
 69

5 Experimental Results

This chapter evaluates the core performance of MADPastry. For this purpose, we
implemented MADPastry as a routing agent in the popular network simulation
environment ns-2.27 [37]. To put the performance of MADPastry into perspective,
MADPastry is always compared against two other routing agents: a simple
broadcast-based one and a Pastry-style DHT substrate without Random
Landmarking.

The ns-2 routing agent implements the MADPastry protocol as described in
Chapter 4. Nodes send out cluster beacons every 30s and ping their left and right
leafs every 60s. 16 landmark keys are used in the simulations. Additionally, to
further increase the success rate, the MADPastry routing agent of a lookup
initiator always also issues a secondary, backup lookup. That backup lookup is
first sent to the "left" or "right" leaf (depending on the packet's key) who will then
regularly forward the backup lookup, which, thus, can be expected to take a
(partially) different route to the eventual target node. If both lookups arrive at
the eventual target, the second one is dropped. Please refer to Appendix 9.2 for a
list of MADPastry's system parameters and their values used throughout this
section.

The fundamental question to be answered when deploying a DHT substrate in
MANETs is whether the extra overhead of maintaining the DHT structure is
really worth the effort. Or, is the benefit gained from using a DHT so miniscule
that we would have, indeed, been better off just broadcasting the lookups in the
first place. Therefore, we also implemented a Gnutella-style broadcast routing
agent. The broadcast agent maintains no overlay structure and, thus, has no
extra maintenance overhead. It broadcasts a packet to all its one-hop neighbors
who, then, forward the packet to all their one-hop neighbors and so forth. Nodes
keep track of the packet sequence number so that already forwarded packets will
not be sent a second time.

Due to mobility, nodes in a MADPastry network will eventually change their
cluster memberships. This means that nodes might repeatedly assign themselves
new overlay IDs. The subsequent reorganization (leaving, rejoining, coping with
invalid overlay identifiers, etc.) can generate a sizeable amount of traffic. To
verify whether MADPastry's extra overhead stemming from these cluster
changes is justified, we also implemented a routing agent that integrates regular
Pastry and AODV. It works very similar to MADPastry except that it does not
employ Random Landmarking. Thus, there are no physical clusters of nodes
sharing a common overlay ID prefix and, thus, there is no overlay ID
reassignment – i.e. leaving and rejoining the network – either. Since Pastry's
standard routing table and leaf set maintenance can be prohibitively expensive in
MANETs, the integrated Pastry routing agent, too, only fills its routing table by
forwarding and overhearing live packets and also only pings its left and right leaf

 70

proactively. This, in fact, closely resembles the related system Ekta [42] (also see
Section 3.3.2). Furthermore, beacons as well as lookups for which no physical
route is known are broadcast throughout the entire network – as there are no
clusters. Also, the integrated Pastry routing agent does not issue any secondary
lookups (as the MADPastry routing agent does) since its overhead is already
drastically higher than MADPastry's – as the simulation results will show.

Again, MADPastry is a routing agent, not an application as such. Therefore, for
the simulations, a simple random traffic generator was implemented as
application running on top of one of the three routing agent. With this
application, each node periodically sends a packet with a random key (i.e. starts a
random lookup) to whichever node is currently responsible for the packet’s key.

To compare the performances of the three routing agents, the following metrics
are analyzed:

Success Rate. This represents the percentage of random lookups that are
eventually delivered to the correct responsible node.

Packet Overhead. This is the total number of packets that are forwarded
during the entire simulation. This count is increased whenever a node forwards a
packet to the next physical hop. In the case of MADPastry and MADPastry
without clusters, this figure comprises all router and application packets that are
created by a node: lookups, leaf pings/pongs, join requests (only MADPastry), join
replies (only MADPastry), leave messages (only MADPastry), node beacons, route
requests, route replies, etc. In other words, this count is increased whenever the
MAC layer of a node is being passed a packet down from an upper layer. In the
case of the Gnutella-style broadcast router, this figure only consists of lookups as
there simply are no maintenance messages.

Overall Traffic. This figure counts the total network traffic in Kbytes that is
generated during the entire simulation. Whenever a node forwards a packet, this
figure is increased by the packet size – i.e. whenever the MAC layer of a node
receives a packet from an upper layer. Again, this figure includes all router and
application packet types for MADPastry (with and without clusters). Here, it is
important to mention that MADPastry packets on average are about 4 times
larger (excluding the IP header) than the corresponding broadcast agent's
packets as they carry additional information such as the last hop's overlay ID
and so forth.

All simulations that were carried out modeled wireless networks over the course
of one (simulated) hour. Nodes are always moving around according to the
random way point model with 0s pause time and at a constant speed. For data
transmission, nodes are using the 802.11 communication standard with a
transmission range of 250m. Furthermore, a 32-bit overlay ID space is assumed
with hexadecimal overlay IDs. In other words, each overlay ID consists of 8
hexadecimals digits.

 71

5.1 Basic Results

In the first set of simulations, the performances of MADPastry, the MADPastry
routing agent without clusters and the Gnutella-style broadcast agent are
compared in networks of 100 and 250 nodes. In all simulations, square planes are
used with a node density of 100 nodes/km². Nodes are moving around at a
constant speed of 1.4 m/s, which corresponds to a fast walking speed. For this
first set of simulations, the random lookup application of each node sends out a
random key lookup every 10s. Note that, after the start of the simulation, each
node’s random lookup application commences after a uniform random delay
between 0s and 10s so as to avoid a traffic pattern consisting of lookup bursts
every 10s. For the 100-node network, MADPastry uses 8 landmark keys. Table
5.1 provides an overview of the chosen simulation parameters and their

Table 5.1 Simulation parameters and values.

Simulation Parameter Value range

Simulation duration 3600s (simulated)

Network size 100 and 250

Network density 100 nodes/km²

Node mobility 1.4m/s (constant, 0s pause time)

Random lookup interval (per node) 10s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

100 250

Network size

Su
cc

es
s

ra
te MADPastry

No RLM
Broadcast

Figure 5.1 Success rates of the respective routing agents – 1.4m/s.

 72

respective values.

Figure 5.1 shows the success rate of the three routing agents for the random
lookups. As can be seen, MADPastry achieves better success rates in both 100
and 250-node networks compared to the broadcast agent. Furthermore,
MADPastry retains success rates of well above 90% for both network sizes,
whereas the broadcast agent's rate drops below 90% in a 250-node network. The
success rate of the MADPastry router without clusters ("No RLM") is practically
the same as MADPastry's (slightly higher in a 100-node network and slightly

0

5,000,000

10,000,000

15,000,000

20,000,000

100 250

Network size

To
ta

l n
um

be
r o

f m
es

sa
ge

s

MADPastry
No RLM
Broadcast

Figure 5.2 Total number of messages - 1.4m/s.

0

100,000

200,000

300,000

400,000

500,000

600,000

700,000

100 250

Network size

O
ve

ra
ll

tra
ffi

c
[K

B]

MADPastry
No RLM
Broadcast

Figure 5.3 Overall generated traffic in Kbytes - 1.4m/s.

 73

lower in a 250-node network).

Figure 5.2 shows the total number of messages that the routing agents send or
forward during the simulated hour in order to achieve their respective success
rates. Again, these figures include all router and application messages that the
nodes' MAC layers receive from above. It becomes clear that MADPastry
produces drastically less network traffic than the Gnutella-style broadcast agent
does. In a 100-node network, the broadcast router needs about 5 times and in a
250-node network even about 7 times the number of messages that MADPastry
needs. The MADPastry router without clusters ("No RLM") incurs roughly 1/3 of
the message traffic of the broadcast agent in a 100-node network and roughly 1/2
in a 250-node network, which is well above MADPastry's message traffic.

However, it is important to bear in mind that a MADPastry packet header is
longer than that of the broadcast router due to the extra information included in
it (see 4.5). To make sure we are not comparing apples and oranges, Figure 5.3
shows the traffic in forwarded Kbytes instead. Again, these figures include all
router and application messages that the nodes' MAC layers receive from above.
Even with this metric, MADPastry still produces several times less traffic than
either the broadcast router or the MADPastry router without clusters. An
interesting observation can be made here for the MADPastry router without
clusters ("No RLM"). While still below the broadcast agent's overhead in a
100-node network, its overall traffic becomes larger than the broadcaster's in a
250-node network. This can easily be explained by the fact that Pastry's overlay
routing usually requires several overlay hops per lookup. Since there are no
clusters, successive overlay hops can crisscross the physical network.
Furthermore, when the MADPastry router without clusters has to resort to
broadcasting a lookup (because the physical route to carry out the next overlay
hop is unknown), the lookup could already have crossed the network several
times. Obviously, one would have been better off if one had broadcast the lookup
right away – which is exactly what the broadcast agent does. Furthermore, even
if the lookup could be delivered without being broadcast (i.e. the routes for all
overlay hops involved were known), the accumulated physical path lengths of the
overlay hops might only be slightly more light-weight than a broadcast.
Additionally, the required periodic beacon broadcasts are added on top. Since
both physical and overlay paths are much shorter in a 100-node network, this
effect is less pronounced there.

This is further confirmed by Figure 5.4. It displays the overlay stretch as
generated by the random lookups in both 100 and 250-node networks. Note that,
trivially, the overlay stretch of the broadcast router is always at the optimum of
1.0. This is simply due to the fact that, here, the lookups are always broadcast
throughout the network. Thus, the first copy (of possibly many copies) of a
particular lookup will arrive at the destination node on the shortest path from
the source. For MADPastry, Figure 5.4 shows that, even in a small network,
MADPastry achieves a smaller overlay stretch than the MADPastry router
without clusters does – 1.33 vs. 1.46. Practically speaking, this means that the
accumulated path length during a MADPastry lookup will be 33% longer than
the direct path from the initiator of the lookup to the eventual target node.
Without the utilization of cluster, however, this figure will already deviate by

 74

46% from the direct path. In other words, the key-based routing without clusters
will generate approx. 10% more traffic than routing with clusters does for each
lookup. This effect becomes even more pronounced in larger networks (1.54 vs.
2.01) where physical routes between two arbitrary nodes also become longer.

This clearly demonstrates the benefits for DHT substrate in MANETs to consider
physical locality – as MADPastry does.

5.2 Load Distribution

As just seen in the previous section, due to its consideration of physical locality
using RLM, MADPastry achieves comparable or better success rates than a
Pastry-based routing agent without RLM does while producing significantly less
overall traffic. The question that arises is whether MADPastry attains this
efficacy at the expense of an uneven distribution of the node traffic load. It is,
indeed, conceivable that, in a MADPastry network, a situation could occur where
a relatively small and isolated group of nodes form an overlay ID cluster. The size
of the segment of the overlay ID space, that a member node of a cluster is
responsible for, is on average given by the overlay ID range of the cluster (i.e. the
range of overlay IDs that start with the given cluster prefix) divided by the
number of cluster members. Therefore, in the case of a relatively small (in terms
of the number of member nodes) cluster, the nodes of that cluster would be
responsible for disproportionately large segments of the overlay ID space and
might, thus, have to handle a disproportionate amount of traffic load. In other
words, the overlay ID distribution in a MADPastry network is no longer strictly
uniform but dependent on the spatial distribution of the nodes themselves.

0.90

1.00

1.10

1.20

1.30

1.40

1.50

1.60

1.70

1.80

1.90

2.00

2.10

100 250

network size

O
ve

rla
y

St
re

tc
h

MADPastry
No RLM
Broadcast

Figure 5.4 Overlay stretch.

 75

To evaluate how severely MADPastry deviates from an ideal, uniform load
distribution, the individual accumulated load during a simulation run was
recorded for each node. Whenever a node received a packet (AODV, Pastry,
application), the individual accumulated load count of that node was increased by
the length of the received packet. Table 5.2 provides the average (over all
simulation runs) minimum individual accumulated node load and the average
maximum individual accumulated node load encountered in the 250-node
networks from the previous section. Note that, in a mobile ad hoc network, a
single sent packet (as counted in Figure 5.2 and Figure 5.3) can be received and
processed by multiple nodes – generally by all nodes in the sender's transmission
range – so that each sent packet can potentially increase the individual
accumulated load of several nodes.

Two observations can be made in Table 5.2. First of all, one notices that nodes in
a network that does not employ RLM have to, on average, handle around 6 times
as much load as nodes in a MADPastry network do. This corresponds with the
observation made in Figure 5.3. Again, the reason for this is that the router

0

10

20

30

40

50

60

70

80

90

100

110

120

-50% -40% -30% 20% -10% +10% +20% +30% +40%

Percentage deviation from median

Nu
m

be
r

of
 n

od
es

MADPastry
No RLM

Figure 5.5 Percentage deviation of the individual accumulated node loads from the
median.

Table 5.2 Individual accumulated node traffic load.

 MADPastry No RLM

Minimum individual
accumulated load (in bytes) 2,110,429 16,828,793

Maximum individual
accumulated load (in bytes) 5,054,556 29,009,904

Ratio 2.40 1.73

 76

without RLM needs to issue significantly more network-wide broadcast messages
(such as AODV route discoveries) that, in turn, are received and processed by
numerous nodes. Secondly, it can be seen that MADPastry's load distribution is
somewhat less optimal than the distribution achieved without RLM. Whereas,
without RLM, the node with the highest individual accumulated load has to, on
average, handle 1.73 times the amount of traffic that the node with the lowest
individual accumulated has to handle on average, this ratio is mildly higher at
2.40 in a MADPastry network with RLM.

Figure 5.5 presents a different view of the individual accumulated node load. It
depicts the percentage deviation and the quantity of the individual accumulated
node loads from the median in the 250-node network from the previous section.
In other words, its shows the average number (over 10 simulation runs) of nodes
whose individual accumulated loads were within a range of 0%-10% (both smaller
and larger), 10%-20%, 20%-30%, etc. of the median. As could be expected from
Table 5.2, MADPastry's load distribution fans out somewhat compared to the
router's without RLM but otherwise resembles it closely: While in a network
without RLM 98% of the nodes need to handle loads that do not deviate by more
than 20% from the median, this is still true for 88% of all nodes in a MADPastry
network.

In order to consider physical locality in its overlay structures, MADPastry
deliberately sacrifices an ideal, uniform overlay ID distribution, which results in
a mildly more fanned-out load distribution compared to a network that does not
employ RLM. However, we strongly believe that the expense of having a
somewhat less optimal load distribution (a maximum/minimum load ratio of 2.40
vs. 1.73) is practically negligible compared to the advantage of achieving
comparable and better success rates with individual node loads that are around 6
times less than those accumulated without RLM.

5.3 Node Velocity

In the first set of simulations, nodes were moving at a constant speed of 1.4 m/s.

Table 5.3 Simulation parameters and values – varying node velocities.

Simulation Parameter Value range

Simulation duration 3600s (simulated)

Network size 250

Network density 100 nodes/km²

Node mobility 0.1, 0.6, 1.4, 2.5, 5.0m/s (constant, 0s
pause time)

Random lookup interval (per node) 10s

 77

Of course, the node velocity can be expected to have a significant impact on the
performance a routing agent. Therefore, in the next set of simulations, 250-node
networks will be examined with varying node velocities: 0.1 m/s (practically
stable network), 0.6 m/s (slow walking speed), 1.4m/s (fast walking speed), 2.5
m/s and 5.0 m/s. A request frequency of one random lookup every 10s per node
will be used. Table 5.3 provides an overview of the simulation parameters and
their respective values.

Figure 5.6 shows the success rates of the three routing agents in reference to the
different node velocities. One can see that both MADPastry and MADPastry
without clusters ("No RLM") achieve better success rates than the Gnutella-style
router does for speeds up to a fast walking speed (1.4 m/s). At a speed of 2.5 m/s,
the success rates of MADPastry and MADPastry without clusters start falling
below the broadcast router's. The reason for this is that, with fast speeds, routes
break so frequently that MADPastry without clusters can no longer keep its
routing table and leaf set sufficiently valid – hence its success rate drops below
the broadcast agent's success rate. With MADPastry this problem is further
aggravated by the fact that nodes move from cluster to cluster so rapidly that a)
they spend a significant amount of their time leaving and rejoining the network,
and thus b) their overlay routing tables frequently contain stale entries. With
stale entries, the likelihood that a packet might have to be sent back to the
previous overlay hop (see Section 4.4) so that an alternative and ideally valid
next overlay hop destination can be chosen increases. This, of course, will result
in larger overlay stretches, which in turn decreases the probability of a successful
packet delivery.

Figure 5.7 shows the total number of messages (packets) produced by the routing
agents and the application during an average simulation run. Again, these
figures include all router and application messages that the nodes' MAC layers

0.5

0.6

0.7

0.8

0.9

1

0.1 0.6 1.4 2.5 5.0

Node velocity [m/s]

Su
cc

es
s

ra
te MADPastry

No RLM
Broadcast

Figure 5.6 Success rates vs. node velocity.

 78

receive from above. As can be expected, the overhead of the broadcast agent is
practically independent of the node velocity. As can be seen, MADPastry
produces significantly less packets for all considered node velocities than the
other two routing agents do since broadcasts in MADPastry are restricted to their
respective cluster.

Furthermore, Figure 5.8 also demonstrates that MADPastry's overall traffic
stays significantly below that of the other two routing agents. For Pastry without
clusters, the overall traffic quickly surpasses even that of the broadcast agent as

0

5,000,000

10,000,000

15,000,000

20,000,000

25,000,000

0.1 0.6 1.4 2.5 5.0

Node velocity [m/s]

To
ta

l n
um

be
r

of
 m

es
sa

ge
s

MADPastry
No RLM
Broadcast

Figure 5.7 Total number of messages vs. node velocity.

0

100,000

200,000

300,000

400,000

500,000

600,000

700,000

800,000

900,000

1,000,000

0.1 0.6 1.4 2.5 5.0

Node velocity [m/s]

O
ve

ra
ll

tr
af

fic
 [K

B
]

MADPastry
No RLM
Broadcast

Figure 5.8 Overall traffic vs. node velocity.

 79

route failures occur more and more frequently and the effects described in
Section 5.1 become ever more pronounced.

5.4 Lookup Rates

All simulations thus far all have assumed a node lookup rate of one lookup per
10s. Next, the impact of the lookup rate on the overall performance will be
evaluated. The following lookup intervals will be examined: 1s, 10s, and 60s in a
250-node network with a node velocity of 1.4 m/s. Table 5.4 provides an overview
of the simulation parameters and their respective values. Note that for the
lookup interval of 1s, MADPastry does not issue any backup lookups, whereas for
the interval of 60s, two backup lookups are employed.

Figure 5.9 shows the success rates of the three routing agents in reference to the

Table 5.4 Simulation parameters and values – varying lookup rates.

Simulation Parameter Value range

Simulation duration 3600s (simulated)

Network size 250

Network density 100 nodes/km²

Node mobility 1.4m/s (constant, 0s pause time)

Random lookup interval (per node) 1s, 10s, and 60s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1s 10s 60s

Lookup interval

Su
cc

es
s

ra
te MADPastry

No RLM
Broadcast

Figure 5.9 Success rates vs. lookup intervals.

 80

lookup rate. As already seen in Section 5.1, MADPastry and MADPastry without
clusters ("No RLM") achieve comparable success rates well above 90% for a per-
node lookup interval of 10s. The Gnutella-style router's success rate here drops
below 90%.

A very interesting observation can be made in networks with high lookup rates of
1 lookup per second per node. At such high lookup rates, both the broadcast agent
and MADPastry without clusters can no longer keep up with MADPastry. Their
(frequent) network-wide broadcasts of the lookup requests or route discoveries

0

5,000,000

10,000,000

15,000,000

20,000,000

25,000,000

30,000,000

35,000,000

40,000,000

1s 10s 60s

Lookup interval

To
ta

l n
um

be
r o

f p
ac

ke
ts

MADPastry
No RLM
Broadcast

Figure 5.10 Number of packets vs. lookup interval.

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,400,000

1s 10s 60s

Lookup interval

O
ve

ra
ll

tr
af

fic
 [K

B
]

MADPastry
No RLM
Broadcast

Figure 5.11 Overall traffic vs. lookup intervals.

 81

clearly overwhelm the wireless physical network, resulting in so many packet
collisions that the majority of lookups fail to be delivered. Thus, their success
rates drop to 20%. On the other hand, MADPastry's physically shorter overlay
hops (compared to MADPastry without clusters) and its local cluster broadcasts
allow it to still maintain a success rate of 92% in the presence of such high lookup
rates. Again, MADPastry's overall traffic remains significantly below that of the
broadcaster and MADPastry without clusters both in terms of the total number
of packets sent and the generated traffic, as Figure 5.10 and Figure 5.11 show.

On the other hand, if there is only one lookup per minute, MADPastry's lookup
rate falls below 90% (87%). This is due to fact that the nodes overhear much less
packets with which to update their routing tables. Furthermore, nodes often do
not detect other nodes' cluster changes, which can result in packets being routed
to stale overlay addresses. However, we believe that a request rate of one lookup
per minute is too low to justify the effort of maintaining a DHT in the first place.
When nodes only issue one lookup per minute, they might just as well broadcast
their occasional requests and not bother to maintain a DHT structure.

5.5 Churn

Thus far, the scenarios considered have assumed that all nodes participate in the
network during the entire simulated hour. However, in mobile ad hoc networks,
it can occur that mobile nodes abruptly leave the network because they might
have drained their batteries or moved out of the transmission range of other
nodes – to name but a few factors. This dynamic and erratic joining and leaving
of nodes is often referred to as churn.

This section examines how MADPastry can adapt to various churn rates in the
network. For this purpose, it is necessary to first understand how churn is
modeled in the following experiments. Since the dynamic creation and removal of
nodes during simulation runtime is not directly supported in ns-2, the modeling
of churn in ns-2 is a non-trivial task. Therefore, we use the following churn
model. At the beginning of a simulation, each node is assigned a random uptime

Table 5.5 Simulation parameters and values – varying churn rates.

Simulation Parameter Value range

Simulation duration 3600s (simulated)

Network size 250

Network density 100 nodes/km²

Node mobility 1.4m/s (constant, 0s pause time)

Random lookup interval (per node) 10s

Node uptime intervals (60-3600), (600-1200), (300-600), (60-300)s

 82

after which the node will fail and leave the network abruptly. When a node fails,
it will at once clear all its routing state (i.e. AODV routing table, Pastry routing
structures, etc.) and immediately move to a random position in the network at a
speed of 999,999 m/s. There, after overhearing packets from its one-hop
neighbors, it will use one of those neighbors as bootstrap node to rejoin the
network under a new overlay ID (but retaining its original node (IP) address).
After the node has, thus, rejoined the network, it will be assigned a new random
uptime and restart its random waypoint node movement. This way, the number
of participating nodes in the network is kept constant. Note that ns-2 does not
support the dynamic changing of node addresses (i.e. IP addresses) during
simulation. Thus, it could happen that a node receives a packet that is destined
for it under one of its former overlay IDs. In such a case, the node will simply
return the packet to its sender – i.e. to the previous overlay destination – stating
its new overlay ID.

For the churn experiments, we choose the 250-node network with a constant node
velocity of 1.4 m/s from the previous sections and a request rate of 1 request per
10s. To examine various churn rates, the following node uptime intervals are
considered:

 (60-3600)s – after (re-)joining the network, each node is assigned a
randomly chosen uptime between 60s and 3600s. This represents a mild
churn rate.

 (600-1200)s – after (re-)joining the network, each node is assigned a
randomly chosen uptime between 600s and 1200s. This represents a
medium churn rate.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

no churn (60-3600)s (600-1200)s (300-600)s (60-300)s

Node uptime intervals

S
uc

ce
s

ra
te MADPastry

No RLM
Broadcast

Figure 5.12 Success rates vs. churn rates.

 83

 (300-600)s – after (re-)joining the network, each node is assigned a
randomly chosen uptime between 300s and 600s. This represents a high
churn rate.

 (60-300)s – after (re-)joining the network, each node is assigned a
randomly chosen uptime between 60s and 300s. This represents a very
high churn rate.

Table 5.5 provides an overview of the simulation parameters and their respective
values.

Figure 5.12 shows the success rates that MADPastry and the MADPastry routing
agent without Random Landmarking achieve in under the various churn rates.
Note that the success rate of the broadcast router from Figure 5.1 is included as
reference line as the broadcast router would not be affected by churn. As can be
expected, the success rates of both MADPastry and the DHT router without RLM
start declining the higher the churn rate becomes. Furthermore, MADPastry
achieves slightly better success rates (over 90%) than the DHT router without
RLM does for mild and medium churn rates. For higher churn rates, however, it
becomes more and more difficult for MADPastry to maintain its clusters. The
frequent node failures trigger an ever increasing cluster reorganization process,
which results in MADPastry's lower success rates compared to the router without
RLM.

Figure 5.13 depicts the total amount of network traffic generated by the
respective routing agents under the various churn rates. Again, for the broadcast
router, the amount from Figure 5.3 is included as reference line. As can be seen,
with an increasing churn rate, MADPastry produces more and more network
traffic. This is due to two factors. First of all, the higher the churn rate, the more
often node swill fail and rejoin the network under a new overlay ID. Trivially,

0

100,000

200,000

300,000

400,000

500,000

600,000

700,000

no churn (60-3600)s (600-1200)s (300-600)s (60-300)s

Node uptime intervals

O
ve

ra
ll

tra
ffi

c
[K

B
]

MADPastry
No RLM
Broadcast

Figure 5.13 Overall traffic vs. churn rates.

 84

this will increase the probability of a node to receive a packet under one of its old
overlay IDs, in which case the packet would be send back to the previous overlay
hop. Thus, the overlay stretch will be markedly increased, which, in turn, reduces
the success rate. Secondly, the more frequently nodes fail, the more cluster
reorganization traffic this will trigger, which, in turn, will also increase the
number of times where MADPastry has to resort to AODV-style network-wide
route discoveries. In the case of the DHT router without RLM, this increase in
network traffic can also be observed up to a medium churn rate. For high churn
rates, however, the routers seem to generate slightly less network traffic. The
reason for this is that, with such high churn rates, the average number of
participating nodes drops below 250 as failed nodes have to wait longer and
longer before their rejoin requests succeed (the correct delivery of such rejoin
requests can fail, for example, because nodes on the request route fail during the
forwarding or because the requests might increasingly be forwarded to failed
nodes, etc.). Thus, less and less nodes that would generate traffic actively
participate in the network. In the case of a very high churn rate and "No RLM",
the figure increases again slightly as the effect just described is outweighed by
the traffic caused by the very frequent rejoin requests. In MADPastry networks,
however, the ever increasing efforts to reorganize the clusters outweigh this
effect.

5.6 Handovers

The experimental results thus far have shown that MADPastry produces
drastically less overhead than the broadcast agent and MADPastry without
clusters do. It is important to realize, though, that these experimental results
present the gross overhead savings of MADPastry.

The reason for this is that, when MADPastry nodes change their cluster
membership, they effectively change their overlay ID. Therefore, when a
MADPastry node changes its overlay ID, it would have to pass the objects (or,
more likely, references to them) that it was responsible for under its old overlay
ID to its old left and right leaf before leaving the network and acquire the new
objects (or, more likely, references to them) that it is now responsible for from its
new left and right leaf. However, the nature of that additional handover traffic
entirely depends on the actual application running on top of MADPastry, as well
as the amount and distribution of the objects in the network.

To evaluate the maximum potential of MADPastry, all simulations thus far have
assumed that, after a cluster change, a node is able to handover its object
references to both its old left and right leaf in one message each, and, conversely,
also acquire its new object references from its new left and right leaf in one
message each. However, the number of handover messages that have to be
exchanged following a cluster change will certainly have an impact on the overall
performance of MADPastry. Therefore, the random lookup application was, next,
slightly extended. Aside from periodically issuing random lookups, varying
numbers of objects were also uniformly distributed inside the overlay ID space.
Since it can be prohibitive to transfer large objects in MANETs, the DHT actually

 85

stores references to the objects. A reference contains the object's ID (i.e. hash key)
and the physical address of the node where the object resides – hence, 8 bytes per
reference (32 bits for the hash key and 32 for the network address of the
provider). When a MADPastry node changes its overlay ID, it hands over and
acquires the respective old and new references. To minimize the handover
overhead, the application does not hand over each object reference individually.
Instead, each handover packet contains multiple object reference. As a heuristic
to balance the trade-off of having to send numerous small handover packets as
opposed to a small number of large handover packets, the application tries to
maintain a ratio of 1:4 between the number of handover packets that a node
needs send after an overlay ID change has occurred and the number of object
references that are to be handed over. Again, a 250-node network was employed.
The simulations examined the effect that a total of 1,000, 10,000, 100,000, and
1,000,000 uniformly distributed distinct objects have on the overall performance.
Table 5.6 provides an overview of the simulation parameters and their respective
values.

In a first set of simulations, a lookup rate of one request per 10s per node was
considered. Figure 5.14 shows the success rate in reference to the total number of
objects in the network (please note the logarithmic scale on the x-axis). Up to a
total of 100,000 distinct objects, i.e. on average 400 distinct object references per
node, MADPastry can sustain success rates of above or equal to those of the
router without clusters – around 94% – as the additional handover packets
actually help spread node information, that can be used to update the routing
tables, through the network, thereby mitigating the negative effects of an
increased number of packet collisions. At the same time, MADPastry's success
rates remains well above that of the broadcast router. With 1,000,000 objects in
the network (on average 4,000 distinct objects per node), however, the handover
packets start markedly interfering with lookup packets (e.g. through collisions),
as they now dominate the overall traffic, so that MADPastry's success rate starts
falling slightly below that of the router without clusters. Note that figures for the
broadcast router and the router without clusters remain unaffected by the
number of objects as they do not need to hand over packets since no overlay ID
changes occur during the simulations.

Table 5.6 Simulation parameters and values – handovers.

Simulation Parameter Value range

Simulation duration 3600s (simulated)

Network size 250

Network density 100 nodes/km²

Node mobility 1.4m/s (constant, 0s pause time)

Random lookup interval (per node) 1s and 10s

Total number of objects 1,000, 10,000, 100,000, and 1,000,000

 86

Figure 5.15 shows the total number of generated packets. Note that MADPastry
figures increase only slightly with higher objects totals. This is due to the
heuristic that the application tries to keep a ratio of 1:4 between the number of
hand over packets and the number of object references that a node needs to hand
over after an overlay ID change. As can be seen, the number of packets
exchanged by MADPastry remains markedly below the figures of the broadcast
router and the router without cluster for all object counts. However, this figure is

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1,000 10,000 100,000 1,000,000

Number of objects

Su
cc

es
s

ra
te MADPastry

No RLM
Broadcast

Figure 5.14 Success rate vs. number of objects – 1 lookup per 10 seconds per
node.

0

5,000,000

10,000,000

15,000,000

20,000,000

25,000,000

1,000 10,000 100,000 1,000,000

Number of objects

Nu
m

be
r o

f p
ac

ke
ts

MADPastry
No RLM
Broadcast

Figure 5.15 Number of packets vs. number of objects – 1 lookup per 10 seconds
per node.

 87

only of limited significance here as the length of a handover packet will increase
decidedly with a growing number of objects. Figure 5.16 demonstrates this. Up to
an object count of 100,000, MADPastry produces significantly less traffic than the
two other routing agents do. For 1,000,000 objects, on the other hand,
MADPastry's figure clearly surpasses the other routers. This explains why, for
this high total number of objects, lookup packets noticeably start colliding with
handover packet and the success rate of MADPastry starts declining.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1,000 10,000 100,000 1,000,000

Number of objects

Su
cc

es
s

ra
te MADPastry

No RLM
Broadcast

Figure 5.17 Success rate vs. number of objects – 1 lookup per second per node.

0

100,000

200,000

300,000

400,000

500,000

600,000

700,000

800,000

900,000

1,000 10,000 100,000 1,000,000

Number of objects

O
ve

ra
ll

tr
af

fic
 [K

B
]

MADPastry
No RLM
Broadcast

Figure 5.16 Overall traffic vs. total number of objects – 1 lookup per 10 seconds
per node.

 88

Next, the effect of handover packets was evaluated using a higher lookup rate of
1 lookup per second per node. Note, again, that the figures of the broadcast
router and the router without clusters are not affected by handovers due to the
lack of overlay ID changes during the simulations.

Figure 5.17 shows the respective success rates. Even with 1,000,000 distinct
objects in the network, MADPastry can still achieve significantly higher success
rates than the other two routing agents do. As with the lower lookup rate before,

0

5,000,000

10,000,000

15,000,000

20,000,000

25,000,000

30,000,000

35,000,000

40,000,000

1,000 10,000 100,000 1,000,000

Number of objects

Nu
m

be
r o

f p
ac

ke
ts

MADPastry
No RLM
Broadcast

Figure 5.18 Number of packets vs. number of objects – 1 lookup per 1 second
per node.

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,400,000

1,000 10,000 100,000 1,000,000

Number of objects

O
ve

ra
ll

tra
ffi

c
[K

B]

MADPastry
No RLM
Broadcast

Figure 5.19 Overall traffic vs. total number of objects – 1 lookup per second per
node.

 89

MADPastry's success rates remains practically unaffected by the handover traffic
up to an object count of 100,000. With 1,000,000 distinct objects, the (large)
handover packets starts interfering with the lookups, which results in lower
lookup success rate of slightly below 80%. The traffic development is depicted in
Figure 5.18 (number of packets) and Figure 5.19 (generated traffic in kilo bytes).
Since the broadcast router and the router without clusters are overwhelmed with
the high lookup rate, the interference of MADPastry's handover packets at
1,000,000 distinct objects does not have as much overall effect as before.

5.7 Summary

The simulation results presented in this chapter show that MADPastry achieves
comparable or better lookup success rates at significantly less overall traffic
compared to a reference broadcast application and a reference DHT substrate
without locality awareness for most scenarios considered. Notably, MADPastry's
strengths become especially apparent when the network has to handle high
request rates.

Two basic rules of thumb can be drawn from the experimental results. First of
all, since MADPastry markedly outperformed the reference DHT substrate
without Random Landmarking in the vast majority of the considered scenarios, it
can be concluded that it is, indeed, essential for a DHT substrate in MANETs to
explicitly consider physical locality. Secondly, a DHT substrate explicitly
designed for the usage in MANETs (as demonstrated by MADPastry) can provide
very efficient key-based routing for MANETs that display a certain degree of
stability – e.g. node velocities in the range of fast walking speeds, mild churn
rates, etc. However, in MANETs with high volatility – e.g. high node velocity
and/or churn rates – it is very difficult to maintain any sort of routing structure –
including a DHT. In such MANETs, one might, indeed, be well advised to resort
to a broadcast-based approach.

	Title Page, Abstract, and TOC
	1 Introduction
	2 Background
	3 Related Work
	4 The MADPastry Architecture
	5 Experimental Results
	5.1 Basic Results
	5.2 Load Distribution
	5.3 Node Velocity
	5.4 Lookup Rates
	5.5 Churn
	5.6 Handovers
	5.7 Summary

	6 Application I: Peer-to-Peer Based Name Service for
	7 Application II: A DHT-based Unicast for MANETs
	8 Conclusion and Future Work
	9 Appendix
	10 References

