9 Tabellenverzeichnis

Tab. 2.1: Physikalische Eigenschaften von Ganymed im Vergleich mit dem Nachbarmond Callisto	. 17
Tab. 4.1: Wellenlängenpositionen der Absorptionen von Wassereis.	. 45
Tab. 4.2: Wellenlängenpositionen der Absorptionen von Wasser eingelagert im Kristallgitter.	. 48
Tab. 4.3: Wellenlängenpositionen der Absorptionen der funktionellen Gruppe im Kristallgitter.	. 49
Tab. 5.1: Instrumentparameter des abbildenden Spektrometers <i>NIMS</i> .	53
Tab. 5.2: Parameter der zur Verfügung stehenden NIMS-Beobachtungen von Ganymed	. 57
Tab.5.3: Instrumenteigenschaften der Galileo-SSI-Kamera (aus: Belton et al., 1992).	61
Tab. 5.4: Instrumenteigenschaften der Vovager-Kameras.	. 62
Tab. 5.5: Veränderungen der spektralen Kalibration für Ganymed und Callisto	66
Tab. 5.6: Parameter der Phasenkurve $f(a)$ in Gl. 5.3	.70
Tab. 5.7: Mittelwerte der absoluten und relativen Fehler der approximierten Modellfunktionen	. 86
Tab. 5.8: Zusammenfassende Übersicht der gewonnenen spektralen Parameter.	. 87
Tab. 6.1: Übersicht der beiden globalen NIMS-Beobachtungen E6GNGLOBAL und G1GNGLOBAL	.97
Tab. 6.2: Mittelwerte der gemessenen Absorptionstiefen von Wassereis hei 1 5um aufgeschlüsselt für die d	drei
geologischen Einheiten und deren Teilgebiete	102
Tab. 6.3: Menge des einfallenden Energieflusses in keV/cm ² s im Bereich der polaren und äquatorialen Region	nen
von Ganymed	107
Tab. 6.4: Mittelwerte der gemessenen Absorntionstiefen von Wassereis bei 1.04 und 1.25um aufgeschlüsselt.	fiir
die drei geologischen Finheiten und deren Teilgehiete	112
Tab. 65: Mittelwerte der gemessenen Absorntionstiefen von CO, bei 425um aufgeschlüsselt für die d	drei
rab. 0.5. White were der gemessenen Absorptionstieren von CO ₂ ber 4,25µm aufgesenfussen für die C	121
Tab. 6.7: Absorntionstiefen von Wassereis bei 1.5 um im Bereich von Uruk Sulcus aufgeschlüsselt für die d	drei
rab. 0.7. Absolptionsteren von wasserers bei 1,5µm nit bereien von Oruk Suleus aufgesetnussen für die e	136
Tab. 68: Absorntionstiefen von CO, bei 425um im Bereich von Uruk Sulcus aufgeschlüsselt für die d	drai
rab. 0.8. Absorptionsuction with CO_2 out 4,25µm nm Bereten von Orak Suicus aufgesenfussen für die G	1/2
geologischen Einnehen und deren Fengeblete. Tab. 6.0: Übersight der untersuchten Teilbersighe in der Übergengeragion zwischen ögusterielen und pole	ron
Tab. 0.7. Obersieht der untersuchten Tenbereiche in der Obergangsregion zwischen aquatorialen und pola	1/10
Tab. 6.10: Absorptionstiafan bai 1.5um im Baraich von Sinner Sulcus	151
Tab. 6.11: Absorptionstiefen bei 1 5um im äguatorialen hzw. polaren Bareich von Yihalba Sulcus	151
Tab. 6.12: Absorptionsticten von Wassarais bai 1.04 und 1.25 um im Baraich von Sinnar Sulcus	151
Tab. 6.12. Absorptionstiefen von CO, bei 4.25 m im Bereich von Sipper Sulcus	150
Tab. 6.14: Absorptionsticten von CO_2 bei 4.25µm im Bereich von Sippar Sulcus	150
Tab. 6.14: Adsorptionstielen von CO_2 der 4,25µm im aquatorialen bzw. polaten bereich von Albaida Suicus. I	1.62
Tab. 6.15: Parameter der Nivis-Beobachung im Bereich von Epigeus	164
Tab. 6.16: Adsorptionstielen von wassereis der 1,5μm im Bereich von Epigeus	104
Tab. 6.17: Adsorptionstellen von CO_2 der 4,25µm nn Bereich von Epigeus.	10/
Tab. 6.18: Parameter der MIMS-Beobachtungen von Einschlagskrätern mit hellem Auswurtsmäterial	
Ganymed. Tab. (10: A basentise stiefer over Wesservis bei 15. m im Densish von Osinis	109
Tab. 6.19: Adsorptionstieren von wassereis bei $1,5\mu$ m im Bereich von Osiris.	170
Tab. 6.20: Absorptionstiefen von Wassereis bei $1,5\mu$ m im Bereich des Einschlagskraters Melkart	1/8
Tab. 6.21: Absorptionstiefen von Wassereis bei 1,5µm im Bereich des unbenannten Einschlagskrater in Mar	rius
	179
Tab. 6.22: Verhaltnis der Absorptionstiefen von Wassereis bei 2 und 1,5 μ m im Bereich von Osiris	181
Tab. 6.23: Verhaltnis der Absorptionstiefen von Wassereis bei 2 und 1,5μm im Bereich von Melkart	182
Tab. 6.24: Verhältnis der Absorptionstiefen von Wassereis bei 2 und $1,5\mu$ m im Bereich des unbenann	iten
Einschlagskrater in Marius Regio.	183
Tab. 6.25: Absorptionstiefen von CO_2 bei 4,25µm im Bereich des Einschlagskraters Osiris	185
Tab. 6.26: Absorptionstiefen von CO_2 bei 4,25µm im Bereich von dem Einschlagskrater Melkart	187
1 ab. 6.27: Absorptionstieten von CO ₂ bei 4,25 μ m im Bereich des unbenannten Einschlagskrater in Marius Re	:g10
	189
1 ab. 6.28 : Parameter der NIMS-Beobachtungen im Bereich der untersuchten dunklen Strahlenkrater	192
1 ab. 0.29: Absorptionstieten von Wassereis bei 1,5 μ m im Bereich des Einschlagskraters Mir	200
1 ab. 6.30 Absorptionstieten von Wassereis bei 1,5 μ m im Bereich des Einschlagskraters Tammuz	201
Tab. 6.31: Absorptionstieten von Wassereis bei 1,5µm im Bereich des Einschlagskraters Kittu	202

Tab. 6.32: Verhältnis der Absorptionstiefen von Wassereis bei 1,5 und 1,25µm (oben) bzw. 2 ur	id 1,5 μ m (unten)
im Bereich des Einschlagskraters Mir	
Tab. 6.33 Verhältnis der Absorptionstiefen von Wassereis bei 1,5 und 1,04 µm im Bereich des E	Einschlagskraters
Tammuz	
Tab. 6.34 Verhältnis der Absorptionstiefen von Wassereis bei 2 und 1,5µm im Bereich des E	Einschlagskraters
Tammuz	
Tab. 6.35: Verhältnis der Absorptionstiefen von Wassereis bei 2 und 1,5µm im Bereich des E	Einschlagskraters
Kittu	
Tab. 6.36: Absorptionstiefen von CO2 bei 4,25µm im Bereich des Einschlagskraters Mir	
Tab. 6.37 Absorptionstiefen von CO2 bei 4,25µm im Bereich des Einschlagskraters Tammuz	
Tab. 6.38: Absorptionstiefen von CO2 bei 4,25µm im Bereich des Einschlagskraters Kittu	
Tab.7.1: Zusammenfassung der beobachteten spektralen Variationen auf der Ganymedoberfläche	e 220