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Abstract. In this study we present a dynamic model evalu-

ation of chemistry transport model LOTOS-EUROS (LOng

Term Ozone Simulation – EURopean Operational Smog) to

analyse the ability of the model to reproduce observed non-

linear responses to emission changes and interannual vari-

ability of secondary inorganic aerosol (SIA) and its precur-

sors over Europe from 1990 to 2009. The 20 year simula-

tion was performed using a consistent set of meteorologi-

cal data provided by RACMO2 (Regional Atmospheric Cli-

mate MOdel). Observations at European rural background

sites have been used as a reference for the model evaluation.

To ensure the consistency of the used observational data,

stringent selection criteria were applied, including a compre-

hensive visual screening to remove suspicious data from the

analysis. The LOTOS-EUROS model was able to capture a

large part of the seasonal and interannual variability of SIA

and its precursors’ concentrations. The dynamic evaluation

has shown that the model is able to simulate the declining

trends observed for all considered sulfur and nitrogen com-

ponents following the implementation of emission abatement

strategies for SIA precursors over Europe. Both the observa-

tions and the model show the largest part of the decline in

the 1990s, while smaller concentration changes and an in-

creasing number of non-significant trends are observed and

modelled between 2000 and 2009. Furthermore, the results

confirm former studies showing that the observed trends in

sulfate and total nitrate concentrations from 1990 to 2009

are lower than the trends in precursor emissions and pre-

cursor concentrations. The model captured well these non-

linear responses to the emission changes. Using the LOTOS-

EUROS source apportionment module, trends in the forma-

tion efficiency of SIA have been quantified for four Euro-

pean regions. The exercise has revealed a 20–50 % more ef-

ficient sulfate formation in 2009 compared to 1990 and an

up to 20 % more efficient nitrate formation per unit nitro-

gen oxide emission, which added to the explanation of the

non-linear responses. However, we have also identified some

weaknesses in the model and the input data. LOTOS-EUROS

underestimates the observed nitrogen dioxide concentrations

throughout the whole time period, while it overestimates the

observed nitrogen dioxide concentration trends. Moreover,

model results suggest that the emission information of the

early 1990s used in this study needs to be improved concern-

ing magnitude and spatial distribution.

1 Introduction

Atmospheric input of sulfur and nitrogen components may

decrease biodiversity in vulnerable terrestrial and aquatic

ecosystems through eutrophication and acidification of soils

and fresh water (Bobbink et al., 1998). The major sources

of sulfur and reactive nitrogen in the atmosphere are sul-

fur dioxide (SO2) and nitrogen oxide (NOx) emissions from

fossil fuel combustion and ammonia (NH3) emissions from

agricultural activities. Although these gases may themselves

be removed from the atmosphere by dry deposition or rain-

out, they are the precursor gases for secondary inorganic
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aerosol (SIA: sulfate (SO2−
4 ), nitrate (NO−3 ) and ammonium

(NH+4 )). The latter provides a means for long-range transport

of reactive nitrogen on a continental scale causing negative

ecosystem impacts far away from their major source areas. In

addition, SIA contributes a large portion of particulate mat-

ter concentration throughout the European domain (Putaud et

al., 2010). Especially ammonium nitrate (NH4NO3) concen-

trations are shown to be particularly enhanced during days

with PM10 concentrations up to or above the EU (European

Union) daily limit value (e.g. Weijers et al., 2011). More-

over, SIA is involved in climate change by affecting the radi-

ation balance of the earth (Forster et al., 2007). Recent stud-

ies show that short-term climate mitigation aimed at reducing

black carbon may be effective, provided that the climate im-

pact of the co-emitted SIA precursors does not cause a net

cooling impact (Bond et al., 2013). Hence, a thorough un-

derstanding of the SIA budget is required to inform policy

makers and to devise mitigation strategies that are effective

for biodiversity, climate change and human health.

To combat the adverse impacts on biodiversity and hu-

man health a series of international conventions and agree-

ments were implemented. The Convention on Long-range

Transboundary Air Pollution was adopted in 1979 and the

related Gothenburg Protocol establishing emission ceilings

for sulfur oxides (SOx), NOx, volatile organic compounds

(VOCs) and NH3 for 2010 negotiated by the EU mem-

ber states together with central and eastern European coun-

tries, the United States and Canada was accepted in 1999

(UNECE, 1999). The National Emissions Ceiling Directive

(NECD 2001/81/EC) was introduced in 2001 (EC, 2001) set-

ting national emission ceilings for the EU countries for 2010

and 2020. The implemented mitigation measures have led to

significant emission reductions (Grennfelt and Hov, 2005).

According to the European Environmental Agency (EEA)

(2012), SOx emissions have decreased by 75 %, NOx emis-

sions by 42 % and NH3 emissions by 28 % in the EEA-32

group of countries from 1990 to 2010. As part of the con-

ventions air pollution monitoring networks have been imple-

mented over Europe providing a long-term observation facil-

ity to be able to assess the effectiveness of the implemented

air quality management. Although the substantial emission

reductions of SOx, NOx and NH3 are largely reflected in the

trends of pollutant concentrations and wet deposition fluxes,

the responses were found to be non-linear (e.g. Lövblad et al.,

2004; Fagerli and Aas, 2008; Tørseth et al., 2012; Harrison et

al., 2014). These studies highlighted that for SIA and its pre-

cursors the implemented emission mitigation measures did

not completely meet the expected concentration reduction.

Hence, understanding of the non-linear responses is impor-

tant to be able to provide robust policy support.

Chemistry transport models (CTMs) are used to analyse

potential emission reduction strategies and quantify their ef-

fectiveness. Before the CTMs can be used to inform policy

development, they need to be evaluated. Dennis et al. (2010)

introduced a comprehensive evaluation framework in which

four types of model evaluation are identified: operational,

diagnostic, dynamical and probabilistic evaluation. Opera-

tional model evaluations have been performed within a huge

number of studies using standard statistical and graphical

analysis to determine how the model results compare with

observations (e.g. Appel et al., 2011; Thunis et al., 2012).

Diagnostic model evaluation, focussing on the description of

an individual process or component in the model has also

been subject of many studies (e.g. Fahey and Pandis, 2003;

Redington et al., 2009; Banzhaf et al., 2012). Recently, prob-

abilistic or ensemble based evaluation has gained popularity

as the ensemble mean of a group of models shows mostly

the best model performance in comparison to observations

(Vautard et al., 2007; McKeen et al., 2005). Dynamic model

evaluations, in which the ability of the modelling system to

capture the observed responses to changes in emissions or

meteorology is analysed, have only been performed in a few

studies so far (e.g. Berglen et al., 2007).

CTMs need to be able to capture non-linear responses

of the emission–concentration and emission–deposition re-

lationships as well as interannual variability over the last 15–

20 years to provide confidence in the use of CTMs for regu-

latory purposes (Civerolo et al., 2010). Colette et al. (2011)

investigated the capability of six state-of-the-art chemistry

transport models to reproduce air quality trends and interan-

nual variability of ozone (O3), nitrogen dioxide (NO2) and

PM10 for the time period of 10 years from 1998 to 2007.

They concluded that the models captured most of the impor-

tant features to justify their implementation for future projec-

tions of air quality provided that enough attention is given to

their underestimation of interannual variability. Fagerli and

Aas (2008) found that the EMEP (European Monitoring and

Evaluation Programme) model’s response for nitrogen in air

and precipitation to emission changes over Europe from 1980

to 2003 is reasonable. The results indicated a lack of trends

in total nitrate (TNO3: sum of aerosol nitrate and gaseous

nitric acid) concentrations despite NOx emission reductions

and it was concluded from the model simulations that this

non-linear behaviour can partly be attributed to a shift in

the equilibrium between nitric acid (HNO3) and NH4NO3

towards particulate phase, which was caused by SO2 emis-

sion reductions. However, the model simulations could not

be performed using a consistent meteorological data set for

all simulated years. Civerolo et al. (2010) performed an

18 year CMAQ (Community Multi-scale Air Quality) sim-

ulation (1988–2005) over the north-eastern United States en-

abling the investigation of spatial patterns and seasonal vari-

ations, but also on long-term trends of SO2−
4 and NO−3 in the

presence of emissions changes and meteorological variabil-

ity. The results suggested that the modelling system largely

captured the long-term trends in sulfur and nitrogen com-

pounds. While the seasonal changes in sulfur compounds

were also captured, the model did not reproduce the average

seasonal variation or spatial patterns in NO−3 .
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Former studies suggest that the non-linear response of pol-

lutant concentrations to emission changes can be attributed to

the differing magnitudes of emission reduction for the differ-

ent substances (Lövblad et al., 2004; Fagerli and Aas, 2008)

inducing shifts in the atmospheric chemistry and equilibrium

between gas and particulate phase, which determine the gas-

to-particle conversion. These non-linearities have also been

identified in short-term modelling studies that focus on the

sensitivity of SIA formation to precursor emission reduc-

tions (e.g. Erisman and Schaap, 2004; Redington et al., 2009;

Derwent et al., 2009; Banzhaf et al., 2013). State-of-the-

art labelling approaches (Yarwood et al., 2007; Wagstrom et

al., 2008) can be applied to track the source allocation for

secondary aerosols and its precursor gases to study the re-

sponse of atmospheric chemistry to emission changes. How-

ever, long-term simulations including a source apportion-

ment have not yet been performed due to the high computa-

tional burden. Kranenburg et al. (2013) introduced a source

apportionment module for the operational LOTOS-EUROS

CTM, which enables long-term simulations with source attri-

bution to investigate possible trends in the gas-to-particle for-

mation efficiency that accompanied the changes in emission

levels over time. We aim to evaluate the LOTOS-EUROS

model for its ability to model the trends in SIA concentra-

tions and, at the same time, investigate the non-linearity in

SIA formation.

In this study a model run of 20 years from 1990 to 2009

was performed with a horizontal grid resolution of 0.50◦

longitude× 0.25◦ latitude over Europe using the LOTOS-

EUROS CTM (Sect. 2.1.1). The model explicitly accounts

for cloud chemistry and aerosol thermodynamics. The model

run is based on emissions for 1990, 1995, 2000, 2005 and

2010 provided by the International Institute for Applied Sys-

tems Analysis (IIASA) (Sect. 2.1.2) and a consistent 3 hourly

meteorological data set from 1990 to 2009 obtained from

the regional climate model RACMO2 (Sect. 2.1.2) of the

Royal Netherlands Meteorological Institute (KNMI). The

modelled concentrations of SIA and its precursors are com-

pared to observations at rural background sites (Sect. 2.2).

By means of an operational (Sect. 3.1) and a dynamic eval-

uation (Sect. 3.2) we identify shortcomings and limitations

of the model system and input data that need to be im-

proved or considered when using the applied set-up for

future emission scenarios. In order to enable the analysis

of trends in gas-to-particle conversion and residence time

of the involved species, the source apportionment module

of LOTOS-EUROS (Sect. 2.1) has been used to trace the

amount of SIA formed per unit emission of SO2, NOx and

NH3 for four different regions over Europe from 1990 to

2009 (Sect. 3.3). The results are discussed and conclusions

are drawn in Sect. 4.

2 Methods and data

This investigation focuses on SIA and its precursors (SO2,

NOx and NH3) over the time period 1990–2009. Although

the focus is on this 20 year long period, we have also investi-

gated the trends in concentrations for the shorter time periods

1995–2009 and 2000–2009 because emission reductions did

not proceed linearly and in line with each other from 1990

to 2009. By considering several time periods we could as-

sess the sensitivity of the trend to the different time periods.

Furthermore, the number of available observations increased

for the later periods, which made a broader assessment of the

results possible.

In the following subsections the applied model and model

set-up, the used observations and the statistic tools we have

used to evaluate the model and calculate and assess the ob-

served and modelled trends are described.

2.1 Simulation description

2.1.1 Model description of LOTOS-EUROS

LOTOS-EUROS is a 3-D chemistry transport model. The

off-line Eulerian grid model simulates air pollution concen-

trations in the lower troposphere, solving the advection–

diffusion equation on a regular lat–lon grid with variable

resolution over Europe (Schaap et al., 2008). In this study,

model version 1.8 was used.

The vertical transport and diffusion scheme accounts for

atmospheric density variations in space and time and for all

vertical flux components. The vertical grid is based on terrain

following vertical coordinates and extends to 3.5 km above

sea level. The model uses a dynamic mixing layer approach

to determine the vertical structure; i.e. the vertical layers vary

in space and time. The layer on top of a 25 m surface layer

follows the mixing layer height, which is obtained from the

meteorological input data that are used to force the model.

The height of the two reservoir layers is determined by the

difference between model top at 3.5 km and mixing layer

height. If the mixing layer extends near or above 3.5 km, the

top of the model exceeds the 3.5 km according to the above-

mentioned description. The horizontal advection of pollu-

tants is calculated applying a monotonic advection scheme

developed by Walcek (2000).

Gas-phase chemistry is simulated using the TNO CBM-

IV scheme, which is a condensed version of the original

scheme (Whitten et al., 1980). Hydrolysis of N2O5 is ex-

plicitly described following Schaap et al. (2004). LOTOS-

EUROS explicitly accounts for cloud chemistry computing

SO2−
4 formation as a function of cloud liquid water content

and cloud droplet pH as described in Banzhaf et al. (2012).

For aerosol chemistry, LOTOS-EUROS features the ISOR-

ROPIA2 thermodynamic equilibrium module (Fountoukis

and Nenes, 2007). Dry deposition fluxes are calculated fol-

lowing a resistance approach as described in Erisman et

www.geosci-model-dev.net/8/1047/2015/ Geosci. Model Dev., 8, 1047–1070, 2015
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al. (1994). Furthermore, a compensation point approach for

NH3 is included in the dry deposition module (Wichink Kruit

et al., 2012). The wet deposition module is based on pre-

cipitation rates using simple scavenging coefficients for the

below-cloud scavenging of gases (Schaap et al., 2004) and

particles (Simpson et al., 2003).

In LOTOS-EUROS, the temporal variation of the emis-

sions is represented by monthly, day-of-the-week and hourly

time factors that break down the annual totals for each source

category. An included biogenic emission routine is based

on detailed information on tree species over Europe (Koe-

ble and Seufert, 2001). The emission algorithm is described

in Schaap et al. (2009) and is very similar to the simultane-

ously developed routine by Steinbrecher et al. (2009). Sea

salt emissions are described using Martensson et al. (2003)

for the particles < 1 µm and Monahan et al. (1986) for the

coarser particles.

LOTOS-EUROS includes a source apportionment module,

which enables tracking the source contribution of a set of

sources through the model system. The emissions can be cat-

egorised in several source categories (e.g. countries or sec-

tor) and labelled accordingly before the model is run. The

total concentration of each substance for each time step and

in each grid cell is modelled as before, but next to this, the

fractional contribution of each label to every species is cal-

culated. During each process, the new fractional contribution

of each label is defined by calculating a weighted average of

the fractions before the process and the concentration change

during the process. The labelling routine is only implemented

for chemically active tracers containing C, S or N (reduced

and oxidised) atoms, as these are conserved and traceable.

The source apportionment module is extensively described

in Kranenburg et al. (2013).

The LOTOS-EUROS model has participated in several

international model inter-comparison studies addressing O3

(Hass et al., 1997; Van Loon et al., 2007; Solazzo et al.,

2012a) and particulate matter (Cuvelier et al., 2007; Hass et

al., 2003; Stern et al., 2008; Solazzo et al., 2012b) and shows

comparable performance to other European models.

2.1.2 Model set-up

A model run of 20 years from 1 January 1990 to 31 De-

cember 2009 has been performed on a domain covering Eu-

rope (35–70◦ N; 10◦W–40◦ E) with a horizontal resolution

of 0.50◦ longitude× 0.25◦ latitude on a rectangular regu-

lar latitude–longitude grid (ca. 25× 25 km2). As described

above, the lowest dynamic layer is the mixing layer, taken

from the meteorological input.

The simulation was forced with a consistent meteorolog-

ical data set from 1990 to 2009 obtained from the regional

climate model RACMO2 (Lenderink et al., 2003; van Meij-

gaard et al., 2008) of the KNMI. At the boundaries the simu-

lation was driven by meteorology from ERA-Interim reanal-

ysis (Dee et al., 2011). Nudging of meteorological data has

not been performed for the model runs and RACMO2 is only

constrained by the lateral boundary conditions. RACMO2

has a horizontal resolution of 0.44◦ with 114 points dis-

tributed from 25.04◦W to 24.68◦ E longitude and 100 points

from 11.78◦ S to 31.78◦ N latitude in the rotated grid. The

South Pole is rotated to 47◦ S and 15◦ E. In the vertical,

40 pressure levels were used. As described in Manders et

al. (2012) the horizontal projection of RACMO2 fields on

the LOTOS-EUROS grid was carried out by bi-linear inter-

polation. The vertical projection of RACMO2 profiles on the

much coarser LOTOS-EUROS vertical grid was achieved by

mass-weighted averaging of those RACMO2 model layers

that were fully or partially contained in each of the LOTOS-

EUROS model layers. At the applied resolution RACMO2

uses a model time step of 15 min and output for coupling

with LOTOS-EUROS was generated every 3 h. RACMO2

has been included in ensemble studies with other regional

climate models (Kjellström and Giorgi, 2010; Kjellström et

al., 2010; Vautard et al., 2013; Kotlarski et al., 2014) and has

been successfully applied to force LOTOS-EUROS in earlier

studies (Manders et al., 2011, 2012; Mues et al., 2013).

Lateral boundary conditions in LOTOS-EUROS were

taken from climatological background concentrations for

gases and aerosols. For a number of components we follow

the EMEP method (Simpson et al., 2003) based on measured

data, in which simple functions were derived to match the ob-

served distributions. Some aerosol species are set to constant

at the boundaries. NH3 boundary conditions are neglected.

SO2−
4 is assumed to be fully neutralised by ammonium. Ni-

trate values are assumed to be included in those of HNO3

(derived following Simpson et al., 2003) and are zero as well.

The climatology fields did not include windblown dust going

back to 1990. Hence, dust from e.g. wind erosion, agricul-

tural land management and resuspension by road transport

has been neglected, as it does not contribute to the substances

investigated here. For O3 we have used the climatological

data set by Logan (1999), derived from O3 sonde data. For

the interpretation of the model results we need to keep in

mind that there are no trends in boundary conditions consid-

ered over the investigated 20 year period.

The emissions applied in this study were provided by

IIASA. The data were generated using RAINS (Regional

Air pollution INformation and Simulation) model output for

1990–2000 and GAINS (Greenhouse gas and Air pollution

INteractions and Synergies) model output for 2000–2010. A

description of the RAINS model and the GAINS model can

be found in Amann et al. (1999, 2011). Annual total emis-

sions were provided per country, per sector and per SNAP

(Selected Nomenclature for Air Pollutants) code for 1990,

1995, 2000, 2005 and 2010. A linear interpolation was per-

formed to fill in the emissions of the years within the deliv-

ered ones. Figure 1a shows the trends in SO2, NOx and NH3

emissions in the EU-27 member states including Norway and

Switzerland (=EU-27+) for 1990 to 2010 in % with 1990 as

reference derived from the applied final emission inventory.
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Figure 1. Emission trends of (a) SO2, NOx and NH3 in the EU-27+ member states and (b) SO2 and NOx in international shipping for

1990–2010 in % with 1990 as reference. The dashed lines in (a) show the average trend computed over the entire period and the decrease per

year is displayed as text.

The corresponding absolute annual total emissions of SO2,

NOx and NH3 of the EU27+ member states for 1990, 1995,

2000, 2005 and 2010 are presented in Table S1 in the Sup-

plement. The emissions have decreased over Europe for all

considered components. The slope of the decrease in Figure

1a has been computed using a standard linear least square

method. Most emission reduction was achieved for SO2 with

a negative trend of −3.9 % a−1 (a: annum) leading to a de-

crease of more than 70 % from 1990 to 2010. NOx emissions

have been decreased by somewhat less than 50 % in the same

time period (−2.52 % a−1) followed by NH3 emissions with

a decrease of somewhat less than 20 % from 1990 to 2009

(0.85 % a−1). In Fig. 1a we present results for the emission

trends since 1990 for the EU-27+ member states as a whole.

While it is known that emission changes from 1990 to 2009

differed significantly from region to region, precise infor-

mation on the spatial distribution of the emissions for the

early 90s is lacking. Although EMEP provides information

on changes in the emission distribution from the early 1990s

onwards we used the TNO MACC (Monitoring Atmospheric

Composition and Climate) (Denier van der Gon et al., 2010;

Pouliot et al., 2012) spatial distribution of emissions for the

year 2005 for the entire time period of investigation. We be-

lieve that current emission allocation proxies are more reli-

able than the ones used in the 1990s. Furthermore, the EMEP

emission information for the 1990s is only available on a res-

olution of 150× 150 km2, which is much lower than the res-

olution of the applied MACC distribution and is therefore

not expected to provide an improvement. Annual emissions

from international shipping per sea and per sector were pro-

vided by the Centre on Emission Inventories and Projections

(CEIP). Figure 1b shows the trends in SO2 and NOx Interna-

tional Shipping emissions for 1990 to 2010 in % with 1990 as

reference. Included are the Baltic Sea, the north-eastern At-

lantic Ocean, the North Sea, the Mediterranean Sea and the

Black Sea. NOx emissions increased over the whole time pe-

riod 1990–2009 for all seas, while SO2 emissions increased

for the north-eastern Atlantic Ocean, the Mediterranean Sea

and the Black Sea. In the sulfur emission control areas of the

North Sea (“NOS” in Fig. 1b) and the Baltic Sea (“BAS” in

Fig. 1b), SO2 emissions have increased from 1990 to 2005

and decreased thereafter due to improved fuel quality. The

absolute annual total emissions of SO2 and NOx (summed

over all included seas listed above) for 1990, 1995, 2000,

2005 and 2010 are given in Table S1 in the Supplement.

In order to analyse the trends in gas-to-particle conver-

sion and residence time of the involved species, the LOTOS-

EUROS source apportionment module was applied. We de-

fined five labels for tracking 10 kilotonnes (kton) of SO2,

NOx and NH3 emissions from either one of these. The labels

were defined to represent the following geographical areas:

1. The Netherlands and Belgium

2. Baltic Sea (international shipping)

3. Czech Republic

4. Romania

5. Rest

10 kton of precursor emission were chosen, as it is cer-

tainly smaller than the single-country annual total emissions

for 2009. Note that the 10 kton are chosen arbitrarily as track-

ing any other fraction of the emissions would give the same

results due to the labelling approach used (Kranenburg et al.,

2013). In practice, for each year the 10 kton are normalised

to the total emissions. The obtained fraction is applied to all

emissions in the country and allocated to the respective label.

Together with the simulation of each substance in each grid

cell on an hourly basis, the fractional contribution of each of

the above labels to every substance, including SO2−
4 , NO−3

and NH+4 , is calculated. By means of the latter the amount

of SIA formed from the 10 kton of precursor gases can be

derived for each label and possible trends in gas-to-particle

conversion within the time period 1990–2009 can be anal-

ysed.

www.geosci-model-dev.net/8/1047/2015/ Geosci. Model Dev., 8, 1047–1070, 2015
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2.2 Observations

In the following subsections we describe the in situ surface

observations that were used to evaluate the LOTOS-EUROS

model and to derive the observed trends in SIA and its pre-

cursors’ concentrations (Sect. 2.2.1) and the observations

used to compare to the meteorological input data provided

by RACMO2 (Sect. 2.2.2).

2.2.1 Species concentrations

The European EMEP observational network is devised

for trend assessment (EMEP/CCC, 2001; Hjellbrekke and

Fjæraa, 2011). The EMEP data are validated through a qual-

ity assurance/quality control process involving the individ-

ual institutions responsible for the different sites and the

EMEP-CCC as documented by several reports available on

the EMEP website (www.emep.int). Data were downloaded

from the EBAS repository (http://ebas.nilu.no/, download

in autumn 2012). However, only a few selected stations

per country are included in the network. In addition to the

EMEP sites, the stations of AirBase (European AIR qual-

ity database), the public database of the EEA, were added

to the observational data set (http://airbase.eionet.europa.eu/,

download in autumn 2012). The latter are not specifically

devised for trend assessment, but have been used in several

studies on long-term trends (e.g. EEA, 2009; Colette et al.,

2011; Wilson et al., 2012). The data reported to AirBase are

quality controlled and checked prior to submission by the

countries that provide the data.

This study aims to investigate the transboundary trend of

concentrations in the European background following emis-

sion changes all over Europe from 1990 to 2009. Hence, only

rural background stations are included in the applied obser-

vational data set. The analysis is based on daily observations.

The consistency of the observational data set used for the

trend assessment and the operational and dynamical model

evaluation was ensured by the implementation of three se-

lection criteria derived from the guidelines of the EEA (EEA,

2009; Colette et al., 2011):

1. the annual coverage of data must be larger than 75 %;

2. with criterion no. 1 fulfilled, at least 80 % of the annual

time series must be available;

3. passing a visual screening of the data.

For each time period (1990–2009, 1995–2009 and 2000–

2009) a separate data subset of stations within the model

domain (35–70◦ N; 10◦W–40◦ E) was built based on the se-

lection criteria described above. As we also address relative

trends within this study we consider it important to have the

first year of each time period covered. Hence, only stations

that could provide the requested 75 % data coverage for the

first year of the time period were included in the correspond-

ing subset.

Table 1. Number of stations of the applied observational data set per

component and time period before and after the visual screening of

the observed time series.

Species Time Passed data Passed visual

period availability check of daily

criteria observations

SO2 1990–2009 51 23

1995–2009 88 40

2000–2009 133 60

NO2 1990–2009 57 37

1995–2009 98 64

2000–2009 167 112

TNO3 1990–2009 9 9

1995–2009 9 9

2000–2009 18 16

TNH4 1990–2009 7 7

1995–2009 8 8

2000–2009 16 15

SO4 1990–2009 15 15

1995–2009 23 22

2000–2009 28 28

Finally, a visual screening of the time series of daily ob-

servations for all species and at all stations that had passed

the selection criteria described above was performed. Sur-

prisingly many defective time series have been identified.

The corresponding stations have been removed from the sub-

sets. The most frequent reasons for removal from the data set

were high detection limits throughout the time series lead-

ing to disappearing concentration regimes, high numbers of

implausible outliers/peaks, and constant value signals over

long time periods. The data reliability is further discussed in

Sect. 4.

It was found that due to a lack of data the analyses of

NH3 observations could not be included in the study. How-

ever, total ammonia (TNH4: sum of aerosol ammonium and

gaseous ammonia) observations were included in the trend

assessment as considerably more stations with TNH4 obser-

vations than with NH4 observations were available. The lat-

ter was also the case for TNO3 and NO3. Hence, the consid-

ered observed components within this study are SO2, SO2−
4 ,

NO2, TNO3 and TNH4. In the Supplement, Figs. S1 to S3

show maps of the locations of the observational sites used

for the analysis for the different components and the differ-

ent time periods. Table 1 summarises the number of stations

for the different species and subsets before and after the vi-

sual screening. The number of discarded stations is highest

for SO2 and NO2. For both components a large part of the

considered stations are from AirBase passing through a less

stringent quality control process than EMEP stations.

Due to a lack of long-term monitoring sites within Great

Britain, France, Spain and the Mediterranean region within
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the monitoring networks used in this study the majority of

sites for SO2 and NO2 observations is located within central

Europe accompanied by several sites in northern and eastern

Europe. For both components, no southern European station

and, in the case of NO2, no western European station was

available for comparison for the 20 year period. For the time

period 1995–2009 an increasing number of eastern and west-

ern European stations and in the case of SO2 one southern

European station passed the selection criteria. For TNO3 and

TNH4 additionally to the lack of long-term observations in

southern and western Europe, a lack of observations in cen-

tral Europe was found and the few available sites are located

in northern and eastern Europe. Stations in NH3 hotspot re-

gions like e.g. the Netherlands or the Po Valley did not pass

the data selection criteria for any of the time periods. Also

for SO2−
4 no southern European station was available for

1990–2009. The available stations are distributed over west-

ern, eastern and northern Europe, with most stations being lo-

cated in northern Europe. For 1995–2009 central and eastern

European stations and one southern European station could

be included in the analysis. We would like to stress that the

stations at which SO2 and SO2−
4 concentrations are investi-

gated may partly differ.

Finally, for the time period 2000–2009, few southern Eu-

ropean stations could be included in the analysis of all con-

sidered components. Furthermore, Fig. S4 in the Supplement

shows for each component those stations that pass the data

selection criteria for all considered time periods.

2.2.2 Meteorological observations

Selected parameters of the RACMO2 model are compared

to observations to be able to assess the ability of the model

to capture the observed meteorological seasonal, annual and

interannual variability. For the evaluation, data of the Eu-

ropean Climate Assessment and Dataset (ECA&D) project

(Klok and Klein Tank, 2009) are applied. The project was

initiated by the European Climate Support Network (ECSN)

and is funded by and coordinated at the KNMI. A compila-

tion of daily observations obtained from climatological divi-

sions of national meteorological and hydrological services,

observatories and research centres throughout Europe and

the Mediterranean are included in the database. The data

series of observations is combined with quality control and

analysis of extremes via climate change indices (Klein Tank

et al., 2002).

Daily observed series of four parameters that affect at-

mospheric chemistry have been extracted from the data set

for the years 1990–2009 for evaluation purposes: tempera-

ture (at 2 m), relative humidity (at 2 m), wind speed (at 10 m)

and precipitation. For each parameter a selection of stations

was extracted so that, if available, central, northern, eastern,

southern and western European stations were included in the

analysis to also enable a regional consideration. For relative

humidity no northern European stations could be included

and western European stations were rare concerning obser-

vations of relative humidity and wind speed. In total 206

stations were selected for the evaluation of modelled tem-

perature, 113 stations for the evaluation of modelled relative

humidity, 246 stations for the evaluation of modelled wind

speed and 240 stations for the evaluation of modelled precip-

itation. The observed station data are compared with model

data at the nearest grid point.

2.3 Statistical measures and methods for evaluation

and trend assessment

For the evaluation of the used meteorological input provided

by RACMO2 and the resultant concentrations simulated by

LOTOS-EUROS three statistical measures have been applied

to assess the ability of the models to reproduce the observed

values:

1. Correlation coefficient r

r =

n∑
i=1

(xi − x̄)(yi − ȳ)√
n∑

i=1

(xi − x̄)2
n∑

i=1

(yi − ȳ)2

(1)

2. Root mean square error (RMSE)

RMSE=

√√√√1

n

n∑
i=1

(xi − yi)
2 (2)

3. Bias

BIAS=
1

n

n∑
i=1

(xi − yi) (3)

where x is the model output vector and y its observation

counterparts. Each vector has n elements and x̄ and ȳ repre-

sent their mean value. The correlation coefficient (Eq. 1) has

been applied to assess the simulated temporal variability and

the RMSE (Eq. 2) and bias (Eq. 3) to assess the simulated

absolute values. The evaluation of RACMO2 and LOTOS-

EUROS fields is based on daily averages.

The trends in concentrations are computed using annual

averages based on daily data. The slope is calculated using

a standard linear least square method. Within this study we

computed only linear trends and the computation of non-

linear trends (Konovalov et al., 2010) or piecewise linear

trends (Carslaw et al., 2011) has not been performed. To as-

sess the significance of the trend, a Mann–Kendall test at

the 95 % confidence level is performed (Kendall, 1976; Hipel

and McLeod, 2005).
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3 Results

3.1 Evaluation of model results

3.1.1 Evaluation of meteorological fields

The applied meteorological input data have been compared

to observations to be able to assess the ability of RACMO2

to reproduce the observed meteorological annual, interannual

and seasonal variability. In order to limit the length of this

article, only an abridgement of the performed evaluation is

shown here. Four parameters that considerably impact atmo-

spheric chemistry are shown: temperature (at 2 m), relative

humidity (at 2 m), wind speed (at 10 m) and precipitation.

The evaluation is based on daily data for the 20 year period.

Table 2 summarises the number of stations, the mean cor-

relation coefficient, the observed mean and RMSE and bias.

As an example, Fig. 2 shows the 60 day moving average of

the four parameters averaged across all available German sta-

tions from 1990 to 2009. The 60 day moving average was

chosen to be able to plot the whole time series in one graph

and, at the same time, to be able to see variability in the time

series.

As the mean correlation coefficient of 0.97 in Table 2

shows the model captures very well the temporal distribu-

tion of temperature for the considered time period. Figure 2a

shows that the interannual variability (presented here for 66

German stations) is simulated fairly well too. Warm sum-

mers like in 2003 and 2006 and cold winters like the one

in 1995/1996 are well reproduced by RACMO2. However,

the bias and also the corresponding graph in Fig. 2 indicate

a slight underestimation of the temperature during winter-

time in central Europe. The performance of the model has

also been assessed regionally for northern, eastern, south-

ern, western and central Europe separately (not shown here).

The underestimation during wintertime was found to be

most distinct for southern and least distinct for northern Eu-

rope, which is consistent with findings in van Meijgaard et

al. (2012) and Kotlarski et al. (2014).

As Fig. 2b illustrates, RACMO2 captures the interannual

variability of the relative humidity at 61 German stations less

well than that of the temperature (Fig. 2a). A regional assess-

ment of the model performance over Europe has revealed that

the latter is most evident at southern European stations. Also,

the model overestimates the relative humidity during win-

tertime at a large number of sites in Europe. The latter was

again found to be most distinct at southern European stations

and may be connected to the underestimation of the tempera-

ture during wintertime. Relative humidity is a difficult quan-

tity to evaluate, in particular in areas or during episodes with

high values of relative humidity (> 95 %). However, a mean

correlation coefficient of 0.66 at 113 European stations (see

Table 2) indicates that the observed temporal variability is

satisfactorily simulated by the model.

The temporal variability of the wind speed is also satisfac-

torily simulated, with a mean correlation coefficient of 0.68

over 246 European stations (see Table 2). Figure 2c displays

the mean 60 day moving average of wind speed for 59 Ger-

man stations for the investigated time period. The graph in-

dicates that, although the timing is well simulated, the model

tends to overestimate the wind speed in central Europe. In

central and eastern Europe the overestimation was found to

be present throughout the whole year. In northern and south-

ern Europe RACMO2 overestimates wind speed solely dur-

ing wintertime, while it tends to slightly underestimate wind

speed during summertime.

Figure 2d shows the mean 60 day moving average of pre-

cipitation for 1990–2009 at 66 German stations. The figure

shows that the interannual variability is modelled satisfacto-

rily in central Europe although it is slightly underestimated.

Dry years like 1996, 2003 and 2006 are well reproduced by

the model. RACMO2 underestimates summertime precipita-

tion in southern Europe, while it tends to overestimate win-

tertime precipitation in northern and central Europe, which

was also found by van Meijgaard et al. (2012) and Kotlarski

et al. (2014). Generally, moving from daily to monthly or an-

nual precipitation sums (not shown here) RACMO2 results

compare better to the observed values. Mean correlation co-

efficient, RMSE and bias have been calculated at 240 Euro-

pean stations (see Table 2). The mean correlation of 0.48 in-

dicates that considering the high temporal variability of pre-

cipitation RACMO2 simulates the observed timing reason-

ably well.

For the CTM calculation it is more important to capture

the occurrence of precipitation than to capture its intensity

and duration with the meteorological driver as wet deposi-

tion is a very efficient removal process. Therefore, at each of

the 240 stations it was investigated on which percentage of

days of the 20 year period the model is able to simulate the

observed rain occurrence (rain: yes; rain: no). In the follow-

ing a correct modelled rain : yes or rain : no is referred to as a

“hit”. To account for unphysical small amounts of drizzle that

often occur in climate models, daily accumulated precipita-

tion below 0.5 mm was considered as no rain. The results are

summarised in Table 3. At 205 out of 240 stations the model

is able to correctly simulate the rain occurrence on more than

70 % of the days from 1990 to 2009.

Although some shortcomings in the meteorological in-

put fields were found, the outcome of the evaluation of

RACMO2 has shown that the model is capable of satisfac-

torily reproducing the observed magnitudes and meteorolog-

ical annual, interannual and seasonal variability of the inves-

tigated parameters.

3.1.2 Concentrations in air

The summary of the statistical evaluation based on daily pairs

of observed and measured concentrations at the stations that

have been selected to be used for the trend assessment (see

Geosci. Model Dev., 8, 1047–1070, 2015 www.geosci-model-dev.net/8/1047/2015/
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Table 2. Statistical comparison between measured and modelled meteorological parameters using daily observations at European observa-

tional sites. The number of considered stations, mean correlation, observed mean, RMSE and bias are given.

Evaluation Temperature Relative Wind Precipitation

humidity speed

Number of stations 206 113 246 240

Mean correlation 0.97 0.66 0.68 0.48

Observed mean 286.06 K 78 % 3.82 m s−1 1.82 mm

RMSE 2.82 K 11 % 1.87 m s−1 4.52 mm

Bias −1.47 K 2 % 0.35 m s−1 0.04 mm

Figure 2. Mean 60 day moving average of (a) temperature, (b) relative humidity, (c) wind speed and (d) precipitation at 66, 61, 59 and 66

German observational sites, respectively, from 1990 to 2009.

Table 3. Percentage of daily rain occurrence hits of the RACMO2

model from 1990 to 2009 at 240 European observational stations.

Hits No. of stations

h < 60 % 0

60 %≤ h < 70 % 35

70 %≤ h < 80 % 156

80 %≤ h < 90 % 48

h≥ 90 % 1

Sect. 2.2.1) is given in Table 4 for the 1990–2009, 1995–

2009 and 2000–2009 time periods. For the validation of the

model more sites become available for the later time peri-

ods. To be able to compare the model performance for dif-

ferent time periods Table 5 shows the statistical evaluation

for 1990–2009 and 2000–2009 when using the same subset

of stations per component for both time periods (i.e. con-

sidering only those stations that passed the selection criteria

presented in Sect. 2.2.1 for both of these time periods). Fig-

ure 3 shows the 60 day moving average concentrations aver-

aged across the selected stations for each component for the

www.geosci-model-dev.net/8/1047/2015/ Geosci. Model Dev., 8, 1047–1070, 2015
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Table 4. Statistical comparison between measured and modelled concentrations using daily observations. The number of considered stations,

mean correlation, observed mean, RMSE and bias are given for each component and each time period.

Period Evaluation SO2 NO2 SO4 TNO3 TNH4

1990–2009 Number of stations 23 37 15 9 7

Mean correlation 0.60 0.65 0.46 0.46 0.48

Observed mean (µg m−3) 3.86 15.97 2.77 0.56 1.35

RMSE (µg m−3) 6.01 8.66 2.86 0.61 1.21

Bias (µg m−3) −0.44 −2.43 −0.88 0.04 0.03

1995–2009 Number of stations 40 64 22 9 8

Mean correlation 0.58 0.62 0.40 0.44 0.44

Observed mean (µg m−3) 4.00 14.19 2.46 0.46 1.17

RMSE (µg m−3) 6.49 8.58 2.27 0.54 1.05

Bias (µg m−3) −0.67 −2.58 −0.66 0.12 0.03

2000–2009 Number of stations 60 112 28 16 15

Mean correlation 0.45 0.61 0.40 0.48 0.40

Observed mean (µg m−3) 3.34 14.12 2.16 0.60 1.38

RMSE (µg m−3) 5.01 9.37 1.95 0.6 1.18

Bias (µg m−3) −0.69 −3.77 −0.58 0.12 0.21

Table 5. Statistical comparison between measured and modelled concentrations using daily observations at those stations that passed the se-

lection criteria presented in Sect. 2.2.1 for the 1990–2009 and 2000–2009 time periods. The number of considered stations, mean correlation,

observed mean, RMSE and bias are given for each component.

Period Evaluation SO2 NO2 SO4 TNO3 TNH4

All Number of stations 15 33 11 4 3

1990–2009 Mean correlation 0.62 0.67 0.47 0.49 0.54

Observed mean (µg m−3) 4.19 17.05 2.53 0.40 0.77

RMSE (µg m−3) 6.15 8.93 2.75 0.54 0.77

Bias (µg m−3) −0.57 −2.53 −0.85 0.12 0.07

2000–2009 Mean correlation 0.52 0.67 0.40 0.46 0.47

Observed mean (µg m−3) 2.16 15.23 1.85 0.38 0.66

RMSE (µg m−3) 2.48 8.09 1.75 0.49 0.70

Bias (µg m−3) −0.03 −2.87 −0.49 0.10 0.11

time period 1990–2009. Besides the time series the average

seasonal variation is given for this same 20 year time period.

The modelled time series of SO2 presented in Fig. 3a

shows that LOTOS-EUROS underestimates the observed

SO2 concentrations in the period 1990–1997, while for later

years there appears to be a small bias at these stations. The

latter is also reflected in an improved RMSE and bias (in re-

lation to the observed mean) for the 2000–2009 time period

compared to the 1990–2009 time period when considering

the same subset of stations for both time periods (see Ta-

ble 5). Throughout the time series the year-to-year variabil-

ity is captured well by the model, as is the seasonal variation

presented in Fig. 3b. The mean correlation coefficient of 0.6

for SO2 for 1990–2009 (see Table 4) suggests that the model

is able to reproduce part of the observed day-to-day variabil-

ity throughout the time period.

Figure 3c and d reveal that the concentrations of SO2−
4 are

systematically underestimated by LOTOS-EUROS through-

out the whole time period. The underestimation is most dis-

tinct from 1990 to 1997, which appears to be related to

the underestimation of SO2 in the same period. Analysis of

the individual sites showed that the sites located in eastern

and central Europe largely determine the underestimation for

both components as northern European stations show much

better comparison. We speculate that the models’ underesti-

mation of SO2 and SO2−
4 concentrations in the 1990s could

be connected to the lack of a good representation of the

change in emission structures in the power sector in eastern

and parts of central Europe in the 1990s as a consequence

of the fall of the Berlin Wall and political changes associated

with the liberalisation of the Eastern Bloc’s authoritarian sys-

tems as discussed below. A striking feature in the compari-
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Figure 3.
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Figure 3. Mean 60 day moving average (left panel) and seasonal cycle (right panel) of (a–b) SO2, (c–d) SO2−
4

, (e–f) NO2, (g–h) TNO3 and

(i–j) TNH4 for the time period 1990–2009. The number of considered stations is given in the figure captions.

son for SO2−
4 is the inability of the model to reproduce the

magnitude of several spring episodes that occurred in e.g.

1996, 2003 and 2006. Although for some of these episodes

the model is able to capture the timing, it is not able to repro-

duce the peak values. These episodes are characterised by

very stable conditions across central Europe and some have

been studied in detail (e.g. Stern et al., 2008; Banzhaf et al.,

2013). A model comparison by Stern et al. (2008) has shown

that also other state of the art models were not able to simu-

late the peak values in early spring 2003. It is unclear whether

the underestimation is connected to a lack of SO2-to-SO2−
4

conversion or an overestimation of turbulent mixing leading

to overly high deposition and vertical mixing.

The mean correlation coefficient of 0.46 (see Table 4) for

SO2−
4 for 1990–2009 indicates that the day-to-day variabil-

ity is not very well captured by the model throughout the

time period. The mean correlations for the secondary species

SO2−
4 , TNO3 and TNH4 presented in Tables 4 and 5 with

values between 0.4 and 0.5 for the different time periods

are lower than those found in former LOTOS-EUROS model

evaluation studies showing mean correlations of 0.5 to 0.7.

Further analysis of the time series has revealed that when

correlations are low the modelled temporal distribution at a

station is often shifted by just 1 day compared to the observed

distribution. One possible reason for the lower correlations

compared to former evaluation studies of the model could

be that the meteorological input fields used in this study

have been generated without nudging of meteorological data,

while the LOTOS-EUROS standard meteorological input in-

cludes the assimilation of surface meteorological data.

On average, the model underestimates NO2 concentrations

by about 15 %. Figure 3e shows that the overall bias is dis-

tinct in the first 3 years of the time series and becomes small

in the years afterwards. After 2000 the bias between mod-

elled and observed NO2 starts to increase again and becomes

increasingly larger towards 2009. The seasonal cycle pre-

sented in Fig. 3f is well simulated and the interannual vari-

ability is satisfactorily reproduced. Also, the temporal cor-

relation coefficient (> 0.6) for these stations throughout the

series illustrates that LOTOS-EUROS captures the day-to-

day variability reasonably well. The higher mean correlation

coefficients for NO2 and SO2 compared to those of SO2−
4 ,

TNO3 and TNH4 we attribute to a less strong emission sig-

nal in the secondary species concentrations.
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Figure 4.

www.geosci-model-dev.net/8/1047/2015/ Geosci. Model Dev., 8, 1047–1070, 2015



1060 S. Banzhaf et al.: Dynamic model evaluation for SIA and its precursors over Europe

Figure 4. Scatter plots of the observed versus modelled trends for the studied components at the considered stations for the three different

time periods. At each individual station, the marker (described in the legend on the top right of the plot) indicates whether the observed

and/or modelled trend is significant following the Mann–Kendall test at a 95 % confidence level.

At the few northern European sites where long-term time

series (1990–2009) of TNO3 concentrations were available,

the seasonal cycle and the interannual variability are well

simulated by LOTOS-EUROS (see Fig. 3g and h) and the

bias is very small. Moreover, some TNO3 episodes are well

captured by the model. Also, for TNH4 concentrations, pre-

sented in Fig. 3i, the bias at the few northern European sites

that exhibited time series for 1990–2009 is small. However, a

major shortcoming in the TNH4 modelling is clearly visible

in the average seasonal cycle (see Fig. 3j). The model over-

estimates TNH4 concentrations during wintertime (October–

January) and tends to underestimate them during late spring

and early summer. Moreover, the maximum concentration is

modelled to be in March, whereas the observed maximum

occurs in April. The lack of a good representation of the sea-

sonal cycle in the NH3 emissions is a likely cause of this

feature.

3.2 Trends in concentrations

The observed and modelled trends are illustrated in Figs. 4

and 5. Figure 4 shows scatter plots of the observed versus

modelled trends for the studied components at the consid-

ered stations for the three different time periods. It is la-

belled in the graphs whether the observed and/or modelled

trends are significant (method used described in Sect. 2.3):

(+) implies that the observed and modelled trends are sig-

nificant, (o) implies that the observed trend is non-significant

while the modelled trend is significant, (o) implies that the

observed trend is significant while the modelled trend is non-

significant, and (o) implies that the observed and modelled

trends are non-significant. Table 6 summarises for each com-

ponent the resultant observed and modelled absolute and rel-

ative median trends for the three considered time periods. For

comparison, in Table S2 in the Supplement, the observed and

modelled absolute and relative median trends are also given

considering the same subset of stations (per component) for

all time periods to extract the impact of changing number and

location of included sites. However, Table S2 only includes

SO2, NO2 and SO2−
4 ; as for TNO3 and TNH4, the number of

sites (four and three, respectively) was considered to be too

low for a trend assessment.

Figure 5 shows the observed and modelled trends of the

annual mean SO2−
4 , TNO3 and TNH4 concentrations, their

5th and 95th percentiles and the corresponding trend lines

for the 1990–2009 time period. Solid lines refer to significant
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Table 6. Number of stations and derived observed and modelled absolute (µg m−3 a−1) and relative (% a−1) median trends for the considered

components and time periods.

Period Evaluation SO2 NO2 SO4 TNO3 TNH4

1990–2009 Number of stations 23 37 15 9 7

Observed abs. median trend −0.34 −0.36 −0.16 −0.01 −0.03

Modelled abs. median trend −0.33 −0.45 −0.07 −0.01 −0.01

Observed rel. median trend −4.88 −1.85 −3.55 −1.57 −2.18

Modelled rel. median trend −4.16 −2.44 −2.36 −1.33 −1.61

1995–2009 Number of stations 40 64 22 9 8

Observed abs. median trend −0.28 −0.30 −0.10 −0.01 −0.02

Modelled abs. median trend −0.23 −0.44 −0.06 −0.01 −0.02

Observed rel. median trend −5.14 −1.67 −3.34 −1.23 −1.77

Modelled rel. median trend −4.98 −2.46 −2.57 −1.54 −1.18

2000–2009 Number of stations 60 112 28 16 15

Observed abs. median trend −0.13 −0.14 −0.05 −0.01 −0.02

Modelled abs. median trend −0.12 −0.28 −0.05 −0.01 −0.01

Observed rel. median trend −4.45 −1.12 −2.63 −1.45 −0.98

Modelled rel. median trend −5.10 −2.17 −2.37 −1.66 −0.66

trends and dashed lines refer to non-significant trends (only

found for the TNO3 5th percentile).

3.2.1 Observed trends

Figure 4 illustrates that the observed SO2, SO2−
4 and NO2

concentrations show significant negative trends at the major-

ity of stations for the time periods 1990–2009 and 1995–

2009. For NO2 a significant positive trend for 1995–2009

was observed at two stations located in Estonia at the shore

of the Baltic Sea. For TNO3 and TNH4 the majority of trends

is significant negative for the 1990–2009 time period, while

for 1995–2009 the observed trends are non-significant at all

stations (TNO3) or at the majority of stations (TNH4). Note

that for TNO3 and TNH4 the few considered station are lo-

cated in northern and eastern Europe due to a lack of long-

term observations in the other regions. The trends in TNO3

in hot spot areas like the Netherlands may differ. For all com-

ponents, the relative number of stations with non-significant

trends increases when moving from 1990–2009 (SO2: 0 %;

SO2−
4 : 0 %; NO2: 11 %; TNO3: 33 %; TNH4: 14 %) to 1995–

2009 (SO2: 5 %; SO2−
4 : 18 %; NO2: 21 %; TNO3: 100 %;

TNH4: 50 %) to 2000–2009 (SO2: 52 %; SO2−
4 : 86 %; NO2:

72 %; TNO3: 75 %; TNH4: 80 %). This increasing number

of non-significant trends when moving to the later time pe-

riods has also been found when considering the same subset

of stations per components for all time periods, i.e. consid-

ering only those stations that fulfilled the selection criteria

for all three time periods (not shown here). For the time pe-

riod 2000–2009, Fig. 4 shows that the observed trends are

non-significant at the majority of stations for all considered

components. We would like to stress that this does not neces-

sarily imply that there is no trend present in the data of these

stations for 2000–2009, but 10 years may be too short to infer

statistically significant trends.

Table 6 shows that for all components the observed me-

dian absolute negative trends decrease moving from 1990–

2009 to 2000–2009 (absolute decrease in TNO3 trends in the

third decimal place). For SO2 and NO2 the decrease of the

observed absolute negative trends from 1990–2009 to 1995–

2009 is less strong than the decrease from 1995–2009 to

2000–2009. Table S2 in the Supplement shows that the latter

features also apply when considering the same, but smaller,

subset of stations per components for all time periods. Fur-

thermore, comparing the observed median relative trends in

SO2−
4 concentrations to those of SO2 shows that the trends in

SO2−
4 are lower for all considered time periods. We are aware

that the stations at which SO2 and SO2−
4 concentrations are

investigated partly differ. However, the spatial distribution of

sites over Europe for SO2 is comparable with that for SO2−
4

(see Figs. S1–S4 in the Supplement) and we assume that rural

background stations represent the regional scale atmospheric

composition, so that the same conditions are represented by

the two sets. Therefore we think that comparison of the rela-

tive trends of both components is maintainable.

Finally, the sensitivity of the resultant observed median

trends to the selection criteria introduced in Sect. 2.2.1 has

been tested. The results for the 1990–2009 time period are

presented in the Supplement, showing that increasing the

length of the annual time series (at least 80 % of the con-

sidered time period was the criterion given in Sect. 2.2.1) has

a minor impact on the resultant median trend.
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Figure 5. Observed (blue) and modelled (red) annual mean

(crosses), 5th percentile (squares) and 95th percentile (triangles)

and corresponding trend line of (a) SO2−
4

, (b) TNO3 and (c) TNH4.

Solid lines indicate a significant and dashed lines a non-significant

trend (only found for the TNO3 5th percentile).

3.2.2 Modelled trends and comparison to

observed trends

As the results in Table 6 (and Table S2) show, the model

is able to simulate well the decrease in the absolute median

negative trend for SO2, SO2−
4 and NO2 when moving from

1990–2009 to 1995–2009 to 2000–2009. Also, the model is

able to reproduce the lower relative trends of observed SO2−
4

concentrations compared to those of SO2.

The model simulates significant negative trends in SO2,

NO2 and SO2−
4 concentrations at most station locations for

1990–2009 and 1995–2009 (see Fig. 4), which coincides

with the observed trends for these time periods. However,

the model underestimates the negative trends in concentra-

tions for SO2 at several stations and for SO2−
4 at most sta-

tions, while it overestimates the negative trends in NO2 con-

centrations at the majority of station locations. For all con-

sidered time periods the deviation of the modelled trends in

SO2, SO2−
4 and NO2 concentrations from the observed trends

were found to be most distinct at eastern European stations

and stations in north-eastern Germany (e.g. the three outliers

in Fig. 4b correspond to trends at two stations in Czech Re-

public and one station in eastern Germany) and least distinct

at northern European station locations (not shown here). For

the time period 2000–2009 the model simulates the low neg-

ative median trends in SO2 and SO2−
4 concentrations well

(see Table 6), but Fig. 4 reveals that the model simulates sig-

nificant negative trends at most station locations while non-

significant trends were observed. The latter is also valid for

modelled and observed NO2 concentration trends. As for the

1990–2009 and 1995–2009 time periods the model overes-

timates the trends in NO2 concentrations for the 2000–2009

time period.

As Fig. 5a illustrates, the strong observed negative trend

in SO2−
4 concentrations is mostly driven by the high ob-

served concentrations in the beginning of the 90s. The latter

high observed concentrations could not be reproduced by the

model. The 5th percentile, which represents the background

concentrations, and its significant negative trend are well

captured by the model. The negative trend of the 95th per-

centile, which represents the high concentration range (the

peak SO2−
4 concentrations), is considerably underestimated

by the model. The model satisfactorily captures the temporal

distribution of the interannual variability, but there is a sub-

stantial negative bias between modelled and observed values.

This shows that the models inability to capture the observed

trend in SO2−
4 is driven by the underestimation of the high

range of concentrations.

Also for TNO3 and TNH4 shown in Fig. 5b and c, the

deviation from the observed values is most distinct in the

95th percentile, while the interannual variability is well sim-

ulated by the model. Figure 4 shows that the model repro-

duces the low trends in TNO3 concentrations at the majority

of considered sites well for all time periods, while for TNH4

the model tends to underestimate the observed concentration

trends. Furthermore, for both components, TNO3 and TNH4,

the increased relative number of non-significant trends when

moving from the 1990–2009 to the 2000–2009 time period is

well captured by the model at most stations.

3.3 Trends in SIA formation

The previous section has revealed that the observed relative

trends in SO2−
4 concentrations are lower than those of its pre-

cursor gas SO2. Furthermore, the analysis of the LOTOS-

EUROS simulation has shown that this non-linear effect was

Geosci. Model Dev., 8, 1047–1070, 2015 www.geosci-model-dev.net/8/1047/2015/



S. Banzhaf et al.: Dynamic model evaluation for SIA and its precursors over Europe 1063

Figure 6. Amount of (a) SO2−
4

, (c) NH+
4

and (d) NO−
3

(solid lines) formed from 10 kton of SO2, NH3 and NO2 emissions, respectively,

relative to the amount formed in 1990, for the different labels as indicated by the colours, for the entire time period 1990–2009. Panel (b)

shows the resultant SO2 per unit SO2 emission for each label for the 1990–2009 time period. The corresponding trend lines are presented as

dashed lines. The dots denote results for the runs forced with 2005 meteorology.

well reproduced by the model. Hence, the LOTOS-EUROS

source apportionment module was used to further investigate

the observed and modelled non-linearity. Therefore, 10 kton

of SO2, NOx and NH3 emissions, respectively, have been

tracked for 1990–2009 for four different labels, which were

chosen to be four different regions: the Netherlands and Bel-

gium (NLBE), the Baltic Sea (BAS), Czech Republic (CZE)

and Romania (ROM). By means of the labelling we can de-

termine how much SIA was formed per unit emission dur-

ing the time period from 1990 to 2009. The results of the

source attribution are presented in Fig. 6. Figure 6a shows

the SO2−
4 concentration (solid lines) formed per unit emis-

sion normalised to that of 1990 for the different labels for

1990–2009. A trend line (dashed line) is added for all labels.

For all considered regions the SO2−
4 formation efficiency in-

creases from 1990 to 2009. Following the Mann–Kendall test

at a 95 % confidence level, the positive trends are significant

for all labels. To investigate whether the identified increase

is a matter of climate change, we re-run the model for 1990,

1995, 2000 and 2009 using the emissions for the correspond-

ing year but the meteorology of 2005. The results are added

to Figure 6a as accordingly coloured dots for each label.

Most dots are located on or close to the corresponding trend

line. The latter indicates that the increase in SO2−
4 formation

efficiency is induced by the change in emissions from 1990 to

2009. The increase is most distinct for the NLBE region, with

a 61 % more efficient SO2−
4 formation in 2009 compared to

1990, followed by CZE (+60 %), BAS (+31 %) and ROM

(+28 %). The major driver for the increased SO2−
4 formation

efficiency in the model has been an increasing neutralisation

of cloud acidity and thus pH over time as diagnosed from the

model run.

SO2−
4 formation is a sink for SO2 concentrations and

therefore the increase in SO2−
4 formation efficiency explains

that the decrease in SO2 concentrations is larger than ex-

pected solely from the decrease in SO2 emissions. Figure 6b

displays the decrease in SO2 quantity per unit SO2 emission

showing a negative trend for the time period 1990–2009 for

all considered labels. However, for the Baltic Sea (BAS), the

trend from 1990 to 2009 is not significant following a Mann–

Kendall test at the 95 % significance level.
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Figure 6c reveals a decrease in NH+4 formation per unit

NH3 emission for the labels NLBE, CZE and ROM, with a

reduction of −22 % (ROM) to −33 % (NLBE and CZE) for

2009 compared to 1990. Following a Mann–Kendall test at

the 95 % significance level the trend is significant for these

labels. BAS is not included in the figure as there is no NH3

emission from shipping on the Baltic Sea.

The changes in NO−3 formation efficiency from 1990 to

2009 are lower than for SO2−
4 and NH+4 (see Fig. 6d). A sig-

nificant trend has been found for the label NLBE, showing

an increase in NO−3 formation efficiency, with an increase of

+22 % from 1990 to 2009. In the next section the results of

the labelling exercise are further discussed.

4 Discussion and conclusions

In this study we presented a dynamic model evaluation of the

LOTOS-EUROS CTM to analyse the ability of the model to

reproduce the non-linear responses to emission changes and

interannual variability of SIA and its precursors over Europe

from 1990 to 2009. This study presents the first evaluation of

the model system over such a long time period.

With respect to the study design we feel that the simu-

lation of the whole period is a strong point as opposed to

using one or several key meteorological years to study the

impact of emission changes as it is difficult to choose a me-

teorological year that is representative for an average year

throughout Europe. In addition, through the reanalysis with

RACMO2 we have used a consistent set of meteorological

data to drive the model for the whole period. The major ac-

tivity needed to improve the study design is associated with

the emission information for the early 90s. Improvements are

especially needed for the eastern European countries. Emis-

sion estimates for 1990 are relatively uncertain (Granier et

al., 2011) as much of the information currently used to es-

timate emissions is not available (at the same quality) for

1990. Moreover, we have simply used the spatial allocation

of the TNO-MACC-2005 data set and scaled the emission to-

tals per sector back to those of 1990. As a result, the (spatial)

representation of e.g. the industrial infrastructure and loca-

tion of power plants, especially in eastern and parts of cen-

tral Europe in the period 1990–2000 will not be correct as the

infrastructure here during this period still resembled the pre-

1990 period. The improvement needed here is highlighted by

the higher underestimation of the pollutants in the first years

of the study period. One could use the spatial allocation of

emission inventories built in the nineties to overcome these

problems partly. Making a small compromise on the spatial

resolution of the data may not be a large problem as model

resolution does hardly affect the performance of CTMs for

regional assessments (Schaap et al., 2015).

In the present model set-up, trends in boundary conditions

were not considered. We believe that the impact of using

time variant boundary conditions would be most relevant for

O3 levels, which also affect the formation of SIA. Recent

studies report increasing European ozone trends for the pe-

riod up to 1995, with a more level concentration level after-

wards (Oltmans et al., 2013; Parrish et al., 2012; Wilson et

al., 2011; Christoganelli et al., 2015). Hence, it is not cer-

tain whether significant trends occurred during most of our

study period. Introducing an increasing trend in ozone back-

ground levels would generally lower atmospheric lifetimes of

SO2 and NO2 slightly. Consequently, it might cause slightly

larger modelled negative trends for these components which

would increase the differences with observed trends. Note

that there is a practical complication to introduce trends in

boundary conditions from a global model system. Hogrefe et

al. (2011) showed that the representation of the interannual

variability of O3 concentrations was improved when time-

variant boundary conditions were used. However, biases in

the global simulations significantly affected the O3 simula-

tions throughout the modelling domain with adverse impact

on the simulated O3 trends. Before global modelling results

can be used as boundary conditions these need to be care-

fully evaluated. Global models still show substantial and con-

sistent quantitative disagreement with measured surface O3

patterns (Parrish et al., 2014).

Complementing the EMEP monitoring data with those of

AirBase has increased the number of stations with valid time

series, especially for the precursor gases. Our visual screen-

ing of the measurement data revealed that a large fraction of

the stations with long time series were not useable as data

quality was obviously an issue. The most frequent peculiar-

ities were shifts in the concentration level, many implausi-

ble peaks of short duration, constant value signals over pro-

longed time periods or concentration regimes below the de-

tection limit. Most problems were associated with time se-

ries of SO2. The number of defective time series was high-

est for the 1990s and decreases considerably towards 2009.

A lack of a long-term time series for southern and parts of

western and eastern Europe hampered an evaluation across

the full European domain. Furthermore, for concentrations

of NO−3 and NH+4 there is a lack of observations with sepa-

ration between gas and aerosol phase. Additional efforts for

data mining within European countries could yield larger ob-

servational basis for evaluation of the time period. Moreover,

generation of a centralised data set for the specific purpose

of evaluation long-term trends could be a means to improve

the data quality by incorporation of expertise from the data

providers.

The operational model evaluation showed that the sea-

sonal variability as well as the interannual variability are

satisfactorily simulated for all components. Within a multi-

model trend assessment study Collette et al. (2011) presented

the ability of six state-of-the-art CTMs to simulate the sea-

sonal cycle of amongst others SO2, SO2−
4 , NO2, TNO3 and

TNH4 concentrations at European rural background stations

for the time period 1998–2007. A qualitative comparison of

our model results to those presented in Collette et al. (2011)
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shows that LOTOS-EUROS performs comparatively well in

simulating the observed seasonal cycles. Operational model

evaluations within AQMEII (Solazzo et al., 2012a, b) and

EURODELTA (e.g. Vautard et al., 2009; Schaap et al., 2015)

showed that LOTOS-EUROS model skill is in line with those

of models like EMEP and CHIMERE. Although LOTOS-

EUROS was able to capture a large part of the observed vari-

ability in the considered sulfur and nitrogen compounds from

1990 to 2009, some shortcomings have been identified.

A systematic underestimation of SO2−
4 concentrations is

observed throughout the whole study. This could be con-

nected to a lack of good representation of clouds, which is

needed for the recently implemented cloud chemistry scheme

(Banzhaf et al., 2012; Wichink Kruit et al., 2012). The

method used to pass the information of the liquid water con-

tent vertical distribution from the vertically high resolved

meteorological driver to LOTOS-EUROS running on five

vertical layers may need further improvements. Furthermore,

uncertainties in NH3 emissions (magnitude, space and time)

may play an important role as NH3 provides the neutralising

capacity of cloud droplets and constrains cloud water acid-

ity. Cloud pH regulates the oxidation pathways of SO2 and

therewith the formation efficiency of SO2−
4 (Fowler et al.,

2007). According to EMEP (2009), the uncertainty in mag-

nitude of annual NH3 emission totals amounts about ±30 %

in Europe. Furthermore, the seasonal and diurnal variation in

NH3 emissions are still uncertain and may differ regionally

as a function of climatic conditions and in time due to chang-

ing agricultural practices and regulations (Geels et al., 2012)

which is not accounted for in most state of the art CTMs in-

cluding LOTOS-EUROS. The underestimation of springtime

episodes for SO2−
4 connected to stable atmospheric condi-

tions is observed in several years. It has not yet been solved

whether the underestimation is induced by a lack of SO2-

to-SO2−
4 conversion or overly high deposition and vertical

mixing due to an overestimation of turbulent mixing. In a

case study for 2003 this feature was identified to be a com-

mon challenge for European CTMs as meteorological drivers

tend to fail to represent these stable weather conditions satis-

factorily (Stern et al., 2008).

Despite the mentioned shortcomings in the representa-

tion of the sulfur components, the model captures the non-

linearity observed in the response to the emission changes.

Investigating the observed trends at the EMEP monitoring

sites between 1980 and 2009, Tørseth et al. (2012) showed

that SO2 trends indicate larger reductions than the reductions

of SO2 emissions, while those of SO2−
4 concentrations are

comparatively lower. These findings are very close to our

analysis incorporating AirBase stations and earlier analyses

by e.g. Lövblad et al. (2004). Fagerli and Aas (2008) pre-

sented an investigation of the observed trends of nitrogen

from 1980 to 2003 at EMEP sites showing that the trends

in TNO3 concentrations were significantly lower than the

trends in precursor emissions, which matches the outcome of

the presented study here. Using a source apportionment mod-

ule trends in formation efficiency of SIA have been quanti-

fied adding to the explanation of the non-linearities described

above. The exercise revealed an increase of SO2−
4 formation

efficiency and a decrease in NH+4 formation efficiency for

all regions considered. The major driver for the increased

SO2−
4 formation efficiency in the model was the increasing

neutralisation of cloud acidity and thus pH over time. The

modelled trend is supported by the observed increase in pre-

cipitation pH during the last decades (Lövblad et al., 2004;

Tørseth et al., 2012). Hence, the pH dependent aqueous-

phase SO2−
4 formation by O3 is more effective (Redington

et al., 2009; Banzhaf et al., 2012, 2013). In addition, the

H2O2/SO2 ratio increases which also leads to more efficient

formation. Finally, the simultaneous NOx and SO2 emission

reductions may lead to increased OH levels, which counter-

act the SO2−
4 reduction as the rate of homogeneous oxidation

of SO2 is increased (Tarrasón et al., 2003; Derwent et al.,

2009). The decrease in NH+4 formation efficiency is related

to the overall decrease in SO2−
4 concentrations from 1990 to

2009, which leads to less ammonium sulfate ((NH4)2SO4)

formation. The strong decrease in SO2−
4 concentrations from

1990 to 2009 increases the availability of NH3 for the for-

mation of NH4NO3 (Tarrasón et al., 2003; Fagerli and Aas,

2008; Harrison et al., 2014). Hence, this could explain the

change in NO−3 formation efficiency for the Benelux region.

Another reason for changes in the NO−3 formation efficiency

could be a change in the oxidant levels (Fowler et al., 2005;

Fagerli and Aas, 2008). A decrease in NOx emissions leads

to a decrease of O3 titration and therewith to an increased

rate of NO2 to NO3 conversion. The increased rate of NO2 to

NO3-conversion could also be induced by higher availability

of oxidants that previously were consumed in the oxidation

of SO2 or other pollutants. A more detailed budget analysis

is advised to study the changes in chemical regime.

Furthermore, LOTOS-EUROS underestimates the ob-

served NO2 concentrations on average by 15 % throughout

the whole time period. The underestimation is induced by

modelled concentrations at central and eastern European sta-

tions, while the model performs considerably better at north-

ern European stations. Part of the underestimation may be

explained by the measurement devices used in the networks.

Oxidised nitrogen compounds such as HNO3, PAN (perox-

yacyl nitrate) and other organic nitrates can significantly in-

terfere with the measurements by contributing to the NO2

signal (Steinbacher et al., 2007). At the beginning of the 90s

again, the uncertainties in the emission input may explain

part of the bias in NO2 concentrations. After 2000 the bias

increases, inducing an overestimation of the observed nega-

tive trend in NO2 concentrations by the model. It has been

investigated whether the decrease in model performance af-

ter 2000 is connected to the increased NO2 / NO ratio of traf-

fic emissions by comparing simulations with 3 and 20 % di-

rect NO2 emissions from diesel-fuelled vehicles. These runs

showed a slight increase in the rural background close to
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large cities (up to 2 %), whereas in more remote areas NO2

levels declined by about 0.5 % due to the faster oxidation

to HNO3. Hence, this effect does not contribute to the mis-

match between observed and modelled trends. The model

inter-comparison study by Collette et al. (2011) has shown

that four out of six models underestimate NO2 concentra-

tions at European rural background stations for the time pe-

riod 1998–2007. Moreover, three of these models also show

stronger trends than observed. A recent study using satellite-

retrieved NO2 columns by OMI and in situ data for the period

2005–2012 also showed lower trends in observations than

in the European emission inventories (Curier et al., 2014).

Hence, more research is needed to assess whether the mis-

match in the NO2 trend is a model issue or whether it can be

attributed to overly strong declines in the emission data.

The implemented emission abatement strategies for SIA

precursors have led to concentration reductions over Europe

even though for some secondary species the achieved con-

centration reduction is lower than corresponding precursor

reductions would suggest. The LOTOS-EUROS model is

able to capture most of the seasonal and interannual vari-

ability of SIA and its precursors’ concentrations and their

non-linear responses to emission changes for the time pe-

riod 1990–2009. The largest part of the decline is observed

in the 1990s. Smaller concentration changes and more non-

significant trends are observed and modelled between 2000

and 2009. The smaller, non-significant trends between 2000

and 2009 do not necessarily imply that there is no trend

present in the data, but only that we are not sure at the 95 %

confidence level (Nuzzo, 2014). It highlights that the vali-

dation of emission trends remains a challenge, in particular

the ability to separate relatively smaller trends from interan-

nual variability (Koumoutsariset al., 2008; Voulgarakis et al.,

2010).

This study has revealed many interesting features and re-

sulting research questions that can be approached making

further use of the 20 year model simulation. Specific atten-

tion is needed to address the trends in NOx and tackle the

underestimation in SO2−
4 and other pollutants in eastern Eu-

rope. As a next step we will analyse the ability of the model

to reproduce the trends modelled for O3 as new analyses have

shown shifts in seasonal variability over time (Parrish et al.,

2013). Moreover, trends in wet and dry deposition should

be investigated to further complement the budget analysis.

We have found that the trends for SIA are emission-driven.

Next, a quantification of trends induced by meteorological

variability as reported by Andersson et al. (2007) is planned.

Furthermore, special attention in further investigations will

be given to uncertainties in the emission input by performing

sensitivity studies on emission timing (dependency on mete-

orology, etc.). The here presented study could be seen as an

exploratory exercise for the re-analysis of the 1990–2010 pe-

riod with several model systems within the UNECE-EMEP

taskforce on measurement and modelling (TFMM).

In short, we presented a successful dynamic model evalu-

ation of the LOTOS-EUROS CTM aimed at secondary inor-

ganic aerosol formation in Europe between 1990 and 2009.

In general, the model is able to capture the non-linearity as

detected in the observations. A source apportionment anal-

ysis has confirmed that changes in the formation efficiency

due to changes in the chemical regime are at the basis of this

non-linearity.

Code availability

LOTOS-EUROS is a Dutch consortium model from TNO,

KNMI and RIVM. The source code is available upon request

and requires permission by the steering group.

The Supplement related to this article is available online

at doi:10.5194/gmd-8-1047-2015-supplement.

Acknowledgements. This work was funded by TNO within the

framework of R&D Project 3710 63 246 – PINETI (Pollutant

Input and Ecosystem Impact) – funded by the Federal Environment

Agency (Umweltbundesamt, Germany). Further support was pro-

vided by Freie Universität Berlin. We would like to acknowledge

the data providers in the ECA&D project, A. M. G. Klein Tank

and co-authors, 2002. Daily data set of twentieth-century surface

air temperature and precipitation series for the European Climate

Assessment. Int. J. of Climatol., 22, 1441–1453. Data and metadata

available at http://eca.knmi.nl. Surface observations were obtained

through the AirBase (EEA) and EBAS (NILU) repositories.

Edited by: J. Williams

References

Amann, M., Cofala, J., Heyes, C., Klimont, Z., and Schöpp, W.: The

RAINS Model: A Tool for Assessing Regional Emission Control

Strategies in Europe, Pollution Atmosphérique 4, Paris, France,

1999.

Amann, M., Bertok, I., Borken-Kleefeld, J., Cofala, J., Heyes,

C., Höglund-Isaksson, L., Klimont, Z., Nguyen, B., Posch, M.,

Rafaj, P., Sandler, R., Schöpp, W., Wagner, F., and Winiwarter,

W.: Cost-effective control of air quality and greenhouse gases

in Europe: Modelling and policy applications, Environ. Modell.

Softw., 26, 1489–1501, 2011.

Andersson, C., Langner, J., and Bergstrom, R.: Interannual varia-

tions and trends in air pollution over Europe due to climate vari-

ability during 1958–2001 simulated with a regional CTM cou-

pled to the ERA-40 reanalysis, Tellus 59B, 77–98, 2007.

Appel, K. W., Gilliam, R. C., Davis, N., Zubrow, A., and Howard,

S. C.: Overview of the Atmospheric Model Evaluation Tool

(AMET) v1.1 for evaluating meteorological and air quality mod-

els, Environ. Modell. Softw., 26, 434–443, 2011.

Geosci. Model Dev., 8, 1047–1070, 2015 www.geosci-model-dev.net/8/1047/2015/

http://dx.doi.org/10.5194/gmd-8-1047-2015-supplement
http://eca.knmi.nl


S. Banzhaf et al.: Dynamic model evaluation for SIA and its precursors over Europe 1067

Banzhaf, S., Schaap, M., Kerschbaumer, A., Reimer, E., Stern, R.,

van der Swaluw, E., and Builtjes, P.: Implementation and eval-

uation of pH-dependent cloud chemistry and wet deposition in

the chemical transport model REM-Calgrid, Atmos. Environ.,

49, 378–390, 2012.

Banzhaf, S., Schaap, M., Wichink Kruit, R. J., Denier van der Gon,

H. A. C., Stern, R., and Builtjes, P. J. H.: Impact of emission

changes on secondary inorganic aerosol episodes across Ger-

many, Atmos. Chem. Phys., 13, 11675–11693, doi:10.5194/acp-

13-11675-2013, 2013.

Berglen, T. F., Myhre, G., Isaksen, I. S. A., Vestreng, V., and Smith,

S. J.: Sulphate trends in Europe: are we able to model the recently

observed decrease?, Tellus, 59, 773–786, doi:10.1111/j.1600-

0889.2007.00289.x, 2007.

Bobbink, R., Hornung, M., and Roelofs, J. M.: The effects of air-

borne pollutants on species diversity in natural and semi-natural

European vegetation, J. Ecol., 86, 717–738, doi:10.1046/j.1365-

2745.1998.8650717.x, 1998.

Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen,

T., DeAngelo, B. J., Flanner, M. G., Ghan, S., Karcher, B., Koch,

D., Kinne, S., Kondo, Y., Quinn, P. K., Sarofim, M. C., Schultz,

M. G., Schulz, M., Venkataraman, C., Zhang, H., Zhang, S., Bel-

louin, N., Guttikunda, S. K., Hopke, P. K., Jacobson, M. Z.,

Kaiser, J. W., Klimont, Z., Lohmann, U., Schwarz, J. P., Shin-

dell, D., Storelvmo, T., Warren, S. G., and Zender, C. S.: Bound-

ing the role of black carbon in the climate system: a scientific

assessment, J. Geophys. Res.-Atmos., 118, 5380–5552, 2013.

Carslaw, D., Beevers, S., Westmoreland, E., Williams, M., Tate,

J., Murrells, T., Stedman, J., Li, Y., Grice, S., Kent, A., and

Tsagatakis, I.: Trends in NOx and NO2 emissions and ambient

measurements in the UK, Defra, London, 2011.

Civerolo, K., Hogrefe, C., Zalewsky, E., Hao, W., Sistla, G., Lynn,

B., Rosenzweig, C., and Kinney, P. L.: Evaluation of an 18-year

CMAQ simulation: seasonal variations and long-term temporal

changes in sulfate and nitrate, Atmos. Environ., 44, 3745–3752,

2010.

Colette, A., Granier, C., Hodnebrog, Ø., Jakobs, H., Maurizi, A.,

Nyiri, A., Bessagnet, B., D’Angiola, A., D’Isidoro, M., Gauss,

M., Meleux, F., Memmesheimer, M., Mieville, A., Rouïl, L.,

Russo, F., Solberg, S., Stordal, F., and Tampieri, F.: Air quality

trends in Europe over the past decade: a first multi-model assess-

ment, Atmos. Chem. Phys., 11, 11657–11678, doi:10.5194/acp-

11-11657-2011, 2011.

Cristofanelli, P., Scheel, H.-E., Steinbacher, M., Saliba, M., Az-

zopardi, F., Ellul, R., Fröhlich, M., Tositti, L., Brattich, E.,

Maione, M., Calzolari, F., Duchi, R., Landi, T. C., Marinoni, A.,

and Bonasoni, P.: Long-term surface ozone variability at Mt. Ci-

mone WMO/GAW global station (2165 m a.s.l., Italy), Atmos.

Environ., 101, 23–33, 2015.

Curier, R. L., Kranenburg, R., Segers, A. J. S., Timmermans, R.

M. A., and Schaap, M.: Synergistic use of OMI NO2 tropo-

spheric columns and LOTOS-EUROS to evaluate the NOx emis-

sion trends across Europe, Remote Sens. Environ., 149, 58–69,

doi:10.1016/j.rse.2014.03.032, 2014.

Cuvelier, C., Thunis, P., Vautard, R., Amann, M., Bessagnet, B.,

Bedogni, M., Berkowicz, R., Brandt, J., Brocheton, F., Builtjes,

P., Carnavale, C., Coppalle, A., Denby, B., Douros, J., Graf, A.,

Hellmuth, O., Hodzic, A., Honoré, C., Jonson, J., Kerschbaumer,

A., de Leeuw, F., Minguzzi, E., Moussiopoulos, N., Pertot, C.,

Peuch, V. H., Pirovano, G., Rouil, L., Schaap, M., Stern, R., Tar-

rason, L., Vignati, E., Volta, M., White, L., Wind, P., and Zuber,

A.: CityDelta: A model intercomparison study to explore the im-

pact of emission reductions in European cities in 2010, Atmos.

Environ., 41, 189–207, 2007.

Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli,

P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G.,

Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bid-

lot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer,

A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V.,

Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally,

A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey,

C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart, F.: The

ERA-Interim reanalysis: configuration and performance of the

data assimilation system, Q. J. Roy. Meteorol. Soc., 137, 553–

597, doi:10.1002/qj.828, 2011.

Denier van der Gon, H. A. C., Visschedijk, A., van den Brugh,

H., and Dröge, R.: F&E Vorhaben: Strategien zur Verminderung

der Feinstaubbelastung – PAREST: A high resolution European

emission data base for the year 2005, TNO-Report, TNO-034-

UT-2010-01895_RPT-ML, Utrecht, 2010.

Dennis, R., Fox, T., Fuentes, M., Gilliland, A., Hanna, S., Hogrefe,

C., Irwin, J., Rao, S. T., Scheffe, R., Schere, K., Steyn, D.,

and Venkatram, A.: A framework for evaluating regional-scale

numerical photochemical modeling systems, Environ. Fluid.

Mech., 10, 471–489, 2010.

Derwent, R. G., Witham, C. J., Redington, A. L., Jenkin, M., Sted-

man, J, Yardley, R., and Hayman, G.: Particulate matter at a rural

location in southern England during 2006: model sensitivities to

precursor emissions, Atmos. Environ., 43, 689–696, 2009.

EC: Directive 2001/42/EC of the European Parliament and of the

Council of 27 June 2001 on the assessment of the effects of cer-

tain plans and programmes on the environment, 2001.

EEA: Assessment of ground-level ozone in EEA member countries,

with a focus on long-term trends, Technical report No. 7/2009,

European Environment Agency, Copenhagen, 2009.

EEA: Air quality in Europe – 2012 report, EEA report No. 4/2012,

European Environment Agency, Copenhagen, 2012.

EMEP: Transboundary, acidification, eutrophication and ground

level ozone in Europe in 2007 EMEP August 2009, ISSN 1504-

6192, 2009.

EMEP/CCC: Manual for sampling and chemical analysis,

EMEP/CCC Report 1/95 (Last rev. 2001), Norwegian Institute

for Air Research, Kjeller, 2001.

Erisman, J. W. and Schaap, M.: The need for ammonia abatement

with respect to secondary PM reductions in Europe, Environ.

Pollut., 129, 159–163, 2004.

Erisman, J. W., van Pul, A., and Wyers, P.: Parametrization of

surface-resistance for the quantification of atmospheric deposi-

tion of acidifying pollutants and ozone, Atmos. Environ., 28,

2595–2607, 1994.

Fagerli, H. and Aas, W.: Trends of nitrogen in air and precipitation:

Model results and observations at EMEP sites in Europe, 1980–

2003, Environ. Pollut., 154, 448–461, 2008.

Fahey, K. M. and Pandis, S. N.: Size-resolved aqueous-

phase atmospheric chemistry in a three dimensional

chemical transport model, J. Geophys. Res., 108, 4690,

doi:10.1029/2003JD003564, 2003.

www.geosci-model-dev.net/8/1047/2015/ Geosci. Model Dev., 8, 1047–1070, 2015

http://dx.doi.org/10.5194/acp-13-11675-2013
http://dx.doi.org/10.5194/acp-13-11675-2013
http://dx.doi.org/10.1111/j.1600-0889.2007.00289.x
http://dx.doi.org/10.1111/j.1600-0889.2007.00289.x
http://dx.doi.org/10.1046/j.1365-2745.1998.8650717.x
http://dx.doi.org/10.1046/j.1365-2745.1998.8650717.x
http://dx.doi.org/10.5194/acp-11-11657-2011
http://dx.doi.org/10.5194/acp-11-11657-2011
http://dx.doi.org/10.1016/j.rse.2014.03.032
http://dx.doi.org/10.1002/qj.828
http://dx.doi.org/10.1029/2003JD003564


1068 S. Banzhaf et al.: Dynamic model evaluation for SIA and its precursors over Europe

Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fa-

hey, D. W., Haywood, J., Lean, J., Lowe, D. C., Myhre, G.,

Nganga, J., Prinn, R., Raga, G., Schulz, M., and Van Dorland, R.:

Changes in atmospheric constituents and in radiative forcing, in:

Climate Change 2007: The Physical Science Basis, Contribution

of Working Group I to the Fourth Assessment Report of the In-

tergovernmental Panel on Climate Change, edited by: Solomon,

S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B.,

Tignor, M., and Miller, H. L., Cambridge University Press, Cam-

bridge, UK, and New York, USA, 2007.

Fountoukis, C. and Nenes, A.: ISORROPIA II: a computa-

tionally efficient thermodynamic equilibrium model for K+-

Ca2+-Mg2+-NH+
4

-Na+-SO2−
4

-NO−
3

-Cl− H2O aerosols, At-

mos. Chem. Phys., 7, 4639–4659, doi:10.5194/acp-7-4639-2007,

2007.

Fowler, D., Müller, J., Smith, R. I., Cape, J. N., and Erisman, J.

W.: Nonlinearities in source receptor relationships for sulfur and

nitrogen compounds, Ambio, 34, 41–46, 2005.

Fowler, D., Smith, R., Müller, J., Cape, J. N., Sutton, M., Erisman,

J. W., and Fagerli, H.: Long-term trends in sulphur and nitrogen

deposition in Europe and the cause of nonlinearities, Water Air

Soil Poll., 7, 41–47, 2007.

Geels, C., Andersen, H. V., Ambelas Skjøth, C., Christensen, J.

H., Ellermann, T., Løfstrøm, P., Gyldenkærne, S., Brandt, J.,

Hansen, K. M., Frohn, L. M., and Hertel, O.: Improved mod-

elling of atmospheric ammonia over Denmark using the cou-

pled modelling system DAMOS, Biogeosciences, 9, 2625–2647,

doi:10.5194/bg-9-2625-2012, 2012.

Granier, C., Bessagnet, B., Bond, T., D’Angiola, A., van der Gon,

H. D., Frost, G. J., Heil, A., Kaiser, J. W., Kinne, S., Klimont,

Z., Kloster, S., Lamarque, J.-F., Liousse, C., Masui, T., Meleux,

F., Mieville, A., Ohara, T., Raut, J. C., Riahi, K., Schultz, M.

G., Smith, S. J., Thompson, A., van Aardenne, J., van der Werf,

G. R., and van Vuuren, D. P.: Evolution of anthropogenic and

biomass burning emissions of air pollutants at global and re-

gional scales during the 1980–2010 period, Climatic Change,

109, 163–190, doi:10.1007/s10584-011-0154-1, 2011.

Grennfelt, P. and Hov, Ø.: Regional air pollution at a turning point,

Ambio, 34, 2–10, 2005.

Harrison, R. M., Brunekreef, B., Keuken, M., Denier van der Gon,

H., and Querol, X.: New directions: Cleaning the Air: Will the

European Commission’s Clean Air Policy Package of December

2013 Deliver?, Atmos. Environ., 91, 172–174, 2014.

Hass, H., Builtjes, P. J. H, Simpson, D., and Stern, R.: Compari-

son of model results obtained with several European regional air

quality models, Atmos. Environ., 31, 3259–3279, 1997.

Hass, H., van Loon, M., Kessler, C., Stern, R., Matthijsen, J.,

Sauter, F., Zlatev, Z., Langner, J., Foltescu, V., and Schaap, M.:

Aerosol Modelling: Results and Intercomparison from 15 Euro-

pean Regional-scale Modelling Systems, EUROTRAC-2 Special

report, Eurotrac-ISS, Garmisch Partenkirchen, Germany, 2003.

Hipel, K. W. and McLeod, A. I.: Time Series Modelling of Wa-

ter Resources and Environmental Systems, Elsevier, Amsterdam,

2005.

Hjellbrekke, A. G. and Fjæraa, A. M.: Data Report 2009, Acidifying

and eutrophying compounds and particulate matter, Norwegian

Institute for Air Research, Kjeller, EMEP/CCC-Report 1/2011,

2011.

Hogrefe, C., Hao, W., Zalewsky, E. E., Ku, J.-Y., Lynn, B., Rosen-

zweig, C., Schultz, M. G., Rast, S., Newchurch, M. J., Wang,

L., Kinney, P. L., and Sistla, G.: An analysis of long-term

regional-scale ozone simulations over the Northeastern United

States: variability and trends, Atmos. Chem. Phys., 11, 567–582,

doi:10.5194/acp-11-567-2011, 2011.

Kendall, M. G.: Rank Auto Correlation Methods, 4th Edn., Griffin,

Oxford, 1976.

Kjellström, E. and Giorgi, F.: Introduction to the special issue on

“Regional climate model evaluation and weighting”, Clim. Res.,

44, 117–119, 2010.

Kjellström, E., Boberg, F., Castro, M., Christensen, H. J., Nikulin,

G., and Sánchez, E.: Daily and monthly temperature and precip-

itation statistics as performance indicators for regional climate

models, Clim. Res., 44, 135–150, 2010.

Klein Tank, A. M. G, Wijngaard, J. B., Können, G. P., Böhm, R.,

Demarée, G., Gocheva, A., Mileta, M., Pashiardis, S., Hejkr-

lik, L., Kern-Hansen, C., Heino, R., Bessemoulin, P., Müller-

Westermeier, G., Tzanakou, M., Szalai, S., Pálsdóttir, T., Fitzger-

ald, D., Rubin, S., Capaldo, M., Maugeri, M., Leitass, A., Bukan-

tis, A., Aberfeld, R., van Engelen, A. F. V., Forland, E., Mietus,

M., Coelho, F., Mares, C., Razuvaev, V., Nieplova, E., Cegnar,

T., Antonio López, J., Dahlström, B., Moberg, A., Kirchhofer,

W., Ceylan, A., Pachaliuk, O., Alexander, L. V., and Petrovic, P.:

Daily dataset of 20th-century surface air temperature and precip-

itation series for the European Climate Assessment, Int. J. Cli-

matol., 22, 1441–1453, 2002.

Klok, E. J. and Klein Tank, A. M. G.: Updated and extended Euro-

pean dataset of daily climate observations, Int. J. Climatol., 29,

1182–1191, doi:10.1002/joc.1779, 2009.

Koeble, R. and Seufert, G.: Novel maps for forest tree species in

Europe, Proceedings of the 539 conference “a changing atmo-

sphere”, 17–20 September, Torino, Italy, 2001.

Kotlarski, S., Keuler, K., Christensen, O. B., Colette, A., Déqué,

M., Gobiet, A., Goergen, K., Jacob, D., Lüthi, D., van Meij-

gaard, E., Nikulin, G., Schär, C., Teichmann, C., Vautard, R.,

Warrach-Sagi, K., and Wulfmeyer, V.: Regional climate model-

ing on European scales: a joint standard evaluation of the EURO-

CORDEX RCM ensemble, Geosci. Model Dev., 7, 1297–1333,

doi:10.5194/gmd-7-1297-2014, 2014.

Konovalov, I. B., Beekmann, M., Richter, A., Burrows, J. P.,

and Hilboll, A.: Multi-annual changes of NOx emissions in

megacity regions: nonlinear trend analysis of satellite measure-

ment based estimates, Atmos. Chem. Phys., 10, 8481–8498,

doi:10.5194/acp-10-8481-2010, 2010.

Koumoutsaris, S., Bey, I., Generoso, S., and Thouret, V.: Influence

of El Nino–Southern Oscillation on the interannual variability

of tropospheric ozone in the northern midlatitudes, J. Geophys.

Res., 113, D19301, doi:10.1029/2007JD009753, 2008.

Kranenburg, R., Segers, A. J., Hendriks, C., and Schaap, M.: Source

apportionment using LOTOS-EUROS: module description and

evaluation, Geosci. Model Dev., 6, 721–733, doi:10.5194/gmd-

6-721-2013, 2013.

Lenderink, G., Van den Hurk, B., Van Meijgaard, E., Van Ulden,

A. P., and Cuijpers, J.: Simulation of present-day climate in

RACMO2: first results and model developments, KNMI techni-

cal report TR 252, De Bilt, The Netherlands, 2003.

Geosci. Model Dev., 8, 1047–1070, 2015 www.geosci-model-dev.net/8/1047/2015/

http://dx.doi.org/10.5194/acp-7-4639-2007
http://dx.doi.org/10.5194/bg-9-2625-2012
http://dx.doi.org/10.1007/s10584-011-0154-1
http://dx.doi.org/10.5194/acp-11-567-2011
http://dx.doi.org/10.1002/joc.1779
http://dx.doi.org/10.5194/gmd-7-1297-2014
http://dx.doi.org/10.5194/acp-10-8481-2010
http://dx.doi.org/10.1029/2007JD009753
http://dx.doi.org/10.5194/gmd-6-721-2013
http://dx.doi.org/10.5194/gmd-6-721-2013


S. Banzhaf et al.: Dynamic model evaluation for SIA and its precursors over Europe 1069

Lövblad, G., Tarrasón, L., Tørseth, K., and Dutchak, S.: EMEP As-

sessment Part I: European Perspective. Norwegian Meteorologi-

cal Institute, P.O. Box 43, N-313 Oslo, Norway, 2004.

Logan, J.: An analysis of ozonesonde data for the troposphere: Rec-

ommendations for testing 3-D models and development of a grid-

ded climatology for tropospheric ozone, J. Geophys. Res., 104,

16115–16149, 1999.

Manders, A. M. M., van Ulft, B., van Meijgaard, E., and Schaap, M.:

Coupling of the air quality model LOTOS-EUROS to the climate

model RACMO, Dutch National Research Programme Knowl-

edge for Climate Technical Report KFC/038E/2011, ISBN 978-

94-90070-00-7, 2011.

Manders, A. M. M., van Meijgaard, E., Mues, A. C., Kranenburg,

R., van Ulft, L. H., and Schaap, M.: The impact of differences

in large-scale circulation output from climate models on the re-

gional modeling of ozone and PM, Atmos. Chem. Phys., 12,

9441–9458, doi:10.5194/acp-12-9441-2012, 2012.

Martensson, E. M., Nilsson, E. D., de Leeuw, G., Cohen, L. H., and

Hansson, H. C.: Laboratory simulations and parameterization of

the primary marine aerosol production, J. Geophys. Res., 108,

4297, doi:10.1029/2002JD002263, 2003.

McKeen, S., Wilczak, J., Grell, G., Djalalova, I., Peckham, S., Hsie,

E.-Y., Gong, W., Bouchet, V., Menard, S., Moffet, R., McHenry,

J., McQueen, J., Tang, Y., Carmichael, G. R., Pagowski, M.,

Chan, A., Dye, T., Frost, G., Lee, P., and Mathur, R.: Assessment

of an ensemble of seven real-time ozone forecasts over eastern

North America during the summer of 2004, J. Geophys. Res.-

Atmos., 110, 1–16, 2005.

Monahan, E. C., Spiel, D. E., and Davidson, K. L.: A model of ma-

rine aerosol generation via whitecaps and wave disruption, in:

Oceanic Whitecaps and their role in air/sea exchange, edited by:

Monahan, E. C. and Mac Niocaill, G., 167–174, D. Reidel, Nor-

well, Mass., USA, 1986.

Mues, A., Manders, A., Schaap, M., van Ulft, L. H., van Meijgaard,

E., and Builtjes, P.: Differences in particulate matter concentra-

tions between urban and rural regions under current and changing

climate conditions, Atmos. Environ., 80, 232–247, 2013.

Nuzzo, R.: Scientific method: Statistical errors, Nature, 506, 150–

152, doi:10.1038/506150a, 2014.

Oltmans, S. J., Lefohn, A. S., Shadwick, D., Harris, J. M., Scheel,

H. E., Galbally, I., Tarasick, D. W., Johnson, B. J., Brunke, E.-

G., Claude, H., Zeng, G., Nichol, S., Schmidlin, F., Davies, J.,

Cuevas, E., Redondas, A., Naoe, H., Nakano, T., and Kawasato,

T.: Recent tropospheric ozone changes – a pattern dominated by

slow or no growth, Atmos. Environ., 67, 331–351, 2013.

Parrish, D. D., Law, K. S., Staehelin, J., Derwent, R., Cooper, O. R.,

Tanimoto, H., Volz-Thomas, A., Gilge, S., Scheel, H.-E., Stein-

bacher, M., and Chan, E.: Long-term changes in lower tropo-

spheric baseline ozone concentrations at northern mid-latitudes,

Atmos. Chem. Phys., 12, 11485–11504, doi:10.5194/acp-12-

11485-2012, 2012.

Parrish, D. D., Law, K. S., Staehelin, J., Derwent, R., Cooper, O. R.,

Tanimoto, H., Volz Thomas, A., Gilge, S., Scheel, H. E., Stein-

bacher, M., and Chan, E.: Lower tropospheric ozone at northern

midlatitudes: changing seasonal cycle, Geophys. Res. Lett., 40,

1631–1636, 2013.

Parrish, D. D., Lamarque, J.-F., Naik, V., Horowitz, L., Shindell,

D. T., Staehelin, J., Derwent, R., Cooper, O. R., Tanimoto, H.,

Volz-Thomas, A., Gilge, S., Scheel, H.-E., Steinbacher, M., and

Fröhlich, M.: Long-term changes in lower tropospheric baseline

ozone concentrations: comparing chemistry-climate models and

observations at northern mid-latitudes, J. Geophys. Res., 119,

5719–5736, 2014.

Pouliot, G., Pierce, T, Denier van der Gon, H., Schaap, M., and

Nopmongcol, U.: Comparing Emissions Inventories and Model-

Ready Emissions Datasets between Europe and North America

for the AQMEII Project, Atmos. Environ., 53, 4–14, 2012.

Putaud, J.-P., Van Dingenen, R., Alastuey, A., Bauer, H., Birmili,

W., Cyrys, J., Flentje, H., Fuzzi, S., Gehrig, R., Hansson, H.

C., Harrison, R. M., Herrmann, H., Hitzenberger, R., Hüglin, C.,

Jones, A. M., Kasper-Giebl, A., Kiss, G., Kousa, A., Kuhlbusch,

T. A. J., Löschau, G., Maenhaut, W., Molnar, A., Moreno, T.,

Pekkanen, J., Perrino, C., Pitz, M., Puxbaum, H., Querol, X.,

Rodriguez, S., Salma, I., Schwarz, J., Smolik, J., Schneider, J.,

Spindler, G., ten Brink, H., Tursic, J., Viana, M., Wiedensohler,

A., and Raes, F.: A European aerosol phenomenology – 3: phys-

ical and chemical characteristics of particulate matter from 60

rural, urban, and kerbside sites across Europe, Atmos. Environ.,

44, 1308–1320, 2010.

Redington, A. L., Derwent, R. G., Witham, C. S., and Manning, A.

J.: Sensitivity of modelled sulphate and nitrate aerosol to cloud,

pH and ammonia emissions, Atmos. Environ., 43, 3227–3234,

2009.

Schaap, M., van Loon, M., ten Brink, H. M., Dentener, F. J., and

Builtjes, P. J. H.: Secondary inorganic aerosol simulations for

Europe with special attention to nitrate, Atmos. Chem. Phys., 4,

857–874, doi:10.5194/acp-4-857-2004, 2004.

Schaap, M., Timmermans, R. M. A., Sauter, F. J., Roemer, M.,

Velders, G. J. M., Boersen, G. A. C., Beck, J. P., Builtjes, P. J.

H.: The LOTOS-EUROS model: description, validation and lat-

est developments, Int. J. Environ. Pollut., 32, 270–289, 2008.

Schaap, M., Manders, A. A. M., Hendriks, E. C. J., Cnossen, J. M.,

Segers, A. J., Denier van der Gon, H. A. C., Jozwicka, M., Sauter,

F. J., Velders, G. J. M., Matthijsen, J., and Builtjes, P. J. H.: Re-

gional Modelling of Particulate Matter for the Netherlands, PBL

report 500099008, Bilthoven, The Netherlands, 2009.

Schaap, M., Cuvelier, C., Bessagnet, B., Hendriks, C., Baldesano,

J., Colette, A., Thunis, P., Karam, D., Fagerli, H., Graff, A., Kra-

nenburg, R., Nyiri, A., Pay, M. T., Rouïl, L., Schulz, M., Simp-

son, D., Stern, R., Terrenoire, E., and Wind, P.: Performance of

European chemistry transport models as function of horizontal

resolution, Atmos. Chem. Phys. Discuss., in preparation, 2015.

Simpson, D., Fagerli, H., Jonson, J. E., Tsyro, S., Wind, P.,

and Tuovinen, J.-P.: Transboundary Acidification, Eutrophica-

tion and Ground Level Ozone in Europe, Part 1: Unified EMEP

Model Description, EMEP Report 1/2003, Norwegian Meteoro-

logical Institute, Oslo, Norway, 2003.

Solazzo, E., Bianconi, R., Vautard, R., Wyat Appel, K., Moran,

M. D., Hogrefe, C., Bessagnet, B., Brandt, J., Christensen, J.

H., Chemel, C., Coll, I., Denier van der Gon, H. A. C., Fer-

reira, J., Forkel, R., Francis, X. V., Grell, G., Grossi, P., Hansen,

A. B., Jericevic, A., Kraljevic, L., Miranda, A. I., Nopmongcol,

U., Pirovano, G., Prank, M., Riccio, A., Sartelet, K. N., Schaap,

M., Silver, J. D., Sokhi, R. S., Vira, J., Werhahn, J., Wolke, R.,

Yarwood, G., Zhang, J., Rao, S. T., and Galmarini, S.: Model eva-

lution and ensemble modelling of surface level ozone in Europe

and North America in the context of AQMEII, Atmos. Environ.,

53, 60–74, 2012a.

www.geosci-model-dev.net/8/1047/2015/ Geosci. Model Dev., 8, 1047–1070, 2015

http://dx.doi.org/10.5194/acp-12-9441-2012
http://dx.doi.org/10.1029/2002JD002263
http://dx.doi.org/10.1038/506150a
http://dx.doi.org/10.5194/acp-12-11485-2012
http://dx.doi.org/10.5194/acp-12-11485-2012
http://dx.doi.org/10.5194/acp-4-857-2004


1070 S. Banzhaf et al.: Dynamic model evaluation for SIA and its precursors over Europe

Solazzo, E., Bianconi, Pirovano, G., Matthias, V., Vautard, R.,

Moran, M. D., Wyat Appel, K., Bessagnet, B., Brandt, J., Chris-

tensen, J. H., Chemel, C., Coll, I., Ferreira, J., Forkel, R., Francis,

X. V., Grell, G., Grossi, P., Hansen, A. B., Miranda, A. I., Nop-

mongcol, U., Prank, M., Sartelet, K. N., Schaap, M., Silver, J.

D., Sokhi, R. S., Vira, J., Werhahn, J., Wolke, R., Yarwood, G.,

Zhang, J., Rao, S. T., and Galmarini, S.: Operation model evalu-

ation for particulate matter in Europe and North America in the

context of AQMEII, Atmos. Environ., 53, 75–92, 2012b.

Steinbacher, M., Zellweger, C., Schwarzenbach, B., Bugmann, S.,

Buchmann, B., Ordónez, C., Prévot, A. S. H., and Hueglin, C.:

Nitrogen oxide measurements at rural sites in Switzerland: bias

of conventional measurement techniques, J. Geophys. Res., 112,

D11307, doi:10.1029/2006JD007971, 2007.

Steinbrecher, R., Smiatek, G., Koeble, R., Seufert, G., Theloke, J.,

Hauff, K., Ciccioli, P., Vautard, R., and Curci, G.: Intra- and

inter-annual variability of VOC emissions from natural and semi-

natural vegetation in Europe and neighbouring countries, Atmos.

Environ., 43, 1380–1391, doi:10.1016/j.atmosenv.2008.09.072,

2009.

Stern, R., Builtjes, P., Schaap, M., Timmermans, R., Vautard, R.,

Hodzic, A., Memmesheimer, M., Feldmann, H., Renner, E.,

Wolke, R., and Kerschbaumer, A.: A model inter-comparison

study focussing on episodes with elevated PM10 concentrations,

Atmos. Environ., 42, 4567–4588, 2008.

Tarrasón, L., Johnson, J. E., Fagerli, H., Benedictow, A., Wind, P.,

Simpson, D., and Klein, H.: EMEP Status Report 1/2003 – Part

III: Source-Receptor Relationships, Transboundary acidification,

eutrophication and ground level ozone in Europe, Norwegian

Meteorological Institute, Oslo, 2003.

Thunis, P., Georgieva, E., and Pederzoli, A.: A tool to evaluate air

quality model performances in regulatory applications, Environ.

Model. Softw., 38, 220–230, doi:10.1016/j.envsoft.2012.06.005,

2012.

Tørseth, K., Aas, W., Breivik, K., Fjæraa, A. M., Fiebig, M.,

Hjellbrekke, A. G., Lund Myhre, C., Solberg, S., and Yttri,

K. E.: Introduction to the European Monitoring and Evalua-

tion Programme (EMEP) and observed atmospheric composition

change during 1972–2009, Atmos. Chem. Phys., 12, 5447–5481,

doi:10.5194/acp-12-5447-2012, 2012.

UNECE: The 1999 Gothenburg Protocol to Abate Acidification,

Eutrophication and Ground level Ozone UNECE, Gothenburg,

Report, 1999.

Van Loon, M., Vautard, R., Schaap, M., Bergström, R., Bessagnet,

B., Brandt, J., Builtjes, P. J. H., Christensen, J. H., Cuvelier, K.,

Graf, A., Jonson, J. E., Krol, M., Langner, J., Roberts, P., Rouil,

L., Stern, R., Tarrasón, L., Thunis, P., Vignati, E., White, L., and

Wind, P.: Evaluation of long term ozone simulations from seven

regional air quality models and their ensemble average, Atmos.

Environ., 41, 2083–2097, 2007.

van Meijgaard E., van Ulft, L. H., van de Berg, W. J., Bosveld, F.

C., van den Hurk, B. J. J. M., Lenderink, G., and Siebesma, A. P.:

The KNMI regional atmospheric climate model RACMO version

2.1, KNMI, Technical report, TR-302, 2008.

van Meijgaard, E., van Ulft, L. H, Lenderink, G., de Roode, S.

R., Wipfler, L., Boers, R., and Timmermans, R. M. A.: Refine-

ment and application of a regional atmospheric model for cli-

mate scenario calculations of Western Europe, Climate changes

Spatial Planning publication: KvR 054/12, ISBN/EAN 978-90-

8815-046-3, 44 pp., Nieuwegein, 2012.

Vautard, R., van Loon, M., Schaap, M., Bergström, R., Bessagnet,

B., Brandt, J., Builtjes, P. J. H., Christensen, J. H., Cuvelier, C.,

Graff, A., Jonson, J. E., Krol, M., Langner, J., Roberts, P., Rouil,

L., Stern, R., Tarrason, L., Thunis, P., Vignati, E., White, L., and

Wind, P.: Is regional air quality model diversity representative

of uncertainty for ozone simulation?, Geophys. Res. Lett., 33,

L24818, doi:10.1029/2006GL027610, 2007.

Vautard, R., Schaap, M., Bergström, R., Bessagnet, B., Brandt, J.,

Builtjes, P. J. H., Christensen, J. H., Cuvelier, C., Foltescu, V.,

Graff, A., Kerschbaumer, A., Krol, M., Roberts, P., Rouil, L.,

Stern, R., Tarrason, L., Thunis, P., Vignati, E., and Wind, P.: Skill

and uncertainty of a regional air quality model ensemble, Atmos.

Environ., 43, 4822–4832, 2009.

Vautard, R., Gobiet, A., Jacob, D., Belda, M., Colette, A., Déqué,

M., Fernández, J., García-Díez, M., Goergen, K., Güttler, I.,

Halenka, T., Karacostas, T., Katragkou, E., Keuler, K., Kotlarski,

S., Mayer, S., Meijgaard, E., Nikulin, G., Patarčić, M., Scinocca,
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