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The new era of spintronics promises the development of nanodevices, where the electron spin will be used to
store information and charge currents will be replaced by spin currents. For this, ferromagnetic
semiconductors at room temperature are needed. We report on significant room-temperature spin
polarization of EuS in Co/EuS multilayers recorded by x-ray magnetic circular dichroism (XMCD). The
films were found to contain a mixture of divalent and trivalent europium, but only Eu11 is responsible for
the ferromagnetic behavior of EuS. The magnetic XMCD signal of Eu at room temperature could
unambiguously be assigned to magnetic ordering of EuS and was found to be only one order of magnitude
smaller than that at 2.5 K. The room temperature magnetic moment of EuS is as large as the one of bulk
ferromagnetic Ni. Our findings pave the path for fabrication of room–temperature spintronic devices using
spin polarized EuS layers.

M
agnetic semiconductors are a relatively new class of promising materials for spintronic devices, like for
example the fabrication of spin filters, spin diodes, spin transistors, spin qubits and non volatile magnetic
memories1–4. Therefore, the search for ferromagnetic semiconductors and stable half-metallic ferro-

magnets with Curie temperatures (TC) higher than room temperature (R.T.) is essential for Solid State Physics
and Materials Science5. However, to our knowledge, a clear ferromagnetic response of semiconductors at R.T. has
never been observed. Europium sulfide (EuS) is a natural ferromagnetic semiconductor. As compared to layered
systems ferromagnet/semiconductor, it presents the advantage that the spin-polarized electrons are created
within the semiconductor itself. The main disadvantage of it is a low TC of only ,16.6 K. In 1998, Fumagalli
et al. reported that EuS nanospheres with a diameter of about 10 nm become ferromagnetic at about 160 K when
placed in a Co matrix6. Since then, a strong effort has been put on making EuS ferromagnetic at R.T. by formation
of EuS/Co trilayers with EuS layers thicker than 3.5 nm, but no promising direct evidence was provided7–9.
Furthermore, it has been reported that pressure of the order of 90 GPa may bring the TC of EuS close to R.T.10.

In this work, we demonstrate a strong spin polarization of EuS at R.T. due to proximity to Co in two Co/EuS
multilayers with 4 nm and 2 nm thick EuS layers. The polarization is approximately inversely proportional to the
EuS layer thickness. Both samples show a mixed Eu valence state which does not seem to influence the magnetic
properties as only Eu11 contributes to the magnetization. Element-specific magnetization curves show that the
Eu magnetic moment is antiparallel polarized to the one of Co at remanence and rotates towards Co with
increasing magnetic field. However, an applied magnetic field of even 17 T at low temperatures is not sufficient
to orient the Eu moment parallel to that of Co for the sample with the thinnest EuS layers. At R.T., EuS remains
antiparallel to Co for fields between 0 and 0.65 T indicating ferromagnetic ordering within the EuS layer . The
strong spin polarization observed at R.T. results in a considerable magnetic moment which is comparable, for
example, to that of ferromagnetic Nickel. This observation renders EuS layers thinner than about 2 nm in 3d
metal/EuS trilayers and multilayers useful for R.T. spintronic applications. Moreover, since EuS is a semi-
conductor with a direct band gap at about 1.65 eV, combination of magnetic properties at R.T. with band gap
tuning due to quantum confinement, which we have recently demonstrated, may merge spintronics and optoe-
lectronics, as for example in spin-controlled light emitting diodes or vertical-cavity surface-emitting lasers11.
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Results
Figure 1 plots the x-rays reflectivity (XRR) patterns of our multi-
layers. In the first multilayer (sample A), three equispaced Bragg
peaks are visible while in sample B, only one can be detected. This
shows the formation of a multilayer structure. No Kiessig fringes
appear due to relatively large total thickness and some roughness
of the multilayer stack12. With the help of the XRR patterns and a
precalibrated quartz balance, the layer thicknesses for the two sam-
ples A and B were found to be Co(7 nm)/EuS(4 nm) and Co(7 nm)/
EuS (2 nm), respectively. The number of bilayer repetitions was 9
and 15, respectively.

We present the main finding of our work in Fig. 2: Clear XMCD
spectra at the L2-edge of Eu are plotted for samples A and B at R.T.
under an applied magnetic field 0.65 T. The magnitude of the spectra
scales approximately inversely proportional to the thickness of the
EuS layers. The external field is too small to account for this polar-
ization. The significant spin polarization of Eu in EuS is attributed to

a strong exchange coupling due to the proximity to the Co layers. In
the inset, we present element-specific magnetization curves at R.T.
for sample B. We observe that the Co and Eu moments are always
antiparallel. This is a clear indication of magnetic ordering within the
individual EuS layers as the Co stray-field would always lead to a
parallel alignment between Co and Eu. No significant change of the
magnitude of the magnetization of each element occurs up to 0.65 T
further corroborating magnetic ordering within the EuS layers.

In Fig. 3, the x-ray absorption (XAS) and the XMCD spectra at the
L3,2-edges of Eu are plotted for sample B under a field of 17 T at
2.5 K. This temperature is well below the TC of bulk EuS. First of all,
one has to notice that the white line of Eu at both edges shows two
peaks. The first (second) peak originates from transitions between
the 2p and 5d band of divalent (trivalent) Eu. In the same Figure, the
XAS spectrum at the Eu L2 edge for sample A has been introduced for
comparison. It also shows two peaks but the first is more pronounced
than the second.

The problem of valency of Eu in chalcogenides and other com-
pounds of Eu is well known13. Trivalent Eu may originate from
defects14,15, pressure16–18, or high magnetic fields19. For our samples,
we did not observe any change of XAS by applying high magnetic
fields, while no pressure was applied during measurements.
However, growth of EuS at temperatures below 400uC is known to
produce defects and, consequently, Eu111 14. Therefore, we should
attribute the presence of trivalent Eu mainly to defects. Residual
strain at the interfaces with Co could also produce pressure at the
interfaces and could be another source of Eu111. When the ratio of
Eu11 and Eu111 is close to 1/2 then Eu3S4 with cubic Th3P4 structure
may form13,20. While Eu11 in EuS has a net spin magnetic moment
of 7 mB/ion (J 5 7/2), Eu111 in Eu2S3 should have a zero
magnetic moment because J 5 0. Actually, trivalent europium was
found to exhibit Van Vleck paramagnetism in europium nitrides15.
Interestingly, according to Antonov et al.21, the same holds for Eu3S4,

i.e., only the Eu11 ions carry a magnetic moment which is equal to
7 mB/ion. This allows us to treat the magnetism of EuS in our samples
as a problem of mean value and neglect the real crystallographic
structure. We estimated the valency based on the relative weights
of the integrated signal below the absorption lines normalized to the

Figure 1 | X-ray reflectivity patterns for two Co/EuS multilayers grown
on the native amorphous oxide of a Si(100) wafer. The pattern of sample A

has been vertically shifted for clarity. In the inset, a typical multilayer

structure between EuS and a 3d metal (here Co) is shown.

Figure 2 | Normalized XMCD spectra recorded at R.T. at the Eu L2 edge
for samples A and B. Significant polarization of Eu in EuS is revealed.
Inset: Element-specific magnetization curves by XMCD at R.T. for sample

B. Eu is always antiferromagnetically oriented to Co.

Figure 3 | Normalized x-ray absorption (thin solid line) and x-ray
magnetic circular dichroism spectra (thick solid line) at the Eu L3,2-edges
for sample B at 2.5 K and 17 T. Two vertical dashed lines at the positions

of Eu11 and Eu111 are guides to the eye showing that the XMCD signal is

concentrated at the divalent Eu. Finally, the dotted line represents the

normalized XAS recorded at the Eu L2-edge of sample A showing less

trivalent Eu than sample B; the spectrum has been vertically shifted for

clarity.
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number of d-holes, after the subtraction of a double step-function,
which accounts for the transitions to the continuum18,22,23. We found
that sample A has about 63% Eu11 and sample B 45% of the total
amount of Eu. Therefore, the average magnetic moment of Eu in
sample A should be 4.4 mB/ion and in sample B 3.15 mB/ion.

The intense XMCD signal is evidence of the presence of Eu mag-
netic moment. By knowing the direction of the magnetic field and the
helicity of the beam, we conclude that the Eu magnetic moment
projection on the 17 T magnetic field direction is positive at 2.5 K.
Practically all the XMCD signal is concentrated at the L3,2-edges of
divalent Eu. Quantification of XMCD at the L3,2-edges of Eu is
impossible due to mixing of dipole (2pR5d) and quadrupole
(2pR4f) transitions and lack of sum rules. XAS and XMCD recorded
at the Co K-edge under the same experimental conditions revealed
that (i) Co is in a hexagonal closed packed (hcp) structure and (ii) the
magnetic moment of Co is always parallel to the magnetic field.

In Fig. 4, we present the XMCD spectra of both samples at the L2

edge of Eu, which is a direct measure of the projection of spin mag-
netic moment of the ideal Heisenberg ferromagnet EuS on the
external field. For sample B, one may observe that the strongest
XMCD signal is not at 17 T but at remanence. This may be inter-
preted with the help of the element-specific hysteresis loops shown in
the inset of Fig. 4. Co is always oriented along the external field. At
large magnetic fields, Eu tends to orient along the field direction in
order to minimize the Zeeman energy. However, the element-
specific hysteresis loop is far from saturation, i.e., the Eu moment
is still displaced from the field direction by a significant angle. A very
strong direct antiferromagnetic coupling does not let Co and Eu to
be fully parallel even under large external fields. The antiparallel
(antiferromagnetic) alignment between the magnetic moments of
transition metal ferromagnets and rare earths is documented experi-
mentally and theoretically, see e.g. Ref. 24,25. Actually, the 5d states
of the rare-earth owe their ferromagnetism to the polarization by the
4f states. The 5d states of the rare earth hybridize then with the 3d
states of the transition metal giving rise to indirect exchange inter-
action with the 4f states of the rare earth element, see for example Ref.
25. The magnetization curve of Eu at 2.5 K shows that at about 2 T,
Eu is oriented perpendicular to the external field (EuS magnetization
crosses the zero). At remanence, one expects that Co lies in the film

plane, about 15u away from the beam (field) direction and Eu is
antiparallel to it, so practically XMCD probes the full magnetic
moment of Eu. It is interesting to notice (see inset of Fig. 4) that at
25 K, which is 50% higher than bulk TC of EuS, the Eu XMCD signal
is very large, only about 2 times smaller at remanence than at 2.5 K
while it shows no saturation at 17 T. For comparison, we plot in
Fig. 4 the R.T. XMCD signal. This signal is about 14 times smaller
than the maximum signal at 2.5 K. If Eu11 has a moment of 7 mB/ion
at 2.5 K, then the R.T. moment should be 0.5 mB/ion, i.e., comparable
to the moment of ferromagnetic Ni!

In Fig. 4, we also plot the maximum XMCD spectrum for sample
A. The signal at 5 T has practically the same absolute value as the
signal at remanence showing that the magnetization is close to sat-
uration. This can be seen in the inset where the Eu magnetization
curve is plotted. Note that this is an inverted hysteresis curve26, i.e.,
remanence is negative because at remanence Eu is antiferromagne-
tically oriented to Co. At 2.5 K, the XMCD signal of Eu in sample A is
larger than that of sample B because, as aforementioned, sample A
has a larger amount of divalent Europium than sample B.

Discussion
Our results reveal considerable spin polarization of Eu in EuS layers
due to proximity to Co layers at room temperature. The key para-
meter with respect to previous unsuccessful efforts in literature7–9,
was the decrease of the EuS layers by a factor of about 2, i.e. to 2 nm.
Figure 4 shows that this decrease results in duplication of the Eu spin-
polarization at room temperature. One could state that the Eu signal
is due to the formation of an extended alloy between Co and EuS at
the interface. However, Co and EuS are immiscible, since they do not
follow the Hume-Rothery rules. In case of immiscible constituents,
see for example Au and Co, it is not only that an extended interface
alloy is not favored, but the interfaces were found to be abrupt at the
monolayer limit in multilayers grown via e-beam evaporation27,28.
Especially for the system Co and EuS, Ref. 6 reports immediate phase
separation between Co and EuS in samples prepared by coevapora-
tion even at 288 K. Successive works on Co/EuS and Fe/EuS con-
firmed the absence of interdiffusion9,29.

One could understand our result by recalling the pioneer works for
the increase of the critical temperature of CoF2 in proximity to FeF2

in superlattices30. Using a simple mean field theory Carriço and
Camley succeeded in explaining the increase by considering interface
coupling without any alloying or mixing31. Their work clearly
showed that for 6 atomic layers of CoF2 the polarization is through-
out the whole CoF2 layer31. The central atomic layers become less
polarized only when the temperature increases to the 80% of the
magnetic transition temperature of FeF2, but they never become
unpolarized. On the other hand, when the CoF2 layer was 30 atomic
layer thick, the atomic layers beyond the fourth from the interface
became fully unpolarized31. We have to notice that in our samples
2 nm of a EuS(100) layer corresponds to about 6 atomic layers.
Therefore, they should all be strongly polarized due to proximity
to Co. Successive work by Jensen et al. using more elaborate calcula-
tions demonstrated the importance of spin fluctuations as an amp-
lifier of the interlayer exchange coupling effects on the enhancement
of the Curie temperature TC of the low TC magnetic layer when the
latter approaches the two-dimensional limit32. It is reasonable to state
that a 6 atomic layer thick EuS layer approaches this limit.
Particularly, the response of EuS to either fields or coupling at high
temperatures, much higher than its bulk Curie temperature, is fur-
ther enhanced since Eu11 has a J 5 7/2, while most of the magnetic
atoms or ions have much lower J15. One should also keep in mind that
the metallic Co layers could induce a small amount of electrons into
the conduction band of EuS. This would enhance the probability of
filling in conduction-band states in EuS. This would immediately
increase the exchange interaction, which is thought to be mediated
by an indirect interaction between virtually excited conduction

Figure 4 | Downwards: Normalized XMCD spectra at 2.5 K at the Eu L2

edge for samples A and B. The XMCD spectra at remanence have been

inverted (i.e., multiplied by a factor 21) in order to compare directly its

absolute value to the spectrum at 17 T. Upwards: The spectra at R.T. have

opposite direction compared to the low temperature spectra as the

magnetic moment of Eu at 0.6 T is antiparallel to the Co moment. Inset:

Element-specific magnetization curves for Eu and Co.
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electrons and the localized Eu 4 f states increasing the TC of EuS
layers6. For all these reasons thin EuS layers should be very suscept-
ible to fields or direct coupling with ferromagnetic layers.

Future efforts will be focused on optimization of the growth in
order to avoid the formation of trivalent Eu. This will result in
another factor of 2 increase of the EuS ferromagnetism at room
temperature. Finally, we have to notice that while the majority of
the work on magnetic semiconductors was devoted to diluted mag-
netic semiconductors, recent experiments with element specificity
have demonstrated that actually, despite structural perfection, there
is no sign of intrinsic ferromagnetic interaction between Co substi-
tution (dopant) ions in ZnO. The Co ions show purely paramagnetic
or superparamagnetic response33,34. This observation enhances the
value of natural ferromagnetic semiconductors at room temperature,
such as EuS layers in proximity to Co layers, for future applications in
the spintronics industry.

In summary, we have provided direct evidence by x-ray magnetic
circular dichroism for significant spin polarization of very thin EuS
layers at R.T. due to proximity to Co. For moderate magnetic fields,
Eu couples antiferromagnetically to Co at R.T. where the magnetic
moment of Europium is as large as that of ferromagnetic Ni. At low
temperatures, even magnetic fields as large as 17 T cannot orient Eu
fully parallel to Co. The strong spin polarization of the magnetic
semiconductor EuS at R.T. render EuS layers thinner than about
2 nm useful in spintronic and in combinations of spintronic and
optoelectronic applications.

Methods
Two Co/EuS multilayers were deposited on the native oxide of Si(100) wafers in an
ultrahigh vacuum (UHV) chamber by BALZERS. The base pressure was 4 3

1029 mbar. The deposition temperature was not higher than 100uC to avoid any layer
mixing. No capping layer was used as EuS is stable in air. The deposition method for
the EuS was e-beam sublimation. Here, EuS powder of high purity was placed inside a
tungsten crucible and the latter one in a water-cooled e-gun body. A weak e-beam of
25 mA had to be scanned on the surface of the powder in order to get a deposition rate
of 0.05 nm/sec. The material sublimes directly from the target. Co was deposited by
regular e-beam evaporation with a rate of about 0.03 nm/sec. The layering quality and
bilayer thickness were evaluated with the aid of the XRR technique. The XRR
measurements were carried out using a Bruker Discover D8 reflectometer, equipped
with a Göbel mirror, using CuKa radiation (l 5 1.5418 Å). Diffraction experiments
by x-rays and electron microscopy showed hcp Co and EuS {100} texture.

The XMCD experiments were performed at the ID12 beamline of the European
Synchrotron Radiation Facility (E.S.R.F.) in Grenoble (France) at the L3,2 edges of Eu
and the K edge of Co using a highly efficient fluorescence yield detection mode in a
backscattering geometry35. Two magnets were used dedicated for high and low field
measurements: In the first one, X-ray absorption (XAS) spectra were recorded at
temperatures between 2.5 and 25 K under external fields up to 17 T. In the second
one, the measurements were carried out at R.T. with the help of an electromagnet
working up to 0.65 T. The experiments were performed at grazing incidence (beam
incidence 15u with respect to the film plane). The progress in third generation
synchrotron radiation facilities has made possible the detection of the Eu XMCD
signal at the Eu L-edges. The signal-to-noise ratio is large even for a single XMCD
spectrum without statistics. To exclude any experimental artifacts, the XMCD spectra
were recorded either by changing the helicity of the incoming light or by inverting the
direction of the external magnetic field.
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