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Ab initio simulations of light propagation in silver cluster nanostructures
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We present a theoretical approach for the simulation of the optical response and light propagation in aggregates
and in ordered arrays of small noble-metal clusters with discrete electronic structure. We construct the Hamiltonian
for the aggregate system based on the time-dependent density functional theory electronic states of the individual
subunits and describe the interaction between them using the dipole approximation. The time evolution of the
aggregate under the influence of the external electric field is obtained from the numerical solution of the time-
dependent Schrödinger equation with the coupled excitonic Hamiltonian. For each subunit, the time-dependent
dipole moment is calculated using the reduced density matrix formalism. Such quantum-mechanically determined
dipole moments are used to simulate the spatiotemporal distribution of the electric field produced by the array.
Additionally, we introduce an approximate self-consistent iterative approach to treat arrays consisting of many
subunits which are of interest in the context of nanoplasmonics, nano-optical applications, and development of
light-harvesting materials. The developed methodology is illustrated first on the example of Ag2 and Ag8 cluster
pairs. Subsequently, light propagation in a triangular-shaped array consisting of six Ag8 clusters is simulated.
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I. INTRODUCTION

In recent decades, nanosized noble-metal clusters and their
aggregates have become the subject of intense experimen-
tal and theoretical research due to their unique chemical,
electronic, and optical properties as compared to their bulk
counterparts [1–13]. It has been recognized that nanosized
noble-metal particles exhibit collective oscillations of con-
duction electrons, known as plasmons, which cause strong
absorption of light in the visible region [14,15] that is absent in
individual atoms or bulk material. Since excitation of plasmon
resonance is strongly affected by shape, size, and dielectric
environment of the nanoparticle [16,17], these parameters
can be adjusted for application at desired wavelength. The
strong local field near the surface of a plasmonic particle
can enhance the optical response of a molecule placed in
its vicinity, as it has been demonstrated in surface-enhanced
Raman spectroscopy [18] or metal-enhanced fluorescence [19]
experiments. In addition, arrays of closely spaced metal
nanoparticles can guide electromagnetic energy due to strong
near-field coupling between neighboring subunits [20]. All the
above-mentioned properties make noble-metal nanoparticles
and their assemblies promising building blocks for various
optical and photonic applications ranging from subwavelength
imaging and energy transport [21–23] to biosensing and
single-molecule detection [6,24,25].

Continued reduction of the size of nanoparticles leads
eventually to subnanometer-sized metal clusters with molecu-
larlike discrete energy levels. In this size range, the plasmonic
absorption band of a nanoparticle transforms into discrete
electronic transitions strongly dependent on the number of
atoms in the cluster and its geometrical shape [5,26]. Thus, the
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optical and electronic properties of these particles do not scale
with cluster size, and adding even a single atom or changing
the structure can dramatically affect the properties of the
cluster [3,27–29]. Apart from that, aggregates of subnanometer
metal clusters demonstrate novel functionalities exceeding
those of individual constituents [30].

One of the exciting possibilities to exploit such aggregates
for various applications is to control light propagation and lo-
calization, aiming to deliver excitation to a desired spatial point
at a desired instant of time. By combining adaptive control with
nano-optics, a subwavelength dynamic localization of light
has been demonstrated experimentally in specifically designed
aggregates of silver nanoparticles [31,32]. Parallel to the
experimental developments, considerable attention has been
devoted to the theoretical simulation of light propagation and
localization in noble-metal nanostructures. By now, several
theoretical approaches have been demonstrated including
the finite-difference time-domain method (FDTD) [33–35],
the boundary elements method (BEM) [36], the discrete-
dipole approximation (DDA) [37], the extended Mie the-
ory [21,38,39], and the quasistatic approximation to Maxwell
equations [40,41] applied to 10–100 nanometer-sized nanopar-
ticles and their aggregates. Additionally, the above-mentioned
methods for solving the Maxwell equations were coupled
to the Bloch [42–44], Schrödinger [45], and Liouville [46]
equations for the description of the quantum dynamics in
complex systems consisting of nanoparticles interacting with
molecules or atomic systems. The main drawback of the latter
group of methods is that they treat atoms or molecules in the
system as few-level quantum systems with degenerate excited
states and thus do not describe the electronic structure of the
individual systems and their interaction realistically. However,
this description is mandatory both for the interpretation of
experimental results as well as for proposing novel systems
and experiments.
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In this study, we present methods for simulation of
optical response and light propagation in ordered arrays of
subnanometer molecularlike metal clusters including a large
number of nondegenerate excited electronic states obtained
from time-dependent density functional theory (TDDFT). We
treat the whole array as a complex quantum system and
propagate the time-dependent Schrödinger equation (TDSE)
under the action of an external laser pulse in the manifold of
the system eigenstates. Subsequently, we employ the reduced
density matrix formalism to retrieve time-dependent dipole
moments of each individual constituent. Finally, using meth-
ods of classical electrodynamics we calculate the temporal
and spatial distribution of the electric field produced by
the array, treating each subunit as a point dipole emitter
with the quantum-mechanically determined time-dependent
dipole moment. Since inclusion of numerous excited states
per cluster leads to computational overburdening, we develop
an approximate self-consistent iterative approach to treat large
metal-cluster arrays. This approach is based on the iterative
solution of the TDSE for each cluster separately under the
action of the external laser field and the electric fields produced
by the other clusters in the array. The described methods are
first applied to an Ag2 cluster pair since for this system more ac-
curate calculations using the correlated ab initio approximate
coupled cluster singles and doubles (CC2) method [47] can be
performed. Subsequently, a system with more complex energy
level structure, namely, the Ag8 cluster pair, is investigated. For
both cases, the validity of the approximate iterative approach
is examined. Finally, using the iterative approach, we simulate
the spatiotemporal distribution of the electric field produced
by a triangular-shaped array consisting of six Ag8 clusters.

The paper is structured as follows: In Sec. II, the theoretical
approach is described and the working equations are derived;
in Sec. III, computational details are specified. The results are
presented and discussed in Sec. IV, and in Sec. V conclusions
and outlook are given.

II. THEORY

In this section, we introduce the theoretical methodology
for the simulation of optical response and light propagation
in silver-cluster arrays by combining the ab initio description
of the electronic structure of individual clusters with classical
electrodynamics simulations of the electric field distributions.
The section is structured in the following way: In Sec. II A, the
construction of an excitonic Hamiltonian of a cluster array is
discussed, and in Sec. II B, eigenenergies and eigenfunctions
of the external-field-free part of the excitonic Hamiltonian
are determined. In Sec. II C, the approach to the simulation
of the time-dependent response of the cluster array is given
and an expression for the spatiotemporal distribution of the
electric field produced by the array is derived. The method to
obtain transition dipole moments in the frame of TDDFT is
discussed in Sec. II D. Finally, in Sec. II E, the approximate
iterative approach for application to large arrays is presented.

A. Exciton Hamiltonian for the cluster array

We assume that our system is composed of an array of N

weakly interacting metal clusters. The Hamiltonian HI of the

I th cluster is built up from the electronic Hamiltonian Ĥ(I )
0 ,

which can be constructed based on the TDDFT calculations
as described in Sec. II D, and the electromagnetic perturbation
arising from the external electric field and the response of other
clusters in the array:

ĤI = Ĥ(I )
0 − μ̂I ·

⎛
⎝∑

J �=I

εJ (r,t) + εext(r,t)

⎞
⎠ . (1)

Here, μ̂I is the electronic dipole moment operator of the
I th cluster, εext(r,t) is the external electric field strength,
εJ (r,t) is the electric field produced by the electromagnetic
response of the J th cluster. Notably, the term −μ̂I · ∑

εJ (r,t)
represents the cluster-cluster interaction, which within the
considered approach is assumed to be purely electromagnetic.
The total electronic Hamiltonian (Ĥ) of the cluster array with
N subunits is constructed from the Hamiltonians of individual
components (1) as

Ĥ =
N∑

I=1

Ĥ(I )
0 ⊗ I(I ) −

N∑
I=1

∑
J>I

μ̂I ⊗ I(I,J ) · εJ (r,t)

−
N∑

I=1

μ̂I ⊗ I(I ) · εext(r,t), (2)

where I(I ) and I(I,J ) are the identity operators acting on the
electrons of all clusters in the array, except cluster I or I and
J , respectively.

The electronic coupling between the clusters μ̂I · εJ (r,t)
in the lowest approximation can be modeled by dipole-dipole
interaction terms. This leads to the excitonic Hamiltonian
which does not take into account the possibility of charge-
transfer excitations between individual subunits. However,
since in our simulations the distance between the clusters will
be kept relatively large, such charge-transfer excitations are
unlikely to contribute to the optical properties of the array.
For example, for the Ag2 cluster pair at 10a0 separation,
which serves as a benchmark system in our simulations, the
correlated ab initio CC2 calculations predict no charge-transfer
excitation below 4.9 eV, which is considerably higher than the
frequency of the external laser pulse (2.98 eV). Thus, the total
Hamiltonian describing the array with fixed nuclei irradiated
by the external electric field reads as

Ĥ =
N∑

I=1

Ĥ(I )
0 ⊗ I(I )

+
N∑
I

∑
J>I

(
μ̂I μ̂J

r3
IJ

− 3

r5
IJ

(μ̂I rIJ )(μ̂J rIJ )

)
⊗ I(I,J )

−
N∑

I=1

μ̂I ⊗ I(I ) · εext(r,t)

= Ĥarr −
N∑

I=1

μ̂I ⊗ I(I ) · εext(r,t). (3)

Here, rIJ is a vector pointing from the charge center of the
I th cluster to the center of the J th one (rIJ = RJ − RI ),
RI is the position of the charge center of the I th cluster,
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and Ĥarr denotes the external-field-free Hamiltonian of the
cluster array. The form of the Hamiltonian (3) suggests that
the natural basis for solving the TDSE is the basis spanned by
the eigenfunctions of Ĥarr since this operator is fully deter-
mined by properties of individual clusters and their spatial
configuration. Thus, once calculated, the eigenfunctions and
eigenvalues of this Hamiltonian can be used as a basis to
simulate the optical response of the cluster array to various
external electric fields.

B. Eigenfunctions and eigenenergies of the external field-free
Hamiltonian Ĥarr

As a basis for the representation of the coupled array Hamil-
tonian Ĥarr, we employ the product-state basis constructed
from the individual cluster eigenfunctions:

|φij...z〉 = ∣∣�(1)
i

〉 ⊗ ∣∣�(2)
j

〉 ⊗ · · · ⊗ ∣∣�(N)
z

〉
, (4)

where each eigenfunction |�(I )
i 〉 satisfies the time-independent

Schrödinger equation Ĥ(I )
0 |�(I )

i 〉 = E
(I )
i |�(I )

i 〉 with E
(I )
i repre-

senting the ith electronic state energy of the I th cluster, and
the indices i,j, . . . ,z go over all included electronic states for
each individual cluster. In this basis, the Hamiltonian Ĥarr can
be represented by a supermatrix with the elements

(Harr)ij ...z,i ′j ′...z′ = 〈φij...z|Ĥarr|φi ′j ′...z′ 〉. (5)

Due to the orthogonality of the single-cluster eigenfunctions
〈�(I )

i ′ |�(I )
i 〉 = δii ′ , all matrix elements with three or more

different indices in the set ij . . . z are zero. The diagonal matrix
elements have the following form:

(Harr)ij ...z,ij ...z = E
(1)
i + E

(2)
j + · · · + E(N)

z

+
N∑

I=1

∑
J>I

[
1

r3
IJ

μ
(I )
kI kI

· μ
(J )
kJ kJ

− 3

r5
IJ

(
μ

(I )
kI kI

· rIJ

)(
μ

(J )
kJ kJ

· rIJ

)]
, (6)

where kI is the the index of the electronic state of the I th
cluster. For example, for a particular basis function |φij...z〉,
the indices have the values k1 = i, k2 = j, . . . ,kN = z. The
μ

(I )
kI kI

= 〈�(I )
i |μ̂I |�(I )

i 〉 is the permanent dipole moment of
the I th cluster in the state i. The nondiagonal elements of the
matrix (Harr) with only one different index are

(Harr)ij ...kI ...z,ij ...k′
I ...z

=
N∑

J=1

[
1

r3
IJ

μ
(I )
kI k

′
I
· μ

(J )
kJ kJ

− 3

r5
IJ

(
μ

(I )
kI k

′
I
· rIJ

)(
μ

(J )
kJ kJ

· rIJ

)]
.

(7)

Here, μ
(I )
kI k

′
I
= 〈�(I )

i |μ̂I |�(I )
i ′ 〉 is the transition dipole moment

between the states i and i ′ of the I th cluster. Finally, the
elements of the matrix (Harr) with two different indices read as

(Harr)ij ...kI ...kJ ...z,ij ...k′
I ...k

′
J ...z

= 1

r3
IJ

μ
(I )
kI k

′
I
· μ

(J )
kJ k′

J
− 3

r5
IJ

(
μ

(I )
kI k

′
I
· rIJ

)(
μ

(J )
kJ k′

J
· rIJ

)
. (8)

The diagonalization of the field-free excitonic Hamiltonian
Ĥarr gives rise to the set of excitonic states with eigenenergies
Ep and eigenfunctions |ψp〉 which in the tensor basis (4) can
be expanded as

|ψp〉 =
∑
ij ...z

C
p

ij ...z|φij...z〉

=
∑
ij ...z

C
p

ij ...z

∣∣�(1)
i

〉 ⊗ ∣∣�(2)
j

〉 ⊗ · · · ⊗ ∣∣�(N)
z

〉
. (9)

C. Time-dependent response of the cluster array to the external
electromagnetic field

In order to simulate the electromagnetic response of
cluster arrays induced by external laser fields, the electronic
dynamics of the whole system can be calculated fully quantum
mechanically by solving the TDSE. Our aim is to develop a
general methodology for the simulation of the electromagnetic
response of cluster arrays with arbitrary shapes and sizes. The
only restriction we make is that the individual components
are much smaller than the wavelength of the light used for
excitation, and are typically in the range of 1–10 nm. This
allows us to consider each individual component as a dipole
emitter. The response of the whole nanostructure with arbitrary
size is then modeled by taking into account the spatial variation
of electromagnetic field phase at the positions of individual
clusters. Within these restrictions, the interaction of each
component with the external field is described by a dipole
term −μ̂I · ε0(t)(ei(kω ·RI −ωt) + c.c.) where the spatial variation
of the external electric field over the whole array is taken into
account by the position-dependent phase, and ε0(t) represents
the time envelope of the field.

As a basis for the solution of the TDSE, it is convenient to
employ the excitonic eigenfunctions defined in Eq. (9). Thus,
the total time-dependent wave function of the cluster array
can be expanded into the excitonic eigenstates as |�(t)〉 =∑

p Dp(t)e−iEpt |ψp〉, where Dp(t) are the time-dependent
coefficients which are determined by solving the following
set of coupled equations:

Ḋq(t) = iε0(t) ·
∑

p

Dp(t)e−i(Ep−Eq )t (M+
qpe−iωt + M−

qpeiωt ).

(10)

The coupling between the excitonic eigenstates q and p and
the spatiotemporally varying electric field is determined by the
matrix elements M±

qp which can be reduced to the transition
dipole matrix elements of the individual clusters as

M±
qp =

∑
I

e±ikω ·RI

∑
ij ...z

∑
k′
I

C
∗q

ij ...k′
I ...z

C
p

ij ...kI ...z
μ

(I )
k′
I kI

. (11)

The solution of the set of equations (10) gives rise to the time-
dependent coefficients Dq(t) which allows for describing the
time-dependent response of the whole cluster array. However,
in order to simulate the spatial distribution of the electric field
including the near-field zone, one needs to calculate the fields
emitted by each individual component of the array. For this
purpose, the total response needs to be partitioned into the
contributions of the individual components, which we achieve
by using the reduced density matrix formalism. The reduced
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density operator for the I th cluster is found as a partial trace
of the full density operator over all other clusters

ρ̂I = Tr1,...,I−1,I+1,...,N (ρ̂). (12)

Assuming that the whole cluster array under consideration is
in the pure state described by the wave function |�(t)〉, the
density operator can be written as

ρ̂ = |�(t)〉〈�(t)|. (13)

By employing the basis decomposition (9) for the reduced
density operator (12), one obtains

ρ̂I =
∑
pq

Dp(t)D∗
q (t)e−i(Ep−Eq )t

×
∑
ij ...z

∑
k′
I

C
∗q

ij ...k′
I ...z

C
p

ij ...kI ...z

∣∣�(I )
kI

〉〈
�

(I )
k′
I

∣∣. (14)

The diagonal elements of the reduced density matrix in
the basis |�(I )

kI
〉 provide the population of the corresponding

electronic states of the selected cluster I , and the time-
dependent dipole moment of the I th cluster is determined
according to

pI (t) = Tr(μ̂I ρ̂I )

=
∑
pq

Dp(t)D∗
q (t)e−i(Ep−Eq )t

×
∑
ij ...z

∑
k′
I

C
∗q

ij ...k′
I ...z

C
p

ij ...kI ...z
μ

(I )
k′
I kI

. (15)

Finally, the electric field produced by each single cluster
can be calculated using a dipole electromagnetic-field expres-
sion [48], and the total electric field distribution is obtained by
summation over all subunits:

E(r,t) =
N∑
I

{−1

r3
I

[
pI (t ′) + rI

c
ṗI (t ′)

− 3rI

r2
I

[
rI ·

(
pI (t ′) + rI

c
ṗI (t ′)

)]

+ 1

c2
rI × (p̈I (t ′) × rI )

]
t ′=t− rI

c

}
, (16)

where rI = r − RI and rI is its absolute value.

D. Construction of electronic Hamiltonian based on TDDFT

As already described in the previous sections, the essential
quantities needed for the simulation of the response of a cluster
array are the electronic Hamiltonians and the dipole coupling
matrix elements of individual constituents. In principle, for
molecular-sized clusters, these quantities can be obtained
using any ab initio or semiempirical electronic-structure
method. Due to its efficiency and applicability to relatively
large complex systems, we have employed the linear response
time-dependent density functional theory (TDDFT) in order
to obtain the energies of the electronic states and the transition
dipole moments between the ground and excited electronic
states. In contrast to the ground-excited-state transition dipole
moments, which can be calculated using standard TDDFT
routines, the determination of the transition dipole matrix

elements between different excited states requires approximate
procedure presented in detail elsewhere [49]. Here, we only
briefly outline the main steps involved.

Based on the Casida ansatz [50], the excited-state electronic
wave function can be approximated by the configuration
interaction singles-like expansion

|�k(r)〉 =
∑
i,a

ck
i,a

∣∣�CSF
i,a (r)

〉
, (17)

where |�CSF
i,a (r)〉 is a singlet spin-adapted configuration state

function (CSF) defined as

∣∣�CSF
i,a (r)

〉 = 1√
2

(∣∣�aβ

iα

(
r
)〉 + ∣∣�aα

iβ (r)
〉)
, (18)

and |�aβ

iα (r)〉 is a Slater determinant with two unpaired
electrons, one on the occupied Kohn-Sham (KS) orbital i

with spin α and another on the virtual orbital a with spin
β. Correspondingly, in the determinant |�aα

iβ (r)〉, the unpaired
electrons reside on the occupied KS orbital i (spin β) and the
virtual orbital a (spin α). The expansion (17) gives rise to the
wave functions for an arbitrary number of excited states of
any symmetry and represents a practicable way of defining
an excited-state wave function based on linear response
TDDFT. Although these states do not correspond to the exact
eigenstates of the molecular Hamiltonian and do not represent
the variational approximation to them, they still can be used
as an approximate basis to represent the molecular electronic
eigenstates. In principle, once the approximate electronic wave
function is available, all properties of the excited states such
as dipole couplings can be straightforwardly calculated.

The expansion coefficients ck
i,a in Eq. (17) are determined

on physical grounds by requiring that the wave function in
Eq. (17) leads to the same density response as the one obtained
by the linear response TDDFT procedure. Thus, for nonhybrid
functionals without exact exchange the coefficients ck

i,a are
given by

ck
i,a = (εa − εi)

−1/2
(
Xk

ia + Y k
ia

)
, (19)

where εi and εa are the orbital energies of ith occupied
and ath virtual single-electron orbitals, respectively, and Xk

and Y k represent the solution of the TDDFT eigenvalue
problem [50,51]. This allows us to define the set of mutually
orthogonal electronic wave functions |�k(r)〉 which is further
employed to calculate the transition dipole matrix elements
μk′k between the electronic states of the cluster as

μk′k = 〈�k′(r)|μ̂|�k(r)〉
=

∑
ia

∑
i ′a′

(
ck′
i ′,a′

)∗
ck
i,a

〈
�CSF

i ′,a′ (r)
∣∣μ̂∣∣�CSF

i,a (r)
〉
, (20)

where a and a′ indicate virtual and i and i ′ occupied orbitals,
respectively. The dipole matrix elements between the CSF’s
on the right-hand side of Eq. (20) can be reduced to the tran-
sition dipole moments between Kohn-Sham orbitals [49,52],
which can be calculated using the standard quantum-chemical
integration routines.
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E. Approximate iterative approach for the simulation
of electromagnetic field propagation

While the solution of the Eqs. (10) and (16) describes
the coupled evolution of the system and the electromagnetic
fields completely, in practice it can not be applied to a
wide range of systems of interest. The solution quickly
becomes cumbersome if a large number of electronic states per
constituent and large number of constituents are considered.
Since the inclusion of many electronic states in the simulation
is mandatory for the description of the nonlinear response of
clusters, the straightforward solution of Eqs. (10) and (16)
is restricted to relatively small arrays only. Thus, in order
to be able to treat the electric field propagation in larger
systems, we introduce an approximate iterative procedure for
the simulation of electromagnetic response of the system and
the electric field evolution. In this approach, we solve the
TDSE for each subunit independently:

i
∂

∂t
|�I (t)〉 = ĤI |�I (t)〉, (21)

with the Hamiltonian ĤI determined according to (1). The
single-cluster wave function |�I (t)〉 is expanded in the basis
spanned by the eigenfunctions of the field-free single-cluster
Hamiltonian Ĥ(I )

0 :

|�I (t)〉 =
∑

i

C
(I )
i (t)e−iE

(I )
i t

∣∣�(I )
i

〉
. (22)

Due to the same reasons as discussed in Sec. II C, the
external electric field vector can be written as εext(r,t) ≈
ε0(t)(ei(kω ·r−ωt) + c.c.). With this assumption, the TDSE (21)
is transformed in a set of differential equations for the time-
dependent expansion coefficients C

(I )
i (t):

Ċ
(I )
i (t) = iεext(RI ,t)

∑
j

C
(I )
j (t)e−i(E(I )

j −E
(I )
i )tμ

(I )
ij

+ i
∑

j

C
(I )
j (t)e−i(E(I )

j −E
(I )
i )t

×
∑
J �=I

〈
�

(I )
i

∣∣μ̂I · εJ (r,t)
∣∣�(I )

j

〉
. (23)

Considering the fact that the overlap between the electronic
wave functions |�(I )

i 〉 and |�(I )
j 〉 is nonzero only in the space

close to the cluster, the matrix element on the right-hand side
of Eq. (23) can be simplified as 〈�(I )

i |μ̂I · εJ (r,t)|�(I )
j 〉 ≈

εJ (RI ,t)μ
(I )
ij . The electric field εJ (RI ,t) produced by the J th

cluster is determined via the time-dependent dipole moment
of that cluster [48]

εJ (RI ,t) = −1

r3
IJ

[
pJ (t ′) + rIJ

c
ṗJ (t ′)

− 3rIJ

r2
IJ

[
rIJ ·

(
pJ (t ′) + rIJ

c
ṗJ (t ′)

)]

+ 1

c2
rIJ × (p̈J (t ′) × rIJ )

]
t ′=t− rIJ

c

, (24)

while the time-dependent dipole moment itself is calculated
as the expectation value of the respective dipole moment

operator:

pJ (t) = 〈�J (t)|μ̂J |�J (t)〉
=

∑
ij

C
∗(J )
i (t)C(J )

j (t)e−i(E(J )
j −E

(J )
i )tμ

(J )
ij . (25)

Here, C
(J )
j (t) are the expansion coefficients determined by

solving the set of equations (23). The time-dependent dipole
moments pJ (t) are then employed to calculate the electric
fields of the individual subunits which will act on all other
constituents of the array. Since the response of each subunit
is dependent on all the others, an iterative, “self-consistent”
procedure is needed in order to simulate the evolution of the
system and the electromagnetic field.

Consequently, we proceed as follows: (i) The set of
Eqs. (23) is solved with the cluster-response electric fields
set to zero [εJ (RI ,t) = 0] and the first approximation to the
time-dependent expansion coefficients C

0(I )
k (t) is obtained.

(ii) The time-dependent dipole moments p0
J (t) of all clusters

in the array are calculated by means of Eq. (25). (iii) The
response of all clusters is determined by calculating ε0

J (RI ,t)
via Eq. (24) and used in the set of Eqs. (23) to find the next
approximation to the expansion coefficients C

1(I )
k (t).

Steps (ii) and (iii) are repeated until the time-dependent
dipole moments, obtained in subsequent iterations, do not
change within a certain threshold:

δ = 1

T

∑
J

∫ T

0

∣∣pi+1
J (t) − pi

J (t)
∣∣dt < ε, (26)

where T is the simulation time. The convergence of the method
is ensured by the fact that the main contribution to the total
electric field comes from the external laser radiation, and the
cluster-induced fields are smaller compared to the external
one. Finally, the electric field vector is calculated according to
Eq. (16) with time-dependent dipole moments determined by
means of Eq. (25) using the expansion coefficients found in
the last iteration.

III. COMPUTATION DETAILS

In the present contribution, the above-described methods
for the simulation of the optical response of metal-cluster
arrays are applied to pairs of identical Ag2 or Ag8 clusters
as well as to a triangular array consisting of six identical
Ag8 clusters. The simulation proceeded as follows: First, for
each type of silver clusters, the equilibrium structure has
been determined by the full geometry optimization in the
ground electronic state employing DFT with the gradient-
corrected Becke-Lee-Yang-Parr (BLYP) exchange-correlation
functional [53,54], combined with the triple-zeta valence plus
polarization Gaussian atomic basis set (TZVP) [55] and a
relativistic 19-electron effective core potential for silver [56].
Subsequently, a number of excited-electronic-state energies
E

(I )
i has been calculated employing linear response TDDFT.

All calculations have been performed using the TURBOMOLE

V.6.3 package [57,58]. The number of excited states taken into
consideration was 10 for Ag2 and 40 for Ag8, covering the
energy range up to 4.5 and 4.1 eV, respectively. Then, the
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transition dipole moments μ
(I )
ij between all the states were

determined according to Eq. (20).
Subsequently, for the cluster pairs, the Hamiltonian (5) has

been constructed and diagonalized. Based on the eigenvalues
and eigenvectors of the Hamiltonian (5), the absorption spectra
of the cluster pairs were calculated. To check the accuracy
of the excitonic model, the resulting spectra for Ag2 cluster
pairs at 10a0 and 20a0 separation have been compared with
more accurate CC2 calculations [59,60]. The CC2 model is
an approximation to the coupled cluster singles and doubles
model and provides excitation energies correct to the second
order and transition moments correct to the first order [47] at
reasonable computation time.

To simulate the optical response of the cluster pairs, the
TDSE (10) was integrated using the fourth-order Runge-Kutta
method with a time step of 1 × 10−4 fs. For the Ag2 cluster pair,
the integration was performed within all the 121 eigenstates
obtained after diagonalization of the Hamiltonian, while for
the Ag8 cluster pair only the 450 lowest eigenstates were taken
into account. Along the TDSE integration, the time-dependent
dipole moments of each cluster in the pair were calculated
according to Eq. (15) with a time step of 2 × 10−3 fs.

For comparison, the optical response of the Ag2 and Ag8

cluster pairs has been also simulated using the approximate
iterative approach presented in Sec. II E. The TDSE (23) was
integrated for each cluster within the manifold of 10 electronic
excited states for Ag2 and 40 for Ag8, with the same time step
of 1 × 10−4 fs.

Finally, the simulation of light propagation in the Ag8

cluster triangle constructed of six subunits was performed
employing the iterative method described in Sec. II E. The
TDSE (23) was propagated within 40 electronic excited

states for 100 fs. The integration time step was 1 × 10−4 fs,
the number of iterations required for convergence was 37.
Afterwards, the electric field vector was calculated according
to Eq. (16) on a three-dimensional (3D) spatial grid with a step
of 0.35a0.

IV. RESULTS AND DISCUSSION

A. Ab initio excitonic Hamiltonians and optical properties
of Ag2 and Ag8 cluster pairs

In this section, we investigate first the optical properties
of Ag2 and Ag8 cluster pairs based on the external field-free
excitonic Hamiltonians Ĥarr obtained from ab initio TDDFT
calculations. The first system we present is a dimer of two
identical Ag2 subunits placed at a distance r12 and oriented
such that the transition dipole moments for the first intense
transition S0 → S1 are collinear to each other and both
perpendicular to the vector r12 connecting the clusters’ charge
centers, as shown in the inset of Fig. 1(a). The electronic states
of the Ag2 cluster pair obtained by the diagonalization of
the excitonic Hamiltonian [Eq. (5)] are presented in Fig. 1(a)
as functions of the intercluster distance and compared to the
energies of the pair at infinite separation. As can be seen,
the energies of the eigenstates converge relatively fast to
the asymptotic limit such that at distances larger than 20a0,
effectively no excitonic coupling is present.

The pair of Ag8 clusters is oriented analogously to the Ag2

such that the transition dipoles for the lowest intense transition
S0 → S10 are parallel to each other and both perpendicular
to the vector r12 which connects the charge centers of the
clusters [see inset in Fig. 1(b)]. The cluster-pair excitonic
eigenstates are displayed in Fig. 1(b) together with their infinite

FIG. 1. (Color online) (a) The nine lowest eigenvalues of the Hamiltonian (5) of Ag2 cluster pair (dashed lines) as functions of the
intercluster distance r12; (solid lines) the combinations of single Ag2 cluster energies E

Ag2
i + E

Ag2
j . (b) The same as in (a) but for Ag8 clusters.

The solid lines correspond to (from bottom to top) E
Ag8
0 + E

Ag8
0 , E

Ag8
0 + E

Ag8
1 , E

Ag8
0 + E

Ag8
2 , and E

Ag8
0 + E

Ag8
3 single Ag8 cluster energies.
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FIG. 2. (Color online) (Left panel) Absorption spectra of (a) a single Ag2 cluster, (b) a pair of Ag2 clusters placed at 10a0 distance, and
(c) a pair of Ag2 clusters at 20a0 separation. Solid lines represent the results of calculations based on excitonic Hamiltonian (3) and dashed
lines represent the results of ab initio CC2 calculations. (Right panel) Absorption spectra of (d) single Ag8 cluster, of a pair of Ag8 clusters at
(e) 10a0 and (f) 20a0 separation calculated based on excitonic Hamiltonian (3). All the spectra are folded with Lorentzian shape functions with
full width at half maximum (FWHM) equal to 0.3 eV.

separation limit. For the Ag8 pair, the excitonic eigenvalues
converge to the sums of single Ag8 cluster energies already at
an intercluster distance of 13a0.

The electronic absorption spectra of the Ag2 and Ag8

cluster pairs calculated using the excitonic eigenfunctions
for the 10a0 and 20a0 separation are presented in Fig. 2
and compared with the absorption spectra of the individual
clusters. Additionally, for Ag2 the results of more accurate
ab initio correlated CC2 calculations are shown with dashed
lines. As it can be seen, at 20a0 separation the electronic
absorption spectrum corresponds in both cases closely to the
spectrum of the individual subunit and the exciton splitting
of the electronic states is negligible [compare Figs. 2(a)
and 2(c) for Ag2 and Figs. 2(d) and 2(f) for Ag8]. When
the distance between the clusters is reduced, the spectrum
of the pair is changed dramatically. In the case of the Ag2

pair, the low-energy absorption band is 0.1 eV blue-shifted
due to repulsive character of the corresponding excited state
|ψ2〉 [cf. Figs. 1(a) and 2(b)] which arises due to the parallel
orientation of the dipole moments. The lower-lying |ψ1〉 state
has attractive character, but due to the gerade symmetry does
not have any intensity. The higher absorption band in the
energy range between 4.5 and 5.0 eV is split due to the exciton
coupling with a splitting of ∼0.3 eV at 10a0 distance. The
results of more accurate CC2 calculations fully support these
findings. Namely, the blue-shift of the lower absorption band is
0.09 eV and the splitting of the higher absorption band is 0.4 eV
at 10a0 separation. The electronic absorption spectrum of the
Ag8 cluster pair is presented in Figs. 2(d)–2(f). The spectrum
exhibits splittings both in low- as well as in high-energy
regions at 10a0 separation, while for larger distances between
silver clusters it closely resembles the single-cluster absorption
spectrum.

B. Laser-driven exciton dynamics in the Ag2 cluster pair

In order to validate the approximate iterative approach
for the simulation of the optical response of cluster arrays
introduced in Sec. II E, we compare it with the full quantum-
mechanical approach presented in Sec. II A. The exciton
dynamics of the Ag2 cluster pair has been induced by an
external laser pulse with the temporal profile described by
the Gaussian function

ε0(t) = 1

2
εmax exp

(
− (t − t0)2

2σ 2

)
, (27)

with the full width at half maximum (FWHM) of 27 fs (σ =
11.5 fs) corresponding to the spectral FWHM of 0.14 eV. The
central frequency of the pulse ωc = 2.98 eV is resonant to
the intense S0 → S1 transition of a single Ag2 cluster. The
peak pulse strength is εmax = 5 × 10−3 Eh/ea0, and the pulse
is centered at t0 = 30 fs. The field propagates along the vector
pointing from the center of the first cluster to that of the second
one (x axis in the following) and is polarized along the S0 → S1

transition dipole moment (y axis).
First, we investigate the population dynamics in the Ag2

cluster pair with intercluster separation of 10a0. Since at this
separation the intense transition is blue-shifted (cf. Fig. 2), the
external pulse is not resonant to it, although the frequency
of the transition still lies within the spectral FWHM of
the pulse. The excitonic state population dynamics of the
cluster pair at 10a0 separation is presented in Fig. 3(a). The
excitonic eigenstates together with the excitation energies
and projections of the transition dipole moments on the
pulse polarization direction between the states involved in
the dynamics are presented in Fig. 3(b). As it can be seen
from the figure, at first the laser pulse causes the exciton-state
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FIG. 3. (Color online) (a) Population dynamics of the Ag2 cluster pair with 10a0 spacing. The coefficients Di are the solutions of Eq. (10)
and thus |Di |2 represent the population of the corresponding eigenstate of the Hamiltonian Ĥarr. (b) Energy-level structure of the Ag2 cluster pair
together with the excitation energies and projections of the transition dipole moments on the laser field polarization direction. (c) Population
dynamics of single clusters in the Ag2 cluster pair. ρ

(1)
00 and ρ

(1)
11 are the diagonal elements of the reduced density matrix (14) of the first cluster

in the pair, which describe the population of the ground and first excited states of the cluster, respectively. C
(1)
0 and C

(1)
1 are the coefficients in

the expansion (22) for the first cluster, C(2)
0 and C

(2)
1 the coefficients for the second cluster (shown with dashed lines of the same color) obtained

using iterative approach.

population transfer to the |ψ2〉 state, which corresponds to
excitation of one of the clusters in the pair, since in the basis (4)
this eigenfunction reads as

|ψ2〉 ≈ 1√
2

(∣∣�(1)
0

〉 ⊗ ∣∣�(2)
1

〉 + ∣∣�(1)
1

〉 ⊗ ∣∣�(2)
0

〉)
. (28)

Further, the population is transferred to the |ψ21〉 state since
the transition |ψ2〉 → |ψ21〉 also lies within the FWHM of the
laser pulse. The state |ψ21〉 corresponds to the simultaneous
excitation of both clusters since the main contribution to
this eigenstate comes from the |�(1)

1 〉 ⊗ |�(2)
1 〉 basis function.

Afterwards, the population is cycled back to the ground
state through the same intermediate state. Overall, the system
performs approximately 1.5 cycles of oscillations before the
laser pulse ceases.

Finally, from the total cluster-system wave function, the
elements of reduced density matrices of both clusters are
calculated according to Eq. (14). The diagonal elements of the
reduced density matrices ρ

(I )
ii describe the population dynam-

ics of a single cluster, which we compare to the population
dynamics calculated via the iterative approach described in
Sec. II E. The results of both calculations are presented in
Fig. 3(c). It can be seen that the iterative approach predicts
a slightly shorter period of population oscillations between
ground and first excited states of a single cluster, although
qualitatively the population dynamics is represented correctly.
While the external laser pulse acts, the results for both clusters
are essentially the same, but after the external pulse ceases the

population of the selected states of the first and second cluster
starts to oscillate out of phase, showing the excitation transfer
between these clusters. These oscillations are clearly seen in
the population dynamics calculated via iterative approach [cf.
Fig. 3(c), |C(1)

i |2 and |C(2)
i |2], but are present, though difficult

to show on the same plot, in reduced density matrix elements
dynamics as well. Therefore, only diagonal elements for the
first cluster ρ

(1)
ii are presented in Fig. 3(c).

The population dynamics of the Ag2 cluster pair at 20a0

separation under the same external laser pulse action was
investigated in a similar manner, and the results are presented
in Fig. 4. At this intercluster separation, the spectrum of the
cluster pair is almost unchanged compared to the single Ag2

cluster spectrum and thus the laser pulse is resonant to the
intense |ψ0〉 → |ψ2〉 and |ψ2〉 → |ψ21〉 transitions, as is seen
in Fig. 4(b). During the pulse action, the system exhibits almost
two cycles of Rabi-type oscillations between the |ψ0〉 and |ψ21〉
states including the intermediate |ψ2〉 state [cf. Fig. 4(a)]. As in
the previous case, |ψ0〉 corresponds to the stationary state with
both clusters in the ground state, |ψ2〉 is the combination (28),
and |ψ21〉 is the stationary state with two clusters promoted to
the first excited state.

The population dynamics of the first cluster in the pair is
shown in Fig. 4(c). The diagonal elements of reduced density
matrix ρ

(1)
00 and ρ

(1)
11 , retrieved from quantum-mechanical

calculations, are compared to the state populations |C(1)
0 |2

and |C(1)
1 |2, obtained by the iterative method. It is seen that

035433-8



Ab INITIO SIMULATIONS OF LIGHT . . . PHYSICAL REVIEW B 89, 035433 (2014)

FIG. 4. (Color online) (a) Population dynamics of the Ag2 cluster pair with 20a0 spacing, (b) energy-level structure of the Ag2 cluster pair
together with the excitation energies and projections of the transition dipole moments on the laser field polarization direction, (c) population
dynamics of the first cluster in the cluster pair.

at 20a0 intercluster separation the iterative approach almost
perfectly reproduces the results of fully quantum-mechanical
calculations. The period of Rabi oscillations is the same
for both methods, and the final populations of the ground
and first excited states differ only by 0.07. The results for
the second cluster are essentially the same and thus not
presented.

In the following, we compare the dipole moments of a single
cluster in the pair at both intercluster separations by employing
the two theoretical approaches described in Secs. II A and II E.
In Fig. 5, we present the y component of the dipole moment
vector of the first cluster in the pair calculated by means of
Eq. (15) (shown with thick black line) and Eq. (25) [thin
red (gray) line]. The other components of the dipole moment
vector are negligibly small. As expected, at 10a0 separation
the results of the two approaches differ considerably as it is
seen in Fig. 5(a), while at 20a0 intercluster distance the results
closely match [cf. Fig. 5(b)].

Finally, we investigate the convergence of the itera-
tive approach for the two systems discussed above. In
Fig. 6, the deviation δ [as defined in Eq. (26)] is plotted
versus the number of iteration. It is seen that at 10a0 separation
the iterative approach requires approximately 50 iterations
to converge, while at 20a0 separation only 20 iterations are
needed.

The analysis of the population dynamics and time-
dependent dipole moments allows us to conclude that, at inter-
cluster separations at which the system absorption spectrum
is close to the absorption spectrum of a single cluster [cf.
Figs. 2(a)–2(c)], the iterative approach described in Sec. II E
can be used to efficiently model the response of ordered cluster
arrays to the external electric field.

C. Exciton dynamics in the Ag8 cluster pair

In this section, we investigate laser-driven exciton dynamics
in a more complicated system, namely, an Ag8 cluster pair
placed at 20a0 distance. The results for the Ag2 cluster pair
have demonstrated that at this distance the iterative approach
closely resembles the results of full quantum-mechanical

(a)

(b)

FIG. 5. (Color online) Time-dependent dipole moment of the
first cluster of the Ag2 cluster pair with the components placed at
(a) 10a0 separation, (b) 20a0 separation. The results obtained by
solving Eq. (15) are shown with thick black lines and via iterative
approach [Eq. (25)] with thin red (gray) lines.
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FIG. 6. (Color online) Dependence of the difference between
single-cluster dipole moments obtained in subsequent iterations δ

on the iteration number for Ag2 cluster systems with intercluster
separation of 10a0 and 20a0.

calculations. In a simulation, population dynamics is initiated
by a laser pulse of the same temporal profile as for the Ag2

system [see Eq. (27)], with the central frequency ωc = 2.91 eV
being resonant to the intense S0 → S10 transition in isolated
Ag8. The polarization of the external laser pulse is aligned with
the direction of the S0 → S10 transition dipole moment vector.

Similarly to the case of the Ag2 cluster pair, under the laser
pulse action the population is transferred from the ground state
|ψ0〉 to the resonant excited state |ψ22〉 [cf. Fig. 7(a)]:

|ψ22〉 ≈ 0.707
(∣∣�(1)

0

〉 ⊗ ∣∣�(2)
10

〉 + ∣∣�(1)
10

〉 ⊗ ∣∣�(2)
0

〉)
− 0.01

(∣∣�(1)
0

〉 ⊗ ∣∣�(2)
16

〉 + ∣∣�(1)
16

〉 ⊗ ∣∣�(2)
0

〉)
, (29)

which involves not only the ground (S0) and resonant excited
(S10) states of each cluster, but also has a small contribution of
the excited state S16. Although the latter state is not resonant to
the external laser pulse (the corresponding excitation energy
is 3.77 eV), the oscillator strength of this transition is about
two times higher than that for the S0 → S10 transition, and the
transition dipole moment is aligned with the polarization of the
laser pulse as well. From the excited state |ψ22〉, the population
is further promoted to the higher excited state |ψ266〉, which is
mainly composed of the |�(1)

10 〉 ⊗ |�(2)
10 〉 basis function. As it is

seen in Fig. 7(b), the transition |ψ22〉 → |ψ266〉 is also resonant
to the exciting laser pulse, and the transition dipole moment
has significant magnitude and is aligned along the polarization
of the pulse. In this manner, the cluster pair performs
1.5 cycles of Rabi-type oscillations until the external pulse
ceases.

The population dynamics of the first cluster in the pair
calculated via iterative method is shown in Fig. 7(c) in
comparison with the results retrieved from the full quantum-
mechanical calculations. The results for the second cluster
are essentially the same and thus not presented. The period
of Rabi oscillations between the ground and resonant ex-
cited states is the same in both simulations, the difference
between the final populations of the states of interest differ
only by 0.07. Similarly to the Ag2 cluster pair at 20a0

separation, the time-dependent dipole moments of each Ag8

cluster in the pair calculated by both described methods
[i.e., Eqs. (15) and (25)] demonstrate good agreement. The
convergence of the iterative approach was reached within 16
iterations.

FIG. 7. (Color online) (a) Population dynamics of the Ag8 cluster pair with 20a0 spacing. (b) Energy-level structure of the Ag8 cluster
pair together with the excitation energies and projections of the transition dipole moments on the direction of the laser field polarization.
(c) Population dynamics of the first Ag8 cluster in the pair. ρ

(1)
00 and ρ

(1)
10,10 are the diagonal elements of the reduced density matrix (14), C

(1)
0

and C
(1)
10 are the coefficients in the expansion (22).
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FIG. 8. (Color online) Schematic representation of the Ag8 clus-
ter array under the external laser pulse action. The distance between
centers of neighboring subunits in each column is 16a0 and the same
distance is between central lines of neighboring columns. Vector kω

shows the direction of the laser field propagation and vector ε denotes
the direction of light polarization.

D. Simulation of light propagation in an Ag8 cluster triangle

Finally, we apply our iterative approach in order to simulate
the spatial distribution of the time-dependent electric field
generated by a triangle built of Ag8 clusters with a geometry
as shown in Fig. 8. For the excitation we employ the same
laser pulse as in the case of the Ag8 cluster pair presented in
Sec. IV C. The directions of the laser pulse propagation and
polarization are shown in Fig. 8, the silver clusters are oriented
in such a way that the transition dipole moment of the resonant
S0 → S10 transition is parallel to the field polarization.

During the pump-pulse action (0–50 fs of the simulation
time), the population dynamics of each single cluster in the
array is approximately the same (see Fig. 9). All silver clusters

FIG. 10. (Color online) Spatial distribution of the electric field
produced by a Ag8 cluster array of triangular shape. The snapshots
are taken in the plane of the array at different instants of time specified
on the snapshots. The intensity of the electric field is denoted with a
color code.

perform 1.5 cycles of Rabi oscillations between the ground
and the resonant S10 excited states and the effect of cluster-
cluster interactions is almost not seen. After the pump pulse has
ceased, the population dynamics of unsymmetrically placed
clusters becomes substantially different. The excited S10 state
population of the “tip” cluster (numbered 6 in Fig. 8) decreases
transferring the excitation energy to the neighboring clusters (4
and 5 in Fig. 8) which not only slows the population decay from
the S10 excited state, but also promotes electron population
to the close-lying S11 and S12 excited states. Although these

FIG. 9. (Color online) Population dynamics of each single cluster in the Ag8 array calculated according to Eq. (23). Numbers on subplots
correspond to cluster numbering in Fig. 8.
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states have excitation energies within the spectral FWHM of
the external laser pulse, they were not populated directly by the
laser pulse due to the transition dipole moments perpendicular
to the external field polarization. Small population of the S11

and S12 excited states is observed for other off-axis clusters
(1 and 3).

The spatial variation of the electric field intensity in the
plane of the silver cluster array at different times is presented
in Fig. 10. The simulations show that, while the external pulse
acts the intensity of the electric field around the cluster six
increases, demonstrating not only excitation by the external
laser pulse, but also excitation transfer from other clusters in
the array. After the pulse ceases, the excitation is transferred
back to the left part of the array as it is confirmed by the
population dynamics. In general, the electric field of the
cluster system shows rapid variation with time, and highly
inhomogeneous spatial distribution, illustrating the possibility
to coherently control the light propagation in such ordered
arrays of molecular-sized silver clusters and to localize it
spatially at selected times.

V. CONCLUSION

In conclusion, we have introduced two methods for the
simulation of the light propagation in molecular-size cluster
arrays. The first method is based on numerical integration
of the TDSE with an excitonic Hamiltonian constructed
based on ab initio TDDFT calculations under the influence
of the external electric field. The reduced density matrix
formalism is used to partition the array dipole response
into contributions of the individual clusters. Subsequently,
classical electrodynamics methods are used to determine the
spatiotemporal distribution of the electric field produced by
the whole array.

The second method represents an iterative approximation
to the first one and is suitable for extended arrays. Instead
of constructing the excitonic Hamiltonian of the whole array,
for each subunit the TDSE is propagated separately under
the action of the external laser field and the electric fields

produced by the other clusters in the array. Time-dependent
dipole moments obtained in a self-consistent manner are used
to simulate the electric field of the array analogously to the
first method.

Both methods were tested first on the Ag2 cluster pair,
and it was demonstrated that at relatively large intercluster
separation, the iterative approach successfully reproduces
the results of the excitonic Hamiltonian method. The ap-
proach is also valid when applied to systems with more
complicated electronic structure, namely, Ag8 clusters. Finally,
the applicability of the approximation to extended systems
interesting in the context of the nanopolaritonic and nano-
optical applications was demonstrated on the example of the
light propagation and the simulation of the near-field electric
field distribution in the triangular-shaped array consisting of
six Ag8 clusters.

Out approach can be easily extended to other, more
accurate, quantum-chemical methods which can provide
excited-state energies and transition dipole moments of the
individual clusters. It can be applied to any spatial distribution
(not necessarily symmetric or planar) of clusters, and the
approximate self-consistent method can be used for extended
systems in case the intercluster distance is kept large enough.
Moreover, since the external laser field enters the calculation
directly as a perturbation to the excitonic or single-cluster
Hamiltonians, both methods are straightforwardly applicable
to the simulation of coherent control experiments. Thus, our
methods should in the future allow us to simulate the nano-
optical properties of systems built from molecular-sized metal
particles. Such systems are promising building blocks for the
next generation of nano-optical sensors and light-harvesting
systems.
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