst = −dϕ

dt
, (2.15)

by differentiating Eq. 2.14 ω finally writes

ω = ω0 +
2πL

λ0

dn(I)

dt
= ω0 +

4πLI0n2

λ0τ 2
t exp(− t2

τ 2
). (2.16)
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From the last equation, it appears that the leading edge of the pulse (for t < 0) shifts to lower

frequencies while the trailing edge shifts to higher frequencies in a symmetrical fashion. As a

main result, new frequencies are generated in the pulse spectrum upon nonlinear propagation

with consequences on the temporal shape.

2.3 Nonlinear ionization and consequences on the tran-

sient optical properties

Under the action of the laser pulse the material starts absorbing radiation and an excited

state of matter is created. In this section, we present a review of the ionization mechanisms.

2.3.1 Nonlinear ionization mechanisms

Laser generation of free carriers at high intensities

The interaction between the electronic system and the incident electromagnetic wave is of

primary importance and determines whether light is allowed to propagate in a material or

not. In dielectrics, electrons are strongly bound to the lattice, precluding a possible inter-

action with incoming light. The minimum energy needed to free electrons from the atomic

system (binding of 7.5 to 10 eV for fused silica) is well above the photon energy of the

infrared light source used for irradiation (ca. 1.55 eV). Hence, infrared light is expected to

propagate through a perfect crystalline transparent target without attenuation. Neverthe-

less, at higher intensities multiphoton ionization (MPI) is possible with a probability per

time unit depending on the intensity I of the irradiating source

WPI(I) = σK

(
I

~ω

)K

(2.17)

for a single bound electron to absorb simultaneously K photons of energy ~ω. Here, σK

is the K-photon absorption coefficient, called ”generalized multiphoton absorption cross-

section”. It defines the probability that K photons find themselves simultaneously at the

same location to interact with a reservoir of collision partners. The number of photons (K)

of energy ~ω needed to promote an electron from the valence band into the conduction band

is so that K~ω ≥ Ecrit with

Ecrit = Eg + Eosc = Eg +
e2ε0

2cn0moptω2
0

, (2.18)
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where mopt is the electron optical mass, Eg is the band gap of the target material and Eosc

corresponds to the oscillation energy. Typically, in fused silica, for a 800 nm wavelength,

K is about 6. The multiphoton ionization rate dependence on the 6th power of I explicitly

shows the nonlinear character of the interaction and hence the high intensity sensitivity of

this process.

When the laser intensity is sufficiently high, the laser generation of free carriers is de-

scribed using the concept of tunneling ionization. Under the influence of a very intense

external electric field, the depth of the Coulomb well binding an electron to its atom is

significantly reduced. By tunnel effect, the initially bound electron can cross the remaining

potential barrier and free itself from the atom attraction.

Free carrier generation in intense laser fields can be treated in a unified conceptual frame-

work according to the Keldysh model [22]. Depending on the value of the Keldysh parameter

γ [22], it is more adequate to consider MPI, tunneling, or an intermediate model. This pa-

rameter, also called adiabatic parameter, reads [23]

γ =
ω

e

[
moptcnε0Eg

2I

] 1
2

. (2.19)

In this equation, ω is the excitation frequency, mopt and e are the reduced mass and charge

of the electron, respectively, c is the velocity of light, n is the refractive index of the material,

ε0 is the free space permittivity, and Eg is the bandgap of the target material.

Given the critical role of the laser intensity I, defined in Eq. 2.2, proper care has to be

taken in that concerns the energetic and the focusing conditions.

In fused silica ([23]), when γ � 1, MPI dominates and when γ � 1, the photoionization

is properly described by tunneling. γ ≈ 1 corresponds to an intermediate situation. In fused

silica (Eg = 8 eV, n = 1.453 at a wavelength of 800 nm), taking mopt equal to the free

electron mass for simplicity, γ = 1 for a laser pulse intensity I ≈ 5×1013 W/cm2. According

to Couairon et al. [23] who worked in focusing conditions comparable to ours [23], I reaches

this value near the focus for a laser pulse energy of 1 µJ.

The Keldysh model is often criticized, because the prediction of the damage thresholds

does not match the experimental observations over a broad range of pulse durations [24].

However, in absence of an alternative unified frame of description, this model is still widely

used.

Collisional ionization

Photo-generated free carriers are injected in the conduction band with a kinetic energy

Ekinetic = KEphoton − Egap.
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Additionally, free electrons can also gain energy by absorbing photons due to inverse

bremsstrahlung (see Eq. 2.31). If the energy surplus exceeds the ionization potential, a new

electron can be promoted into the conduction band by electron impact ionization. As a

result, two electrons close to the bottom of the conduction band are created. The change

of electron density in the conduction band is proportional to the amount of seed electrons

Ne(t) and to the laser intensity I(t) defined in Eq. 2.2 according to [25]

dNe

dt
= αI(t)Ne(t). (2.20)

Interdependence between MPI and impact ionization

At regimes where tunneling ionization is not preponderant, multiphoton ionization (MPI)

and collisional processes (avalanche) determine the free carrier generation. Stuart et al. [25]

proposed a simple rate equation in order to describe free carrier generation, taking into

account both avalanche and MPI:

dNe

dt
= αI (t) Ne (t) + WPI(I)(N0 −Ne), (2.21)

where I(t) is the intensity of the laser pulse, α is the avalanche coefficient, WPI is the

probability per time unit of the K− multiphoton process defined in Eq. 2.17, N0 and Ne are

the density of atoms and the density of free carriers, respectively, assuming that each atom

provides a single free electron. In this model, seed electrons needed to trigger avalanche

multiplication are supplied by multiphoton ionization. The rate of free carrier generation by

avalanche depends on the total number of free carriers created by both MPI and previous

collisional processes at time t and evolves linearly with I, α being quasi independent on I.

This linearity holds only under the flux doubling condition, which states that as soon as an

electron has enough energy to ionize a carrier from the valence band, it does so.

A correction of this model has been proposed recently by B. Rethfeld [26]. For energy

and momentum conservation reasons, only the electrons with a critical energy exceeding the

ionization potential by a factor of 1.5 (in a simplified case where the optical mass of the

electrons in the valence and in the conduction band are equal to the free electron mass)

contribute to collisional ionization [27]. Because of the non stationary energy distribution of

the free electronic population on ultrashort timescales, collisional ionization actually plays

a minor role at short pulse durations. As a confirmation, direct measurements of the free

carrier densities around the damage threshold in SiO2, MgO and Al203 emphasized the

limited role of avalanche phenomena for short duration laser pulses [28, 29].
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2.3.2 Optical properties of an excited solid

We explained in the previous sections how electrons could be injected in the conduction band

by an intense light source. The optical properties of a material depending on the behavior

of the free electrons when irradiated with an electromagnetic wave, as a consequence of

their finite mass and ability to follow field oscillations [30], the generation of free electrons

translates into an alteration of the complex refractive index n̂2 according to [31]

n̂2 = ε∗ = εg + ∆εfcr (2.22)

where εg is the initial dielectric constant of the material and ∆εfcr is the change in of the

dielectric constant due to the free carrier generation.

Expression of the refractive index of an excited dielectric solid

The following discussion focuses on the determination of n̂2 = ε∗ of an excited solid, complex

quantity determined by its real part n∗ and its imaginary part, also known as the extinction

coefficient, κ∗.

In the frame of the Drude model, considering that the free carrier absorption can be as-

similated to the free electron absorption only (i.e. the contribution of the holes is neglected),

the complex dielectric constant ε∗ reads (see [32])

ε∗ = ε1 + iε2 = εg −
(ωp

ω

)2 (ωtD)2

1 + (ωtD)2
+ i

(ωp

ω

)2 ωtD
1 + (ωtD)2

(2.23)

where tD is the phenomenological Drude scattering time (a measure of dephasing by elastic

collisions) and ωp is the plasma frequency, depending on the electron density Ne and on the

free electron optical mass mopt according to

ωp =

√
Nee2

ε0mopt

. (2.24)

In the last expression, e is the electron charge and ε0 is the vacuum permittivity. The intuitive

concept of critical density refers to the special case where the electron density Ne = Ncr so

that ωp is equal to the laser frequency ω0. From Eq. 2.24,

Ncr =
ω2

0ε0mopt

e2
. (2.25)

Using the relations

ε1 = n∗2 − κ∗2 and ε2 = 2n∗κ∗ (2.26)

12



Chapter 2. Light as a material structuring tool

Figure 2.1: Evolution of the real part of the refractive index (n∗) and of the extinction coef-

ficient (κ∗) of a free electron gas in vacuum versus the density of free carriers, for an incident

monochromatic wave with a wavelength of 400 nm. In order to illustrate the influence of the

collision parameter, computations were carried out for tD = 0.2 fs and tD = 1 ns.

gives for n∗2 and κ∗2

n∗ =

√
1

2

(√
ε2
1 + ε2

2 + ε1

)
and κ∗ =

√
1

2

(√
ε2
1 + ε2

2 − ε1

)
. (2.27)

In Fig. 2.1 we show the evolution of n∗ versus the density of the free electron gas Ne in vacuum

(εg = 1, mopt = me) for tD = 0.2 fs and tD = 1 ns, in order to illustrate the importance of the

phenomenological collision rate. The results presented have been computed for an incident

monochromatic wave with a wavelength of 400 nm. Noticeably, for high densities and high

values of tD, n∗ goes to zero, meaning that light is not allowed to propagate in a free electron

gas with a low collision rate above the critical density Ncr ≈ 7 × 1021 cm−3 for an incident

laser light at a wavelength of 400 nm (see Eq. 2.25). All the energy of the incident wave is

then absorbed and/or reflected. This behavior is very similar to the behavior of a metal and

therefore, such a free electron gas (with a low collision rate) is said to be in a metallic state.

When n∗ stays close to one, e.g. for small values of tD, κ∗ is proportional to Ne and is

given by

κ∗ =
ω2

ptD

2ω(1 + ω2t2D)
= Ne

e2tD
2ε0meω (1 + ω2t2D)

. (2.28)

Figure 2.1 confirms that this approximation is only valid for small values of tD.

Absorbance of a free electron gas

When propagating through an electron gas of density Ne, an electromagnetic wave of inten-

sity I0 experiences a partial absorption due to inverse bremsstrahlung. We briefly mention
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that inverse bremsstrahlung is a 3-body collisional process (for momentum and energy con-

servation reasons) in which a free electron absorbs a photon in the presence of a scattering

center and consequently increases its kinetic energy. The output intensity I can be expressed

by applying the Beer-Lambert law. In the case of light propagation through a L−thick elec-

tron gas, the Beer-Lambert law reads

I = I0 exp(−AL), (2.29)

where A is the absorbance of the electron gas, related to the extinction coefficient κ∗ via

κ∗ =
λ

4π
A. (2.30)

The combination of Eq. 2.30 and Eq. 2.28 provides a direct relation between Ne and A

according to

A =
ke2tD

moptε0ω (1 + ω2t2D)
Ne = σNe, (2.31)

where k = 2π/λ is the wave number of the incident light and σ corresponds to the cross-

section for inverse bremsstrahlung.

2.3.3 Plasma defocusing

In Sec. 2.3.1 we saw that the high intensities reached upon beam focusing allowed to generate

a population of free electrons via MPI and subsequent collisional processes. We highlighted

that the ionization processes were nonlinear, i.e. they depend on the intensity of the beam.

Therefore, the density of free carriers follows the intensity profile of the pulse. In Sec. 2.3.2,

the complex refractive index of an electron gas was studied. Remarkably, we emphasized that

the real part of the refractive index decreases when the density of free electrons increases.

When an intense laser beam propagates in a transparent medium, both effects conjugate

and result in the onset of a transient divergent lens upon laser action due to the non-uniform

spatial profile of intensity. This mechanism drastically affects the beam propagation and

competes with self-focusing (see Sec. 2.2.2). Plasma defocusing and self-focusing balance for

free carriers densities Ne of less than 1017cm−3 [33], and a filamentation process can take

place.

2.4 Pulse propagation and energy deposition

2.4.1 Evolution of the pulse envelope

We now present a model predicting the effects of nonlinear propagation on the temporal

and spatial characteristics of the pulse envelope ε̄ along the z axis [23]. This model is well

14



Chapter 2. Light as a material structuring tool

adapted to moderated input energies within the paraxial approximation. The encoding,

computation, and presentation of the results have been derived within the frame of a coop-

eration project with Institute of Thermophysics (I. Burakov), and have been published in

part [34, 35]. Without entering into details which can be found elsewhere and notably in

[36, 23], we solve the optical nonlinear Schrödinger equation which describes pulse evolution

during propagation in a nonlinear medium:

∂ε̄

∂z
=

i

2k
T−1(

∂2

∂r2
+

1

r

∂

∂r
)ε̄− ik′′

2

∂2ε̄

∂t2

+
ikn2T

n0

[
(1− fR) |ε̄|2 + fR

∫ t

−∞
dt′R(t− t′)|ε̄|2

]
ε̄

− σ

2n2
0

(1 + iω0tD)T−1(Neε̄)−
1

2

WPI(|ε̄|)Ecrit

|ε|2
ε̄.

(2.32)

The first term accounts for diffraction in the propagation media in cylindrical coordinates

and the second term corresponds to the group velocity dispersion, characterized by k′′.

The nonlinear part of the propagation due to the phenomena detailed in Sec. 2.2 is taken

into account in the third term including the n2 factor. The following term deals with the

absorption and defocusing of the electronic plasma (cf. Sec. 2.3.2 and Sec. 2.3.3). It includes

the free carrier inverse bremsstrahlung cross section σ defined within the Drude formalism

(see Eq. 2.31) and the last term accounts for the energy absorption due to photoionization

(cf. Sec. 2.3.1). The operator T is defined as

T = 1 +
i

ω0

∂

∂t
(2.33)

and accounts for the spatio-temporal coupling. T−1 in front of the transverse Laplacian

corresponds to space-time focusing and T in front of the term containing the nonlinear

refractive index corresponds to self-steepening. Self-steepening is a consequence of the phase

velocity dependence on the laser intensity, leading to a dramatic alteration of the pulse

envelope.

2.4.2 Continuity equation

Equation 2.32 is coupled to the evolution of the free carriers density. The continuity equation

reads as

∂Ne

∂t
=

WPI (|ε̄|) +
σNe/N0

n2
0

(
1 + mopt

me

)
Ecrit

|ε̄|2
 (N0 −Ne)−

Ne

ttr
. (2.34)

The first term of the right member accounts for free electron generation with a photoioniza-

tion term (W PI) and an avalanche term proportional with the intensity. N0 and Ne are the

15



Chapter 2. Light as a material structuring tool

density of atoms and the density of free carriers, respectively. The second term represents

free carrier trapping and includes the term ttr, corresponding to the free carrier trapping time

(about 150 fs in pure SiO2) according to [7]. We have mentioned before that refinements of

this equation were recently developed [26] based on electron energy considerations, leading

to a correction of the avalanche term.

2.5 Energy relaxation and consequences on the refrac-

tive index

2.5.1 Introduction

In the last section, processes responsible for electronic excitation in transparent dielectrics

with their respective contributions to the global free carrier generation have been reviewed.

Via inverse bremsstrahlung, electromagnetic energy can be efficiently coupled to the free

carrier gas and therefore significantly heat the electron bath. At the end of the femtosecond

excitation sequence, the material is left in a state far from equilibrium where the lattice is

still cold while free carriers play the role of an energetic reservoir. Relaxation processes start,

converting the excess energy into structural alterations that can be sorted in two categories,

point defects and matrix re-organization. Initiated by localized distortions of the lattice,

point defects result in the creation of new molecular structures. In silica-based glasses, a

change in the interconnectivity between SiO2 tetrahedra leads to a matrix reorganization.

Those processes obviously have consequences on the local density ρ and on the final polariz-

ability ζ (in cm3/mol) of the irradiated region. Those local modifications directly participate

to the refractive index change according to the general refractivity formula [37]

n2 − 1

4π + b (n2 − 1)
= ρ

ζ

M
, (2.35)

where M is the molar weight and b is a parameter depending on the overlap energy Υ

b =
4π

3
−Υ. (2.36)

Referring to [37], Υ characterizes the overlapping degree of the electronic orbitals between

the neighboring atoms in the solid. The parameter b is usually determined experimentally.

When studying isolated atoms, Υ vanishes and Eq. 2.35 reduces to the Lorentz-Lorenz

formula.
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2.5.2 Point defects

Defect formation

A plethora of point defects is being inventoried since decades and their investigation has

become an independent field of expertise regarding photochemical transformations. Defects

can be transient, as distinct steps toward more stable arrangements or permanent. The

appearance of point defects or color centers with a very defined optical signature is linked

to the appearance of localized and discrete energy levels in the forbidden band, contributing

thus to the overall absorption cross-section, but also to a local transformation, altering the

optical, thermal, and mechanical properties of the material. Annealing in suitable conditions

usually cancels those local inhomogeneities.

In pure fused silica glasses, the following scheme is generally adopted [1, 2].

The first step in the production of defects is the creation of a self trapped exciton (STE)

[38]. Due to the strong polar character of interaction, an optically generated electron-hole

pair (exciton) can localize itself on a site of the lattice. This localization spontaneously

takes place for energetical reasons: the energy associated to a localized exciton is smaller

than the one associated to a delocalized exciton and in despite of the energetical cost of

the localization, the final energy variation is negative in SiO2. This process invokes a local

distortion of the lattice, notably a displacement of 0.4 Å of the oxygen atom, stabilizing the

exciton in return. Such an exciton is said to be self-trapped and is called a STE. Among its

numerous signatures, STE’s invoke a strong increase of the unit cell volume up to several tens

of percent. STE’s possess an absorption band at an energy of 2.8 eV, considerably enhancing

the absorption properties of the material and therefore contributing greatly to cumulative

effects. The creation of STE’s in fused silica is extremely fast, about 150 fs according to

Audebert and coworkers [7].

The release of this lattice distortion and of its associated quantity of energy results in

breaking of the basic SiO2 tetrahedron and in the onset of point defects. For a pure fused

silica glass, the decay of STE’s translates into the formation of E’ centers, non bridging hole

centers (NBOHC), peroxy radicals and peroxy linkages, notably. The properties of those

defects have been widely studied [1, 39, 40, 41, 42, 43]. A schematic representation of those

defect structures with their associated absorption band is given in Fig. 2.2.

Contribution of the point defects to the local refractive index alteration

For low densities of defects, the alteration of the real part of the refractive index can be

predicted using a Drude model for the free electrons and a Lorentz model for the bound

electrons, as proposed in [44]:
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Figure 2.2: Principal points defects observed in fused silica [1, 2]. Large and small circles

correspond to silicon and oxygen atoms, respectively.
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where n0 is the refractive index of the pristine bulk, Ne and Nn are respectively the density

of free and trapped electrons, e is the electron charge, mvb is the optical mass an electron in

the valence band, ε0 is the dielectric constant of vacuum, ω stands for the considered light

frequency, ωn is the mean transition frequency of the trap labeled n, and mn is the optical

mass of an electron trapped on a n− type of defect. The contribution of a point defect to

the global refractive index is positive for ωn > ω and negative if ωn < ω.

In permanent regime, the contributions of free electrons and transient defects vanish.

Equation 2.37 can then be rewritten:
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∑

n

Nne
2

2mnε0

1

ω2
n − ω2

. (2.38)

Considering a unique type of defect with an intrinsic energy level located in the middle of

the bandgap [41] (that is to say about 4.5 eV from the conduction band for fused silica),

assuming that 1% of the initial SiO2 tetrahedra carry defects (i.e. for Nd = 2.2× 1019 cm−3)

and that the electron optical mass is about one half of the free electron mass, the resulting

refractive index change is of about 0.1%. A refinement of this model taking into account

additional terms is proposed in [45].

For more completeness, Kramers-Kronig analysis can be performed. This powerful

method provides the spectral dependence of the induced refractive index change. Such

results are presented in [46] in the frame of a molecular dynamics study. As a main diffi-

culty, the Kramers-Kronig approach necessitates an in-depth knowledge of the absorption

18



Chapter 2. Light as a material structuring tool

Figure 2.3: Example of a m-membered ring in fused silica with m = 3. Taken from [3]

spectrum of the photoinduced defects, preventing us from using it in the context of our

experiments.

2.5.3 Matrix re-organization

In crystalline quartz transmission electron microscopy (TEM) analysis [47] clearly demon-

strate that a field of stress appears in the vicinity of the interaction region. Another type of

experimental work based on cleaving and topography study employing a phase shift inter-

ferometric microscope unambiguously shows a shear stress region located in the immediate

neighborhood of the laser-written objects [48]. Those results suggest that the laser-affected

material of higher refractive index than pristine bulk may have a higher density following a

photophysical transformation [49].

Pristine amorphous fused silica is an assemblage of SiO2 tetrahedra. Those tetrahedra

are linked together and form closed rings. The size of a ring is usually expressed in terms of

number of Si-O segments, e.g. a 3− membered ring includes 3 Si-O segments, as shown in

Fig. 2.3. Initially, the fused silica network is principally composed of 5− and 6− membered

rings. Probing the effect of femtosecond laser irradiation, Raman spectroscopy studies [50]

reveal a significant increase in the area of the peaks located at an energy near 500 cm−1

and 600 cm−1 in the laser-affected zone. Those peaks correspond to the onset of 3− and

4− membered rings, respectively, as established in [3]. Obviously, this drastic change in

connectivity involves a dramatic drop in the average Si-O-Si bond angle and leads to the

emergence of a more compact material. In addition to an increase of 3− membered rings,

molecular dynamics simulations also report an increase in the number of large ring structures

upon shockwave densification [51, 52] . Although the presence of large structures in a high

density region may seem counterintuitive, Huang and Kieffer [53] underlined the higher
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flexibility of large rings. Large structures (i.e. 8− or more membered rings) can fold up on

themselves and therefore pack better as they are not constrained to keep a convex geometry.

Finally, an interesting connection between point defects and local densification is pro-

posed in [54]. This model is based on the analysis of irradiated quartz and silica samples

with different sources (neutrons, electrons, ions or photons). Surprisingly, the end products

look very similar in terms of final density independently on the type of irradiation. Hence,

Douillard and Duraud [54] suggest that densification of fused silica and quartz amorphization

are provoked by a two-step mechanism. In a first step, point defects are induced, gradually

accumulating stress in the glass matrix. A second step of structural relaxation is triggered

when a critical density of about 1018 E’ point defects per gram is attained. This model,

known as the Douillard-Duraud point defect model has been supported by recent molecular

dynamics simulations [55].
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