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Functional renormalization group (FRG) has become a diverse and powerful tool to derive effective low-energy
scattering vertices of interacting many-body systems. Starting from a free expansion point of the action, the flow
of the RG parameter A allows us to trace the evolution of the effective one- and two-particle vertices towards
low energies by taking into account the vertex corrections between all parquet channels in an unbiased fashion.
In this work, we generalize the expansion point at which the diagrammatic resummation procedure is initiated
from a free UV limit to a cluster product state. We formulate a cluster FRG scheme where the noninteracting
building blocks (i.e., decoupled spin clusters) are treated exactly, and the intercluster couplings are addressed via
RG. As a benchmark study, we apply our cluster FRG scheme to the spin—% bilayer Heisenberg model (BHM)
on a square lattice where the neighboring sites in the two layers form the individual two-site clusters. Comparing
with existing numerical evidence for the BHM, we obtain reasonable findings for the spin susceptibility, the
spin-triplet excitation energy, and quasiparticle weight even in coupling regimes close to antiferromagnetic order.

The concept of cluster FRG promises applications to a large class of interacting electron systems.
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I. INTRODUCTION

Functional renormalization group'? (FRG) has become a
standard tool in condensed matter physics to treat interacting
electron systems in two spatial dimensions such as Hubbard
models®>~’ or, more recently, spin systems.>~!> Despite its
versatile applicability to a plethora of different problems, the
approach always underlies the same principle: The FRG first
introduces an infrared cutoff A in the bare (noninteracting)
propagator of the system. It then formulates differential
equations for the evolution of the (one-particle-irreducible)
vertex functions under the flow of A. The calculation is usually
constrained to the single- and two-particle vertices. This way,
the FRG effectively sums up large classes of diagrammatic
contributions in infinite-order perturbation theory. If the flows
of single- and two-particle vertices are jointly considered,
the FRG is even capable of going beyond the perturbative
regime due to self-consistent diagrammatic resummation. At
the beginning of the flow, typically defined at A — oo, the
propagator is completely suppressed to zero and only the
bare parameters in the Hamiltonian (i.e., hopping amplitudes,
interaction strengths, etc.) enter the RG equations. Hence, at
A — oo the FRG effectively starts from a free UV point of
expansion. By lowering the cutoff A, the FRG continuously
includes interaction effects at the respective energy scale,
treating the competition between different ordering tendencies
on universal footing. Symmetry breaking is then signaled by
a breakdown of the flow at some scale A., allowing us to
track the nature of the leading ordering instability. (Certain
formulations of FRG further allow for expanding into the
symmetry broken phase for special cases.'*)

Within FRG, the UV point of expansion is usually of a
trivial kind: For Hubbard models formulated in momentum
space, this corresponds to a cutoff beyond the bandwidth where
no spectral weight exists such that the electrons are effectively
uncorrelated. For spin models described in the real space and
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frequency domain of pseudofermions, the point of expansion
is the limit where all spins are independent from each other.®-
As the RG procedure sets in by decreasing A, the spins start
to correlate according to the (in general) local action of the
Hamiltonian, and the correlations quickly extend over the full
system.

In this paper, we generalize the FRG point of expansion
from decoupled single (pseudo)fermions to decoupled clusters
of particles. The inspiration for this stems from the established
notion that any expansion series proves more accurate when
the expansion point is located closer to the physical regime one
intends to describe. Stated differently, while the single-particle
expansion point does not contain any knowledge about the
many-body correlation profile, the cluster FRG incorporates
correlations within the cluster already in the UV limit. While
the specific implementation presented in the following is based
on the pseudofermion FRG (PFFRG) scheme®® designed for
lattice spin models, our ansatz promises general application
to different FRG approaches such as designed for Hubbard
models.

Consider a spin Hamiltonian on a lattice for which we
perform the FRG procedure in a real-space formulation. To
begin with, we divide the lattice into small clusters, named C1,
C,, C3, ....Each cluster C, consists of lattice sites i withi €
C, . Without loss of generality, consider an isotropic spin model
of the form H = }_,; J;;S;S; with spin operators S; defined
on lattice sites i and arbitrary interactions J;; between sites
i and j. Such a cluster partitioning splits up the Hamiltonian
into two parts

H=Y"3"088;+ Y. Y JSS;. (D
n i,jeC, n,n'  i€Cy, jEC,y

n#n

The first part describes the intracluster couplings while the
second part contains the intercluster couplings. Introducing
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FIG. 1. The bilayer Heisenberg model with intralayer couplings
Jy and interlayer couplings J, . The spin clusters needed in our cluster
FRG are the vertical rungs between the layers.

spin clusters appears most suggestive when the intercluster
couplings are small compared to the intracluster couplings. We
will see, however, that the cluster FRG is still advantageous
when the strength of the intercluster couplings is comparable to
the intracluster couplings. To further simplify this illustration
of our approach, we specifically consider identical clusters
which form a regular pattern. Furthermore, we assume that the
clusters are small enough such that in the isolated cluster limit
(i.e., setting the intercluster couplings to zero) the Hamiltonian
can be easily diagonalized. This way one can calculate the
exact two-particle vertices, i.e., the fully renormalized inter-
actions, of an isolated cluster. As the fundamental difference
as compared to conventional FRG schemes, it is this exact
two-particle vertex which enters the initial conditions of the
FRG flow equations at A — oo. Consequently, already at the
beginning of the RG flow, the scheme includes properties
of the interacting system such that during the flow only
interaction effects of intercluster couplings are integrated out.
One therefore expects a particularly good performance in
regimes of small intercluster couplings. In the limit where
the intercluster coupling would eventually vanish, the method
becomes exact.

We apply the cluster FRG to the antiferromagnetic spin-%
Heisenberg model on a bilayer square lattice (Fig. 1). The
Hamiltonian of the system reads as

H =1, Z Z SiaSja + J1 Zsilsi2~ (2

(ij) a=1,2 i

Here, the spin operators carry two indices i and a, spec-
ifying the position within a plane, and the layer index,
respectively. (ij) denotes a sum over nearest-neighbor sites
within a plane. The two-site rungs with interactions J;
connecting the two layers form the spin clusters in our
approach. The phase diagram of this system is well established.
As a function of the ratio g = %, the system is initially
given by an exact product state of isolated rung dimers
atg = 0. Uponincreasing g, the dimer state first remains intact,
but the finite J; couplings generate correlations between the
dimers. At a critical value" g. & 0.3965, these fluctuations
destroy the dimerization, close the dimer gap, and induce
antiferromagnetic order which persists in the whole range
8 > &e-

Originally motivated by double layers of high-T'. materials,
the bilayer Heisenberg model (BHM) has early on been
identified as hosting a transition between a dimerized phase
of rungs and an antiferromagnetically ordered phase which
is not driven by conventional magnetic frustration but purely
quantum fluctuations.'®!7 The antiferromagnet-to-dimer tran-
sition in the BHM was speculated to help explaining the singlet
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formation as doping destroys the antiferromagnetic order in the
cuprate Mott insulator.'® The absence of frustration combined
with its rich phase diagram gave the BHM further conceptual
importance as a reference model in numerical studies of clas-
sical three-dimensional (3D) Heisenberg-type transitions from
dimer to magnetic order.'® With no sign problem affecting its
applicability, the precise characterization of the phase diagram
and the nature of the transition by Sandvik and collaborators
can be considered one of the prototypical demonstrations of
quantum Monte Carlo (QMC) calculations.'>-?*-22 From there,
many approaches have used the QMC results on the BHM as
a benchmark for their applicability, such as Schwinger-boson
Gutzwiller projection,?® dimer expansions,?* high-temperature
and Ising expansions, > Guttwiller-projected Bose gas,*® bond-
operator mean field,”’ and triplet-wave expansions.”®

We likewise intend to benchmark our cluster FRG for the
BHM against the established numerical evidence. Note that the
BHM is a challenging problem for PFFRG being the precursor
of our cluster FRG: While the PFFRG is insensitive to the
sign problem and hence can conveniently treat magnetically
frustrated scenarios in general, the quantitative analysis of a
transition from a zero-dimensional dimer product state to a
two-dimensional magnetically ordered state is rather involved
and usually necessitates full self-consistent resummation and
minimal violation of Ward identities in the diagrammatic
summation.’-?*-3 As will be explained in the following, for any
formulation of PFFRG to hold it necessitates the appropriate
interplay between different mean-field limits corresponding to
all possible mean-field decouplings of the spin Hamiltonian in
pseudofermion language. In dimensions lower than two such
as the effectively zero-dimensional spin clusters considered
here, however, certain mean-field limits are ill defined. This
becomes most obvious in the ordinary spin mean-field channel
[corresponding to the random phase approximation (RPA
channel) in pseudofermion language] which always tends to
overestimate magnetic order in spatial dimensions lower than
two. As a result, perturbative PFFRG expects the transition
between the dimerized and the antiferromagnetic phase already
at rather small g. ~ 0.2. Furthermore, the magnetic suscepti-
bility is not correctly reproduced in the dimer limit. In contrast,
the cluster FRG which we develop below stays numerically
efficient, retains all the advantages of PFFRG, and overcomes
the aforementioned problems. By using the exact dimer vertex
instead of the bare couplings in the initial conditions of the RG
flow, we correctly resolve the dimerized phase and calculate
the susceptibility and spin-triplet excitation spectrum therein.
As g increases, we observe a closing of the dimer gap and the
appearance of a Goldstone mode at a g, closer to the QMC
reference result, signaling a clear improvement as compared
to the conventional PFFRG.

The paper is organized as follows. In Sec. II, we develop
the cluster FRG in detail, considering a general spin model
setup. We start with a short review of PFFRG followed
by the modified initial RG conditions which constitute the
core improvement in cluster FRG. The readers who are
interested in the complete implementation of the cluster FRG
including all technicalities are referred to the Appendices A—C.
As explained in detail, the diagrammatic summation in the
cluster FRG has to be corrected by counterterms due to
overcounting of certain diagrams. Section III summarizes
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the application of our cluster FRG scheme to the bilayer
Heisenberg model. We are able to accurately compute static
and dynamic magnetic properties of the dimerized phase and
find an improved correspondence of g, with the QMC result.
We conclude in Sec. IV that cluster FRG sets the stage
of extending existing FRG schemes by promoting the UV
expansion point to a product state which already incorporates
many-body correlations. This concept might inspire improved
FRG schemes in different areas of interacting many-body
systems.

We note that related RG schemes using modified initial
conditions have previously been applied to the Bose-Hubbard
model*!**? and the single-impurity Anderson model.>* Also,
strategies of combining FRG and DMFT have recently been
pursued.?*

II. GENERAL IMPLEMENTATION OF THE CLUSTER
FRG FOR SPIN SYSTEMS

In this section, we develop the spin cluster FRG for general
spin systems as given in Eq. (1). Since some knowledge
about the PFFRG as the preceding approach is needed in the
following, we start with a brief introduction of this method.

A. Pseudofermion FRG

Within PFFRG, the spin operators are expressed in terms
of auxiliary fermions®

1 i
S =3 D FiuOup fip- (3)
af

where two fermionic operators f;y, fi, are defined on each
lattice site i. o* with u = x,y,z denotes the Pauli matrices.
Inserting Eq. (3) into (1) leads to a fermionic model with
only quartic terms that can be treated using standard Feynman
many-body techniques including FRG. Since a kinetic hopping
term is missing in the fermionic model, the bare propagator in
Matsubara space is simply given by Go(iw) = ﬁ Most
importantly, the absence of a hopping term restricts the
fermions to be local, i.e., each fermion propagator is defined on
a particular lattice site.® The introduction of pseudofermions
comes along with an artificial enlargement of the Hilbert
space and, therefore, requires the fulfillment of an occupancy
constraint (exclusion of empty and doubly occupied states).
However, since an unphysical occupation acts as a vacancy
in the spin lattice associated with an excitation energy of
order J, particle-number fluctuations are suppressed at zero
temperature, and the constraint is already fulfilled by correctly
adjusting the chemical potential of the fermions 1.% Due to
particle-hole symmetry, p turns out to vanish, u = 0. The
fundamental step in the FRG procedure is the introduction
of an infrared frequency cutoff A in the bare propagator,
replacing Go(iw) — G(’]‘(ia)) = W. We have chosen a
steplike cutoff function ®(Jw| — A), while the FRG scheme
does not specifically rely on this particular choice.

The FRG then provides equations for the evolution of all
one-particle-irreducible m-particle vertex functions under the
flow of A. For the self-energy % and the two-particle vertex
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', these equations read as

i2"(1/,1) S dosterA (1212 @)

IA 2,2
and
9
—T1,2;1,2)
A
1 7 !
=3 YY) G338 4.4)

3,3 4.4
x [[A(1,2;3,4T2 (3,4, 1,2)
—T21,4;1,3r2(3,2,42) -3 < 3,4 - 4)
+ T2 451,3)T8(3,1:4,2) + (3 < 3,4 < 4)]

1
+- ) SA3.3OMN (12,3 1,2.3). 5)

3,3

Here, the numbers 1, 1/, 2, 2/, etc., are shorthand notations

for multivariables including the frequency w, the site index i,

and the spin index «, i.e., 1 = {wy,i;,01}. In the following,
1

we consider zero temperature 7 = WE = 0, which transforms

the discrete Matsubara sums %Zm into integrals % [do.
Hence, the shorthand notation 21 refers to an integral over
w; and sums over i; and «;. Note that I'{ appearing in the
last line of Eq. (5) is the three-particle vertex. Furthermore,
G* =[(G})™' — 217! is the renormalized propagator and
SA = GAlaA(GH)1IG is the so-called single-scale prop-
agator which explicitly contains the derivative with respect
to A. We emphasize again that due to the absence of any
(spin-dependent) hopping terms in the Hamiltonian, the bare
propagator G (iw) as well as the renormalized one is strictly
local and spin independent. This is an exact property of the RG
scheme which is guaranteed by the form of the flow equations
and the initial conditions (see following). The single-particle
quantities G*(1,1"), $*(1,1), and Z*(1,1") are therefore
given by

G (1,1") = G iw)d(w) — @})8ii, 8ayay s ©)

and similarly for S2(1,1) and £*(1,1’). With some algebra,
G*(iw) and S*(iw) can be written as>°

G iw) = AR gy = UL D)
iw— 2Aiw) iw— ZAiw)

The general structure of the RG equations is already clear
from Egs. (4) and (5): The flow of 4 couples to itself (via
G” and S$*) and to the two-particle vertex I'*. Equivalently,
the flow of I'* described in Eq. (5) couples to ¥4, T'A, and
'Y, An additional flow equation for I'Y* (not shown) couples
to even higher vertices, resulting in an infinite hierarchy of
coupled differential equations. In order to obtain a finite
set of equations, the spin-cluster FRG described below uses
the common truncation scheme neglecting the three-particle
vertex 'Y = 0.%7 We note that, in principle, in analogy to
the PFFRG,*!? the spin cluster FRG can also be formulated
using the Katanin truncation scheme.” Such a truncation
keeps certain three-particle contributions and therefore leads
to a self-consistent treatment of different interaction channels.
An extension of this kind is not too difficult to implement,

(N
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however, in order to keep the presentation simple we do
not include such effects here. The same is true for the flow
of the self-energy which we will also neglect below, i.e.,
we omit the A dependence of ¥. In the case of the BHM
discussed in the next section, this approximation is indeed
justified, at least in parameter regimes not too deep in the
magnetically ordered phase. Note that under these conditions,
the single-scale propagator is simply given by S4 = —3, G*
[see Eq. (7)]. Hence, the only flow equation which we will
treat in the following is Eq. (5).

In general, the RG flow starts at A — oo where the fermion
propagation is completely suppressed, i.e., G} = 0. In the
conventional PFFRG formulation, this means that only the
bare coupling constants enter the initial conditions, i.e., one
sets

re,2;1,2) = J;

- (ll <~ i27a1 <~ 052)’ (8)

1 Iz
123% 0 Uazza2511/11 812/12

where we have explicitly enforced the antisymme-
try in all indices, i.e., TA(1',2;1,2) = —T'*(1",2/;2,1) =
—I'2(2/,1;1,2). The factors i and o originate from the
spin representation in Eq. (3). The differential equations are
then integrated down to A = 0, thereby including interaction
effects at the respective energy scale. Divergencies in the
two-particle vertex function signal ordering instabilities while
asmooth flow downto A = 0 indicates the absence of order. At
A = 0, the infrared cutoff is effectively removed and physical
quantities such as the spin susceptibility can be calculated from
the two-particle vertex.

For an actual implementation of the pseudofermion FRG,
the two-particle vertex I'* needs to be further parametrized.
In order to fulfill the antisymmetry condition, it is convenient

to express ['* in terms of a new two-particle vertex y*:
12512 = y*1'.251.2) - y*1'.252,D, 9

which satisfies y(1/,2';1,2) = y(2/,1’;2,1).% The fact that
site variables do not change along the propagators G*, S
and across the bare interaction vertex in Eq. (8) poses a further
constraint on I'*(17,2"; 1,2): The site indices i1, i on incoming
legs must be identical to the indices iy, iy on outgoing
legs. This property allows us to set y(1/,2/;1,2) ~ 8iyvir iy -
Hence, the site indices of ¥ define a correspondence between
incoming and outgoing lines (which is in contrast to I'* where
such a correspondence does not exist) [see Figs. 2(a) and 2(b)].
Such a connection will be needed for the formulation of the
cluster FRG. Inserting Eq. (9) into (5) and comparing the
site-index structure on the left- and right-hand sides leads to

3 A
—21,251,2
oAV ( )

1 A1 A/ A
= — 1,2;3,4 3,4;1,2
o 324 [y™( )y ( )

—p21,4;1,3)y2(3,2:4,2) + y2 (1,4, 1,3)y2(3,2;2,4)
+ (1,43, 1)y"(3,254,2)+y 2 (2,4;3, Dy 3,1, 2,4)]
X [GM(iw3)S™ (iws) + G (iws) S™ (Tw3)). (10)

For the last line of this equation, we use the shorthand no-
tation PA(iws,iws) = GAIw3)SA(iws) + G (iws)S™ (iw3)
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(a) (b)

2 2/ 2 2/
A (1,251,2) = FA,251,2) =
1 Ik 1 It
(c) (d)
292/
v°(17,2:1,2) = GMiw) = ——
11

FIG. 2. Basic building blocks of the pseudofermion FRG: (a)
Antisymmetric two-particle vertex I'* from Eq. (5) which does not
define a connection between incoming and outgoing lines. The graph
in (b) depicts the two-particle vertex y* used in the parametrization
in Eq. (9). Here, legs on equal sites define a connection between
incoming and outgoing lines, i.e., i; = iy and i, = iy. (c) Graphical
representation of the initial conditions of y* [see also Eq. (11)]. The
dashed line illustrates the bare couplings J; ;,. (d) Fermion propagator
GA.

and note that under the assumption of a A-independent
self-energy, this quantity simplifies to P%(iws,iwy) =
—3A[G(iw3)G? (iwy)]. From Egs. (8) and (9), we also find
the initial condition for y*:

yo.251.2) = Jiiy 300 0, Ol oy 0ivinSiyins (1)

which can be drawn as shown in Fig. 2(c). Furthermore,
the propagator G* is illustrated as a line with an arrow
[see Fig. 2(d)]. From a diagrammatic point of view, the two
graphs of Figs. 2(c) and 2(d) are the basic building blocks for
assembling arbitrary two-particle vertices y .

B. Iterative solution of the FRG equation

We now briefly discuss an iterative way to solve Eq. (10),
which will be needed for the derivation of the cluster-FRG
equations. Formally, Eq. (10) can be integrated, yielding

y2(1,231,2)

A
1
=»®1'.2:1,2 dAN —
> )+/OO = >

3,4
x [N (1,2:3.4y2(3,4:1,2)
—yM (14 1,3)y" (3,234,2)
+y2(1,4;1,3)yY (3,2 2,4)
+ 92 (1,4;3,1)yY (3,2:4,2)
+yN Q43 Dy N B2 PY (iwsiws).  (12)

This equation may be solved iteratively: Starting with an
initial guess yp(1’,2’;1,2), one can evaluate the right-hand
side of Eq. (12) substituting y* — y,. This yields a first
approximation y;* which can again be inserted into the
right-hand side. The approximations y,* converge towards the
exact solution in the limit n — oo. A natural choice for the
initial guess used in the following is the bare interaction vertex,
ie., yo = y™. The iterative relation between y,* and v, is
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(a) 2
2 2 2442 2 A4 2/ "
bl 4
n+1 = i + n n —
1 A
i A =
1

A A A A 1
— dA/ dA// dA/// dA////
Jow [ [ [ 3

X 7%(3,6;1,5)7%(5,4;6,2)7>°(8,2';7,4)7>°(9,7;10,3)y>(1',10;8,9)

X PA, (7‘/&}3, iW/l)PA (7:(;.)57 7wb)PA " (7:&)7, IUJg)P
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2 2" 2 2/
n n 2" 3L N 92
A/ 4 4 A/
+ + -+ [ "
3 AN 3
n n 1 A/ 4 1/
1 1 1 1

Voo o0 3---10

" ’ 1

(iwg, iw1o)

FIG. 3. (a) Graphical representation of the iterative FRG equation (13). The iteration step of a particular vertex is indicated by labels n,
n + 1 inside the boxes. Furthermore, A labels specify the cutoff scale the propagators/vertices refer to. The gray lines illustrate that a derivative
—3, is applied to both internal propagators G (iws) and G (iwy), yielding P (iws,iwy) = —8Ar[GA'(iw3)GA/(iw4)] [note that each gray
line also indicates that there is an additional A integration, as on the right-hand side of Eq. (13)]. Sums over the internal variables 3 and 4
are implicitly assumed. (b) Example for a particular term contributing to y;*(1,2’; 1,2). Note the different limits of the A integrations in the

explicit expression on the right-hand side.
given by

v (1,2'51,2)

A
1
=y>®1,2:1,2 dN — §
Yo ( )+/OO o

3,4
[N (1,2:3.4, 3.4:1,2)
—yN (141,32 (3,2':4,2)
+y N 41,3y, (3,2);2,4)
Fy 143,y (3,254,2)
(2,43, Dy G, 15 2,8 PN (iws,iwy). (13)

This equation has a graphical representation shown in Fig. 3(a).
The different terms in the square brackets of Eq. (13) generate
different parquet diagrams: The first term sums up the particle-
particle ladder, the second term the RPA bubble chain. The
third and fourth terms correspond to vertex corrections and
the fifth term generates the particle-hole ladder. For practical
purposes, it is rather difficult to solve the RG equations this
way, however, an iterative solution may be used as a simple
starting point for the development of the cluster FRG. In an
iterative solution, the terms in the square brackets of Eq. (13)
are successively inserted into each other. Since there are
five such terms, the number of graphs increases rapidly in
each iteration step. From Eq. (13), one can also see that
each approximation y,f}r] contains exactly the terms of y,*
plus additional terms. To illustrate the structure of possible
terms, we show an example for a specific contribution to
¥ (1,2';1,2) [see Fig. 3(b)]. Note that the limits of the A
integrations are crucial for each term.

One might expect that in the terms generated iteratively, the
A integrations exactly cancel with the A derivatives contained
in P™. Apart from special contributions such as the pure
particle-particle/particle-hole ladders and the RPA terms, this
is, however, not the case. A generic cutoff-free diagram is,

thus, only “partially” generated in the FRG because it is not
completely integrated up during the RG flow.

C. Modified initial conditions

We now proceed with the actual implementation of the
cluster FRG. As mentioned before, we consider a decompo-
sition of the lattice into (identical) clusters Cy, C», . ... Most
importantly, a single cluster decoupled from the rest of the
system can be treated exactly due to the small Hilbert space.
The purpose of the cluster FRG is to use the exact cutoff-
free two-particle vertex function ye(1',2’; 1,2) of an isolated
cluster to improve the performance of the FRG. Generally,
the corresponding exact antisymmetric vertex I'ex(1',2';1,2),
which is related to yex(1',2'; 1,2) via Eq. (9), is defined by

Gex(iwl/)Gex(in/)Fex(l/a2/; 172)Gex(iwl)Gex(iw2)

B rB B B ) ) ) )
— / / / / dﬁ,dl.z/dtldrzezwl/rl/ﬂwzrrz/—zwlrl—zwm
0 JO 0 0

(T fiyar (T fiyay @) filo WD il ())), (14

where all site indices iy, i, i1, i» are located on the same
cluster. Here, we have omitted the A indices because all quan-
tities are cutoff free. 7; denotes the time-ordering operator. We
emphasize that the right-hand side of Eq. (14) yields the non-
amputated vertex function (or four-point Green’s function). In
order to obtain [ (1’,2'; 1,2), one needs to divide Eq. (14) by
the exact propagators Gex(iw)Gex(iwy)Gex(iw1)Gex(iwy).
These propagators are in turn defined by

B B o
Gex(iw)d(w — w,) = / / dr'dtet® T et
0 0

< (Te{ fia () St (D). s)

If the eigenstates |n) of an isolated cluster are known, a
convenient way to analytically calculate y.x uses Lehmann’s
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FIG. 4. (a) Graphical representation of the exact two-particle
cluster vertex Ye. (b) Graph from Fig. 3(b) assuming that the
propagator lines 4, 5,6 and 3,7, 8,9, 10 are located on the same cluster,
respectively. Within the cluster FRG, the corresponding intracluster
couplings are replaced by wavy lines. (c) A"””-integrated subdiagram
of (b) [see also Eq. (19)]. Due to the exact cluster vertices occurring
in this diagram, it overcounts diagrammatic terms (see text and Fig. 5
for details). (d) Example for a (one-particle-reducible) three-particle
vertex which only consists of exact cluster vertices. Graphs of such
type are allowed in a diagrammatic expansion.

representation for the expectation value in Eq. (14):
(T fivar (@) fiay (@) fil o (2D £, (22)))
1
= 2 STeAmle™™ fiva (r)lna)

X (N2l fiyay (T21)|113)
X (n3|ﬁTal(T1)|”4)(n4| ,-iaz(fz)|n1>}, (16)

with the partition function Z = ", e #£. In the following,
we assume that the exact cutoff-free two-particle vertex of
an isolated cluster yex(1,2'; 1,2) is known for all links (i1,i»)
within one cluster, either in the form of an analytical expression
or numerically. Diagrammatically, we draw the exact cluster
vertex as a wavy line as shown in Fig. 4(a).

The fundamental difference of the cluster FRG as compared
to the conventional PFFRG is that y*°(1',2’; 1,2) is replaced
by modified initial conditions 7*°(1’,2’; 1,2) defined by

y (.2 1,2) —» p=(1',2';1,2)

1 i1 and i, are located
Jilizzag/a O‘é‘;/(n(si]/i]aiz/izv .
. VLT oy on different clusters a7
- i1 and i, are located
Yex(1,2':1,2), S

on the same cluster.

Recall that for the y vertices there is a correspondence between
incoming and outgoing lines, i.e., i}y = i; and iy = i;. While
on all intercluster couplings the initial conditions remain
unchanged as compared to Eq. (11), on all intracluster links
(also on those where J;,;, = 0) the flow starts with the exact
cluster vertex yex(1,2/;1,2).%

The consequences of this modification can best be seen
in an iterative scheme as discussed above. The cluster FRG
simply replaces y* by 7 in the first line of the recursive
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equation (13). Diagrammatically, the new initial conditions
imply that the dashed interaction lines need to be replaced by
wavy lines in all places where they connect sites within the
same cluster. (Furthermore, additional diagrams are generated
because exact cluster vertices also occur on intracluster bonds
with vanishing bare interactions.) To exemplify this, we again
consider the graph in Fig. 3(b). We specifically assume that
the propagator lines 4, 5, 6 are all located on some cluster C,
while 3,7, 8,9, 10 are all located on a different cluster C,, with
n # n’. Within the cluster FRG, this results in the graph shown
in Fig. 4(b). Let us discuss this diagram in more detail. Using
the new initial conditions, it contains the exact cluster vertex
Yex(5,4;6,2). Hence, instead of just including a first-order
contribution in J;;, this bond now contains all possible (cutoff-
free) diagrammatic cluster contributions in infinite order in
Jij. We therefore anticipate that such a substitution leads to a
significant improvement of the approximation.

However, the new initial conditions also come along with
a major difficulty which needs to be resolved within the
cluster FRG. We again illustrate this with Fig. 4(b). This graph
contains a subdiagram of the form

A
1
/ dA////Z_ Z yex(l/,lo; 8,9))/ex(9,7; 10,3)
00 9,10

x PN (iwe,iwio). (18)

Here, the A”” integration can be performed exactly canceling
the derivative contained in P2". At the end of the FRG
flow when A” =0, Eq. (18) yields a two-particle vertex
y(1',7;8,3) given by

1
y(1,7:8,3) = o Z Vex(1,10;8,9)yx(9,7; 10,3)
9,10

xG(iwy)G(iwip). (19)

This diagram, shown in Fig. 4(c), only contains exact two-
particle vertices but no bare intercluster couplings. Within the
cluster FRG, such contributions must be suppressed because
they lead to an overcounting of terms. In order to see this, we
expand yex in terms of y*°:

1
Ve(12,1,2) = p (1,23 1,2) = — 3 Ty ™(1'4;1.3)
3,4

x y°(3,2;4,2)G(i@3)G(iwg) + -+ . (20)

The first term in this expansion is the bare intracluster coupling
while the second term represents a second-order RPA-like con-
tribution (see Fig. 5 left). Inserting Eq. (20) into (19) yields the
terms shown in Fig. 5 right. Most importantly, the third-order
diagram is obtained twice: once when ye(1’,10;8,9) is re-
placed by the bare coupling y°°(1’,10; 8,9) and y(9,7; 10,3)
is replaced by the second-order RPA contribution and once
again when the replacements are done vice versa. Such an
overcounting of diagrams becomes even worse in higher
orders. In a numerical evaluation of Eq. (19), this manifests
as severe divergencies occurring in the frequency integrations.
Similar redundancies occur in all two-particle diagrams which
consist of more than one exact cluster vertex but no intercluster
couplings. These diagrams are referred to as “forbidden”
diagrams in the following. On the other hand, three-particle
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FIG. 5. Left: Expansion of y., in terms of bare intracluster
couplings. The first term in the expansion is the bare coupling, while
the second term is a second-order RPA-like contribution. Right:
Expansion of the graph in Fig. 4(c) using the terms on the left. A
redundancy occurs in third order where the same graph is generated
twice.

vertices (or even higher vertices) which only consist of exact
cluster two-particle vertices, such as the graph shown in
Fig. 4(d), do not suffer from any overcounting.

For a well-defined cluster-FRG scheme, it is essential
that the formation of forbidden diagrams is suppressed. This
may be achieved by decoupling the two-particle vertex y*
into various classes of interactions y, according to the
internal position of exact cluster vertices. RG equations can
then be formulated for each of these channels separately.
Most importantly, the introduction of additional counterterms
eventually leads to a cancellation of the forbidden diagrams.
The readers who are interested in a detailed description of
such an approach are referred to Appendix A. The resulting
cluster-FRG equations, which represent the central equations
to be solved within the cluster FRG, are subsequently presented
in Appendix B. In particular, they ensure that in the limit of
vanishing intercluster couplings, the scheme becomes exact.
Furthermore, as described at the end of Appendix B, the
interaction vertices ¥ integrated down to A = 0 allow one
to calculate the spin-spin correlations x;;(iv) = (S;S;)(iv)
which provide the basis for the discussion of the BHM in
the next section.

We note that a full solution of the cluster-FRG equations
presented in Appendix B is complicated by some numerical
difficulties. In order to simplify the numerics while maintain-
ing the general functionality of the cluster FRG, it is convenient
to use a slightly modified scheme discussed in Appendix C. All
results presented in the following have been obtained within
the latter approach.

III. APPLICATION TO THE BILAYER
HEISENBERG MODEL

A. Preliminary remarks

In this section, we apply the cluster FRG to the BHM
presented in Eq. (2), where the spin clusters are formed by
the two-site bonds coupling the two planes. We follow the
scheme presented in Sec. IIC and Appendices A-C, using
the exact two-particle vertex of an isolated dimer to improve
the performance of the FRG. In the case of a two-site dimer,
two exact vertices yex(1’,2;1,2) need to be calculated: the
vertex connecting different sites of a dimer, i; # i, and the
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local vertex with i} = i,. Lehmann’s representation shown
in Eq. (16) yields explicit analytical expressions for these
quantities, which, however, are rather lengthy and will not
be shown here. [We note that the cluster FRG does not rely on
an analytical expression for ye; in particular, for larger spin
clusters it is more convenient to evaluate Eq. (16) numerically.]

As noted in Appendix B, for reasons of consistency and in
order to further improve the RG scheme, it is preferable to treat
both the two-particle dimer vertex and the dimer self-energy
exactly. The latter may be easily calculated, yielding

2

. 9J
Texio) = § 61.; . (@2

Using this result, it also becomes apparent that an additional
A dependence of the self-energy is negligible. Within the
cluster FRG, renormalization of vertices is only due to
intercluster couplings, i.e., a A dependence of X(iw) can
only be generated by J;. However, in lowest nonvanishing
order in J|, a perturbative expansion of the self-energy yields

X w) = lec‘l‘) Even in the parameter regime g ~ 0.5 well
inside the antiferromagnetic phase, the exact dimer self-energy
is much larger than the lowest perturbative contribution in J|,
ie., Xy /Zex ¥ %. Hence, for the parameters g considered
here, renormalization effects of the self-energy during the RG
flow are small and can be neglected.

A numerical solution of the RG equations requires a
discretization of the frequency dependencies of all vertices,
which is typically done with a logarithmic mesh. Furthermore,
since our numerics is restricted to finite-system sizes, two-
particle vertices y*(1’,2;1,2) can only be calculated up to
a maximal distance between sites i; and i,. Typically, this
distance spans eight lattice spacings in one lattice plane. In
total, this results in a correlated area of 15 x 15 x 2 = 450
sites for both planes. Given a numerical solution for the
two-particle vertex at A = 0, Eq. (B14) can further be used
to calculate spin-spin correlations y;;(iv) = (S;S;)(iv) for
intercluster as well as for intracluster bonds.

B. Results

The cluster FRG exactly reproduces the decoupled dimer
limit even though an isolated dimer represents an interacting
quantum system. In order to illustrate this, Fig. 6 shows
the local dynamical spin-spin correlator x;;(iv) for J; = 0.
Note that the frequency argument iv is defined on the
imaginary Matsubara axis. While the result from cluster FRG
trivially coincides with the analytical expression for an isolated
dimer y;;(iv) = % 7 ivz (red curve), a conventional PFFRG
approach leads to sﬁbstantial deviations (blue curve). Such
deviations can be traced back to the fact that in dimensions
lower than two certain mean-field limits, which are essential
for the PFFRG, are known to break down (for example, a
simple spin mean-field theory predicts magnetic order even
for zero-dimensional spin clusters).

Let us now switch on J; which generates correlations be-
tween the dimers. The central quantity to be investigated in the
following are the Fourier-transformed spin-spin correlations,
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FIG. 6. (Color online) Local dynamical spin-spin correlator
xii(iv) for J; =0 as obtained from the cluster FRG (red curve)
and from a conventional PFFRG approach (blue curve). iv denotes
frequencies on the imaginary Matsubara axis. Note that the red
curve coincides with the exact analytical result of an isolated dimer

1

xi(iv) = % o while the PFFRG result deviates considerably.
1 %

yielding the momentum-resolved spin susceptibility

x(kiv) =Y e Ry v, (22)
J

where R; is the position of site i (we set the lattice constant to
unity). The wave vector k = (ky,k,,k;) is a three-dimensional
vector where k, and k,, are assumed to be located inside the first
Brillouin zone k,,k, € [—m,7]. Furthermore, due to the two
layers, k, is restricted to two values, k, = {0,7}. Here, we are
particularly interested in the antiferromagnetic channel, i.e.,
we set k, = m [in the following, x (k,iv) implies that k, = 7 ].

In Fig. 7, we plot the static spin susceptibility x (k) =
x(k,iv = 0) for various values of g = Jj—l Note that in the
isolated dimer limit at g = 0 (not shown), the susceptibility
is a constant x(k)J, = 1. Peaks at the corner positions of
the Brillouin zone [k = (£m,+m)] already emerge at small
g = 0.1, indicating a tendency towards antiferromagnetic
fluctuations. Upon further increasing g, the peaks become
higher and sharper. At g = 0.25, the susceptibility shows
pronounced corner peaks and small oscillations near the
edges of the Brillouin zone. These oscillations are artifacts
of the finite-system size: Due to the sharp antiferromagnetic
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response peak, the number of harmonics used in the Fourier
transform of Eq. (22) is not sufficient to properly resolve
the susceptibility profile at all wave vectors. Indeed, we find
that at g = 0.25 the system is close to the antiferromagnetic
instability. Approximately at g. =~ 0.27, the corner peaks
diverge, signaling the onset of magnetic order.

We now discuss the nonmagnetic dimer phase in more de-
tail, considering its dynamic properties. The spectral function
of the magnetic excitations A(k,w) is defined by the imaginary
part of the susceptibility

1
Ak, ,w) = —Im x(k,w + i0"), (23)
T

where w is a frequency on the real axis. To calculate the
right-hand side of Eq. (23), the susceptibility x (k,iv) needs to
be analytically continued from the imaginary Matsubara axis
to the real axis. A common way to perform analytical continu-
ations uses Padé approximants based on continued fractions.
Figure 8(a) shows an example of the spectral function A(k,w)
as obtained from a Padé approximation at g = 0.1. The x axis
corresponds to the path (0,0) — (w,7) — (7r,0) — (0,0) in
the first Brillouin zone (also labeled by I' - M — X — I')
and the magnitude of A(k,w) is color encoded. While at
g = 0 the triplet spectrum is completely flat [w(k) = J,,
not shown], at g = 0.1 the excitations already show clear
dispersive features. In particular, the excitation energy in
Fig. 8(a) drops in the vicinity of k = (;r,7) (M point). Together
with the enhanced magnitude of A(K,w) near the M point, this
again points towards dominant antiferromagnetic fluctuations.
However, at various wave vectors the dispersion exhibits an
unsteady and discontinuous behavior. These features are not of
physical origin but rather represent artifacts of the analytical
continuation. Mathematically, the analytical continuation of
a complex function is an ill-defined problem in the sense
that small numerical uncertainties in the initial function
potentially lead to significant errors in the final result. Indeed,
discontinuities as shown in Fig. 8(a) represent generic features
in all our Padé approximations which can not be avoided. They
become even more pronounced at larger g. Hence, calculating
reliable and numerically stable values for physical observables
such as the spin-triplet dispersion, the quasiparticle weight, and
damping using a Padé approximations is a complicated task.
We now describe a simpler and more robust scheme to
calculate such quantities. Even though Padé approximations

FIG. 7. (Color online) Momentum-resolved static magnetic susceptibility x (k) for g = 0.1,0.2,and 0.25. All plots display the first Brillouin
zone. As g is increased, the antiferromagnetic response peak at k = (£m, = ) becomes higher and sharper, indicating growing magnetic
fluctuations. A phase transition signaled by a diverging peak height is found at g &~ 0.27.
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Ex/J.

FIG. 8. (Color online) (a) Spectral function A(k,w) for g = 0.1
as obtained from an analytical continuation of x(k,iv) using Padé
approximants. The drop in the spin-triplet dispersion near k = (7, 7)
(M point) together with the increased magnitude in this regime
indicates enhanced antiferromagnetic fluctuations. Discontinuities
in the dispersion are an artifact of the analytical continuation. (b)
Improved spin-triplet dispersion obtained from a three-parameter fit
with Eq. (27). Decreasing excitation energies at k = (77,7r) again
signal increasing tendencies towards antiferromagnetic ordering.
Inset: example of a data fit at g = 0.25 (i.e., close to the phase
transition) and k = (0,77). The green line is the fit function and the
black points represent the numerical data. Deviations occur at small
frequencies, revealing a change in the low-energy physics as one
approaches criticality.

might contain significant errors, as a stable feature they always
exhibit one peak in the spectral function for each wave vector k.
This suggests that the dynamic susceptibility may be modeled
by a bosonic Green’s function with a single excitation

1
— = - ), 24
z+ Ex +idk z— Ex +idk

x(k,z) = Wk(

where z is a frequency defined in the entire complex plane. E,
Wk, and 8y are the energy of the excitation, its quasiparticle
weight and damping (i.e., decay rate or spectral broadening),
respectively. Setting z — o + (0% with real w yields the
corresponding spectral function

1
AKk,w) = —Im x(k,w + i0™")
T

Wik I
o \(0— E )+ 8

- . (25
(w+Ek)2+8§> @)
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Note that in the limit §x — O the quasiparticle weight Wy is
given by an integral over all positive frequencies

Wi = lim o dw( WkSk WkSk >
a0l \(@—E2+82 (o+E2+62)

(26)

Finally, replacing z by an imaginary frequency iv yields the
dynamic susceptibility on the Matsubara axis

_ OWE
(WS EE

This function can be used to perform a three-parameter fit
for our susceptibility data (for each wave vector k separately)
thus obtaining the quantities Ey, W, and §k. Generally, in
parameter regimes not too close to the magnetic instability, our
data are perfectly fitted by a function of the form of Eq. (27)
without any significant differences between the numerical data
and the fit function. When approaching the phase transition
(and the ordering vector), the fit becomes less accurate. An
example is shown in Fig. 8(b) (inset) for g = 0.25 and k =
(0,7). While at larger frequencies the fit is still very precise, we
observe deviations at small frequencies. This indicates that the
low-energy physics is changed from a simple Lorentzian line
shape to a more complicated dependence as one approaches
the phase transition.

The results for the energy dispersion of the spin-triplet
excitations Ey are plotted in Fig. 8(b). The curve for g = 0.1
approximately agrees with the dispersion from Fig. 8(a). The
drop of the excitation energy near the antiferromagnetic wave
vector k = (;r,7m) becomes more pronounced with increasing
g. At g =0.25, i.e., close to the phase transition, the spin-
tripletdispersion near k = (;r,7) resembles a Goldstone mode.
Directly at the phase transition the gap closes, signaling the
onset of antiferromagnetic order. On the other hand, at the I
point, the excitation energy increases with increasing g. Note
that at g = 0.25 the oscillating features between the M and the
X points are again artifacts of the finite-system size and have
the same origin as the oscillations in Fig. 7 discussed earlier.

The quasiparticle weight Wy and the decay rate §x are
plotted in Fig. 9. As expected, at k = (;r,7r) the quasiparticle
weight rises sharply when approaching the phase transition
[see Fig. 9(a)]. Exactly at the critical point, the Goldstone
mode is characterized by a diverging quasiparticle weight (not
shown).

Finally, Fig. 9(b) shows the decay rate 8x. Remarkably, for
g = 0.1 the best fits are obtained for a vanishing damping dx =
0 in the entire Brillouin zone. Due to the vicinity to the isolated
dimer limit, possible decay rates are negligibly small and can
not be resolved within our method. For g = 0.2 and 0.25, we
find small spectral broadenings near the I point which tend to
increase with increasing g. We emphasize, however, that such
small decay rates are close to the limit of resolution of our
approach and may therefore contain numerical uncertainties.
Still, comparing decay rates for different frequency meshes,
the existence of a finite damping near the I point on the
order of 1073J, ...1072J, turns out to be a stable feature
for parameters g > 0.2. The fact that finite decay rates occur
near the I" point can be explained by the enhanced excitation
energy of the quasiparticles at such wave vectors. The energy

x(k,iv) 27
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FIG. 9. (Color online) (a) Quasiparticle weight Wy as obtained
from a data fit with Eq. (27). The weight at k = (7,7) diverges upon
approaching the phase transition. (b) Decay rates §x for g = 0.2 and
0.25 (our fits for g = 0.1 indicate a vanishing damping). The inset
shows an enlarged view. Note that such small decay rates close to the
limit of resolution may still contain numerical uncertainties. However,
finite dampings near the T" point on the order of 1073J, ... 1072/,
represent a stable feature.

gap between single spin-triplet excitations and the two-particle
continuum is the smallest near the I" point, which reduces the
lifetime of such excitations.

IV. DISCUSSION AND OUTLOOK

In this work, we have developed a concise realization of
a cluster FRG algorithm which uses an interacting system of
small spin clusters as effective starting point of the RG flow.
As a benchmark application, we have investigated magnetic
properties of the bilayer Heisenberg model. With the isolated
rung dimer limit exactly reproduced already at RG scales
A — oo, the RG flow generates infinite-order diagrammatic
contributions in the in-plane coupling J;.

The basic procedure of our approach amounts to inserting
the exact dimer-vertex function in the initial conditions of
the RG differential equations. A major difficulty arising in
this scheme is that unphysical diagrammatic contributions are
generated during the RG flow, leading to multiple counting of
certain graphs. In order to overcome this problem, we introduce
various classes of diagrams which specify the internal location
of exact dimer vertices. The RG equations can be decomposed
into equations for each class separately. From there, we have
shown that the introduction of counterterms suppresses the
formation of unphysical diagrams in each RG step.
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When applied to the bilayer Heisenberg model, we obtain
reasonable results for the susceptibility as well as the spin-
triplet excitations showing significantly improved perfor-
mance of the cluster FRG as compared to a pseudofermion
FRG. Upon approaching the transition to the Néel phase, the
susceptibility diverges at the antiferromagnetic wave vector
k = (7,7). Furthermore, the spin-triplet excitation energy
drops at such wave vectors, signaling the onset of a Goldstone
mode. Our dispersion agrees at least qualitatively with known
excitation spectra for this model.>*2%?8 Interestingly, our ap-
proach also allows us to estimate quasiparticle lifetimes which
are inaccessible within many more conventional methods.
Above g ~ 0.2, we find small but finite spectral broadenings
near the I' point.

When compared to known results, the largest discrepancy
is found in the value of the critical coupling g.. While quantum
Monte Carlo approaches predict'> g. & 0.4, our method finds
asmaller value g. =~ 0.27. The reason for this discrepancy may
be traced back to the approximation discussed in Appendix C.
In order to facilitate a numerical solution of the cluster-FRG
equations, we have performed our calculations in this modified
scheme. While this treatment allows for a simple implementa-
tion, it neglects certain one-particle-reducible three-particle
vertices which may become important close to the phase
transition. Since these contributions only describe fluctuations
within a dimer, their inclusion would shift the phase transition
towards higher g, resulting in a better agreement with the QMC
result. We defer the investigation of such improved schemes
to future work.

The increased number of vertices 3, which need to be
calculated within our method seems to indicate that the
numerical efforts are much larger as compared to conventional
FRG schemes. However, there are various frequency trans-
formations which relate the vertices ynﬁ\ among each other,
reducing the computation time enormously. Furthermore,
since the cluster FRG has a well-defined point of expansion, the
Katanin cutoff procedure?” needed in the conventional PFFRG
is not necessary here (at least in parameter regimes not too far
away from the isolated dimer limit). Hence, the total numerical
effort of the cluster FRG is still smaller as compared to usual
PFFRG approaches.

A combination of the cluster FRG and the Katanin
procedure represents another interesting direction for further
methodological advancements. While such a scheme certainly
increases the numerical effort, it is still feasible and not
too difficult to implement. Remarkably, this approach would
indeed be able to accurately describe the isolated dimer limit
(Jy = 0) and the limit of decoupled two-dimensional (2D)
planes (J, = 0). In the latter case it would become identical
to the conventional PFFRG.

We emphasize that our method is not restricted to
dimer spin clusters. In principle, it can also be applied to
larger clusters such as spin triangles or 2 x 2 plaquettes.
As long as the eigenstates of the cluster are known, the
exact cluster vertices entering the initial conditions can be
calculated. Admittedly, for larger clusters the calculation of
exact vertices may become complicated. However, since all
cluster quantities are only relevant in the initial conditions,
they only need to be calculated once. The RG flow itself
is unaffected by the complexity of exact cluster vertices.
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The method may therefore be applied to a large class of
systems.

The iron pnictides*® have provided a new arena of mul-
tilayer materials where the individual intralayer couplings
suggest comparable J; and J, Heisenberg coupling strengths.
The cluster FRG will hence be the ideal method to address
such problems which combine aspects of possible dimer
phases and magnetic frustration which would cause QMC to
fail because of the sign problem. Finally, it is important to
mention that Hubbard models at intermediate couplings could
also be treated within certain formulations of cluster FRG. In
particular, in the case of site clusters which are weakly coupled
among each other (by small hopping amplitudes), one could
formulate a FRG scheme in real space which exactly takes
into account such clusters. Altogether, the concept of cluster
FRG might stimulate a new generation of FRG algorithms for
interacting many-body systems.
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APPENDIX A: SUPPRESSION OF FORBIDDEN
DIAGRAMS

This appendix describes a RG procedure suppressing the
formation of forbidden diagrams that are generically generated
in RG schemes with exact cluster initial conditions. The
approach outlined here, thus, leads to a proper implementation
of the cluster FRG. Let us first study in more detail how the
forbidden graphs emerge in an iterative solution. Obviously,
they can be generated in each iteration step of Eq. (13)
when two graphs are connected via the internal propagators
in P (iws,iws). For example, the forbidden subdiagram in
Fig. 4(b) was already generated in the first iteration step when
two exact cluster two-particle vertices were inserted into the
third term on the right-hand side of Fig. 3(a). In subsequent
iteration steps, the forbidden graphs might even become larger
(i.e., the number of exact cluster vertices they contain might
increase), such that the divergencies in the internal frequency
integrations become worse. It is therefore essential that the
formation of forbidden graphs is suppressed in each iteration
step separately. We do this by induction: Assuming that we
have already successfully eliminated all forbidden diagrams
in the nth iterative solution, we develop a scheme to suppress
all forbidden graphs which are formed in the (n + 1)thiteration
step. Since the initial guess is not a forbidden term, this ensures
that forbidden graphs are eliminated in all orders of 7.

We first introduce the following notation: Consider a
particular (allowed) graph y,2(1',2’;1,2) generated in the
nth iteration step. If a pair of external leg variables (x,y)
with x,y € {1’,2',1,2} also occurs among the variables of an
internal exact two-particle vertex ye, we write x ~ y. For
example, if a particular diagram ynA(l’,2/; 1,2) fulfills 1 ~ 2,
it contains an internal exact two-particle vertex of the form

PHYSICAL REVIEW B 89, 024412 (2014)

Yex(. - -, ...31,2) (the variables 1 and 2 can also be at different
positions). Graphically, this means that the external legs 1 and
2 are directly connected to the same exact two-particle vertex.
If, on the other hand, for a pair of external leg variables (x,y)
there exists no internal exact two-particle vertex which shares
both of these variables, we write x ~ y.

Using this notation, we now group all (allowed) diagrams
of the nth iterative solution into 11 classes. The first class
only contains the diagram yex(1’,2’; 1,2). It is included in the
iterative solution for each n and trivially fulfills I’ ~ 2" ~ 1 ~
2. The other 10 classes ynﬁn with m = 1, ...,10 are defined
by the following conditions:

i, (1,2':1,2) fulfills 1 ~ 2,17 = 2/, (A1)

y& (1,2'51,2) fulfills 17 ~ 2,1 2, (A2)

y (1,25 1,2) fulfills 1 ~ 2,1 ~ 2,1 = 1,2 % 2/, (A3)

yA,(1,251,2) fulfills 1 ~ 1,2 » 2/, (A4)

y& (1,2'51,2) fulfills 2 ~ 2',1 = 1/, (AS)

v (1,25 1,2) fulfills 1 ~ 1,2 ~ 2,1 % 2,1 = 2/, (A6)

yR (1,2':1,2) fulfills 1 ~2',2 = 1/, (A7)

v (1,2'51,2) fulfills 2 ~ 1,1 = 2/, (A8)

Yo (1.2/,1,2) fulfills 1 ~2/,2 ~ 1,1 = 1,2 = 2', (A9)

yll(‘)’n( 1',2;1,2) includes all the remaining diagrams,

ie., it fulfills 1" ¢ 2" < 1 o 2. (A10)

The total set of diagrams is the sum of all these classes

YA = Yex + Z,lno=1 yn‘,\’n. Note that the last two conditions in

Egs. (A3), (A6), and (A9) ensure that y;",, ¥, and y), are
distinct from y.x. We illustrate these classes of diagrams in
Fig. 10(a), where the wavy edges of the boxes indicate the posi-
tions of internal exact two-particle vertices. For y”/l‘,n withm =
1,2,3,7,8,9 the above conditions uniquely specify the location
of internal exact two-particle vertices. For example, the condi-
tions in (A1) imply that yl‘.\n(l’ ,2’;1,2) must contain an internal
vertex of exactly the form yex(. . ., ...; 1,2). In the case of y4/}n,
)/5{\”, and y()’}n, however, there are multiple ways of connecting
propagator lines and exact two-particle vertices to the external
legs. For v, all possibilities that fulfill Eq. (A4) are depicted
in Fig. 10(b). For our purpose, we do not need to distinguish
between these possibilities and treat them as one class.

Since each diagram belongs to exactly one class, one can
decompose the iterative equation (13) to obtain equations for
each class separately. We explicitly demonstrate this for the
particle-particle channel, i.e, we assume that the square bracket
on the right-hand side of Eq. (13) only contains the first
term y,2'(1,2';3,4)y,2' (3,4; 1,2). Comparing the locations of
exact two-particle vertices on the left- and right-hand sides
of Eq. (13) and using shorthand notations for the arguments
1=02;12), 2=(12;3,4), 3=(3,4;1,2) yields the
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{2/ 29 2 2/
o [ z§ " -}Z{
\1/ i 1 1/
2/ 2 2/
R <K
I 1 1/
2/ ;2 \ 2/ 2
A/é\,n = " FYS n — 7&71 =
1 Ay 1’ 1 i
2 2/ 2 2/
o= 1 :Z
1 1’ 1 1/

(b) 2 22 22 2!
n—1 % n—1
A4 AN 4 4 A’
74,n = ) ’ /
A 3 3 ‘A A 3
1 1/
1 1 1 1

FIG. 10. (a) Distinction between 11 different classes of diagrams.
The wavy edges of the boxes indicate the positions of exact two-
particle vertices (we use different gray tones to distinguish between
Yio., and ). For the definitions of the dlagrams see Eqgs. (Al)—
(A10). Note that in the case of y,%,, y5, and y.",, there are different
possibilities for the propagator lines and the exact two-particle vertex
to be connected to the external legs. As an example, (b) shows all
such possibilities for y4‘}n. The gray boxes in (b) are arbitrary (allowed)
two-particle vertices with 2 < 2’ and 3 ~ 4.

following equations:

A
- 1 . ;o
i (D = / AN =" (r"® +7i5.,(2)
o 2 3,4
x (Y23 + v B) + 7)) P (i3 iwa),
(A11)

A
- 1 ;. . s
P = [ A8 S (D) + D+ va(®)
o0 3,4
x (153) + vy D) PN (iws,iws),  (Al2)

A
. 1 X Cx <
Y (D = f dn'— DD+ vD) + va )
o0 3,4
X (1153 + 7853 + v (3)) PN (i3, i 1),
(A13)

A
~ ~ 12 1 !~ ’ ~
VoD =5 D+ [ AN D+ v, @)

3.4

x (153 + 7y ) P (iws,iws).  (Al4)
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FIG. 11. (a) Graphical representation of the equations (All)-
(A14) illustrating the decoupling of the iterative equation (13) in
terms of ¥, ... Vl%,n and ye. Only the particle-particle channel
is considered here. (b) The four counterterms which need to be
subtracted from the equations in (a) to cancel the forbidden diagrams

generated in the (n + 1)th iteration step. The order of the equations
in (a) coincides with the order of the counterterms in (b).

In the specific case where only the particle-particle channel
contributes, the vertices %, . . . yg", vanish and do not develop
any flow. The exact two-particle vertex y.x enters the equations
on the right-hand side but is not changed during the flow (which
still holds when all interaction channels are considered). Note
thatonly yj ,, has finite initial conditions at A — oo, given the
by bare vertex in Eq. (11), restricted to intercluster couplings.
Equations (A11)—(A14) have a graphical representation shown
in Fig. 11(a).

Using this decomposition, one can easily see how forbidden
graphs are generated in the (n + 1)th iteration step. Expanding
the brackets on the right-hand sides of Egs. (Al1)-(A14)
leads to terms where y{*,(2), y3%,(2), or yex(2) is multiplied
by y3,(3), y34,(3), or yex(3). In these terms, two exact vertices
are connected via the propagators in P2’ to form the following
forbidden subdiagram:

1 , . ,
" D 71,23, 4)y6(3,4; 1,2)G(i03)Gliws),  (AS)
3,4

where the A’ integration has already been performed. Dia-
grammatically, this is shown in Fig. 12(a): Connecting the
graphs on the left with the graphs on the right generates the
forbidden subdiagram shown in Fig. 12(b) (leftmost graph).
From the connectivity of propagator lines in the particle-
particle channel it is also clear that no other forbidden diagram
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(a)
9 A8 4 2. AN\ A4 4 2 4 N6 9!
n—1 —‘rz X X z+ n—1
A3

17 AT 13 31 3 A5 s

oY A

FIG. 12. (a) Formation of forbidden graphs in the particle-particle
channel. The graphs on the left-hand side connected via the internal
propagators 3 and 4 (middle) to the graphs on the right-hand side yield
a forbidden subdiagram as shown in (b), first graph. Note that in (a)
the two-particle vertex (gray box) on the left can be either of the form
yl{\,;/il or yl’(‘,j/,;l while the two-particle vertex on the right can be

either of the form ¥, or ¥’ _,. Other forbidden graphs which
are generated in the remaining interaction channels are depicted
in (b).

can emerge in Eqs. (A11)-(A14). Most importantly, in order
to suppress the formation of forbidden diagrams, one simply
needs to subtract terms of the form of Fig. 12(a), referred to

as counterterms, from the RG equation. In the particle-particle
channel, the counterterms for Eqs. (A11)—(A14) are

A
/ an' ; VDG + ye®) PN (ws.in),

oo

(A16)

A
/ 1 o= ~ )~ . ]
/ dA E ; (]/3{\,1(2) + Vex(z))yz{\n(:;)PA (iws,iwy),

oo
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A | . ) . )
/ dN' =30 (@ + 7 @) (103 + v )
° 3.4

x PN (iws,ioms), (A18)

A
1 C o A roo,
/ ‘“\E;Vﬁ(z)yfn@w(zws,zwzof (A19)

o]

written in the same order as Eqgs. (A11)-(A14). These terms
are depicted in Fig. 11(b).

The same decoupling can be performed in all other
interaction channels of Eq. (13). Each time one of the forbidden
diagrams of Fig. 12(b) is generated when connecting graphs
of the nth iterative solution, the term must be subtracted.
This ensures that no forbidden diagrams are contained in
the (n + 1)th iterative solution. In total, the induction on
n guarantees that there are no forbidden graphs in any
order of n. The iterative equations taking into account all
interaction channels and counterterms can again be for-
mulated as differential equations (see Appendix B). They
represent the central equations to be solved within the cluster
FRG.

APPENDIX B: FULL CLUSTER-FRG FLOW EQUATIONS

In this appendix, we present the cluster-FRG equations
(including counterterms) for y* with m =1,...,10 in all
interaction channels following the line of arguments from
Appendix A. We use various shorthand notations for sums

of vertices Vpll\) = Zrlnozzt Vs VIQDA = Z?n:l VnII\ + 23:10:7 Vn[z\ ,
Vi = Ym_i V) + i} Furthermore, we write the argu-
ments of the vertices as 1=(12:12), Z~= (1,2;3.4), 3 =
(3,4, 1,2),4;: (1',4;1,3), 5~= (3,2;4,2),6 =(3,2;2,4),7 =
(1,4;3,1),8 = (2,4;3,1),9 = (3,1’; 2,4). With these conven-

(A17) : .
tions, the cluster-FRG equations read as
|
d - 1 - - ~ - - - - -
i =— D@ + D) B + v B) + vex3) = 1 D (1 B) + v 3) | P iwssiws), (B
3,4
d - 1 ~ ~ - - - - - ~
d—AyzAa) =5 YO+ 18O + 1) (1 B + 15B) — (1 D) + vex D)y B PMiws iws),  (B2)
3.4
d - 1 ~ ~ - - - ~ - - - -
d—Ay3A(1) =7 SO+ 72O + v @) (1 B) + 1 B) + 7 3) = (11 D) + vex D) (13 B) + Yeu (D) | P (i 03, 04),
3,4
(B3)
d ~ 1 - - - - - . . .
d—Ay4A<1> =5 ; [— (@ + v @ + 7 @) (12 B) + v D) + (V@ + v @) v B)
+ (1 @D+ 7@ + v @) (78 0) + vin0) — (Y @ + Y @) 7 6) + (v D + v (D + vex (D)
x (Y15 + vpa®) — (v D + vex(D) v D] P i w3,i ws), (B4)
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d

dAVs()_

3,4
+ (Y23 + v @) (v

x (74 G5) + v 5) + vex(D) —

P(0) + 15" (0) + vex(0) — 15 D)(15"(0) + vex(®) + (7"

V7 (7)(
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1 ~ ~ - - - ~ - -
o D@ + v @) (2 G + 18 B) + 7 3) + v @ (18 B) + v (3))

D +vam()

AB3) + yu(3) ] PA w3 siww), (BS)

d 1 ~ ~ ~ - - - ~ ~ - -
D= Y[ @ 45 D+ @) (15 G + %G + ) + (5D + @) (1 G) + 7 3)

3,4

+ (7@ + 78 @) + v @) (1 6) + 151 (6) + yex(6)) —

+ (D + 15" D + e (D) (5

(& @) + vex @) (75 (6) + vex(6))

G) + 78 5) + vex(d)

— (5D + Yex(D) (¥ B) + yex(3)) | P w31 1), (B6)

a
dA o
d
dA V3 ( ) =
3,4
d ~ 1

dA 3.4

1

d
1
VIO( ) 2

dA 3.4

+ (1@ + vrea@®) (75 ®) + 7 (®) —
+ (1 @)+ v ®) (/O + ¥y (9) —

Several comments are in order:
@) ylf(\) is the only vertex which has finite initial conditions
at A — oo,

Yo (1,2,1,2) = lop Gu g, Siyins

11124 apar oy e ivin

(B11)

where the sites i; and i, represent intercluster bonds. yex is not
subject to a RG flow.

(i) The structure of the cluster-FRG equations is such
that in the case of decoupled clusters none of the vertices
¥, ....v{o becomes finite during the RG flow. Hence, in this
limit, the cluster FRG reproduces the correct result YA = Yoy

(iii) So far, we have not discussed the self-energy ¥ which
we have assumed to be A independent. Since the fermionic
Hamiltonian does not contain any quadratic terms, one can
simply set ¥ = 0. For the performance of the cluster FRG it
is, however, of great advantage to set the self-energy equal to
the exact self-energy of an isolated cluster, as done in Sec. I1I B.
This modification does not affect the form of the cluster-FRG
equations.

@iv) In order to solve the cluster-FRG equations, the
vertices y,» need to be parametrized in spin space. Note

that there are only two spin dependencies o} , 0 ., and

(D=3 [ + 1@ + v ®) (KO + 15" O + yex(®) —

Y@y 6) + (v
v By (D] P i ws,iws).

- 1 < < < ~ ~ < < ~
v () = . D07 ®) + 1 ®) + 1a®) (17 O) + ¥4 D) — (15 ®) + 7(®) 1 O] P i3, wa), B7)

1 < < < ~ - - - ~
> — > 105 B + v ®) (1 O + 1 O + vex®) — v BV (15 @) + ex @) | P i wssiws).  (BY)

(7 ®) + 7ex(®) (15" O) + vex (D)) | P (i w3, i w4),

(B9)

DO +v5@) (1 B +va3) = v Oy B) = (1 @) + Vs @) (v G) + vipa3) + ¥ Gy 5)

D+ v D) (73 + v D) = v Dyt )
(B10)

(

Sayay Oy, Which satisfy the rotation invariance of Eq. (1).
Hence, we parametrize all vertices y,*(1,2'; 1,2) with iy # is
by

Y25 1,2) 4,
= ys[.\m(l/az/; 1,2)é; ol gt

iyiy 12 153 ooy oy an

+ i (25 1,2)8 1,81y 12800 Sayan- (B12)

Here, the label “s” (“d”) refers to spin (density) interaction
vertices and the multivariables 1/, 2, 1, 2 in the arguments
of y, and y}, only contain sites and frequencies. It turns
out that for local vertices with i1 = iy, a single term, labeled
by a subscript “I”, is sufficient to parametrize the spin
dependence

Y25 1,2))
= J’l,m(l ",2"51,2)8i,i, 8113811 in Octy ety Syt -

The cluster FRG equations can then be formulated in terms of
yg P yd 1> and yl . Parametrizations of the form of Eqs. (B12)
and (B13) also apply to the exact two- partlcle VErteX Vex-

(v) The full two-particle vertex y» =yex+., V2
at A =0 allows one to calculate physical quanti-
ties such as spin-spin correlations yx;;,(iv) = (S;Si,)(iv)

(B13)
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Xinin (V)
1
= —— / dw Gex(iw)Gex(iw + iv)8;,i,
4

1
1672

X Gelio) +iv) Y TA=0(1"2:1.2)0;,

ooy o

//da)da)/Gex(iw)Gex(iw—i—iv)Gex(ia)/)
10y Olzo(z/'

(B14)

Here, the first term represents a single-fermion bubble while
the second term results from fusing the external legs of the
two-particle vertex. Remind that I' denotes the antisymmetric
two-particle vertex from Eq. (5). The frequency variables of
the vertex are given by wy = w + v, wy = o', 0] = 0, wy =
o +v.

APPENDIX C: SIMPLIFIED CLUSTER-FRG APPROACH

Here, we discuss some technical difficulties arising in the
cluster-FRG approach presented in the Appendices A and B
and outline ways to circumvent them. The numerical treatment
of exact cluster vertices turns out to be problematic due
to their pole structure. This can be illustrated by Eq. (14):
Using Lehmann’s representation, one can easily see that the
right-hand side of Eq. (14) is a regular function in the fre-
quencies without any poles. However, due to I'ex(17,2';1,2) ~
[Gex(iw1)Gex(iwr)Gex (iw))Gex(iwn)] ™" the exact antisym-
metric cluster two-particle vertex ['ex acquires poles when
dividing Eq. (14) by the external propagators (the same also
holds for yex). In the case of the BHM discussed in Sec. III,
the exact cluster propagator G is given by

iw
Gex(iw) =
(iw)z —

5 (ChH
16
Hence, it is clear that due to the factor w in the numerator,
the (amputated) exact two-particle vertex has a pole structure

of the form ye(1',2';1,2) ~ We emphasize that

the poles of yex also appear in the vertices y*. Given an
arbitrary vertex y,2, for each pair of variables (x,y) withx ~ y
(i.e., where the legs x and y are directly connected to the
same internal exact dimer vertex) there are poles of the form
YA~ ﬁ In order to properly resolve these divergencies
numerically, an exceedingly dense frequency grid near all
poles (which form planes in the three-dimensional frequency
space) is needed. This would complicate a numerical solution
enormously.

One seemingly simple way to resolve this problem is to re-
formulate the cluster-FRG equations using the nonamputated
exact two-particle vertex ye(1',2; 1,2):

Vex(1,2:1,2) = Gex(iw1)Gex (i) vex(1',251,2)
XGex(iw))Gex(iwy) .

wy wzrwlwz

(C2)

Similarly, external propagators are also attached to the vertices
AN i p A btained multiplyi A
VY. New vertices y,' are obtained multiplying y,* by an
extra factor Gex(iw,)Gex(iwy) for each pair of variables (x,y)
with x ~y which cancels the poles. Since the additional
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9 4 9/ Iy
X 3
—
17 3 iy 4

FIG. 13. (Color online) Occurrence of poles in the cluster-FRG
equations: The term on the left contributes to the flow of y5 where
the propagator “3”, connecting two exact dimer vertices, results in a
pole Nw% [see Eq. (C4)]. The red shaded area highlights the internal
one-particle-reducible three-particle dimer vertex (see also right side)
which is responsible for the pole.

propagators Ge(iw) are A independent, the cluster-FRG
equations can be easily rewritten in terms of 72 and ..
Such a scheme, however, still exhibits two severe problems.
First, the vertices ¥ as defined in Eqs. (A1)~(A10) only
indicate pairs of external legs which are directly connected
to the same exact two-particle vertex. However, a vertex
yn‘}(l/,Z/; 1,2) can still contain an internal exact dimer vertex
Yex Which only exhibits one of the indices 1/, 2/, 1, 2 in its
arguments. Such a leg still leads to a pole w%, x e {1',2/,1,2},

which is not canceled in 7.

Second, additional poles in the flow equations can now
occur in the internal propagators P . To see this, let us consider
a particular term in the particle-particle channel contributing
to the flow of y{j:

d 1
—yip(1,251,2) = — Z v (1,253,4)7(3,4;:1,2)
T 3,4

dA
X PM(iws,iwg) + - - - (C3)
(see Fig. 13 left). With PA(ia)3,ia)4):—diA®(|a)3|—
AN)O(Jwg] — A)Gex(iw3)Gex(iwy), the right-hand side of

Eq. (C3) can be rewritten in terms of 72, yielding

d
—y(1',2':1,2)

dA
1
=—— ) Gllwn)pr',2;3,4)
2
3,4
x 73,45 1,2) ®(|w%| — AN)O(lwg] — A)

x G2 (iws) + - - (C4)

Since the internal propagator labeled “3” connects two exact
dimer vertices (see Fig. 13 left), there remains a factor

(za)3) in Eq. (C4). Even though the resulting pole ~ —
is regularlzed by a ® function, this term leads to unstable
numerics at small A scales. As A — 0, the internal ws;
integration yields the principal value of the pole. A numerical
implementation of the cluster FRG reproducing the correct
principal value is possible but turns out to be challenging.
We defer the development of such a scheme to future work.
The occurrence of divergencies in such diagrams is tied to the
fact that the term on the right-hand side of Eq. (C3) contains a
one-particle-reducible three-particle dimer vertex, as indicated
by the red shaded area in Fig. 13 (see also the diagram on
the right of Fig. 13). Generally, such a three-particle vertex
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is an allowed term which does not overcount any diagrams.
However, as argued above, it exhibits a pole in the internal
propagator “3.”

In order to overcome these problems, we propose a modified
and numerically more stable scheme in which the diagram on
the right of Fig. 13 is not generated during the RG flow. In other
words, we need to suppress any term in the flow equations
where two exact dimer vertices are directly connected by an
internal propagator “3” or “4”. While such a scheme represents
an approximation of the original cluster-FRG equations, the
dimer limit is still exactly reproduced. Furthermore, since the
discarded one-particle-reducible three-particle vertex does not
contribute to spin correlations in lowest order in J;, we still
expect reasonable results close to the isolated dimer limit. The
largest impact of such a modification is expected to occur
near the dimer to antiferromagnet transition. Here, the proper
treatment of all fluctuations within a dimer is essential. We
indeed attribute the discrepancy between our critical g. and
the QMC result to this simplification.

A suppression of the one-particle-reducible three-particle
vertex shown in Fig. 13 (right) can be achieved by introducing
a new set of vertices p2(1',2;1,2), m = 1, ..., 16, different
from y,* and 7. For the definition of 2 we use the following
convention: Given an arbitrary two-particle vertex y,», we call
an external leg x with x € {1’,2/,1,2} a “dimer leg”, if there
exists an internal exact dimer vertex which shares the same
leg x (i.e., which exhibits the variable x among its arguments).
For example, the graph in Fig. 4(b) has two dimer legs labeled
“1” ” and “2”. Obviously, each of the four external legs of a

PHYSICAL REVIEW B 89, 024412 (2014)

two-particle vertex can either be a dimer leg or not, resulting
in 2% = 16 different combinations. Note that in amputated
vertices a dimer leg x leads to a pole Nu)%.' The new set of
vertices )?n’}(l’,Z’; 1,2) corresponds to these 16 combinations
where we additionally attach propagators Ge(iwy) to each
dimer leg to cancel the poles. In contrast to y,*, these vertices
do not specify pairs of legs which are connected to the
same exact dimer vertex but indicate the connection to an
exact dimer vertex for each leg separately. In analogy to the
scheme presented in Appendix A, the FRG equations can be
decomposed into equations for 2. We again introduce coun-
terterms which contain all contributions where the internal
propagators “3” or “4” (or both) connect two dimer legs.
Most importantly, this cancels all forbidden diagrams and
one-particle-reducible three-particle vertices of the form of
Fig. 13 and therefore leads to a numerically stable cluster FRG
scheme.

One might expect that the evaluation of the corresponding
RG equations requires considerable numerical efforts because
16 vertex functions (where each one is separately parametrized
in frequency space, real space, and spin space) need to
be calculated. However, several symmetries under mutual
permutations of the external variables 1’, 2/, 1, 2 can be
exploited, which relate the vertices 72 among each other.
It turns out that only six independent vertices need to be
calculated. Moreover, since the Katanin scheme is not needed
in parameter regimes close to (or at least not too far away
from) the isolated cluster limit, the numerics are still faster as
compared to the conventional PFFRG approach.
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37We emphasize that instead of using modified initial conditions way, the cutoff function reflects the separation into intracluster
as an effective starting point for the development of the cluster and intercluster couplings. Conceptually, such a procedure is more
FRG, one can also formulate this method in a different way, which reminiscent of the common derivation of FRG flow equations, but
is entirely based on a redefinition of the cutoff function. Within suffers from many nontrivial technical details.

such a scheme (which finally leads to the same RG equations and 38H. J. Vidberg and J. W. Serene, J. Low Temp. Phys. 29, 179 (1977).
initial conditions), the cutoff function depends on the propagator ¥K. Seo, B. A. Bernevig, and J. Hu, Phys. Rev. Lett. 101, 206404
which can be part of an intercluster or an intracluster vertex. This (2008).
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