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SUMMARY

In miRNA biogenesis, pri-miRNA transcripts are
converted into pre-miRNA hairpins. The in vivo
properties of this process remain enigmatic. Here,
we determine in vivo transcriptome-wide pri-miRNA
processing using next-generation sequencing of
chromatin-associated pri-miRNAs. We identify a
distinctiveMicroprocessor signature in the transcrip-
tome profile fromwhich efficiency of the endogenous
processing event can be accurately quantified. This
analysis reveals differential susceptibility to Micro-
processor cleavage as a key regulatory step in
miRNA biogenesis. Processing is highly variable
among pri-miRNAs and a better predictor of miRNA
abundance than primary transcription itself. Pro-
cessing is also largely stable across three cell lines,
suggesting a major contribution of sequence deter-
minants. On the basis of differential processing effi-
ciencies, we define functionality for short sequence
features adjacent to the pre-miRNA hairpin. In
conclusion, we identify Microprocessor as the main
hub for diversified miRNA output and suggest a
role for uncoupling miRNA biogenesis from host
gene expression.

INTRODUCTION

MicroRNAs (miRNA) are small RNAs that posttranscriptionally

regulate gene expression (Kim et al., 2009). miRNAs are ex-

pressed as long primary miRNA (pri-miRNA) transcripts that

are processed in the nucleus to precursor miRNA hairpins (pre-

miRNA) by the Microprocessor complex. The pre-miRNAs are

exported to the cytoplasm by Exportin 5 (Yi et al., 2003) and

are further processed into mature miRNAs by Dicer and incorpo-

rated into the RNA-induced silencing complex (RISC) where they

exert their predominant functions in regulating translation and

the stability of target mRNAs (Kim et al., 2009). miRNAs recog-

nize their targets by base-pair complementarity. The nucleotides

2–7 of the mature miRNA, termed the seed, have been identified
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as the most essential region for target recognition (Lewis et al.,

2003, 2005). Each miRNA is believed to regulate several hun-

dred targets (Lewis et al., 2005; Miranda et al., 2006; Sood

et al., 2006), making up extensive gene expression regulatory

networks.

The Microprocessor complex was characterized 10 years ago

as the minimal complex responsible for pri-miRNA processing

and shown to consist of the RNase III enzymes Drosha and

DGCR8 (Denli et al., 2004; Gregory et al., 2004; Han et al.,

2004). Sequence analysis of pri-miRNA substrates coupled

with in vitro studies has revealed a characteristic stem loop

structure of the pre-miRNA region to be required for Micropro-

cessor cleavage, which mediates a characteristic 2 nucleotide

offset cut on adjacent strands of the helix one helical turn distal

to the base of the precursor hairpin (Han et al., 2006). How the

Microprocessor is able to specifically recognize and process

pri-miRNAs while avoiding the widespread similar RNA stem

loop structures that can form across the transcriptome is still

largely enigmatic. A recent study used a screening approach

in vitro to identify short sequence motifs in the region flanking

the pre-miRNA that affect human miRNA biogenesis and can

also function in vitro as enhancers for processing of C. elegans

pri-miRNA in human cells (Auyeung et al., 2013). Although the

global impact of these flankingmotifs on endogenous pri-miRNA

processing has not been defined, their general occurrence in hu-

man pri-miRNA sequences suggests that they play an important

role for processing.

Besides their role in defining Microprocessor targets in gen-

eral, variations in pri-miRNA sequence composition may help

to fine-tune miRNA expression levels. Several miRNAs belong

to families, the most prominent being the let-7 family, consisting

of nine different members (Obad et al., 2011). miRNA families

are, due to their identical seed regions, assumed to target the

same mRNAs for translation regulation. Sequence variations in

primary transcripts of individual miRNA family members might

affect pri-miRNA cleavage, leading to differential expression

within miRNA families. Furthermore, it has been demonstrated

that miRNAs arranged in clusters and sharing the same primary

transcript can undergo differential processing (Chaulk et al.,

2011). However, despite their prominent role in the first step of

miRNA biogenesis, a global view on the in vivo sequence deter-

minants of Microprocessor activity has not yet been obtained.

mailto:oerom@molgen.mpg.de
http://dx.doi.org/10.1016/j.celrep.2014.09.007
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.celrep.2014.09.007&domain=pdf


A
Cyto Nuc Chr

Tubulin

H4

50 kD

13 kD

Cyto Nuc Chr
B

45S

18S

tRNA

28S

C D

Control

100      20      10        5       2.5   1.2      100      100   

siR
NA 1

Drosha170 kD

Tubulin50 kD

siR
NA 2

Drosha siRNA

% loaded

E F

Tr
an

sc
rip

t l
ev

el
re

la
tiv

e 
to

 c
hr

om
at

in

Tr
an

sc
rip

t l
ev

el
re

la
tiv

e 
to

 C
on

tro
l

Tr
an

sc
rip

t l
ev

el
re

la
tiv

e 
to

 c
hr

om
at

in

miR
-21

miR
-10

0

let
-7a

1

miR
-21

miR
-10

0

let
-7a

1
0

0.5

1.0

0

0.5

1.0

Chromatin
associated
Nucleoplasmic

Cytoplasmic

Primary miRNA Unprocessed pri-miRNA

45
S

7S
L

Control siRNA

Drosha siRNA 1

Drosha siRNA 2

0

2

4

8

6

14

12

10

16

Pri-m
iR

-10
0

Pre-
miR

-10
0

Unp
roc

es
se

d

pri
-m

iR
-10

0

Figure 1. Chromatin Purification of Pri-

miRNA Transcripts

(A) Markers for chromatin (histone H4) and cyto-

plasm (Tubulin) are shown by western blot.

(B) Subcellular distribution of distinct RNA species

shown by agarose gel electrophoresis and staining

with SYBR safe. Cyto, cytoplasm; Nuc, nucleo-

plasm; Chr, chromatin.

(C and D) Relative abundances of the indicated

pri-miRNA species in the three cellular compart-

ments, determined by real-time qPCR. The top

shows the primer locations for detection of the

unprocessed and processed pri-miRNA tran-

scripts, respectively. Transcript levels were

normalized to the chromatin fraction for each

primer pair.

(E) Knockdown efficiency of Drosha using two

different siRNAs determined by western blot.

(F) Real-time qPCR of chromatin-associated RNA

shows accumulation of pre-mir-100 and unpro-

cessed pri-mir-100 upon Drosha RNAi, whereas

45S rRNA, 7SL noncoding RNA, and basal pri-mir-

100 levels remain unaffected. Same amounts of

chromatin-RNA were used for RT in each experi-

ment, and ct values were directly compared to the

control siRNA. Error bars represent SDs of tripli-

cate experiments.

See also Figure S1.
Although the core Microprocessor components Drosha and

DGCR8 are sufficient to cleave pri-miRNAs in vitro (Gregory

et al., 2004), a growing number of cofactors have recently

been suggested to impact on Microprocessor function in vivo.

Some cofactors promote processing of individual pri-miRNAs

in specific cell types or developmental stages (Siomi and Siomi,

2010), including the DEAD box helicases DDX5 and DDX17 (Fu-

kuda et al., 2007; Mori et al., 2014), KSRP (Trabucchi et al.,

2009), hnRNP A1 (Guil and Cáceres, 2007), BRCA1 (Kawai and

Amano, 2012), and Fus (Morlando et al., 2012). Accordingly, a

number of factors have been shown to suppress cleavage of in-

dividual pri-miRNAs by the Microprocessor, including NF90-

NF45 (Sakamoto et al., 2009), Lin28B (Piskounova et al., 2011),

MSI2 and HuR (Choudhury et al., 2013), QKI (Wang et al.,

2013), and MeCP2 (Cheng et al., 2014). Processing of pri-

miRNAs is beginning to emerge as an actively regulated process

that is responsive to TGFß signaling via SMADs (Davis et al.,

2008); DNA damage via Microprocessor interaction with p53

(Suzuki et al., 2009); or cell density via the Hippo pathway

(Mori et al., 2014). Nevertheless, the above studies have focused

on individual miRNAs and in vitro assays. To date the overall

impact and dynamic range of endogenous Microprocessor ac-

tivity remains unclear.

In this work, we show that the endogenous Microprocessor

activity toward individual pri-miRNAs can be determined using

RNA sequencing. We identify the Microprocessor cleavage

signature and define the MicroProcessing Index (MPI) as a

measure for processing efficiency. We provide experimental

evidence that processing efficiency is highly variable among
C

canonical pri-miRNAs and a major determinant for the expres-

sion levels of individual mature miRNAs. We show that the pro-

cessing of individual pri-miRNAs is similar between the three

cell lines included in this study, suggesting that the observed di-

versity in processing is largely dictated by the diverse substrate

sequences. We finally use the endogenous pri-miRNA cleavage

activities to derive specific sequence motifs that are associated

with increased processing.

RESULTS

Pri-miRNAs Can Be Captured by Chromatin Purification
The transcription of pri-miRNA transcripts and their processing

to pre-miRNAs are both nuclear events of miRNA biogenesis.

Because processing of pri-miRNA transcripts has been pro-

posed to occur cotranscriptionally (Morlando et al., 2008; Paw-

licki and Steitz, 2008), it likely happens associated with chro-

matin. To enrich for pri-miRNA transcripts, we established a

cellular fractionation protocol to obtain highly purified chromatin

fractions from cells grown in tissue culture (Figures 1A and 1B

and S1A–S1D). RNA from these fractions was sequenced as

described below and in Experimental Procedures. To determine

relative pri-miRNA abundances in the cellular fractions, we used

two different sets of primers (Figures 1C and 1D). One set

covering an unprocessed region to detect global primary tran-

script levels reveals 10%–20% localization to the nucleoplasm

compared to chromatin-associated RNA (Figure 1C). Using

primers that span the pre-miRNA processing sites, we find

only 2%–5% of the unprocessed transcript in the nucleoplasm
ell Reports 9, 542–554, October 23, 2014 ª2014 The Authors 543



(Figure 1D). These data suggest that most pri-miRNA transcripts

found in the nucleoplasm have been processed by Micropro-

cessor. To assess the processing of individual pri-miRNAs, we

used small interfering RNAs (siRNAs) to knock down Drosha

(Figure 1E), which did not affect the levels of ribosomal RNA (Fig-

ure 1F). At the same time, the expression levels of pri-miRNAs in

general are only slightly induced upon Drosha knockdown,

whereas a severalfold increase in uncleaved processing sites

is observedwithin the primary transcript (Figure 1F). This specific

increase upon Drosha knockdown recapitulates reduced pro-

cessing into mature miRNAs in the absence of a functional

Microprocessor, resulting inmore of the unprocessed pri-miRNA

transcript. The difference in transcript response to Drosha

knockdown between the full-length pri-miRNA and the unpro-

cessed cleavage sites indicates that under normal conditions

the cleaved pri-miRNA is more stable than anticipated. Based

on these data, we propose that a comprehensive coverage of

pri-miRNA transcripts and processing should be obtained from

sequencing of RNA associated with the chromatin fraction.

Primary Transcript Sequencing Reveals the
Microprocessor Signature
A poly(A) selection step is often used in preparation of RNA for

next-generation RNA sequencing to obtain samples with a min-

imal content of ribosomal RNAs. We used next-generation

high-throughput sequencing to generate deep coverage RNA

profiles of HeLa cells (�180 M paired-end reads for each sam-

ple). Both poly(A)-enriched and non-poly(A)-enriched (rRNA-

depleted) protocols were applied to chromatin-associated

RNA from HeLa cells transfected with either a control nontar-

geting siRNA or an siRNA that specifically targets Drosha

(Drosha siRNA 2) (for overview of the sequencing approach,

see Figure 2A). Assessing read coverage at miRNA loci in

sequencing data from poly(A)-selected samples reveals a loss

of the transcript upstream of the 30 Microprocessor cleavage

site as a consequence of the poly(A) selection step, both in total

cellular RNA and in chromatin-associated RNA (Figure 2B,

top). Following the knockdown of Drosha, this termination is

abrogated, and the full-length pri-miRNA transcripts can be

sequenced and identified (Figure 2B, bottom). Using non-

poly(A)-selected RNA sequencing, pri-miRNA sequences 50 of
the processing sites can be detected (Figure 2C), suggesting

that the processed pri-miRNA transcript remains associated

with chromatin after processing despite being cleaved. In sum-

mary, the combination of chromatin purification to enrich for

pri-miRNAs and sequencing without poly(A) selection to obtain

expression information on discontinuous transcripts provides

an unprecedented detailed view into the nature of pri-miRNAs.

As a comparison, sequencing reads covering the GAPDH tran-

script are shown, where distinct exons are evident due to the

continuity of the processed transcript (Figures 2B and 2C).

Also, for the special class of miRNAs called miRtrons, distinct

processing properties can be observed, reflecting the Drosha

independent cleavage mechanism (Figures 2B and 2C). Shown

in Figure 3A are detailed views on the let-7a-1, let-7d, and let-7f

pre-miRNA loci, which reside in the same polycistronic pri-

miRNA. Despite being processed from the same pri-miRNA,

the Microprocessor cleavage signatures appear differently pro-
544 Cell Reports 9, 542–554, October 23, 2014 ª2014 The Authors
nounced at the three loci (Figure 3A, top). Quantitative PCR

(qPCR) measurements across the respective cleavage sites re-

veals a differential susceptibility to Drosha depletion that corre-

lates with the extent of the Microprocessor cleavage signa-

tures, suggesting that the extent of this Microprocessor

signature reflects differential in vivo pri-miRNA processing effi-

ciencies (Figure 3B).

The MPI Is a Measure for Genome-wide pri-miRNA
Processing
The quantitative properties of the Microprocessor signature as

determined in Figures 3A and 3B implicate the possibility for

a genome-wide assessment of Microprocessor activity, similar

to studies using read coverage at exon-intron junctions to

estimate splicing efficiency (Tilgner et al., 2012). To obtain a

quantitative measure for processing efficiency, we defined the

MicroProcessing Index (MPI). The MPI is taking into account

the expression level of the pri-miRNA, as determined by

sequencing reads adjacent to the pre-miRNA, and the read

density in the precursor region (Figure 3C). The MPI represents

the relative extent of the Microprocessor signature. The MPI is

computed for each individual miRNA, excluding loci that overlap

exon junctions or transcription start sites to avoid confounding

signals (see the Supplemental Experimental Procedures). We

applied this measure to the sequenced chromatin-associated

RNA from HeLa, A549, and HEK293 cells and calculated the

MPI value for all pri-miRNA transcripts that show enough read

coverage in the regions surrounding the precursor (expression

of the primary transcript at least 1.0 RPKM) (Tables S1 and

S2). Because the processing is a negative event regarding the

transcript level of the pri-miRNA, a significant depletion of read

density in the pre-miRNA region (MPI < �1.0; p < 0.01), i.e.,

negative MPI, corresponds to efficiently processed pri-miRNAs,

whereas MPI values close to 0 or positive values correspond to

inefficiently processed pri-miRNAs. To avoid inclusion of nonau-

thentic miRNA hairpins, we performed small RNA sequencing

and restricted the further analyses to miRNAs that meet the

following criteria from Chiang et al. (2010): (1) at least 20 reads

per miRNA in two replicates; (2) the precursor region folding

into a hairpin; (3) absence of other annotated noncoding RNA

species; (4) presence of reads corresponding to a miRNA* spe-

cies; and (5) homogeneous reads in small RNA sequencing data

for both the 50 and 30 mature miRNAs (Table S3). Broadly

conserved miRNAs had to fulfill four criteria and weakly

conserved and nonconserved miRNAs had to fulfill all of these

five criteria to be included in the further analysis. Because the

subsequent analyses address both efficiently and inefficiently

processed pri-miRNAs, we applied a low expression cutoff of 1

RPM (approximately ten reads per replicate) to include miRNAs

at all expression levels. This results in a filtered set of 229 anno-

tated miRNA precursors that are used for further analysis.

To test the dependency of processing efficiency on Micropro-

cessor levels, we performed deep sequencing of chromatin-

associated transcripts isolated fromDrosha-depleted HeLa cells

and quantified the effect on individual pri-miRNAs by means of a

deltaMPI value (see the Supplemental Experimental Procedures;

Figure 3D). As expected for Drosha-dependent processing, pri-

miRNAs with high processing efficiency in the control cells show
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Figure 2. In Vivo miRNA Processing Can Be Visualized by Deep Sequencing.

(A) Overview of the sequencing approach. Chromatin-associated RNA is isolated by cellular fractionation and Trizol extraction to enrich miRNA primary tran-

scripts. Pri-miRNAs cleaved by Microprocessor will be only partially recovered during subsequent poly(A) selection. Alternatively, selective rRNA depletion also

retains pri-miRNA fragments upstream of the cleavage site. Random hexamers are used as RT primers to convert all isolated pri-miRNA fragments to cDNA for

sequencing.

(B) RNA sequencing reads after poly(A) selection shown for the miR-21 locus, a GAPDH exon-intron junction, and a miRtron, miR-877. Shown are tracks from

whole cells, purified chromatin, and chromatin upon Drosha RNAi (top to bottom). Dotted lines indicate Microprocessor cleavage sites.

(C) Sequencing reads for the same loci as in (B) for chromatin-associated RNA upon rRNA depletion (Chromatin total RNA) with and without Drosha RNAi.
a greater response to Drosha depletion compared to noneffi-

ciently cleaved pri-miRNAs.

Toprovide further support for thespecificityofourapproach,we

compared the MPI distribution of pri-miRNAs with a set of 2,010

unrelated pseudohairpins that have been selected based on their

similarity to miRNA hairpins (the Supplemental Experimental Pro-
C

cedures). We observe a distinct shift toward negative MPI values

that is specific for pri-miRNAs (p < 2.2 3 10�16, Figure 3E). This

negative MPI distribution is dependent on the presence of the

Microprocessor complex and abrogated upon Drosha knock-

down. In contrast, pseudohairpins show no sign of endogenous

processing, withMPI values centered around0 in both conditions.
ell Reports 9, 542–554, October 23, 2014 ª2014 The Authors 545
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Figure 3. The MicroProcessing Index

(A) Chromatin total RNA read counts at the let-7a-1, let-7f-1, and let-7d pre-miRNA loci with and without Drosha RNAi. All three miRNAs originate from the same

polycistronic primary transcript.

(B) Differential increase in uncleaved processing sites of the same pre-miRNAs upon Drosha RNAi determined by real-time qPCR. Primers were designed as

depicted in Figure 1D. Error bars represent SD of triplicate experiments.

(C) Definition of the MPI. Shown is a schematic representation of a Microprocessor signature. The MPI is the log2 ratio of the read density in the precursor region

and the flanking 100 bp.

(D) Fold change of the MPI upon Drosha RNAi for efficiently and nonefficiently processed pri-miRNAs.

(E) The MPI distribution for pseudohairpins and pri-miRNAs with and without knockdown of Drosha. Solid lines indicate the median.

See also Tables S1, S2, and S3.
Replicate analysis of the MPIs from HeLa chromatin-associ-

ated RNA shows a high correlation (Pearson correlation 0.87, p

value <2.2 3 10�16), indicating that the values for processing

efficiencies derived from sequencing data are highly reproduc-

ible (Figure 4A). Comparative analyses show that the MPI of indi-

vidual miRNAs vary little between cell lines (Figures 4B, S2A, and

S2B), with a Pearson correlation of 0.88, 0.82, and 0.82, respec-

tively (p value %2.2 3 10�16 in all cases). Correlations between

cell lines are still very stable when considering only broadly

conserved miRNAs in the analysis (Pearson correlation of 0.85,

0.87, 0.83, and 0.81, p value <2.2 3 10�16 in all cases, Figures

S3A–S3D). Such correlations also hold when comparing only

miRNAs with MPI values less than �1.0 or higher than 0.5 in or-

der to discard the possibility that high correlation values result

from the clustering of points with MPI close to 0 (R = 0.75, R =

0.76, R = 0.58, R = 0.66 between HeLa replicates HeLa and

A549, HeLa and HEK293, and A549 and HEK293, respectively;

all p values <1.03 10�5; Figures S3E–S3H). The similarity in pro-

cessing between cell lines suggests that invariant features, such

as primary sequence and secondary structure of the pri-miRNA

transcripts, are the major determinants of endogenous pri-

miRNA processing.
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We observe a wide range of Microprocessor activities on indi-

vidual pri-miRNAs, ranging from very low processing (e.g. mir-

573; Figure 4C) to almost complete processing for mir-181a1

(Figure 4D). Ninety seven pri-miRNAs display an MPI below

�1.0 in at least one cell line. The biological significance of this

threshold is apparent upon comparison with mature miRNA

levels derived from small RNA sequencing with a median mature

RPM of 38 for 114 inefficiently, and 937 for 72 efficiently pro-

cessed miRNAs in HeLa (Figure 4E; Table S1). Processing effi-

ciencies are distributed over a wide range, suggesting that the

regulation of Microprocessor activity exceeds the simple

discrimination of pri-miRNAs from non-pri-miRNA hairpins. Dif-

ferences in MPI between cell lines could reveal active regulation

at the Microprocessor level and thus provide valuable cues for

further study of individual pri-miRNAs. We therefore determined

differentially processed pri-miRNAs that are expressed in two

cell lines and show a difference in MPI of at least 1 (log2 scale).

Only a fraction of pri-miRNAs shows differential processing be-

tween the tested cell lines according to these criteria (6.3% in

HeLa versus A549; 16.7% in HeLa versus HEK293; 22.8% in

A549 versus HEK293), with HEK293 cells appearing more

different from HeLa and A549 (Tables S1 and S2). We observe
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Figure 4. The MPI Reflects Processing

Efficiency

(A) Pearson correlation of MPIs from two inde-

pendent HeLa RNA-seq experiments.

(B) Correlation between MPIs measured in HeLa

and A549 cells.

(C) Read distribution across the inefficiently pro-

cessed pri-mir-573 locus.

(D) Read distribution across the efficiently pro-

cessed pri-mir-181-a1 locus.

(E) Distribution of in vivo processing efficiencies.

Plotted are the ranked MPI values measured in

HeLa for expressed pri-miRNAs.

See also Figures S2 and S3.
the highest deltaMPI for pri-mir-21 (3.46 in HEK293 versus

HeLa), which is known to be regulated at the Microprocessor

level (Davis et al., 2008). Overall differences in processing

show a median deltaMPI for differentially processed pri-miRNAs

of 1.22.

Pri-miRNA Processing Is a Major Determinant of miRNA
Expression
Many miRNAs are expressed from polycistronic transcripts or

reside in introns of protein coding host genes. Accordingly, we

observe only a limited correlation between pri-miRNA and

mature miRNA expression, reflecting substantial uncoupling of

host gene expression and miRNA production (R = 0.33, p value

9.33 10�6; Figure 5A). It is still unclear at what stage of themulti-

step miRNA biogenesis pathway steady-state miRNA levels are

primarily controlled. We thus used miRNA sequencing data from

HeLa, A549, and HEK293 cells to investigate the relationship be-

tween Microprocessor activity and mature miRNA abundance.

The correlation between mature miRNA expression and primary

transcript levels is increased when only efficiently processed

transcripts (MPI < �1) are included in the analysis (Pearson cor-

relation 0.44, p value 1.1 3 10�7; Figure 5A). Furthermore, we

observe a significant correlation between the MPI and mature

miRNA expression levels in all three cell lines (Pearson correla-

tions �0.46, �0.44, and �0.52 in HeLa, A549, and HEK293,

respectively; all p values < 1.0 3 10�10; Figures 5B, S4A, and

S4B). This suggests that mature miRNA steady-state levels

can be modeled using a combination of pri-miRNA expression

and the MPI. Importantly, there is no significant correlation be-

tween pri-miRNA transcript levels and the MPI (Pearson correla-
Cell Reports 9, 542–554
tion 0.038, p value 0.61; Figure 5C),

underlining that processing efficiency is

not simply defined by transcript abun-

dance and that the MPI is an unbiased

estimator of pri-miRNA processing. We

derived a quantitative linear model to

explain mature miRNA expression from

both variables in HeLa cells. We evalu-

ated the performance of the model by

determining the Pearson correlation coef-

ficient between modeled and measured

mature expression (Figures 5D and 5E).

Considering that additional steps such
as Dicer cleavage and miRNA stability affect miRNA expression

after initial processing, the analysis shows a surprisingly robust

agreement between modeled and measured expression values

(R = 0.55, p = 8.8 3 10�16). Interestingly, this model returns a

higher predictive value for the processing efficiency than for

the primary transcript level itself (coefficient for primary tran-

scription = 0.31;MPI =�0.45). In addition, we verify that this rela-

tionship is general, as we can predict mature miRNA expression

in the other cell types (A549 and HEK293) using a model

trained on values from HeLa cells (R = 0.48 and R = 0.50, p =

2.9 3 10�11 and p = 1.9 3 10�13; Figures 5F and 5G). When

considering only conserved miRNAs, these correlations are

R = 0.67, R = 0.43, R = 0.40, and R = 0.38, respectively, and all

p values are < 5.3 3 10�4 (Figures S5A–S5D). Correlations be-

tween predicted andmeasuredmiRNA expression are still signif-

icant when we apply this analysis to only miRNAs with MPI

values less than �1.0 or higher than 0.5 indicating the robust-

ness of our results also with a reduced data set size (R = 0.45,

R = 0.48, R = 0.48, R = 0.44, all p values are <1.03 10�5; Figures

S5E–S5H). These data suggest that differential Microprocessor

activity is a key regulatory mechanism to uncouple miRNA

from host gene expression and achieve diversity in mature

miRNA expression.

Nucleotide Motifs at the Microprocessor Cleavage Site
The possibility to group miRNAs by MPI allows us to define

sequence features and motifs in the pre-miRNA flanking re-

gions associated with enhanced processing in an endogenous

context. miRNAs were divided into efficiently and nonefficiently

processed transcripts for further analysis (see Experimental
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Figure 5. The MPI Is a Predictor of miRNA Expression

(A) Correlation between pri-miRNA expression and mature miRNA abundance for all pri-miRNAs (R = 0.33) or efficiently processed pri-miRNAs (MPI < �1; red

circles; R = 0.44).

(B) Correlation between MPI and mature miRNA abundance in HeLa.

(C) MPI values do not correlate with pri-miRNA expression levels in HeLa.

(D–G) Prediction of mature miRNA expression levels from combined pri-miRNA expression andMPI using a linear model in HeLa (D and E), A549 (F), and HEK293

(G) cells. The red lines indicate the linear fit between predicted and measured expression (y = 0.31x1 � 0.45x2 + 1.2 3 10�16), where x1 is the standardized

pri-miRNA expression and x2 is the standardized MPI value. Predicted and observed miRNA expressions are significantly correlated in all three cell lines

(R > 0.48 p % 10�10).

See also Figures S4 and S5.
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Procedures). We find comparable frequencies of each nucleo-

tide between the two groups; i.e., no general sequence bias in

the regions flanking pre-miRNA sequences (data not shown).

We used a regularized log-linear model (Supplemental Experi-

mental Procedures) to identify dinucleotide and spaced dinucle-

otide motifs that are predictive of high miRNA processing

efficiency, regardless of the position in the upstream and down-

stream pre-miRNA flanking regions (Figures 6A, 6B, and S6A).

We then examined if the derived sequence motifs exhibit any

strong positional enrichment in the upstream or downstream

flanking regions, rather than a broad distribution along pri-

miRNA sequences. To this end, we plotted the frequencies of

significant motifs as function of the sequence position for both

upstream and downstream miRNA flanking regions (Figures

6C–6E, S6B, and S6C). Although most of the initial motifs do

not show any positional preference, the upstream GNNU motif

is highly enriched at a position ending with the first base of the

50 miRNA (Figure 6C). Considering that the frequently occurring

U as the first base of miRNAs is involved in downstream func-

tions (Fellmann et al., 2011), enrichment of the GNNU motif sug-

gests that the G at position �3 can impact on processing effi-

ciency dependent on the sequence context of the flanking

stem loop region. Downstream, we identify the CNNC motif be-

tween positions 17 and 21 as the most enriched spaced dinucle-

otide in the efficiently processed pri-miRNAs. These data are in

agreement with recent studies that identified the CNNC motif

as an enhancer of pri-miRNA processing in an in vitro screen

and as target of p72 binding (Auyeung et al., 2013; Mori et al.,

2014) and add further experimental support to the biological sig-

nificance of sequence motifs for in vivo pri-miRNA processing.

Also downstream, we identify a three-letter motif, UNC, that is

underrepresented in efficiently processed pre-miRNA (Fig-

ure S6). Underrepresentation of a motif could indicate an inhibi-

tory effect for the binding of factors that promote processing, or

an affinity for factors that inhibit processing, as has been re-

ported (Cheng et al., 2014; Choudhury et al., 2013; Piskounova

et al., 2011; Sakamoto et al., 2009).

A corresponding analysis of dinucleotide motifs reveals posi-

tive and negative correlations with processing (Figure 6B). Dinu-

cleotides GA and CU are enriched in the upstream flanking

and stem region, respectively, of efficiently processed miRNAs,

whereas the dinucleotide AA shows a considerable depletion in

the stem and downstream flanking regions (Figure 6B). We find

that the dinucleotide GC is highly enriched in the 30 stem region,

and base pairs with a GC-motif with increased occurrence at po-

sition �13 in the 50 stem (Figure 6E), coinciding with the base of

the pre-miRNA stem loop. Interestingly, the GC motif shows the

reversed pattern in nonefficiently processed pri-miRNAs, with

depletion at position �13 but increased occurrence within the

upstream stem region. Together, this points to an activating ef-

fect on processing of the GC dinucleotide motif at and around

the base of the stem loop. The previously mentioned in vitro

screen proposed the occurrence of a UG motif involved in

enhancing processing of pri-miRNAs (Auyeung et al., 2013),

which we find in our analysis as well (Figure 6E).

We repeated the motif analysis using a reduced set of

pseudohairpins for comparison (see the Supplemental Experi-

mental Procedures). GC dinucleotides and CNNC and GNNU
C

motifs are also enriched in efficiently processed pri-miRNAs

over this background model (Figure S7), highlighting the speci-

ficity of these motifs for Microprocessor-mediated miRNA

processing.

With these data, we demonstrate that endogenous RNA-

sequence-derived processing efficiencies faithfully represent

endogenousMicroprocessor kinetics and can be used to identify

functional motifs despite the short length and limited number of

input sequences.

An independent qualitative validation of the MPI was done us-

ing a reporter assay to test the in vitro processing efficiency of

selected pri-miRNA transcripts (Allegra and Mertens, 2011).

Here, pri-miRNA sequences are inserted in the 30 UTR of a

Luciferase reporter gene. A reduction in Luciferase activity

then serves as a readout for Microprocessor cleavage of the

luciferase mRNA. As a proof of concept, we inserted the �300

nt sequence surrounding miR-296, a miRNA not expressed in

any of the cell lines analyzed but with important roles in stem

cells (Tay et al., 2008). Introducing pri-miR-296 into the reporter

vector decreased Luciferase activity (increased processing; Fig-

ure 7A) and led to an increase in mature miR-296 expression

(Figure 7B). This effect was recapitulated with pri-miR-21 and

pri-miR-34aandabrogateduponDrosha knockdown (Figure 7C),

confirming that the assay recapitulates some aspects of pri-

miRNA processing. Testing ten pri-miRNA sequences inserted

into the Luciferase vector shows a Pearson correlation of 0.77

between the reporter assay and the in-vivo-determinedMPI (Fig-

ure 7D), underlining a significant relationship between in vitro

processing assays and in vivo processing. Although in vitro re-

porter assays do not necessarily reflect all the regulatory events

taking place in vivo, the high correlation between in vitro mea-

surements and the processing efficiencies determined in vivo

provides substantial support for the reported approach and an

endogenous function of the identified motifs. However, using

these reporter assays, mutations of the GNNUmotif, while main-

taining base-pairing in the stem, do not change the processing

efficiency significantly (data not shown). This possibly reflects

differences between in vitro and in vivo processing. To test the

effect of the identified basal GC motif on processing efficiency

in vitro, we used miR-100. miR-100 is an efficiently processed

miRNA that contains a �13 GC sequence. The effect of single

mutations at �13G and �12C in the miR-100 pri-miRNA

sequence is striking, almost completely disrupting the process-

ing (Figures 7E and 7F). Given that the GCmotif is located within

the base of the double-stranded stem region, it is important

to differentiate between structural and real sequence determi-

nants of Microprocessor activity. To address this, we introduced

compensatory mutations at the complementary positions in

the 30 end of the stem loop (Figures 7E and 7F). When altering

the GC motif while maintaining base-pairing at the base of the

stem, we still observe a significant reduction in processing effi-

ciency, arguing for a sequence specific effect. Nevertheless, mu-

tations at either side of the stem loop that disrupt the paired base

of the hairpin are more detrimental to processing, suggesting

that the structural properties of pri-miRNA hairpins are more

important in specifying processing than the sequence motifs.

Taken together, reporter assays mimicking the pri-miRNA of

miR-100 could recapitulate the hypotheses derived from in vivo
ell Reports 9, 542–554, October 23, 2014 ª2014 The Authors 549
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Figure 6. Regulatory Sequence Motifs in the miRNA Flanking Regions

(A and B) Regression coefficients for enriched (positive values) or depleted (negative values) spaced dinucleotides (A) and dinucleotides (B) in the stem and

flanking regions of efficiently processed compared to the nonefficiently processed pri-miRNAs. Marked in red are motifs that also show positional enrichment.

(C and D) Frequency profiles (gray lines) of all spaced dinucleotide motifs for efficiently processed miRNAs (top), nonefficiently processed miRNAs (middle), and

pseudo hairpins (bottom). TheGNNU spaced dinucleotide in the upstream region (C) and theCNNC spaced dinucleotide in the downstream region (D) are colored

in light blue and black, respectively.

(E) Distribution of dinucleotide motifs UG and GC in the upstream regions of efficiently processed miRNAs (top), nonefficiently processed miRNAs (middle), and

pseudo hairpins (bottom).

See also Figures S6 and S7.
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Figure 7. Reporter Validation and Model

Reporter assay validation of pri-miRNA pro-

cessing.

(A) Proof of concept for Luciferase processing

assay using miR-296.

(B) Mature miR-296 expression (normalized to U6)

for control and miR-296 vector.

(C) Processing efficiency for miR-21 and miR-34a

with and without Drosha knockdown.

(D) Correlation between reporter assay and MPI

for let-7a-1, mir-31, mir-125a, mir-100, mir-21,

mir-224, let-7i, mir-4427, mir-675, and mir-34a.

(E and F) Analysis of processing efficiency of a

reporter vector containing a pri-miR-100 insert

with the mutations indicated in (F), showing a

schematic of the miR-100 hairpin. y axes in (E)

indicate relative processing efficiency.

(G) Model of miRNA biogenesis, with the proposed

hierarchy of Microprocessor function and tran-

scriptional regulation. *p < 0.05, **p < 0.01, ***p <

0.001.
Microprocessor signatures and sequence analyses. Although

maintaining secondary structure is known to be critical for pri-

miRNA processing, the �13 GC motif at the base of the pre-

miRNA hairpin appears to support endogenous processing of

pri-miRNAs. Together, sequence motifs and secondary struc-

ture requirements highlight the importance of the region around

position �13 and the base-pairing to the 30 GCmotif. The down-

stream CNNC motif has been extensively validated and is pre-

sent in themajority of conserved pri-miRNA transcripts (Auyeung

et al., 2013).

DISCUSSION

miRNA Biogenesis In Vivo Is Primarily Regulated by
Microprocessor
Here, we report an approach that allows a global and quantita-

tive view on in vivo pri-miRNA processing. In contrast to previous

studies that relied on reporter systems and in vitro processing

assays, visualization of the Microprocessor cleavage events

within chromatin associated pri-miRNA transcripts by next-gen-
Cell Reports 9, 542–554
eration sequencing allows us to simulta-

neously determine the processing ki-

netics for hundreds of pri-miRNAs in

their endogenous context. We define the

MPI as a measure that faithfully reflects

endogenous processing efficiencies,

promising numerous applications of the

described approach to study in vivo

how cofactors and stress responses

globally affect pri-miRNA processing.

The sequencing data that we have gener-

ated reveal an unanticipated complexity

of Microprocessor function, promising

further insight into miRNA biogenesis

when data for additional cell lines and tis-

sues have been generated to derive a

general picture of pri-miRNA processing.
Although it has been suggested that tissue-specific miRNA

expression is controlled at the transcriptional level (Gao et al.,

2011), the present study reveals differential Microprocessor ac-

tivity as a major determinant of steady-state miRNA levels (Fig-

ures 5D–5G). The lack of correlation between in vivo processing

efficiencies and basal transcription (Figure 5C) demonstrates

that both processes are independently controlled steps in the

miRNA biogenesis pathway. Several miRNAs have been shown

to be extensively regulated at a post-Microprocessor step

(e.g., as members of the let-7 family by LIN28A via uridylation

and inhibition of Dicer processing) (Heo et al., 2008), and

steady-state miRNA levels are further affected by nuclear export

kinetics and the stability of the mature miRNA in the cytoplasm.

This inherent complexity in the multistep miRNA biogenesis

pathway prevents the precise prediction of mature miRNA abun-

dance from a single variant. At the same time, these consider-

ations further highlight the surprisingly good correlation we

observe between MPI and mature miRNA levels. This finding

fits well with the widespread occurrence of miRNAs encoded

within protein coding genes and in polycistronic transcripts.
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Here, independent control of the cleavage by Microprocessor

allows a partial uncoupling from host gene expression and

diversification of miRNA expression from shared primary tran-

scripts. The latter has been demonstrated for mir-18a, which is

transcribed from the polycistronic mir-17-92 locus but whose

processing is specifically stimulated by hnRNP A1 (Guil and Cá-

ceres, 2007). We find that the uncoupling from basal transcrip-

tion levels by differential Microprocessor cleavage is a global

phenomenon that is amajor contributor to the observed diversity

in miRNA abundance. The wide range of observed processing

efficiencies in vivo puts further emphasis on evidence suggest-

ing active regulation of the initial miRNA processing step in

response to various signaling pathways and developmental pro-

cesses (Davis et al., 2008; Mori et al., 2014; Suzuki et al., 2009),

given that it opens ample possibilities to fine-tune individual

miRNA expression in response to additional signals and

stresses. There is evidence that the Microprocessor step in the

miRNA biogenesis pathway is largely affected in physiological

processes such as cancer and inflammation (Gregory and Shie-

khattar, 2005; Mori et al., 2014). Understanding the dynamics

and the factors that determine Microprocessor-mediated pro-

cessing can therefore help shedding light on the misregulation

of miRNAs in disease.

Slow Processing Can Be a Feature of Bona Fide
Microprocessor Targets
Much effort has been put into annotating genome-wide miRNAs

by predictions and expression analysis using deep sequencing

of a large collection of tissues (Friedländer et al., 2014; Landgraf

et al., 2007). Although the catalog of annotated miRNAs keeps

expanding, a recent study also points toward many nonreal

miRNAs being wrongly annotated (Chiang et al., 2010), indi-

cating that the extensive computational effort for genome-wide

annotation of miRNAs could inflate the number of real miRNAs.

This raises the question of whether the large number of pri-

miRNAs we observe with MPIs around 0 could include a sub-

stantial number of falsely annotated hairpins. Based on several

considerations, we believe that most of the inefficiently pro-

cessed pri-miRNAs reported in our study resemble bona fide

Microprocessor targets that are processed at a very low rate.

First, we performed small RNA sequencing (RNA-seq) and

restricted our analysis to pri-miRNAs with robust evidence for

authentic expressed miRNA hairpins according to criteria in

Chiang et al. (2010) as specified in the Results and Experimental

Procedures. Second, our motif analysis revealed a distinct set of

sequence features that are shared by efficiently and inefficiently

processed miRNAs but are not found in pseudohairpins, like the

enrichment of GC dinucleotides in the 50 stem of pre-miRNA

(Figures 6 and S7). Furthermore, we find well-characterized

miRNAs with slow processing kinetics in our analysis, one

example being pri-mir-7-1, which is exclusively processed in

neuronal lineages (Choudhury et al., 2013). Interestingly, we

observe the lowest MPI value for this pri-miRNA in HEK293 cells,

which share some characteristics of neuronal cells.

In most cases, low processing efficiency translates into low

abundance of the associated mature miRNA. Nevertheless, we

observe some pri-miRNAs with no signs of processing despite

high mature miRNA levels in the same cell. This could be due
552 Cell Reports 9, 542–554, October 23, 2014 ª2014 The Authors
to several reasons. The mature miRNAs could be particularly

stable, so that substantial levels are maintained while the turn-

over is low. Alternatively, processing could in few cases occur af-

ter release of the primary transcript from chromatin and escape

detection by our assay. Finally, although miRNA processing

generally precedes splicing (Kataoka et al., 2009; Kim and Kim,

2007; Morlando et al., 2008), some pre-miRNAs in introns of pro-

tein coding genes may be processed after the intron is spliced

out and released into the nucleoplasm. Some hint toward one

of the latter possibilities may come from the observation that

most abundant miRNAs with low signs of processing reside in

protein coding host genes, whereas independent pri-miRNAs

are depleted within this group. To unravel the processing

pathway of these miRNAs will be an interesting focus of future

research.

The Hierarchy of Processing Determinants
One of the most significantly enriched sequence motifs that we

find in flanking regions of efficiently cleaved pre-miRNAs is the

downstream CNNC motif that has been derived by Auyeung

et al. (2013) from a large-scale in vitro screen using variants of

four model pri-miRNA transcripts and was shown to bind

SRP20, underlining the potential importance of this motif for

pri-miRNA processing both in vitro and in vivo. Also, the DEAD

box helicase p72 has been found to bind a related VCAUCH

motif and affect the processing of pri-miRNAs (Mori et al.,

2014). We now provide evidence that the CNNC motif generally

contributes to processing efficiency in humans. In addition, we

identify sequence elements that are associated with efficient

processing in vivo, such as the regulatory GC motif. Functional

studies on the GCmotif emphasize that the structural properties

of the pre-miRNA stem loop are essential prerequisites for

recognition by Microprocessor, whose activity is further modu-

lated by sequence features.

Overall, the effects of motifs and secondary structure deter-

minants point toward the base of the extended hairpin as a reg-

ulatory hub for miRNA processing. The combination of structural

features, sequence elements, and Microprocessor cofactors

finally results in highly differential processing of pri-miRNA

transcripts, where the Microprocessor regulatory step is the

predominant determinant of mature miRNA levels (Figure 7G).

Recent progress in the analysis of in vivo RNA folding has

revealed an extensive plasticity of endogenous RNA secondary

structures (Ding et al., 2014; Rouskin et al., 2014; Wan et al.,

2014), underlining the important contributions from novel meth-

odologies to the study of in vivo RNA biology. The combination

of several in vivo approaches will expand our understanding

about how RNA regulates cellular processes and help to reveal

the molecular interplay between sequence, structure, and

processing.

EXPERIMENTAL PROCEDURES

Tissue Culture and Transfection Conditions

HeLa cells were maintained under standard conditions at 37�C and 5%CO2 in

Dulbecco’smodified Eagle’smedium containing 10%FCS and antibiotics. For

RNAi, 5 3 10�5 cells were seeded per 10 cm dish, transfected after 24 hr with

60 nM siRNA, harvested by trypsinization 72 hr after transfection, and fraction-

ated as described below.



Cellular Fractionation and Chromatin RNA Isolation

Cellular fractionation was done as described in Bhatt et al. (2012) with minor

modifications as described in the Supplemental Information.

Quantitative Real-Time PCR

RNA (500 ng) was reverse transcribed using the High-Capacity RNA-to-cDNA

Kit (Invitrogen 4387406). cDNA was quantified on a 7900HT Fast Real-Time

PCR system (Applied Biosystems) using the SYBR Green PCR Master Mix

(Invitrogen 4364344).

RNA Sequencing

Library preparation was performed using the TruSeq Stranded Total RNA Kit

(Illumina) for chromatin associated RNA and the True Seq Small RNA Kit (Illu-

mina) for mature miRNAs. Sequencing was performed on an Illumina HiSeq

2500 instrument.

Analysis of Sequencing Data

Alignments to the hg19 assembly of the human genome were performed

with TopHat 2 (Trapnell et al., 2009) with default options. We allowed the

reads to map up to five multiple positions in the genome to account for

miRNA isoforms and allowed up to one mismatch per sequence in the

alignments.

The expression of mature miRNAs was determined from the small RNA-seq

data by means of the mirDeep2 software (Friedländer et al., 2012). The reads

were mapped to the hg19 assembly of the human genome by using the short-

read alignment software Bowtie (Hatem et al., 2013), and reads that mapped

perfectly to nucleotide position 1 to 18 of each annotated miRNA were used

to quantify the miRNA expression. The sum of raw read counts from the 5p

and 3p arms for each miRNA was converted to RPM values and the log2 of

the average RPM from the two replicates was used asmiRNA expression level.

For conserved miRNAs, we required the hairpin structure to be conserved in

the orthologous members of the gene family (as defined in mirBase) including

mouse or other mammals and the seed to be conserved in more than 50% of

the orthologous genes according to ClustalW alignments. The final list of the

miRNAs used for the analysis of this paper includes 229 miRNAs, 138 classi-

fied as broadly conserved, 52 classified as weakly conserved, and 39 as

nonconserved.

Collection of Pseudo Hairpins

A publicly available data set of pseudo hairpins (Xue et al., 2005)

was downloaded at http://bioinfo.au.tsinghua.edu.cn/software/mirnasvm/

Triplet-svm-predictor.htm and filtered as described in the Supplemental

Experimental Procedures.

Determining the Drosha Processing Sites and MPI

To determine the exact site of the 50 and 30 Microprocessor cleavage, we used

the annotation of the 5p and 3p miRNA strands from miRBase and mapped

them onto the sequence of the pre-miRNA. In order to assess the significance

of the Microprocessor signature, we modeled the read-count distribution

along the genome with a Poisson distribution. Instead of using a uniform l

parameter estimated from the background read density across the whole

genome, we used a dynamic parameter llocal for each precursor, estimated

as llocal = mean(l1, l2). l1 and l2 were estimated from the 100 bp genomic

regions upstream and downstream of the estimated processing sites,

respectively.

Prediction of miRNA Expression with Linear Regression

The MPI and pri-miRNA expression levels were used as predictors for training

a linear regression model to predict the logarithm of expression of the mature

miRNA. The Pearson correlation between predicted andmeasured values was

calculated in a 5-fold cross-validation setting and used as a measure of pre-

dicted accuracy.

Motif Enrichment

We divided expressed pre-miRNAs in two classes: efficiently processed and

nonefficiently processed according to their MPI value and predicted the

sequence features that are most likely to be associated with efficient process-
C

ing using regularized logistic regression (see the Supplemental Experimental

Procedures).
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