Surface Electron Transfer Dynamics in the Presence of Organic Chromophores

von

Lars Gundlach

im Fachbereich Physik der Freien Universität Berlin eingereichte Dissertation

Berlin, 2005

Tag der Disputation:	12.07.2005
Erstgutachter: Zweitgutachter: Drittgutachter:	Prof. Dr. Frank Willig Prof. Dr. Martin Wolf Prof. Dr. Ulrich Höfer Prof. Dr. Thomas Fauster
Befürwortender Professor:	Prof. Dr. Nikolaus Schwentner

Lars Gundlach

Surface Electron Transfer Dynamics in the Presence of Organic Chromophores Kurzzusammenfassung

Die Dynamik des heterogenen Elektrontransfers (ET) zwischen optisch angeregten, organischen Molekülen und Einkristalloberflächen wurde mit Hilfe der zeitaufgelösten Zwei-Photonen-Photoelektronen-Spektroskopie (TR-2PPE) untersucht. Den Schwerpunkt dieser Arbeit bilden verschiedene, chemisch modifizierte Perylen Farbstoffe, die auf der (110) Oberfläche von Rutil TiO_2 adsorbiert wurden. Es wurden jedoch auch andere Kombinationen aus organischen Adsorbaten und Halbleiter- sowie Metalleinkristallen untersucht. Die für die Untersuchung des heterogenen ET nötige Zeitauflösung wurde mit Hilfe zweier, parallel betriebener nicht-kollinearer optisch parametrischer Verstärker (NOPA) erreicht. Beide NOPA wurden bei 150 kHz betrieben und lieferten eine Kreuzkorrelation von 35 fs FWHM. Die Präparation der Adsorbatschicht erfolgte durch Chemisorption aus einer Lösung in einer speziellen Präparationskammer, in der es möglich war zwischen UHV und Inertgas Atmosphäre zu wechseln. Die sauberen, sowie die adsorbatbedeckten Oberflächen wurden mit Hilfe üblicher Methoden der Oberflächenphysik, wie UPS, XPS und LEED, untersucht. Zusätzlich wurden transiente Absorptionsmessungen an einigen Proben durchgeführt zum Vergleich mit den TR-2PPE Messungen. Die geordneten, organischen Adsorbatschichten, mit einer Bedeckung unter einer Monolage, die sich auf den TiO_2 Oberflächen bildeten, ermöglichten es, die Bindungsgeometrie in Abhängigkeit der beiden verwendeten Ankergruppen (Carboxyl- und Phosphonsäure) zu untersuchen. Die Bindungsgeometrie wurde mit Hilfe der winkel- und polarisationsabhängigen 2PPE und unter Verwendung der Fresnel Gleichungen ermittelt. Zeitabhängige 2PPE Messungen an Perylen Chromophoren, die mit langen, steifen Abstandsgruppen ausgestattet waren, zeigten die zu erwartenden, langen Injektionszeiten, im Gegensatz zu früheren Messungen an den gleichen Molekülen, die in schwammartigen Kolloidschichten adsorbiert waren und mittels transienter Absorptionsspektroskopie untersucht wurden. Die Messungen an den Kolloidschichten zeigten nicht zu erwartende, kurze Injektionszeiten, die durch die engen Poren in den Kolloidschichten bedingt waren. TR-2PPE Messungen an Pervlen Chromophoren, die mit kurzen Abstandsgruppen ausgestattet waren, ermöglichten es, den Elektronentransport der injizierten Elektronen in dem oberflächennahen Bereich des TiO₂ Substrats zu untersuchen. Um diese Transportdynamik näher zu untersuchen, wurden Messungen an Catechol bedeckten Ti O_2 Einkristallen und an Perylen bedeckten Silbereinkristallen vorgenommen. Die Auswertung dieser Messungen mit Hilfe von optischen Bloch Gleichungen und Ratenmodellen ermöglichte es, die Injektionszeiten für verschiedene Perylenderivate aus den TR-2PPE Messungen zu erhalten. Die Injektionszeiten werden mit denen aus früheren transienten Absorptionsmessungen unserer Gruppe verglichen. Des weiteren wurde bei den TR-2PPE Messungen an dem Perylen bedeckten Silbereinkristall ein Zustand beobachtet, der einem adsorbatinduziertem Bildladungszustand zugeordnet werden kann. Auf der saubere Ti O_2 Oberfläche konnte die Lebenszeit eines Oberflächenzustands gemessen werden. Die mittels 2PPE gemessenen Energieverteilungen der injizierten Elektronen gibt das vollständige Elektrontransferspektrum wieder. Es entspricht einer kompletten Marcus Kurve die bei heterogenem Elektrontransferzeiten sind daher nur durch die elektronische Kopplungsstärke und die elektronische Zustandsdichte im Festkörper bestimmt.

Lars Gundlach

Surface Electron Transfer Dynamics in the Presence of Organic Chromophores Abstract

The dynamics of heterogeneous electron transfer between photoexcited organic adsorbate molecules and single crystal surfaces are investigated by means of timeresolved two-photon photoemission spectroscopy (TR-2PPE). Whereas, the focus of this work is set on different chemically modified perylene chromophores attached to the (110) surface of TiO₂ rutile crystals, other combinations of organic molecules on semiconductor and metal surfaces are investigated. The necessary time resolution for TR-2PPE measurements is achieved via a novel setup consisting of two non-collinear optical parametric amplifiers operated simultaneously at a repetition rate of 150 kHz delivering a crosscorrelation function with 35 fs FWHM. The preparation of the adlayers is performed by chemisorption from solution in a special preparation chamber allowing for switching between ultrahigh vacuum and inert gas conditions. The adsorbate covered as well as the bare single crystal surfaces are characterized by means of standard surface science techniques like UPS, XPS and LEED. Transient absorption spectroscopy is carried out on some of the samples for comparison with the TR-2PPE experiments. The well ordered organic adsorbate layers with sub-monolayer coverages formed on the surface of TiO_2 enable the determination of the binding geometry of the molecules for two different anchor groups, i.e. carboxylic and phosphonic acid. The adsorption geometry is deduced from angular and polarization dependent 2PPE measurements by applying Fresnel equations. Time dependent 2PPE measurements of perylene chromophores equipped with long rigid spacer groups yield the expected slow injection times in contrast to earlier measurements of the same molecules attached to colloidal TiO₂ films via transient absorption spectroscopy. The latter gave unreasonable short injection times as a result of the narrow pores in the colloidal film. TR-2PPE measurements of perylene chromophores equipped with short anchor groups enable the investigation of electron transport in the surface region of TiO_2 after injection of the electron. To further elucidate these transport processes, reference measurements were carried out on a catechol covered TiO_2 surface and on a perylene covered Ag(110) surface. The fit to the TR-2PPE measurements of these samples by means of optical Bloch equations and rate equations enabled the extraction of the injection times for pervlene attached to the TiO_2 surface via short anchor/spacer groups. The resulting time constants are compared with those of earlier measurements carried out in our group. TR-2PPE measurements on the perylene chromophore attached to a silver surface give rise to an adsorbate induced image potential state not present on the bare surface. Furthermore, the lifetime of a surface state on the bare surface of $TiO_2(110)$ is resolved via TR-2PPE. Complete electron transfer spectra were measured for the first time as energy distributions of the 2PPE signals. These spectra represent the whole Marcus curve that is realized for heterogenous electron transfer in the wide band limit. The measured electron transfer times are thus controlled only by the strength of electronic coupling and the density of electronic acceptor states in the solid.

Contents

	Con	ntents	i
	Pub	lications	i
	List	of Figures	i
	List	of Tables	i
	Acro	onyms	ζ
	Abb	previations	i
1	Inti	roduction 1	L
2	Bac	ckground	5
	2.1	Electron transfer $\ldots \ldots \ldots$	3
	2.2	Hot electron dynamics)
	2.3	Energy level alignment	1
	2.4	TR-2PPE	3
		2.4.1 Rate equations and optical Bloch equations	3
	2.5	Ultrafast spectroscopy)
		2.5.1 $$ Generation and characterization of ultrashort laser pulses . $$ 21	L
	2.6	Experimental systems	5
		2.6.1 The molecules $\ldots \ldots 25$	5
		$2.6.1.1 \text{Perylene} \dots \dots \dots \dots \dots \dots \dots 25$	5
		2.6.2 The substrates $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 31$	L
		2.6.2.1 Titanium dioxide $\ldots \ldots \ldots \ldots \ldots \ldots 31$	L
		2.6.2.2 Copper and silver $\ldots \ldots \ldots \ldots \ldots \ldots 37$	7
3	Exp	perimental setup 39)
	3.1	The laser system)
	3.2	Ultra-high vacuum chambers	1
		3.2.1 Measurement chamber $\ldots \ldots \ldots \ldots \ldots \ldots \ldots 45$	5
		3.2.2 Preparation and transient-absorption chamber 46	3
		3.2.3 ESCA chamber	3
	3.3	Time of flight spectrometer	7
	3.4	Sample preparation)

		3.4.1	Colloidal TiO_2 films $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	49
		3.4.2	Rutile $TiO_2(110)$ single crystals	49
			3.4.2.1 Coating the surface with molecules	50
		3.4.3	Copper and silver single crystals	51
4	Res	ults ar	nd discussion	53
	4.1	Sampl	e characterization	53
		4.1.1	Rutile Crystals	53
		4.1.2	Metal single Crystals	55
		4.1.3	Perylene derivatives on $TiO_2(110)$	57
			4.1.3.1 Level alignment at the interface	57
			4.1.3.2 Binding geometry	61
	4.2	Time-	dependent 2PPE signals of the bare surfaces	72
		4.2.1	TR-2PPE on bare Ag and Cu single crystal surfaces	72
			$4.2.1.1 Cu(111) \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots $	72
			4.2.1.2 $Ag(111)$	74
			4.2.1.3 $Ag(110)$	76
		4.2.2	TR-2PPE on the bare $TiO_2(110)$ surface	77
	4.3	TR-2F	PPE on adsorbed chromophores	87
		4.3.1	Pe'-tripod and Pe'-rod on TiO_2	87
		4.3.2	Pe-thiol on $Ag(110)$	91
		4.3.3	Catechol on TiO_2	100
		4.3.4	Pe' with short anchor groups on TiO_2	110
5	Sun	nmary		117
\mathbf{A}	Exp	erime	ntal parameters	121
Bi	bliog	graphy		122
	Ack	nowledg	gement	139
	Curr	riculum	vitae	141

Publications

- L. Gundlach, R. Ernstorfer, E. Riedle, R. Eichberger, and F. Willig, Femtosecond two-photon photoemission at 150 kHz utilizing two noncollinear optical parametric amplifiers for measuring ultrafast electron dynamics, Appl. Phys. B 80 (2005) 727
- L. Gundlach, R. Ernstorfer, C. Zimmermann, R. Eichberger, S. Felber, L. Töben, E. Galoppini, Q. Wei, and F. Willig, *Heterogeneous electron transfer* probed with femtosecond two-photon photoemission spectroscopy, in: M. M. Martin, J. T. Heynes (Eds.), Femtochemistry and Femtobiology, Ultrafast Events in Molecular Science, Elsevier, 529-532, 2004.
- L. Gundlach, S. Felber, W. Storck, E. Galoppini, Q. Wei, and F. Willig, Femtosecond two-photon photoemission probing electron injection from the excited singlet state of perylene attached to a long rigid tripod anchorcumspacer on rutile TiO₂(110), Res. Chem. Intermed. **31**, 39-46, 2005.
- L. Gundlach, R. Ernstorfer, and F. Willig, Escape dynamics of photogenerated electrons at the surface of TiO₂, Phys. Rev. B., submitted, 2005.
- L. Töben, L. Gundlach, R. Ernstorfer, R. Eichberger, T. Hannappel, and F. Willig, Dynamics of electron scattering between bulk states and the C₁ surface state of InP(100), Phys. Rev. Lett. 94 (2005) 067601
- L. Töben, L. Gundlach, T. Hannappel, R. Ernstorfer, R. Eichberger, and F. Willig, Dynamics of electron scattering between bulk states and the C₁ surface state of InP(100), Appl. Phys. A 78 (2004) 239
- L. Töben, T. Hannappel, R. Eichberger, K. Möller, L. Gundlach, R. Ernstorfer, and F. Willig, Two-photon photoemission as a probe of unoccupied and occupied surface states of InP(100), J. Cryst. Growth. 248C (2003) 206.
- R. Ernstorfer, L. Töben, L. Gundlach, S. Felber, E. Galoppini, Q. Wei, R. Eichberger, W. Storck, C. Zimmermann and F. Willig, *Femtosecond* electron injection from optically populated donor states into the conduction band of semiconductors, Proc. SPIE Int. Soc. Opt. Eng. **5223**, 110, 2003.

- R. Ernstorfer, L. Gundlach, S. Felber, R. Eichberger, C. Zimmermann, W. Storck and F. Willig, Ultrafast molecule to semiconductor electron transfer via different anchor groups in ultrahigh vacuum, in: T. Kobayashi, T. Okada, T. Kobayashi, K. A. Nelson, S. De Silvestri (Eds.), Ultrafast Phenomena XIV, Springer, 2005.
- R. Ernstorfer, L. Gundlach, S. Felber, W. Storck, R. Eichberger, C. Zimmermann and F. Willig, *Ultrafast electron transfer via abridgeextended donor orbital*, in: T. Kobayashi, T. Okada, T. Kobayashi, K. A. Nelson, S. De Silvestri (Eds.), Ultrafast Phenomena XIV, Springer, 2005.
- R. Ernstorfer, L. Gundlach, S. Felber, C. Zimmermann, R. Eichberger, Q. Wei, E. Galoppini, and F. Willig, *Influence of molecular spacers on ultrafast heterogeneous electron transfer*, in: M. M. Martin, J. T. Heynes (Eds.), Femtochemistry and Femtobiology, Ultrafast Events in Molecular Science, Elsevier, 521, 2004.
- 12. R. Ernstorfer, L. Gundlach, C. Zimmermann, F. Willig, R. Eichberger, and E. Riedle, Generation of sub-20 fs tunable visible pulses from a 100 kHz NOPA for measuring ultrafast heterogeneous electron transfer, Ultrafast Optics IV, 389, 2004.
- M. Neges, K. Schwarzburg, L. Gundlach, L. Toeben and F. Willig, Measuring and modeling hot electron dynamics for third generation solar cells, in: Technical Digest. 14th International Photovoltaic Science and Engineering Conference 26-30 January 2004. Bangkok, Thailand. PVSEC-14., 761-762, 2004.
- 14. J. Piel, E. Riedle, L. Gundlach, R. Ernstorfer, and R. Eichberger, *Tunable sub-20 fs visible pulses at 100 kHz repetition rate*, as manuscript.

List of Figures

2.1	Diabatic energy surfaces for the reactant DA and product	
	D^+A^- state along the reaction coordinate RC	6
2.2	Harmonic oscillator nuclear wavefunctions for three differ-	
	ent reaction-free energies	8
2.3	The time scales for various different processes in metals.	
	Taken from Ref. $[1]$	12
2.4	Generation of secondary electrons	13
2.5	Escape of electrons from the detection range given by $\lambda_{\rm esc.}$	14
2.6	Level alignment between a semiconductor and a molecule	15
2.7	Left: Possible 2PPE processes (the final state was added	
	to the picture). Right: Conservation of the parallel mo-	
	mentum in the photoemission process.	17
2.8	Noncollinear phase matching	22
2.9	The SPIDER apparatus	23
2.10	Structural formula of perylene and the different spacer and	
	anchor groups	26
2.11	Absorption and emission spectra of perylene	27
2.12	Absorption and emission spectra of the perylene deriva-	
	tives solution.	28
2.13	Structural formula of Pe-CH-2-S	30
2.14	Rutile bulk structure from Ref. [2]	32
2.15	Rutile bulk band structure from Ref. [3]	32
2.16	The rutile (110) surface structure. \ldots \ldots \ldots \ldots \ldots	33
2.17	Binding conformations of formate on $TiO_2(110)$	36
3.1	Output energy and spectra of the first NOPA	40
3.2	Spectra and intensity autocorrelation traces of the first NOPA	41
3.3	Fundamental and SHG spectra of the first NOPA	42
3.4	Setup for two 150 kHz NOPAs pumped with one 400 nm $$	
	SHG pulse.	43
3.5	Fundamental and SHG spectra of the second NOPA	43

3.6	Preparation chamber	45
3.7	The new time of flight spectrometer	47
3.8	GUI of one of the data processing tools.	48
4.1	UPS spectra of rutile single crystals	54
4.2	XPS C1s spectra of rutile single crystals	55
4.3	XPS Ti 2p spectra of rutile single crystals	56
4.4	LEED pattern of a vacuum annealed $\text{TiO}_2(110)$ surface (127 eV).	56
4.5	UPS spectra of Pe'-tripod and of pure perylene in gas phase	57
4.6	2PPE spectrum of $Pe'-CH_2-PO(OH)_2$ on TiO_2	59
4.7	Level alignment of Pe'-tripod on TiO_2	61
4.8	2PPE kinetic energy spectra of Pe'-tripod p- and s-polarized	62
4.9	Adsorption geometry: Pe'-derivatives on rutile	64
4.10	Diagram of the experimental setup for angular resolved	
	2PPE measurements	65
4.11	Schematic representation of a plane, linear polarized wave	
	incident at an angle Θ	66
4.12	Peak height of the 2PPE difference signal between p- and	
	s-polarized pump pulse (Pe'-CH=CH-COOH)	67
4.13	Coordinate systems used for Eq. 4.1.10. $[x, y, z]$ is fixed	
	with respect to the \vec{E} -field and $[\tilde{x}, \tilde{y}, \tilde{z}]$ is fixed with respect	
	to the long molecular axis. \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	68
4.14	Peak height of the 2PPE difference signal between p- and	
	s-polarized pump pulse (Pe'-rod).	69
4.15	Plot of equation 4.1.10 for three different tilt angles	71
4.16	Balls and sticks model of the adsorption geometries of Pe'-	
	rod on TiO_2 .	71
4.17	Surface projected bulk band structure and dispersion of	
	image potential state for $Cu(111)$	73
4.18	Transients for the $n=0$ surface state and $n=1$ image po-	
	tential state at Cu(111). \ldots \ldots \ldots \ldots \ldots \ldots	74
4.19	Surface projected bulk band structure and dispersion of	
	image potential state for $Ag(111)$	75
4.20	Transients for the $n=1$ and $n=2$ image potential state at Ag(111).	76
4.21	2PPE map of Ag(110) measured with 280 nm + 440 nm	
	pulses.	77
4.22	TR-2PPE map of the vacuum and O_2 annealed surfaces of	
	$\operatorname{TiO}_2(110)$	78
4.23	2PPE map of $TiO_2(110)$ with 440 nm s-polarized	79

4.24	Difference spectrum of the p- and s-polarized measurement	80
4.25	Background subtracted 2PPE map of $TiO_2(110)$ with	
	320 nm, p-polarized. \ldots	81
4.26	Temporal width (FWHM) of a Gaussian fit to time traces	
	extracted at the respective kinetic energies given at the abscissa.	81
4.27	Background subtracted 2PPE map of $TiO_2(110)$ with	
	280 nm and 440 nm p-polarized. Heavily sputtered surface	82
4.28	Assignment of the different 2PPE peaks to intermediate	
	state energies	84
4.29	Comparison between a TR-2PPE measurement on a sam-	
	ple coated with a chromophore and an uncoated sample. \ldots .	86
4.30	Pe'-tripod Transient absorption	87
4.31	Pe'-tripod TR-2PPE	88
4.32	Pe'-rod: Comparison of transient absorption and TR-2PPE	89
4.33	Pe'-COOH: Comparison of transient absorption and (ex-	
	pected) TR-2PPE \ldots	91
4.34	(a) XPS S2p doublet emission. (b) HOMO and HOMO-1	
	of perylene on Ag(110) measured via UPS. \ldots \ldots \ldots \ldots	92
4.35	TR-2PPE map of Pe-CH ₂ -SH adsorbed on $Ag(110)$ -	
	440 nm p-polarized	93
4.36	2PPE map of Pe-CH ₂ -SH adsorbed on $Ag(110)$ - 440 nm	
	s-polarized.	94
4.37	2PPE at t_0 with the 2.8 eV pulse p- and s-polarized	95
4.38	The time trace at 2 eV from the thiol coated sample	96
4.39	Dispersion of peak A and B (Ag:thiol)	97
4.40	Peak assignment for Ag:thiol	98
4.41	UPS spectrum of catechol on /tio	102
4.42	Calculated JDOS and measured absorption spectrum of	
	catechol on rutile colloids.	103
4.43	Transient bleach of catechol ground state.	104
4.44	Excited state energy spectra for the catechol coated rutile	
	TiO_2 surface at different time delays	105
4.45	Time trace at 2 eV intermediate state energy measured on	
	the catechol coated sample. \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	106
4.46	Time trace at 600 meV intermediate state energy (circles)	
	and fitted curve using the model shown in the inset (line)	107

The rate model for the catechol system (a) and the	
rate model for the perylene derivatives with short anchor	
groups (b)	109
2PPE spectra at different delay times for the perylene	
derivatives and catechol	111
Time dependent 2PPE signal measured at the excited state	
energy for the different perylene derivatives	115
	The rate model for the catechol system (a) and the rate model for the perylene derivatives with short anchor groups (b)

List of Tables

2.1	Perylene S_0 - S_1 transition energies	29
4.1	Perylene HOMO and excited state energy position	60
4.3	chor groups	13
1.0	TR-2PPE and transient cation absorption spectroscopy 1	13
A.1	Experimental parameter	21

Acronyms

2PPE	two-photon photoemission at coincidence of pump and probe pulse
AC	autocorrelation
BBO	β -barium borate
CB	conduction band
CC	cross-correlation
CT	charge transfer
DFT	density functional theory
DOS	density of states
DTB	di-tertiary-butyl
EA	electron affinity
ET	electron transfer
FWHM	full width half maximum
GVD	group velocity dispersion
GVM	group velocity mismatch
HOMO	highest occupied molecular orbital
IP	ionization potential
IR	infrared
JDOS	joint density of states
LUMO	lowest unoccupied molecular orbital
NIR	near infrared
NOPA	non-collinear optical parametric amplification/amplifier
OPA	(collinear) optical parametric amplification/amplifier
Pe	perylene
Pe'	di-tertiary-butyl-perylene
SAM	self-assembly of monolayer
SHG	second harmonic generation
TDDFT	time-dependent density functional theory
TR-2PPE	Time-resolved two-photon photoemission
TTB	tetra-tertiary-butyl
UHV	ultrahigh vacuum
UPS	ultraviolet photoelectron spectroscopy
UV	ultraviolet
VB	valence band

VL vacuum level

XPS X-ray photoelectron spectroscopy

Abbreviations

E_*	effective barrier height
\mathbf{E}_{Fermi}	Fermi energy
E_n	eigenvalue of state n
$E_{probe}(t)$	probe field
$E_{pump}(t)$	pump field
E_{Vac}, E_V	vacuum energy
e	electron charge
FC	Franck-Condon-weighted density of states
ΔG^+	activation energy
ΔG^0	standard Gibbs free energy
h	Planck's constant
\hbar	$h/2\pi$
k_B	Boltzmann constant
k_{ET}	rate of electron transfer
λ	reorganization energy
m_e	free electron mass
μ	transition dipole
t_0	time zero, coincidence of pump and probe pulse
T_1	energy/population relaxation time
T_2	dephasing time
T_2^*	"pure" dephasing time
t_d	delay time
V_R	electronic coupling matrix element