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5 Experimental Results 

This chapter evaluates the core performance of MADPastry. For this purpose, we 
implemented MADPastry as a routing agent in the popular network simulation 
environment ns-2.27 [37]. To put the performance of MADPastry into perspective, 
MADPastry is always compared against two other routing agents: a simple 
broadcast-based one and a Pastry-style DHT substrate without Random 
Landmarking. 

The ns-2 routing agent implements the MADPastry protocol as described in 
Chapter 4. Nodes send out cluster beacons every 30s and ping their left and right 
leafs every 60s. 16 landmark keys are used in the simulations. Additionally, to 
further increase the success rate, the MADPastry routing agent of a lookup 
initiator always also issues a secondary, backup lookup. That backup lookup is 
first sent to the "left" or "right" leaf (depending on the packet's key) who will then 
regularly forward the backup lookup, which, thus, can be expected to take a 
(partially) different route to the eventual target node. If both lookups arrive at 
the eventual target, the second one is dropped. Please refer to Appendix 9.2 for a 
list of MADPastry's system parameters and their values used throughout this 
section. 

The fundamental question to be answered when deploying a DHT substrate in 
MANETs is whether the extra overhead of maintaining the DHT structure is 
really worth the effort. Or, is the benefit gained from using a DHT so miniscule 
that we would have, indeed, been better off just broadcasting the lookups in the 
first place. Therefore, we also implemented a Gnutella-style broadcast routing 
agent. The broadcast agent maintains no overlay structure and, thus, has no 
extra maintenance overhead. It broadcasts a packet to all its one-hop neighbors 
who, then, forward the packet to all their one-hop neighbors and so forth. Nodes 
keep track of the packet sequence number so that already forwarded packets will 
not be sent a second time. 

Due to mobility, nodes in a MADPastry network will eventually change their 
cluster memberships. This means that nodes might repeatedly assign themselves 
new overlay IDs. The subsequent reorganization (leaving, rejoining, coping with 
invalid overlay identifiers, etc.) can generate a sizeable amount of traffic. To 
verify whether MADPastry's extra overhead stemming from these cluster 
changes is justified, we also implemented a routing agent that integrates regular 
Pastry and AODV. It works very similar to MADPastry except that it does not 
employ Random Landmarking. Thus, there are no physical clusters of nodes 
sharing a common overlay ID prefix and, thus, there is no overlay ID 
reassignment – i.e. leaving and rejoining the network – either. Since Pastry's 
standard routing table and leaf set maintenance can be prohibitively expensive in 
MANETs, the integrated Pastry routing agent, too, only fills its routing table by 
forwarding and overhearing live packets and also only pings its left and right leaf 
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proactively. This, in fact, closely resembles the related system Ekta [42] (also see 
Section 3.3.2). Furthermore, beacons as well as lookups for which no physical 
route is known are broadcast throughout the entire network – as there are no 
clusters. Also, the integrated Pastry routing agent does not issue any secondary 
lookups (as the MADPastry routing agent does) since its overhead is already 
drastically higher than MADPastry's – as the simulation results will show. 

Again, MADPastry is a routing agent, not an application as such. Therefore, for 
the simulations, a simple random traffic generator was implemented as 
application running on top of one of the three routing agent. With this 
application, each node periodically sends a packet with a random key (i.e. starts a 
random lookup) to whichever node is currently responsible for the packet’s key. 

To compare the performances of the three routing agents, the following metrics 
are analyzed: 

Success Rate. This represents the percentage of random lookups that are 
eventually delivered to the correct responsible node. 

Packet Overhead. This is the total number of packets that are forwarded 
during the entire simulation. This count is increased whenever a node forwards a 
packet to the next physical hop. In the case of MADPastry and MADPastry 
without clusters, this figure comprises all router and application packets that are 
created by a node: lookups, leaf pings/pongs, join requests (only MADPastry), join 
replies (only MADPastry), leave messages (only MADPastry), node beacons, route 
requests, route replies, etc. In other words, this count is increased whenever the 
MAC layer of a node is being passed a packet down from an upper layer. In the 
case of the Gnutella-style broadcast router, this figure only consists of lookups as 
there simply are no maintenance messages. 

Overall Traffic. This figure counts the total network traffic in Kbytes that is 
generated during the entire simulation. Whenever a node forwards a packet, this 
figure is increased by the packet size – i.e. whenever the MAC layer of a node 
receives a packet from an upper layer. Again, this figure includes all router and 
application packet types for MADPastry (with and without clusters). Here, it is 
important to mention that MADPastry packets on average are about 4 times 
larger (excluding the IP header) than the corresponding broadcast agent's 
packets as they carry additional information such as the last hop's overlay ID 
and so forth. 

All simulations that were carried out modeled wireless networks over the course 
of one (simulated) hour. Nodes are always moving around according to the 
random way point model with 0s pause time and at a constant speed. For data 
transmission, nodes are using the 802.11 communication standard with a 
transmission range of 250m. Furthermore, a 32-bit overlay ID space is assumed 
with hexadecimal overlay IDs. In other words, each overlay ID consists of 8 
hexadecimals digits. 
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5.1 Basic Results 

In the first set of simulations, the performances of MADPastry, the MADPastry 
routing agent without clusters and the Gnutella-style broadcast agent are 
compared in networks of 100 and 250 nodes. In all simulations, square planes are 
used with a node density of 100 nodes/km². Nodes are moving around at a 
constant speed of 1.4 m/s, which corresponds to a fast walking speed. For this 
first set of simulations, the random lookup application of each node sends out a 
random key lookup every 10s. Note that, after the start of the simulation, each 
node’s random lookup application commences after a uniform random delay 
between 0s and 10s so as to avoid a traffic pattern consisting of lookup bursts 
every 10s. For the 100-node network, MADPastry uses 8 landmark keys. Table 
5.1 provides an overview of the chosen simulation parameters and their 

Table 5.1 Simulation parameters and values. 

Simulation Parameter Value range 

Simulation duration 3600s (simulated) 

Network size 100 and 250 

Network density 100 nodes/km² 

Node mobility 1.4m/s (constant, 0s pause time) 

Random lookup interval (per node) 10s 
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Figure 5.1 Success rates of the respective routing agents – 1.4m/s. 
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respective values. 

Figure 5.1 shows the success rate of the three routing agents for the random 
lookups. As can be seen, MADPastry achieves better success rates in both 100 
and 250-node networks compared to the broadcast agent. Furthermore, 
MADPastry retains success rates of well above 90% for both network sizes, 
whereas the broadcast agent's rate drops below 90% in a 250-node network. The 
success rate of the MADPastry router without clusters ("No RLM") is practically 
the same as MADPastry's (slightly higher in a 100-node network and slightly 
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Figure 5.2 Total number of messages - 1.4m/s. 

0

100,000

200,000

300,000

400,000

500,000

600,000

700,000

100 250

Network size

O
ve

ra
ll 

tra
ffi

c 
[K

B]

MADPastry
No RLM
Broadcast

 

Figure 5.3 Overall generated traffic in Kbytes - 1.4m/s. 
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lower in a 250-node network). 

Figure 5.2 shows the total number of messages that the routing agents send or 
forward during the simulated hour in order to achieve their respective success 
rates. Again, these figures include all router and application messages that the 
nodes' MAC layers receive from above. It becomes clear that MADPastry 
produces drastically less network traffic than the Gnutella-style broadcast agent 
does. In a 100-node network, the broadcast router needs about 5 times and in a 
250-node network even about 7 times the number of messages that MADPastry 
needs. The MADPastry router without clusters ("No RLM") incurs roughly 1/3 of 
the message traffic of the broadcast agent in a 100-node network and roughly 1/2 
in a 250-node network, which is well above MADPastry's message traffic. 

However, it is important to bear in mind that a MADPastry packet header is 
longer than that of the broadcast router due to the extra information included in 
it (see 4.5). To make sure we are not comparing apples and oranges, Figure 5.3 
shows the traffic in forwarded Kbytes instead. Again, these figures include all 
router and application messages that the nodes' MAC layers receive from above. 
Even with this metric, MADPastry still produces several times less traffic than 
either the broadcast router or the MADPastry router without clusters. An 
interesting observation can be made here for the MADPastry router without 
clusters ("No RLM"). While still below the broadcast agent's overhead in a 
100-node network, its overall traffic becomes larger than the broadcaster's in a 
250-node network. This can easily be explained by the fact that Pastry's overlay 
routing usually requires several overlay hops per lookup. Since there are no 
clusters, successive overlay hops can crisscross the physical network. 
Furthermore, when the MADPastry router without clusters has to resort to 
broadcasting a lookup (because the physical route to carry out the next overlay 
hop is unknown), the lookup could already have crossed the network several 
times. Obviously, one would have been better off if one had broadcast the lookup 
right away – which is exactly what the broadcast agent does. Furthermore, even 
if the lookup could be delivered without being broadcast (i.e. the routes for all 
overlay hops involved were known), the accumulated physical path lengths of the 
overlay hops might only be slightly more light-weight than a broadcast. 
Additionally, the required periodic beacon broadcasts are added on top. Since 
both physical and overlay paths are much shorter in a 100-node network, this 
effect is less pronounced there. 

This is further confirmed by Figure 5.4. It displays the overlay stretch as 
generated by the random lookups in both 100 and 250-node networks. Note that, 
trivially, the overlay stretch of the broadcast router is always at the optimum of 
1.0. This is simply due to the fact that, here, the lookups are always broadcast 
throughout the network. Thus, the first copy (of possibly many copies) of a 
particular lookup will arrive at the destination node on the shortest path from 
the source. For MADPastry, Figure 5.4 shows that, even in a small network, 
MADPastry achieves a smaller overlay stretch than the MADPastry router 
without clusters does – 1.33 vs. 1.46. Practically speaking, this means that the 
accumulated path length during a MADPastry lookup will be 33% longer than 
the direct path from the initiator of the lookup to the eventual target node. 
Without the utilization of cluster, however, this figure will already deviate by 
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46% from the direct path. In other words, the key-based routing without clusters 
will generate approx. 10% more traffic than routing with clusters does for each 
lookup. This effect becomes even more pronounced in larger networks (1.54 vs. 
2.01) where physical routes between two arbitrary nodes also become longer. 

This clearly demonstrates the benefits for DHT substrate in MANETs to consider 
physical locality – as MADPastry does. 

5.2 Load Distribution 

As just seen in the previous section, due to its consideration of physical locality 
using RLM, MADPastry achieves comparable or better success rates than a 
Pastry-based routing agent without RLM does while producing significantly less 
overall traffic. The question that arises is whether MADPastry attains this 
efficacy at the expense of an uneven distribution of the node traffic load. It is, 
indeed, conceivable that, in a MADPastry network, a situation could occur where 
a relatively small and isolated group of nodes form an overlay ID cluster. The size 
of the segment of the overlay ID space, that a member node of a cluster is 
responsible for, is on average given by the overlay ID range of the cluster (i.e. the 
range of overlay IDs that start with the given cluster prefix) divided by the 
number of cluster members. Therefore, in the case of a relatively small (in terms 
of the number of member nodes) cluster, the nodes of that cluster would be 
responsible for disproportionately large segments of the overlay ID space and 
might, thus, have to handle a disproportionate amount of traffic load. In other 
words, the overlay ID distribution in a MADPastry network is no longer strictly 
uniform but dependent on the spatial distribution of the nodes themselves. 
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Figure 5.4 Overlay stretch. 
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To evaluate how severely MADPastry deviates from an ideal, uniform load 
distribution, the individual accumulated load during a simulation run was 
recorded for each node. Whenever a node received a packet (AODV, Pastry, 
application), the individual accumulated load count of that node was increased by 
the length of the received packet. Table 5.2 provides the average (over all 
simulation runs) minimum individual accumulated node load and the average 
maximum individual accumulated node load encountered in the 250-node 
networks from the previous section. Note that, in a mobile ad hoc network, a 
single sent packet (as counted in Figure 5.2 and Figure 5.3) can be received and 
processed by multiple nodes – generally by all nodes in the sender's transmission 
range – so that each sent packet can potentially increase the individual 
accumulated load of several nodes. 

Two observations can be made in Table 5.2. First of all, one notices that nodes in 
a network that does not employ RLM have to, on average, handle around 6 times 
as much load as nodes in a MADPastry network do. This corresponds with the 
observation made in Figure 5.3. Again, the reason for this is that the router 
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Figure 5.5 Percentage deviation of the individual accumulated node loads from the 
median. 

Table 5.2 Individual accumulated node traffic load. 

 MADPastry No RLM 

Minimum individual 
accumulated load (in bytes) 2,110,429 16,828,793 

Maximum individual 
accumulated load (in bytes) 5,054,556 29,009,904 

Ratio 2.40 1.73 
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without RLM needs to issue significantly more network-wide broadcast messages 
(such as AODV route discoveries) that, in turn, are received and processed by 
numerous nodes. Secondly, it can be seen that MADPastry's load distribution is 
somewhat less optimal than the distribution achieved without RLM. Whereas, 
without RLM, the node with the highest individual accumulated load has to, on 
average, handle 1.73 times the amount of traffic that the node with the lowest 
individual accumulated has to handle on average, this ratio is mildly higher at 
2.40 in a MADPastry network with RLM. 

Figure 5.5 presents a different view of the individual accumulated node load. It 
depicts the percentage deviation and the quantity of the individual accumulated 
node loads from the median in the 250-node network from the previous section. 
In other words, its shows the average number (over 10 simulation runs) of nodes 
whose individual accumulated loads were within a range of 0%-10% (both smaller 
and larger), 10%-20%, 20%-30%, etc. of the median. As could be expected from 
Table 5.2, MADPastry's load distribution fans out somewhat compared to the 
router's without RLM but otherwise resembles it closely: While in a network 
without RLM 98% of the nodes need to handle loads that do not deviate by more 
than 20% from the median, this is still true for 88% of all nodes in a MADPastry 
network. 

In order to consider physical locality in its overlay structures, MADPastry 
deliberately sacrifices an ideal, uniform overlay ID distribution, which results in 
a mildly more fanned-out load distribution compared to a network that does not 
employ RLM. However, we strongly believe that the expense of having a 
somewhat less optimal load distribution ( a maximum/minimum load ratio of 2.40 
vs. 1.73) is practically negligible compared to the advantage of achieving 
comparable and better success rates with individual node loads that are around 6 
times less than those accumulated without RLM. 

5.3 Node Velocity 

In the first set of simulations, nodes were moving at a constant speed of 1.4 m/s. 

Table 5.3 Simulation parameters and values – varying node velocities. 

Simulation Parameter Value range 

Simulation duration 3600s (simulated) 

Network size 250 

Network density 100 nodes/km² 

Node mobility 0.1, 0.6, 1.4, 2.5, 5.0m/s (constant, 0s 
pause time) 

Random lookup interval (per node) 10s 
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Of course, the node velocity can be expected to have a significant impact on the 
performance a routing agent. Therefore, in the next set of simulations, 250-node 
networks will be examined with varying node velocities: 0.1 m/s (practically 
stable network), 0.6 m/s (slow walking speed), 1.4m/s (fast walking speed), 2.5 
m/s and 5.0 m/s. A request frequency of one random lookup every 10s per node 
will be used. Table 5.3 provides an overview of the simulation parameters and 
their respective values. 

Figure 5.6 shows the success rates of the three routing agents in reference to the 
different node velocities. One can see that both MADPastry and MADPastry 
without clusters ("No RLM") achieve better success rates than the Gnutella-style 
router does for speeds up to a fast walking speed (1.4 m/s). At a speed of 2.5 m/s, 
the success rates of MADPastry and MADPastry without clusters start falling 
below the broadcast router's. The reason for this is that, with fast speeds, routes 
break so frequently that MADPastry without clusters can no longer keep its 
routing table and leaf set sufficiently valid – hence its success rate drops below 
the broadcast agent's success rate. With MADPastry this problem is further 
aggravated by the fact that nodes move from cluster to cluster so rapidly that a) 
they spend a significant amount of their time leaving and rejoining the network, 
and thus b) their overlay routing tables frequently contain stale entries. With 
stale entries, the likelihood that a packet might have to be sent back to the 
previous overlay hop (see Section 4.4) so that an alternative and ideally valid 
next overlay hop destination can be chosen increases. This, of course, will result 
in larger overlay stretches, which in turn decreases the probability of a successful 
packet delivery. 

Figure 5.7 shows the total number of messages (packets) produced by the routing 
agents and the application during an average simulation run. Again, these 
figures include all router and application messages that the nodes' MAC layers 
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Figure 5.6 Success rates vs. node velocity. 
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receive from above. As can be expected, the overhead of the broadcast agent is 
practically independent of the node velocity. As can be seen, MADPastry 
produces significantly less packets for all considered node velocities than the 
other two routing agents do since broadcasts in MADPastry are restricted to their 
respective cluster. 

Furthermore, Figure 5.8 also demonstrates that MADPastry's overall traffic 
stays significantly below that of the other two routing agents. For Pastry without 
clusters, the overall traffic quickly surpasses even that of the broadcast agent as 
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Figure 5.7 Total number of messages vs. node velocity. 

0

100,000

200,000

300,000

400,000

500,000

600,000

700,000

800,000

900,000

1,000,000

0.1 0.6 1.4 2.5 5.0

Node velocity [m/s]

O
ve

ra
ll 

tr
af

fic
 [K

B
]

MADPastry
No RLM
Broadcast

 

Figure 5.8 Overall traffic vs. node velocity. 
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route failures occur more and more frequently and the effects described in 
Section 5.1 become ever more pronounced. 

5.4 Lookup Rates 

All simulations thus far all have assumed a node lookup rate of one lookup per 
10s. Next, the impact of the lookup rate on the overall performance will be 
evaluated. The following lookup intervals will be examined: 1s, 10s, and 60s in a 
250-node network with a node velocity of 1.4 m/s. Table 5.4 provides an overview 
of the simulation parameters and their respective values. Note that for the 
lookup interval of 1s, MADPastry does not issue any backup lookups, whereas for 
the interval of 60s, two backup lookups are employed. 

Figure 5.9 shows the success rates of the three routing agents in reference to the 

Table 5.4 Simulation parameters and values – varying lookup rates. 

Simulation Parameter Value range 

Simulation duration 3600s (simulated) 

Network size 250 

Network density 100 nodes/km² 

Node mobility 1.4m/s (constant, 0s pause time) 

Random lookup interval (per node) 1s, 10s, and 60s 
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Figure 5.9 Success rates vs. lookup intervals. 
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lookup rate. As already seen in Section 5.1, MADPastry and MADPastry without 
clusters ("No RLM") achieve comparable success rates well above 90% for a per-
node lookup interval of 10s. The Gnutella-style router's success rate here drops 
below 90%. 

A very interesting observation can be made in networks with high lookup rates of 
1 lookup per second per node. At such high lookup rates, both the broadcast agent 
and MADPastry without clusters can no longer keep up with MADPastry. Their 
(frequent) network-wide broadcasts of the lookup requests or route discoveries 
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Figure 5.10 Number of packets vs. lookup interval. 
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Figure 5.11 Overall traffic vs. lookup intervals. 
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clearly overwhelm the wireless physical network, resulting in so many packet 
collisions that the majority of lookups fail to be delivered. Thus, their success 
rates drop to 20%. On the other hand, MADPastry's physically shorter overlay 
hops (compared to MADPastry without clusters) and its local cluster broadcasts 
allow it to still maintain a success rate of 92% in the presence of such high lookup 
rates. Again, MADPastry's overall traffic remains significantly below that of the 
broadcaster and MADPastry without clusters both in terms of the total number 
of packets sent and the generated traffic, as Figure 5.10 and Figure 5.11 show. 

On the other hand, if there is only one lookup per minute, MADPastry's lookup 
rate falls below 90% (87%). This is due to fact that the nodes overhear much less 
packets with which to update their routing tables. Furthermore, nodes often do 
not detect other nodes' cluster changes, which can result in packets being routed 
to stale overlay addresses. However, we believe that a request rate of one lookup 
per minute is too low to justify the effort of maintaining a DHT in the first place. 
When nodes only issue one lookup per minute, they might just as well broadcast 
their occasional requests and not bother to maintain a DHT structure. 

5.5 Churn 

Thus far, the scenarios considered have assumed that all nodes participate in the 
network during the entire simulated hour. However, in mobile ad hoc networks, 
it can occur that mobile nodes abruptly leave the network because they might 
have drained their batteries or moved out of the transmission range of other 
nodes – to name but a few factors. This dynamic and erratic joining and leaving 
of nodes is often referred to as churn. 

This section examines how MADPastry can adapt to various churn rates in the 
network. For this purpose, it is necessary to first understand how churn is 
modeled in the following experiments. Since the dynamic creation and removal of 
nodes during simulation runtime is not directly supported in ns-2, the modeling 
of churn in ns-2 is a non-trivial task. Therefore, we use the following churn 
model. At the beginning of a simulation, each node is assigned a random uptime 

Table 5.5 Simulation parameters and values – varying churn rates. 

Simulation Parameter Value range 

Simulation duration 3600s (simulated) 

Network size 250 

Network density 100 nodes/km² 

Node mobility 1.4m/s (constant, 0s pause time) 

Random lookup interval (per node) 10s 

Node uptime intervals (60-3600), (600-1200), (300-600), (60-300)s 
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after which the node will fail and leave the network abruptly. When a node fails, 
it will at once clear all its routing state (i.e. AODV routing table, Pastry routing 
structures, etc.) and immediately move to a random position in the network at a 
speed of 999,999 m/s. There, after overhearing packets from its one-hop 
neighbors, it will use one of those neighbors as bootstrap node to rejoin the 
network under a new overlay ID (but retaining its original node (IP) address). 
After the node has, thus, rejoined the network, it will be assigned a new random 
uptime and restart its random waypoint node movement. This way, the number 
of participating nodes in the network is kept constant. Note that ns-2 does not 
support the dynamic changing of node addresses (i.e. IP addresses) during 
simulation. Thus, it could happen that a node receives a packet that is destined 
for it under one of its former overlay IDs. In such a case, the node will simply 
return the packet to its sender – i.e. to the previous overlay destination – stating 
its new overlay ID. 

For the churn experiments, we choose the 250-node network with a constant node 
velocity of 1.4 m/s from the previous sections and a request rate of 1 request per 
10s. To examine various churn rates, the following node uptime intervals are 
considered: 

 (60-3600)s – after (re-)joining the network, each node is assigned a 
randomly chosen uptime between 60s and 3600s. This represents a mild 
churn rate. 

 (600-1200)s – after (re-)joining the network, each node is assigned a 
randomly chosen uptime between 600s and 1200s. This represents a 
medium  churn rate. 
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Figure 5.12 Success rates vs. churn rates. 
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 (300-600)s – after (re-)joining the network, each node is assigned a 
randomly chosen uptime between 300s and 600s. This represents a high 
churn rate. 

 (60-300)s – after (re-)joining the network, each node is assigned a 
randomly chosen uptime between 60s and 300s. This represents a very 
high churn rate. 

Table 5.5 provides an overview of the simulation parameters and their respective 
values. 

Figure 5.12 shows the success rates that MADPastry and the MADPastry routing 
agent without Random Landmarking achieve in under the various churn rates. 
Note that the success rate of the broadcast router from Figure 5.1 is included as 
reference line as the broadcast router would not be affected by churn. As can be 
expected, the success rates of both MADPastry and the DHT router without RLM 
start declining the higher the churn rate becomes. Furthermore, MADPastry 
achieves slightly better success rates (over 90%) than the DHT router without 
RLM does for mild and medium churn rates. For higher churn rates, however, it 
becomes more and more difficult for MADPastry to maintain its clusters. The 
frequent node failures trigger an ever increasing cluster reorganization process, 
which results in MADPastry's lower success rates compared to the router without 
RLM. 

Figure 5.13 depicts the total amount of network traffic generated by the 
respective routing agents under the various churn rates. Again, for the broadcast 
router, the amount from Figure 5.3 is included as reference line. As can be seen, 
with an increasing churn rate, MADPastry produces more and more network 
traffic. This is due to two factors. First of all, the higher the churn rate, the more 
often node swill fail and rejoin the network under a new overlay ID. Trivially, 
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Figure 5.13 Overall traffic vs. churn rates. 
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this will increase the probability of a node to receive a packet under one of its old 
overlay IDs, in which case the packet would be send back to the previous overlay 
hop. Thus, the overlay stretch will be markedly increased, which, in turn, reduces 
the success rate. Secondly, the more frequently nodes fail, the more cluster 
reorganization traffic this will trigger, which, in turn, will also increase the 
number of times where MADPastry has to resort to AODV-style network-wide 
route discoveries. In the case of the DHT router without RLM, this increase in 
network traffic can also be observed up to a medium churn rate. For high churn 
rates, however, the routers seem to generate slightly less network traffic. The 
reason for this is that, with such high churn rates, the average number of 
participating nodes drops below 250 as failed nodes have to wait longer and 
longer before their rejoin requests succeed (the correct delivery of such rejoin 
requests can fail, for example, because nodes on the request route fail during the 
forwarding or because the requests might increasingly be forwarded to failed 
nodes, etc.). Thus, less and less nodes that would generate traffic actively 
participate in the network. In the case of a very high churn rate and "No RLM", 
the figure increases again slightly as the effect just described is outweighed by 
the traffic caused by the very frequent rejoin requests. In MADPastry networks, 
however, the ever increasing efforts to reorganize the clusters outweigh this 
effect. 

5.6 Handovers 

The experimental results thus far have shown that MADPastry produces 
drastically less overhead than the broadcast agent and MADPastry without 
clusters do. It is important to realize, though, that these experimental results 
present the gross overhead savings of MADPastry. 

The reason for this is that, when MADPastry nodes change their cluster 
membership, they effectively change their overlay ID. Therefore, when a 
MADPastry node changes its overlay ID, it would have to pass the objects (or, 
more likely, references to them) that it was responsible for under its old overlay 
ID to its old left and right leaf before leaving the network and acquire the new 
objects (or, more likely, references to them) that it is now responsible for from its 
new left and right leaf. However, the nature of that additional handover traffic 
entirely depends on the actual application running on top of MADPastry, as well 
as the amount and distribution of the objects in the network. 

To evaluate the maximum potential of MADPastry, all simulations thus far have 
assumed that, after a cluster change, a node is able to handover its object 
references to both its old left and right leaf in one message each, and, conversely, 
also acquire its new object references from its new left and right leaf in one 
message each. However, the number of handover messages that have to be 
exchanged following a cluster change will certainly have an impact on the overall 
performance of MADPastry. Therefore, the random lookup application was, next, 
slightly extended. Aside from periodically issuing random lookups, varying 
numbers of objects were also uniformly distributed inside the overlay ID space. 
Since it can be prohibitive to transfer large objects in MANETs, the DHT actually 
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stores references to the objects. A reference contains the object's ID (i.e. hash key) 
and the physical address of the node where the object resides – hence, 8 bytes per 
reference (32 bits for the hash key and 32 for the network address of the 
provider). When a MADPastry node changes its overlay ID, it hands over and 
acquires the respective old and new references. To minimize the handover 
overhead, the application does not hand over each object reference individually. 
Instead, each handover packet contains multiple object reference. As a heuristic 
to balance the trade-off of having to send numerous small handover packets as 
opposed to a small number of large handover packets, the application tries to 
maintain a ratio of 1:4 between the number of handover packets that a node 
needs send after an overlay ID change has occurred and the number of object 
references that are to be handed over. Again, a 250-node network was employed. 
The simulations examined the effect that a total of 1,000, 10,000, 100,000, and 
1,000,000 uniformly distributed distinct objects have on the overall performance. 
Table 5.6 provides an overview of the simulation parameters and their respective 
values. 

In a first set of simulations, a lookup rate of one request per 10s per node was 
considered. Figure 5.14 shows the success rate in reference to the total number of 
objects in the network (please note the logarithmic scale on the x-axis). Up to a 
total of 100,000 distinct objects, i.e. on average 400 distinct object references per 
node, MADPastry can sustain success rates of above or equal to those of the 
router without clusters – around 94% – as the additional handover packets 
actually help spread node information, that can be used to update the routing 
tables, through the network, thereby mitigating the negative effects of an 
increased number of packet collisions. At the same time, MADPastry's success 
rates remains well above that of the broadcast router. With 1,000,000 objects in 
the network (on average 4,000 distinct objects per node), however, the handover 
packets start markedly interfering with lookup packets (e.g. through collisions), 
as they now dominate the overall traffic, so that MADPastry's success rate starts 
falling slightly below that of the router without clusters. Note that figures for the 
broadcast router and the router without clusters remain unaffected by the 
number of objects as they do not need to hand over packets since no overlay ID 
changes occur during the simulations. 

Table 5.6 Simulation parameters and values – handovers. 

Simulation Parameter Value range 

Simulation duration 3600s (simulated) 

Network size 250 

Network density 100 nodes/km² 

Node mobility 1.4m/s (constant, 0s pause time) 

Random lookup interval (per node) 1s and 10s 

Total number of objects 1,000, 10,000, 100,000, and 1,000,000 
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Figure 5.15 shows the total number of generated packets. Note that MADPastry 
figures increase only slightly with higher objects totals. This is due to the 
heuristic that the application tries to keep a ratio of 1:4 between the number of 
hand over packets and the number of object references that a node needs to hand 
over after an overlay ID change. As can be seen, the number of packets 
exchanged by MADPastry remains markedly below the figures of the broadcast 
router and the router without cluster for all object counts. However, this figure is 
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Figure 5.14 Success rate vs. number of objects – 1 lookup per 10 seconds per 
node. 
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Figure 5.15 Number of packets vs. number of objects – 1 lookup per 10 seconds 
per node. 
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only of limited significance here as the length of a handover packet will increase 
decidedly with a growing number of objects. Figure 5.16 demonstrates this. Up to 
an object count of 100,000, MADPastry produces significantly less traffic than the 
two other routing agents do. For 1,000,000 objects, on the other hand, 
MADPastry's figure clearly surpasses the other routers. This explains why, for 
this high total number of objects, lookup packets noticeably start colliding with 
handover packet and the success rate of MADPastry starts declining. 
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Figure 5.17 Success rate vs. number of objects – 1 lookup per second per node. 
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Figure 5.16 Overall traffic vs. total number of objects – 1 lookup per 10 seconds 
per node. 
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Next, the effect of handover packets was evaluated using a higher lookup rate of 
1 lookup per second per node. Note, again, that the figures of the broadcast 
router and the router without clusters are not affected by handovers due to the 
lack of overlay ID changes during the simulations. 

Figure 5.17 shows the respective success rates. Even with 1,000,000 distinct 
objects in the network, MADPastry can still achieve significantly higher success 
rates than the other two routing agents do. As with the lower lookup rate before, 
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Figure 5.18 Number of packets vs. number of objects – 1 lookup per 1 second 
per node. 
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Figure 5.19 Overall traffic vs. total number of objects – 1 lookup per second per 
node. 
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MADPastry's success rates remains practically unaffected by the handover traffic 
up to an object count of 100,000. With 1,000,000 distinct objects, the (large) 
handover packets starts interfering with the lookups, which results in lower 
lookup success rate of slightly below 80%. The traffic development is depicted in 
Figure 5.18 (number of packets) and Figure 5.19 (generated traffic in kilo bytes). 
Since the broadcast router and the router without clusters are overwhelmed with 
the high lookup rate, the interference of MADPastry's handover packets at 
1,000,000 distinct objects does not have as much overall effect as before. 

5.7 Summary 

The simulation results presented in this chapter show that MADPastry achieves 
comparable or better lookup success rates at significantly less overall traffic 
compared to a reference broadcast application and a reference DHT substrate 
without locality awareness for most scenarios considered. Notably, MADPastry's 
strengths become especially apparent when the network has to handle high 
request rates. 

Two basic rules of thumb can be drawn from the experimental results. First of 
all, since MADPastry markedly outperformed the reference DHT substrate 
without Random Landmarking in the vast majority of the considered scenarios, it 
can be concluded that it is, indeed, essential for a DHT substrate in MANETs to 
explicitly consider physical locality. Secondly, a DHT substrate explicitly 
designed for the usage in MANETs (as demonstrated by MADPastry) can provide 
very efficient key-based routing for MANETs that display a certain degree of 
stability – e.g. node velocities in the range of fast walking speeds, mild churn 
rates, etc. However, in MANETs with high volatility – e.g. high node velocity 
and/or churn rates – it is very difficult to maintain any sort of routing structure – 
including a DHT. In such MANETs, one might, indeed, be well advised to resort 
to a broadcast-based approach. 
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