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2 Background 

This chapter provides a closer look into the technologies that serve as a 
background for this thesis. At first, the conceptual differences between 
unstructured and structured peer-to-peer overlays will be explained in detail. 
Following that, the typical issues in mobile ad hoc networks will be examined. 
The final part of this chapter will look at optimizations for structured overlays 
that consider physical locality in the overlay network. 

2.1 Peer-to-Peer Overlay Networks 

As already mentioned briefly in the introduction, peer-to-peer networks are 
decentralized, self-organizing application-layer networks where – ideally – all 
nodes (i.e. peers) assume equal roles. That is, each peer will usually function as 
both a client and a server in the network. In other words, a peer will issue 
requests of its own, forward requests on the behalf of other nodes, and respond to 
requests from other nodes. P2P networks are also referred to as overlay networks. 
This means that P2P networks form a virtual topology on top of an underlying 
physical network. Figure 2.1 shows the relationship between a P2P overlay 
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Figure 2.1 P2P overlay network vs. physical network. 
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network and the underlying physical network. It depicts both the overlay and 
physical topology and the position of each node in those two topologies. Links 
between nodes in the overlay are referred to as virtual links as they do not exist 
in a physical sense. Rather, a virtual link is merely given by an entry in a node's 
overlay routing table. Since neighboring nodes in the overlay network are very 
likely not be neighbors in the underlying physical network, an overlay hop (i.e. 
the passing of a message from a peer to one of its neighbor peers) will usually 
translate into a physical route that likely comprises numerous physical hops. 
Moreover, as conventional P2P overlay networks have usually been designed for 
the use in the Internet, they take physical routing for granted. Thus, they are 
largely oblivious to the physical aspects of the underlying network. 

2.1.1 Unstructured Overlays 
As P2P networks are decentralized, the most fundamental issue for any peer is to 
find the node that has the information that the current peer is interested in. 
First-generation P2P networks, especially those popularly used for file-sharing 
such as Gnutella [17], construct so-called unstructured overlays. In principal, 
there are no restrictions on which nodes a peer can include in its routing table. 
Therefore, the resulting overlay will exhibit a random topology with no explicit 
structure. Such unstructured overlays are easy to form and practically require no 
explicit routing table maintenance as failed entries can be replaced with any 
other nodes. On the other hand, having no explicit structure, it is virtually 
impossible to predict the best node to forward a request for a certain piece of 
information to. The requested information could potentially reside with any node 
in the network and each routing table entry is equally likely to provide it. For 
this reason, unstructured P2P overlays employ flooding to locate information in 
the network. When a node wants to find a certain piece of information, it will 
forward the request to all entries in its routing table. Each recipient node will 
then check whether it has the requested information. If so, it will reply to the 
originator with the requested information. Otherwise, it, too, will forward the 
request to all of its routing table entries. In general, this process continues until 
all nodes in the network have been contacted or the TTL (time-to-live) parameter 
of the request has expired. It is clear to see that this flooding-based information 
discovery in unstructured overlays does not scale to a growing number of nodes 
and requests and that it can easily overwhelm the underlying physical network 
[48]. Again, one could reduce this overhead (and thus increase the scalability) by 
restricting the broadcasts to a certain radius, but this would come at expense of a 
decreased recall. 

To curb the network traffic produced by them, unstructured overlays have more 
recently started to impose a two-level hierarchy on their topologies [18, 26]. The 
general idea is to restrict the information discovery process to more powerful 
nodes – so-called super-peers. Super-peers usually possess higher bandwidth, 
more computational power, and/or longer up-times than general peers do. A 
weaker node will connect to a super-peer and send a list of all the information 
(e.g. files) that it is providing to its super-peer. The super-peer then acts an index 
server for its client peers. When a peer now requests some information, it will 
send the request to its super-peer. The request is then propagated only among 
the superpeers. Each super-peer checks whether any of its client peers can 
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provide the requested information and, if so, replies to the originator with the 
appropriate client's address. While thus the flooding traffic is restricted to the 
super-peers, the information discovery process is not changed fundamentally. 
The problem of scalability is merely shifted to a – albeit more powerful – subset 
of nodes. 

2.1.2 Structured Overlays 
To overcome the scalability issues of unstructured P2P networks without 
sacrificing the recall, Distributed Hash Tables (DHTs, e.g. [45, 50, 56, 73]) have 
been introduced. At the core of each DHT lies the ability to route a packet based 
on a key to the node in the network that is currently responsible for the packet's 
key. This process is referred to as indirect or key-based routing. To do this, DHTs 
form a virtual overlay identifier space (e.g. 128-bit identifiers) from which each 
peer assigns itself a random overlay ID – e.g. by hashing its IP address into the 
overlay ID space. Analogously, each object is also hashed into the same overlay 
ID space. A node is now responsible for an object if the node's own overlay ID is 
closest to the object's ID among all live nodes in the network. Closeness in this 
aspect depends on the nature of the overlay ID space and the characteristics of 
the respective DHT, but common examples are numerical distance or Euclidean 
distance. 

Unlike unstructured P2P networks with their random topology, DHTs impose a 
structure on the overlay topology by no longer choosing routing table entries 
arbitrarily. Instead, routing table entries have to satisfy certain criteria 
depending on the respective DHTs. That topological structure enables DHTs to 
introduce an upper bound on the number of overlay hops that have to be taken to 
route a given packet to the node currently responsible for the packet's key. This 
upper bound is commonly O(log N), with N being the number of nodes in the 
network. How this bound is achieved, fundamentally depends on the routing 
strategies employed by the respective DHTs. Those strategies include reducing 
the Euclidean distance in the overlay ID space to the destination in each overlay 
routing step [45], halving the numerical distance to the destination in each 
overlay routing step [56], or increasing the length of the matching prefix/suffix 
between the current node's overlay ID and the key in each overlay routing step 
[50, 73]. While DHTs can route packets very efficiently in comparison to 
unstructured P2P networks, they, on the other hand, usually induce a higher 
traffic overhead due to the maintenance of their routing tables. 

To understand the concept of DHTs more clearly, Pastry [50] shall be presented 
in more detail here as an exemplary DHT as it also serves as a basis for this 
thesis. Pastry employs a 128-bit module ring overlay ID space – i.e. all Pastry 
overlay IDs range from 0 to 2128-1. Pastry overlay IDs are organized in digits of 
base 2b (typically, b is set to 4 to obtain hexadecimal digits). In Pastry, a node is 
responsible for a given key if the node's overlay ID is numerically closest to the 
key among all live nodes. To provide key-based overlay routing, each Pastry node 
maintains two node sets: a routing table and a leaf set. 

A Pastry routing table consists of log2bN rows and 2b-1 columns. Each routing 
table entry consists of the node's overlay ID and IP address. In row i, Pastry 
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stipulates that each entry have an overlay ID that shares a matching prefix of 
length i-1 with the local node's own overlay ID. This means that the entries in 
the first routing table row do not have to share any overlay ID prefix with the 
local node, all entries in the second row have to have overlay IDs with the same 
first digit as the local node, all entries in the third row have to share the same 
first two overlay digits with the local node, and so forth. Furthermore, a Pastry 
routing table consists of 2b columns – one column for each value that an overlay 
ID digit can assume (e.g. 0,1,2,…,E,F for hexadecimal digits). As described above, 
each entry in row i shares the first i-1 digits with the local node's overlay ID but 
differs in digit i. The value of an entry's ith digit is given by its column index j 
(0 <= j <= 2b-1). Note that the local node trivially satisfies this condition for the 
slot that corresponds to the value of its own ith digit. Therefore, a Pastry routing 
table row will contain at most 2b-1 entries. 

A Pastry leaf set, on the other hand, consists of l entries, with l commonly set to 
2b or 2*2b. One half of the leaf set contains those l/2 nodes whose overlay IDs are 
numerically closest but smaller than the local node's own overlay ID. The other 
half contains the l/2 nodes with the numerically closest larger overlay IDs. In 
other words, one can think of the nodes in the leaf set as the "left" and "right" 
overlay neighbors of the local node in the overlay ID ring. Figure 2.2 shows an 
exemplary Pastry routing table and leaf set. 
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Figure 2.2 Example of a Pastry routing table and leaf set. Overlay ID digits have base 8 
(b=3) and the leaf set contains 2b entries. 
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Overlay routing in Pastry works prefix-based. The general idea in Pastry's 
overlay routing is to increase the length of the matching prefix between the 
intermediate (i.e. the forwarding) node and the key of the packet, that is being 
forwarded, by one with each overlay hop, or, if that is not possible, to at least 
reduce the numerical distance between the intermediate node's overlay ID and 
the packet's key. For this purpose, each forwarding node first determines 
whether it is itself already responsible for the packet's key. This is the case when 
the node's own overlay ID is numerically closer to the packet's key than each of 
the node's leaves' IDs. By definition, this would imply that the node's overlay ID 
is numerically closest to the packet's key among all live nodes – provided that the 
node's leaf set is correct, of course. Otherwise, the forwarding node checks 
whether one of its leaves is responsible for the packet's key, and, if that is the 
case, it forwards the packet to that leaf. If none of the leaves is responsible for 
the packet's key, the forwarding node consults its routing table. First, the 
forwarding node determines the length of the matching prefix between its own 
overlay ID and the packet's key. This number establishes the routing table row 
from which to select the destination of the next overlay hop (for example, if the 
matching prefix length is 0, the first routing table row will be consulted, if the 
length is three, the fourth row will be considered, etc.). Once the routing table 
row is established, the forwarding node selects the entry from the column that 
corresponds with the key's digit that immediately follows the matching prefix. If 
an entry can be found at the given routing table slot, the forwarding node will 
send the packet to that entry, thereby increasing the matching prefix length by 
one with the ensuing overlay hop. In case no such entry exists, however, the 
forwarding node will select the node that is numerically closest to the packet's 
key among all the entries in its routing table and leaf set and the packet will be 
forwarded to that node. This process continues at each intermediate node until 
the packet eventually reaches the node whose overlay ID is closest to the packet's 
key among all live nodes. As can easily be seen, the expected number of overlay 
hops during a Pastry lookup is O(log N). 

Figure 2.3 shows an example of the Pastry overlay routing process. Suppose a 
node whose overlay ID is 65A1FC intends to send a packet with key D469FC to 
the node currently responsible for that key. Since node 65A1FC does not share 
any prefix with the key, it consults the first row of its routing table and selects 
node D1A08E that has a matching prefix with the key of length 1. Therefore, in 
the first overlay hop, node 65A1FC forwards the packet to node D1A08E. Node 
D1A08E then consults the second row of its routing table to find a node that has a 
matching prefix with the key of length 2. Thus, in the second overlay hop, node 
D1A08E forwards the packet to node D4213F. Node D4213F now checks the third 
row of its routing table and forwards the packet to node D462BA that shares the 
first three digits with the key. Node D462BA then determines that one of its 
leaves, node D46A01, is responsible for the packet's key and forwards the packet 
to its final destination. 
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It is obvious that in order for Pastry's routing to maintain its O(log N) bound, 
nodes need to have accurate routing tables and in particular accurate leaf sets 
(without accurate leaf sets, the overlay routing might no longer converge). For 
this reason, Pastry nodes periodically maintain their routing state. When a node 
notices that one of its leaves is no longer alive, it will contact its numerically 
largest live leaf (if the failed leaf was inside the leaf set half containing the 
numerically larger leaves) or its numerically smallest live leaf (in case the failed 
leaf was inside the leaf set half containing the numerically smaller leaves), 
respectively. The contacted leaf will then respond with its own leaf set so that the 
originating node can replace the failed leaf with an appropriate new live entry. In 
practice, a Pastry node A will usually contact its leaves periodically to check 
whether they are still alive and to receive their leaf sets. It will then inspect 
those remote leaf sets to determine if any nodes have joined or left the network 
that node A has not heard about, but that would also fall into node A's own leaf 
set. Aside from maintaining its leaf set, a Pastry node also performs routing table 
maintenance. For this purpose, a Pastry node will periodically select a random 
node from each of its routing table rows and request the corresponding routing 
table row from that node. Upon reception of such a remote routing table row, a 
Pastry node will pairwise contact the entries in the remote row and those in its 
own corresponding routing table row. This process actually serves two purposes. 
First, a Pastry node thus checks if (some of) its routing table entries are still alive 
and learns about new nodes that could be inserted into its routing table to 
replace empty slots or failed entries. Second, it allows a Pastry node to optimize 
its routing table entries with respect to the underlying physical network. When 
comparing two possible entries (i.e. its own and the remote) for a given routing 
table slot, preference can be assigned according to an appropriate physical metric 
such as latency or hop count. This process is often referred to as Proximity 
Neighbor Selection [5].  
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Figure 2.3 Example of the Pastry overlay routing process. 
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2.2 Mobile Ad Hoc Networks 

Generally speaking, mobile ad hoc networks (MANETs) consist of mobile devices 
(e.g. PDAs, laptops, sensor nodes, etc.) that communicate amongst each other in a 
wireless fashion – for example using the IEEE 802.11 standard. Those devices 
spontaneously form a network amongst themselves without any central 
infrastructure or fixed topology. Having no central infrastructure as well as a 
highly dynamic topology, arguably the most fundamental task in a MANET is 
routing. How can a packet be delivered from a source node to a specified 
destination node, most likely via a chain of forwarding node? This routing process 
is also often referred to as unicasting. 

There exists a plethora of routing protocols for MANETs. It is clearly beyond the 
scope of this thesis to present a comprehensive analysis of all MANET routing 
protocols. Instead, this section will provide an overview of the different concepts 
behind the various protocols. In general, one differentiates between flat routing 
and hierarchical routing [53]. 

2.2.1 Flat Routing Protocols 
Flat routing protocols operate on the assumption that all nodes in the network 
move around autonomously. Therefore, all nodes in the network generally 
assume equal roles in the routing process. One can further subdivide flat routing 
protocols into proactive and reactive protocols. 

Proactive routing protocols update route information in their routing tables 
independent of actual demands. This means that nodes maintain routes to other 
nodes even if those routes are not currently needed for any data packets. Many 
proactive protocols are link state based. To keep routes up-to-date in the presence 
of node mobility and failures, nodes broadcast information about their network 
neighbors periodically or event-driven. The main advantage of proactive protocols 
is that they can allow for low data packet transmission delays. When a node is 
about to send a data packet to a target node, the route will likely be known and 
up-to-date so that the data packet will not have to be cached to wait for the 
response of a lengthy and costly route discovery. This advantage becomes even 
more pronounced in traffic scenarios where nodes send data packets to frequently 
changing target nodes. The obvious disadvantage of proactive routing protocols is 
their constant route maintenance traffic can easily constitute a significant part of 
the overall traffic and can lead to an increased number of collisions with actual 
data packets. Since routes are also maintained even when they are not currently 
needed, proactive protocols are also not well-suited for stream-based traffic 
scenarios where nodes tend to communicate with an unchanging set of nodes over 
a certain period of time. Furthermore, due to the maintenance even of unused 
routes, proactive protocols can quickly drain the energy resources of the 
participating nodes. Popular representatives of proactive MANET routing 
protocols include DSDV [40] and OLSR [7]. 

Reactive routing protocols, on the other hand, discover routes on-demand. This 
means that a route from some node S to another node T is only established when 
node S actually is about to send a packet to node T. When routes have not been 
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used in a certain while, they usually expire and are expunged from the routing 
tables. A clear advantage of reactive routing protocols is that they do not 
generate any significant maintenance traffic. Only those routes are 
discovered/maintained that are currently needed. Thus, reactive protocols can 
scale to a large number of nodes as long as each source node tends to 
communicate with the same target node (or set of target nodes) over a longer 
period of time – so that costly route discoveries are limited – and as long as node 
mobility is rather mild – so that recently discovered routes remain valid for a 
certain period. Another advantage of reactive routing protocols is that, in scarce 
or bursty traffic scenarios, nodes can usually significantly preserve energy as 
they will not have to consume any energy for the maintenance of currently 
unneeded routes. The main disadvantage of reactive protocols is that they do not 
scale well to high and arbitrary traffic. When nodes send out packets at a high 
rates to frequently changing target nodes, the MANET will be flooded with route 
discoveries. Obviously, this problem would be further aggravated by high 
mobility rates where recently cached routes break quickly. Another negative 
effect of discovering routes on-demand is the increased delay between initiating 
the sending of a data packet until the routes has been discovered and the final 
delivery of the data packet to the target node. Popular representatives of reactive 
MANET routing protocols are DSR [24] and AODV [41]. 

As AODV [41] also serves as a basis for this thesis, its general concepts shall be 
outlined here. Being a reactive routing protocol, AODV nodes only discover routes 
when they are being needed. The AODV routing table of a node A contains 
information on recently discovered or used routes. Practically speaking, for each 
such route, the routing table contains the next hop that has to be taken from 
node A to get to the target, a sequence number that serves as a timestamp of this 
route information, and the length of this route as determined by the hop count. 
Figure 2.4 shows an example of an AODV routing table. If not used or updated 
during a certain period, entries expire and are expunged from the table. AODV 
routing is very straight-forward. When a node wants to send out a data packet, it 
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Figure 2.4 Example of an AODV routing table. 
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looks up the entry for the packet's destination in its routing table and sends the 
packet to the next hop as indicated by the routing table entry. Upon reception of 
the packet, that next hop node looks up the packet's destination in its routing 
table and forwards the packet to the next hop as indicated by its entry. This 
process continues at each intermediate node until the packet reaches its 
destination. 

If a node that is about to send out a data packet cannot find a routing table entry 
for the packet's destination, a route discovery will be started. Among other fields, 
such a route request contains the source address (i.e. the address of the 
requesting node), the destination address (i.e. the address of the node to whom a 
route is request), and the last known sequence number for the destination (to 
make sure that no older entries are sent back than the entries the source has 
already known). The route request is then broadcast throughout the network. 
Each receiving node temporarily stores the previous hop of the request as the 
next hop for the reverse route back to the source node. If an appropriate entry 
(i.e. an entry whose sequence number is larger than the one included in the 
request) can be found in the routing table, the node will send back a route reply 
containing the destination sequence number. Otherwise, the request is forwarded 
further. When the destination node itself receives the route request, it will 
increment its local sequence number and respond with reply containing the new 
sequence number. 

Each intermediate node that receives a route reply will increment the hop count 
and forward that reply using the reverse route from the corresponding route 
request until the reply is received by the source of the request. Furthermore, each 
intermediate node as well as the source node of the request, will update their 
routing table with the information from the route reply. This information will be 
stored in the routing table if i) no entry can be found for the request's destination, 
ii) there is already an entry for the request's destination but its sequence number 
is smaller than the sequence number included in the reply (i.e. the entry is 
outdated), or iii) the existing entry's sequence number is equal to that of the reply 
but the reply's route is shorter. 

2.2.2 Hierarchical Routing Protocols 
In contrast to flat routing protocols, that usually scale only to a limited number of 
nodes, hierarchical routing protocols try to exploit a common node behavior 
where, instead of moving around completely independently of each other, nodes 
often move around in clusters or groups. Therefore, information about topological 
changes in some group A have to be broadcast only inside that group A. Nodes 
from other groups are not affected as long as they still know how to reach any 
node – often a specific group head that serves as gateway to and from its group – 
in group A so that they can still deliver data packets to that node who will then 
take care of the routing inside its own group. An advantage of having node 
groups is that route maintenance can be markedly reduced. For example, nodes 
could maintain the routes to nodes inside their own group at regular intervals. 
Only the node that serves as group head or gateway will further have to maintain 
routes to heads of other groups. Furthermore, hierarchical routing protocols can 
scale well to growing network sizes. It is, for example, conceivable that, as the 
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number of nodes increases, groups start forming super-groups, super-super-
groups, etc. to further divide the route maintenance responsibilities. 

However, hierarchical routing protocols can also have significant disadvantages. 
Since node heads serve as gateways to and from their groups, they will have to 
handle higher traffic rates than regular nodes do, which, in turn, will also drain 
their energy resources more quickly. Thus, group heads can become bottlenecks 
in the routing process. Another problem can be the organization and 
maintenance of the hierarchy itself. Due to node mobility, nodes will not 
permanently stay in the same group. As nodes leave their groups and enter new 
groups, the hierarchy will constantly have to be adapted to this. Especially when 
nodes serving as heads change groups, this can trigger cascading group 
reorganizations. An often cited example of a hierarchical routing protocol is 
HSR [39]. 

Often, concepts from hierarchical and flat routing are combined. ZRP [21] is a 
classic example of such hybrid routing strategies. Each node in ZRP forms a 
group of a certain radius (e.g. two hops) and uses proactive routing inside its 
group. For all other destinations outside their groups, nodes employ a reactive 
routing protocol. While ZRP alleviates the costs of (re-)organizing the hierarchy 
and generally avoids the formation of bottlenecks, it quickly assumes the 
behavior and runs into the same problems as reactive flat routing protocols as 
the number of nodes in the network increases and, thus, most destinations start 
lying outside the nodes' respective groups. 

2.3 Topology-Aware Structured Overlay Networks 

It is important to bear in mind that a single overlay hop actually constitutes a 
physical route most likely consisting of multiple physical hops from the source 
node to the destination node of the overlay hop. At the same time, conventional 
Distributed Hash Tables were designed for the Internet where physical routing is 
practically taken for granted. For this reason, DHTs are largely oblivious to the 
underlying physical network during the construction of their overlay topology. 
The practical implication of this is that two overlay neighbors – i.e. two nodes 
whose overlay IDs are close to each other in the overlay ID space – will usually 
not be in close proximity of each other in the underlying physical network. This 
leads to a common effect referred to as overlay stretch. Technically speaking, the 
overlay stretch is the ratio between the length of the accumulated physical route 
traveled during an overlay lookup process compared to the length of the direct 
physical path from the source to the eventual target node. 

Figure 2.5 illustrates the overlay stretch. In this example, node S wants to send a 
packet with key D46A17 to the node currently responsible for the packet's key. In 
the first overlay hop, the DHT (in this example Pastry) then routes the packet to 
node A with overlay ID D1A08E. Node A forwards the packet in the overlay 
network to node B with overlay ID D4213F. Node B then forwards the packet to 
node C (overlay ID D462BA) who eventually delivers it to node T (overlay ID 
D46A01). Node T is responsible for the packet's key and, thus, the packet has 
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reached its final destination. While with respect to the overlay network the 
packet is delivered very efficiently with only 4 hops, this example shows that in 
terms of the physical network the packet actually traverses the network twice to 
eventually reach its final destination that turns out to be only two physical hops 
away from the source node of this overlay lookup. In other words, the packet has 
traveled 17 physical hops during the overlay routing process when it could have 
reached its destination in 2 hops had the destination been known in advance. 
Therefore, the overlay stretch in this example is 17/2 = 8.5. It needs to be pointed 
out that this is obviously an extreme example whose purpose is to provide a clear 
illustration of the overlay stretch. In practice, most DHTs employ Proximity 
Neighbor Selection (PNS) to alleviate the overlay stretch and Pastry's overlay 
stretch is generally observed to be between 1.6 and 2.2 [5]. 

While overlay stretches can at best be considered suboptimal in the Internet 
where physical routing is practically taken for granted, they pose a severe 
problem in MANETs where each additional physical hop decreases the delivery 
probability of a packet. Therefore, several approaches have been proposed to 
alleviate the overlay stretch in structured overlay networks. 

For example, in [46] the concept of Landmarking is proposed. Since nodes cannot 
be assumed to have exact positioning devices such as GPS available, the idea 
here is to introduce a fixed set of so-called landmark nodes into the network. This 
set of landmark nodes is known to all nodes and nodes will periodically measure 
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Figure 2.5 Overlay stretch. 
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their distances – e.g. as given by the hop count – to those landmark nodes 
(usually by sending a simple PING message to each landmark node that will be 
answered with a PONG message). Nodes will then order the landmark nodes 
according to their distance to them. The intuition is now that nodes that share 
the same such landmark order are quite likely to be physically close to each 
other. Thus, nodes with the same landmark order are mapped into the same 
region of the overlay ID space – e.g. by assigning them coordinates in the same 
CAN region or by assuming overlay IDs with a common prefix in the Pastry 
overlay ID space. 

Another example was proposed in [60]. Here, a joining node establishes its 
overlay ID by first measuring the distances to its physical neighbor nodes. These 
distances are then used to establish virtual springs between the nodes. The value 
needed to achieve the minimum energy state for the new node in that system of 
springs is used to assign the new node its overlay ID. However, in MANETs 
where a node's immediate physical neighborhood changes frequently, this 
approach can be expected to be quite volatile, generating quite a few ID 
reassignments to keep the system of virtual springs in check. 

An extensive study of all proposed mechanisms to provide locality-awareness in 
structured networks would be beyond the scope of this work. Therefore, we will 
focus on a light-weight and efficient approach called Random Landmarking [63, 
64, 65, 66, 72] as its general concept serves as a basis for this theses. 

The goal of Random Landmarking (RLM) is to form clusters where physical close 
nodes share a common overlay ID prefix. Thus, two nodes that are physically 
close to each other will also likely be "close" to each other in the overlay. In order 
to achieve this goal, RLM is based on the general concept of Landmarking. 
However, fixed and stationary landmark nodes are usually not available in the 
context of mobile ad hoc networks. Since Random Landmarking was explicitly 
designed for its application in such MANETs, it does not assume the presence of 
fixed landmark nodes. Instead, it uses a set of landmark keys. A landmark key is 
simply an overlay ID. Rather than having dedicated landmark nodes, with RLM 
those nodes become temporary landmark nodes that are currently responsible for 
one of the landmark keys (i.e. whose own overlay identifiers are currently closest 
to one of the landmark keys as defined by the respective DHT). Therefore, when 
one of the current landmark nodes fails or resigns, another node (that whose 
overlay ID is now closest to the landmark key) will automatically assume its role. 

Landmark keys should be chosen so that they divide the overlay ID space into 
equal-sized segments. For example, in a hexadecimal-based Pastry ID space, an 
appropriate set of landmark keys could be: 0800…000, 1800…000, 2800…000, ...,  
E800…000, F800…000. 

To form clusters of common overlay ID prefixes, nodes associate themselves with 
the temporary landmark node that is currently closest to them (e.g. as 
determined by the hop count)  by adopting its overlay ID prefix. For that purpose, 
each node periodically measures its distance to the temporary landmark nodes. 
This can easily be achieved by issuing a DHT lookup for the respective landmark 
keys. The temporary landmark nodes will then directly respond to the requester 
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and that node can use the hop count of the response as a distance metric to the 
various landmarks. Nodes periodically examine their landmark list to determine 
whether they have moved closer to a new landmark, i.e. whether they have 
moved – with high probability -  into a new overlay cluster. If so, a node will 
assign itself a new random overlay ID with its new cluster's overlay ID prefix, 
resign from the overlay network with its old ID, and rejoin the overlay network 
with its new ID. The length of the ID prefix that a node shares with its closest 
landmark node can be determined using the following formula: 

prefix length =  ⎣ ⎦kblog  

where b is the ID base and k the number of landmark keys. 

RLM was built into the DHT Pastry and thoroughly evaluated in various network 
settings. It was shown that, in static networks, RLM is able to significantly 
decrease the overlay stretch compared to standard Pastry. When additionally 
employing the same routing table optimization techniques that Pastry uses, RLM 
is even able to achieve an overlay stretch even below Pastry's optimal achievable 
overlay stretch. Furthermore, a Pastry network with RLM obtains its lower 
overlay stretches while generating up to 75% less overlay traffic in total 
compared to standard Pastry. Figure 2.6 and Figure 2.7 illustrate the effect that 
RLM has on the network topology. Both figures depict the spatial distribution of 
overlay ID prefixes where equal symbols and colors represent equal overlay ID 
prefixes. In a standard Pastry network, as shown in Figure 2.6, overlay ID 
prefixes are randomly distributed among the participating nodes. There is no 
correlation between overlay proximity (i.e. nodes that have a common overlay ID 
prefix and that are, thus, close to each other in the overlay ID space) and actual 
physical proximity of nodes. However, Figure 2.7 demonstrates that, with RLM, 
clusters form where physically close nodes share a common overlay ID prefix. 

 

Figure 2.6 Spatial distribution of overlay 
ID prefixes in a Pastry network. Equal 
symbols and shades of grey represent 
equal overlay ID prefixes. 

 

Figure 2.7 Spatial distribution of overlay 
ID prefixes in a RLM network. Equal 
symbols and shades of grey represent 
equal overlay ID prefixes. 
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Hence, with RLM, physically close nodes are also likely to be close to each other 
in the overlay ID space. 

Random Landmarking was also evaluated in mobile networks. Figure 2.8 
compares the performance of RLM and standard Pastry in a 2,000 node network 
where nodes moved according to the random waypoint mobility model with a 
speed of 0.6m/s and a pause time of 30s. Each simulation run lasted 24 simulated 
hours. During those 24h, 20,000 random lookups were issued, uniformly 
distributed among the 2,000 nodes. As can be seen, Pastry's overlay stretch 
quickly deteriorates, even when the Pastry nodes maintain their routing tables 
every 30s and 60s, and approaches the overlay stretch that Pastry displays 
without any routing table maintenance. 

RLM, on the other hand, achieves a stable and decidedly lower overlay stretch 
than Pastry does with a comparable amount of messages exchanged when the 
landmark re-measure interval is 10 minutes. If one is willing to accept a message 
total above Pastry's total with a 1-minute routing table maintenance interval but 
still well below Pastry's 30s interval total, RLM's overlay stretch can be lowered 
even further with shorter landmark re-measure intervals of 1 and 5 minutes (see 
Figure 2.9). 

So far, to evaluate RLM's general performance, ideal networks have been used 
where packets were always correctly delivered. Next, RLM was evaluated in 
ns-2 [37], simulating a complete 802.11 based physical network. Figure 2.10 
shows the success rates in a 100 node network where, again, nodes move at a 
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Figure 2.8 Overlay stretch for Pastry and RLM mobile networks. 
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steady speed of 0.6m/s with a pause time of 30s. The Pastry and RLM overlay 
networks were deployed on top of AODV as network routing protocol. Each 
simulation run lasted one simulated hour during which each node periodically 
issued random key lookups. 

The success rate is simply defined as the ratio between the total number of issued 
random key lookups and the number of those key lookups that were delivered to 
the correct destinations – i.e. to the nodes currently responsible for the respective 
keys. As can be seen, RLM can help improve the success rate slightly (from 55% 
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Figure 2.9 Total number of overlay messages exchanged during an average 24h 
simulation. 
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Figure 2.10 Success rate of Pastry and RLM in a 100-node 
AODV network. 
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to ca. 58%). This is because, on average, RLM reduces the number of actual 
physical packets that are triggered by an overlay hop. For example, an overlay 
hop from node A to destination node B might trigger a network-wide broadcast of 
AODV route request packets if node A does not know a physical route to node B 
in order to perform the overlay hop. 

Figure 2.11 depicts the average number of physical messages (such as AODV 
route requests, replies, etc.) that are triggered by an overlay hop. Using RLM, 
this figure can be reduced by approx. 20%. The question arises why this 
considerable reduction results in only a slightly improved success rate. The 
reason for this is that RLM's additional overlay messages such as landmark re-
measurements, node rejoins, etc. will also trigger significant amounts of physical 
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Figure 2.11 Average number of physical packets per 
overlay hop. 
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Figure 2.12 Physical traffic generated by Pastry and 
RLM. 
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messages. Those extra physical messages will, then, interfere (e.g. due to 
collisions, packet queue overflows, etc.) with other packets such as key lookup 
packets, which in turn will lower the success rate. Furthermore, not only will 
lookup packets be lost due to factors such as collisions but also RLM maintenance 
packets such as landmark re-measurement packets themselves. For example, 
unlike in ideal networks, a node might not hear from its closest landmark node 
due to packet loss and, therefore, might decide to join another cluster even 
though it has not actually moved out of its own cluster. This, of course, will result 
in an increased rejoin overlay traffic, which in turn can trigger additional 
physical messages and so forth. Accordingly, Figure 2.12 shows that, in a "real", 
non-idealized physical network, RLM generates only slightly less physical 
messages than standard Pastry does.  

2.4 Summary 

To overcome the scalability issues of the flooding-based unstructured peer-to-peer 
networks, Distributed Hash Tables have been proposed. DHTs impose a certain 
structure on their overlay networks to enable very efficient overlay routing. 
However, as DHTs are largely oblivious to the underlying network, the length of 
the accumulated physical route traveled during an overlay lookup process can be 
significantly greater than the length of the direct physical path from the source 
to the eventual target node. To alleviate this overlay stretch, mechanisms have 
been proposed to map physical proximity to the overlay ID space. For example, 
using Random Landmarking, one can significantly lower the overlay stretch in 
Pastry overlay networks on top of fixed or idealized mobile physical networks. 
However, when deployed on top of a non-idealized, "real" mobile ad hoc network, 
the packet delivery success rate even of RLM-enhanced overlay networks drops to 
unacceptably low levels (in the analyzed scenario to around 60%) as factors such 
as ad hoc route discoveries and packet collisions start posing a heavy burden on 
the efficacy of the overlay network. These findings corroborate our assumption 
that is does not suffice to merely deploy conventional DHTs (even with topology-
awareness) on top of MANETs to provide the building blocks for distributed 
applications. Instead, we argue that, in order to provide efficient key-based 
routing in MANETs, it is necessary to integrate the concepts of ad hoc routing 
and DHT-based overlay routing at the network layer. 
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