
 18

2 Background

This chapter provides a closer look into the technologies that serve as a
background for this thesis. At first, the conceptual differences between
unstructured and structured peer-to-peer overlays will be explained in detail.
Following that, the typical issues in mobile ad hoc networks will be examined.
The final part of this chapter will look at optimizations for structured overlays
that consider physical locality in the overlay network.

2.1 Peer-to-Peer Overlay Networks

As already mentioned briefly in the introduction, peer-to-peer networks are
decentralized, self-organizing application-layer networks where – ideally – all
nodes (i.e. peers) assume equal roles. That is, each peer will usually function as
both a client and a server in the network. In other words, a peer will issue
requests of its own, forward requests on the behalf of other nodes, and respond to
requests from other nodes. P2P networks are also referred to as overlay networks.
This means that P2P networks form a virtual topology on top of an underlying
physical network. Figure 2.1 shows the relationship between a P2P overlay

application layer

network layer

node mapping
virtual link
physical link

Figure 2.1 P2P overlay network vs. physical network.

 19

network and the underlying physical network. It depicts both the overlay and
physical topology and the position of each node in those two topologies. Links
between nodes in the overlay are referred to as virtual links as they do not exist
in a physical sense. Rather, a virtual link is merely given by an entry in a node's
overlay routing table. Since neighboring nodes in the overlay network are very
likely not be neighbors in the underlying physical network, an overlay hop (i.e.
the passing of a message from a peer to one of its neighbor peers) will usually
translate into a physical route that likely comprises numerous physical hops.
Moreover, as conventional P2P overlay networks have usually been designed for
the use in the Internet, they take physical routing for granted. Thus, they are
largely oblivious to the physical aspects of the underlying network.

2.1.1 Unstructured Overlays
As P2P networks are decentralized, the most fundamental issue for any peer is to
find the node that has the information that the current peer is interested in.
First-generation P2P networks, especially those popularly used for file-sharing
such as Gnutella [17], construct so-called unstructured overlays. In principal,
there are no restrictions on which nodes a peer can include in its routing table.
Therefore, the resulting overlay will exhibit a random topology with no explicit
structure. Such unstructured overlays are easy to form and practically require no
explicit routing table maintenance as failed entries can be replaced with any
other nodes. On the other hand, having no explicit structure, it is virtually
impossible to predict the best node to forward a request for a certain piece of
information to. The requested information could potentially reside with any node
in the network and each routing table entry is equally likely to provide it. For
this reason, unstructured P2P overlays employ flooding to locate information in
the network. When a node wants to find a certain piece of information, it will
forward the request to all entries in its routing table. Each recipient node will
then check whether it has the requested information. If so, it will reply to the
originator with the requested information. Otherwise, it, too, will forward the
request to all of its routing table entries. In general, this process continues until
all nodes in the network have been contacted or the TTL (time-to-live) parameter
of the request has expired. It is clear to see that this flooding-based information
discovery in unstructured overlays does not scale to a growing number of nodes
and requests and that it can easily overwhelm the underlying physical network
[48]. Again, one could reduce this overhead (and thus increase the scalability) by
restricting the broadcasts to a certain radius, but this would come at expense of a
decreased recall.

To curb the network traffic produced by them, unstructured overlays have more
recently started to impose a two-level hierarchy on their topologies [18, 26]. The
general idea is to restrict the information discovery process to more powerful
nodes – so-called super-peers. Super-peers usually possess higher bandwidth,
more computational power, and/or longer up-times than general peers do. A
weaker node will connect to a super-peer and send a list of all the information
(e.g. files) that it is providing to its super-peer. The super-peer then acts an index
server for its client peers. When a peer now requests some information, it will
send the request to its super-peer. The request is then propagated only among
the superpeers. Each super-peer checks whether any of its client peers can

 20

provide the requested information and, if so, replies to the originator with the
appropriate client's address. While thus the flooding traffic is restricted to the
super-peers, the information discovery process is not changed fundamentally.
The problem of scalability is merely shifted to a – albeit more powerful – subset
of nodes.

2.1.2 Structured Overlays
To overcome the scalability issues of unstructured P2P networks without
sacrificing the recall, Distributed Hash Tables (DHTs, e.g. [45, 50, 56, 73]) have
been introduced. At the core of each DHT lies the ability to route a packet based
on a key to the node in the network that is currently responsible for the packet's
key. This process is referred to as indirect or key-based routing. To do this, DHTs
form a virtual overlay identifier space (e.g. 128-bit identifiers) from which each
peer assigns itself a random overlay ID – e.g. by hashing its IP address into the
overlay ID space. Analogously, each object is also hashed into the same overlay
ID space. A node is now responsible for an object if the node's own overlay ID is
closest to the object's ID among all live nodes in the network. Closeness in this
aspect depends on the nature of the overlay ID space and the characteristics of
the respective DHT, but common examples are numerical distance or Euclidean
distance.

Unlike unstructured P2P networks with their random topology, DHTs impose a
structure on the overlay topology by no longer choosing routing table entries
arbitrarily. Instead, routing table entries have to satisfy certain criteria
depending on the respective DHTs. That topological structure enables DHTs to
introduce an upper bound on the number of overlay hops that have to be taken to
route a given packet to the node currently responsible for the packet's key. This
upper bound is commonly O(log N), with N being the number of nodes in the
network. How this bound is achieved, fundamentally depends on the routing
strategies employed by the respective DHTs. Those strategies include reducing
the Euclidean distance in the overlay ID space to the destination in each overlay
routing step [45], halving the numerical distance to the destination in each
overlay routing step [56], or increasing the length of the matching prefix/suffix
between the current node's overlay ID and the key in each overlay routing step
[50, 73]. While DHTs can route packets very efficiently in comparison to
unstructured P2P networks, they, on the other hand, usually induce a higher
traffic overhead due to the maintenance of their routing tables.

To understand the concept of DHTs more clearly, Pastry [50] shall be presented
in more detail here as an exemplary DHT as it also serves as a basis for this
thesis. Pastry employs a 128-bit module ring overlay ID space – i.e. all Pastry
overlay IDs range from 0 to 2128-1. Pastry overlay IDs are organized in digits of
base 2b (typically, b is set to 4 to obtain hexadecimal digits). In Pastry, a node is
responsible for a given key if the node's overlay ID is numerically closest to the
key among all live nodes. To provide key-based overlay routing, each Pastry node
maintains two node sets: a routing table and a leaf set.

A Pastry routing table consists of log2bN rows and 2b-1 columns. Each routing
table entry consists of the node's overlay ID and IP address. In row i, Pastry

 21

stipulates that each entry have an overlay ID that shares a matching prefix of
length i-1 with the local node's own overlay ID. This means that the entries in
the first routing table row do not have to share any overlay ID prefix with the
local node, all entries in the second row have to have overlay IDs with the same
first digit as the local node, all entries in the third row have to share the same
first two overlay digits with the local node, and so forth. Furthermore, a Pastry
routing table consists of 2b columns – one column for each value that an overlay
ID digit can assume (e.g. 0,1,2,…,E,F for hexadecimal digits). As described above,
each entry in row i shares the first i-1 digits with the local node's overlay ID but
differs in digit i. The value of an entry's ith digit is given by its column index j
(0 <= j <= 2b-1). Note that the local node trivially satisfies this condition for the
slot that corresponds to the value of its own ith digit. Therefore, a Pastry routing
table row will contain at most 2b-1 entries.

A Pastry leaf set, on the other hand, consists of l entries, with l commonly set to
2b or 2*2b. One half of the leaf set contains those l/2 nodes whose overlay IDs are
numerically closest but smaller than the local node's own overlay ID. The other
half contains the l/2 nodes with the numerically closest larger overlay IDs. In
other words, one can think of the nodes in the leaf set as the "left" and "right"
overlay neighbors of the local node in the overlay ID ring. Figure 2.2 shows an
exemplary Pastry routing table and leaf set.

3403566734035470340352313403515234035073

34035774340357403403571734035701

37715026361241633571623633400741322365563152122530771255

34037437340361233403404034033652340323463403164334030342

34076214340646453405003234045631340253543401277334006624

34734152346534373457655534404216343037353420316234102724

71154601655477725361017645521251272351061354124103761261

76543210

3403566734035470340352313403515234035073

34035774340357403403571734035701

37715026361241633571623633400741322365563152122530771255

34037437340361233403404034033652340323463403164334030342

34076214340646453405003234045631340253543401277334006624

34734152346534373457655534404216343037353420316234102724

71154601655477725361017645521251272351061354124103761261

76543210

Local Overlay ID: 34035761

34036076340360423403601234035774larger

34035740340357173403570134035667smaller

34036076340360423403601234035774larger

34035740340357173403570134035667smaller

Leaf Set

Routing Table

Figure 2.2 Example of a Pastry routing table and leaf set. Overlay ID digits have base 8
(b=3) and the leaf set contains 2b entries.

 22

Overlay routing in Pastry works prefix-based. The general idea in Pastry's
overlay routing is to increase the length of the matching prefix between the
intermediate (i.e. the forwarding) node and the key of the packet, that is being
forwarded, by one with each overlay hop, or, if that is not possible, to at least
reduce the numerical distance between the intermediate node's overlay ID and
the packet's key. For this purpose, each forwarding node first determines
whether it is itself already responsible for the packet's key. This is the case when
the node's own overlay ID is numerically closer to the packet's key than each of
the node's leaves' IDs. By definition, this would imply that the node's overlay ID
is numerically closest to the packet's key among all live nodes – provided that the
node's leaf set is correct, of course. Otherwise, the forwarding node checks
whether one of its leaves is responsible for the packet's key, and, if that is the
case, it forwards the packet to that leaf. If none of the leaves is responsible for
the packet's key, the forwarding node consults its routing table. First, the
forwarding node determines the length of the matching prefix between its own
overlay ID and the packet's key. This number establishes the routing table row
from which to select the destination of the next overlay hop (for example, if the
matching prefix length is 0, the first routing table row will be consulted, if the
length is three, the fourth row will be considered, etc.). Once the routing table
row is established, the forwarding node selects the entry from the column that
corresponds with the key's digit that immediately follows the matching prefix. If
an entry can be found at the given routing table slot, the forwarding node will
send the packet to that entry, thereby increasing the matching prefix length by
one with the ensuing overlay hop. In case no such entry exists, however, the
forwarding node will select the node that is numerically closest to the packet's
key among all the entries in its routing table and leaf set and the packet will be
forwarded to that node. This process continues at each intermediate node until
the packet eventually reaches the node whose overlay ID is closest to the packet's
key among all live nodes. As can easily be seen, the expected number of overlay
hops during a Pastry lookup is O(log N).

Figure 2.3 shows an example of the Pastry overlay routing process. Suppose a
node whose overlay ID is 65A1FC intends to send a packet with key D469FC to
the node currently responsible for that key. Since node 65A1FC does not share
any prefix with the key, it consults the first row of its routing table and selects
node D1A08E that has a matching prefix with the key of length 1. Therefore, in
the first overlay hop, node 65A1FC forwards the packet to node D1A08E. Node
D1A08E then consults the second row of its routing table to find a node that has a
matching prefix with the key of length 2. Thus, in the second overlay hop, node
D1A08E forwards the packet to node D4213F. Node D4213F now checks the third
row of its routing table and forwards the packet to node D462BA that shares the
first three digits with the key. Node D462BA then determines that one of its
leaves, node D46A01, is responsible for the packet's key and forwards the packet
to its final destination.

 23

It is obvious that in order for Pastry's routing to maintain its O(log N) bound,
nodes need to have accurate routing tables and in particular accurate leaf sets
(without accurate leaf sets, the overlay routing might no longer converge). For
this reason, Pastry nodes periodically maintain their routing state. When a node
notices that one of its leaves is no longer alive, it will contact its numerically
largest live leaf (if the failed leaf was inside the leaf set half containing the
numerically larger leaves) or its numerically smallest live leaf (in case the failed
leaf was inside the leaf set half containing the numerically smaller leaves),
respectively. The contacted leaf will then respond with its own leaf set so that the
originating node can replace the failed leaf with an appropriate new live entry. In
practice, a Pastry node A will usually contact its leaves periodically to check
whether they are still alive and to receive their leaf sets. It will then inspect
those remote leaf sets to determine if any nodes have joined or left the network
that node A has not heard about, but that would also fall into node A's own leaf
set. Aside from maintaining its leaf set, a Pastry node also performs routing table
maintenance. For this purpose, a Pastry node will periodically select a random
node from each of its routing table rows and request the corresponding routing
table row from that node. Upon reception of such a remote routing table row, a
Pastry node will pairwise contact the entries in the remote row and those in its
own corresponding routing table row. This process actually serves two purposes.
First, a Pastry node thus checks if (some of) its routing table entries are still alive
and learns about new nodes that could be inserted into its routing table to
replace empty slots or failed entries. Second, it allows a Pastry node to optimize
its routing table entries with respect to the underlying physical network. When
comparing two possible entries (i.e. its own and the remote) for a given routing
table slot, preference can be assigned according to an appropriate physical metric
such as latency or hop count. This process is often referred to as Proximity
Neighbor Selection [5].

D4213F

D462BA

D46A01

65A1FC

D1A08E

Figure 2.3 Example of the Pastry overlay routing process.

 24

2.2 Mobile Ad Hoc Networks

Generally speaking, mobile ad hoc networks (MANETs) consist of mobile devices
(e.g. PDAs, laptops, sensor nodes, etc.) that communicate amongst each other in a
wireless fashion – for example using the IEEE 802.11 standard. Those devices
spontaneously form a network amongst themselves without any central
infrastructure or fixed topology. Having no central infrastructure as well as a
highly dynamic topology, arguably the most fundamental task in a MANET is
routing. How can a packet be delivered from a source node to a specified
destination node, most likely via a chain of forwarding node? This routing process
is also often referred to as unicasting.

There exists a plethora of routing protocols for MANETs. It is clearly beyond the
scope of this thesis to present a comprehensive analysis of all MANET routing
protocols. Instead, this section will provide an overview of the different concepts
behind the various protocols. In general, one differentiates between flat routing
and hierarchical routing [53].

2.2.1 Flat Routing Protocols
Flat routing protocols operate on the assumption that all nodes in the network
move around autonomously. Therefore, all nodes in the network generally
assume equal roles in the routing process. One can further subdivide flat routing
protocols into proactive and reactive protocols.

Proactive routing protocols update route information in their routing tables
independent of actual demands. This means that nodes maintain routes to other
nodes even if those routes are not currently needed for any data packets. Many
proactive protocols are link state based. To keep routes up-to-date in the presence
of node mobility and failures, nodes broadcast information about their network
neighbors periodically or event-driven. The main advantage of proactive protocols
is that they can allow for low data packet transmission delays. When a node is
about to send a data packet to a target node, the route will likely be known and
up-to-date so that the data packet will not have to be cached to wait for the
response of a lengthy and costly route discovery. This advantage becomes even
more pronounced in traffic scenarios where nodes send data packets to frequently
changing target nodes. The obvious disadvantage of proactive routing protocols is
their constant route maintenance traffic can easily constitute a significant part of
the overall traffic and can lead to an increased number of collisions with actual
data packets. Since routes are also maintained even when they are not currently
needed, proactive protocols are also not well-suited for stream-based traffic
scenarios where nodes tend to communicate with an unchanging set of nodes over
a certain period of time. Furthermore, due to the maintenance even of unused
routes, proactive protocols can quickly drain the energy resources of the
participating nodes. Popular representatives of proactive MANET routing
protocols include DSDV [40] and OLSR [7].

Reactive routing protocols, on the other hand, discover routes on-demand. This
means that a route from some node S to another node T is only established when
node S actually is about to send a packet to node T. When routes have not been

 25

used in a certain while, they usually expire and are expunged from the routing
tables. A clear advantage of reactive routing protocols is that they do not
generate any significant maintenance traffic. Only those routes are
discovered/maintained that are currently needed. Thus, reactive protocols can
scale to a large number of nodes as long as each source node tends to
communicate with the same target node (or set of target nodes) over a longer
period of time – so that costly route discoveries are limited – and as long as node
mobility is rather mild – so that recently discovered routes remain valid for a
certain period. Another advantage of reactive routing protocols is that, in scarce
or bursty traffic scenarios, nodes can usually significantly preserve energy as
they will not have to consume any energy for the maintenance of currently
unneeded routes. The main disadvantage of reactive protocols is that they do not
scale well to high and arbitrary traffic. When nodes send out packets at a high
rates to frequently changing target nodes, the MANET will be flooded with route
discoveries. Obviously, this problem would be further aggravated by high
mobility rates where recently cached routes break quickly. Another negative
effect of discovering routes on-demand is the increased delay between initiating
the sending of a data packet until the routes has been discovered and the final
delivery of the data packet to the target node. Popular representatives of reactive
MANET routing protocols are DSR [24] and AODV [41].

As AODV [41] also serves as a basis for this thesis, its general concepts shall be
outlined here. Being a reactive routing protocol, AODV nodes only discover routes
when they are being needed. The AODV routing table of a node A contains
information on recently discovered or used routes. Practically speaking, for each
such route, the routing table contains the next hop that has to be taken from
node A to get to the target, a sequence number that serves as a timestamp of this
route information, and the length of this route as determined by the hop count.
Figure 2.4 shows an example of an AODV routing table. If not used or updated
during a certain period, entries expire and are expunged from the table. AODV
routing is very straight-forward. When a node wants to send out a data packet, it

...175454

...1112323

...7623110

...5105471

...795462

...372341

...455417

Other fieldsDistance
(hop count)

Sequence
Number

Next HopDestination

...175454

...1112323

...7623110

...5105471

...795462

...372341

...455417

Other fieldsDistance
(hop count)

Sequence
Number

Next HopDestination

Figure 2.4 Example of an AODV routing table.

 26

looks up the entry for the packet's destination in its routing table and sends the
packet to the next hop as indicated by the routing table entry. Upon reception of
the packet, that next hop node looks up the packet's destination in its routing
table and forwards the packet to the next hop as indicated by its entry. This
process continues at each intermediate node until the packet reaches its
destination.

If a node that is about to send out a data packet cannot find a routing table entry
for the packet's destination, a route discovery will be started. Among other fields,
such a route request contains the source address (i.e. the address of the
requesting node), the destination address (i.e. the address of the node to whom a
route is request), and the last known sequence number for the destination (to
make sure that no older entries are sent back than the entries the source has
already known). The route request is then broadcast throughout the network.
Each receiving node temporarily stores the previous hop of the request as the
next hop for the reverse route back to the source node. If an appropriate entry
(i.e. an entry whose sequence number is larger than the one included in the
request) can be found in the routing table, the node will send back a route reply
containing the destination sequence number. Otherwise, the request is forwarded
further. When the destination node itself receives the route request, it will
increment its local sequence number and respond with reply containing the new
sequence number.

Each intermediate node that receives a route reply will increment the hop count
and forward that reply using the reverse route from the corresponding route
request until the reply is received by the source of the request. Furthermore, each
intermediate node as well as the source node of the request, will update their
routing table with the information from the route reply. This information will be
stored in the routing table if i) no entry can be found for the request's destination,
ii) there is already an entry for the request's destination but its sequence number
is smaller than the sequence number included in the reply (i.e. the entry is
outdated), or iii) the existing entry's sequence number is equal to that of the reply
but the reply's route is shorter.

2.2.2 Hierarchical Routing Protocols
In contrast to flat routing protocols, that usually scale only to a limited number of
nodes, hierarchical routing protocols try to exploit a common node behavior
where, instead of moving around completely independently of each other, nodes
often move around in clusters or groups. Therefore, information about topological
changes in some group A have to be broadcast only inside that group A. Nodes
from other groups are not affected as long as they still know how to reach any
node – often a specific group head that serves as gateway to and from its group –
in group A so that they can still deliver data packets to that node who will then
take care of the routing inside its own group. An advantage of having node
groups is that route maintenance can be markedly reduced. For example, nodes
could maintain the routes to nodes inside their own group at regular intervals.
Only the node that serves as group head or gateway will further have to maintain
routes to heads of other groups. Furthermore, hierarchical routing protocols can
scale well to growing network sizes. It is, for example, conceivable that, as the

 27

number of nodes increases, groups start forming super-groups, super-super-
groups, etc. to further divide the route maintenance responsibilities.

However, hierarchical routing protocols can also have significant disadvantages.
Since node heads serve as gateways to and from their groups, they will have to
handle higher traffic rates than regular nodes do, which, in turn, will also drain
their energy resources more quickly. Thus, group heads can become bottlenecks
in the routing process. Another problem can be the organization and
maintenance of the hierarchy itself. Due to node mobility, nodes will not
permanently stay in the same group. As nodes leave their groups and enter new
groups, the hierarchy will constantly have to be adapted to this. Especially when
nodes serving as heads change groups, this can trigger cascading group
reorganizations. An often cited example of a hierarchical routing protocol is
HSR [39].

Often, concepts from hierarchical and flat routing are combined. ZRP [21] is a
classic example of such hybrid routing strategies. Each node in ZRP forms a
group of a certain radius (e.g. two hops) and uses proactive routing inside its
group. For all other destinations outside their groups, nodes employ a reactive
routing protocol. While ZRP alleviates the costs of (re-)organizing the hierarchy
and generally avoids the formation of bottlenecks, it quickly assumes the
behavior and runs into the same problems as reactive flat routing protocols as
the number of nodes in the network increases and, thus, most destinations start
lying outside the nodes' respective groups.

2.3 Topology-Aware Structured Overlay Networks

It is important to bear in mind that a single overlay hop actually constitutes a
physical route most likely consisting of multiple physical hops from the source
node to the destination node of the overlay hop. At the same time, conventional
Distributed Hash Tables were designed for the Internet where physical routing is
practically taken for granted. For this reason, DHTs are largely oblivious to the
underlying physical network during the construction of their overlay topology.
The practical implication of this is that two overlay neighbors – i.e. two nodes
whose overlay IDs are close to each other in the overlay ID space – will usually
not be in close proximity of each other in the underlying physical network. This
leads to a common effect referred to as overlay stretch. Technically speaking, the
overlay stretch is the ratio between the length of the accumulated physical route
traveled during an overlay lookup process compared to the length of the direct
physical path from the source to the eventual target node.

Figure 2.5 illustrates the overlay stretch. In this example, node S wants to send a
packet with key D46A17 to the node currently responsible for the packet's key. In
the first overlay hop, the DHT (in this example Pastry) then routes the packet to
node A with overlay ID D1A08E. Node A forwards the packet in the overlay
network to node B with overlay ID D4213F. Node B then forwards the packet to
node C (overlay ID D462BA) who eventually delivers it to node T (overlay ID
D46A01). Node T is responsible for the packet's key and, thus, the packet has

 28

reached its final destination. While with respect to the overlay network the
packet is delivered very efficiently with only 4 hops, this example shows that in
terms of the physical network the packet actually traverses the network twice to
eventually reach its final destination that turns out to be only two physical hops
away from the source node of this overlay lookup. In other words, the packet has
traveled 17 physical hops during the overlay routing process when it could have
reached its destination in 2 hops had the destination been known in advance.
Therefore, the overlay stretch in this example is 17/2 = 8.5. It needs to be pointed
out that this is obviously an extreme example whose purpose is to provide a clear
illustration of the overlay stretch. In practice, most DHTs employ Proximity
Neighbor Selection (PNS) to alleviate the overlay stretch and Pastry's overlay
stretch is generally observed to be between 1.6 and 2.2 [5].

While overlay stretches can at best be considered suboptimal in the Internet
where physical routing is practically taken for granted, they pose a severe
problem in MANETs where each additional physical hop decreases the delivery
probability of a packet. Therefore, several approaches have been proposed to
alleviate the overlay stretch in structured overlay networks.

For example, in [46] the concept of Landmarking is proposed. Since nodes cannot
be assumed to have exact positioning devices such as GPS available, the idea
here is to introduce a fixed set of so-called landmark nodes into the network. This
set of landmark nodes is known to all nodes and nodes will periodically measure

D4213F

D462BA

D46A01

65A1FC

D1A08E

node mapping
physical hop
overlay hop

overlay node

physical node

Figure 2.5 Overlay stretch.

 29

their distances – e.g. as given by the hop count – to those landmark nodes
(usually by sending a simple PING message to each landmark node that will be
answered with a PONG message). Nodes will then order the landmark nodes
according to their distance to them. The intuition is now that nodes that share
the same such landmark order are quite likely to be physically close to each
other. Thus, nodes with the same landmark order are mapped into the same
region of the overlay ID space – e.g. by assigning them coordinates in the same
CAN region or by assuming overlay IDs with a common prefix in the Pastry
overlay ID space.

Another example was proposed in [60]. Here, a joining node establishes its
overlay ID by first measuring the distances to its physical neighbor nodes. These
distances are then used to establish virtual springs between the nodes. The value
needed to achieve the minimum energy state for the new node in that system of
springs is used to assign the new node its overlay ID. However, in MANETs
where a node's immediate physical neighborhood changes frequently, this
approach can be expected to be quite volatile, generating quite a few ID
reassignments to keep the system of virtual springs in check.

An extensive study of all proposed mechanisms to provide locality-awareness in
structured networks would be beyond the scope of this work. Therefore, we will
focus on a light-weight and efficient approach called Random Landmarking [63,
64, 65, 66, 72] as its general concept serves as a basis for this theses.

The goal of Random Landmarking (RLM) is to form clusters where physical close
nodes share a common overlay ID prefix. Thus, two nodes that are physically
close to each other will also likely be "close" to each other in the overlay. In order
to achieve this goal, RLM is based on the general concept of Landmarking.
However, fixed and stationary landmark nodes are usually not available in the
context of mobile ad hoc networks. Since Random Landmarking was explicitly
designed for its application in such MANETs, it does not assume the presence of
fixed landmark nodes. Instead, it uses a set of landmark keys. A landmark key is
simply an overlay ID. Rather than having dedicated landmark nodes, with RLM
those nodes become temporary landmark nodes that are currently responsible for
one of the landmark keys (i.e. whose own overlay identifiers are currently closest
to one of the landmark keys as defined by the respective DHT). Therefore, when
one of the current landmark nodes fails or resigns, another node (that whose
overlay ID is now closest to the landmark key) will automatically assume its role.

Landmark keys should be chosen so that they divide the overlay ID space into
equal-sized segments. For example, in a hexadecimal-based Pastry ID space, an
appropriate set of landmark keys could be: 0800…000, 1800…000, 2800…000, ...,
E800…000, F800…000.

To form clusters of common overlay ID prefixes, nodes associate themselves with
the temporary landmark node that is currently closest to them (e.g. as
determined by the hop count) by adopting its overlay ID prefix. For that purpose,
each node periodically measures its distance to the temporary landmark nodes.
This can easily be achieved by issuing a DHT lookup for the respective landmark
keys. The temporary landmark nodes will then directly respond to the requester

 30

and that node can use the hop count of the response as a distance metric to the
various landmarks. Nodes periodically examine their landmark list to determine
whether they have moved closer to a new landmark, i.e. whether they have
moved – with high probability - into a new overlay cluster. If so, a node will
assign itself a new random overlay ID with its new cluster's overlay ID prefix,
resign from the overlay network with its old ID, and rejoin the overlay network
with its new ID. The length of the ID prefix that a node shares with its closest
landmark node can be determined using the following formula:

prefix length = ⎣ ⎦kblog

where b is the ID base and k the number of landmark keys.

RLM was built into the DHT Pastry and thoroughly evaluated in various network
settings. It was shown that, in static networks, RLM is able to significantly
decrease the overlay stretch compared to standard Pastry. When additionally
employing the same routing table optimization techniques that Pastry uses, RLM
is even able to achieve an overlay stretch even below Pastry's optimal achievable
overlay stretch. Furthermore, a Pastry network with RLM obtains its lower
overlay stretches while generating up to 75% less overlay traffic in total
compared to standard Pastry. Figure 2.6 and Figure 2.7 illustrate the effect that
RLM has on the network topology. Both figures depict the spatial distribution of
overlay ID prefixes where equal symbols and colors represent equal overlay ID
prefixes. In a standard Pastry network, as shown in Figure 2.6, overlay ID
prefixes are randomly distributed among the participating nodes. There is no
correlation between overlay proximity (i.e. nodes that have a common overlay ID
prefix and that are, thus, close to each other in the overlay ID space) and actual
physical proximity of nodes. However, Figure 2.7 demonstrates that, with RLM,
clusters form where physically close nodes share a common overlay ID prefix.

Figure 2.6 Spatial distribution of overlay
ID prefixes in a Pastry network. Equal
symbols and shades of grey represent
equal overlay ID prefixes.

Figure 2.7 Spatial distribution of overlay
ID prefixes in a RLM network. Equal
symbols and shades of grey represent
equal overlay ID prefixes.

 31

Hence, with RLM, physically close nodes are also likely to be close to each other
in the overlay ID space.

Random Landmarking was also evaluated in mobile networks. Figure 2.8
compares the performance of RLM and standard Pastry in a 2,000 node network
where nodes moved according to the random waypoint mobility model with a
speed of 0.6m/s and a pause time of 30s. Each simulation run lasted 24 simulated
hours. During those 24h, 20,000 random lookups were issued, uniformly
distributed among the 2,000 nodes. As can be seen, Pastry's overlay stretch
quickly deteriorates, even when the Pastry nodes maintain their routing tables
every 30s and 60s, and approaches the overlay stretch that Pastry displays
without any routing table maintenance.

RLM, on the other hand, achieves a stable and decidedly lower overlay stretch
than Pastry does with a comparable amount of messages exchanged when the
landmark re-measure interval is 10 minutes. If one is willing to accept a message
total above Pastry's total with a 1-minute routing table maintenance interval but
still well below Pastry's 30s interval total, RLM's overlay stretch can be lowered
even further with shorter landmark re-measure intervals of 1 and 5 minutes (see
Figure 2.9).

So far, to evaluate RLM's general performance, ideal networks have been used
where packets were always correctly delivered. Next, RLM was evaluated in
ns-2 [37], simulating a complete 802.11 based physical network. Figure 2.10
shows the success rates in a 100 node network where, again, nodes move at a

1.2

1.4

1.6

1.8

2.0

2.2

2.4

0 2 4 6 8 10 12 14 16 18 20 22 24

time [h]

O
ve

rla
y

st
re

tc
h Pastry, None

Pastry, 30s
Pastry, 1min
RLM, 1min
RLM, 5min
RLM, 10min

Figure 2.8 Overlay stretch for Pastry and RLM mobile networks.

 32

steady speed of 0.6m/s with a pause time of 30s. The Pastry and RLM overlay
networks were deployed on top of AODV as network routing protocol. Each
simulation run lasted one simulated hour during which each node periodically
issued random key lookups.

The success rate is simply defined as the ratio between the total number of issued
random key lookups and the number of those key lookups that were delivered to
the correct destinations – i.e. to the nodes currently responsible for the respective
keys. As can be seen, RLM can help improve the success rate slightly (from 55%

0

50,000,000

100,000,000

150,000,000

200,000,000

250,000,000

300,000,000

Pastry, 1min Pastry, 30s RLM, 10min RLM, 5min RLM, 1min

N
um

be
r o

f o
ve

rla
y

m
es

sa
ge

s

Figure 2.9 Total number of overlay messages exchanged during an average 24h
simulation.

0

0.1

0.2

0.3

0.4

0.5

0.6

Su
cc

es
s

ra
te

Pastry

RLM

Figure 2.10 Success rate of Pastry and RLM in a 100-node
AODV network.

 33

to ca. 58%). This is because, on average, RLM reduces the number of actual
physical packets that are triggered by an overlay hop. For example, an overlay
hop from node A to destination node B might trigger a network-wide broadcast of
AODV route request packets if node A does not know a physical route to node B
in order to perform the overlay hop.

Figure 2.11 depicts the average number of physical messages (such as AODV
route requests, replies, etc.) that are triggered by an overlay hop. Using RLM,
this figure can be reduced by approx. 20%. The question arises why this
considerable reduction results in only a slightly improved success rate. The
reason for this is that RLM's additional overlay messages such as landmark re-
measurements, node rejoins, etc. will also trigger significant amounts of physical

0

5

10

15

20

25

Ph
ys

ic
al

 p
ac

ke
ts

 /
ov

er
la

y
pa

ck
et

Pastry

RLM

Figure 2.11 Average number of physical packets per
overlay hop.

0

500,000

1,000,000

1,500,000

2,000,000

2,500,000

3,000,000

3,500,000

4,000,000

4,500,000

5,000,000

To
ta

l n
um

be
r o

f p
hy

si
ca

l p
ac

ke
ts

Pastry

RLM

Figure 2.12 Physical traffic generated by Pastry and
RLM.

 34

messages. Those extra physical messages will, then, interfere (e.g. due to
collisions, packet queue overflows, etc.) with other packets such as key lookup
packets, which in turn will lower the success rate. Furthermore, not only will
lookup packets be lost due to factors such as collisions but also RLM maintenance
packets such as landmark re-measurement packets themselves. For example,
unlike in ideal networks, a node might not hear from its closest landmark node
due to packet loss and, therefore, might decide to join another cluster even
though it has not actually moved out of its own cluster. This, of course, will result
in an increased rejoin overlay traffic, which in turn can trigger additional
physical messages and so forth. Accordingly, Figure 2.12 shows that, in a "real",
non-idealized physical network, RLM generates only slightly less physical
messages than standard Pastry does.

2.4 Summary

To overcome the scalability issues of the flooding-based unstructured peer-to-peer
networks, Distributed Hash Tables have been proposed. DHTs impose a certain
structure on their overlay networks to enable very efficient overlay routing.
However, as DHTs are largely oblivious to the underlying network, the length of
the accumulated physical route traveled during an overlay lookup process can be
significantly greater than the length of the direct physical path from the source
to the eventual target node. To alleviate this overlay stretch, mechanisms have
been proposed to map physical proximity to the overlay ID space. For example,
using Random Landmarking, one can significantly lower the overlay stretch in
Pastry overlay networks on top of fixed or idealized mobile physical networks.
However, when deployed on top of a non-idealized, "real" mobile ad hoc network,
the packet delivery success rate even of RLM-enhanced overlay networks drops to
unacceptably low levels (in the analyzed scenario to around 60%) as factors such
as ad hoc route discoveries and packet collisions start posing a heavy burden on
the efficacy of the overlay network. These findings corroborate our assumption
that is does not suffice to merely deploy conventional DHTs (even with topology-
awareness) on top of MANETs to provide the building blocks for distributed
applications. Instead, we argue that, in order to provide efficient key-based
routing in MANETs, it is necessary to integrate the concepts of ad hoc routing
and DHT-based overlay routing at the network layer.

	Title Page, Abstract, and TOC
	1 Introduction
	2 Background
	2.1 Peer-to-Peer Overlay Networks
	2.1.1 Unstructured Overlays
	2.1.2 Structured Overlays

	2.2 Mobile Ad Hoc Networks
	2.2.1 Flat Routing Protocols
	2.2.2 Hierarchical Routing Protocols

	2.3 Topology-Aware Structured Overlay Networks
	2.4 Summary

	3 Related Work
	4 The MADPastry Architecture
	5 Experimental Results
	6 Application I: Peer-to-Peer Based Name Service for
	7 Application II: A DHT-based Unicast for MANETs
	8 Conclusion and Future Work
	9 Appendix
	10 References

