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Effective theory for the propagation of a wave packet in a disordered and nonlinear medium
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The propagation of a wave packet in a nonlinear disordered medium exhibits interesting dynamics. Here, we
present an analysis based on the nonlinear Schrödinger equation (Gross-Pitaevskii equation). This problem is
directly connected to experiments on expanding Bose gases and to studies of transverse localization in nonlinear
optical media. In a nonlinear medium, the energy of the wave packet is stored both in the kinetic and potential
parts, and details of its propagation are to a large extent determined by the transfer from one form of energy to
the other. A theory describing the evolution of the wave packet has been formulated [Schwiete and Finkel’stein,
Phys. Rev. Lett. 104, 103904 (2010)] in terms of a nonlinear kinetic equation. In this paper, we present details of
the derivation of the kinetic equation and of its analysis. As an important new ingredient, we study interparticle
collisions induced by the nonlinearity and derive the corresponding collision integral. We restrict ourselves to
the weakly nonlinear limit, for which disorder scattering is the dominant scattering mechanism. We find that
in the special case of a white-noise impurity potential, the mean-squared radius in a two-dimensional system
scales linearly with t . This result has previously been obtained in the collisionless limit, but it also holds in the
presence of collisions. Finally, we indicate different mechanisms through which the nonlinearity may influence
localization of the expanding wave packet.
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I. INTRODUCTION

Currently, much attention is devoted to experiments study-
ing the dynamics of a wave packet evolving in the presence
of both random scatterers and nonlinearity. These experiments
are inspired by the idea that one can visualize the phenomenon
of Anderson localization. The propagation of a wave packet in
the presence of multiple scattering on a random potential has
been studied using photonic crystals [1,2] and also ultracold
Bose gases confined initially inside a trap [3–12]. The nonlin-
earity in the case of photonics is induced by the Kerr effect
(the change in the refractive index in response to an electric
field), or may result from the particle-particle interactions in
the case of cold atoms. In the optics experiments, a laser beam
is sent into a nonlinear optical crystal with a refractive index
varying randomly in the plane transversal to the direction
of the pulse propagation. The resulting beam profile can be
monitored on the opposite side of the crystal. In a second class
of experiments, atoms condensed initially inside a trap are
released and, during the subsequent expansion, are subjected
to a disorder potential. Unlike in the case of photonic crystals,
in the latter experiments it is possible to extract information
about the full time evolution of the expanding wave packets.

Motivated by these experiments, we recently presented an
effective theory of the propagation of a wave packet (averaged
over many disorder realizations) injected in a disordered and
nonlinear medium in two dimensions [13]. In the regimes
preceding Anderson localization, or when it is absent, we
found that the propagation of the wave packet in a nonlinear
disordered medium exhibits interesting dynamics related to
the fact that in the presence of nonlinearities, the energy of the
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wave packet is stored both in the kinetic and potential parts.
Then, the propagation of the wave packet is to a large extent
determined by the transfer from one form of the energy to the
other.

The derivation of the kinetic equation presented in Ref. [13]
was based on a classical field theory, supplemented with the
use of the quasiclassical approximation, a well-known tool
in the theory of nonequilibrium superconductivity [14–16].
The corresponding functional can also be used as a basis
for a diagrammatic perturbation theory. The relation between
the different terms appearing in the kinetic equation and the
diagrammatic perturbation theory was explained in Ref. [17].
Recently, the kinetic equation was rederived in Ref. [18] using
a diagrammatic approach. In this article, we present details of
the microscopic approach used for the derivation of the kinetic
equation presented in Ref. [13]. We also include an important
new ingredient into the formalism: interparticle collisions.
As a consequence, the resulting kinetic equation contains an
additional term: the collision integral. We finally discuss the
relevance of the collision processes.

We will assume that the time evolution of the injected wave
packet is governed by the nonlinear Schrödinger equation
(NLSE), which is referred to as the Gross-Pitaevskii equation
(GPE) in the context of atomic Bose-Einstein condensates.
The NLSE-GPE differs from the conventional Schrödinger
equation by an additional cubic term (we set h̄ = 1 for the
GPE):

i∂t�(r,t) = − 1

2m
∇2�(r,t) + u(r)�(r,t)

+ λ|�(r,t)|2�(r,t). (1.1)

For negative (positive) λ, the nonlinear term is of the self-
focusing (defocusing) type. This corresponds to an attractive
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(repulsive) potential λ|�(r,t)|2. The disorder potential u(r) is
the source of randomness in the above equation. Starting from
the NLSE-GPE, we derive a kinetic equation that describes the
diffusive evolution of an injected wave packet in a disordered
nonlinear medium. Since the disorder we study is static, the
kinetic equation preserves not only the integrated density
(or number of particles), but also the energy carried by the
diffusing wave packet. For a repulsive nonlinear term in the
NLSE-GPE (that is typical for cold atoms), the potential energy
stored in the medium is positive. Then, during the course
of expansion, the potential part of the energy is gradually
converted into the kinetic part, thereby increasing it. For an
attractive nonlinearity (typical for optics), the potential energy
stored in the medium is negative, and the dynamics is richer
and may, in principle, include a collapse [19–21].

The NLSE used in optics is derived from the Maxwell
equations using the so-called paraxial approximation [22] and
thus describes the evolution of the smooth envelope of the
electric field. The propagation direction of the laser beam, say
the z direction, plays the role of time in the NLSE. In this sense,
the disorder potential which results from random variations
of the refractive index is static when it is z independent
(only such a system is considered here). For example, the
two-dimensional (2d) transverse evolution of a pulse is studied
in a three-dimensional sample [23]. In optics, the mass m

has to be replaced by the wave vector k = ω/c, where ω

is the frequency of the carrier wave and c the velocity of
light in the medium. The intensity of the beam is proportional
to |�(r,z)|2. We will be interested in the description of the
wave packet when its size L = L(z) exceeds much the typical
mean-free path ltyp, which in turn is much larger than the
typical wavelength λtyp of the components constituting the
wave packet:

L � ltyp � λtyp. (1.2)

All three scales are related, of course, only to the propagation
in the directions transverse to z.

The GPE [24,25] is commonly used for the description of a
large ensemble of Bose atoms confined inside a trap. We are,
in turn, interested in the evolution of a cloud in which atoms
are scattered by a random potential. The usage of the GPE in
this context is worth commenting: The Schrödinger equation
for the field operators describing a many-body system ψ̂(r,t)
can be written as

i∂t ψ̂ = − 1

2m
∇2ψ̂ + u(r)ψ̂ + λψ̂†ψ̂ψ̂, (1.3)

where, under the assumption that the scattering length as is
the shortest length in the problem, the potential of the particle
interaction can be taken in the form U (r) = λδ(r) (recall that
for atoms λ = 4πh̄2as/m, where as is the scattering length).
We will assume that occupation numbers np for the relevant
momenta are large to ensure high occupancy. In this case,
the operators ψ̂ in this equation may be substituted by a
complex-valued classical field � (for a formal discussion
of this point see, e.g., Ref. [26]). The density of the cloud
can be expressed as |�(r,t)|2. It is worth mentioning that in
the case of quantum electrodynamics, a similar step leads to
the classical Maxwell equations for large photon occupation
numbers. It will be important for us that the field �(r,t) should

not necessarily be interpreted as a condensate wave function
in order to be described by the GPE.

In addition to the condition of Eq. (1.2), throughout this
paper it will be assumed that

λtyp � a � as, (1.4)

where a is the interparticle distance of atoms in the cloud. The
former inequality corresponds to a high occupancy of atoms
which justifies the use of the classical GPE for the description
of the Bose gas. The latter inequality means (by definition) that
the gas is dilute. Since we study the effects of the nonlinearity,
we are nevertheless interested in a situation for which the gas is
sufficiently dense in the sense that the energy per atom induced
by the nonlinearity, which is of the order of λ|�(r,t)|2, is not
negligible compared to the typical kinetic energy of the atoms
constituting the cloud.

In line with most of recent experiments on cold atoms
(photonic crystals), we will study the density (intensity)
averaged over many realizations of disorder. Correspondingly,
we are interested in the evolution of the wave packet on
length scales exceeding the typical mean-free path ltyp. To
obtain an averaged description for the propagation of the
cloud, one needs to introduce the smooth disorder averaged
density n(r,t) = 〈|�(r,t)|2〉dis. As a result, the nonlinearity
generates a term of the form 2λn(r,t)�(r,t), i.e., it gives rise
to a self-consistent potential ϑ(r,t) = 2λn(r,t). We would like
to stress that while the density n(r,t) is smooth on the scale of
the mean-free path, the wave function �(r,t) is not. Indeed,
in the case we study, the wave function varies rapidly on this
scale since the wavelength is assumed to be much smaller than
the mean-free path. A similar-looking term 2λn(r,t)�(r,t)
arises in the description of a coupled system of condensate
and noncondensate particles, where n stands for the density
of noncondensate particles, while � is the smooth condensate
wave function [27,28]. In contrast, in our description, n is the
density of the whole gas.

The self-consistent potential is not the only effect origi-
nating from the nonlinearity that contributes to the effective
kinetic theory of wave-packet propagation. Indeed, in the next
order in the nonlinearity λ, the so-called collision integral
arises, which describes interparticle collisions. We will discuss
this issue for atoms for which the meaning of particles and
collisions is more obvious. For the NLSE, collisions occur
between classical waves. To get an idea about the collision
rate, let us first consider the rate of two-body collisions in
the gas of small density, for which the occupation numbers
are small, np � 1. In the three-dimensional case, the collision
rate is the inverse of the Maxwell-Boltzmann collision time:
1/τMB = √

2n(r)σvε, where the atomic cross section σ =
8πa2

s and vε is the velocity of a particle with the energy ε.
Then, 1/(τMBε) ∼ (as/a)2(λε/a), which in a dilute gas with
small occupation numbers is a product of two small factors (λε

is the wavelength of a particle with the energy ε). The situation
changes radically for a gas with large occupation numbers
np � 1. The smallness induced by the scattering length as in
the dilute gas can be compensated by large factors np. (The
balancing between the smallness of the interaction amplitude
and large occupation numbers is specific for Bose gases as
compared to fermionic systems.) As a result, one gets for the
collision rate 1/τcoll ∼ λ2n2/ε, where ε is a typical kinetic
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energy of the Bose atoms. Let us finally emphasize that while
we used here the language appropriate for atomic gases, the
collision rate 1/τcoll has its origin in the nonlinearity and as
such this estimate is relevant for any system described by the
NLSE-GPE irrespective of its microscopic origin.

The kinetic equation presented in this paper is derived
for the case when disorder is responsible for the dominant
scattering mechanism 1/τ � 1/τcoll. To be in correspondence
with this inequality, we will limit ourselves to the case when the
effect of nonlinearity is sufficiently weak so that λn(r) � ε(r).

It is worth commenting on an important by-product of the
interaction smallness. Under the condition λn(r) � ε(r), we
need not consider the transition to the Bogoliubov spectrum.
This is because under this condition only a tiny fraction of
the states with the smallest energies are influenced by the
off-diagonal components in the Bogoliubov Hamiltonian. For
the majority of the particles, the off-diagonal components of
the Bogoliubov Hamiltonian can safely be ignored.

As it was already mentioned, when treating disorder, we
assume that the mean-free path is much larger than the typical
wavelength λtyp of the components constituting the wave
packet. For simplicity, throughout this paper we use the model
of a delta-correlated Gaussian disorder potential, characterized
by 〈u(r)u(r′)〉 = γ δ(r − r′). This model is appropriate only if
scattering occurs on quantum impurities, for which the range
of the potential is much smaller than the wavelength λtyp. For
the delta-correlated disorder potential, the density of states
determines the frequency dependence of the scattering rate
1/τ (ε) = 2πν(ε)γ ∝ ε(d−2)/2 and of the diffusion coefficient
D(ε) = 2ετ (ε)/md ∝ ε2−d/2. In particular, the scattering rate
in d = 2 is energy independent. Both in optics experiments
and in experiments on Bose gases, one uses speckles to
realize the disorder potential. The speckle potential has a
finite correlation length. If the wavelength λtyp is much larger
than the correlation length, the model of the delta-correlated
disorder potential remains a good approximation. If the
wavelength is sufficiently short to resolve the finite correlation
length, however, one needs to be more cautious. Unlike for the
short-range scatterers, the typical time for the randomization of
the momentum direction, i.e., the transport scattering time, no
longer coincides with the single-particle scattering time, which
is determined by the imaginary part of the self-energy in the
disorder averaged Green’s function. The transport scattering
time τtr (ε) acquires a frequency dependence that differs from
the one for short-range scatterers stated above. The same
is true for the diffusion coefficient since it depends on τtr

as D = 2ετtr (ε)/md. The expression for τtr appropriate for
a speckle potential can be found in the literature, e.g., in
Ref. [29]. As concerns the nonlinear diffusion equation derived
in this paper, it can be expected that the only change that
needs to be introduced when dealing with a speckle potential
is the replacement τ → τtr in the final form of the equa-
tions, which already contains an energy-dependent diffusion
coefficient.

The paper is organized as follows. In Sec. II, we proceed di-
rectly to the discussion of the nonlinear kinetic equation. Those
readers, who are not interested in the technical details of the
derivation of the kinetic equation based on the quasiclassical
approximation, find the most important information in Sec. II
as well as in the Conclusion. First, we discuss the equation

in the collisionless regime in Sec. II A. Although most of the
material of Sec. II A has already been presented in Ref. [13],
we include it here in order to make the paper self-contained. In
the second part, Sec. II B, we add the effect of collisions.
It turns out that the interparticle collisions impose certain
constraints on the range of validity of the derived equations.
The main result of this section: In d = 2, if the scattering time
is independent on frequency, the mean-squared radius of the
wave packet grows linearly in time. This result is not affected
by interparticle collisions.

In Sec. III, we introduce the field-theory approach, which
is the main tool for our investigations. The basic idea is to
write a functional integral expression for the time evolution
of the observable in question. (Our aim here is to describe
the evolution of the density or intensity n = |�|2. The wave
function at the initial time �0 is assumed to be known.)
Typically, this kind of approach is used when studying
Langevin-type equations including a noise term with a given
correlation function. In the problem under study in this
paper, no noise is considered. Instead, we use an analogous
construction, and then average over disorder configurations.
The resulting theory closely resembles the structure one
encounters in Keldysh field theories, where Green’s functions
can be transformed to a block-triangular form. Retarded and
advanced Green’s functions are supplemented by a third
type of Green’s function that contains information about the
distribution function n(r,t,ε), which we are interested in.

In Sec. IV, the averaging over the disorder potential is
performed, i.e., we provide a description of the evolution of
a wave packet averaged over many disorder configurations
(realizations). First, the theory of the wave packet in the
absence of the nonlinearity is discussed. Here, we make contact
with Refs. [30,31], where the expansion of a Bose condensate
over a disorder potential was studied starting from a later stage
of the time evolution when the nonlinearity may already be
neglected. Afterwards, the nonlinear problem is considered.
We start this discussion with a diagrammatic analysis (in
two dimensions) before deriving the kinetic equation using
the method of quasiclassical Green’s functions. Here, we
proceed in close analogy with the theory of nonhomogeneous
superconductivity [14–16]. The main result of Sec. IV is
given by Eq. (2.5), which is a classical nonlinear diffusion
equation in the collisionless regime. The equation was first
presented and analyzed in Ref. [13] for a two-dimensional
system. Discussion of two dimensions was of special interest
for us because for weak disorder there is an exponentially large
diffusive regime before the Anderson localization takes place.
After our work [13], Eq. (2.5) was rederived and generalized
for arbitrary dimensions in Ref. [18], using the diagrammatic
technique. It was noted that for a generalization to dimensions
d �= 2, a new term in the kinetic equation is required in order
to account for the nonconstancy of the density of states. In
Sec. IV, the equation is obtained for arbitrary dimensions
d = 2,3 including the additional term found in Ref. [18].

In Sec. V, we derive the collision integral in the kinetic
equation originating from the NLSE-GPE. We provide a
diagrammatic interpretation of the different terms contributing
to the collision integral. Finally, we conclude in Sec. VI with
a discussion of the results. In particular, we comment on the
role of the nonlinearity in the context of localization.
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II. DISCUSSION OF THE NONLINEAR
KINETIC EQUATION

A. The kinetic equation in the collisionless regime

We start from the nonlinear kinetic equation determining
the density evolution in the diffusive regime. The argument
ε̃ in this equation has the physical meaning of the kinetic
energy ε̃(r,t) = ε − ϑ(r,t), while ϑ(r,t) is a self-consistent
potential. Correspondingly, the diffusion coefficient is Dε̃ =
v2

ε̃ τε̃/d. Then, the equation for the distribution function looks
as follows:

∂t ñ(r,t,ε) − ∇[Dε̃∇�ñ(r,t,ε)] + ∂tϑ(r,t)∂εñ(r,t,ε)

= δ(t)2πν(ε̃)F (ε̃,r). (2.1)

This equation should be supplemented with the self-
consistency relation for the potential ϑ(r,t) = 2λn(r,t), where

n(r,t) =
∫

dε

2π
ñ(r,t,ε). (2.2)

Note that the diffusion term contains a sort of the covariant
derivative

∇� = ∇ − ∇ϑ(r,t)�ε̃, (2.3)

where �ε̃ = −∂ε ln ν(ε̃). The term on the right-hand side of
Eq. (2.1) specifies the injection of the wave packet and initial
evolution up to times of the order of the scattering time τ .
Namely,

F (ε,r) =
∫

dp dq
(2π )2d

F (p,q) eiqr 2πδ(ε − εp), (2.4)

and F (p,q) = �0(p + q/2)�∗
0 (p − q/2) is determined by the

initial wave function �0. Further, εp = p2/(2m) is the kinetic
energy.

Despite its apparent simplicity, Eq. (2.1) is a rather
complicated nonlinear integrodifferential equation. The dia-
grammatic interpretation of the different terms appearing in
this equation is provided in Sec. IV B for the two-dimensional
case. The main new ingredient for d �= 2 is the nonconstant
density of states ν(ε̃). (Note that � vanishes in two spatial
dimensions when the density of states is constant. In three
dimensions, however, �ε̃ = 2−d

2ε̃
is finite.) Since the density of

states enters with the argument ε̃ = ε − ϑ(r,t), the scattering
rate acquires an explicit dependence on ϑ . This eventually
leads to a modification of the diffusion term in Eq. (2.1) by
substituting ∇ → ∇� , which was first noticed in Ref. [18].

The underlying physics of the nonlinear diffusion equa-
tion (2.1) was discussed in Ref. [13]. The equation describes
diffusion of a particle with total energy ε on the background of
a smoothly varying potential ϑ . Correspondingly, the kinetic
energy εp = ε − ϑ varies locally in space and time. One
may notice that in the NLSE-GPE, a purely time-dependent
potential may be removed by a gauge transformation �(r,t) →
�(r,t) exp[−i

∫ t

t0
dt ′V (t ′)], which leaves the density |�(r,t)|2

unchanged. On the level of the discussed equation, this point
becomes obvious when writing the distribution function as
a function of the kinetic energy instead of the total one
n(r,ε̃,t) ≡ ñ[r,ε̃ + ϑ(r,t),t]. In the following, the argument
ε̃ in n is substituted by ε. Expressed in the new coordinates,

the equation reads as

∂tn(r,t,ε) − [∇ − ∇ϑ(r,t)∂ε]Dε[∇� − ∇ϑ(r,t)∂ε]n(r,t,ε)

= δ(t) F (ε,r), (2.5)

where now ∇� = ∇ − ∇ϑ(r,t)�ε. One can see explicitly
that a purely time-dependent potential drops from the equa-
tion since ϑ(r,t) enters only in combination with a spatial
derivative, as ∇ϑ(r,t). In Eq. (2.5), the diffusion coefficient
D(ε) = 2ετ (ε)/md depends explicitly on ε, but also implicitly
through τ (ε). Within the model of a delta-correlated impurity
potential, the elastic scattering rate 1/τ (ε) acquires a frequency
dependence through ν(ε). The form of the equation suggests,
however, that it will also hold in the case of impurity potentials
with a finite correlation length, when τ (ε) should be replaced
by the transport scattering time τtr (ε).

It seems clear that a closed-form solution of the nonlinear
equation for arbitrary initial conditions can not be found. In
order to make progress, we will rely on the use of conservation
laws. The GPE describes a system in which the total particle
number (or intensity in the case of the NLSE) and the total
energy are conserved. The total momentum is not conserved
since the disorder potential breaks translational invariance. It
is important to check that our approximations are consistent
with the conservation laws, namely, that energy and number
conservation are still encoded in the nonlinear diffusion
equation (2.5).

Let us start with the number conservation. For that, we
integrate Eq. (2.5) in ε and obtain the continuity equation
in the form ∂tn(r,t) + ∇j(r,t) = δ(t)n(r,t). The role of the
right-hand side is merely to determine the boundary condition
at the initial time t = 0. The expression for the current is

j(r,t) =
∫

dε

2π
j(r,t,ε), (2.6)

j(r,t,ε) = −Dε[∇� − ∇ϑ∂ε]n(r,t,ε). (2.7)

Next, we turn to energy conservation. Here, the continuity
equation ∂tρE(r,t) = −∇jE takes the following form:

ρE(r,t) = ε(r,t) + λn2(r,t), (2.8)

jE(r,t) =
∫

dε

2π
(ε + ϑ)j(r,t,ε), (2.9)

where ε = ∫
(dε/2π ) εn(r,t,ε) can be interpreted as the

average kinetic energy. In particular, we may conclude that
the total energy

Etot =
∫

dr (ε + λn2) (2.10)

is conserved. The total energy is conserved for our problem
because impurity scattering is elastic and we consider a closed
system. The conservation of energy is a known property of
NLSE-GPE from which we started. The derivation based on
the kinetic equation, which we presented here, can be regarded
as a check of the validity of our approach.

Remarkably, as we have observed in Ref. [13], for two
spatial dimensions when � = 0, and if the scattering time
is frequency independent, the conservation laws completely
determine the time evolution of the mean-squared radius of
the wave packet 〈r2

t 〉 ≡ ∫
dr r2 n(r,t)/N . Indeed, in 2d the
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expression for the current j(r,t) can be simplified and the
continuity equation takes the form

∂tn(r,t)− τ

m
∇2[ε(r,t) + λn2(r,t)] = δ(t)n(r,t). (2.11)

Now, multiplying Eq. (2.11) by r2 and subsequently integrat-
ing in r one obtains that

∂t

〈
r2
t

〉 = 4Dεtot , (2.12)

where εtot = Etot/N . The linear dependence of the mean-
square radius on time during the evolution is guarded by
energy conservation. This is a rather nontrivial result; the rate
of expansion is proportional not to Dε, as one may naively
expect, but to Dεtot . The reason is that the rate of expansion
combines the effect of diffusion and propagation in the field of
the force induced by the self-consistent potential. This is one of
the central results of our previous paper [13]; unfortunately, in
higher dimensions it ceases to be valid due to the nonconstancy
of the density of states.

It remains to discuss general features of wave-packet
dynamics in the repulsive and the attractive cases. When
the potential energy related to the nonlinearity is converted
into kinetic energy, the total kinetic energy increases in the
repulsive case and decreases in the attractive case. Correspond-
ingly, during the course of the expansion, localization effects
can be expected to be weakened for repulsive nonlinearity
and enhanced for attractive nonlinearity. In particular, for an
attractive nonlinearity, the slowing down of the injected pulse
and its eventual localization (not considered here) occurs at
smaller distances than in the linear case as observed in the
experiment [1]. As it was indicated in Ref. [13], if a part
of the cloud lags behind, this fragment may have a strong
tendency to localize. One may expect that this kind of localized
fragment generically remains from an expanding cloud when
the nonlinearity is attractive. To check this point, it would
be desirable to analyze data with respect to the intensity (or
number of particles) of the remaining localized part of the
cloud and, if possible, the energy concentrated in this part as
compared to that in the initial cloud.

B. Role of collisions

The nonlinear term in the NLSE-GPE gives rise to a
collision integral in the diffusive kinetic equation, which
is proportional to λ2. The full kinetic equation including
interparticle collisions takes the form

∂tn(r,t,ε) − [∇ − ∇ϑ(r,t)∂ε]Dε[∇� − ∇ϑ(r,t)∂ε]n(r,t,ε)

= δ(t) F (r,ε) + 2πν(ε)I coll(r,t,ε) (2.13)

with

I coll(r,t,ε) = 4πλ2(2π )d
∫

dn dn2dn3dn4

∫
dε2dε3dε4

× ν(ε2)ν(ε3)ν(ε4)δ(ε + ε2 − ε3 − ε4)

× δ(pε + pε2 − pε3 − pε4 )([n′
ε + n′

ε2
]n′

ε3
n′

ε4

− n′
εn

′
ε2

[n′
ε3

+ n′
ε4

]), (2.14)

where 2πν(ε)n′
ε(r,t) = n(r,t,ε), pε = pεn, pεi

= pεi
ni , and

the integration goes over positive frequencies only. To con-
clude, we get a standard collision term of two particles in

the limit of large occupation numbers n′
εi

� 1. The left-hand
side of the kinetic equation takes into consideration that the
distribution function of states participating in the collision is
determined by the diffusive propagation in the disordered and
nonlinear medium.

The collision integral contains two terms describing the
“in”- and “out”-collision channels. To estimate the scattering
rate 1/τcoll, let us focus on the out term, which is given by
the last term in the expression for Icoll [Eq. (2.14)] and is
proportional to n′

ε. We will write it as nε/τcoll. Recall that
the typical kinetic energy per particle at point r is denoted
as ε(r). For a conservative estimate of the scattering rate, let
us consider an energy ε ∼ ε(r); in this case, the kinematic
constraints induced by the momentum and energy conservation
in the collision integral are minimal. Since one has to integrate
two distribution functions over energies, this ultimately yields
a factor n2(r). As a result, one gets

1

τcoll
∼ λ2 n2(r)

ε(r)
. (2.15)

It is clear from this estimate that in order to use the language
of the kinetic equation with well-defined distribution function
n(r,t,ε), one has to be limited to the case when λn(r,t) � ε(r).
Under this condition, 1/τcoll � ε(r).

Still, there remains a question about a comparison of the
rate of interparticle collisions with elastic scattering caused
by disorder, i.e., 1/τcoll versus 1/τ . In this paper, we limit
ourselves to the case of rare collisions 1/τcoll � 1/τ , i.e., we
assume that elastic scattering events occur more frequently
than interparticle collisions. This condition is more restrictive
than the condition ε(r) � 1/τcoll discussed above.

The collisions, naturally, change the dynamics of the
propagation. As long as the kinetic equation in the derived
form holds, however, the result (2.12) about the rate of the
expansion of the wave packet remains valid even in spite of the
interparticle collisions. This is because (i) the collision integral
is local and as such does not change the mean-squared radius
of the wave packet 〈r2

t 〉dis. Furthermore, (ii) in two spatial
dimensions, the rate of expansion depends only on the total
energy Etot, which is not altered by collisions and it does not
depend on the energy dependence of the distribution function,
which is controlled by the collision integral.

Finally, we would like to note that while the rate of
“delivery” of colliding particles was controlled by diffusion,
we did not consider the modifications of the collision integral
by disorder. It is very different from what happens in disordered
conductors at low temperatures T � 1/τ � εF . The reason is
that the kinetics of the classical particles, not constrained by the
existence of the Fermi surface, is similar to the case for which
1/τ � T ∼ εF with εF ∼ ε, where εF is the Fermi energy.
Then, modification of the collision integral by disorder leads
to a smallness 1/τε(r) without gaining a large factor 1/(τT ),
as it was in the case of conductors at low temperature.

III. BASIC FORMALISM

In this section, we introduce the field-theory approach that
is the tool for our investigations. Our aim is to describe the
evolution of the density (intensity) n = |�|2, averaged over
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disorder configurations. The wave function at the initial time
�0 is assumed to be known.

Formally, the problem bears a certain similarity with the
description of critical dynamics near a phase transition or,
more generally, the study of Langevin-type equations with
the help of field-theory approaches. The formalism we are
alluding to here is often called Martin-Siggia-Rose (MSR)
formalism [28,32–34] and finds applications in many different
branches of physics. The basic idea is to write a functional
integral expression for the time evolution of the observable in
question. With the help of a delta function entering the integral,
the wave function is fixed to coincide with the solution of
the underlying equation. By introducing an additional field
variable and thereby doubling the degrees of freedom, one
may write the delta function with the help of an integral over
an exponentiated action.

Typically, this kind of approach is used when studying
dynamical problems, for which the original equation contains
a noise term with known correlation function. One may then
average over the noise and study the resulting functional
with field-theoretical methods such as perturbation theory, the
renormalization group, or by analyzing instantonic configu-
rations. In the problem under study in this paper, no noise is
present. Instead, we use an analogous construction, and then
average over disorder configurations. With a proper regular-
ization, vacuum loops are absent right from the beginning and
this is why the dynamical approach is particularly useful for
the problem of quenched disorder, as was already noted a long
time back [34].

The resulting field theory closely resembles the structure
one encounters in Keldysh field theories, where Green’s
functions can be transformed to a block-triangular form.
Retarded and advanced Green’s functions are supplemented
by a third type of Green’s function that contains information
about level population.

For a Bose-Einstein condensate, one can obtain the Gross-
Pitaevskii equation as a mean-field equation for the full quan-
tum many-body problem. As one might expect from this obser-
vation, a connection exists between Keldysh-type field theories
for the quantum problem and the MSR-type approach. Indeed,
in the Keldysh approach, two distinct types of interaction
vertices exist: they are sometimes referred to as quantum and
classical vertices [28]. By disregarding the quantum vertices,
while retaining the classical ones, one recovers a representation
of the functional delta function, which fixes the evolution of
the (classical) fields to obey the classical equation of motion,
in this case the Gross-Pitaevskii equation. This approach addi-
tionally allows one to consider correlations in the initial density
matrix, and one can obtain, for example, the so-called truncated
Wigner approximation, as explained in more detail in Ref. [35].
In optics, the nonlinear Schrödinger equation emerges as a
result of the paraxial approximation applied to the Helmholtz
equation [22] and has thus a different microscopic origin. This
is the reason why we do not explicitly use the (microscopic)
Keldysh approach as a starting point in this paper.

A. Action

Our starting point is the Gross-Pitaevskii equation in the
form given in Eq. (1.2). This equation describes the time

evolution of the macroscopic wave function �(r,t) in the
presence of an external potential u(r). The total density
|�(r,t)|2 is conserved in time and we use the normalization∫

dr|�(r,t)|2 = N , where N is the total number of atoms in
the gas. The quantity of our interest is the disorder averaged
density

n(r,t) = 〈|�(r,t)|2〉dis. (3.1)

Disorder averaging 〈. . .〉dis is performed with the help of the
Gaussian probability distribution

P(u) =N exp

(
−1

2

∫
dr dr′ u(r)W−1(r − r′)u(r′)

)
, (3.2)

where N provides the normalization, so that
∫

Du P(u) = 1.
This definition implies that 〈u(r)〉dis = 0 and 〈u(r)u(r′)〉 =
W (r − r′). In this paper, we consider the specific case of
a delta-correlated (white-noise) potential, for which W (r −
r′) = γ δ(r − r′). In two dimensions, the density of states ν is
constant, and one can identify γ = 1/2πντ , where τ is the
scattering time.

We first note that the unaveraged density can be represented
as the following functional average:

n(r,t) =
∫

D(ψ,ψ∗)D(η,η∗) |�(r,t)|2 eiS, (3.3)

where we introduced the complex fields η, η∗ and ψ , ψ∗. The
action S is given by

S =
∫

dr dr′dtdt ′
[

ψ∗(r,t)

η∗(r,t)

]T

g̃−1(r,r′,t,t ′)
[

ψ(r,t)

η(r,t)

]

+ i

∫
dr [η(r,0)�∗

0 (r) − η∗(r,0)�0(r)], (3.4)

where the inverse matrix Green’s function g̃−1 has the structure

g̃−1 =
(

0 g̃−1
A

g̃−1
R 0

)
. (3.5)

The retarded and advanced Green’s functions g̃R/A fulfill the
equation(

i∂t + ∇2

2m
− u(r) − λ|ψ(r,t)|2

)
g̃R/A(r,r′,t,t ′)

= δ(r − r′)δ(t − t ′) (3.6)

with standard boundary conditions. Indeed, upon integration
in the auxiliary fields η(r,t), η∗(r,t) one obtains a functional
delta function that fixes the fields �(r,t) and �∗(r,t) to
obey the Gross-Pitaevskii equation and its complex conjugate,
respectively. The last part of the action involving the fields
�0 and �∗

0 fixes the boundary conditions at the initial
time �(r,t0) = �0(r) and �∗(r,t0) = �∗

0 (r). We see that the
formalism involves a doubling of the degrees of freedom,
similar to the Keldysh or closed-time-path approaches for
quantum systems [28], where two fields are introduced on
forward and backward time contours. We repeat that with a
proper regularization, vacuum loops are absent. For a more
detailed account of the construction of the classical functional
and the appropriate regularization, we refer to Refs. [28,36,37]

In order to lighten the notation, we find it conve-
nient to introduce the field doublets φ = (ψ,η)T and
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φ = φ†σx = (η∗,ψ∗), so that

n(r,t) = 〈tr{σ−[φ(r,t) ⊗ φ(r,t)]}〉. (3.7)

Pauli matrices σi act in the space of the fields ψ and η,
and σ− = (σx − iσy)/2. The averaging 〈. . .〉 = ∫

D(φ,φ†)
(. . .) exp(iS) is performed with respect to the action S, which
we write in terms of φ and φ and split into several parts

S = S0 + Ss + S ′
dis + Sint. (3.8)

The term S0 alone describes the free propagation of fields
φ in the absence of interactions and impurities. The source
term Ss contains information about the initial conditions; for
convenience we choose t0 = 0 from now on. The disorder
potential and the nonlinear term in the Gross-Pitaevskii
equation give rise to S ′

dis and Sint, respectively. Thus,

S0 =
∫

dr dr′dtdt ′ φ(r,t)g−1
0 (r − r′,t − t ′)φ(r′,t ′), (3.9)

Ss = i

∫
dr [φ0(r)φ(r,0) − φ(r,0)φ0(r)], (3.10)

S ′
dis = −

∫
dr dt φ(r,t)u(r)φ(r,t), (3.11)

Sint = −λ

∫
dr dt φ(r,t)φ(r,t) φ(r,t)σ−φ(r,t). (3.12)

Here, the 2 × 2 matrix Green’s function

g0 =
(

gR
0 0

0 gA
0

)
(3.13)

is composed of the retarded and advanced Green’s functions
g

R/A

0 (p,ε) = (ε − εp ± iδ)−1, where εp = p2/2m. For the
initial condition, we introduced

φ0(r) = [�0(r),0]T , φ0(r) = [0,�∗
0 (r)]. (3.14)

It is an important consequence of the structure of the
theory that the Green’s function G = −i〈φφ〉 has a triangular
structure, where in accord with Eq. (3.13) the 11 and 22
elements are retarded and advanced Green’s functions. These
Green’s functions contain information about the spectrum,
while the off-diagonal (12) element contains information
about the occupation, in analogy to the Keldysh approach.
Importantly, the 21-element is equal to zero.

B. Diagrammatic representation

We start with an elementary discussion of the structure
of the perturbation theory. We will draw diagrams in such a
way that time runs from left to right. Retarded and advanced
Green’s functions are depicted in Fig. 1.

The close similarity to a Keldsyh field theory has already
been stressed above. The main difference compared to a full
quantum theory of interacting bosons in the Keldysh approach
is that out of the two types of vertices depicted in Fig. 2, only

η∗ ψGR η ψ∗GA

FIG. 1. The retarded (GR) and advanced (GA) Green’s functions.
The time arrow runs from left to right.

ψ η∗

ψ∗ ψ

ψ∗ η

ψ∗ ψ

η ψ∗

η∗ η

η∗ ψ

η∗ η

FIG. 2. In a Keldysh many-body approach to interacting bosons,
two classes of vertices appear: the classical vertices shown on the
left and the quantum vertices shown on the right. In the MSR-type
approach used in this paper, only the classical vertices are present.

one is realized. Namely, only the so-called classical vertices,
shown on the left-hand side of Fig. 2, appear in the theory
considered here, while the so-called quantum vertices, shown
on the right-hand side, are absent (see the related discussion in
Ref. [35]). This has important consequences. It immediately
implies that the interaction vertices related to the nonlinearity
have the structure shown in Fig. 3. This structure, in turn,
implies that there are no closed loops in this representation.
In order to draw more complex diagrams in a convenient way,
we will often depict the interaction vertices with an additional
wiggly line (as, for example, in Fig. 4 below), but one should
keep in mind that the interaction is in fact local in space and
instantaneous.

In order to further elucidate the structure of the perturbation
theory, we study the expression for the density evolution. The
disorder averaging is postponed until the next section; in this
section, all Green’s functions are unaveraged and explicitly
depend on the disorder potential. First, we introduce two real
Hubbard-Stratonovich fields ϑcl and ϑq , which we assemble
into the following matrix:

ϑ̂ =
(

ϑcl 0

ϑq ϑcl

)
. (3.15)

With the help of this matrix, the interaction can be represented
as

exp(iSint) = 〈exp(iSϑ )〉ϑ , (3.16)

where we introduced the notation

Sϑ = −
∫

dr dt φ(r,t)ϑ̂(r,t)φ(r,t), (3.17)

and 〈. . .〉ϑ symbolizes the the following averaging procedure:

〈. . .〉ϑ = 1

N

∫
Dϑ (. . .)e

i
2λ

∫
drdt ϑT (r,t)σxϑ(r,t). (3.18)

In this equation, ϑ = (ϑq,ϑcl) and N is a normalization
constant which we will suppress from now on.

Formula (3.18) implies that fields ϑq and ϑcl couple to
each other, but not among themselves. The field ϑcl enters Sϑ

like a classical potential. The quantum component ϑq couples

GR

GA

GR

GR

GA GA

GA

GR

FIG. 3. Upon averaging with respect to the fields ψ and η, the
(classical) interaction vertices in our approach give rise to the two
subdiagrams shown above.
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FIG. 4. General structure of the perturbation theory: The density
evolution is represented by the infinite sum of all diagrams of the type
displayed in this figure.

retarded and advanced Green’s functions in a specific way.
Taken together, these observations imply that all possible
diagrams have the structure indicated in Fig. 4. It is also
instructive to further integrate in φ. The result is

n(r,t)=
〈∫

dr1dr2 �∗
0 (r1)GA

ϑcl
(r1,r; 0,t)GR

ϑcl
(r,r2; t,0)�0(r2)

× e
i
∫

dr3dr4 �0(r3)[GA
ϑcl

◦ϑq◦GR
ϑcl

](r3,0,r4,0)�0(r4)
〉
ϑ

. (3.19)

We used the triangular structure of G in order to obtain this
result. The open circle ◦ symbolizes a convolution in space
and time. The retarded and advanced Green’s function in
the presence of the classical field Gϑcl

fulfill the differential
equation

(i∂t − Ĥ − ϑcl(r,t))G
R/A

ϑcl
(r,r′,t,t ′) = δ(r − r′)δ(t − t ′)

(3.20)

and Ĥ = −∇2/2m + u(r). Before averaging in ϑ , the pre-
exponential factor describes the evolution of the density
on the background of an external classical potential ϑcl .
The exponential contains a similar structure: Each term
in the expansion of the exponential symbolizes the evolution
of the density up to a certain point. From a formal perspective,
integration in ϑq introduces a functional delta function that
fixes ϑcl to equal the density.

IV. TIME EVOLUTION IN A DISORDERED MEDIUM

Initially, the disorder potential u(r) enters the action in the
form S ′

dis = − ∫
dr dt φ(r,t)u(r)φ(r,t). Disorder averaging

with respect to the probability distribution (3.2) introduces
an effective interaction of the fields

Sdis = i

2
γ

∫
dr dt1dt2 φ(r,t1)φ(r,t1)φ(r,t2)φ(r,t2). (4.1)

This effective interaction is local in space, but nonlocal in time.
It is usually not possible to take into account disorder effects

exactly and one needs to employ approximation schemes.

Disorder averaging introduces a quartic term in the action
S, namely, Sdis of Eq. (4.1). Here, we will treat this term in
the self-consistent Born approximation (SCBA), which relies
on the weak disorder condition ετ (ε) � 1, where ε is the
characteristic scale for the kinetic energy in the problem.

The SCBA consists in replacing Sdis given in Eq. (4.1) by

Sdis = iγ

∫
dr dt1dt2 φ(r,t1)〈φ(r,t1)φ(r,t2)〉φ(r,t2). (4.2)

The average can be taken in two equivalent ways, which
explains the additional factor of 2 compared to Eq. (4.1).
Averaging is performed with respect to the action S after the
disorder averaging, i.e., self-consistently. This implies that,
generally speaking, the disorder part of the self-energy also
implicitly depends on the interaction (namely, via the Green’s
function −i〈φφ〉).

A. Noninteracting theory

This section contains an elementary discussion of the theory
for the density evolution in the noninteracting case λ = 0. It
serves as a preparation for the discussion of the interacting
model. Furthermore, we use the opportunity to introduce
our notation and to stress the most important differences to
the calculation of the density-density correlation function in
disordered electron systems.

In the absence of interactions, one obtains

n(r,t) =
∫

dr1dr2
〈
�∗

0 (r1)GA
0 (r1,r; 0,t)

×GR
0 (r,r2; t,0)�0(r2)

〉
dis, (4.3)

where (i∂t − Ĥ )GR/A

0 (r,r′,t,t ′) = δ(r − r′)δ(t − t ′).
In the SCBA, the disorder averaged Green’s function is

given by

GR/A(p,ε) =
(

ε − p2

2m
± i

2τε

)−1

, (4.4)

where τ−1
ε ≡ τ (ε)−1 = 2πν(ε)γ . This result is obtained as

follows. For λ = 0, the defining relation for the disorder part
of the self-energy in the SCBA is

�
R/A

dis (ε) = γ

∫
(dp)

1

ε − εp − �
R/A

dis (ε)
. (4.5)

Here and in the following, we use the notation (dp) = ddp/

(2π )d . The scattering time τε is defined as

Im
[
�

R/A

dis (ε)
] = ∓1/(2τε). (4.6)

Upon introducing the variable ξp = εp − ε, the integration
measure transforms as

∫
(dp) = ∫ ∞

−ε
dξpν(ε + ξp), where the

trivial angular averaging has already been performed. Focusing
on the imaginary part of the self-energy first, in the weak
disorder limit ε − Re[�R

dis(ε)] � 1/τε, one may extend the
lower limit of the integration in ξp to −∞. At the same
time, this step regularizes the integral for the real part of
the self-energy. The integrand for the imaginary part of the
self-energy is strongly peaked around ξp = 0 and one may
replace ν(ε + ξp) ≈ ν(ε) and take the density of states out of
the integral. The remaining integral is easily performed and
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FIG. 5. Diagrammatic representation of the diffusion process in
the absence of the nonlinearity.

the result is

Im
[
�

R/A

dis (ε)
] = ∓πν(ε)γ (4.7)

in agreement with (4.6).
As is well known [38], in the leading approximation in

1/ετε, one should not only replace G0 by G in formula (4.3)
for the density, but also sum the whole set of diagrams with
noncrossing impurity lines as shown in Fig. 5. Effectively, this
amounts to summing a geometric series. This procedure leads
to the expression

n(q,ω) =
∫

(dp)(dε) �0(p+)�∗
0 (p−)

×GR(p+,ε+)GA(p−,ε−)
∞∑

n=0

Ln
ε (q,ω), (4.8)

where

Lε(q,ω) = γ

∫
(dp1) GR(p1+,ε+)GA(p1−,ε−).

We use the notation (dε) = dε/(2π ) for frequency integrals
p± = p ± q/2 and ε± = ε ± ω/2. The expression is quite
similar to the familiar density-density correlation function in
electronic systems. Note, however, that in the latter case the
frequency integration is restricted to a small interval around
the Fermi surface of order of the temperature by the presence
of a distribution function. In contrast, here the momentum
integration is restricted by the initial wave functions �0 and
�∗

0 . The frequency integration, on the other hand, is a priori
not limited.

Let us assume that the inequalities ετε � 1, ωτε � 1,
qlε � 1 are fulfilled (diffusion approximation), where lε =
vετε is the mean-free path, vε = pε/m and pε = √

2mε are
the velocity and the momentum at energy ε. In this case, we
can calculate the sum approximately by using the expansion

Lε(q,ω) ≈ 1 + iωτε − l2
ε q

2/2. (4.9)

It will be useful to introduce a frequency-dependent diffusion
constant as Dε = v2

ε τε/d in dimension d. After performing the
sum in the equation for the density, we obtain

n(q,ω) =
∫

(dp)(dε) �0(p+)�0(p−)

×GR(p+,ε+)GA(p−,ε−)
1

τε

Dε(q,ω), (4.10)

where the energy-dependent diffuson is

Dε(q,ω) = (Dεq2 − iω)−1. (4.11)

The next step is to integrate in ε, where one encounters the
following integral:∫

(dε)
1

ε+ − εp+ + i
2τε

1

ε− − εp− − i
2τε

1

τε

Dε(q,ω). (4.12)

For εp+ ∼ εp− � 1/τ , the most important ε are of the order
of εp and we can perform the integral with the help of the
residue theorem considering the poles originating from the
Green’s functions only, thereby effectively replacing Dε by
Dεp . A distinction between εp+ and εp− in the argument of
the diffusion coefficient would be beyond the accuracy of our
approach. The result is

n(q,ω) ≈
∫

(dp)F (p,q)Dεp (q,ω), (4.13)

where we introduced the notation

F (p,q) = �0(p + q/2)�∗
0 (p − q/2). (4.14)

It is clear from the previous arguments that the approach is
valid as long as εpτεp � 1. Typical momenta p are controlled
by the initial wave function �0. For the averaged density as a
function of coordinates and time, we find the expression

n(r,t) =
∫

(dp)
�(t)

4πDεp t

∫
dr1 e−(r−r1)2/(4Dεp t)F (p,r1).

(4.15)

For |r1| � |r|, i.e., for distances |r| exceeding by far the
extension of the initial wave packet, we may neglect r1 in
the exponent and obtain

n(r,t) = �(t)
∫

(dp)
|�0(p)|2
4πtDεp

e−r2/(4tDεp ). (4.16)

This expression was presented in Ref. [30].
In the calculation described in this section, the frequency

integration was performed before the momentum integration
in p [see Eq. (4.12)]. Relevant momenta in the integral of
Eq. (4.13) are determined by F (p,q), which encodes the
information contained in the initial wave function �0. For a
generalization to the interacting case, it will be more useful to
perform the integration in p before the integration in ε. In order
to achieve this goal, we introduce the distribution function f

in the following way:

f (r,t1,t2) = γ

∫
dr3dr4 GR(r1 − r3,t1)

×�0(r3)�∗
0 (r4)GA(r4 − r1, − t2). (4.17)

It describes the initial section of the diffusion ladder (compare
Fig. 5). With the help of this definition, one can write

n(r,t) =
∫

(dε)n(r,t,ε), (4.18)

where the energy-resolved density is

n(r,t,ε) = 2πν(ε)
∫

r1

Dε(r − r1,t − t1)f (r1,t,ε) (4.19)

and

f (r,t,ε) =
∫

d(�t)f (r,t + �t/2,t − �t/2) eiε�t . (4.20)
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We can make contact with the previous results of this section
by noting that for times t � τ one can approximate (see
Appendix)

2πν(ε)f (r,t,ε) ≈ δ(t)F (ε,r), (4.21)

where

F (ε,r) =
∫

(dp) F (p,r) (2π )δ(ε − εp). (4.22)

This concludes our discussion of the noninteracting theory.
As for the electronic systems, it is most convenient

to formulate the microscopic theory with the help of a
frequency-dependent distribution function since momentum
is not conserved during the scattering process. At the same
time, the initial distribution is determined by the momentum
dependence of the wave function [Eq. (4.14)]. In the quasi-
particle approximation, one can translate between the two
representations [Eq. (4.22)]. The specifics of the given problem
in comparison with diffusion in a degenerate electronic system
is that the dependence of the diffusion coefficient needs to
be kept explicitly. Each particle at a given energy diffuses
with its own diffusion coefficient and the total density is
obtained through a convolution with the distribution function
[Eqs. (4.15) and (4.19)]. The fact that the energy distribution
may be broad has the important consequence that the density
may differ considerably from the form n(r,t) ∝ exp(−cr2/t)
(with a constant c), which holds for diffusion at a fixed energy.
To illustrate this important point, we briefly discuss an example
first introduced in Ref. [30].

1. Gaussian initial distribution

As an instructive example, one can easily calculate the
asymptotic distribution for the initial condition [30]

|�0(p)|2 = (2π )2 N

π

1

k2
0

e−p2/k2
0 . (4.23)

It is convenient to introduce a typical diffusion coefficient
D0 = Dk0 . One may use Eq. (4.16) to find [30]

n(r,t) = �(t)
N

2πD0t
K0(r/

√
D0t), (4.24)

which decays asymptotically as n(r,t) ∝ exp(−r/
√

D0t) for
r � √

D0t . K0 is the zeroth order modified Hankel function.
This should be compared to the case where the diffusion
coefficient D0 is momentum independent and one finds (in
2d) n(r,t) ∝ exp(−r2/4D0t). We see that the asymptotic
profile depends crucially on the initial distribution of momenta.
Consequently, a detailed knowledge of initial conditions is
required for the interpretation of experiments.

B. Diagrammatic perturbation theory for the nonlinear
problem and the kinetic equation

One can organize a systematic perturbation theory for the
nonlinear problem (λ �= 0) in the limit of weak disorder. In this
paper, we make use of the fact that in two spatial dimensions
and for weak disorder, one expects an extended regime for
which the density evolution is diffusive, i.e., we are interested
in nonlinear diffusion and do not consider localization effects.
We may therefore restrict ourselves to the leading order in

FIG. 6. On a diagrammatic level, the solution of the kinetic
equation corresponds to the sum of all diagrams of the type shown in
this figure.

the smallness parameter 1/(ετε). At this level of accuracy,
the standard diagrammatic technique can be used to select
diagrams for which impurity lines do not cross.

In contrast to the noninteracting case discussed in the
previous section, for which a single diffusion mode was
sufficient for the description, the nonlinearity introduces an
effective coupling of diffusion modes to each other. This
coupling is not completely arbitrary, but must be consistent
with the conservation of the total density in the limit of
vanishing momentum.

The relevant diagrams of perturbation theory are of the
form depicted in Fig. 6, where the left-hand side is associated
with the initial distribution function and requires a separate
consideration (see Appendix). Each skeleton diagram, by
which we mean a diagram of the form shown in Fig. 4,
i.e., before disorder averaging, can be dressed by disorder
in several equivalent ways, namely, each vertex is associated
with a combinatorial factor 2. This is related to the fact that the
interaction is chosen to be local in space (although we draw
extended interaction lines in order to have a more convenient
graphical representation). This combinatorial factor is taken
care of by choosing the decoupling in Eq. (4.33) below in two
equivalent ways.

We see that the expansion takes the form of a self-consistent
Hartree theory. Due the self-consistency, the structure of the
theory reveals itself already at the first order of perturbation
theory in λ.

In the following, we will discuss the first-order perturbation
theory and explain the origin of the different terms in the
kinetic equation on this level. To this end, consider the
diagrams in Fig. 6. The interaction line can couple both to
the retarded and the advanced Green’s functions, and due to
important cancellations among these two the diagrams should
always be grouped in pairs. The interaction line carries both
momenta and frequencies and these can be considered as
small since they are related to the adjoint diffusion or, in
more physical terms, since the density is smooth and slowly
varying in time. For pedagogical reasons, we will separate
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FIG. 7. The two box diagrams: BR to the left and BA to the right.
The interaction line carries frequency ω1 and momentum q1 (incom-
ing). For the individual diagrams, a constant term remains in the
limit of vanishing external frequencies and momenta. This constant
cancels, however, between the two diagrams. The cancellation is
related to number conservation as is discussed in the main text.

the discussion into two parts: the transfer of small momenta
at vanishing frequency and that of small frequencies for
vanishing momentum transfer.

We start with a finite momentum transfer. Here, the
important point is that the diffuson to the left depends on the
relative momentum q of the retarded and advanced Green’s
function only, but not on the sum of momenta. This relative
momentum q is the same irrespective of whether the interaction
line goes to the retarded or the advanced Green’s function. As
far as frequencies are concerned, the diffuson to the left of
the block depends not only on the relative frequency, but also,
via the diffusion coefficient, on the center-of-mass frequency.
Therefore, it distinguishes between the two diagrams.

Let us introduce the expressions for the box in the two cases
(see also Fig. 7)

BR(q,q1,ω,ω1) = 1

2πντ 2

∫
(dp)GR(p+ − q1,ε+ − ω1)

×GA(p−,ε−)GR(p+,ε+) (4.25)

andBA(q,q1,ω,ω1) = B∗
R(−q, − q1, − ω, − ω1). The depen-

dence on the spectator argument ε will be suppressed in B, ν

and τ .
Then, the energy-resolved densities for the two diagrams

read as

n1,R/A,ε(q,ω)

= Dε(q,ω)
∫

(dq1)(dω1) n0,ε∓ ω1
2

(q − q1,ω − ω1)

×ϑ(q1,ω1)BR/A(q,ω,ω1), (4.26)

where we denoted the noninteracting energy-resolved density
(compare Sec. IV A) as

n0,ε(q,ω) = 2πνfε(q,ω)Dε(q,ω) (4.27)

and also used its relation to the density n0(r,t) =∫
(dε)n0,ε(r,t) in the linear case when introducing the notation

ϑ(r,t) = 2λn0(r,t). (4.28)

As will become clear in the following, ϑ(r,t) can be interpreted
as an effective potential.

The averaged density at order λ is the sum of the two
densities n1 = n1R + n1A. It is

n1(q,ω)

= Dε(q,ω)
∫

(dq1)(dω1)ϑ(q1,ω1)

×
[
n0ε(q − q1,ω − ω1)[BR + BA](q,q1,ω,ω1)

−ω1∂εn0ε(q − q1,ω − ω1)
1

2
[BR − BA](q,q1,ω,ω1)

]
.

(4.29)

By explicit calculation one finds in the limit of small momenta
and frequencies

[BR + BA](q,q1,ω,ω1) ≈ τ

m
q(q − q1), (4.30)

[BR − BA](q,q1,ω,ω1) ≈ −2i. (4.31)

Let us start the discussion with the case of finite momentum
transfer. Here, the combination BR + BA enters the diagram
and one immediately finds that the leading constant term
cancels and the coupling is proportional to q(q − q1). In
particular, it is proportional to the external momentum q. The
cancellation of the constant term is not accidental, but enforced
by number conservation. Indeed, the limit q → 0 is related to
the conservation law for the total density. This can be seen best
in the language of the kinetic equation discussed below. In fact,
it turns out that the combination BR + BA still contains a small
constant term of order 1/(ε̃τ )2, which disappears, however,
when one uses the full ϑ dependent Green’s function for the
self-consistent Born approximation as is automatically the case
in the kinetic equation approach described in Sec. IV E.

Turning to the finite frequency transfer next, we see that the
situation is different. Here, the constant of the box diagrams
BR and BA may contribute and the result is proportional to the
difference of diffusons with different center-of-mass energies
in agreement with our previous discussion.

Proceeding towards the kinetic equation next, one may
multiply Eq. (4.30) by D−1

ε (q,ω) and we present it together
with the real-space representation of the equation for n0,ε:

(∂t − Dε∇2)n1,ε = −
[

τ

m
(∇ϑ∇)n0ε + ∂tϑ∂εn0ε

]
,

(∂t − Dε∇2)n0,ε = 2πνf (r,t,ε). (4.32)

We easily recognize the first iterative solution to the kinetic
equation, once we use the relation between f and F discussed
in Appendix. We will not follow this route further and formally
sum up all diagrams, although this can be done. It has become
clear that an equation is much more useful than any finite
order in perturbation theory and there are more effective ways
to derive the kinetic equation.

C. Slow-mode decomposition

As a first step in deriving the kinetic equation, we turn to the
interaction term Sint specified in Eq. (3.12). The self-consistent
potential ϑ(r,t) = 2λn(r,t) is introduced in the following way.
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We average Sint and obtain

S int = −2λ

∫
dr dt φ(r,t)〈[φ(r,t) φ(r,t)]21〉φ(r,t)

= −
∫

dr dt φ(r,t)ϑ(r,t)φ(r,t), (4.33)

where n(r,t) = 〈[φ(r,t) φ(r,t)]12〉 was used in the last step.
The averaging 〈. . .〉 in both Eqs. (4.2) and (4.33) is defined self-
consistently, namely, with respect to S ≡ Ss + S0 + Sdis +
S int. Let us stress that this approach includes interaction effects
nonperturbatively as a result of self-consistency. In comparison
with the clean case, an additional factor of 2 appears in the
definition of the self-consistent field ϑ . This is not a double
counting, but a result of a typical slow-mode decomposition,
in this case in the density channel. Indeed, it will be valid
only if ϑ is a slowly varying field; it means that momenta
of the fields φ and φ are close to each other. In principle,
one could also consider “anomalous” averages of the type
〈ψ(r,t)ψ(r,t)〉 and 〈ψ∗(r,t)ψ∗(r,t)〉. For systems for which
the potential energy is not much smaller than the kinetic
energy, such averages can in principle become important. In
the limit we consider, namely for ε � λn, these terms are,
however, less effective than the potential ϑ as already argued in
Sec. I.

D. Green’s function

After treating both disorder and interaction self-consistently
as described in the previous section, we obtained the action S.
Due to the presence of the source terms describing the injection
process, the fields ψ and ψ∗ have nonvanishing expectation
values. This inconvenient feature can easily be cured by
shifting the fields appropriately. To this end, we introduce
the Green’s function G as the average G = −i〈φφ〉S̃ , where
the averaging is with respect to S̃ = S − Ss . This immediately
implies S̃ = ∫

φ G−1φ. We can define G explicitly by writing
its inverse

G−1(r1,t1,r2,t2) = g−1
0 (r1 − r2,t1 − t2)

+ iγ 〈φ(r1,t1)φ(r2,t2)〉S
−ϑ(r1,t1) δ(r1 − r2)δ(t1 − t2). (4.34)

By denoting the averaging with the label S in this equation,
we want to remind that it should be performed with respect to
S, not S̃. After introducing the shifted fields

ζ (r2,t2) = φ(r2,t2) − i

∫
dr3 G(r2,t2,r3,0)φ0(r3),

(4.35)
ζ (r1,t1) = φ(r1,t1) + i

∫
dr3 φ0(r3)G(r3,0,r1,t1),

we observe that S = ∫
ζ G−1ζ , i.e., G = −i〈ζ ζ 〉S . We used

the fact that G21 = 0 when completing the square. Let us also
note that

〈φφ〉S = 〈ζ ζ 〉S + σ+
1

γ
F = iG + σ+

1

γ
F, (4.36)

where

F (r1,r2,t1,t2) = γ

∫
dr3dr4 GR(r1,t1,r3,0)

×F0(r3,r4)GA(r4,0,r2,t2) (4.37)

and F0(r3,r4) = �0(r3)�∗
0 (r4). In particular,

n(r,t) = iG12(r,t,r,t) + 1

γ
f (r,t,t), (4.38)

where we denoted

f (r,t1,t2) = F (r,r,t1,t2). (4.39)

By inserting relation (4.36) into (4.34), we obtain an equation
for G in the form

[i∂t1 − ĥ1 − ϑ(r1,t1)]G(r1,t1,r2,t2)

−
∫

dt3�(r1,t1,t3)G(r1,t3,r2,t2) = δ(r1 − r2)δ(t1 − t2),

(4.40)

where ĥ1 is the operator of the kinetic energy acting on
coordinate r1. Let us comment on the different terms entering
the equation. The 11 and 22 components of the matrix G

are retarded and advanced Green’s functions, respectively,
for which we use the notation GR and GA. Disorder effects
are included within the framework of the self-consistent
Born approximation which gives rise to a contribution to the
self-energy,

�dis(r,t1,t2) = γG(r,t1,r,t2). (4.41)

The total self-energy

� = �dis + �s (4.42)

additionally comprises a source term �s , which is purely off
diagonal and related to the initial conditions. It can be written
as

�s(r,t1,t2) = −iσ+f (r,t1,t2), (4.43)

where σ+ = (σx + iσy)/2, and f is defined through Eqs. (4.39)
and (4.37).

The equation for the Green’s function (4.40) is fully
consistent with Eq. (4.4) for the noninteracting case. Here,
however, GR/A depend on the classical self-consistent po-
tential. Besides, the dependence on the initial conditions is
explicitly included in the definition. The function f plays the
role of the initial distribution function in our description. The
density is expressed in terms of the components of G as shown
in Eq. (4.38).

Thus, we arrive at two equations for G and n, which are
coupled by the self-consistency relation ϑ = 2λn. The first
term in Eq. (4.38) for n(r,t) accounts for diffusion for times
much larger than t � τ , while the second term is a short-
range contribution that describes the initial expansion up to
times of the order of the scattering time τ . It turned out to
be possible to organize both the differential equation and the
relation between the density n and the components of G in
such a way that the information about the initial wave function
always appears together with GR and GA. Recall that GR and
GA are separately averaged over disorder.
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The equation for the Green’s function (4.40) still contains
more information than is needed for calculating the density
evolution and hence further simplifications can be made. In
essence, we will proceed in analogy to the quasiclassical
approximation widely used in the theory of nonhomogeneous
superconductivity [14–16].

E. Quasiclassical approximation

As is well known, for the analysis of the effects of weak
disorder, and for smooth external perturbations (on the scale of
wavelength), one may pass from the full quantum mechanical
equations to a reduced quasiclassical description. In the case
of superconductivity, this procedure leads from the Gor’kov
equations to the Eilenberger equation in the ballistic limit
and, further on, to the Usadel equation in the diffusive limit.
Following this route, we will derive a Usadel-type diffusive
equation for a wave packet evolving in the self-consistent
potential which arises as a result of the nonlinearity. The
obtained kinetic equation determines the distribution function
n(r,t,ε), from which the density of the gas at a given moment
and spatial coordinate is found as n(r,t) = ∫

(dε) n(r,t,ε).
We start by introducing a mixed (Wigner) representation

for the Green’s function

G(r1,r2,t1,t2) =
∫

(dp)(dε) G(r,p,t,ε)eip(r1−r2)−iε(t1−t2),

(4.44)

where r = (r1 + r2)/2 and t = (t1 + t2)/2. Considering first
the linear case λ = 0, the frequency defines a momentum
scale pε = √

2mε, wavelength λε = 2π/pε, and time scale
tε = ε−1. Initially, the typical scale for ε is determined by
the function f (r,t,ε), which in turn reflects the momentum
distribution of the injected wave packet [see Eq. (4.63)]. If
the density and self-energies are smooth on the scale λε, the
Green’s function can be averaged on this scale. A necessary
prerequisite is that ε is sufficiently large. In this sense, ε

plays a role similar to the Fermi energy in electronic systems.
In the same spirit, the weak disorder condition, which is
needed to formally justify the use of the self-consistent Born
approximation, can be formulated as ετε � 1. The averaging
alluded to above can be implemented by integrating the
Green’s function in deviations from pε. In the nonlinear case
λ �= 0, the frequency ε in pε should be replaced by

ε̃(r,t) = ε − ϑ(r,t). (4.45)

The quasiclassical Green’s function gn can then be introduced
as

gn(r,t,ε) = i

π

∫
dξ G

(
r,n

(
pε̃ + ξ

vε̃

)
,t,ε

)
. (4.46)

In this equation, n = p/p specifies the momentum direction
and vε̃ = pε̃/m. In order to derive an equation for gn(r,t),
one should first consider the difference of Eq. (4.40) and its
conjugate equation

G(r1,t1,r2,t2)[−i∂t2 − ε̂2 − ϑ(r2,t2)]

−
∫

dt3 G(r1,t1,r2,t3)�(r2,t3,t2) = δr1r2δt1t2 . (4.47)

The result can be written as(
i∂t + i

m
p∇

)
G(r,p,t,ε) − [ϑ(r,t)•,G(r,p,t,ε)]

= [�(r,t,ε)•,G(r,p,t,ε)]. (4.48)

Here, we introduced the • product

A(r,p,t,ε) • B(r,p,t,ε) = e
i
2 (∇A

r ∇B
p −∇B

r ∇A
p −∂A

t ∂B
ε +∂B

t ∂A
ε )

×A(r,p,t,ε)B(r,p,t,ε). (4.49)

Due to the slowness of � and ϑ , a gradient expansion can
be performed, where we keep the leading terms only. The
quasiclassical approach in its original form does not involve
an approximation with respect to the time arguments. Here,
we make an additional smoothness assumption. Namely, we
assume that the time variation of the density (and thereby of
ϑ) is sufficiently slow to justify the neglect of terms of the
order of ∂2

t ϑ . In addition, the modulus of the momentum p
multiplying ∇ is set to pε̃ and the equation integrated in ξ ,
thereby obtaining an equation for the quasiclassical Green’s
function:

i∂tgn(r,t,ε) + i

m
n∇(pε̃ gn(r,t,ε)) − i

pε̃

∇ϑ(r,t)∂ngn(r,t,ε)

+ i∂tϑ(r,t)∂εgn(r,t,ε) + i

2τε̃

[〈gn(r,t,ε)〉n,gn(r,t,ε)]

= i[f (r,t,ε)σ+,gn(r,t,ε)]. (4.50)

In this formula, 〈(. . .)〉 denotes angular averaging and ∂n =
∇n − n where ∇n is defined through the relation

∇p = n∂p + 1

p
∇n. (4.51)

The following relation for the disorder part of the self-energy
was employed:

�dis(r,t,ε) = γ

∫
dεpν(εp)〈G(p,r,t,ε)〉n

≈ −iπν(ε̃)γg0(r,t,ε) ≡ − i

2τε̃

g0(r,t,ε). (4.52)

The last relation serves as a definition of the scattering rate
τ−1
ε = 2πν(ε)γ in our model. It was used that the Green’s

functions has a peak for εp = ε̃ (compare the related discussion
in Sec. IV A).

Equation (4.50) does not fully determine the Green’s
function gn. In the quasiclassical approximation, the condition

gn(r,t,ε)e− i
2 (
←−
∂ t

−→
∂ ε−

←−
∂ ε

−→
∂ t )gn(r,t,ε) = 1 (4.53)

is therefore introduced. Keeping terms that result from the
expansion of the exponential in this formula, however, exceeds
the accuracy of our approximation. We therefore use the
constraint in the form

g2
n(r,t,ε) = 1. (4.54)

It can be seen that this constraint is consistent with the time
evolution described by Eq. (4.50). Indeed, when multiplying
Eq. (4.50) from the left by gn and adding the result to the
equation that is obtained by first multiplying Eq. (4.50) by gn
from the right, one obtains an equation for g2

n. The resulting
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equation

∂tg
2
n(r,t,ε) + ∂tϑ(r,t)∂εg

2
n(r,t,ε) + vε̃n∇g2

n(r,t,ε)

− 1

pε̃

∇ϑ(r,t)∇ngn(r,t,ε) − 1

2τε̃

[〈gn(r,t,ε)〉n,g
2
n(r,t,ε)

]
= −[

f (r,t,ε)σ+,g2
n(r,t,ε)

]
(4.55)

is solved by g2
n(r,t,ε) = c, where c is an arbitrary constant.

This constant can be determined in the noninteracting case,
where the relations gR(r,t,ε) = 1 and gA(r,t,ε) = −1 imply
c = 1. It is usually argued [15,16,39] that this constraint carries
over to the interacting theory, and we will follow this route
here.

Equation (4.50), the analog of the Eilenberger equation in
our problem, can be further simplified in the diffusive regime.
This reduction will be discussed next. Let us denote by q and
ω the small momenta and frequencies related to the space and
time variation of nε. In the diffusive regime, the inequalities
τεvq � 1 and ωτε � 1 are fulfilled for typical velocities v.
If we additionally demand τεvq ϑ/ε � 1 and ωτε ϑ/ε � 1,
the main contribution comes from the zeroth angular harmonic
of the quasiclassical Green’s function. It is worth noting that
the expansion is performed assuming that gradients and time
derivatives of the potential are small, i.e., it is not an expansion
in the strength of ϑ . We can take into account the influence of
higher harmonics approximately with the help of the ansatz

gn = g0 + ng, (4.56)

where g0 = 〈gn〉 and g = d n〈n′gn′ 〉 in d spatial dimensions
and ng is a small perturbation in the diffusive regime. In this
limit, the constraint g2

n = 1 results in the condition 1 = g2
0 +

{ng,g0}, so that upon integration in n one obtains the relation
g2

0 = 1 as well as g = −g0gg0.
In order to derive Eq. (2.1), we first integrate Eq. (4.50)

with respect to n. The result is

i∂tg0(r,t,ε) + i

dm
∇(pε̃ g(r,t,ε))

− i∇ϑ(r,t)
1

pε̃

d − 2

d
g(r,t,ε) + i ∂tϑ(r,t) ∂εg0(r,t,ε)

= −i[f σ+,g0(r,t,ε)]. (4.57)

In a second step, we first multiply Eq. (4.50) by ni before
integrating in n and find

i∂tg(r,t,ε) + i

m
∇(pε̃ g0(r,t,ε)) (4.58)

+ i

pε̃

∇ϑ(r,t) g0(r,t,ε) + i ∂tϑ(r,t) ∂εg(r,t,ε)

+ i

2τε̃

[g0(r,t,ε),g(r,t,ε)] = −i[f σ+,g(r,t,ε)]. (4.58)

After multiplying this equation by g0 from the left and using
the relation g0[g0,g] = 2g, we can formally solve for g. Due
to the smallness of g, not all terms need to be kept, and we
may work with

g(r,t,ε) = −τε̃

m
g0(r,t,ε)∇(pε̃ g0(r,t,ε)) − τε̃

pε̃

∇ϑ(r,t,ε)

= −lε̃g0(r,t,ε)∇g0(r,t,ε), (4.59)

where lε̃=vε̃τε̃. We plug this expression for g into Eq. (4.57).
In this way, we obtain the following equation for g0:

∂tg0(r,t,ε) + ∂tϑ(r,t)∂εg0(r,t,ε)

− [∇ + �ε̃∇ϑ(r,t)](Dε̃g0(r,t,ε)∇g0(r,t,ε))

= −[f (r,t,ε)σ+,g0(r,t,ε)], (4.60)

where Dε̃ = v2
ε̃ τε̃/d. We used the relation lε̃/pε̃ × (2 − d)/

d = �ε̃Dε̃, where we defined the quantity

�ε̃ = −∂ε ln ν(ε̃). (4.61)

� vanishes in two spatial dimensions since the density of
states is constant. In three dimensions, however, �ε̃ = 2−d

2ε̃

is finite. As mentioned before, the above equation should be
supplemented with the matrix constraint g2

0(r,t,ε) = 1.
Before making a specific ansatz for the solution, let us focus

on the function f that specifies the injection of the wave packet
and initial evolution up to times of the order of the scattering
time τ [see Eq. (4.39)]. If F (p,r) is sufficiently smooth in the
sense that for typical v = p/m and q controlled by F (p,q) =
�0(p + q/2)�∗

0 (p − q/2) the inequality τvq � 1 holds, we
can approximately replace

2πνε̃ f (r,t,ε) ≈ δ(t)
∫

(dp)F (p,r)2πδ[εp + ϑ(r,0) − ε]

≡ δ(t) F [ε − ϑ(r,0),r]. (4.62)

Next, we introduce the following ansatz for g0:

g0(r,t,ε) =
(

1 1
πν(ε̃) ñ(r,t,ε)

0 −1

)
, (4.63)

which solves the equation provided ñ fulfills the kinetic
equation

∂t ñ(r,t,ε) − ∇(Dε̃∇�ñ(r,t,ε)) + ∂tϑ(r,t)∂εñ(r,t,ε)

= δ(t)2πν(ε̃)F (ε̃,r). (4.64)

Here, we used the notation ∇� = ∇ − ∇ϑ(r,t)�ε̃. This con-
cludes our derivation of the kinetic equation from Eqs. (4.40).
The diagrammatic interpretation of the different terms ap-
pearing in this equation was provided in Sec. IV B for the
two-dimensional case. The main new ingredient for d �= 2 is
the nonconstant density of states. Within our model, it results in
a frequency-dependent scattering time [compare Eqs. (4.61)].
Since the density of states enters with argument ε̃ = ε −
ϑ(r,t), the disorder part of the self-energy �dis explicitly
depends on ϑ . In a diagrammatic language, it means that a
generalization of the box diagrams B is required for a noncon-
stant density of states in order to accommodate this change
(see Fig. 8). This modification was first noticed in Ref. [18].

One may write the distribution function as a function of the
kinetic energy instead of the total one, n(r,t,ε̃) ≡ ñ[r,t,ε̃ +
ϑ(r,t)]. The argument ε̃ in n is substituted by ε in Eq. (2.5).
From a technical point of view, this corresponds to a gauge
transformation. We could have utilized this transformation
already at the beginning of our derivation by working with
the so-called gauge-invariant Green’s function G, which can
be introduced as

G(r1,r2,t1,t2) =
∫

(dp)(dε) G(r,p,t,ε)

× eip(r1−r2)−i[ε−ϑ(r,t)](t1−t2). (4.65)
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FIG. 8. For dimension d �= 2, the density of states is not constant
and the ϑ dependence of the Green’s function entering the SCBA
becomes important. In this case, the box diagrams BR and BA should
be generalized as displayed.

A derivation based on G instead of G, but otherwise following
the same lines as described in this section, leads directly to
Eq. (2.5) instead of Eq. (2.1).

V. COLLISIONS INDUCED BY THE NONLINEARITY

The purpose of the paper is to present the technical
aspects of the derivation of the kinetic equation describing the
pulse propagation in a disordered and nonlinear medium. The
obtained equation (2.5) describes the diffuse propagation (as
a result of collisions with elastic defects) in the self-consistent
potential, but so far fully ignores collisions induced by the
nonlinearity. With respect to the nonlinearity, this equation
describes the collisionless regime.

We now wish to discuss the role of collisions. To this end, let
us first recall the general spirit of the derivation presented for
the collisionless regime. As is typical for disordered systems,
the physics at long-time scales and long distances is dominated
by diffusion modes. The nonlinearity leads to an interaction of
these modes. To treat this effect, we singled out pairs of fields
φ and φ with a small momentum difference in the interaction
term. Afterwards, the effect of interaction of the diffusion
modes was considered in a self-consistent way by introducing
the smooth classical potential ϑ as described in Sec. IV C.
This procedure may be viewed as a mean-field approximation.
It should be noted, however, that in this procedure only a small
(albeit important) subset of all possible scattering processes
was singled out and treated nonperturbatively as a result of self-
consistency. It is important that the potential ϑ is proportional
to the density and therefore smooth and slowly varying. This
is the reason why the self-consistent part of the problem of the
propagation of the diffusion modes may be treated within the
quasiclassical formalism.

To incorporate collisions, one has to go beyond the scheme
discussed above. Collisions induced by a nonlinear interaction
in classical wave systems are routinely studied in nonlinear
physics (see, e.g., the book of Zakharov, L’vov and Falkovich
[40]). There, it works as follows. In the equation of motion for
the occupation numbers np(r,t), one obtains nonlinear terms,
which are considered using the random-phase approximation.
At second order in the coupling constant λ, this procedure
yields a collision integral, which in the case of the four-wave
interaction (like in the NLSE or GPE) is proportional to the
third power in the occupation numbers.

Here, we will show how the derivation of the collision inte-
gral in the kinetic equation can be obtained in the framework of

GS

GR

GS

GS

GA

GS

FIG. 9. Corrections to �R according to Eq. (5.2).

the field-theoretical approach we use. In order to account for
collisions, we have to go beyond the mean-field description
employed in the collisionless regime, namely, we need to
include fluctuations. We will derive these at the second order
with respect to λ, the lowest order at which collisions appear
in the theory. We therefore need to calculate second-order
corrections to the self-energy. When doing so, we will assume
that the diffusive propagation in the field of the self-consistent
potential created by the nonlinearity is already known accord-
ing to the analysis presented in the previous section.

In the calculation of the collision integral, we will use
the Green’s functions G(r1,t1; r2,t2) as defined in Eq. (4.34).
When doing so, we neglect terms containing F [cf. Eq. (4.36)],
because F decays on a scale of the mean-free path in the
disordered medium. The off-diagonal component G12, in
turn, describes the long-range nonlinear diffusion of a partial
wave until the moment of collision with another partial wave
at t ≈ t1 ≈ t2. The component G12 resembles the Keldysh
component in the regular technique. It is nonvanishing due to
the injection process at t = 0, which is encoded in the source
term Ss of the action. We will therefore denote G12 as GS .

Since Sint originates from the NLSE-GPE, the theory used
in this paper contains only classical vertices, namely, those that
couple one of the quantum components of the doublets φ or φ

with three classical ones (compare Fig. 3). As a consequence
of this fact, there are only three contributions (diagrams) to be
calculated for self-energies: one for �S and the other two for
each of the diagonal components, e.g., for �R . As a result, one
obtains

�S(x1,x2) = −2λ2GS(x2,x1)GS(x1,x2)GS(x1,x2) (5.1)

and

�R(x1,x2) = −2λ2[GA(x2,x1)GS(x1,x2)GS(x1,x2)

+ 2GS(x2,x1)GR(x1,x2)GS(x1,x2)]. (5.2)

The corresponding diagrams are displayed in Figs. 9
and 10. These two quantities determine the collision integral
in the kinetic equation. In standard kinetic theory, the kinetic
equation is formulated in terms of the mass-shell distribution
function np(r,t). It can be introduced as follows. First, one

GS

GS

GS

FIG. 10. Corrections to �S according to Eq. (5.1).
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parametrizes GS = GR • n̂ − n̂ • GA, where n̂ = n̂(r,p,t,ε)
and the • product has been defined in Eq. (4.49). Then, one
defines the on-shell distribution function as

np(r,t) = n̂(r,p,t,ε = εp + ϑ + Re(�R)). (5.3)

This definition is motivated by the observation that as long
as GS is a smooth function of coordinates and times, the
largest contribution to GS comes from the product of Wigner
transforms

GS(r,p,t,ε) ≈ n̂(r,p,t,ε)(GR − GA)(r,p,t,ε)

≈ −2πin̂(r,p,t,ε)δ̃(ε − εp − ϑ − Re(�R))

≈ −2πinp(r,t)δ(ε − εp − ϑ − Re(�R)).

(5.4)

Here, δ̃ is a broadened δ function, which is sharply peaked
compared to the scale of variation of n̂ and can therefore be
replaced by a regular delta function. Since the distribution
function n̂ always appears in combination with the delta
function, it is useful to work with the mass-shell distribution
function np defined in Eq. (5.3).

In a general context, ϑ could be an external potential. For
our application, an external potential is not present, but we treat
a part of Re�R separately, namely, the self-consistent potential
ϑ(r,t) = 2λn(r,t). Therefore, in Eq. (5.4), Re�R should be
understood as the real part of �R as given in Eq. (5.2). As will
be discussed further below, in the regime of applicability of
our approach, Re�R may be considered to be small compared
to ϑ , and we will not mention it further.

In an approximation consistent with this reasoning, the
collision integral can be written as

Î coll(r,p,t,ε) = i�S(r,p,t,ε) + 2n̂(r,p,t,ε)Im�R(r,p,t,ε).

(5.5)

Entering with Eq. (5.4) into the expressions (5.1) and (5.2),
and replacing the Wigner transform of the products of Green’s
functions on the right-hand side of both equations by the
product of Wigner transforms, one finds from Eq. (5.5) the
collision integral for the mass-shell distribution function

I coll(r,p,t) = Î (r,p,t,ε = εp + ϑ)

= 4πλ2

(2π )2d

∫
dp2dp3dp4

× δ(p + p2 − p3 − p4)δ(εp + εp2 − εp3 − εp4 )

×{[np + np2 ]np3np4 − npnp2 [np3 + np4 ]},
(5.6)

where we suppressed (for the sake of brevity) the space and
time arguments x = (r,t) in the distribution functions. The
normalization is n(r,t) = ∫

(dp)np(r,t). One may check that
the obtained collision term coincides with the C22 term in the
kinetic theory of the Bose gas [27]; the Bose factors np + 1 are
replaced by np. Most important is that the obtained collision
integral is universal, i.e., it does not depend on the system
microscopy and holds for both NLS and GP equations.

In this paper, we work with the ξ -integrated quasiclassical
Green’s function and, correspondingly, with a frequency-
dependent distribution function rather than with a distribution
function depending on the quasiparticle energy ε(p). To make

a connection, we note that in the equation for GS , Eq. (5.4),
where the δ function was used to fix the frequency argument ε

of n, we may alternatively fix εp and thereby the modulus of p:

GS(r,p,t,ε) ≈ −2πin̂(r,pε̃n,t,ε)δ(ε̃ − εp), (5.7)

where ε̃ is defined in Eq. (4.45). With the help of this
representation, one finds

I coll
n (r,t,ε)

≡ Î coll(r,pεn,t,ε + ϑ(r,t))

= 4πλ2(2π )d
∫

dn2dn3dn4

∫
dε2dε3dε4

× ν(ε2)ν(ε3)ν(ε4)δ(ε + ε2 − ε3 − ε4)

× δ(pε + pε2 − pε3 − pε4 )([n′
n,ε + n′

n2,ε2
]n′

n3,ε3
n′

n4,ε4

− n′
n,εn

′
n2,ε2

[n′
n3,ε3

+ n′
n4,ε4

]), (5.8)

where pεi
= pεi

n and we suppressed the space and time
arguments in the dimensionless distribution function
n′

n,ε(r,t) = n̂(r,pεn,t,ε + ϑ(r,t)). Only positive values of εi

are included in the integration.
In the diffusive limit, which we concentrate on in this

paper, only the isotropic part of n′
n is important and n′

n
may be replaced by its angular average n′ = ∫

dn n′
n. In a

similar way, the knowledge of I coll = ∫
dn I coll

n is sufficient. In
accordance with Ref. [13], the normalization of the distribution
function n(r,t,ε) in Sec. IV E has been chosen such that n(ε) =
2πν(ε)n′(ε). The resulting full kinetic equation including the
collision integral is written in Sec. II, Eq. (2.13).

In the course of derivation of the kinetic equation, we
omitted the renormalization induced by the real part of �R .
This kind of renormalization is standard for any many-body
problem. The corrections induced by the real part, for example
∂εRe�R , are of the order of (λn/ε)2, and are therefore smaller
than the leading terms which are kept in the kinetic equation.

VI. CONCLUSION

In this work, we discussed the propagation of a wave packet
in a disordered and nonlinear medium, for which the dynamics
is governed by the NLSE-GPE. Possible applications include
the propagation of a light beam in a nonlinear optical medium
and the expansion of a cloud of Bose atoms released from a
trap. For definiteness, we use the term “particles” irrespective
of the system.

We considered the case when the potential (interaction)
energy induced by the nonlinearity is considerably smaller than
the typical kinetic energy. This allowed us to use the picture of
a gas of particles moving in a self-consistent potential rather
than that of a hydrodynamic flow. Diffusion occurs as a result
of elastic scattering from a random potential. We studied a
regime for which particles scatter on impurities many times
before colliding with other particles.

Another important consequence of the smallness of the
nonlinearity is the possibility to neglect off-diagonal terms
in the Bogoliubov transformation. In the case of a Bose
condensate released from a trap, our consideration corresponds
to a stage of evolution when the initial hydrodynamic flow
[41,42] of the Bose atoms already passed by and particles
diffuse with a typical kinetic energy of the order of the (initial)

043636-16



EFFECTIVE THEORY FOR THE PROPAGATION OF A . . . PHYSICAL REVIEW A 87, 043636 (2013)

chemical potential and the wavelength λtyp comparable with
the healing length ξ of the trapped condensate. We assume
that λtyp is much shorter than the mean-free path. Since we use
the GPE, which arises as the classical equation of motion in
the theory of the interacting Bose gas, it is assumed that the
occupation numbers np with p ∼ 2π/λtyp remain large on the
discussed stage of the expansion.

Compared to the case of disordered electrons with electron-
electron interactions [43], virtual processes involving diffusion
modes need not be considered for the discussed problem. As
we have already mentioned, such processes give corrections
that are small in the parameter 1/ετε � 1, but unlike for
electrons at low temperature, they are not accompanied with
nonanalytic corrections, which make them important in the
case of the degenerate electron gas.

In the case of two-dimensional particles d = 2, the motion
in the plane is not constrained, while the third dimension either
represents the effective timelike direction in the case of optics
experiments or is blocked by the quantization induced by a
potential that restricts the motion in the transverse direction.
It is important to distinguish the original dimension of the
single-particle states in the NLSE-GPE, denoted with d in this
paper, from the effective dimension of the diffusive collective
modes, which may be different. Namely, the derived kinetic
equation can be solved in different geometries.

To illustrate the role of the effective dimensionality, let us
consider the example of a stripe made out of 2d particles. Then,
the diffusion will be described by a one-dimensional solution
while particles can be two-dimensional if the quantization with
respect to the width of the stripe can be neglected. As in the
case of 2d particles diffusing in a plane, the exact solution for
the time dependence of the mean-squared radius still holds.
We expect that the existence of this simple analytical result
can be useful for numerics or suitably designed experiments.

Aside from technical details of the derivation of the two
self-consistent equations describing the collisionless regime,
this paper contains a discussion of interparticle collisions.
The collision integral has been obtained from the same
field-theoretical approach that was used as a starting point for
the derivation of the kinetic equation in the collisionless regime
and the procedure was straightforward. It is important to stress
that the collision integral is the same for both optics (NLSE)
and cold atoms (GPE), i.e., independent of the microscopic
origin. Since the interparticle collisions are elastic and local,
it does not alter the relation (2.12) between 〈r2

t 〉 and t in the
case of a constant density of states. The result remains valid as
long as the kinetic equation is applicable, despite the fact that
the collisions change the dynamics of propagation.

The change of dynamics caused by collisions is qualita-
tively different from the one introduced by the self-consistent
potential. Indeed, the smooth self-consistent potential is
responsible for a gradual change of the kinetic energy during
the expansion. In contrast, the energies of incoming and
outgoing particles participating in a collision process may
differ considerably. In particular, in three dimensions, the
collision-induced redistribution of energies may lead to a
population of localized particles with energies ε � 1/τε. This
mechanism bears a certain similarity with the seeding of a
macroscopic occupation of low-energy states in a trapped
Bose gas; this step is crucial for the formation of a Bose

condensate starting from a confined Bose gas [44–46]. In the
case of the expanding disordered Bose gas in 3d, collisions
seed a population of particles that are likely to localize. An
estimate for the rate of generation of localized particles may
be obtained from the in-scattering term of the collision integral
upon integration over the interval 0 < ε < 1/τε, namely,

dnloc/dt ≈ dn/dt |ε�τε
∼ 1

τcoll

n′(ε ∼ 2ε)

n′(ε ∼ ε)

n(t)

(τεε)d/2
. (6.1)

Here, we assumed that both colliding particles have the energy
∼ ε. Although the discussed effect is important under static
conditions, one may show that for the situation we study, the
seeding of localized states for an expanding cloud is negligible
because of the fast drop of n(t).

The situation in two dimensions is different in that in the
absence of interactions, all states are localized on the scale of
the localization length lloc(ε). For a state with the energy ε,
the process of localization starts to develop at a time of the
order of l2

loc(ε)/D(ε). In the presence of interactions, however,
this picture changes. Both the time-dependent potential and
the interparticle collisions lead to dephasing, which weakens
localization effects. One may show that in 2d if the number
of particles is large enough, the expanding cloud will pass
lloc without being stopped. We will discuss the relevance of
interaction effects for the localization problem in a separate
publication [47]. In the mentioned work, we describe the
spreading of the wave packet on length scales exceeding
lloc as collision-induced diffusion. The obtained rate of
expansion can be compared to known results on subdiffusive
spreading in nonlinear disordered lattices (for a recent review,
see Ref. [48]).
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APPENDIX: DISTRIBUTION FUNCTION

The aim of this appendix is to show how the approximation
(4.21) for the distribution function f is obtained. For the
sake of completeness, we consider the generalization to the
case with interaction. Starting point is the definition of f

in Eq. (4.17). We introduce times t = (t1 + t2)/2 and �t =
t1 − t2 as well as coordinates r = (r1 + r2)/2 and ρ = r1 − r2

and write

G(r,p,t,ε) =
∫

d(�t)dρ G(r1,t1,r2,t2)e−ipρ+iε�t . (A1)

Note that the Green’s function G depends on coordinates r,
t only via the self-consistent potential ϑ , since otherwise the
disorder averaged system would be translationally invariant in
time and coordinates. If variations of ϑ in time in space are
slow in comparison to other relevant scales in the system, we
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may write the leading term in a gradient expansion for f (r,t,ε)
[defined in Eq. (4.20)] as

f (r,t,ε) ≈ γ

∫
(dp)(dq) (dω) GR(r,p+,t,ε+)

×F (p,q)eiqrGA(r,p−,t,ε−)e−iωt . (A2)

Both Green’s functions decay on typical time scales of the
order of the mean-free path. If f is convoluted with a function
that is smooth of this time scale, we may therefore use
f (r,t,ε) ≈ δ(t)

∫ ∞
−∞ dtf (r,ε,t) instead. Next, it is assumed

that F controls momenta q so that essential q = |q| are small
as qltyp � 1. Then,

f (r,t,ε) ≈ δ(t)
∫

(dp)(dq)
γF (p,q)eiqr

[ε − εp − ϑ(r,0)]2 + 1
(2τε̃)2

.

(A3)

The Lorentzian is peaked around εp ∼ ε − ϑ(r,0) and has a
width of the order of 1/τεp .

If the distribution function is used to average a quantity
that depends smoothly on ε as is the case for our problem
(where ε determines the diffusion coefficient), the Lorentzian
acts essentially like a smeared δ function and we may

use f (r,t,ε) = τε̃(2π )δ[ε − εp − ϑ(r,0)]
∫

(dε)f (r,t,ε). This
leads us to the result of this appendix:

2πνε̃f (r,t,ε) = δ(t)
∫

(dp) F (p,r) (2π )δ[εp + ϑ(r,0) − ε].

(A4)

We used the relation γ τε̃ = 1/(2πνε̃). If the smoothness as-
sumptions outlined in this appendix are met, the representation

of the distribution function f in the form given by f is justified.
In the noninteracting limit, this leads us to relation (4.21).
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