
Point contacts at the copper-indium-gallium-selenide interface—A theoretical outlook
Adrien Bercegol, Binoy Chacko, Reiner Klenk, Iver Lauermann, Martha Ch. Lux-Steiner, and Matthias Liero 
 
Citation: Journal of Applied Physics 119, 155304 (2016); doi: 10.1063/1.4947267 
View online: http://dx.doi.org/10.1063/1.4947267 
View Table of Contents: http://scitation.aip.org/content/aip/journal/jap/119/15?ver=pdfcov 
Published by the AIP Publishing 
 
Articles you may be interested in 
Emitter/absorber interface of CdTe solar cells 
J. Appl. Phys. 119, 233104 (2016); 10.1063/1.4953820 
 
Predicted roles of defects on band offsets and energetics at CIGS (Cu(In,Ga)Se2/CdS) solar cell interfaces and
implications for improving performance 
J. Chem. Phys. 141, 094701 (2014); 10.1063/1.4893985 
 
Three-dimensional simulations of a thin film heterojunction solar cell with a point contact/defect passivation
structure at the heterointerface 
Appl. Phys. Lett. 95, 122108 (2009); 10.1063/1.3233962 
 
An electrostatic barrier to trap filling in CuIn 1−x Ga x Se 2 
Appl. Phys. Lett. 83, 2363 (2003); 10.1063/1.1613034 
 
Band bending independent of surface passivation in ZnO/CdS/Cu ( In,Ga )( S,Se ) 2 heterojunctions and Cr/Cu (
In,Ga )( S,Se ) 2 Schottky contacts 
Appl. Phys. Lett. 82, 3559 (2003); 10.1063/1.1576500 
 
 

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Download to IP:  130.133.152.82 On: Tue, 16 Aug 2016

09:08:35

http://scitation.aip.org/content/aip/journal/jap?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/1129812696/x01/AIP-PT/JAP_ArticleDL_072016/APR_1640x440BannerAd11-15.jpg/434f71374e315a556e61414141774c75?x
http://scitation.aip.org/search?value1=Adrien+Bercegol&option1=author
http://scitation.aip.org/search?value1=Binoy+Chacko&option1=author
http://scitation.aip.org/search?value1=Reiner+Klenk&option1=author
http://scitation.aip.org/search?value1=Iver+Lauermann&option1=author
http://scitation.aip.org/search?value1=Martha+Ch.+Lux-Steiner&option1=author
http://scitation.aip.org/search?value1=Matthias+Liero&option1=author
http://scitation.aip.org/content/aip/journal/jap?ver=pdfcov
http://dx.doi.org/10.1063/1.4947267
http://scitation.aip.org/content/aip/journal/jap/119/15?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jap/119/23/10.1063/1.4953820?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/141/9/10.1063/1.4893985?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/141/9/10.1063/1.4893985?ver=pdfcov
http://scitation.aip.org/content/aip/journal/apl/95/12/10.1063/1.3233962?ver=pdfcov
http://scitation.aip.org/content/aip/journal/apl/95/12/10.1063/1.3233962?ver=pdfcov
http://scitation.aip.org/content/aip/journal/apl/83/12/10.1063/1.1613034?ver=pdfcov
http://scitation.aip.org/content/aip/journal/apl/82/20/10.1063/1.1576500?ver=pdfcov
http://scitation.aip.org/content/aip/journal/apl/82/20/10.1063/1.1576500?ver=pdfcov


Point contacts at the copper-indium-gallium-selenide interface—
A theoretical outlook

Adrien Bercegol,1,a) Binoy Chacko,1,b) Reiner Klenk,1 Iver Lauermann,1

Martha Ch. Lux-Steiner,1 and Matthias Liero2

1Helmholtz-Zentrum Berlin f€ur Materialien und Energie, Albert Einstein Straße 15, 12489 Berlin, Germany
2Weierstraß-Institut f€ur Angewandte Analysis und Stochastik, 10117 Berlin, Germany

(Received 2 February 2016; accepted 9 April 2016; published online 21 April 2016)

For a long time, it has been assumed that recombination in the space-charge region of copper-

indium-gallium-selenide (CIGS) is dominant, at least in high efficiency solar cells with low band

gap. The recent developments like potassium fluoride post deposition treatment and point-contact

junction may call this into question. In this work, a theoretical outlook is made using three-

dimensional simulations to investigate the effect of point-contact openings through a passivation

layer on CIGS solar cell performance. A large set of solar cells is modeled under different scenarios

for the charged defect levels and density, radius of the openings, interface quality, and conduction

band offset. The positive surface charge created by the passivation layer induces band bending and

this influences the contact (CdS) properties, making it beneficial for the open circuit voltage and effi-

ciency, and the effect is even more pronounced when coverage area is more than 95%, and also

makes a positive impact on the device performance, even in the presence of a spike at CIGS/CdS

heterojunction. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4947267]

I. INTRODUCTION

With the advent of post deposition potassium fluoride

(KF) treatment in the copper-indium-gallium-selenide (CIGS)

technology, a new door is opened in the research arena and ef-

ficiency catches up to 21.7% narrowing the gap between the

strongest competitor multi-crystalline silicon.1–4 This finding

suggests the role of the interface as a limiting factor for the ef-

ficiency and triggered the inevitability of engineering the

CIGS/CdS interface for an enhanced device performance,

which leads to implement the concept of localized openings

through a passivation layer (PL). The idea is inspired by the

silicon solar technology that already benefited from the

micron-sized point contacts to increase its electrical proper-

ties.5,6 In CIGS, the need of a high-quality interface is particu-

larly important, because of the high density of interface states

that can act as the main recombination channel to the device

and limit the open-circuit voltage and also the efficiency.7 By

introducing the PL, the area of contact between the CIGS/CdS

is reduced, which in turn limits the recombination depending

on how effectively the PL passivates the defects.

The concept of passivated emitter and rear cells (PERCs)

has previously been introduced at the interface at the back con-

tact (CIGS and Mo), witnessing an increase in the efficiency

and Voc, but this was limited to ultra-thin films only, as the

back contact recombination in standard CIGS (2–3 lm) is neg-

ligible due to the gallium grading and photo generation of car-

riers at the junction is highly probable.8 The well-established

patterning techniques presently used in silicon solar cell for

passivation are difficult to employ at the chalcopyrites junction

due to the rough surface of the polycrystalline material and

because of the shorter diffusion lengths that forces one to

make nanometer-scale openings. However, the idea of a point

junction was reported by Fu et al. by incorporating ZnS nano-

dots into In2S3 buffer layer, which has been shown to be bene-

ficial for CIGS performance.9 Recently, a novel surface nano

patterning technique achieved by self-assembling of alkali con-

densates make this a method to look for accomplishing PL at

CIGS front interface.10

From these pioneering works, the benign effect of passi-

vation is unequivocal that makes PL a promising way to

achieve a high efficiency CIGS solar cell. Even though the

point contacts are realized experimentally to some extent, a

theoretical investigation is necessary to understand their

behaviour and influence on the performance of the device. In

this article, different configurations of the point contacts at

the CIGS/CdS interface are considered and simulated using

two finite-element method (FEM) software tools.

II. MODELS

The FEM software tools employed in this simulation are

the two/three-dimensional WIAS-TeSCA11 and one-

dimensional SCAPS12 that simulate the transport of charge

carriers by solving a system of drift diffusion equations. The

Shockley-Read-Hall model (SRH) is used to model the

recombination through interface and bulk states. Since this

study is mainly focused on the influence of the parameters

close to the interface, meshing is made considerably denser

in this region (about 3000 points/10 000). The current density

versus voltage graphs (J-V) have been realized with a spec-

trum containing one wavelength of 650 nm and an intensity

of 83:1 mW=cm2. All results are matched with SCAPS if

PL is not introduced, omitting in SCAPS as well as in

WIAS-TeSCA: reflection loss, ZnO optical loss, and series

resistance.
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The solar-cell model is a typical CIGSe solar cell to

which a 15 nm thick PL is added at the front contact. A 2 lm

thick CIGS absorber layer with a band gap energy of

1.15 eV, 50 nm CdS buffer layer, and a ZnO window layer of

200 nm were implemented. The model parameters for these

layers are given in Table I. The investigated model has

three-dimensional cylindrical symmetry with the center of

the point contact on the rotation axis. The cell radius, “b,” is

kept constant, while “a,” the contact radius is varied (see

Fig. 1).

Interfaces studied in this work are modeled by very thin

layers containing a high density of defects Nd. These 2 nm

thick layers (underlayer/overlayer) are equivalent to the sur-

face recombination model, with surface density Ns yielding:

Nsðcm–2Þ ¼ 2� 10�7 � Ndðcm–3Þ. These equivalent surface

densities are given in Table I. With the introduction of the

PL, three interfaces are formed:

• CdS/PL interface, which is assumed to be free of defects
• contact interface (CIGS/CdS) including CIGS overlayer
• passivated interface (CIGS/PL) including CIGS overlayer

and ZnS underlayer.

The underlayers/overlayers have a high density of neutral

defects NN
s energetically close to the CIGS mid-gap in com-

mon, inducing a high recombination velocity Srec, defined

through: Srec ¼ r � vth � NN
s . The defect capture cross section

r ¼ 1015cm–2 is the same for electrons and for holes.

We considered a wide-band gap semiconductor ZnS as

the PL. Different scenarios were simulated at the passivated

interface: either donor/acceptor pairs of defects or donor

defects only. Defect densities ND
s ðNA

s Þ and energetic levels

ED
d ðEA

d Þ have also been varied following a precise pattern. In

contrast to the neutral ones in the CIGSe over layer, these

defects can also ionize, creating a positive surface charge

across the interface between CIGSe and PL. Fig. 1(c) shows

a zoom on the CIGS front interface and highlights the posi-

tion of the defects. The CIGS overlayer corresponds to the

red crosses in the diagram, whereas the PL underlayer is

marked by the white crosses in black background. In sum-

mary, our model includes deep charge neutral, recombina-

tion inducing defects over the whole area consisting of the

PL and contact interfaces. However, only the PL interface

can, in addition, hold an electric charge in specific defects.

In addition to the electronic properties of the PL, its geome-

try was also a parameter considered in this model. The con-

tact area radius, a, was varied from 2 nm to 400 nm, while

the distance between the contact radius remains constant,

which is valued to be 2b¼ 1 lm. Thus, the percentage of

covered area is given by: P ¼ 1� a2=b2.

In order to see the extent to which the passivation layer

can be beneficial to the solar cell, different sets of parameters

mentioned above are investigated along with two distinct

conduction band offsets (CBOs) at CIGS/CdS interface and

two different interface crystalline qualities. By taking all into

account, mainly four different types of solar cells have been

investigated. As explained in Table II, S1 (resp. S2) refers to

positive conduction band offset (CBO) (spike at CIGS/CdS)

and high (resp. low) recombination velocity Srec, whereas C1

and C2 refer to the cell with a cliff at CIGS/CdS, i.e., with

negative CBO.

TABLE I. Simulation input parameters. d: thickness, ND=A: doping, Eg: band gap, v: electron affinity, Nc/Nv: density of states, l: mobility, s: bulk lifetime,

NN
s =EN

d : Neutral defect density and energetic level below CIGSe conduction band, ND
s =ED

d =NA
s =EA

d : same for donor and acceptor traps.

Layer properties CIGS CdS PL i-ZnO n-ZnO

d lm 2 0.05 0.015 0.05 0.2

ND=A cm�3 NA : 1016 ND : 4� 1015 ND : 1015 ND : 1018 ND : 1:01� 1018

�=�0 13.6 13.6 8.3 9 9

Eg eV 1.15 2.4 3.6 3.3 3.4

v eV 4.5 4.4/4.6a 3.9 4.4 4.4

Nc cm�3 7� 1017 4� 1018 6� 1018 4� 1018 4� 1018

Nv cm�3 1:5� 1019 9� 1018 6� 1019 9� 1018 9� 1018

ln cm2V�1s�1 100 100 100 100 100

lp cm2V�1s�1 25 25 25 25 25

sn ns 50 33 1 10 10

sp ns 50 0.033 1 0.01 0.01

vth cm s�1 107 107 107 107 107

Interface properties CIGS/CdS

CIGS/PL CIGS/PL

Donor Donor/acceptor

NN
s cm�2 5� 1012=2� 1013 b 5� 1012=2� 1013 b 5� 1012=2� 1013 b CIGSc

EN
d eV 0.55 0.55 0.55 overlayer

ND
s cm�2 0 2� 1010=2� 1012=2� 1014 d 2� 1013 ZnSc

ED
d eV 0 0.08 0:13=0:33 d underlayer

NA
s cm�2 0 0 2� 1013 ZnSc

EA
d eV 0 0 0.08/0.28d underlayer

aCBO variation.
bS variation.
cDefect position, see Fig. 1(c).
dDefect structure variation.
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III. RESULTS

The results obtained for the PL featuring the best elec-

tronic properties will be presented first, by focusing first on

the band diagrams and then on the whole device perform-

ance. To which extent other electronic properties lead to

worse results or not will be explained next.

The band diagram close to the interface at z¼ 0, as a

function of perpendicular distance to the interface is shown

in Fig. 2. The plots of the bands are obtained by two vertical

cross sections, taken at the contact (blue) and through the PL

(red). A big spike at the interface on the conduction band

shows the current blocking behavior of the PL. Furthermore,

the additional band bending generated at the CIGS/PL inter-

face is clearly visible. The band bending is stronger at the PL

than at the contact by more than 0.2 eV. In the vicinity of the

PL, the CIGS Fermi-level is closer to the conduction band

than at the CIGS/CdS interface.

Fig. 3 displays the potential and electron current density

direction for a¼ 50 nm and indicates a potential gradient at

the CIGS/CdS interface. To have a better overview of the

Fermi-level position at the interface, a horizontal cross sec-

tion of the valence band is taken across the contact and the

PL, and a is varied from 10 nm to 400 nm. This is depicted in

Fig. 4. The corresponding values of band bending in Table

III are obtained by taking the deviation between the valence

band energetic level in the bulk (Evbulk ¼ �0:19eV) and just

below the interface at the PL (EvPL) and at the contact (EvC).

We define then

/PL ¼ Evbulk � EvPL and /C ¼ Evbulk � EvC:

The transition between /PL and /C takes place on the

contacted area: the PL pins the Fermi level over its full

width. Furthermore, an increase in /C happens when a
shrinks and a noticeable change appears when P > 96%.

The open-circuit voltage, being an indicator of recombi-

nation, is displayed in Fig. 5. A significant reduction of

recombination is achieved by the PL. When a is shrinking,

P is growing and Voc is increasing independent of the quality

of the solar cell considered at the beginning. It is evident that

all VocðaÞ curves converge to the same limit for small a. The

FIG. 1. Three dimensional sketch of a point-contact CIGS solar cell. a: contact radius, variable, b: cell radius, constant at 500 nm. (a) Three dimensional over-

view; (b) cylindrical cut; (c) defect structure at the CIGS front interface.

TABLE II. Matrix showing the four investigated solar cells. CBO refers to

conduction band offset at CIGS/CdS. Srec refers to interface recombination

velocity.

CBO and Srec 5� 104cm s�1 2� 105cm s�1

0.1 eV (spike) S1 S2

�0.1 eV (cliff) C1 C2

FIG. 2. Band diagram for a point-contacted solar cell. Cross-section along the

z-axis close to the interface at the contact (blue curve) and on the passivation

layer (red curve). a¼ 250 nm, and PL includes ND
s ¼ 2� 1014=cm2 density

of donor traps energetically close to the CIGS conduction band. The simulated

cell includes a 0.1 eV cliff at CIGSe/CdS and S ¼ Smax ¼ 2� 105cm=s.
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efficiency also follows the same trend. Fig. 6 shows us the

limits of efficiency for a point contact junction solar cell,

valid for any interface recombination velocity and conduc-

tion band offset at CIGSe/CdS. Again, as a gets smaller, the

dots representing each investigated device are getting closer.

However, a threshold value appears for the contact radius,

from which the efficiency starts to shrink again. As to give a

summary of the results featured in Figs. 5 and 6, Figure 7

recalls the beneficial effect of the PL featuring the best

investigated defect structure, in terms of Voc and efficiency.

After this broad overview of the best cells in the wide

range of defect structures investigated in this study, results

for all of them are displayed in Fig. 8. Five kinds of defect

structures have been analyzed, and the results of simulations

with PL having same defect structure are aligned, showing

that band bending at the passivation layer /PL is independent

of Srec and CBO. From Table III, it can be concluded that

/PL is also independent of a. To sum up

FIG. 3. Potential (color scale) and

electron current (arrows) for

a¼ 50 nm. z ¼ 0lm corresponds to the

CIGS front interface.

FIG. 4. Distance from valence band to Fermi-level 2 nm below the CIGS

front interface. a 2 [10, 400]. PL defect structure, interface recombination

velocity, and CBO at CIGSe/CdS similar to Fig. 2.

TABLE III. Band bendings calculated for the simulated cell in Fig. 4. P is

the percentage of passivated area, /C is the band bending at the contact cen-

ter, and /PL at the passivation layer.

a (nm) P (%) /C (eV) /PL (eV)

10 > 99 0.82 0.85

50 99 0.81 0.85

100 96 0.68 0.85

250 75 0.61 0.85

400 36 0.60 0.85

FIG. 5. Open circuit voltage for different values of a. High (dotted lines)

and low (solid lines) recombination velocity, 0.1 eV spike (blue empty

shapes) and 0.1 eV cliff (red full shapes) at the CIGSe/CdS interface simula-

tion results are being displayed in this figure. The PL includes Ns¼ 2 �
1014/cm2 density of donor traps energetically close to the CIGS conduction

band. a ¼ 500nm corresponds to the unpassivated device.

FIG. 6. Minimum and maximum efficiency for different values of a. The

same set of parameters as in Fig. 5.
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@/PL

@a
¼ @/PL

@CBO
¼ @/PL

@Srec
¼ 0:

Hence, it is taken as a discriminating factor here. Its

influence on the open-circuit voltage and efficiency is signifi-

cant. Independent of the values of Srec and CBO at CIGSe/

CdS, Vocð/PLÞ and gð/PLÞ are increasing functions.

However, a PL inducing a weak /PL, corresponding to a

weak surface charge leads to a less efficient solar cell. This

fact is more pronounced in cells with good quality absorbers,

where efficiency drops by 30%. Also, a certain discrepancy

in the results exists around the value of /PL ¼ 0:65eV. This

is due to the parasitic behavior of the traps, which not only

bend the bands but also act as recombination center. In this

case, their beneficial effect on the cell performance is miti-

gated. Still, for a ¼ 100nm; /PL � 0:85eV, and for each

value of (Srec,CBO), the PL significantly enhances the device

performance, with at least a 10% increase in efficiency.

IV. DISCUSSION

The calculations confirm that an additional PL at the top

of the absorber has a beneficial effect on the open-circuit

voltage and efficiency of the whole device, as long as:

• UPL > 0:85eV, i.e., sufficient band bending is generated

by the PL
• P > 95%, i.e., more than 95% of the interface is passi-

vated. In our case, this corresponds to a � 50nm

As already stated in Sec. III, UPL > 0:85eV only

depends on the type of defect structure formed at CIGS/PL.

An ideal PL should induce a high density of donor defects or

donor/acceptor pairs, energetically located close to the CIGS

conduction band.13 This will generate an electric field at the

CIGS/PL interface which drives the electron and repels the

holes from the vicinity of the PL, thus mitigating the main

recombination channel. Once the new equilibrium is estab-

lished, the electrons will get to the contacts through

diffusion.

In addition to this, a wide range of defect structures

were also investigated, resulting in /PL < 0:85eV, which

leads to smaller improvements or even deteriorating the solar

cell performance. This emphasizes that main parameter

describing the influence of the PL is the band bending it

induces. Given that P > 95%, the electric field generated by

the PL will also repel the holes from the contact area, as it

happens for PERL in ultra-thin films.14 In fact, we already

noticed that lima!0 /C ¼ /PL. Hence, for sufficient small a,

not only the CIGS/PL interface but also the CIGS/CdS inter-

face is fully inverted. However, when a gets to the nanome-

ter scale, fill factor loss and series resistance appear, in good

FIG. 7. J-V curves for unpassivated so-

lar cells (dotted lines), and for passi-

vated solar cells (solid lines). a ¼ 50nm

and PL includes Ns¼ 2� 1014/cm2 den-

sity of donor trap energetically close to

CIGS conduction band.

FIG. 8. Influence of /PL on Voc and efficiency. Voc;0 and g0 (dotted lines) for

unpassivated device performance. High (circles) and low (triangles) recom-

bination velocity, 0.1 eV spike (blue empty shapes), and 0.1 eV cliff (red full

shapes) at the CIGSe/CdS interface are displayed. a ¼ 100nm, so P is 96%.
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correlation with Ref. 15. It is clear from the presented simu-

lations that the fill factor loss occurs because of a drop in the

short-circuit current. They also highlight that the threshold

value for a is shifted to smaller values when the electronic

properties of the PL are optimal. In any case, P should

remain under 99% to avoid fill factor loss. In the simulations

presented here, a distance between point contacts that

remained in the same order of magnitude as the electron dif-

fusion length was used (2b ¼ 1lm), which is also highly im-

portant for the efficiency of a point-contacted structure.14

The impact of these results extends to most of the CIGS

solar cells. Extreme cases were handled for the conduction

band offset at CIGSe/CdS and the interface quality, but the

results are in all likelihood also true for intermediate values

of these parameters. Varying the CBO between CIGS and

CdS has a drastic influence on the initial solar cell perform-

ance. Without any passivation layer, avoiding a barrier

reduction at the interface between CIGS and CdS maximizes

the effective band gap seen by the numerous interface

recombination sites.16 As described by the dotted lines in

Figure 7, a cliff induces an even more direct dependence

between defect density and open-circuit voltage losses,

which is also assessed by Ref. 17. Still, intrinsic donor traps

located at the interface could correct this negative effect.18

In our study, these traps do not come from the intrinsic inter-

face between CIGS or CdS, but directly from the interface

between CIGSe and PL. They generate the full type inver-

sion already described before, completely annihilating the

negative influence of a cliff at the interface between CIGS

and CdS. With this knowledge, the need for a buffer layer,

the main feature of which is to align the band between CIGS

and window layer,19 could be called into question. However,

the modeling of surface recombination through a thin layer

with high Nd could be the reason for these results, which

does not take into account tunneling recombinations between

charge carriers coming from different layers.11

Concerning the interface recombination velocity, which

was varied from a rather low value to a fairly high value, the

PL can mitigate its influence, though not in the same extent

as the CBO. Even for an ideal PL, Voc and g do not catch up

to the same values. This can be explained by the fact that no

perfect passivation of the defects is assumed here, unlike

Reinhard et al.,10 who modeled the interface between PL and

CIGSe without any defects. It is very noteworthy that a sig-

nificant improvement also occurs for a device having ini-

tially a very small interface recombination rate, the

efficiency of which should theoretically be limited by recom-

bination in the quasi-neutral region.7,20

The strong band bending in the absorber towards the

interface (and the resulting type inversion) is the most impor-

tant parameter mitigating the influence of interface recombi-

nation. It can happen due to the diffusion of the atomic

elements into the Cu vacancies in the CIGS absorbers, like

the Zn diffusion from the ZnS passivation layer21 or the re-

moval of Cu from the interface and occupation of potassium

in the KF treatment.10 An appropriate etching completely

removes the surface oxides before the chemical bath deposi-

tion of the buffer layer.22 Hence, the Na segregation on top

of the CIGS layer, that also leads to interface passivation,

has not been considered.

The results give a frame for experimental implementa-

tion of the PL. It highlights the fact that the most efficient

passivation layer works through field-induced passivation.

Instead of looking at the defect density or the defect ener-

getic level, the surface charge density at CIGS/PL should be

investigated for any efficiency improvement. Therefore,

thickness of the PL plays no influence, and this is confirmed

with simulation results (not shown here) done by varying the

PL thickness. The PL is more beneficial to a bad quality

absorber (cliff at CIGS/CdS), and their use would make the

development easier of efficient PL.

An optimum buffer layer, in addition to appropriate

band line-up, should also generate shallow defects at the

interface carrying the required positive charge. The standard

CdS buffer layer might do so via ionized Cd within the Cu-

free surface reconstruction of CIGS.23 As our model includes

charged defects only at the PL but not at the contact inter-

face, it may be argued that the benefit of the PL layer is

exaggerated. However, additional calculations (not shown

here) suggest that a cell with full area contact even with

charged defects will still be worse than the point contact cell,

in particular, with the cliff-type band alignment. If nothing

else, using two different materials (contact, PL) to fulfill one

requirement (band line-up, positive charge) each should pro-

vide more flexibility in designing the best possible interface.

V. CONCLUSION

From a large spectrum of solar cells considered in the

simulation, nano-contacts through a passivation layer at the

CIGS front interface have shown a benign effect on the per-

formance of the device, independent of the quality of the

interface. With the introduction of the PL, appearance of the

positive charge bends the band at the CIGS/PL interface

leading to an n-type inversion in this region, significantly

influences the contact area properties when the coverage

area of PL is greater than 95%. The positive impact of PL

also extends to cells having a favorable conduction band off-

set at the CIGS/CdS interface. These findings call into ques-

tion the role of buffer layer and allow a greater flexibility for

trying out different buffer layers. The numerical simulation

also underlines the promising feature of point contacts struc-

tures in the CIGS technology and yields vital information for

understanding and designing an efficient passivation layer.
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