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The Total Position Spread (TPS) tensor, defined as the second moment cumulant of the position
operator, is a key quantity to describe the mobility of electrons in a molecule or an extended system.
In the present investigation, the partition of the TPS tensor according to spin variables is derived
and discussed. It is shown that, while the spin-summed TPS gives information on charge mobility,
the spin-partitioned TPS tensor becomes a powerful tool that provides information about spin fluctua-
tions. The case of the hydrogen molecule is treated, both analytically, by using a 1s Slater-type orbital,
and numerically, at Full Configuration Interaction (FCI) level with a V6Z basis set. It is found that,
for very large inter-nuclear distances, the partitioned tensor growths quadratically with the distance
in some of the low-lying electronic states. This fact is related to the presence of entanglement in the
wave function. Non-dimerized open chains described by a model Hubbard Hamiltonian and linear
hydrogen chains Hn (n ≥ 2), composed of equally spaced atoms, are also studied at FCI level. The
hydrogen systems show the presence of marked maxima for the spin-summed TPS (corresponding to
a high charge mobility) when the inter-nuclear distance is about 2 bohrs. This fact can be associated
to the presence of a Mott transition occurring in this region. The spin-partitioned TPS tensor, on
the other hand, has a quadratical growth at long distances, a fact that corresponds to the high spin
mobility in a magnetic system. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4913734]

I. INTRODUCTION

The Localization tensor (LT) and Total-Position Spread
(TPS) tensor are quantities stemming from Kohn’s theory1

of electrical conductivity. Indeed, in his seminal work, Kohn
argued that the fundamental nature of electrical conductivity is
more related to a properly defined delocalization of the wave
function than to the simple gap closure. Subsequently, Resta
and coworkers introduced the LT and provided an important
tool to give a quantitative formulation of this localization.2–6

Later, a remarkable sum rule, connecting explicitly electrical
resistivity and localization tensor, was given by Souza and
Wilkens.7 According to these results, the key property of this
quantity is the following: the Localization Tensor diverges
in the thermodynamic limit for a conductor, while remaining
finite for an insulator.8,9

In recent years, our group has been investigating the prop-
erties of what we named the TPS tensor, Λ.10 Notice that LT
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and TPS are trivially related, since the original LT introduced
by Resta is nothing but our TPS tensor divided by the num-
ber of electrons. In our investigation, we considered several
structures (atoms, molecules, clusters), treated either by ab
initio,11–14 or model15,16 Hamiltonians. Although essentially
equivalent quantities, we believe that, in a molecular context,
the TPS tensor is more pertinent than the LT.10,17,18 In fact,
in this context, it is useful to have a property like TPS that
is strongly dependent upon the number of electrons or the
size of the system, in order to follow processes like chemical
reactions or fragmentation. Moreover, the contribution of the
different electronic shells to the TPS is extremely inhomoge-
neous, so performing an average on these different terms has
little meaning. We notice, however that the use of the LT can
be advantageous in some other cases, particularly when the
asymptotic dependence upon the size of the system is studied.

We found the TPS tensor is a useful and powerful tool
to provide information about metal-insulator transitions, by
computing it for finite systems of increasing size.12,19–22 In
such a way, its asymptotic behavior can be investigated. More-
over we computed the TPS tensor for several molecular sys-
tems and found that it is capable of detecting other types of
transitions, like charge transfer, bond formation/breaking, and
other processes related to the mobility of the electrons.10,14,23

0021-9606/2015/142(9)/094113/16/$30.00 142, 094113-1 © 2015 AIP Publishing LLC
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In the present work, the partition of the TPS tensor ac-
cording to its spin components is presented and discussed. It
is shown that the different spin components of the TPS tensor
give important information about the behavior of the electrons
in molecular systems, in particular about spin-dependent prop-
erties. The formalism is illustrated through applications to the
hydrogen dimer and one-dimensional model systems. The case
of the hydrogen dimer (n = 2) is particularly useful to get some
insight into the structure of the TPS, and it is discussed in detail
in this work. Indeed, by using a basis set of a single 1s Slater-
Type Orbital (STO) per atom, a complete analytical treatment
of the TPS is possible for H2. All the integrals involved in the
matrix elements of the Hamiltonian operator as well as the
TPS tensor Λ can be analytically evaluated.24,25 In this way,
the different terms that appear in the expressions of the perpen-
dicular and parallel components, Λ⊥ and Λ∥, respectively, can
be calculated at any inter-nuclear distance R. It will also be
shown that the asymptotic behavior at large R ofΛ∥ is related to
the presence of entanglement in the wave function.26,27 Notice
that this analytical solution has not only an intrinsic interest
but can be particularly useful as a benchmark result in order to
test approximate methods or numerical approaches.

For the low-lying states of the hydrogen dimer, the spin-
summed and spin-partitioned spread tensors are also numeri-
cally computed at the full configuration interaction (FCI) level,
by using a large basis set of sextuple-zeta quality. Indeed,
while at large inter-atomic distance, the STO basis set gives the
exact result for the neutral states, the presence of dynamical
correlation implies that large basis sets are needed in order
to obtain quantitatively correct results at short inter-nuclear
distances and for the ionic states.

As far as model Hamiltonians are concerned, we inves-
tigated the behavior of non-dimerized chains of two different
types:

• open chains described by a Hubbard Hamiltonian,
Hubn;

• linear chains of hydrogen atoms, Hn.

Dimerized hydrogen chains show a range of different behav-
iors, depending on the type of dimerization. They have been
the object of a separate investigation.28 The case of Hub-
bard open chains has been numerically investigated at FCI
level. These chains are extremely well studied systems, both
analytically and numerically.29–36 They have a behavior going
from highly correlated magnetic systems, when the intra-site
repulsion U is large with respect to the hopping integral t, to
uncorrelated systems of Hückel type in the opposite limit. The
numerical study shows that both the Spin-Summed and Spin-
Partitioned TPS (SS-TPS and SP-TPS, respectively) tensors
clearly reflect this type of behaviors.

As concerns hydrogen chains Hn for n ≥ 2, the calcula-
tions were performed at FCI level with a 1s STO orbital per
atom, for even values of n going from two to sixteen and for
equally spaced atoms. In our previous works on this subject,
it has been shown that the TPS tensor presents a maximum
at an inter-atomic separation of about 2 bohrs. For larger
values of the distance, the tensor goes down to n times the
atomic value, as one expects from an additive quantity. The
value of the maximum, however, grows faster than linearly

as a function of the number of atoms n. This fact suggests
the presence of a Metal-Insulator Transition (MIT)37 at this
distance.19,21 Indeed, hydrogen chains are often viewed as
paradigmatic systems for describing Mott transitions.22,38–43

The behavior of the spin-partitioned tensor, on the other hand,
is completely different, since both the equal-spin and different-
spin components diverge for large distance, the two terms
having opposite signs. This is related to the fact that non-
dimerized hydrogen chains become highly correlated mag-
netic systems in the insulator regime. These results show that,
while the spin-summed spread tensor gives information on the
charge mobility, regardless their spin components, the spin-
partitioned tensor gives analogous information on the spin
mobility, and the propagation of magnetic modes in particular.

This article is organized in the following way: in Sec. II,
the formalism of the spin-partitioned TPS tensor is developed
and in Sec. II C, the particular case of a single Slater deter-
minant is given. In Sec. III, the analytical treatment of the
hydrogen dimer is performed and discussed. Section IV A
describes the computational details employed in this investi-
gation, while in Sec. IV B, H2 is treated at FCI level. Numer-
ical full CI computations concerning Hubbard and hydrogen
chains are presented in Secs. IV C and IV D, respectively.
Finally, in Sec. V, some conclusions are drawn, and plans for
future works on the subject are given.

II. THE SPIN PARTITION OF THE TPS TENSOR

We describe in this section the decomposition of the Λ
tensor accordingly to the spin variables.

A. Some formal properties

The second cumulant44 ¯̄A of a generic vector operator Â
is a tensor of rank two, defined as

¯̄A = ⟨Ψ|Â2|Ψ⟩ − ⟨Ψ|Â|Ψ⟩2 = ⟨Ψ|Â2|Ψ⟩ − Ā2, (1)

where we have defined Ā = ⟨Ψ|Â|Ψ⟩. This is equivalent to
writing

¯̄A = ⟨Ψ|(Â − Ā)2|Ψ⟩. (2)

From this last equation, it is clear that ¯̄A is manifestly defi-
nite positive. It is also invariant with respect to a coordinate
translation Â → Â + a because, under such a transformation,
Ā → Ā + a.

We consider now the case of an operator Ĉ which is
the sum of two operators, Ĉ = Â + B̂. As concerns the mean
values, we trivially have

C̄ = Ā + B̄. (3)

On the other hand, the cumulant ¯̄C of Ĉ becomes
¯̄C = ⟨Ψ|(Â + B̂)2|Ψ⟩ − (Ā + B̄)2
= ⟨Ψ|Â2|Ψ⟩ + ⟨Ψ|B̂2|Ψ⟩
+ ⟨Ψ|ÂB̂|Ψ⟩ + ⟨Ψ|B̂Â|Ψ⟩
− (⟨Ā⟩2 + ⟨B̄⟩2 + 2ÂB̂)
= ¯̄A + ¯̄B + ⟨Ψ|ÂB̂ + B̂Â|Ψ⟩ − 2 ĀB̄. (4)
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Therefore, the cumulant of Ĉ is not the sum of the cumulants
of the operators Â and B̂, due to the presence of the mixed
additional terms

⟨Ψ|ÂB̂ + B̂Â|Ψ⟩ − 2 ĀB̄. (5)

However there is an important case where this additional term
is zero, namely, when a system separates into fragments (see
the Appendix on size additivity).

In Subsection II B, the case of the total-position operator
is considered. It can be expressed as the sum of two spin parts,
α and β, and it turns out that its second cumulant becomes the
sum of three terms: the αα and β β cumulants, plus a mixed αβ
term. This is the central point of the SP-TPS tensor presented
in this article.

B. General spin-partition formalism

In order to do the spin partition of the TPS tensor, the posi-
tion operator r̂ is expressed as the sum of its spin components.
As far as the spin is concerned, we indicate by the subscript σ
a generic spin component, either α or β. Then, one can write

r̂ =


σ=α,β

r̂σ, (6)

where r̂ has Cartesian components r̂x, r̂y, and r̂z. From
the one-particle position operator r̂, it is possible to define the
total position operator R̂ for a system of n particles as

R̂ =
n
i=1


σ=α,β

r̂σ(i). (7)

The TPS tensor is defined as the second moment cumulant
of the total position operator,

Λ = ⟨Ψ|R̂2|Ψ⟩ − ⟨Ψ|R̂|Ψ⟩2. (8)

Since the tensorΛ does not depend on the origin of the coordi-
nate system, it can be conveniently computed in the particular
coordinate system where ⟨R̂⟩ = 0, because in that case, we
simply have

Λ = ⟨Ψ|R̂2|Ψ⟩ (⟨Ψ|R̂|Ψ⟩ = 0). (9)

Since the operator R̂ can be expressed as the sum of two
parts, an α and a β one, the squared operator R̂2 becomes the
sum of four terms: αα, αβ, βα, and β β. Therefore, we have

R̂ = R̂α + R̂β (10)

and

R̂2 = R̂2
α + R̂2

β + R̂αR̂β + R̂βR̂α. (11)

In this way, also the TPS tensor Λ decomposes in the sum of
four different terms

Λαα = ⟨Ψ|R̂2
α |Ψ⟩ − ⟨Ψ|R̂α |Ψ⟩2, (12)

Λββ = ⟨Ψ|R̂2
β |Ψ⟩ − ⟨Ψ|R̂β |Ψ⟩2, (13)

Λαβ = ⟨Ψ|R̂αR̂β |Ψ⟩ − ⟨Ψ|R̂α |Ψ⟩ ⟨Ψ|R̂β |Ψ⟩, (14)

Λβα = ⟨Ψ|R̂βR̂α |Ψ⟩ − ⟨Ψ|R̂β |Ψ⟩ ⟨Ψ|R̂α |Ψ⟩. (15)

Notice, however, that Λαβ and Λβα cannot be distinguished,
because the commutator between R̂α and R̂β vanishes. More-
over, for wave functions having the S̄z spin component equal
to zero, Λαα and Λββ are identical. For this reason, we will
report in this work the global component Λαβ+βα and, in all
cases where Sz = 0, the sum of the two components, Λαα and
Λββ, indicated as Λαα+ββ. It is worth to stress the fact that
Λαα and Λββ are second-order cumulants themselves, of the
spin-projected total-position operators R̂α and R̂β, and, satisfy,
therefore all the corresponding properties (their sum, however,
is not a cumulant). The quantities Λαβ and Λβα, on the other
hand, are joint cumulants,45,46 and they are not necessarily
positive definite. The SS-TPS can be seen as the sum of joint
cumulants where those involving identical random variables
are the variance, and those of two random variables are the
covariance that can have a negative value as well. This fact
will be illustrated, for instance, in the section on applications,
where it will be seen that Λαα and Λββ are always positive,
while Λαβ + Λβα does not have a definite sign.

The complete, SS-TPS tensor is given by

Λ = Λαα + Λββ + Λαβ + Λβα = Λαα+ββ + Λαβ+βα. (16)

If ⟨Ψ|R̂α |Ψ⟩ = 0, we have

Λαα = ⟨Ψ|R̂2
α |Ψ⟩ (⟨Ψ|R̂α |Ψ⟩ = 0) (17)

and

Λαβ+βα = ⟨Ψ|R̂αR̂β |Ψ⟩ (⟨Ψ|R̂α |Ψ⟩ = 0), (18)

while if it is ⟨Ψ|R̂β |Ψ⟩ = 0, we have

Λββ = ⟨Ψ|R̂2
β |Ψ⟩ (⟨Ψ|R̂β |Ψ⟩ = 0) (19)

and

Λαβ+βα = ⟨Ψ|R̂αR̂β |Ψ⟩ (⟨Ψ|R̂β |Ψ⟩ = 0). (20)

Notice that ⟨Ψ|R̂|Ψ⟩ = ⟨Ψ|R̂α |Ψ⟩ + ⟨Ψ|R̂β |Ψ⟩. However,
in general, ⟨Ψ|R̂α |Ψ⟩ and ⟨Ψ|R̂β |Ψ⟩ will be different. There-
fore, by a suitable coordinate translation, it is not possible
to annihilate simultaneously both ⟨Ψ|R̂α |Ψ⟩ and ⟨Ψ|R̂β |Ψ⟩.
Hence, normally one can not express the different TPS spin
contributions via Eqs. (17)–(20). In particular, if the coordi-
nates are chosen in such a way that ⟨Ψ|R̂|Ψ⟩ = 0 (and there-
fore ⟨Ψ|R̂α |Ψ⟩ = −⟨Ψ|R̂β |Ψ⟩), the SS-TPS will be given by
Eq. (9), but Eqs. (17)–(20) will not hold. It is only when
⟨Ψ|R̂α |Ψ⟩ = ⟨Ψ|R̂β |Ψ⟩ that Eqs. (6)–(17) can simultaneously
hold. In fact, in such a case, by a suitable coordinate transla-
tion, we can have both ⟨Ψ|R̂α |Ψ⟩ = 0 and ⟨Ψ|R̂β |Ψ⟩ = 0, and
therefore ⟨Ψ|R̂|Ψ⟩ = ⟨Ψ|R̂α |Ψ⟩ + ⟨Ψ|R̂β |Ψ⟩ = 0.

C. Single-determinant case

If the wave function can be expressed by a single Slater
determinant, |Φ0⟩, the mixed identically components vanish.
Indeed, by inserting a resolution of the identity


I |ΦI⟩ ⟨ΦI |

between the two R̂ operators in R̂2, we have

⟨Φ0|R̂2|Φ0⟩ =

I

⟨Φ0|R̂|ΦI⟩ ⟨ΦI |R̂|Φ0⟩. (21)

Since R̂ is a one-electron operator, the determinant |ΦI⟩ in
Eq. (21) is either |Φ0⟩ itself or a single excitation |ΦI1⟩ from
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the determinant |Φ0⟩. But a single excitation |ΦI1⟩ cannot be
simultaneously an α and a β excitation from |Φ0⟩, hence

⟨Φ0|R̂α |ΦI1⟩ ⟨ΦI1|R̂β |Φ0⟩ = 0. (22)

This means that the single αβ and βα contributions vanish
I1

⟨Φ0|R̂α |ΦI1⟩ ⟨ΦI1|R̂β |Φ0⟩

=

I1

⟨Φ0|R̂β |ΦI1⟩ ⟨ΦI1|R̂α |Φ0⟩ = 0. (23)

The only surviving term in the resolution of the identity,
Eq. (21), is when |ΦI⟩ = |Φ0⟩. This means that

⟨Φ0|R̂αR̂β |Φ0⟩ = ⟨Φ0|R̂α |Φ0⟩ ⟨Φ0|R̂β |Φ0⟩ (24)

and hence Λαβ = 0 (see Eq. (14)). The same result holds
obviously for Λβα.

III. THE HYDROGEN DIMER: ANALYTICAL
TREATMENT

The case of a hydrogen molecule described by a STO
minimal basis set will be considered in this section. It is an
instructive system admitting an analytical solution. Although
more general expressions can be obtained by using generic
localized orbitals, the STO result has the important advantage
of representing a useful benchmark in order to validate numer-
ical treatments.

We consider two hydrogen nuclei, located in the two
points A(0,0,−R/2) and B(0,0,R/2), with a 1s STO orbital on
each of them. All the integrals needed to calculate Λ for this
simple system can be analytically evaluated (see Ref. 47 and
references therein). The two normalized atomic orbitals 1sA
and 1sB are located in A and B, respectively; they are functions
of the vector r with Cartesian components x, y, z and give rise
to two normalized molecular orbitals σg and σu

σg =
1sA + 1sB√

2 + 2SAB
, and σu =

1sA − 1sB√
2 − 2SAB

,

where SAB is the two-center overlap integral. In order to
simplify the notation, we will use the symbols A, B and g, u
to denote these atomic and molecular orbitals, respectively.
A Slater determinant will be denoted by an ordered product
of spin-orbitals, possibly enclosed in | · · · ⟩; a simple orbital
symbol like g will be understood to have α spin, while the
corresponding β spin-orbital will be denoted by ḡ. There are
six possible Slater determinants: |gḡ⟩ and |uū⟩ have symmetry
1Σ+g , |gū⟩ and |ḡu⟩ have symmetry Σ+u and originate a singlet
and a triplet state, while |gu⟩, |ḡū⟩ are the Sz = ±1 components
of a 3Σ+u state. Four states can be generated by using this
minimal basis set. They are two symmetric singlets,

|11
Σ
+
g ⟩ = cos θ |gḡ⟩ + sin θ |uū⟩, (25)

|21
Σ
+
g ⟩ = sin θ |gḡ⟩ − cos θ |uū⟩ (26)

(where θ is a variational parameter), an antisymmetric singlet,

|1Σ+u⟩ = |gū⟩ − |ḡu⟩
√

2
(27)

and an antisymmetric triplet, whose three components are

|3(+1)
Σ
+
u⟩ = |gu⟩, (28)

|3(0)Σ+u⟩ = |gū⟩ + |ḡu⟩
√

2
, (29)

|3(−1)
Σ
+
u⟩ = |ḡū⟩. (30)

In Sec. III A, we compute the matrix elements of the
required operators on the g, u and the determinantal basis set.
Then, in Sec. III B, the mean values of the same operators
on the basis of the Hamiltonian eigenfunctions are calculated.
Finally, in Sec. III C, the behavior of the TPS tensor at large
distances is computed and discussed.

A. Matrix elements

We consider now the case of the longitudinal (zz or ∥)
component of the TPS tensor. Since the transversal (xx, y y
or ⊥) component does show a less spectacular behavior, its
derivation will not be reported here, but it can be found in the
supplementary material.48 We denote by ẑ, ẑ2 the longitudinal
components of the vector operator R̂, R̂2, respectively.

By taking into account the Eqs. (A1)–(A6) displayed in
Subsection 1 of the Appendix, matrix elements of the z2 oper-
ator are defined as

⟨Aσ(i)Xσ̄( j)| ẑ2
σ(i)|Aσ(i)Xσ̄( j)⟩ = R2

4
+

1
Z2 , (31)

where X = A, B and Z = nuclear charge, while

⟨Aσ(i)Bσ̄( j)| ẑ2
σ(i)|Bσ(i)Aσ̄( j)⟩ = sAB z2

AB (32)

and the overlap sAB and z2
AB are functions of R given in the

Appendix.
In Table I, the matrix elements on the determinant basis

are shown (the derivation of matrix elements on the MO basis
can be found in the supplementary material48). As expected
from Sec. II C, the αα + β β contributions are the only non-
vanishing ones for the |gḡ⟩ and |uū⟩ determinants

Λ
∥
αα+ββ(|gḡ⟩) =

2
1 + sAB

(
1
Z2 +

R2

4
+ z2

AB

)
(33)

and

Λ
∥
αα+ββ(|uū⟩) = 2

1 − sAB

(
1
Z2 +

R2

4
− z2

AB

)
(34)

while

Λ
∥
αβ+βα(|gḡ⟩) = Λ∥αβ+βα(|uū⟩) = 0. (35)

B. The spreads for the different states

As a preliminary result, the TPS tensor will be computed
for the hydrogen atom. For a neutral hydrogen atom, one has

Λ
∥(|1s⟩) = Λ⊥(|1s⟩) = 1

Z2 = 1. (36)

Equation (36) can be written in a compact form asΛ(|1s⟩)
= 1. The anion is described, at a single STO level, by a closed-
shell determinant. This implies that the position spread is
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TABLE I. Matrix elements between Slater determinants of the hydrogen dimer in the determinant basis.

Determinant symmetry Matrix elements

Σ+g

⟨g ḡ |ẑ2|g ḡ ⟩= 2
1+sAB

(
1
Z2 +

R2

4 + z
2
AB

)
⟨uū |ẑ2|uū⟩= 2

1−sAB

(
1
Z2 +

R2

4 − z
2
AB

)
⟨g ḡ |ẑ2|uū⟩= R2

2(1−s2
AB)

Σ+u

⟨g ū |ẑ2|g ū⟩= 2
1−s2

AB

(
1
Z2 +

R2

4 − s
2
ABz

2
AB

)
⟨g ū |ẑ2|ḡu⟩=− R2

2(1−s2
AB)

⟨gu |ẑ2|gu⟩= ⟨ḡ ū |ẑ2|ḡ ū⟩= 2
2(1−s2

AB)
(

1
Z2 + sABz

2
AB+

R2

2

)

additive on the two electron components, and therefore one
has

Λ(|1s2⟩) = 2
Z2 = 2. (37)

Notice, however, that because of the lack of correlation, the
hydrogen anion is unstable with respect to an auto-ionization
process if the system is described by a minimal basis set.

The TPS tensor for H2+
2 is trivially zero. In the case of the

H+2 molecule, two states are possible within the minimal basis-
set description: the ground state symmetric doublet 2Σ+g and
the excited antisymmetric doublet 2Σ+u. They are obtained by
placing a single electron (either an α or a β one) in the g or u
orbital, respectively. The total spread coincides with either the
αα or the β β components, depending on the spin projection
of the electron. One obtains

Λ
∥(|2Σ+g ⟩) = ⟨g |z2|g⟩

=
1

1 + sAB

(
1
Z2 +

R2

4
+ z2

AB

)
(38)

and

Λ
∥(|2Σ+u⟩) = ⟨u|z2|u⟩

=
1

1 − sAB

(
1
Z2 +

R2

4
− z2

AB

)
. (39)

We now compute the spin-contributions of the TPS tensor
for the different states of the hydrogen dimer described by a
minimal basis set: for the two θ-dependent symmetric singlets,
the 1Σ+g states, we have

Λ
∥
αα+ββ(|1Σ+g (θ)⟩) =

2cos2θ

1 + sAB

(
1
Z2 +

R2

4
+ z2

AB

)
+

2sin2θ

1 − sAB

(
1
Z2 +

R2

4
− z2

AB

)
(40)

and

Λ
∥
αβ+βα(|1Σ+g (θ)⟩) = 2

cos θ sin θ
(1 − s2

AB)
R2

2
. (41)

In a similar way, for the antisymmetric singlet 1Σ+u state,
we have

Λ
∥
αα+ββ(|1Σ+u⟩) = ⟨g |z2|g⟩ + ⟨u|z2|u⟩

=
1

1 + sAB

(
1
Z2 +

R2

4
+ z2

AB

)
+

1
1 − sAB

(
1
Z2 +

R2

4
− z2

AB

)
(42)

and

Λ
∥
αβ+βα(|1Σ+u⟩) = −⟨gū|z2|ḡu⟩ = 2⟨g |z |u⟩2

=
1

(1 − s2
AB)

R2

2
. (43)

We consider now the antisymmetric triplet 3Σ+u state. For
the Sz = 0 component, 3(0)Σ+u, we have

Λ
∥
αα+ββ(|3(0)Σ+u⟩) = ⟨g |z2|g⟩ + ⟨u|z2|u⟩

=
1

1 + sAB

(
1
Z2 +

R2

4
+ z2

AB

)
+

1
1 − sAB

(
1
Z2 +

R2

4
− z2

AB

)
(44)

and

Λ
∥
αβ+βα(|3(0)Σ+u⟩) = −2⟨g |z |u⟩2

= − 1
(1 − s2

AB)
R2

2
. (45)

For the other components, 3(±1)Σ+u, only the Λαα and Λββ

components, respectively, will be different from zero

Λ
∥
αα(3(1)Σ+u) = Λ∥ββ(3(−1)

Σ
+
u)

= ⟨g |z2|g⟩ + ⟨u|z2|u⟩ − 2⟨g |z |u⟩2

=
1

1 + sAB

(
1
Z2 +

R2

4
+ z2

AB

)
+

1
1 − sAB

(
1
Z2 +

R2

4
− z2

AB

)
− 1
(1 − s2

AB)
R2

2
. (46)
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TABLE II. The isolated-atom and long-distance asymptotic values of energy and TPS tensor, parallel compo-
nents, for some hydrogen systems. The quadratically divergent R2 terms are due to the presence of entanglement in
the wave function. With this basis set, the energy of the hydrogen atom and anion, E(H) and E(H−), respectively,
is given by E(H)=−0.500 000 00 and E(H−)=−0.375 000 27. Notice that the anion is not stable with respect to
auto-ionization. All numerical values in atomic units.

System Electrons E Λ∥ Λ
∥
αα+ββ Electronic state

H+ 0 0 0 0 · · ·
H 1 E(H) 1 1 2S1/2

H− 2 E(H−) 2 2 1S0

H · · ·H+ 1 E(H) 1 1
H · · ·H+±H+ · · ·H 1 E(H) 1+R2/4 1+R2/4 2Σ+g , 2Σ+u

H · · ·H̄ 2 2E(H) 2 2
H · · ·H̄± H̄ · · ·H 2 2E(H) 2 2+R2/2 11Σ+g , 3Σ+u

H · · ·H ; H̄ · · ·H̄ 2 2E(H) 2 2 3Σ+u

H+ · · ·H− 2 E(H−) 2 2
H+ · · ·H−±H− · · ·H+ 2 E(H−) 2+R2 2+R2/2 1Σ+u, 21Σ+g

H · · ·H− 3 E(H)+E(H−) 3 3
H · · ·H−±H− · · ·H 3 E(H)+E(H−) 3+R2/4 3+R2/4 2Σ+g , 2Σ+u

C. The asymptotic behavior: Wave function
entanglement

It is useful to consider the long-distance behavior of the
longitudinal components of the TPS tensor for the different
states. In fact, the asymptotic value of the TPS tensor is related
to the presence of entanglement in the wave function. Quantum
entanglement occurs when two or several particles participate
to a quantum state whose wave function cannot be described
as a (properly symmetrized or antisymmetrized) product of the
wave functions of the individual particles, even in absence of
any physical interaction among the particles. In other terms,
there is a correlation between the particles even if they do
not interact, for instance, for being separated by infinite dis-
tances. Broadly speaking, we have quantum entanglement if
two subsystems that compose a system “interact” in such
a way that the quantum state of each subsystem cannot be
described independently: a quantum state may be given only
for the system as a whole, even in the case of two particles
separated by a very large (in principle, also infinite) distance.
In the language of quantum chemistry, the entanglement is
often (although not always) associated to the presence of non-
dynamical correlation. In this case, several Slater determinants
are needed for a correct description of the system, even if their
parts are not related by a physical interaction. As an example,
let us consider a hydrogen dimer at very large inter-nuclear
distance. We have spin entanglement in the case of the lowest
“neutral” symmetric singlet, 11Σ+g , and the Sz = 0 component
of the first antisymmetric triplet, 13Σ+u: the presence of an
electron having a given spin on one center implies the presence
of an electron having opposite spin on the other center, and
vice versa. Analogously, we have charge entanglement in the
case of “ionic states,” like the lowest antisymmetric singlet,
11Σ+u: the presence of two electrons on one center implies
the absence of electrons on the other center, and vice versa.
Notice that the two other components of the triplet, on the other

hand, admit a single-determinant localized description, and no
entanglement is present in this case. As illustrated in this work,
the presence of charge entanglement in the H2 molecule leads
to a SS-TPS tensor that quadratically grows with the distance
at large distance. In a similar way, spin entanglement leads to
an analogous behavior of the partitioned SP-TPS tensor.

The notion of entanglement is a subtle one, and a discus-
sion of this concept, even in the simple case of the hydrogen
dimer, is certainly outside the purpose of the present work. It
is interesting to notice, however, that the entanglement can be
generalized to the limit case of a single particle. A very inter-
esting discussion of this situation can be found, for instance, in
Ref. 49. In this work it is argued, in particular, that a state of the
form “|0⟩ |1⟩ + |1⟩ |0⟩ is entangled.” This is in agreement with
the behavior of the TPS for the g and u states of the H+2 ion,
as illustrated in Table II. Let us now consider in detail the two
low-lying doublet ions, |2Σ+g ⟩ and |2Σ+u⟩. They have an identical
expression for the asymptotic spread, namely,

lim
R→∞
Λ
∥(2Σ+g ) = lim

R→∞
Λ
∥(2Σ+u) = 1

Z2 +
R2

4
. (47)

In this case, the single electron is equally distributed on both
nuclei so we have charge and spin entanglement.

The ground-state symmetric singlet bears a single electron
on each atom, and so does the triplet. For the states 1Σ+g , we
have that

lim
R→∞

θ(R) = ±π
4
, (48)

where the − sign holds for the ground and + for the excited
1Σ+g state, respectively. Therefore we have

lim
R→∞
Λ
∥(11
Σ
+
g ) = lim

R→∞
Λ
∥(3Σ+u) = 2

Z2 . (49)

In other words, the long-distance value of both states converges
toward twice the value of a single atom. The antisymmetric
singlet, on the other hand, has either zero or two electrons
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on each atom. For this reason, beside the atomic contribution
(the same as in the previous cases), there is a delocalization
contribution that diverges as R2,

lim
R→∞
Λ
∥(1Σ+u) = 2

Z2 + R2. (50)

The same asymptotic behavior is shown by the excited singlet
21Σ+g ,

lim
R→∞
Λ
∥(21
Σ
+
g ) = 2

Z2 + R2. (51)

Let us consider now the αα and β β terms (the αβ + βα
term being obtained by simple difference between the total
contribution and the αα + β β one). In the ground-state singlet,
an α electron is either on atom A or atom B, being 1/2 the
average of α electrons on each atom. Therefore,Λ∥αα will bear
the contribution of a single hydrogen atom, plus a delocaliza-
tion term given by R2/2. The same will happen for Λ∥ββ. This
explains why the long-range behavior of αα + β β is exactly
the same as for the Sz = 0 component of the triplet. In the case
of the S̄z = ±1, on the other hand, there is no fluctuation, and
the αα (respectively, β β) components of 3(1)Σ+u (respectively,
3(−1)Σ+u) are given by the total contribution.

We consider now the case of a single Slater determinant
of atomic spin-orbitals, chosen between the two determinants
that give rise to the singlet ground state and the triplet. Let us
take, for instance, the determinant |AB̄⟩. First of all, we remind
that

⟨A|R̂α |A⟩ = −R
2
, and ⟨B̄|R̂β |B̄⟩ = R

2
. (52)

At long inter-atomic distance, when the atomic overlap
can be neglected, the determinant |AB̄⟩ is normalized. We have

⟨AB̄|R̂α |AB̄⟩ = R
2
,

⟨AB̄|R̂β |AB̄⟩ = −R
2
,

⟨AB̄|R̂αR̂α |AB̄⟩ = ⟨AB̄|R̂β R̂β |AB̄⟩ = 1
Z2 +

R2

4
,

⟨AB̄|R̂αR̂β |AB̄⟩ = ⟨AB̄|R̂β R̂α |AB̄⟩ = −R2

4
.

Therefore, for the spin-partitioned TPS tensor, we obtain

lim
R→∞
Λ
∥
αα(AB̄) = lim

R→∞
Λ
∥
ββ(AB̄) = 1

Z2 (53)

and

lim
R→∞
Λ
∥
αβ(AB̄) = lim

R→∞
Λ
∥
βα(AB̄) = 0. (54)

Notice that the same result can be obtained, in a more straight-
forward way, simply by evaluating the mean values in the
coordinate system having the origin in − R

2 (for Λ∥αα) and R
2

(for Λ∥ββ).
All these results are summarized in Table II, where the

hydrogen value for the nuclear charge has been assumed (Z
= 1). As a general conclusion, we see that, each time that
the system has a large-distance asymptotic wave function that
is composed of two different ionic Slater determinants, the
spread tensor contains quadratically growing terms. This is
the case of the ionic 1Σ+u state which becomes |AĀ⟩ − |BB̄⟩ or

the ionic excited singlet 21Σ+g which becomes |AĀ⟩ + |BB̄⟩. In
other words, if there is a charge fluctuation in the wave func-
tion, then both the spin-summed and spin-partitioned spreads
have a quadratic growth. In presence of a spin fluctuation only
(with non-fluctuating total charge, like in the case of the 11Σ+g
ground state), the quadratically growing terms are Λαα+ββ

and Λαβ+βα, but not their sum Λ. It is interesting to notice
that, in each one of these cases, this behavior is due to the
interaction terms between the determinants contributing to the
wave function.

IV. FULL-CI RESULTS

In this section, the results obtained at FCI level on the
hydrogen dimer treated through a high-quality basis set, as
well as on hydrogen chains in which we used a set of 1s
STO-12G is discussed. With this symbol, we mean a 1s Slater
orbital expanded as a contraction of 12 gaussian orbitals, as it
is specified later.

A. Computational details

The full CI calculations presented in this work were per-
formed using the NEPTUNUS code.50–53 This is a FCI code for
the calculation of the wave function and the associated spreads,
and it uses the Hamiltonian and position integrals produced by
the DALTON chain.54 The interface between the two codes is
done through the Q5Cost formalism.55–58

We performed FCI calculations on open linear chains
described by a Hubbard Hamiltonian29 (HubL_n), for an even
number n of centers going from 2 to 14. In its simplest form,
the Hubbard Hamiltonian is given by

H = −t

⟨i, j⟩


σ=α,β

c+i,σcj,σ +U

i

ni,αni, β, (55)

where ci,σ (c+i,σ) are annihilation (creation) operators, respec-
tively, of an electron with spin projection σ. In this equation,
the sum over i runs over the system sites, while ⟨i, j⟩ indicates
topologically connected sites. The parameter t is the hopping
integral between the connected sites i and j, while U is the
one-center Coulomb repulsion. Although many properties of
this model, like the total energy or the energy gap, admit an
analytical expression,59 the analytical calculation of the spread
is not trivial, and we computed the TPS tensors numerically
using our FCI code.

We also performed FCI calculations on the H2 dimer by
employing the V6Z valence basis set of Dunning,60 which is a
basis of (10s,5p,4d,3 f ,2g,1h) gaussian primitives contracted
to (6s,5p,4d,3 f ,2g,1h).

Finally, we treated at FCI level using the minimal STO-
12G basis set the Hn (n = 2,4,6,8,10,12,14,16) linear chains
with equally spaced atoms. This STO-12G expansion was ob-
tained in the following way. We took the 12 gaussian primitives
of s type of the basis set of Tunega and Noga61 and computed
the wave function of a H atom to get the expansion coefficients.
In this way, a very accurate description of the isolated atom
is obtained, with an energy of −0.499 998 632 164 hartree
instead of the exact value of −0.5 hartree.
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FIG. 1. Total energies for the 1Σ+g , 1Σ+u,
and 3Σ+u low-lying electronic states of
the hydrogen molecule computed at FCI
level with the V6Z basis set of Dunning,
and values calculated analytically.

B. The hydrogen dimer

We discuss now the FCI treatment of the hydrogen dimer
obtained by using the large V6Z basis set, that is able to give an
accurate description of this system. We concentrate our atten-
tion on the lowest states of each one of the three symmetries
considered in Sec. III. In fact, the second symmetric singlet
state, 21Σ+g , has a very different behavior with respect to the
corresponding state obtained with the STO basis set, since it
undergoes a series of avoided crossings, and its nature changes
as a function of the distance. In Figure 1, we report the total
energies of the three lowest states, 1Σ+g , 3Σ+u, and 1Σ+u as a
function of the inter-nuclear distance.

In Figures 2–5, we compare the analytical STO results
(full lines) with the FCI results (dots). Generally speaking, the
two results differ for short distances, because of both orbital
relaxation and electron correlation. At large distances, on the
other hand, the quality of the STO results with respect to the
FCI/V6Z ones depends on the nature of the states: the 1Σ+g and
3Σ+u states are purely neutral, and the analytical STO descrip-
tion is exact at dissociation. This means that the FCI and the
analytical results at large distance are asymptotically identical.
The antisymmetrical singlet, on the other hand, is purely ionic
at all distance for symmetry reasons. Therefore, the uncorre-
lated analytical STO description and the high-quality FCI/V6Z
do not coincide, even asymptotically. Moreover, the nature of

FIG. 2. Longitudinal spin-summed po-
sition spread for the 1Σ+g , 1Σ+u, and 3Σ+u
low-lying electronic states of the hy-
drogen molecule computed at FCI level
with the V6Z basis set of Dunning. Full
lines represent values calculated analyt-
ically.
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FIG. 3. Longitudinal spin-partitioned
position spread for the 1Σ+g electronic
state of the hydrogen molecule com-
puted at FCI level with the V6Z basis
set of Dunning. Full lines represent val-
ues calculated analytically.

the FCI/V6Z state changes strongly with the distance, because
of a series of avoided crossing.

C. Hubbard chains

We performed FCI calculations on open linear chains
described by a Hubbard Hamiltonian29 (HubL_n), for an even
number n of centers going from 2 to 14. The values of the TPS
tensors are reported in Figures 6 and 7, as a function of the
ratio −t/U and for the different values of n. Notice that, at
half filling and for −t/U = 0, the magnetic manifold becomes
completely degenerate, since all the determinants having one
electron per site have a total energy exactly equal to zero. The
corresponding values of the spread, on the other hand, are in
general not degenerate, so only the limit for −t/U → 0 of the

ground-state spread is meaningful. In practice, for numerical
reasons, we stopped our investigation at −t/U = 0.01, and we
did not consider smaller values.

In Figure 6, we show the SS-TPS values. For −t/U → 0,
Λ∥ vanishes regardless the value of n, since at half filling, we
have exactly one electron on each center. For large values of
the ratio −t/U, the Λ∥(n)/n converge, in a rather slow way,
toward the uncorrelated limit. At −t/U = ∞, we get a Hückel
chain, and Λ∥(n)/n has a linear growth as a function of n (the
chain is a metallic system).15 The behavior of the SP-TPS
tensor is illustrated in Figure 7. For small values of −t/U,
the equal-spin and different-spin components, Λ∥αα+ββ(n)/n
and Λ∥αβ+βα(n)/n, respectively, have the same absolute value
and opposite sign, in such a way that the spin-summed value
vanishes. For large values of −t/U, the equal-spin components

FIG. 4. Longitudinal spin-partitioned
position spread for the 1Σ+u electronic
state of the hydrogen molecule com-
puted at FCI level with the V6Z basis
set of Dunning. Full lines represent val-
ues calculated analytically.
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FIG. 5. Longitudinal spin-partitioned
position spread for the 3Σ+u electronic
state of the hydrogen molecule com-
puted at FCI level with the V6Z basis
set of Dunning. Continuous lines are the
analytical results.

quickly saturate to a value that has a linear growth as a function
of n, while the different-spin components slowly converge to
zero. This explains the slow convergence of the SS-TPS for
large values of −t/U.

D. Hydrogen chains

The case of non-dimerized linear hydrogen chains (HL_n)
is discussed in this section. These chains were studied at FCI
level employing the basis set STO-12G. For n greater than two,
even by using a minimal basis set, this system admits only
numerical solutions. In the case of chains, the comparison of
systems having a different number of centers plays a crucial
role. For this reason, the TPS values reported in this section
are often divided by the number of atoms of the systems.

The behavior for large values of n is particularly relevant,
since it gives information on the “metallicity” of the system.2

Unfortunately, the convergence towards the asymptotic regime
as a function of n is rather slow. Since calculations involving
large values of n become prohibitively expensive (the largest
accessible system is for n = 18, at a price of a huge compu-
tational effort), extrapolation techniques are needed for such
an investigation. In the following parts of this section, the
spin-summed and spin-partitioned tensors will be separately
discussed.

1. The spin-summed spread

In Figure 8, the FCI energies per atom are reported as a
function of the inter-atomic distances R, for the HL_n (n = 2,
4,6,8,10,12,14,16). For all the involved chains except the

FIG. 6. Total position spread tensor for
non-dimerized open Hubbard chains di-
vided by the number of sites. The marks
in the right vertical axis represent the
uncorrelated limit.
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FIG. 7. Spin-partitioned position
spread tensor for non-dimerized open
Hubbard chains divided by the number
of sites. Positive values represent the
αα component, and negative values the
αβ component of the tensor. The marks
in the right vertical axis represent the
uncorrelated limit.

dimer, there is a minimum of the potential energy surfaces
(PES) in the region of 2.0 bohrs. It is remarkable to note that
the values of per atom energies are superposed for inter-atomic
distances larger than 2.2 bohrs. However, near the equilibrium
distance, H2 is slightly more stable than the longer chains.
These superposed per atom energies mean that the border
effects are small in these systems. These results are consistent
with those calculated for periodic hydrogen chains at varia-
tional Monte Carlo (VMC) level by Stella et al.34 However, the
curves shown therein are lower than the ones we report because
VMC allows for a much better (but approximate) description
of correlation effects than FCI. In fact, the basis set employed
at VMC level consisted of 3s orbitals for the geminal part, and
2s2p for the Jastrow part (see Eqs. 1-2 in Ref. 34).

The behavior of the total position spread tensor calculated
at the same level of theory is now considered. The TPS is
closely related to the metallic vs insulator character of a molec-
ular system. For a set of n non-interacting electrons occupying
a region of length L of the space, the spread is expected to
be of the order of L2. This behavior is observed, for instance,
in the case of non-interacting particles in a box16 and Hückel
Hamiltonians.15 In the thermodynamic limit, the spread of the
electrons is expected to diverge. In Figure 9, the per atom
values of the longitudinal component of the TPS (Λ∥) are
shown as a function of the inter-atomic distances. As a first
observation, for all chains involved, the value ofΛ∥/n for inter-
atomic distances that tend to infinity converges to the isolated-
atom value (1 bohr2).

FIG. 8. Potential energy curves of hy-
drogen chains per atoms calculated at
FCI level and employing the minimal
basis set STO-12G.
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FIG. 9. Total position spread tensor for
the different hydrogen chains divided
by the number of atoms at FCI level and
the minimal basis set STO-12G.

On the contrary, for distances below 1 bohr, nuclei are
closer and the nuclear effective charge experienced by the
electrons is higher. At the same time, this leads to a spatial
contraction and then electrons are more localized. For R values
near to the equilibrium distance, the TPS increases and keeps
growing until it reaches a marked maximum close to the
bond-breaking distance. At such molecular configuration, the
systems show a maximum delocalization of the wave function
due to a rearrangement of the electrons to occupy one 1s
atomic orbital at dissociation. It is important to note that the
magnitudes of the maxima increase (and get displaced to
shorter values of R) with the size of the molecular chains (see
Figure 9).

Let us now compare the SS-TPS results with the values of
the localization tensor λN reported in Ref. 34. In the insulating
regime (at large values of R), bothΛ∥/n and λN do not depend
on the size of the molecules and the curves are superposed.
Then, for values below 5 bohrs, Λ∥/n and λN start to show a
dependency on the number of atoms in the system. This indi-
cates a Mott transition,38 from an antiferromagnetic insulator
(Sz = 0 for our hydrogen chains calculations) to a metal in the
region of R between 3.5 and 2.0 bohrs.

In order to investigate the behavior of the specific parallel
spread Λ∥(n)/n in the different distance regions, it is conve-
nient to extrapolate the spread values, for a fixed inter-nuclear
distance, as a function of the number of atoms. By assuming,
for large n and at a fixed R value, a linear functional form of
the type

Λ
∥(R,n)/n = Λ∥0(R) + Λ∥1(R)n (56)

(i.e., by truncating a power expansion in n to the first two
terms), the values of Λ∥0(R) and Λ∥1(R) can be graphically
obtained. Indeed, one can plot the quantity Λ∥(R,n)/n2 as a
function of 1/n and extrapolate the curve for 1/n → 0. See
Figures SM1 and SM3 in the supplementary material,48 where

Λ∥(R,n)/n2 as a function of 1/n for R = 2 and R = 6 bohrs
are reported. By performing the extrapolation for 1/n → 0,
we obtain for Λ∥0(R) and Λ∥1(R) the values Λ∥0(2) = 1.088 66
andΛ∥1(2) = 0.259 27 for R = 2.0 bohrs, andΛ∥0(6) = 1.016 53
and Λ∥1(6) = 2.925 92 × 10−4 for R = 6.0 bohrs. This means
that the spread is practically constant for R = 6.0 bohrs, while
it has a linear growth for R = 2.0 bohrs. These results can
be interpreted as a metallic behavior at short inter-atomic
separation and an insulator at large separation.

2. The spin-partitioned spread

The spin-partitioned parallel spreads are now discussed.
In Figure 10, the spin-partitioned longitudinal spreads,Λ∥αα+ββ
and Λ∥αβ+βα, are reported. It appears that they have similar
absolute values but opposite signs, in such a way that the
spin-summed spread is only a very small fraction of the spin-
partitioned terms. Moreover, the two terms quickly diverge for
increasing values of both n and R.

The behavior of the spin-partitioned tensor for large
values of n and R can also be graphically investigated. For
a fixed value of n, the curves of Λαα+ββ(n,R)/R2 become
constant for large values of R, indicating a quadratic depen-
dence on R. Again, the dependence on n is more difficult to
study, since calculations for large n values are impossible.
In order to investigate this aspect, the curves corresponding
to Λαα+ββ(n,R)/(n2R2) are plotted, as a function of R, for
different values of n. This is illustrated in Figure SM2 (in
the supplementary material48) where the quadratic dependence
from R for large R values clearly appears. Moreover, it can be
seen that the different curves tend to a common limit for large
values of n. In fact, if the same quantity is plotted, for a fixed
large value of R, as a function of 1/n, an extrapolated value
for n → ∞ can be obtained. (See the plot for R = 6 bohrs in
Figure SM4, in the supplementary material.48) These results
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FIG. 10. Spin-partitioned position
spread tensor for the different hydrogen
chains divided by the number of atoms
at FCI level and the minimal basis set
STO-12G. Positive values represent the
αα+ββ contribution, and negative
values the αβ+βα contribution.

imply that the asymptotic values of the equal-spin term can
be expressed, for large values of n and R, as a function of the
form

Λαα+ββ(N,R)/n = Cαα+ββnR2, (57)

where Cαα+ββ is a dimensionless constant.
It is possible to extrapolate the values ofΛαα+ββ(n,R) for

large values of n, as it was done for the total spread in Sec. IV
D 1. We assumed a two-term linear expansion

Λ
∥
αα+ββ(R,n)/n = Λ∥αα+ββ,0(R) + nΛ∥

αα+ββ,1(R). (58)

For R = 6.0 bohrs, the extrapolated values of Λ∥
αα+ββ,0(6)

= 2.445 87 andΛ∥
αα+ββ,1(6) = 5.220 63 are obtained, showing

a divergent behavior of Λ∥αα+ββ(R,n)/n as a function of n.
For a fixed number of centers,Λαα+ββ grows as the square

of R, as shown in Figure SM2 (in the supplementary ma-
terial48). This implies that the equal-spin TPS grows as the
square of the chain total length. Notice that the different-spin
term, Λ∥αβ+βα(R,n)/n, has asymptotically the same form, but
opposite sign. It is interesting to compare these results with
the behavior of the uncorrelated electrons of a linear Hückel
chain. Indeed, for large inter-nuclear distances, the αα + β β
longitudinal spread has the same behavior of the total longitu-
dinal spread of the Hückel chains.15 This fact indicates a large
spin mobility in non-dimerized chains for large values of R.
As discussed in Subsection IV D 1, this is the opposite to what
happens for the charge mobility.

V. CONCLUSIONS

In the present work, the partition of the total-position
spread tensor according to its spin components has been pre-
sented. In particular, the equal-spin and different-spin compo-
nents have been defined, and their behavior has been inves-

tigated in the case of some simple systems. As for the spin-
summed tensor, both spin components are invariant with res-
pect to translations, and additive in the case of factorizable
wave functions of non-interacting subsystems. Moreover, their
trace is invariant with respect to rotations. For these reasons,
these tensors are truly invariant quantities that can be associ-
ated to a physical system, like the energy and the polarizability.

The formalism has been illustrated through applications
to different hydrogen systems:

1. The hydrogen dimer described by a STO orbital. This
model system admits a fully analytical treatment.

2. The same H2 dimer described at full-CI level by means of
a rather large V6Z basis set, that is able to give a realistic
description of this molecule.

3. Equally spaced hydrogen linear chains, Hn, treated at full-
CI level and by using a single STO-12G contracted gaus-
sian orbital for each hydrogen atom.

The results for the H2 dimer show a divergent behavior of
the two spin-partitioned longitudinal components of the spread
tensor, Λ∥αα+ββ and Λ∥αβ+βα, at large inter-nuclear distances
in some cases. This divergence is related to the presence of
entanglement in the long-range wave function. In particular,
the divergence of the spin-summed TPS tensor Λ∥ is associ-
ated to charge entanglement, and this is the case for the 1Σ+u
excited state. The divergence of the spin-partitioned compo-
nents Λ∥αα+ββ and Λ∥αβ+βα, on the other hand, is associated
to spin entanglement (in the 1Σ+g ground state, and the Sz = 0
component of the 3Σ+u triplet). No divergence at all is shown
by the other spin components of the triplet, for which no
entanglement is present in the wave function.

A similar behavior is found in the case of the Hn chains,
for which both Λ∥αα+ββ and Λ∥αβ+βα diverge at large inter-
nuclear distance. Moreover, also the per-electron value of
these tensors diverge as a function of the electron number. This
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is a behavior very much similar to that of the spin-summed
tensor in the case of conductors and is related to the presence
of highly correlated magnetic wave functions for these chains
at large distances and number of atoms. Work is in progress
in our group on other types of magnetic models, like Heisen-
berg Hamiltonians (having both ferromagnetic or antiferro-
magnetic couplings) or dimerized hydrogen chains, in order
to elucidate the relation between the wave function magnetic
character of these systems and the behavior of the SP-TPS
tensors.

The TPS tensor gives information on the mobility of the
electrons in molecules or extended systems. For this reason, it
had been shown to be a powerful tool to describe the mobility
of the electrons in charge-transfer systems, and in the theory
of conductivity for metallic systems in particular. In the same
way, the spin-partitioned TPS tensors we introduced in this
work provide information on the mobility of the spins. This
is of particular interest in all those cases where this mobility is
not associated to charge-transfer processes, and for which the
spin-summed TPS tensor is not capable to provide the rele-
vant information. For these reasons, we believe that the spin-
partitioned TPS tensor will be a powerful tool to investigate
the behavior of the electrons in highly correlated systems, and
in particular the propagation of magnetic modes in magnetic
structures.
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APPENDIX: MATRIX ELEMENTS OF THE POSITION
OPERATOR IN THE AO BASIS, AND SIZE ADDITIVITY
OF CUMULANTS
1. Matrix elements over 1s STO

The overlap between the two 1s atomic orbitals, sAB, is
given by

sAB ≡ ⟨1sA|1sB⟩ = e−ZR

(
1 + Z R +

Z2R2

3

)
. (A1)

For the matrix elements of ẑ on the AO basis, we have

⟨Aσ | ẑσ |Aσ⟩ = −R
2

(A2)

and

⟨Bσ | ẑσ |Bσ⟩ = R
2

(A3)

while

⟨Aσ | ẑσ |Bσ⟩ = ⟨Bσ | ẑσ |Aσ⟩ = 0 (A4)

because 1sA(r)1sB(r) is an even function of z.
For the matrix elements of x̂ on the AO basis, we have

⟨Aσ | x̂σ |Aσ⟩ = ⟨Bσ | x̂σ |Bσ⟩ = ⟨Aσ | x̂σ |Bσ⟩ = 0. (A5)

For the matrix elements of the z2 operator, on the other
hand, we have

⟨Aσ | ẑ2
σ |Aσ⟩ = ⟨Bσ | ẑ2

σ |Bσ⟩ = R2

4
+

1
Z2 (A6)

while

⟨Aσ |z2
σ |Bσ⟩ = ⟨Bσ |z2

σ |Aσ⟩ ≡ z2
AB, (A7)

where the integrals in Eq. (A7) have the expression (see
Ref. 62)

z2
AB = e−ZR

(
1
Z2 +

R
Z
+

9R2

20
+

7R3Z
60
+

R4Z2

60

)
. (A8)

For the matrix elements of the x2 operator, on the other hand,
we have

⟨Aσ | x̂2
σ |Aσ⟩ = ⟨Bσ | x̂2

σ |Bσ⟩ = 1
Z2 (A9)

while

⟨Aσ |x2
σ |Bσ⟩ = ⟨Bσ |x2

σ |Aσ⟩ ≡ x2
AB, (A10)

where

x2
AB = e−ZR

(
1
Z2 +

R
Z
+

2R2

5
+

R3Z
15

)
. (A11)

2. Size additivity

It is well known that the cumulant of a composite system
is equal to the sum of the cumulants of its parts provided the
latter are independent.44 This might be the case of a molecule
dissociating in two separate fragments. Here, we briefly re-
derive this property having in mind the TPS tensor. We assume
that the wave function of the composite system ψAB is the anti-
symmetrized product of ψA and ψB. The wave function of each
fragment F will be expressed in the form of a CI expansion,

ψF = Σi f iπ̂
†
i |0⟩ = Ô†F |0⟩, F = A, B, (A12)

where f i are the CI coefficients, π̂†i is a product of nF creation
operators, and |0⟩ is the vacuum state. We consider now the
case when the fragments A,B are at infinite distance so the
orbitals of A and those of B are completely disjoint, in such a
way that the following equations hold:

⟨ψAB|ψAB⟩ = ⟨0|ÔAÔ†
A
|0⟩ = ⟨0|ÔBÔ†B|0⟩ = 1,

|ψAB⟩ = Ô†
A
Ô†B|0⟩ = (−)nAnBÔ†BÔ†

A
|0⟩. (A13)
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Equation (A13) is a trivial consequence of the anti-commu-
tation relations and one also has the following:

Ô†
A
Ô†B = (−)nAnBÔ†BÔ†

A
,

Ô†
A
ÔB = (−)nAnBÔBÔ†

A
,

ÔAÔ†B = (−)nAnBÔ†BÔA,

ÔA,ÔB = (−)nAnBÔB,ÔA.

(A14)

We also remind the following equations:

ÔAÔ†
A
|0⟩ = ÔBÔ†B|0⟩ = |0⟩, (A15)

ÔFΩ̂Ô†F |0⟩ = |0⟩ ⟨0|ÔFΩ̂Ô†F |0⟩, F = A,B. (A16)

Last Eq. (A16), where Ω̂ is any number-conserving oper-
ator, is trivially due to the zero-electron space being 1-dimen-
sional. Let us now consider a generic element of the TPS tensor

Λpq = ⟨ψAB|P̂Q̂|ψAB⟩ − ⟨ψAB|P̂|ψAB⟩ ⟨ψAB|Q̂|ψAB⟩, (A17)

where P̂, Q̂ are two components (possibly equal) of the total
position operator. Suppose now that P̂ = P̂A + P̂B with

[P̂A, P̂B] = [P̂A,ÔB] = [P̂B,ÔA] = . . . = 0 (A18)

and similarly for Q̂. One has

⟨ψAB|P̂Q̂|ψAB⟩ = ⟨0|ÔBÔAP̂AQ̂AÔ†
A
Ô†B|0⟩

+ ⟨0|ÔBÔAP̂AQ̂BÔ†
A
Ô†B|0⟩

+ ⟨0|ÔBÔAP̂BQ̂AÔ†
A
Ô†B|0⟩

+ ⟨0|ÔBÔAP̂BQ̂BÔ†
A
Ô†B|0⟩. (A19)

Because of Eqs. (A14) and (A16), one can rearrange as fol-
lows:

⟨ψAB|P̂Q̂|ψAB⟩ = ⟨0|ÔAP̂AQ̂AÔ†
A
ÔBÔ†B|0⟩

+ ⟨0|ÔAP̂AÔ†
A
|0⟩ ⟨0|ÔBQ̂BÔ†B|0⟩

+ ⟨0|ÔBP̂BÔ†B|0⟩ ⟨0|ÔAQ̂AÔ†
A
|0⟩

+ ⟨0|ÔAÔ†
A
ÔBP̂BQ̂BÔ†B|0⟩,

⟨ψAB|P̂Q̂|ψAB⟩ = ⟨ψAP̂AQ̂AψA⟩
+ ⟨ψAP̂AψA⟩⟨ψBQ̂BψB⟩
+ ⟨ψBP̂BψB⟩⟨ψAQ̂AψA⟩
+ ⟨ψBP̂BQ̂BψB⟩.

(A20)

Similarly one also finds

⟨ψAB|P̂|ψAB⟩ = ⟨ψAP̂AψA⟩ + ⟨ψBP̂BψB⟩,
⟨ψAB|Q̂|ψAB⟩ = ⟨ψAQ̂AψA⟩ + ⟨ψBQ̂BψB⟩. (A21)

From Eqs. (A20) and (A21), one easily finds the result

Λpq = ⟨ψA|P̂AQ̂A|ψA⟩ − ⟨ψA|P̂A|ψA⟩ ⟨ψA|Q̂A|ψA⟩
+ ⟨ψB|P̂BQ̂B|ψB⟩ − ⟨ψB|P̂B|ψB⟩ ⟨ψB|Q̂B|ψB⟩. (A22)

This result also holds for the spin-partitioned operators
Rαα and Rββ because they fulfill same commutation relation
(A18) as the spin summed operators plus the following one:
[Rαα,Rββ] = 0. Last, from Eq. (16), one finds that Eq. (A22)
holds for Λαβ+βα which is not a cumulant.

1W. Kohn, Phys. Rev. 133, A171 (1964).
2R. Resta and S. Sorella, Phys. Rev. Lett. 82, 370 (1999).

3C. Sgiarovello, M. Peressi, and R. Resta, Phys. Rev. B 64, 115202 (2001).
4R. Resta, J. Phys.: Condens. Matter 14, R625 (2002).
5R. Resta, Phys. Rev. Lett. 95, 196805 (2005).
6R. Resta, Eur. Phys. J. B 79, 121 (2011).
7I. Souza, T. Wilkens, and R. Martin, Phys. Rev. B 62, 1666 (2000).
8R. Resta, Phys. Rev. Lett. 96, 137601 (2006).
9R. Resta, J. Chem. Phys. 124, 104104 (2006).

10O. Brea, M. El Khatib, C. Angeli, G. L. Bendazzoli, S. Evangelisti, and T.
Leininger, J. Chem. Theory Comput. 9, 5286 (2013).

11V. Vetere, A. Monari, A. Scemama, G. L. Bendazzoli, and S. Evangelisti, J.
Chem. Phys. 130, 024301 (2009).

12G. L. Bendazzoli, S. Evangelisti, and A. Monari, Int. J. Quantum Chem. 111,
3416 (2011).

13S. Evangelisti, G. L. Bendazzoli, and A. Monari, Theor. Chem. Acc. 126,
257 (2010).

14G. L. Bendazzoli, M. El Khatib, S. Evangelisti, and T. Leininger, J. Comput.
Chem. 35, 802 (2014).

15A. Monari, G. L. Bendazzoli, and S. Evangelisti, J. Chem. Phys. 129, 134104
(2008).

16G. L. Bendazzoli, S. Evangelisti, and A. Monari, Int. J. Quantum Chem. 112,
653 (2012).

17J. G. Ángyán, Int. J. Quantum Chem. 109, 2340 (2009).
18J. G. Ángyán, Curr. Org. Chem. 15, 3609 (2011).
19G. L. Bendazzoli, S. Evangelisti, A. Monari, B. Paulus, and V. Vetere, J.

Phys.: Conf. Ser. 117, 012005 (2008).
20V. Vetere, A. Monari, G. L. Bendazzoli, S. Evangelisti, and B. Paulus, J.

Chem. Phys. 128, 024701 (2008).
21G. L. Bendazzoli, S. Evangelisti, A. Monari, and R. Resta, J. Chem. Phys.

133, 064703 (2010).
22E. Giner, G. L. Bendazzoli, S. Evangelisti, and A. Monari, J. Chem. Phys.

138, 074315 (2013).
23M. El Khatib, T. Leininger, G. L. Bendazzoli, and S. Evangelisti, Chem.

Phys. Lett. 591, 58 (2014).
24V. Magnasco, A. Rapallo, and M. Casanova, Int. J. Quantum Chem. 73, 333

(1999).
25V. Magnasco and A. Rapallo, Int. J. Quantum Chem. 79, 91 (2000).
26R. Horodecki, M. Horodecki, and K. Horodecki, Rev. Mod. Phys. 81, 865

(2009).
27O. Gühne and G. Tóth, Phys. Rep. 474, 1 (2009).
28M. El Khatib, O. Brea, E. Fertitta, G. L. Bendazzoli, S. Evangelisti, T.

Leininger, and B. Paulus, Theor. Chem. Acc. 134, 1 (2015).
29J. Hubbard, Proc. R. Soc. A 276, 238 (1963).
30H. Schulz, Phys. Rev. Lett. 64, 2831 (1990).
31V. I. Anisimov, J. Zaanen, and O. K. Andersen, Phys. Rev. B 44, 943

(1991).
32R. Bulla, Phys. Rev. Lett. 83, 136 (1999).
33S. Pankov and V. Dobrosavljević, Phys. Rev. B 77, 085104 (2008).
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