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Abstract

Recent advances in sequencing technologies have opened up the opportunity to study whole
genomes at the nucleotide level. Similarities in the nucleotide sequences of genomes provide
new insights in the relationships of organisms and species. Multiple whole-genome alignments
represent these similarities, however their computation is challenging. In contrast to approaches
for other sequence alignment problems, genome alignment methods have to deal with very long
sequences and with non-colinearity of similarities.

�is thesis makes three contributions to the development of multiple whole-genome alignment
methods. �e prevailing strategy of such methods is to combine a set of local alignments to a
global genome alignment. �is thesis suggests an e�cient and fully sensitive local alignment
approach, compares graph data structures for representing genome alignments, and describes
hidden rearrangement breakpoints that become visible only in the comparison of more than two
genomes.

All three contributions provide potential for signi�cant improvements to the computation or
modeling of genome alignments. In a comparison to other local alignment approaches, the new
local aligner is the fastest of three fully sensitive ones and competitive with seed-and-extend
approaches despite having full sensitivity. �e assessment of graph data structures describes for
the �rst time all graphs using the same terminology, and demonstrates how the graph structures
di�er in their information content. Finally, an analysis of breakpoints in simulated genome align-
ments suggests that hidden breakpoints are abundant and relevant for measuring the accuracy
of genome alignments. In summary, the three contributions provide a promising basis for future
genome alignment methods.
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Zusammenfassung

In den letzten Jahren wurden enorme Fortschri�e mit Sequenziertechnologien gemacht, die es
ermöglichen, ganze Genome auf Nukleotidebene zu untersuchen. Genomische Nukleotidsequen-
zen weisen erstaunliche Ähnlichkeiten auf, die neue Einblicke in Verwandscha�sbeziehungen
von Organismen und Arten gewähren können.

Multiple Genomalignments stellen diese Ähnlichkeiten zwischen verschiedenen Genomen dar,
ihre Berechnung ist allerdings sehr anspruchsvoll. Im Gegensatz zu Methoden für andere Se-
quenzalignmentprobleme muss bei der Berechnung von Genomalignments zum einen die ge-
waltige Länge von genomischen Sequenzen bewältigt werden und zum anderen beachtet werden,
dass ähnliche Abschni�e in verschiedenen Genomen in unterschiedlicher Anordnung vorliegen
können (Nichtkolinearität).

Methoden zur Berechnung von Genomalignments suchen meist zunächst lokale Alignments und
fügen diese anschließend zu einem globalen Genomalignment zusammen. Die vorliegende Arbeit
leistet drei Beiträge zu solchen Methoden: Es wird ein e�zienter Ansatz für lokales Alignment
vorgeschlagen, Graphdatenstrukturen für Genomalignments verglichen und genomische Bruch-
stellen beschrieben, die erst im Vergleich von mehr als zwei Genomen sichtbar werden und auf
zusätzliche nichtkolineare Veränderungen hinweisen.

Der erste Beitrag, ein Ansatz um e�zient lokale Alignments zu berechnen, hebt sich durch eine
Garantie, dass alle lokalen Alignments gefunden werden, von anderen e�zienten Ansätzen ab.
Diese Garantie wird sowohl theoretisch bewiesen als auch in Tests auf simulierten und echten
Daten verdeutlicht. Ein Vergleich mit gängigen Programmen für lokales Alignment bestätigt,
dass der Ansatz trotz Sensitivitätsgarantie ähnlich schnell und damit eine geeignete Alternative
für den Einsatz in Methoden zur Berechnung von Genomalignments ist.

Der zweite Beitrag ist ein Vergleich von vier Graphdatenstrukturen, die Genomalignments re-
präsentieren können. Erstmals werden die Graphstrukturen unter Verwendung eines einheitli-
chen Fachvokabulars beschrieben, welches verdeutlicht, wo die Graphstrukturen Unterschiede
im Informationsgehalt aufweisen. Alle untersuchten Strukturen können Nichtkolinearität nicht
vollständig darstellen – Kanten- bzw. Knotenbeschri�ungen sind hierfür in allen Graphen not-
wendig. Dennoch sind die Graphen auch konzeptionell ein wichtiger Bestandteil von Methoden
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zur Berechnung von Genomalignments.

Der dri�e Beitrag beschreibt schließlich genomische Bruchstellen, die erst im Vergleich von mehr
als zwei Genomen sichtbar werden. Diese versteckten Bruchstellen sind auf evolutionären Ver-
lust von Sequenzmaterial zurückzuführen oder erscheinen bei geringer Alignmentauflösung. Es
wird eine Zählmethode für versteckte Bruchstellen vorgestellt, die auf ein Standardgraphenpro-
blem der Informatik zurückgrei�: gewichtetes, perfektes Matching. Eine Analyse von Bruchstel-
len in simulierten Genomalignments zeigt, dass versteckte Bruchstellen relevant sind, um die
Genauigkeit und Güte von Genomalignments zu messen.

Alle drei Beiträge konzentrieren sich auf eine der zwei spezi�schen Eigenscha�en von Genoma-
lignments: auf die Länge oder die Nichtkolinearität. Die Berechnung ganzer Genomalignments
bleibt allerdings weiterhin eine anspruchsvolle Aufgabe und bietet zahlreiche Möglichkeiten
für weitere Forschungsarbeiten. Die drei Beiträge dieser Arbeit bieten jedoch bereits eine viel-
versprechende Grundlage für ein zukün�iges Programm zur Berechnung multipler Genomali-
gnments.
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Chapter 1

Introduction

Millions of di�erent species populate the earth [110] including humans and mice, birds and �sh,
insects, plants, fungi, and not least bacteria and archaea. Underlying this immense diversity of
life is the process of self-replication. Every living organism has the ability to reproduce and
passes its genetic information on to its o�spring. Over billions of years, changes to the genetic
material created the variety of species alive today.

Remarkable similarity in biochemical mechanisms across all domains of life suggest that all
present-day species derived from a single origin [24]. Likewise, this similarity can be found
in genetic information. We assume that all diversity of life was created from this single origin
through a process of change. �e marks of this process are similarities in the genetic material of
extant species. �is thesis contributes to computational methods for �nding such similarities on
the nucleotide level of genomes.

Genomes, chromosomes, and DNA

All of an organism’s genetic information is encoded in its genome. A copy of the genome is
present in each cell of every organism. Genomes de�ne the shape of organisms, regulate the
mechanisms that operate living cells, and are passed on to o�spring. Common traits of di�erent
organisms can mostly be a�ributed to common features in their genomes.

�e vast amount of information in genomes requires a high degree of organization. �e largest
units of organization in genomes are chromosomes. Each chromosome consists of a single DNA
double helix that is packaged with proteins. �e DNA encodes genetic information and the
proteins regulate accessibility to the DNA. In some species, the complete genetic information of
that species is encoded in a single chromosome, and in other species it is spread over several
chromosomes (see Fig. 1.1).

1



2 CHAPTER 1. INTRODUCTION

�e karyotype of a species describes the organization of its genome on the chromosome level. It
includes the genome size and the shape and number of chromosomes. �e sizes vary greatly both
within and among di�erent clades of species (see Fig. 1.2). �e shape of a chromosome is either
linear or circular . In linear chromosomes, the two ends are protected by repetitive elements
called telomeres. �e number of chromosomes is both de�ned by the ploidy, the number of sets
of di�erent chromosomes, as well as by the number of chromosomes per set.

�e karyotype can be a �rst indicator of the similarity of two species. However, a much larger re-
source for studying the relationships between organisms is the DNA molecules themselves. DNA,
desoxyribonucleic acids, are linear macromolecules formed by four basic building blocks, the nu-
cleotides adenine (A), cytosine (C), guanine (G), and thymine (T). �e sequence of nucleotides in
DNA molecules encodes the genetic information.

In each chromosome, two strands of DNA form a double helix. In the center of the double helix,
base pairings of the nucleotides keep the two strands together, where A always pairs with T, and
C always pairs with G. Base pairs (bp) are a common unit of length for DNA sequences. �e two
strands in the helix are antiparallel, and thus run in opposite chemical directions. Owing to this
structure, the two strands are said to be reverse complements.

�e discovery of the double helix structure of DNA in 1953 received a lot of a�ention because
it led directly to the replication mechanism of genetic material [162]. For replication, the two
strands are separated and complemented with new nucleotides using the base pairings of A-T
and C-G. �e result is two copies of the same double stranded DNA helix. In the cell replication
process, one copy is passed on to each of two daughter cells. �is explains the high degree of
similarity between the genomes of parents and o�spring.

Mutation, evolution, and homology

�e genomes of related organisms typically have a high degree of similarity but are not identical.
Mutation events alter the DNA sequence and introduce di�erences at the scale of a single or a
few nucleotides, of larger consecutive regions of DNA, or of whole chromosomes.

Errors in the replication process can lead to the insertion, deletion, or substitution of single
nucleotides. In addition, exposure to chemicals and light can alter the sequence at the scale of
nucleotides (see Fig. 1.3). Recombination through breakage and rejoining of DNA strands can
a�ect the sequence of DNA at a larger scale. Another common mechanism of change, especially
in bacteria, is horizontal gene transfer, where a functional region of DNA from another species
is transferred to an organism’s genome. Eukaryotic cells contain transposable elements that
duplicate and change their location and orientation in the genome over time. At the chromosome
scale, fusion or �ssion and duplication or loss can occur.

Although mutation of DNA has been well-studied, we may assume that there are mechanisms
of change that have not been discovered until today. Only recently, the mechanism of chromo-
thripsis was described [152] where massive genome rearrangement occurs through sha�ering of
whole chromosomes. Similarly, other mechanisms might be discovered in the future.

Changes in the genomes can have an impact on biochemical processes and consequently on the
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Figure 1.1:�e circular chromosome of E. coli (le�) and the linear chromosome set ofD.melanogaster
(right). In the E. coli genome, green bars denote genes on the forward strand and dark blue bars
denote genes on the reverse strand. Gene positions were downloaded from the PEC database [167].
In the D. melanogaster genome, green denotes euchromatin and dark blue denotes heterochromatin.
Chromosome sizes were taken from Adams et al. [2].
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Figure 1.2: Ranges of known genome sizes for di�erent clades of species. �e numbers are given on
a logarithmic scale and were collected from multiple sources [5, 15, 66, 67, 68, 79].
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Figure 1.3: A nucleotide substitution, and an insertion and deletion of three consecutive nucleotides.
Note that insertions and deletions are directed mutations whereas substitutions are mutual.
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Drosophila simulans

Drosophila sechellia

Drosophila melanogaster

Drosophila yakuba

Drosophila erecta

Figure 1.4: �e phylogenetic tree of �ve drosophila species from the melanogaster subgroup. �e
topology was drawn guided by the phylogeny of sequenced species from FlyBase [157]. Inner nodes
(green) represent speciation events.

shape of an organism. As long as these changes do not a�ect reproducibility, new traits in uni-
cellular organisms and germ line cells of multicellular organisms are passed on to the following
generations. Eventually, evolution of genomes, the process of change over time, can lead to spe-
ciation, the birth of new species.

Closely related species still share a considerable amount of genomic sequence [154], and even
between distantly related species, parts of the genomes remain highly conserved over time. Re-
gions of DNA that originate from the same common ancestor are called homologous. Depending
on the relationship of homologous sequences, they can be further classi�ed: Homologous se-
quences that are related through duplication events within the same genome are paralogous, and
homologous sequences that are related through speciation are orthologous. For more details on
homology classi�cation see [44].

We can display evolutionary relationships using a phylogenetic tree (see Fig. 1.4). �e tree struc-
ture represents the relationships of species and organisms to each other. In addition, a phyloge-
netic tree makes assumptions on common ancestors of species by clustering subsets of species.
�us, leaf nodes represent extant species and inner nodes of the tree represent ancestral species.
Branch lengths of the tree represent the number of changes between genomes, and hence indicate
evolutionary distances.

Evolutionary biology is the discipline that studies the relationships of species and the processes
that create diversity. On the genomic level, the ultimate goal is to reconstruct the evolutionary
history of each and every nucleotide. In order to learn about past changes, research has to resort
to studying similarities among extant species (with few exceptions [65, 108]). �erefore, the
comparison of genome sequences plays a key role for gaining new insights into the history of
life.

Genome sequencing

A requirement for all analyses of genome sequences at the nucleotide resolution is DNA sequenc-
ing, the ability to transcode the sequence of nucleotides in a DNA molecule to a format readable
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by modern computers.

In the 1970s, Frederick Sanger established the �rst practical techniques for DNA sequencing [143]
and sequenced the �rst entire genome, that of bacteriophage Φ X174 [142]. Together with the
invention of PCR in the 1980s [141], Sanger’s sequencing techniques laid the basis for larger-
scale genome sequencing initiatives. �e international human genome project was launched in
1990 [161] with the goal of determining all three billion base pairs of the human genome. Yet
it took until 1995 to sequence the �rst entire genome of a free living organism, Haemophilus
in�uenzae [59]. �is 1.8 Mbp genome was followed by many (small) genomes.

In 2001, four years ahead of the original time schedule, a dra� of the human genome was an-
nounced by two independent groups, by the publicly-funded human genome project consor-
tium [96] and by its private competitor Celera Genomics [158]. Since then, more and more
genomes have been sequenced – of di�erent species, but also of di�erent organisms of the same
species [1]. As of February 2012, the NCBI website counts 3327 genome sequencing projects with
roughly a third completed [115].

�e enormous upscaling of sequencing projects was facilitated by rapid developments in se-
quencing technologies, which brought about a steady fall in sequencing costs [29, 30]. All tech-
nologies can only sequence short fragments of DNA called reads, which subsequently need to
be assembled to whole genomes. While Sanger sequencing has achieved reliable and relatively
long reads of several hundreds of base pairs, it is too expensive and laborious for genome-scale
sequencing. Less expensive methods that produce only very short reads emerged as soon as
computing power became available. Computers allow for the automated assembly of short reads
into longer fragments. �e advancements that followed were made towards high-throughput se-
quencing by automation and parallelization. Although the technologies for this next generation
of sequencing (NGS) started o� with very short reads (a few dozens base pairs), the length has
been gradually increasing over the years, making the assembly process more robust to errors.
�e newest technologies at the time of this writing promise average read lengths of 8,500 base
pairs [120].

Due to this revolution in sequencing technologies, a huge amount of genome sequencing data has
become available. �e technologies o�er new opportunities to study function and relationships
of genomes. At the same time, the new kind of data poses new challenges for analysis tech-
niques. �e bo�leneck in genome research is shi�ing from sequencing ability towards analysis
of sequencing data.

For now, most analyses (ranging from variant detection within the same species to genome an-
notation of newly sequenced species) are still being carried out on primary read data and not
on assembled genomes. �is may have several explanations: First of all, accurate assembly of
short reads to whole genomes requires large amounts of sequencing data and large computa-
tional resources, and thus is still very expensive. In addition, analyses on primary data may be
less error-prone since an assembly step can introduce errors. Finally, the majority of available
methods and analysis tools are designed for analyzing read data and not yet whole genomes.

Considering the development of sequencing technologies, and in particular the increasing read
lengths, we can expect genome assemblies to further improve in the near future; if in the future
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entire genomes can be sequenced in one read, assembly might become unnecessary. It is to
be expected that whole-genome analysis methods will gain much more importance, allowing
exploration of genomes from an integrated, holistic point of view.

Sequence alignments

For the analysis of both short reads and fully assembled genomes, comparative approaches play
an important role. �rough comparison we can identify similarities, predict homologies, and
infer evolutionary changes. �is is the basis for phylogenetic studies, which infer evolutionary
relationships among species [42, 139]. Under the assumption that similar genomic sequences
have similar functions, it is also possible to predict some functional regions of a newly sequenced
genome, given similarities with a well-studied and annotated genome [8, 106, 138].

�e most widely used approach for the comparison of genomic sequences is alignment. An align-
ment places linear sequences below each other in a line, one sequence per row. �e alignment
process adds gap symbols to the sequences at positions where other sequences have extra nu-
cleotides. As a result, all nucleotides that are assumed to be homologous appear in one column.
Such a representation highlights the di�erences between the sequences and allows the probabil-
ity of homology to be estimated.

A variety of di�erent alignment problems and alignment types exists. �e number of given
sequences, the fraction of the sequences that is expected to be similar, and the order of multiple
similarities in the sequences in�uence the formulation of an alignment problem as described
below. Furthermore, the length of the sequences plays a role when choosing an appropriate
alignment method.

�e number of sequences to be compared has a direct in�uence on the complexity of the problem.
A pairwise alignment of two sequences is much easier to compute than a multiple alignment
of several sequences [159]. But already in the comparison of two sequences, it is di�cult to
decide which nucleotides are homologous at locations where several mutations have changed the
sequences (see Fig. 1.5). Here, additional sequences can o�en clarify the correct assignment of
gaps. �us, multiple alignments are usually more accurate in predicting homology [140] although
they are more di�cult to compute.

�e exact fraction of the sequences that is similar is usually unknown, but a general expectation
about global or local similarity is commonly given. Sequences that are similar over their full
length can be aligned globally. For sequences that only have similar regions but are not similar
over their full length, a local alignment is more appropriate. To compute assemblies of genomes,
overlap alignments of reads are necessary, where the le� end of one read aligns with the right end
of another read. Read mapping is the computation of semi-global alignments of short reads to a
reference sequence. Here, the short reads align globally with a local region of the long reference
sequence.

Depending on whether the evolutionary changes a�ected sequence order and orientation, the
aligned sequences are colinear or non-colinear with respect to each other. In the presence of only
substitutions, deletions, and insertions of nucleotides (see Fig. 1.3) including gain and loss of
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T C A C G A G T

T C A T − A G T

T C A − C G A G T

T C A T − − A G T

Figure 1.5: Two alignments of the same sequences demonstrating the problem of gap placement in
alignments. �e le� alignment implies a substitution and an insertion/deletion, whereas the right
alignment implies multiple insertion/deletions.

T A C G G A C T G

T A T C C G C T G
inversion

G G A G T T C A C T

G G A C A G T T C T
translocation

A T C A G T A

A T C A G C A G T A

tandem
duplication

C T G T A A G T C G

C T G T A A C G

dispersed
duplication

Figure 1.6: Non-colinear changes between DNA sequences. An inversion (top le�) reverse com-
plements a segment of DNA. A translocation (top right) changes the position of a segment, and
duplications insert additional copies of a segment of DNA (bo�om).

G A G T T C G T C G T A A T G T

T C G T T C G T C G T A A C A C

G A G T T C G T C G T A A T G TC G T A A T G T

T C G T T C G T C G T A A C A C

Figure 1.7: Two alternative alignments of the same sequences that evolved through duplications.
�e le� alignment represents the conservation of an 11 bp long segment a�er speciation of the two
sequences. �e right alignment represents the duplication of the triplet CGT prior to speciation and
cuts the longer conserved region into smaller segments.

A

B

C

A

B

C

A: G C C A T G G A

B: G A C A T C G A

B: G A C A T C G A

C: G A C T T C A A

A: G C C A T G G A

C: G A C T T C A A

Figure 1.8: Transitivity of the homology relation and its di�erence to sequence similarity. Given
three genomic regions A, B, and C, let A and B be homologous and let B and C be homologous. �en,
A and B share a common ancestor and B and C share a common ancestor. �e divergence of A and B
happened either before or a�er the divergence of B and C. If it happened before (le� tree), then the
ancestor of A and B is also an ancestor of C. If it happened a�er (right tree), then the ancestor of B
and C is also an ancestor of A. �us, A and C have a common ancestor and are homologous, which
proves transitivity.
Let A and B be similar with 75 % identity and let B and C be similar with 75 % identity (top alignments).
Without assumptions on relationships of the sequences, A and C can have an identity as low as
50 %, which is hardly recognizable as similarity (bo�om alignment). �us, sequence similarity is not
transitive.
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longer DNA segments, a colinear alignment can capture all similarities. We also call these types
of changes colinear changes, as opposed to non-colinear changes that include rearrangements
and duplications. We classify non-colinear changes as inversions, translocations, or duplications
(see Fig. 1.6). In the presence of non-colinear changes, a colinear alignment will not identify all
homologies. �erefore, non-colinear alignments are sought for the comparison of whole genomes
(see below).

Duplications are special among non-colinear changes as they create self-similarity within one se-
quence. �ey add another dimension to non-colinear alignments. In the presence of duplications,
segments from one genome are similar to several segments in another genome. A conventional
non-colinear alignment chooses between representing either the similarity to all copies or to
only the positionally conserved copy. �ese two options capture similarities at di�erent resolu-
tions and thereby at di�erent evolutionary layers (see Fig. 1.7 and [44, 45]). To capture all layers,
a nested or hierarchical representation of similarity is necessary [91, 109, 122].

Underlying the prediction of homology based on alignments are two assumptions: alignments
reveal similarity and similarity indicates homology. However, an alignment is not the same as
similarity and similarity is not homology. Given similar sequences, there is an alignment that
displays the similarity, but there are always many other alignments that do not display the sim-
ilarity or display a lower degree of similarity. Furthermore, given a degree of similarity, it is
possible to calculate a probability for homology, but even for identical sequences there is a small
probability that they are identical by chance.

�e task is to �nd the alignment that displays the highest degree of similarity for the input se-
quences. Most computational approaches formalize similarity in a quality measure, for example
an alignment score. �e quality measure then indicates the probability that an alignment repre-
sents homology. Consequently, the alignment problem becomes an optimization problem.

Although similarity is widely used to model homology, the two relations have di�erent prop-
erties. Biologically, similarity only formally describes sequences whereas homology implies an
evolutionary history. Mathematically, most similarity de�nitions are not transitive but the ho-
mology relation is transitive (see Fig. 1.8). �is becomes relevant in alignment methods, for ex-
ample when combining pairwise alignments into multiple alignments.

Multiple whole-genome alignments

�e term whole-genome alignment refers to a global alignment of whole genomes. In order to
identify all signi�cant similarities between the compared genomes, genome alignments generally
account for non-colinear changes. While methods for computing both pairwise and multiple
genome alignments exist, this thesis focuses on multiple alignments. In the following, genome
alignment refers to multiple global non-colinear alignment of whole genomes.

�e goal of genome alignments is to provide a map of homology over the full length of several
genomes. Since a genome alignment aims at revealing the similar regions no ma�er in what
order, orientation, and copy number they appear, a genome alignment is essentially a set of local
colinear multiple alignments. In the case of duplications, local alignments have rows for several
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segments of one genome.

Not every set of local alignments is a genome alignment. In an arbitrary set, local alignments
are independent from each other and can overlap. However, genome alignments should conform
with transitivity of the homology relation, and thus each nucleotide of every genome should only
be part of at most one local alignment that aligns possibly multiple genomic regions.

As a consequence, local alignments impose a segmentation on the genomes, where each segment
of a genome corresponds to a row of a local alignment. �e positions between segments are called
breakpoints if they indicate a non-colinear change. �e number of breakpoints is an indicator for
the evolutionary distance besides sequence similarity. �e order and orientation (rearrangement)
of segments in genome alignments are the basis for further studies of evolutionary history [57].

Since genome alignments integrate as much sequence similarity information as is available, they
promise a more accurate prediction of homology than local, pairwise, and colinear alignments
also for parts of the genomes. A single local alignment captures only similarities of sequence
regions and does not account for potential surrounding similarities and alternative alignments; a
pairwise alignment is less accurate than a multiple alignment in the presence of several changes
at the same location (see Fig. 1.5 above); and a colinear alignment can only identify those simi-
larities that occur in conserved order and orientation.

Current methods for computing genome alignments formalize the problem in varying forms, so
that a general formal de�nition is di�cult to give. Nevertheless, they share a general overall
strategy. All of them compute an initial set of local alignments and process this set to eventually
become a genome alignment. Among these methods are ABA [133], Cactus [122], DRIMM-Syn-
teny [132], Enredo and Pecan [124], Mauve [35] and progressiveMauve [37], Mercator and
MAVID [23, 43], Mugsy [9], Sibelia [109], SuperMap [49], and TBA [20].

�e strategy of combining local alignments to a global alignment is not new but has been used
in many e�cient methods for computing colinear alignments, for example DIALIGN [111, 112],
MGA [78], LAGAN [25], SeqAn::T-Coffee [135], and FSA [22]. A substantial di�erence of genome
alignments to colinear alignments is that there are no mutually exclusive choices between local
alignments. In colinear alignments, some combinations of local alignments cause con�icts with
colinearity. However, genome alignments do not require colinearity and consequently any set
of local alignments can be re�ned to a valid solution. �e challenge for methods that compute
genome alignments is to identify the set of local alignments that has the highest probability of
representing homology.

Computing and modeling genome alignments

�e approaches for computing genome alignments are generally modular. All methods begin
with a set of local alignments. Next, they process the local alignments with varying algorithms.
O�en graph data structures support the processing algorithms. Finally, �nishing steps can sig-
ni�cantly contribute to the accuracy of genome alignments. �e following provides more details
on local alignment detection, representation in data structures, processing the set of local align-
ments, and �nishing the genome alignment. Figure 1.9 displays an example illustrating many of
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Figure 1.9: An example of common steps computing genome alignments. Here, local alignments
of all possible pairs of genomes are combined to a genome alignment through segment match re-
�nement, consistency extension and selection of a subset of local alignments. �e processing steps
convert the initial seven local pairwise alignments into three three-way alignments, two pairwise
alignments and two unaligned segments giving �ve segments for each input genome. For simplicity,
the example contains no inversions (all segments are in the same orientation).
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the steps that lead to a genome alignment.

Local alignment detection. �e computation of a set of local alignments massively narrows
down the enormous search space for genome alignments. �is step identi�es potential homolo-
gies and implicitly marks a large portion of the search space as non-homologous. �e set of local
alignments determines the global map of similarity and provides a basis for the subsequent steps.

Nevertheless, the set of local alignments may include spurious similarity and it also may miss
regions of diverged homologies. �e local alignments serve only as anchors for the subsequent
steps, where pairwise alignments can be combined to multiple alignments, consecutive local
alignments can be chained, and short local alignments can be extended depending on the context.
Furthermore, spurious similarities can be identi�ed and removed from the set of local alignments
given surrounding similarities.

Similarities that are neither in the set of local alignments nor near a local alignment from the
set will not be part of the �nal genome alignment. In this initial step it is less important that all
local alignments represent true homology than that all similarities are included. Spurious local
alignments can be removed but similarities of rearranged regions will not be added in later steps.

Methods for computing genome alignment bene�t from previous extensive research on local
alignments. Some genome alignment methods apply an external local alignment tool (Cac-
tus [121] uses LASTZ [76] to name just one example) and others use a built-in approach for
computing local alignments. External tools have the advantage of being easily interchangeable,
while built-in approaches can be more tightly integrated and adapted for the genome alignment
purpose.

Most local alignment approaches compute pairwise local alignments. Methods for comput-
ing genome alignments that apply these pairwise approaches (for example Mugsy [9] that uses
NUCmer [41], or SuperMap [49] that uses CHAOS [25]) typically compute pairwise local align-
ments for all pairs of genomes (see Fig. 1.9) and later combine pairwise alignments to multi-
ple alignments. An alternative is to immediately compute multiple alignments: �e genome
aligner Mauve [35] identi�es local similarities shared among all input genomes and its successor
progressiveMauve [37] additionally identi�es local similarities shared by subsets of the input
genomes.

Given the length of genomes, all methods for computing genome alignments apply e�cient local
alignment methods. To achieve computational e�ciency, many local alignment programs sac-
ri�ce sensitivity. �is is acceptable for other applications of local alignments where only some
good local alignment is sought. However, genome alignments become less accurate when local
alignments are missing. One of the contributions of this thesis is an e�cient and fully sensitive
local alignment approach.

Representation in data structures. Although the computation of local alignments hugely
reduces the search space, the set of local alignments still constitutes a large amount of data.
Likewise, the �nal genome alignment usually represents more information than can be manu-
ally captured. Data structures help to e�ciently store, explore, and process such large amounts
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of data. A data structure for sets of local alignments furthermore combines and integrates the
information from individual local alignments.

�e output of local alignment approaches is typically a list of local alignments. �is list might or
might not be ordered, for example by the start positions in one genome. However in a genome
alignment with translocations and duplications, such an ordered list of local alignments is useful
only in the special case where one genome serves as a reference. Otherwise, a linear order of the
local alignments is uninformative.

Methods for computing genome alignments bene�t from more sophisticated data structures than
lists, predominantly from graphs. Graphs are widely used and well-studied data structures, and
thus provide standard solutions to many problems. Genome alignment methods can apply these
solutions and pro�t from previous research (for example Mugsy [9] solves a min-cut max-�ow
problem [61]). One class of methods is entirely based on graphs (including for example ABA [133]
and Sibelia [109]). Here, the graphs assist in the processing of local alignments, conceptually
support the algorithm development, and �nally visualize the resulting genome alignment.

�e precise de�nition of the graphs in�uences the amount of information represented and vi-
sualized by the data structure. Ideally, the de�nition directly leads to genome alignment tasks
represented by standard graph problems. Unfortunately, the paucity of discussion of di�erences
and distinguishing characteristics of the graph de�nitions that have been suggested for genome
alignments currently impedes broad understanding of the advantages. A second contribution of
this thesis is a detailed comparison of four graph data structures.

Processing the set of local alignments. Before the set of local alignments can be considered
as a genome alignment, methods for computing genome alignments have to ensure that each
nucleotide is part of at most one multiple local alignment. Furthermore, the methods evaluate
the probability for homology of each individual local alignment or of parts of the local alignments
in the context of the other local alignments. Based on this evaluation, the methods combine local
alignments, resolve con�icts, add further local alignments, or remove spurious local alignments.

An overview of all processing steps goes beyond the scope of this thesis. �e following para-
graphs address three important steps: �e re�nement of partially overlapping local alignments,
the extension of consistent local alignments, and the selection of a subset of local alignments.
While re�nement and consistency have been adopted from colinear alignment methods, the se-
lection of a subset of local alignments distinguishes methods for computing genome alignments.

Refinement of partial overlaps. Given the set of local alignments for evolutionarily-related ge-
nomes, it is very likely that some of the local alignments overlap. If the local alignments are only
pairwise, overlaps are even necessary to be able to predict homologies conserved across more
than two genomes. For example a region conserved in three genomes will appear as three local
alignments, one between each pair of genomes.

In this case, where a segment is conserved in three genomes, the local alignments completely
overlap from start to end of the segments. �is allows combining of the overlapping pairwise
alignments to one multiple alignment. However, in many cases alignments only partially overlap.
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AAG T CGGCA T T CGGC T AC

C CGGCA T AGACA T T CGGA

AAG T CGGCA T T CGGC T AC

C CGGCA T AGACA T T CGGA

AAG T CGGCA T T CGGC T AC

C CGGCA T AGACA T T CGGA

AAG T CGGCA T T CGGC T AC

C CGGCA T AGACA T T CGGA

Figure 1.10: �ree ways of resolving the partial overlap (top le�) of two local alignments (green and
blue): selection of only the blue local alignment (top right), trimming of the green local alignment
(bo�om le�), and re�nement into three local alignments (bo�om right). �e re�nement leads to a
three-way alignment of CAT, which implies a duplication.

In partial overlaps, one end of a segment in a local alignment overlaps with an end of a segment
from another local alignment (see Fig. 1.10, top le�). In order to combine the local alignments
such that each nucleotide is part of at most one local alignment, the partial overlaps need to be
resolved.

Partial overlaps can be addressed in various ways (see Fig. 1.10). �e authors of the Enredo

method simply circumvent the problem by preferring the local alignments “to be short because
this makes it easier to avoid overlap between the ends” [124]. But even if local alignments are
short, overlaps can occur and in addition we risk overlooking local similarity. Another option is
to treat partial overlaps as con�icts and remove either of the local alignments from the genome
alignment. �is is unfavorable, however, if the ends of long alignments overlap by only a few
nucleotides. As an alternative, we can trim the overlapping end from either of the alignments,
but again this is unfavorable if the overlap is long.

A possible solution is segment match re�nement, a procedure that subdivides local alignments
into segments that are either disjoint or identical (see Fig. 1.10 and Fig. 1.9). �e algorithm for
segment match re�nement repeatedly projects end positions of local alignments that fall in the
middle of other local alignments to the aligned segments so as to partition local alignments into
fully or non-overlapping parts. In contrast to the other approaches, segment match re�nement
resolves partial overlaps without losing similarity information. It was �rst described for pairs
of sequences [69] and later extended to the multiple case [135]. �e genome aligner Mugsy [9],
for example, adopted the implementation of segment match re�nement from the colinear aligner
SeqAn::T-Coffee [135].

�e advantage of segment match re�nement over the other approaches is that it leaves the re-
moval of local alignments to later steps. �e only risk is that re�nement subdivides the local
alignments into many short local alignments. However, some of them can be recombined to
longer conserved segments a�er selecting a subset of the local alignments (see AGCATGA in
Fig. 1.9).

Consistency extension. Before selecting a subset of the local alignments, a re-evaluation step
has been proven bene�cial for accuracy. Methods for computing local alignments evaluate and
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report alignments based on similarity and length of individual local alignments only. �e con-
sistency extension step additionally evaluates them based on their consistency with other local
alignments in the set. Consistency was established by Notredame et al. [118, 119] and later used
in many other methods for computing multiple alignments, for example in ProbCons [47] and
Pecan [123].

Commonly, the consistency extension step examines all pairs of alignments that share a segment,
for example an alignment of the segments A and B and an alignment of the segments A and C. For
these pairs, it checks whether a transitive alignment of segments B and C is present in the set of
local alignments. If it is not present in the set, the transitive alignment is added. If it is present,
the transitive alignment is rewarded for consistency by increasing its score (see red outlines
in Fig. 1.9). A�er this re-evaluation (o�en called triplet extension), the score of the alignment
between B and C re�ects the number of intermediate segments A to which local alignments
were initially identi�ed.

�e idea of the extension step is to reward consistent local alignments because they are less
probable to occur by chance. �us, they are more likely to represent homologies. Consistency is
founded on transitivity of the homology relation. �e extension step approximates transitivity in
the set of local alignments. �e re-evaluated scores transmit this information to the subsequent
steps and assist in deciding which local alignments to keep for the �nal genome alignment.

Subset selection. Methods for computing genome alignments select a subset of the local align-
ments – under the assumption that some of the local alignments are spurious. Depending on the
speci�city of the initially applied local alignment approach and the intended degree of genome
segmentation, this step removes a small or large fraction of local alignments from the �nal
genome alignment. �e idea is that a segmentation into small local alignments is unlikely to rep-
resent true homologies; in related genomes, longer regions are expected to be conserved. While
the goal is still to align as many nucleotides as possible, the local alignments are maximized both
for length and number of aligned segments.

For computing colinear alignments, the selection of a subset is a clearly de�ned optimization
problem: selecting the subset with the largest overall alignment score that conforms with colin-
earity. Without the colinearity constraint, the full set of local alignments has the largest overall
alignment score. Nevertheless, methods for computing genome alignments intend to reduce this
set and specify additional criteria that are characteristic for genome alignments.

Many genome alignment methods follow one of two strategies: optimizing an extended scoring
function or solving a subgraph problem on a graph data structure. �e program progressive-

Mauve [37] is an example for the �rst strategy. It de�nes a score that integrates the total align-
ment score with the segmentation of the genomes. �is integrated score adds positive scores for
the selected local alignments and applies penalties for breakpoints between pairs of genomes.
However, the pairwise breakpoint penalty does not take full advantage of the multiple genomes
available but accounts only for rearrangements visible between pairs. �e third contribution of
this thesis is a counting method for breakpoints in comparisons of multiple genomes.

�e second strategy for subset selection is founded on the observation that non-colinear changes
create cycles in the graph representations. �e ABA method [133] for example, solves the maxi-
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mum subgraph with large girth problem (MSLG), and thus forbids cycles smaller than a speci�ed
girth parameter while keeping the graph as large as possible. �e comparison of graph data
structures in this thesis discusses how the appearance of non-colinear changes as cycles depends
on the precise de�nition of the graph data structures.

Both progressiveMauve and ABA regulate the segmentation of the resulting genome alignments
with a parameter: the breakpoint penalty in the integrated scoring function or the girth param-
eter in the subgraph problem. �ese parameters eventually determine the trade-o� between the
length of local alignments and the total number of aligned nucleotides.

�e algorithms for selecting the best subset of local alignments under the scoring function or
subgraph problem are usually greedy. Many methods start with an empty set and iteratively
add local alignments. �e reverse is also possible, removing local alignments from the initial
set. Combining both, the Cactus method [121], for example, adds and removes local alignments
iteratively in order to obtain a subset of local alignments that best predicts homologous regions.

Finishing the genome alignment. A�er processing the set of local alignments, many meth-
ods post-process the genome alignments to improve accuracy. On the one hand, some regions of
the genomes may be le� unaligned. On the other hand, some consecutive local alignments can
be combined to one longer local alignment a�er selecting a subset of the local alignments (for
example the alignments of AGCA and TGA into block 6 in Fig. 1.9).

In unaligned regions and in newly combined local alignments, improvements are typically pos-
sible. �e following describes a recursion step for �lling unaligned gaps in a genome alignment
and, brie�y, a realignment step for re�ning the alignments on the nucleotide-level. (Both steps
are not necessary in the toy example of Fig. 1.9.)

Recursion. Ideally, regions of the genomes remain unaligned only if they are unique to one
genome and not homologous to any other region. However, o�en there are weak similarities
that the initial local alignment step did not identify. A recursive search for local alignments in
unaligned regions can identify such similarities using the previously identi�ed local alignments
as anchors to reduce the search space. A smaller search space allows for more sensitive param-
eters that tolerate more di�erences of the aligned regions.

Recursively �lling gaps between the local alignments is also relevant in methods for computing
colinear alignments. For pairwise colinear alignments, the search space for recursive calls is
straightforward due to the colinearity constraint. For multiple colinear alignments, the search
space is still clearly de�ned with additional potential to reduce it even further (see Fig. 1.11).
Methods for computing genome alignments have to de�ne additional restrictions to the search
space since an initially unaligned region can align to any other region of all genomes.

�e genome aligner progressiveMauve [37] recursively computes local alignments for pairs
of genomes. It searches right and le� of all previously identi�ed similarities allowing only new
alignments in regions unaligned between the compared pair of genomes. �e assumption is
that conservation continues over longer conserved regions than the �rst local alignment step
identi�ed. �erefore, this recursive step does not identify new rearrangements.
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. . .T AC CGACAG T GAA T T GACGA T CG T T A. . .

. . .T ACAAACAG T GAC T T T CAGACGG T T A. . .

. . .T AC T CAG T G T CA T T CAGCGAG T T A. . .

Figure 1.11: Reduction of the search space for a recursive local alignment search in colinear multiple
alignments. Assume all blue local alignments were selected from the initial set of local alignments.
Clearly, the dark blue local alignments limit the search space for a recursive call on all three genomes.
�e light blue local alignments reduce the search space for pairwise local alignments between the
top and the middle genome and between the middle and bo�om genome. In addition, they constrain
the search space with colinearity for the top and bo�om genome (for example alignments between
the segments marked in red are in con�ict with the light blue local alignments). Only comparing
regions unaligned to all genomes is not su�cient as the valid green alignment shows.

Usually, a recursive step is only applied if the genome alignment method runs the local align-
ment approach internally. A�er detecting new local alignments, the processing steps proceed as
before. Recursion can be repeated until no new local alignments are selected, although an earlier
termination can avoid spending a large portion of the running time on minor improvements [37].

Colinear realignment. When several consecutive local alignments are combined to a single local
alignment, a realignment of the colinear segments can correct misplaced gaps. �is improves the
accuracy of predicting substitutions and short insertions and deletions. Methods for computing
genome alignments separately realign each set of local alignments that are consecutive in all
alignment rows. �e realignment method can be any colinear multiple global alignment approach
(for example Muscle [51] in progressiveMauve [37]). Although realignment does not in�uence
the overall prediction of homology, the resulting genome alignment achieves a higher accuracy
at the nucleotide level.

Outline of the thesis

�is thesis contributes to three aspects of computing and modeling whole-genome alignments:
the detection of local similarities, the representation in graph data structures, and the selection
of local similarities. Chapters 3 to 5 each cover one of these aspects. A chapter that precedes the
main chapters introduces terminology and mathematical notation, and the last chapter concludes
the thesis with a summary, discussion, and outlook.

Speci�cally, Chapter 2 covers relevant mathematical terminology for sets and orders, de�nes
biological sequences, provides formal background on alignments, introduces vocabulary for re-
arrangement analysis, and reviews graph theoretical terms. All following chapters rely on the
de�nitions provided in this chapter. While Section 2.1 and 2.5 review common and widely-used
terminology and notation, the middle sections of the chapter suggest consistent de�nitions for
only partly-established vocabulary.

Chapter 3 describes a new local alignment approach implemented in the program STELLAR. �e
approach in STELLAR can be used on whole genomes due to its e�ciency. In addition, it guaran-
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tees full sensitivity within a clearly speci�ed quality de�nition for local alignments. It is therefore
well suited for application in methods for computing genome alignments. �e chapter demon-
strates full sensitivity of STELLAR with a theoretical proof and substantiates the exactness with
comprehensive testing.

Chapter 4 reviews and compares the de�nitions of graph data structures for genome alignments.
�e main contribution of this chapter is a comparison between four previously introduced graphs
using consistent terminology and notation. �e comparison includes formal transformations
between graph structures, the appearance and identi�cation of substructures such as cycles, and
modi�cation operations that select local alignments. �is reveals weaknesses of the four graph
structures in representing non-colinearity and indicates their advantages over each other.

Chapter 5 contributes to the subset selection step of local alignments by introducing hidden
breakpoints. Hidden breakpoints are indicators of rearrangement that become visible only in the
comparison of three or more genomes. �e number of hidden breakpoints can serve as a metric
for measuring the degree of non-colinearity in scoring functions for subset selection. �e chapter
suggests a method for calculating hidden breakpoint counts. �e method resorts to the standard
graph theoretical problem of maximum weight perfect matching. A comparison of pairwise and
hidden breakpoint counts in simulated alignments con�rms the suitability of hidden breakpoint
counts for measuring the degree of non-colinearity in genome alignments.

Finally, Chapter 6 summarizes the contributions of this thesis, discusses how the results of the
previous chapters can be combined and complemented in a new method for computing genome
alignments, and addresses current developments for evaluating and modeling genome align-
ments.





Chapter 2

Theoretical preliminaries

�is chapter introduces the terminology and notation used throughout the thesis. �e �rst part
brie�y mentions relevant basics about sets and orders. �e second part introduces biological
sequences including genomes, chromosomes, and segments. Furthermore, the third part provides
de�nitions of alignment concepts and introduces a dotplot and traceback for pairwise alignments.
�e fourth part establishes vocabulary for the analysis of genome rearrangement. Finally, the last
part introduces common graph theoretical terms.

�e reader familiar with basic terminology and common notation may skip Parts 2.1 and 2.5.
Some of the terms introduced in Parts 2.2 to 2.4 for biological sequences, sequence alignments,
and genome rearrangement, however, are used less consistently in the literature. �e precise
de�nitions given in these parts are especially relevant for Chapter 4.

2.1 Sets and orders

Following common notation, curly braces denote unordered sets in this thesis, and parenthesis
denote ordered pairs or tuples. Given a set X = {x1, . . . , xk}, |X| denotes the size k of X . A set
with a size |X| = 0 is called empty and wri�en as X = {}. For a non-empty set X , 2X denotes
the power set, which is the set of all possible subsets Y ⊆ X .

For de�nitions of basic operations on sets (union, intersection, di�erence, etc.) see for exam-
ple [107]. Two sets X and Y are disjoint if their intersection X ∩ Y = {} is empty. A set of
n subsets X1, . . . , Xn ⊆ X is a partition of the set X if X =

⋃
1≤i≤nXi is the union of all

subsets, all subsets Xi 6= {} are non-empty, and any two subsets Xi and Xj are disjoint for all
i, j ∈ {1, . . . , n} with i 6= j.

Given a set X = {x1, . . . , x|X|}, a partial order over X is a relation � where for all elements

19
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xi, xj , xk ∈ X

• xi � xi (re�exivity),

• xi � xj and xj � xi implies xi = xj (antisymmetry), and

• xi � xj and xj � xk implies xi � xk (transitivity).

A total order overX is a relation� that satis�es the conditions for a partial order and, in addition,
all elements xi, xj ∈ X are mutually comparable: xi � xj or xj � xi. A strict total order over
X is a relation ≺ that satis�es the conditions for a total order, but either xi ≺ xj or xj ≺ xi or
xi = xj is true for any two xi, xj ∈ X (trichotomy).

An alphabet Σ is a set of characters. In the DNA alphabet Σ = {A,C,G, T}, each character
σ ∈ Σ has a complementary character σ ∈ Σ: σ = T if σ = A, σ = G if σ = C , σ = C if
σ = G, and σ = A if σ = T .

2.2 Biological sequences

A sequence of length l over an alphabet Σ is a l-tuple seq = (σ0, . . . , σl−1) of characters σi ∈ Σ

with 0 ≤ i < l. In the following, we write seq = σ0σ1 . . . σl−1 without parentheses and commas
for brevity. We use |seq| to denote the length l of the sequence seq. A sequence of length |seq| = 0

is called an empty sequence.

A chromosome is a sequence over the DNA alphabet. We can read the sequence of a chromo-
some chr in the forward orientation σ0 . . . σ|chr|−1 or in the reverse complemented orientation
σ|chr|−1 . . . σ0. Note that the assignment of the forward orientation to one strand of a DNA dou-
ble helix and the reverse complemented orientation to the other strand is in many cases arbitrary.

A chromosome is either linear or circular. We model a linear chromosome to be bounded by zero-
length telomeres denoted by •. For example, • TACTG • is a linear chromosome of length �ve.
We acknowledge the discrepancy to the biological literature, where a telomere is a non-empty
sequence near the ends of a linear chromosome. In a circular chromosome, the last character
σ|chr|−1 is followed by the �rst character σ0. �us, circular chromosomes do not have telomeres.

A genome is a set of chromosomes g = {chr1, . . . , chrK}. We de�ne the length of g as |g| =

|chr1|+ · · ·+ |chrK |. Let G = {g1, . . . , gN} be a set of genomes with gn = {chrn1 , . . . , chrnKn
}

for 1 ≤ n ≤ N . Given an arbitrary strict total order on the set of genomes g1 < · · · < gN
and on the set of chromosomes of each genome chrn1 < · · · < chrnKn

, we can refer to the jth
character in chromosome chrnk of genome gn, where 1 ≤ k ≤ Kn and 1 ≤ n ≤ N , as a position
i = |g1| + · · · + |gn−1| + |chrn1 | + · · · + |chrnk−1| + j. Furthermore, we de�ne the set of all
positions of the set of genomes G as PG = {i | 0 ≤ i <∑N

n=1 |gn|}.

A segment of a genome in G is a 3-tuple s = (i, l, o) of a start position i ∈ PG , a length l ∈
Z, and a bit o ∈ {+,−} that determines the orientation of the segment. �e positions i and
i+ l−1 have to fall in the same chromosome. If o = +, the segment is in the forward orientation
and reads σi . . . σi+l−1. If o = −, the segment is in the reverse complemented orientation and
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Figure 2.1: �ree segments s1, s2, and s3 of a genome g. �e segments s1 and s3 are in for-
ward orientation (blue). Segment s1 = (133, 4,+) reads TTGC, and segment s3 = (140, 5,+)
reads TCACG. Segment s2 = (135, 5,−) is in reverse complemented orientation (green) and reads
GCAGG = CCTGC. s1 and s2 are partially overlapping, thus, not adjacent. s1 and s3 are non-
overlapping but not adjacent. s2 and s3 are non-overlapping and adjacent at position 140.

reads σi+l−1 . . . σi (see Fig. 2.1). We call the segment s = (i, l, o′) the reverse complement of the
segment s = (i, l, o) if o′ 6= o. If l = 0, the segment is empty.

We denote by p ∈ s that i ≤ p < i + l, i. e. the position p falls in the segment s = (i, l, o). A
segment s′ of the segment s is again a segment: s′ = (i′, l′, o′) with i′ ∈ s and (i′ + l′ − 1) ∈ s.
For a segment in the forward orientation, we refer to the position i as the tail and to the position
i+ l− 1 as the head of the segment. For a segment in the reverse complemented orientation, we
refer to the position i as the head and to the position i+ l − 1 as the tail of the segment.

Given a set of segments S de�ned on a set of genomes G. Two segments s1, s2 ∈ S with s1 =

(i1, l1, o1) and s2 = (i2, l2, o2) can relate to each other in several ways (see also Fig. 2.1). Without
loss of generality (w. l. o. g.) let i1 ≤ i2. �e two segments s1 and s2 are non-overlapping if
i1 + l1 ≤ i2, fully overlapping if i1 = i2 and l1 = l2, and partially overlapping otherwise.

Two non-overlapping segments s1 = (i1, l1, o1) and s2 = (i2, l2, o2) are adjacent if no segment
s3 ∈ S exists such that there is a position p ∈ s3 with i1 + l1 ≤ p < i2. In other words, two non-
overlapping segments are adjacent if no segment between them exists in the set of segments S .
�e two adjacent segments de�ne an adjacency sa = (i1 + l1, i2− (i1 + l1)), which is a segment
without orientation. If the adjacency is an empty segment, we can refer to it by a single adjacency
position a = i2 = i1 + l1.

2.3 Sequence alignments

We give the following de�nitions only for segments. Note that they apply to sequences (and
chromosomes and genomes), too, by replacing a sequence seq by the segment s = (0, |seq|).

In the most general case, an alignment of a set of segments S is a set of alignment columns,
where an alignment column is a non-empty set of positions A ⊆ PS = {p | ∃s ∈ S : p ∈ s}. We
say that positions in the same alignment column are aligned to each other. �e following three
paragraphs describe conditions that an alignment must ful�ll to be classi�ed as local or global,
pairwise or multiple, and colinear or non-colinear (see also Fig. 2.2 and 2.3).

An alignment is called a global alignment if every position p ∈ PS is an element of at least one
alignment column. In a local alignment, only positions from segments of the segments S are
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Local alignment
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Global alignment
Needleman-Wunsch algorithm [116]

GATCAGACTGAGCAAGCAGTTGCAAGCGAT

GATCAACTGCAGCTAGCGGTTGCATAGGAT

Multiple local alignment /
Motiv search [13]
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Multiple sequence alignment (MSA)
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Figure 2.2: �e classi�cations into local or global, pairwise or multiple, and colinear or non-colinear
alignments are independent from each other. �e �gure shows types of colinear alignments, which
allow only mismatches, insertions, and deletions as di�erences among the aligned segments. In
addition, the �gure lists example approaches to calculate each type of colinear alignment. Chapter 3
addresses the local alignment problem (top le�).

elements of alignment columns. A special case is a semi-global alignment of two segments where
one segment is aligned globally and the other locally. Note that a global alignment does not
necessarily align every positions to other positions since alignment columns can consist of only
one position.

An alignment is called a pairwise alignment if the positions in the alignment columns origi-
nate from at most two segments. If the positions originate from more than two segments, the
alignment is a multiple alignment. If duplications are present, alignment columns of pairwise
alignments can contain more than two positions. A pairwise local alignment can align two seg-
ments from the same sequence. �e number of segments aligned by a multiple local alignment is
not upper bounded by the number of segments in S but by the number of segments of segments
in S ; the number of aligned segments per input sequence would be an additional condition for
local alignments.

To describe the classi�cation into colinear and non-colinear, we de�ne the relation ≺ for two
alignment columns A1 and A2 as follows: A1 ≺ A2 if every pair of two positions p1 ∈ A1 and
p2 ∈ A2 ful�lls p1 < p2 if p1 and p2 belong to the same forward oriented segment, and p2 < p1 if
they belong to the same reverse complemented segment. An alignment is colinear if the relation
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Figure 2.3: �e classi�cations into local or global, pairwise or multiple, and colinear or non-colinear
alignments are independent from each other. �e �gure shows types of non-colinear alignments,
which allow inversions, duplications, and translocations among the aligned segments as opposed
to colinear alignments. In addition, the �gure lists example approaches to calculate each type of
non-colinear alignment. �e focus of this thesis are multiple genome alignments (bo�om right).

≺ imposes a strict total order on its alignment columns and each alignment column contains at
most one position from each segment (see Fig. 2.2). If any of the two conditions does not hold,
the alignment is non-colinear (see Fig. 2.3).

�e most common representation of colinear alignments is the tabular alignment representation.
In this representation, a colinear alignment is wri�en as a matrix where each row corresponds
to a segment and each column to an alignment column (see Fig. 2.4). Some matrix entries remain
empty because of alignment columns with fewer positions than there are segments. �ese entries
are commonly �lled with the gap character “−”.

�e alignment columns of a colinear alignment can be classi�ed into match, mismatch, and gap
columns (see Fig. 2.4, right). An alignment columnA that contains a position from every aligned
segment is a match column if there is the same character at all positions p ∈ A, and otherwise a
mismatch column. IfA contains fewer positions than there are segments, it is a gap column. Both
mismatch and gap columns are error columns.

Given two segments s1 and s2, a dotplot is a |s1| × |s2| matrix where each row corresponds to
a position from s1 and each column to a position from s2 (see Fig. 2.5). A dotplot can visualize
similarities of two sequences if matrix entries that represent matching characters are marked,
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Sequence 1:
Sequence 2:
Sequence 3:
Sequence 4:
Sequence 5:

G A T A T C A G A A C C − G A A
A A T A T C A G T A − C − G A A
G A T − T C C G T A C C − G G A
G A C A A C A G A A C C C C A A
A A T A T C A G A A − C − G A A

G T T − A A

G − T G C A

match columns

gap columns pmismatch column

Figure 2.4: Tabular representation of a colinear multiple alignment of �ve sequences in a 5 × 16
matrix (le�) and of a colinear pairwise alignment of the two sequences GTTAA and GTGCA in a
2× 6 matrix (right). Match columns in the pairwise alignment are shaded in green and marked with
vertical lines inbetween the two rows.
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Figure 2.5: A dotplot of the two sequences s1 = CATAGCCATTGA and s2 = CATGCCGTGA
(le�) and the tabular representations of a local and a global alignment. Entries in the dotplot that
correspond to matching characters are shaded in darker blue. �e traceback of the global alignment
(green) reaches from the upper le� to the lower right corner. �e traceback of local alignments (for
example the dark blue one) can start and end at arbitrary positions of the dotplot. Red dashes mark
error columns.
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Figure 2.6: Four di�erent adjacencies of two blocks. Both the blue block B1 = {s1, s3, s5, s7} and
the green block B2 = {s2, s4, s6, s8} have four occurrences each being adjacent to an occurrence of
the respective other block. For example, the occurrences s1 ∈ B1 and s2 ∈ B2 are adjacent at the
head of s1 and the tail of s2 (top le�). �us, the head ofB1 is adjacent to the tail ofB2. Furthermore,
the two heads of the blocks are adjacent (top right), the tail of B1 and the head of B2 are adjacent
(bo�om le�), and the two tails of the blocks are adjacent (bo�om right).
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for example with a dot. A traceback is a route through the dotplot that corresponds to a colinear
alignment. In a traceback, match and mismatch columns of the alignment appear as diagonals,
while gap columns are horizontal or vertical. Horizontal lines correspond to gaps in s1 and
vertical lines to gaps in s2.

2.4 Genome rearrangement

A block B is a set of segments of a given set of genomes. We assume segments in the same block
to be “similar” in sequence, although this is no requirement for the following de�nitions. One
may imagine blocks as local colinear alignments.

�e size |B| denotes the number of segments in the block B. Each segment s ∈ B is called an
occurrence of B in the respective chromosome (or genome). A block can occur multiple times
per chromosome.

Analogously to segments, blocks have a head and a tail. �e tail of a block B = {s1, . . . , s|B|}
is the set of tails of all segments sj ∈ B with j = 1, . . . , |B|, and the head is the set of heads of
all sj ∈ B. We sometimes refer to the head and the tail of a block as its two ends.

�e complement of B is a block B = {s1, . . . , s|B|}, where each segment is in the opposite
orientation. �e tail of B is the head of B, and the head of B is the tail of B. Note that the
relative orientation of all segments in a block is signi�cant, but the assignment of B or B to one
orientation is arbitrary.

LetB be a set of blocks de�ned on a set of genomesG. Two blocksB1, B2 ∈ B are non-overlapping
if all pairs of segments s1 ∈ B1 and s2 ∈ B2 are non-overlapping. B1 and B2 are adjacent if
two segments s1 ∈ B1 and s2 ∈ B2 exist that are adjacent. �e two blocks can be adjacent to
each other in more than one segment per block and in up to four di�erent ways (see Fig. 2.6). If a
block contains two adjacent segments (i. e. two occurrences of the block are adjacent), the block
is adjacent to itself.

Two adjacent blocks B1 and B2 de�ne a breakpoint if an occurrence of one of the blocks exists
that is not adjacent to an occurrence of the other block or if the two blocks are adjacent in more
than one way. In other words, given two adjacent segments s1 ∈ B1 and s2 ∈ B2, w. l. o. g. let
the tail of s1 be adjacent to the head of s2, then, B1 and B2 de�ne a breakpoint if a segment
s′1 ∈ B1 exists whose tail is not adjacent to the head of any segment s′2 ∈ B2. And to put it the
other way, two blocks are adjacent without breakpoint if |B1| = |B2| and they are adjacent in
all segments in the same way.

A set of blocks B is called a tiling of a set of genomes G if every position p ∈ PG in the genomes
belongs to exactly one block occurrence: For every p ∈ PG , there is a B ∈ B such that s ∈ B
exists where p ∈ s. In a tiling B, the blocks are non-overlapping. Furthermore, every adjacency
is an empty segment and can be referred to by an adjacency position.

Given all adjacencies of segments from a set of non-overlapping blocks B, we can write chro-
mosomes as sequences of the block occurrences, with telomeres bounding linear chromosomes.
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Figure 2.7: A linear chromosome •ABCAD• and a circular chromosome BABCC de�ned on the
set of blocks B = {A,B,C,D} (le�), and their projection •ABA• and BAB to the subset B′ =
{A,B} (right).

Instead of segments, we use the block identi�ers to refer to block occurrences in a chromosome.
For example, •ABCAD• denotes a linear chromosome on the set of blocks B = {A,B,C,D}
(see Fig. 2.7).

Using this representation of chromosomes, we may project chromosomes to a subset of the blocks
B. In the projection of a chromosome to a subset of blocks B′ ⊆ B, only the blocks in B′ appear.
For example, the projection of the chromosome •ABCAD• to the subset of blocks B′ = {A,B}
is •ABA•. A projection of a chromosome may create new adjacencies with respect to the chro-
mosome de�ned on the full set of blocks B. In the above example, the heads of A and B are
adjacent in the projection to B′ but not in the chromosome de�ned on B. (see Fig. 2.7).

2.5 Graph theory

A graph is an ordered pair G = (V,E) of a set of vertices V and a set of edges E. We denote an
edge e ∈ E as a pair of vertices u, v ∈ V . An ordered pair e = (u, v) represents a directed edge,
and an unordered pair e = {u, v} an undirected edge. If all edges in E are undirected, we call
G an undirected graph; if all edges are directed, G is a directed graph; and if both undirected and
directed edges are present, we refer to G as a mixed graph.

Two vertices u, v ∈ V that are connected by an edge e = (u, v) or e = {u, v} are called the
endpoints of e. We say that the edge e is incident to the two vertices u and v. If e = (u, v) is
directed, the vertex u is called the source vertex of the edge and the vertex v is called the target
vertex of e. We refer to an edge (v, v) or {v, v} that is incident to only one vertex as a loop.

A graph G′ = (V ′, E′) is called a subgraph of G if V ′ ⊆ V and E′ ⊆ E. We say that G contains
its subgraphs G′. W. l. o. g. let G be a directed graph. If E′ = {(u, v) ∈ E | u, v ∈ V ′}, we call
G′ vertex-induced by the set of vertices V ′. Likewise, if V ′ = {u, v ∈ V | (u, v) ∈ E′}, we call
G′ edge-induced by the set of edges E′.

Let Ev ⊆ E be the set of edges incident to a vertex v ∈ V . We call v a branching vertex if the set
of vertices in the subgraph induced by Ev is larger than three. Otherwise, v is a non-branching
vertex. �e degree of a vertex v is the number of edges incident to v where loops count twice.
We denote the degree of v by d(v).

A path through a graph G is an edge-induced subgraph G′ = (V ′, E′) of G with a strict total
order on the edges e1 ≺ e2 ≺ · · · ≺ e|E′| where any two edges ei, ei+1 ∈ E′ are both incident to
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a vertex vi ∈ V ′ for all i = 1, 2, . . . , |E′| − 1. We can write a path either as a sequence of edges
e1e2 . . . e|E′| or as a sequence of vertices v0v1 . . . v|E′| including the �rst vertex v0 and the last
vertex v|E′| of the path that are incident to the �rst and the last edge, respectively. We say that
the subgraph G′ is a path from v0 to v|E′|.

In a simple path all vertices v0, v1, . . . , v|E′| are distinct. A path where v0 = v|E′| is a cycle, and a
cycle with distinct vertices v1, v2, . . . , v|E′| is a simple cycle. In a mixed path and in a mixed cycle
both directed and undirected edges can be present in E′. A path v0v1 . . . v|E′| is directed if the
source vertex vi of any directed edge e = (vi, vj) precedes the target vertex vj in the sequence
of vertices, thus 0 ≤ i < j ≤ |E′|. An Eulerian circuit is a path withE′ = E that traverses every
edge of the graph G.

A graph is connected if for every pair u, v ∈ V a path exists from u to v. A connected subgraph
is maximal if it is not contained in any other connected subgraph of G. Maximal connected
subgraphs are called connected components of the graph. Given an integer k ∈ N, a graph is k-
edge connected if the minimal size of a subset of edges that disconnects the graph is greater than
k−1. �e maximal k-edge connected subgraphs are called k-edge connected components. We call
a graph E′-connected if the subgraph induced by the edges E′ ⊆ E is connected. Similarly, we
refer to maximal E′-connected subgraphs as E′-connected components of the graph. A graph is
complete if every pair of vertices u, v ∈ V is connected by an edge e ∈ E.

A tree is a connected graph without simple cycles. A vertex v ∈ V is called a leaf vertex if it has
a degree d(v) = 1, and an inner vertex if d(v) ≥ 1. A tree is binary if every inner vertex v has a
degree d(v) ≤ 3, and n-ary if every inner vertex has a degree d(v) ≤ n+ 1. A tree is rooted if it
has one designated vertex called the root of the tree.

Using labeling functions, we can associate the vertices and edges of a graph with additional infor-
mation. For example, a labeling function `1 : V → X assigns an element x ∈ X to each vertex
v ∈ V such that `1(v) = x. Similarly, a labeling function `2 : E → Y assigns an element y ∈ Y
to each edge e ∈ E such that `(e) = y. We call x a vertex label of v, and y an edge label of e.

A graph is weighted if its edges or vertices are labeled with numbers, for example ` : V → N or
` : E → Z. �e numbers are called weights of the vertices or edges, respectively.

A multigraph is a graph that can have multiple edges with the same pair of endpoints. �e
number of edges that connect the pair of endpoints is called the multiplicity. Multigraphs are
o�en represented as graphs with only one edge per pair of endpoints labeled with the multiplicity.
However, we represent multigraphs with multiple edges throughout this thesis.





Chapter 3

Local alignment detection for genome alignments

�e local alignment method described in this chapter was developed in collaboration with David Weese and
Knut Reinert, presented at RECOMB Satellite Workshop on Comparative Genomics 2011, and published in
BMC Bioinformatics [89]:

B. Kehr, D. Weese, and K. Reinert. STELLAR: fast and exact local alignments. BMC Bioinformatics, 12
Suppl 9:S15, 2011.

�is chapter describes a method for the detection of local pairwise alignments in genomic se-
quences, which has been implemented in a tool called STELLAR. �e focus and primary demand
during the development of the method was sensitivity on whole genomes. Sensitivity is a key
factor for local aligners applied in genome alignment: While a wrong match can be weeded
out later, missing local alignments may never be discovered in later genome alignment steps.
STELLAR has full sensitivity with respect to a general scoring function but, nevertheless, is e�-
cient to be applied on the genomic scale.

�e �rst part of this chapter gives a general overview of algorithmic approaches to local align-
ment including various objective functions. Next, details of the alignment method implemented
in STELLAR follow in the second part. �e third part presents the results of systematic parameter
tests of STELLAR and of a performance comparison to other local alignment approaches. �e last
part concludes the chapter with a summary, a short discussion, and an outlook.

29
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3.1 Background on local alignment

�e following describes various objective functions for local alignment and brie�y explains the
most common algorithmic strategies for �nding local alignments e�ciently. An overview of tools
that implement these and other strategies is given at the end of this part of the chapter.

3.1.1 Objective functions for local alignment

�is section describes the most prevalent objectives of local alignment approaches. �e biological
aim of local alignments is to recognize locally conserved sequence segments. By de�ning objec-
tive functions, the biological aim can be translated into an algorithmic aim: identi�cation of sets
of sequence segments that ful�ll the criteria of the objective function. E�ective local alignment
algorithms o�en use combinations of several objectives. Underlying objective functions is the
assumption that conserved segments distinguish themselves from the rest of the sequences by
high similarity.

Exact matches. �e simplest objectives are identical segments, for example maximal exact
matches (MEMs) or maximal unique matches (MUMs). MEMs are identical segments that cannot
be extended by further matches at both ends. MUMs are MEMs that occur at most once in each
input sequence and, thus, avoid highly repeated segments.

Similarity scores. Another class of well-established objectives for local alignments uses sim-
ilarity scores. A scoring scheme assigns scores to the di�erent types of alignment columns such
that the sum of scores over all columns of an alignment is the overall alignment similarity score.
Match columns get positive scores, error columns 0 or negative penalties. �e objective is to �nd
pairs of segments that align with a similarity score above a certain threshold.

Simple scoring functions use the same score for all match columns and the same penalties for mis-
match and gap columns. More sophisticated scoring functions use scoring matrices, like PAM [38]
or BLOSUM [77] for amino acid sequences or HOXD [31] for DNA sequences, which contain sep-
arate scores for any pair of characters in an alignment column.

Gap columns are typically penalized with linear or a�ne gap costs. Linear gap costs apply the
same penalty for all gap columns, whereas a�ne gap costs have a separate penalty for the �rst of
several consecutive gap columns. Even within the class of objective functions that use similarity
scores, the scoring scheme has to be chosen with care since it can strongly in�uence the resulting
set of local alignments [63].

Normalized distance measures. As opposed to similarity scores, distance measures are less
informative for local alignments. Long sequence segments that are similar but not identical some-
times have larger distances than completely unrelated short segments. �us, simple distance
measures like the Hamming distance [70] and edit distance (also called Levenshtein distance) [98]
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Figure 3.1: An ε-match and two local alignments that are no ε-matches given the maximal error
rate ε = 0.2 and the minimal length n0 = 10. �e le� alignment has an error rate that is too high
although it has the same number of errors as the ε-match shown at the top. �e right alignment is
shorter than the minimal accepted length.
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Figure 3.2: An X-drop in a local alignment, where X = 6, and the score along the alignment given
a scoring scheme where a match scores m = 2 and an error p = −3.

do not apply to the local alignment problem. �e Hamming distance forbids gaps and counts the
number of mismatch columns. �e edit distance counts gap and mismatch columns. Minimiza-
tion of distance measures is useful for global and semi-global alignments, where the length of
the alignments is given by the length of the input sequences, but not for local alignments.

An alternative for local alignments is the normalization of distance measures by the alignment
length. �e normalized edit distance [105] is the edit distance of an alignment divided by its
length. Similarly, the notion of ε-matches describes local alignments with an error rate of at
most ε: �e number of error columns in ε-matches divided by the number of alignment columns
has to be less than or equal to ε (see Fig. 3.1). In this form, distance measures are informative also
for local alignments. ε-matches just like edit distance alignments use the simpler linear and not
an a�ne gap model. However, in the case of low error rates the di�erence between the models
is minimal since only few consecutive gap columns may occur.

Score drop-o�s. To supplement similarity scores or normalized distance measures, objective
functions o�en specify maximal score drop-o�s for any part of the local alignments, so called
X-drops. AnX-drop is a low-scoring section of an alignment that has a score less than−X [169]
(see Fig. 3.2). An alignment section has a low-score if it contains many error columns, hence, the
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probability that the corresponding sequence segments are homologous is low. �erefore, the aim
is to identify local alignments without X-drop, where X denotes the maximally allowed score
drop-o�.

E-values. Finally, e-values [81] have to be mentioned in the context of objective functions for
local alignments. An e-value describes the expected number of local alignments that reach a given
minimal similarity score in random sequences. E-values are universally accepted as probabilistic
measure for local alignment signi�cance. �ey indicate the spuriousness of local alignments.
E-values depend on the sequence length and on the scoring scheme used for computing the
similarity score. Unfortunately, the calculation of e-values is very complex, and to the author
of this thesis no local alignment approach that uses e-values as optimizing function is known.
Many local alignment tools, among them BLAST [6], compute e-values a posteriori.

3.1.2 E�icient local alignment approaches

�e strategies for �nding local alignments are diverse. �e most noted algorithm was introduced
by Smith and Waterman in 1981 [151]. It uses dynamic programming (DP) [33] to compute the
best local alignment according to a similarity scoring function. �e DP approach remains a
standard for short input sequences until today because it guarantees to �nd the optimal local
alignment. For long sequences, its quadratic running time complexity is too slow and more
e�cient approaches became prevalent. Seed-and-extend as well as �lter-and-verify (see Fig. 3.3
and text below) are e�cient strategies that are fast also on long sequences.

Both of these two-step approaches use short exact matches to speed up the computation of local
alignments. Already in 1983, short exact matches called k-tuple matches were used for alignment
of biological sequences [166]. Meanwhile, the names seed or q-hit are used more frequently.
Especially the term ‘seed’ has brought along a range of possible de�nitions. Seeds in their original
de�nition consist of a �xed number of consecutive match columns formed by the alignment of
two identical sequence segments. �e segments are called q-grams if they have a length of q
(or sometimes k-mers or l-tuples). To mention only two other seed de�nitions, there are spaced
seeds and adaptive seeds. Spaced seeds are prede�ned pa�erns of match columns and mismatch
or match columns. �e de�nition of adaptive seeds leads to varying seed lengths that depend on
the occurrence frequency of the matching segments in the sequences [34, 92].

Seed-and-extend. Methods for computing local alignments that apply a seed-and-extend ap-
proach initially search for all seeds of a prede�ned kind. To realize this search e�ciently, the
methods index at least one of the input sequences. �e index depends on the type of seeds and
can for example be a q-gram index, a su�x array [104], or a FM index [56]. To increase sensi-
tivity and speci�city for local alignments, elaborate approaches use additional criteria such as
two smaller seeds in close proximity [7]. In the second phase, the seeds are extended to local
alignments. Usually, a DP extension is initiated at both ends of the seeds and continued until an
X-drop is reached [170]. We obtain local alignments that are bounded by X-drops and contain
at least one seed.
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Figure 3.3: E�cient local alignment approaches in the dotplot of two sequences with four local
alignments (red). �e seed-and-extend approach (le�) searches for short exact matches (dark blue)
and extends them to both sides (white areas). �e local alignment in the bo�om le� corner does
not contain an exact match of the necessary size and will not be identi�ed with a seed-and-extend
approach. �e �lter-and-verify approach (right) reports potentially related areas (white parallelo-
grams) of the dotplot. Some reported areas, such as the one in the top right corner, do not contain
local alignments.

Seed-and-extend approaches are heuristics. �ey identify a local alignment if and only if it con-
tains the speci�ed seed. Seed-and-extend approaches o�en identify short and insigni�cant local
alignments with high e-values, but sometimes miss signi�cant local alignments with very low e-
values. Insigni�cant alignments are usually �ltered with an e-value cuto� before reporting local
alignments. �e number of missed alignments can only be reduced by using shorter or spaced
seeds.

Filter-and-verify. �e idea of �lter-and-verify approaches is to discard large portions of the
dotplot before computing nucleotide-level alignments. Filtering sorts unrelated regions of the
dotplot from regions that are potentially related based on observations about the number and
distribution of match and error columns in local alignments. Filtering lemmata, for example the
q-gram lemma [80] (see also Section 3.2.2 or Lemma 1 on page 37) the pigeonhole principle [113],
formalize these observations and provide the minimal number of seeds present in a potentially
related region of a de�ned length. Potentially related regions are subject to veri�cation in the
second phase. Here, any local alignment algorithm can be used in principle. We can, for example,
use a seed-and-extend method [134] or a DP algorithm [150, 164]. �ere is the same trade-
o� between running time and sensitivity for veri�cation as for alignment in general: Heuristic
approaches are generally faster but less sensitive than exact approaches.

Filtering can be an alternative to seeding in terms of running time, but requires carefully chosen
parameters. In comparison to seed-and-extend approaches, �lter-and-verify approaches gen-
erally use shorter seeds. �e length and number of seeds in�uence the running time and the
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�ltering sensitivity. �e �ltering lemma gives advice on how to set the length of seeds. �e us-
age of su�ciently short seeds guarantees full sensitivity but may trigger a lot of veri�cations due
to random seed matches. If the seeds are longer than the lemmata allow, the approach may miss
local alignments and becomes heuristic.

3.1.3 Overview of pairwise local alignment tools

�e following section aims at giving an overview of the most relevant tools. It focuses only
on tools for computing pairwise local alignments, although tools for the computation of semi-
global alignment and multiple local alignment including repeat �nding are closely related them.
Even for computing pairwise local alignments, the list of tools raises no claim to completeness.
Figure 3.4 displays a publication timeline of the listed tools.

�e tool SSEARCH from the FASTA package [127] implements the dynamic programming algo-
rithm by Smith and Waterman, which exactly computes similarity scores [151]. FASTA itself is a
heuristic local alignment tool [128], which searches for seeds in close proximity and chains them
to local alignments. �e idea of chaining seeds to local alignments later has been taken up again
by the program CHAOS [25].

BLAST [6] is the �rst in a family of tools that implement the seed-and-extend approach. �e
original BLAST implementation used only a single seed and X-drop extension without gaps.
Its replacement Gapped BLAST [7] extends two shorter seeds and allows gaps. Further devel-
opments resulted in the tool MegaBLAST [170]. �e tool PatternHunter [99, 102] achieves a
sensitivity improvement over earlier seed-and-extend implementations by using spaced seeds
while still being fast. In comparison, the focus of the tool BLAT is on e�ciency rather than on
sensitivity. BLAT sacri�ces sensitivity for both speed and memory consumption by indexing only
non-overlapping q-grams. It has been developed to align short sequences, for example expressed
sequence tags (ESTs) or short reads, to a reference sequence. Here, the loss of sensitivity is
smaller due to high similarity between the aligned sequences. Another implementation of the
o�en re�ned seed-and-extend approach with optimized parameter se�ings resulted in the tool
BLASTZ [148, 149], which has later been replaced by LASTZ [76]. A new seed model and a mul-
tiple hit criterion for extension was added by the tool YASS [117]. Seeds in YASS allow positions
to match a subset of characters, for example to allow transitions but not transversions. Finally,
the recent tool LAST [92] adds adaptive seeds to the seed-and-extend approach. �ereby, LAST
can be�er cope with repeat regions in the sequences. Extension is triggered only for seeds that
are long enough to occur less frequently than a prede�ned threshold. �is includes very short
seeds if they occur rarely enough.

In addition to the prevalent seed-and-extend approaches, a number of other tools are in use. A
smaller family of tools searches for MUMs using su�x trees: Subsequently to MUMmer [40], the
tools PROmer for protein-coding DNA and NUCmer for multiple-contig alignment [41] have been
developed. Further improvements led to the MUMmer 3 system [94]. �e approach implemented
in the more recent tool BWT-SW uses the Burrows-Wheeler transformation (BWT) of a su�x
array. BWT-SW computes alignments according to a similarity scoring function just like the Smith-
Waterman algorithm. Hence, it is an exact alignment tool, which is fast enough for comparing
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Figure 3.4: Timeline of pairwise local alignment tools. Colors roughly indicate families of the im-
plemented approaches: Tools that implement the seed-and-extend approach are shown in green,
�ltering tools in gray, MUMs-based tools in middle blue, exact Smith-Waterman alignment meth-
ods in dark blue, and chaining tools in light blue. Note that this list of tools does not claim to be
comprehensive.

genome-size sequences. Similarly, the �ltering approaches in the programs QUASAR [27] and
SWIFT [134] are very fast for long sequences while having full sensitivity for ε-matches. �e
following part of this chapter describes these �ltering approaches in more detail and presents an
exact veri�cation strategy for SWIFT.

3.2 STELLAR: a lossless filter-and-verify approach

�e remainder of this chapter treats a lossless �lter-and-verify approach to local alignment,
which has been implemented in the SwifT Exact LocaL AligneR (STELLAR). It applies the SWIFT
�ltering algorithm [134], a q-hit counting method that hugely reduces the search space. Founded
on a detailed analysis of the nature of SWIFT hits and ε-matches, STELLAR complements the
SWIFT algorithm with an exact veri�cation phase.

�is part of the chapter starts with a precise de�nition of the objective of STELLAR. �e second
section reviews the �ltering algorithm SWIFT followed by a section that describes properties of
SWIFT hits and ε-matches including necessary proofs. �ese properties allow the development
of the veri�cation strategy in the fourth section. Finally, the last section of this part provides
information about the implementation and availability of STELLAR.

3.2.1 Objective of STELLAR

STELLAR is lossless with respect to a well-de�ned quality de�nition of local alignments:

Maximal ε-matches of minimal length n0 without ε-X-drop.
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Figure 3.5: A low scoring section (green) in an ε-match with an error rate of 0.125 (dark blue). �e
green section is an ε-X-drop if X = 3 with p = − 1

0.125 + 1 = −7 and −pX = 21. �e three match
columns are not enough to compensate for one of the four error columns, giving a score drop-o� of
25. �e light blue boxes show alternative ε-matches that do not span the ε-X-drops.

CATGCCCATTCATCCTGTCAGGATGA−CA
||||||||||||||||||||||

GGTGCACATTCATCCTG−CAGGACGATCG

Figure 3.6: Two ε-matches that share alignment columns. If we require a minimal length of 20 for
ε-matches with a maximal error rate ε = 0.1, the intersection and also the union of the blue and
green ε-matches are not ε-matches themselves.

�e basis of this quality de�nition is a normalized distance measure, the maximal error rate ε.
�e ε-matches are required to have a minimal length n0 and are not allowed to span ε-adjusted
score drop-o�s, which we call ε-X-drops. Maximality of ε-matches as de�ned below avoids
redundancy in the �nal set of local alignments.

ε-X-drops. ε-X-drops are score drop-o�s adjusted to the error rate of an ε-match. Using a
scoring scheme that scores matches with m = +1 and errors with p = −1

ε + 1, an ε-X-drop
allows a maximal score drop-o� of−pX . �en, the valueX roughly corresponds to the maximal
number of mismatches within a low-scoring region of an ε-match (see Fig. 3.5).

Maximality. Maximality is a criterion that involves more than one local alignment. We here
de�ne the term maximal to describe local alignments that are longer than any local alignment
that shares some alignment columns or have, with respect to all such longer local alignments, a
unique portion of length at least n0 (see Fig. 3.6).

Assume there is an ε-match with an error rate much smaller than ε. �en, shortening this ε-
match at one end by one alignment column yields another valid ε-match. In this case, the shorter
ε-match provides no additional similarity information. Only if the unique portions of the two ε-
match are both large, both ε-match are informative. In Fig. 3.6 only the green ε-match is maximal
since it is longer than the dark blue match. �e unique portion of the dark blue ε-match has a
length of 3, which is shorter than the required minimal length.
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3.2.2 Filtering with SWIFT

�e �ltering algorithm SWIFT identi�es areas of the dotplot that intersect with ε-matches of
length n0 or longer. Given the error rate ε, SWIFT looks for local alignments with at most bεnc
errors where n ≥ n0 is the length of the local alignment. �e errors can be arbitrarily distributed
over the length of the ε-match. For each ε-match, the algorithm guarantees to report at least one
hit.

�e SWIFT algorithm belongs to a class of algorithms that are founded on an observation on the
number of q-hits in ε-matches [80]:

Lemma 1 (q-gram lemma). �e minimal number of q-hits in an ε-match of length n is

T (n, q, ε) = n+ 1− q · (bεnc+ 1) .

�is lemma is proven by the simple fact that every introduction of an error in an exact match of
length n eliminates at most q of the n − q + 1 q-hits. �is fact directly leads to the minimum
number of q-hits provided in Lemma 1.

Given the minimal number of q-hits in ε-matches, �lter algorithms can search for areas in the
dotplot with su�ciently high numbers of q-hits. �e closest precursor of SWIFT, the program
QUASAR [27], inspects areas that have the shape of a rectangle. SWIFT further improves the
�ltering by using parallelograms, more precisely intersections of consecutive diagonals and con-
secutive columns (see Fig. 3.7). Parallelograms improve �ltering speci�city as they are closer in
shape to the tracebacks of alignments and hence do not count hits outside the diagonal band.

For describing the general approach of SWIFT, we imagine the dotplot of two sequencesS1 andS2

to be populated with overlapping parallelograms of a �xed size. Each parallelogram is associated
with a counter for q-hits. First, the algorithm builds an index of all q-grams of S2. Next, it scans

sequence 1

se
qu

en
ce

2

Figure 3.7: A SWIFT hit has the shape of a parallelogram. It is the intersection of consecutive diag-
onals with consecutive columns in the dotplot. In this example, three diagonals intersect with four
columns.
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overS1 inspecting each q-gram ofS1 one by one. Any time a q-gram fromS1 is found in the index
of S2, the algorithm increments all counters that are associated with a parallelogram containing
this q-hit. If the counter of a parallelogram reaches a prede�ned threshold, the parallelogram is
reported as a hit.

�e q-hit threshold for reporting SWIFT hits and the size of parallelograms a�ect the sensitivity
and speci�city of the �ltering. An e�ective �ltering algorithm has full sensitivity and aims at high
speci�city by reporting only as few and as small hits as possible. SWIFT sets the parallelogram
size and q-hit threshold to values that guarantee full sensitivity and keep the speci�city as high
as possible. In the following, we �rst summarize the theory that SWIFT applies to guarantee full
sensitivity and then describe compromises that a�ect speci�city in favor of space and running
time e�ciency.

Guarantee for full sensitivity. �e q-gram lemma already makes some restrictions for the
parameter se�ings of fully sensitive �ltering: Given a �xed value for ε, the q-hit length is upper
bounded by q < 1

ε , or, given a �xed value for q, the error rate is upper bounded by ε < 1
q (see

appendix A.1). For other parameter combinations there may exist ε-matches without q-hits.

For �nding all ε-matches of length exactly n0, the function T (n0, q, ε) tells us the minimum
number of q-hits in a parallelogram of the following size: �e length w of the parallelogram
(number of consecutive columns) is n0, and the width e (number of consecutive diagonals) is the
maximal number of errors bεnc. However, the aim of the SWIFT �lter is to identify all ε-matches
of length n0 or longer.

Obviously, it is not possible to include any ε-match of arbitrary length n ≥ n0 in parallelograms
of a �xed length. �e idea of the SWIFT algorithm is to look for parallelograms that intersect with
the tracebacks of ε-matches. For this task, we cannot use the same parameters as above without
risking a loss in sensitivity. One reason is that T (n, q, ε) is not monotonically increasing (see
Fig. 3.8, le�). To cope with this, SWIFT de�nes the length n1 as the next larger length of an ε-
match that allows for one more error than the length n0. n1 is a function of n0 that jumps to a
higher level at each point {di/εe}i∈N (see Fig. 3.8, right). �e following lemma from the SWIFT
paper provides bounds for all necessary parameters that ensure full sensitivity:

Lemma 2. For a given ε and n0, there exist q, τ , w, and e such that at least τ q-hits of any ε-match
of length n ≥ n0 reside in a parallelogram of length w and width e. Further, choose q <

⌈
1
ε

⌉
and

use the following parameter se�ings:

• τ ≤ min{T (n0, q, ε), T (n1, q, ε)} where n1 =
⌈
bεn0c+1

ε

⌉
• e =

⌊
2(τ−1)+q−1

1/ε−q

⌋
• w = τ − 1 + q(e+ 1).

We omit the proof of this lemma and refer to the original paper [134]. �e lemma only guarantees
to �nd parallelograms that intersect with the tracebacks of ε-matches. �e parallelograms do not
necessarily contain the ε-matches, and also do the ε-matches not necessarily span the full length



3.2. STELLAR: A LOSSLESS FILTER-AND-VERIFY APPROACH 39

0 10 20 30 40

0
10

20
30

40

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ●

● ● ● ● ● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ●

T(n0, 3, 0.06)
T(n1, 3, 0.06)
T(n0, 6, 0.1)
T(n1, 6, 0.1)

●

●

●

●

0 10 20 30 40

0
10

20
30

40

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

n0

n1 for ε=0.06
n1 for ε=0.1

●

●

●

Figure 3.8: �e functions T (n, q, ε) and n1 for values of n0 between 0 and 40. n1 is the next larger
length of an ε-match with one error more than an ε-match of length n0. �e parameters q and ε are
�xed to q = 3 and ε = 0.06 (dark blue) or to q = 6 and ε = 0.1 (green). �e minima of the sawtooth
function T (n0, q, ε) co-occur at the same points as the jumps in n1.

and width of the parallelograms. Section 3.2.3 further investigates possible con�gurations of
ε-matches and parallelograms.

Trading specificity for e�iciency. �e SWIFT algorithm scans two sequences for parallelo-
grams that ful�ll the above stated criteria for the q-gram length, and q-hit threshold. To run more
e�ciently in practice, the algorithm further relaxes the search to parallelograms larger than the
length w and width e speci�ed in Lemma 2, at the expense of speci�city.

�e number of q-hit counters is critical for memory consumption. Instead of inspecting all possi-
ble parallelograms of width e, SWIFT can reduce the search to a set of parallelograms that overlap
only by e diagonals if the parallelogram width is set to e+ ∆ where ∆ > 0. �is requires fewer
q-hit counters and, thus, less memory. �e higher ∆ is, the fewer counters are necessary but the
lower the speci�city.

�e algorithm makes a similar speci�city trade-o� for the length of parallelograms in order to
improve running time. Instead of inspecting �xed-length parallelograms, the algorithm keeps
only one counter per diagonal bucket of the dotplot. In addition, it tracks the positions of the �rst
and last q-hits per diagonal bucket. If for a bucket the last q-hit occurred more thanw−q positions
earlier, the algorithm checks for a new SWIFT-hit: If the counter has reached the threshold, and if
the �rst and last q-hit are at least q+τ−1 positions apart, it reports the parallelogram between the
�rst and last q-hit as a SWIFT hit. �is parallelogram can be arbitrarily long. A�er reporting the
hit, SWIFT resets the counter as well as the �rst and last q-hit positions and continues counting.
�is way, SWIFT gains speed by inspecting counters only when a q-hit falls in the respective
buckets and when reaching the end of S2.
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3.2.3 Analysis of SWIFT hits

�e veri�cation phase in STELLAR has to separate true positive SWIFT hits from false positive
SWIFT hits. As a consequence of SWIFT identifying parallelograms that only intersect with the
tracebacks of ε-matches, true positive hits have various possible con�gurations for ε-matches and
parallelograms. �is section inspects these con�gurations in more detail, a�er brie�y looking at
reasons for false positive hits.

One reason for false positive hits are the e�ciency improvements of the SWIFT algorithm. But
also independent from these improvements, the algorithm sometimes reports SWIFT hits that do
not overlap with ε-matches. Fig. 3.9 (A-C) shows q-hit con�gurations that lead to false positive
SWIFT hits. In addition, combinations of the shown cases lead to false positive SWIFT hits.

For true positive SWIFT hits, the veri�cation phase in STELLAR identi�es the exact tracebacks
of ε-matches. �e most favorable SWIFT hits start and end at the start and end positions of
ε-matches. Unfortunately, this is not the case for all true positive hits. O�en, ε-matches only
partially overlap with reported parallelograms. �e tracebacks of ε-matches in the dotplot can
be longer, wider, or shorter than the parallelograms. Also can two ε-matches reside in the same
parallelogram, or one ε-match trigger several SWIFT hits. Figure 3.9 (D-I) illustrates possible
types of true positive SWIFT hits. Again, combinations of several types can occur.

�e veri�cation strategy in STELLAR targets the intersections of SWIFT hits and ε-matches. �e
idea for veri�cation is to de�ne minimum requirements for this intersection. At the same time, it
is advantageous to be able to identify all intersections in one piece, also those intersections that
exceed the minimum requirements. Based on this motivation, we introduce ε-cores as follows:

De�nition 1 (ε-core). Let n0 be the minimal length of an ε-match and n1 be de�ned as in Lemma 2.
Under the simple scoring scheme with a match scorem = +1 and an error penalty p = −1

ε + 1, an
ε-core is an alignment with a score of at least

smin := min
n∈{n0,n1}

⌈
n− bεnc
bεnc+ 1

⌉
.

�e following two lemmata ensure the presence of ε-cores in the intersection of ε-matches and
SWIFT hits for a certain value of the �ltering parameter q.

Lemma 3. Every ε-match contains at least one ε-core.

Proof. Following the de�nition of an ε-core, a q-gram of length q := smin is an ε-core. �e next
two paragraphs prove that at least one such q-gram is present in every ε-match.

�e maximum number of errors in an ε-match of length n is bεnc. Consequently, the number
of matching positions in the same ε-match is at least n − bεnc. �e bεnc errors divide the
n−bεncmatching positions into at most bεnc+ 1 error-free segments. We obtain the minimum
length for the longest error-free segment of the ε-match if we distribute the n− bεnc matching
positions evenly between the bεnc+1 error-free segments. An even distribution results in error-
free segments that have a length of bl(n, ε)c and dl(n, ε)e where l(n, ε) := n−bεnc

bεnc+1 . Any other
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Figure 3.9: Types of false positive (A-C) and true positive (D-I) SWIFT hits and the corresponding q-
hit con�gurations (green) of intersecting ε-matches (red). �e �gure shows examples for a maximal
error rate ε = 0.2, a minimal length n0 = 12, and q = 3. Following Lemma 2, n1 = 15, τ = 4, e = 4,
and w = 18.
(A) A SWIFT hit where the τ q-hits required for reporting a SWIFT hit are spread over a long parallel-
ogram with distances between the q-hits just short enough not to exceed the distance cuto� w − q.
Arbitrary lengths of parallelograms are possible because of the running time improvement in the
SWIFT algorithm. (B) q-hits on alternating sides of a parallelogram trigger a false positive hit within
a parallelogram of width e. Any match that chains the q-hits has an error rate that exceed ε. (C) �e
τ q-hits are spread over more than e diagonals as a consequence of using parallelograms of width
∆ + e.
(D) A SWIFT hit that spans the same columns of the dotplot as the ε-match. (E) An ε-matches that
extends beyond the diagonal border of the parallelogram. Here, an additional q-hit occurs in another
parallelogram. (F) If there are su�cient q-hits, the other parallelogram triggers a second SWIFT hit.
(G) Error positions close to the ends of ε-matches lead to a shorter SWIFT hit. (H) A random q-hit
within a distance ofw−q to the ε-match extends the parallelogram beyond the length of the ε-match.
(I) Two ε-matches that lie in close proximity lead to only one SWIFT hit.
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Figure 3.10:�e minimal score of an ε-core is the minimum of the functions dl(n0, ε)e and dl(n1, ε)e.
�e �gure shows them for ε = 0.06 (dark blue) and ε = 0.1 (green) for n0 in a range between 0 and
50. n1 is calculated as de�ned in Lemma 2. l(n0, ε) drops to a minimum at all points {di/εe}i∈N
labeled in gray.

distribution results in at least one longer error-free segment. �us, an ε-match of length exactly
n contains at least one dl(n, ε)e-gram.

Unfortunately, an dl(n0, ε)e-gram is not an ε-core for all ε-matches of length n ≥ n0 because
l(n0, ε) is not monotonically increasing (see Fig. 3.10). However, the smallest value of dl(n, ε)e
over all n ≥ n0 de�nes the minimum length of an error-free segment. �e sawtooth function
l(n, ε) drops to a minimum at each point {di/εe}i∈N, the points wheren1 jumps to its next higher
value. It is easy to con�rm that the minima are monotonically increasing, i. e. each successive
minimum of the sawtooth is at least as high as the previous one. �erefore, every ε-match con-
tains at least one q-gram with q := min{dl(n0, ε)e , dl(n1, ε)e}, which is exactly the de�nition
of smin.

Lemma 4. �e intersection of a SWIFT hit with an ε-match contains at least one ε-core if q := smin.

Proof. With q = smin, each q-hit is an ε-core. However, not every q-hit triggers a SWIFT hit.
According to Lemma 2, there are at least T (n0, q, ε) q-hits in the intersection of SWIFT hits and
ε-matches. �us, given the requirement of the SWIFT algorithm that T (n0, q, ε) ≥ 1, Lemma 4
trivially follows from Lemma 3.

With Lemma 4, the presence of ε-cores in the intersections of ε-matches and SWIFT hits is se�led.
Accordingly, ε-cores are suitable starting points for veri�cation guaranteeing full sensitivity. In
addition, Lemma 4 regulates how to set the parameter q in the �ltering phase. �is, of course,
reduces �exibility in the parameter choice, but we expect users to generally welcome such advice.
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3.2.4 An exact verification strategy

�e lossless veri�cation strategy for SWIFT hits identi�es all maximal ε-matches without ε-X-
drop on the basis of ε-cores. �e strategy has �ve steps: It begins with the identi�cation of
all ε-cores in SWIFT hits. Each ε-core will serve as a seed for a potential ε-match. �e second
step �lters out ε-X-drops from ε-cores to ensure that the resulting ε-matches do not span ε-X-
drops. Next, the ε-cores are extended to both sides in a third step. �e extension breaks o� when
hi�ing an ε-X-drop but not when hi�ing the borders of SWIFT hits. If the initial ε-core is part of
an ε-match, then the extended ε-core spans the ε-match for any con�guration of SWIFT hit and
ε-match. �at is why a fourth step can identify maximal ε-matches in extended ε-cores. Some
ε-matches contain more than one ε-core, and therefore the �rst four steps identify them multiple
times (once per ε-core). Similarly, not all of the identi�ed ε-matches are maximal but share large
parts with longer ε-matches. �e last step �lters for maximal ε-matches and ensures that they
occur only once in the output. �e result of this veri�cation strategy is a set of tracebacks of all
maximal ε-matches without ε-X-drops. �e following addresses details of all �ve steps and ends
with a theorem stating the exactness of the strategy.

Step 1: ε-core identification. �e �rst step identi�es all ε-cores in SWIFT hits with a banded
version of a standard local alignment algorithm, the Waterman-Eggert algorithm [160]. �e
Waterman-Eggert algorithm uses dynamic programming (DP) to compute all non-intersecting lo-
cal alignments that reach a given minimal score under a linear or a�ne scoring scheme. �e out-
put is a set of local alignments including suboptimal alignments. It extends the Smith-Waterman
algorithm [151], which determines only the highest scoring local alignment.

According to their de�nition, ε-cores are alignments with a minimal score of at least smin under
a particular linear scoring scheme. Using this scoring scheme and smin as the minimal score,
the Waterman-Eggert algorithm is able to compute all ε-cores in SWIFT hits. In fact, the origi-
nal Waterman-Eggert algorithm computes a quadratic DP matrix and, hence, requires quadratic
running time. For the veri�cation of SWIFT hits we bene�t from the parallelogram shape and
can reduce running time by computing only a band of the dotplot. As opposed to general banded
alignment, the band width is not taken from a sequence distance [58] but is prede�ned by the
parallelogram. Using the parallelogram width as a band reduces the running time by a linear
factor.

�e scoring parametersm = +1 and p = −1
ε + 1 from the de�nition of ε-cores and the minimal

score smin guarantee that the Waterman-Eggert algorithm identi�es at least one ε-core for each
maximal ε-match, though not necessarily for ε-matches that are not maximal: Because the algo-
rithm computes only non-intersecting local alignments, longer ε-cores sometimes hide shorter
ε-cores. �e parameters m and p are chosen such that longer ε-cores intersect with shorter ε-
cores only if the error rate of the non-intersecting parts have themselves an error rate of at most
ε. �en, any ε-match that contains only a shorter ε-core, is not maximal. Only the longer ε-cores
belong to maximal ε-matches. Figure 3.11 illustrates the case where an ε-core of a non-maximal
ε-match is hidden by a longer ε-core of a maximal ε-match.
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Figure 3.11: A non-maximal ε-match (dark blue) and its ε-core (green) with ε = 0.1 and n0 = 20,
hence smin = 6, m = +1, and p = −9. �e non-maximal ε-match can be extended by one error
column and nine match columns to a longer ε-match (indicated by dashed line) without exceeding
the maximal error rate. �e Waterman-Eggert algorithm only identi�es the ε-core of the maximal
ε-match (green and light green).

Step 2: ε-X-drop filter. We use ε-cores as seeds for ε-matches without ε-X-drops. Hence,
ε-cores should not span ε-X-drops. However, the number of errors in ε-cores and the length of
ε-cores has no absolute upper bound and the distribution of errors within ε-cores is arbitrary
�us, ε-X-drops can occur in ε-cores.

In order to eliminate ε-X-drops from ε-cores, we subdivide ε-cores at ε-X-drops into multiple
fragments. Since the fragments can be part of distinct maximal ε-matches, we treat them as
separate ε-cores in the next steps.

�e post-processing algorithm by Zhang et al. [169] detects X-drops in linear time. It builds a tree
data structure that represents X-drops of an alignment for anyX . In order to identify ε-X-drops,
we use the match score and error penalty from de�nition 1 and the weighted score drop-o� value
X ·
(

1
ε − 1

)
. �e general idea is to create a hierarchy of segments with increasing score drop-o�s.

Segments with larger score drop-o�s are the union of several segments with smaller score drop-
o�s. �e hierarchy is represented as a tree and computed from bo�om to top. For the veri�cation
of SWIFT hits, we are interested only in score drop-o�s that exceed one particular value. �us, we
can interrupt the algorithm once the hierarchy reaches this value instead of building the entire
tree.

Step 3: ε-core extension. All fragments of ε-cores from the previous step serve as seeds for
ε-matches. �is next step extends ε-cores such that extended ε-cores contain possible, maximal
ε-matches. Because the number of errors in the possible ε-matches is unknown, it is impossible
to predict the necessary length of an extension that spans an ε-match. ε-X-drops o�er a way
out and provide a criterion for terminating extension without knowing the length and number
of errors.

We extend ε-cores with the gapped X-drop algorithm by Zhang et al. [170] and use the same
ε-adjusted parameters as before. �is DP algorithm computes the score of a maximal align-
ment extension under the given scoring scheme. Di�erent to other alignment algorithms it com-
putes only entries of the DP matrix that can be reached without X-drop. �e algorithm proceeds
antidiagonal-wise and stores only the current antidiagonal of the DP matrix and an overall maxi-
mal score in order to detect X-drops. In addition, it can track the lowest and uppermost diagonals,
which will be useful for computing tracebacks a�erwards. �e output of this algorithm are then
bounds for the lower and upper diagonal of a traceback and the score and end position of a
maximal extension.
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Figure 3.12: Optimal tracebacks of the right extension of an ε-core. �e optimal traceback depends
on the length of the extension. �e dark blue traceback has a smaller error rate for a length of up to
nine. For length eleven, the green traceback has a smaller error rate.

Generally, we extend all ε-cores at both ends. An exception are sets of ε-cores that originate from
the same ε-core before division in the ε-X-drop �lter step. In such sets of ε-cores, it is su�cient
to extend only the �rst ε-core to the le� and the last ε-core to the right. ε-X-drop extension at
the previously detected ε-X-drops would immediately break o� and is clearly not necessary.

Step 4: Maximal ε-match identification. Having extended ε-cores such that the extension
spans possible ε-matches, the remaining task is to determine tracebacks of maximal ε-matches
in extended ε-cores. More precisely, within an extended ε-core, we search for all maximal ε-
matches that contain the corresponding ε-core.

We can immediately discard extended ε-cores that are shorter than n0. For the remaining ex-
tended ε-cores we make the following two observations: First, it is not possible to determine the
lengths of the le� and the right extensions of an ε-core independently; the error rate allowed in
the right extension depends on the error rate of the le� extension and vice versa. Second, the
optimal traceback in the dotplot sometimes depends on the length of the extension (see Fig. 3.12).

Based on these observations, we divide the identi�cation of maximal ε-matches into three smaller
steps that operate on dotplots of the extensions. �e �rst step computes for any possible length
of an extension the optimal end position of an ε-match. We obtain two sets of possible end
positions, one for each side of the ε-core. �e next step determines the length of a maximal ε-
match by taking into account all pairs of possible end positions from the two sets. Finally, the
last step starts computing a traceback from the optimal end positions.

Step 4a: Possible extension end positions. For a �xed length, the optimal traceback of an ex-
tension has the smallest possible number of errors. We compute the end positions of optimal
tracebacks for any possible length and store them in a list. Each list entry consists of the length
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Algorithm 1: Combine end positions to longest ε-match.
Input : le�[], right[], core, ε, n0. // Lists of optimal end positions,

// the ε-core, error rate, minimal length.

Output: le�End, rightEnd. // End positions of the longest ε-match.

1 minimumLength← n0

2 for l← size(le�)− 1 down to 0 do
3 for r ← size(right)− 1 down to 0 do
4 length← length(le�[l]) + length(core) + length(right[r])
5 errors← errors(le�[l]) + errors(core) + errors(right[r])
6 if length < minimumLength then
7 break // Continue with l = l − 1.
8 end
9 if errors/length ≤ ε then

10 le�End ← coordinate(le�[l])
11 rightEnd ← coordinate(right[r])
12 minimumLength← length
13 break // Continue with l = l − 1.

14 end
15 end
16 end
17 return le�End, rightEnd

of the extension, the score (or number of errors1), and coordinates of the corresponding entry
in the dotplot. �is computation is still independent for the le� and right extension of an ε-core
resulting in two lists.

We �ll the lists during dynamic programming, when re-computing the alignment scores of the
extensions. Now that we know the maximal extension lengths, we store all entries of the DP
matrix. More precisely, we compute and store all entries that lie in the band de�ned by the upper
and lower diagonal provided by the ε-core extension algorithm. When computing a score entry,
we also check and if necessary update the list of optimal end positions. If the new score is higher
than the score of the respective entry in the list, we update the list entry.

Unfortunately, tracebacks of di�erent lengths may end in the same entry of the DP matrix. Only
one of these tracebacks is considered by the standard DP alignment. To determine optimal end
positions for all extension lengths it is necessary to add another dimension to the DP matrix for
all possible lengths similar to algorithms that compute normalized alignment scores [10, 105].

A�er computing the full lists of possible end positions, the lists can subsequently be reduced
by some extension lengths according to the following observation: If the score of the entry for
length l+ 1 di�ers from the score of entry l only by +1 (the match score in our scoring scheme),
then an ε-match that ends at the coordinate of entry l is not maximal. �erefore, we can reduce
the list by the entry of length l.

1We can calculate the number of errors e given the length L and score S as e = S−mL
p−m

where m is the match score
and p is the error penalty of a linear scoring scheme.
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Figure 3.13: Two recursive calls of Algorithm 1 can identify further maximal ε-matches that contain
the same ε-core (dark blue). From the lists of possible end positions (red dots), we may exclude several
entries (light blue) a�er having identi�ed a �rst maximal ε-match (green).

Step 4b: Maximal extension lengths. As a result of step 4a we obtain two list of possible traceback
starting positions, one for the le� extension and another for the right extension. All maximal ε-
matches that contain the corresponding ε-core are combinations of one position from the le�
extension with one position from the right extension. We can �nd one such combination with
an exhaustive search algorithm. Fig. A.1 in the appendix demonstrates that a simple greedy
approach may fail.

�e pseudocode for the exhaustive search algorithm is given as pseudocode in Algorithm 1. �e
functions length(), errors(), and coordinate() return the length, the number of errors, and
the end coordinates of the extension for one entry in the lists of possible end positions le�[] and
right[], or the length and the number of errors of an ε-core, respectively. �e function size()
returns the number of entries in a list. Starting with the longest possible extensions, the algorithm
calculates the error rate of the extended ε-core and, if the error rate is below ε, updates the le�
and right end positions of the longest ε-match. If the error rate is too large, it continues with the
next shorter right position, otherwise it continues with the next shorter le� extension and the
longest right extension. In addition, the algorithm checks the length of each combination and
continues with other combinations as soon as the length falls below n0 or below the length of a
previously found ε-match (minimumLength).

For the case that several maximal ε-matches are present, Algorithm 1 needs to be called recur-
sively. We reduce the lists of possible end positions for two recursive calls until none of the
combinations of a le� and right end position is an ε-match. �e �rst recursive call uses a list
for the le� extension without end positions le� of the previously identi�ed le�End and without
le�End, and a list for the right extension without end positions le� of rightEnd+n0. �e second
recursive call uses a list for the le� extension without end positions right of le�End−n0 and a
list for the right extension without end positions right of rightEnd and without rightEnd (see
Fig. 3.13).

Step 4c: Traceback. Having identi�ed the end positions of the longest ε-matches, we can use
a standard traceback procedure to obtain alignments for the extensions. �ese alignments ap-
pended to the ends of the ε-core form an ε-match.
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Step 5: Removal of non-maximal ε-matches. O�en, the �rst veri�cation step identi�es
several ε-cores of one ε-match that are all extended. Step 4 identi�es the longest ε-match that
contains a speci�c ε-core. However, the longest ε-match is not necessarily maximal; there may
be a longer ε-match that shares alignment columns and contains another ε-core. In addition,
two ε-cores can result in the same ε-match. Similarly, we obtain duplicate ε-matches if there
are several SWIFT hits for one ε-match. To ensure that the veri�cation output consists only of
unique and maximal ε-matches, this last step is necessary.

Pairwise alignments intersect if the same positions from one sequence are assigned to the same
positions in the second sequence. We sort the set of ε-matches according to their begin positions
in one sequence. In the sorted set we can compare all alignment columns of two consecutive
ε-matches. If two ε-matches are found to be identical or if the shorter one has no unique part of
length n0, this ε-match is not maximal and we remove it from the output.

�eorem 1. �e algorithm that uses SWIFT for �ltering and the �ve steps for veri�cation detects
exactly all maximal ε-matches without ε-X-drop of two sequences.

Proof. Let M be the set of maximal ε-matches without ε-X-drop of two sequences. For each
ε-match m ∈ M, there is at least one SWIFT hit in the output of the SWIFT �lter algorithm that
intersects with m because of Lemma 2. �e �rst veri�cation step identi�es all ε-cores c ∈ C ′ in
SWIFT hits. Let C be the set of ε-cores that are present in the intersections of SWIFT hits with all
m ∈ M according to Lemma 4. Because of false positive SWIFT hits, C ⊆ C ′. If an identi�ed ε-
core c ∈ C ′ is also in C , then the ε-X-drop extension in step 3 spans the corresponding ε-match,
since all m ∈ M do not contain ε-X-drops. �us, the set of extended ε-cores spans all m ∈ M.
Step 4 extracts ε-matches from extended ε-cores such that there are no longer ε-matches that
contain the ε-core, and Step 5 removes non-maximal ε-matches. Since we do not loose maximal
ε-matches in these last two steps, the output of the algorithm is exactlyM.

3.2.5 Implementation and Availability

�e program STELLAR implements the �ltering with SWIFT and all �ve veri�cation steps us-
ing the SeqAn C++ Library [48, 64]. �e code is freely accessible as one of the SeqAn core
applications at http://svn.seqan.de/seqan/trunk/core/apps/stellar. Binaries for the
command line tool are available from the SeqAn project webpage at http://www.seqan.de/
projects/stellar together with a detailed usage description. Being a SeqAn tool, STELLAR is
also available as a KNIME node [19].

�e following paragraph gives an overview of how parameter selection and all steps of the
method are implemented. See Section A.2 in the appendix for an outline of the organization
and main functions in the source code.

�e two main parameters of the tool STELLAR are the maximal error rate and minimal length of
ε-matches. In the implementation, all other parameters are calculated or are preset with default
values. Still, it is possible to specify many of them as optional parameters on the command line.

http://svn.seqan.de/seqan/trunk/core/apps/stellar
http://www.seqan.de/projects/stellar
http://www.seqan.de/projects/stellar
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STELLAR calculates the �lter parameters e, w, and q-hit threshold as de�ned in Lemma 2, follows
Lemma 4 by se�ing q to smin, and sets ∆ to the smallest power of two that is larger than e as
recommended in the SWIFT paper [134]. �e q-hit threshold and ∆ have minimum values, i. e.
STELLAR sets the q-hit threshold to at least 1 and ∆ to at least 16. smin, the match score m,
and the error penalty p used in many steps of the veri�cation are set according to De�nition 1.
�e implementation di�ers from the described veri�cation strategy only in step 4a where the
implementation does not iterate over all lengths to compute possible end positions. �ereby we
risk a loss in sensitivity, which is, however, not observable in the tests (see Section 3.3.4).

3.3 Performance evaluation of STELLAR

While the previous part provided a theoretical proof of STELLAR’s exactness, we now address
its practical performance. We test a wide range of parameter se�ings of STELLAR on bacterial
genomes and study the in�uence of the parameter choice on the performance. In addition, we
compare STELLAR to a number of established local alignment tools on simulated data sets with
random sequences and on a real data set from �y genomes.

�e �rst section of this part provides details on the setup of the parameter study and the second
section describes the results of the parameter study. �e last two sections provide details about
the comparison of local alignment tools: the evaluation setup and the results on simulated and
�y data.

3.3.1 Systematic parameter testing – Setup

�e local alignment approach implemented in STELLAR has three main parameters: the error
rate ε, the minimal length n0, and the maximal score drop o� X . In addition, the SWIFT �lter
algorithm depends on the parameter q. In STELLAR, q is automatically set to the value smin
calculated from ε and n0, but the implementation allows the user to manually change its value.
�e next two sections examine the in�uence of ε, n0, and q on the performance of STELLAR

on two bacterial genomes. �e values of these parameters not only a�ect how much of the
input genomes is covered by the output set of ε-matches, but also have a strong in�uence on
the running time. �is section describes the data set, the parameter se�ings, and the evaluation
method for the tests.

Data set. �e data set in the parameter tests consists of the two bacterial genomes of Esche-
richia coli str. K-12 substr. MG1655 (NC 000913) and Shigella boydii Sb227 (NC 007613). �e two
genomes have about the same lengths with 4.7 Mbp in the E. coli genome and almost 4.6 Mbp in
the S. boydii genome.

Parameter se�ings. We examine ranges of parameter values for the minimal length, the max-
imal error rate, and the q-gram length separately.
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Figure 3.14: Percentage of sequence covered by local alignments. �e �gures shows a dotplot of two
sequences with two local alignments projected onto the sequences. One alignment covers 13 posi-
tions in both sequences and the other alignment covers 18 positions in sequence 1 and 17 positions
in sequence 2. Since the two alignments overlap in sequence 2 by 5 positions, they cover in total
56 positions of the two sequences. �e coverage, in this example 70 %, is the number of characters
that are aligned in at least one local alignment multiplied by 100 and divided by the sum of the two
sequence’s length.

For evaluating the in�uence of the minimal length, we ran STELLAR with values of n0 between
30 and 1000 in steps of 10. We repeated this test for the �ve error rate values 0.001, 0.025, 0.05,
0.075, and 0.1 with the default q-gram length q = smin that depends on ε and n0. In addition, we
repeated the tests with error rates of 0.001, 0.025, and 0.05 for a �xed q-gram length manually
set to the value 15. For ε = 0.075 and ε = 0.1, the maximal possible value of q for the SWIFT

algorithm is below 15.

For testing the e�ect of the error rate, we ran STELLAR with ε set to values between 0 and 0.1 in
steps of 0.001. We repeated this test four times with the minimal length n0 set to 50, 100, 150,
and 200 using the default q-gram length q = smin. Furthermore, we repeated the test for q = 15

with all four values of the minimal length n0. Note that with q = 15, the maximal possible error
rate is ε = 1/15 ≈ 0.066 for the SWIFT algorithm.

For examining the in�uence of a user-speci�ed q-gram length, we tested all values of q in the
range from 7 to 32. We repeated the test 16 times for all combinations of the four minimal lengths
50, 100, 150, and 200 with the four error rates 0.005, 0.025, 0.05, and 0.075.

Evaluation method. For each test run of STELLAR, we measured the total running time, and
the time needed for �ltering. �e measurements were done on a 2.66 GHz Intel Xeon X5550 with
72 GB of RAM running Linux. In addition, we report the sequence coverage as the percentage of
sequence characters that is part of at least one ε-match in the output (see Fig. 3.14). We also
report the number of SWIFT hits as one aspect of the �ltering speci�city.

Furthermore, we report values of the calculated parameters of SWIFT and STELLAR: �e param-
eters e, ∆, and w determine the size of SWIFT hits, and the q-hit threshold τ determines how
many q-hits are necessary to report a SWIFT hit. �e minimal score of an ε-core smin can a�ect
the veri�cation phase as well as the �ltering phase if STELLAR’s default se�ings are used, where
q = smin.
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3.3.2 Systematic parameter testing – Results

As a basis for understanding the results of the parameter tests, this section starts with a paragraph
that addresses expectations on the in�uence of the parameters. Next, it presents the results of
the tests with di�erent minimal lengths, with di�erent maximal error rates, and �nally, with
di�erent q-gram lengths.

Expectations on parameter influence. �e trend of how the maximal error rate ε and the
minimal length n0 in�uence the percentage of covered input sequence by ε-matches is intuitively
clear: Given two maximal error rates ε1 < ε2, the set of positions covered by ε2-matches includes
all positions covered by ε1-matches. Similarly, given two minimal lengths n0 < m0, the set of
ε-matches longer than n0 includes all ε-matches longer than m0. �us, an increase of ε and a
decrease of n0 lead to an increase of the coverage.

For the running time, however, the �rst intuition is misleading. �e running time of STELLAR
is not generally growing with the sequence coverage by ε-matches. A careful analysis of the
algorithmic parameters of STELLAR reveals complex dependencies. �e running time consists of
the time for �ltering and the time for veri�cation. �e fraction for veri�cation highly depends on
the speci�city of �ltering, which is determined by the size and number of reported SWIFT hits.
�is is independent from the number and size of ε-matches. If the �ltering speci�city is high,
the fraction of the running time for veri�cation is low. �us, the parameters that determine the
speci�city greatly in�uence the running time.

Both the size and the number of SWIFT hits can be associated with individual parameters of
the �ltering algorithm. �e size of SWIFT hits depends on the parameters e, ∆, and w, and the
number of SWIFT hits on the parameters q and τ . �e parameters e and ∆ determine the width
of SWIFT hits, whereas w has an e�ect on the length. �e value of q in�uences the probability
for spurious q-hits, thus, the number of SWIFT hits. Finally, the q-hit threshold τ also a�ects the
number of SWIFT hits since, for example, the probability for two spurious q-hits is much smaller
than for one. �us, we expect that low values of e, ∆, and w and high values of q and τ lead to
a high �ltering speci�city and shorter time for veri�cation.

All of these �ve �ltering parameters depend on the maximal error rate ε and the minimal length
n0. �eir dependency is not linear such that more and less bene�cial combinations of n0 and ε
exist. �e following results of the parameter tests may assist to decide which combinations are
most bene�cial and identi�es the factors that have the strongest in�uence on the running time
in this data set.

Dependency on the minimal length. �e two �gures 3.15 and 3.16 display the results of the
tests for minimal lengths between 30 and 1000.

As expected, the percentage of covered sequence drops for increasing minimal lengths in all tests
with �ve di�erent error rates. �e �ltering time is constantly low with a slight increase only for
ε = 0.075 and ε = 0.1 at very small values of n0. �e time for veri�cation dominates over
the �ltering time across the tested range of minimal lengths. Note that the �gures display the
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Figure 3.15: Systematic testing of the minimal length parameter of STELLAR with default q = smin.
�e �ve rows display the results for error rates of 0.005, 0.025, 0.05, 0.075, and 0.1. �e plots on
the le� show the measured �ltering time, total running time, number of SWIFT hits, and sequence
coverage by ε-matches. �e plots on the right show the calculated algorithm parameters, the q-hit
threshold τ , the hit width e + ∆, the minimal score for ε-cores smin, and the parameter w, which
a�ects the length of SWIFT hits. Light blue vertical lines denote values of n0 where smin starts
climbing to the next level. Do�ed vertical lines indicate values of n0 where ∆ jumps to a higher
value.
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Figure 3.16: Systematic testing of the minimal length parameter of STELLAR with the q-gram length
�xed to 15. �e three rows display the results for error rates of 0.005, 0.025, and 0.05. STELLAR
requires the q-gram length to be greater than 1/ε, thus, for q = 15 only error rates up to 0.06 are
possible. �e rows display the results for the error rates, 0.005, 0.025, and 0.05. See Fig. 3.15 for
details on the displayed values and vertical lines.

�ltering time in seconds, but the total running time in seconds divided by 20. �e total running
time shows several jumps and con�rms a complex dependency on the algorithm parameters.

A subset of the jumps can be explained with the algorithm parameters that in�uence the number
of SWIFT hits. In the tests of Fig. 3.15, both q and τ depend on smin, since q = smin and τ
depends on q. smin grows with increasing n0 but converges to a maximum. �e increase is not
contiguous but the value rests at several levels, e.g. for ε = 0.005 at smin = 100, 133, 150, etc.
It starts climbing to the next level only at minimal lengths n0 = di/εe with i ∈ N. �e q-hit
threshold τ falls to 1 at values of n0 where smin steps to the next level. In Fig. 3.16, where q is
set to a �xed value, the q-hit threshold τ increases monotonically.

�e jumps of τ to 1 co-occur with jumps in the number of SWIFT hits (light blue vertical lines in
Fig. 3.15). �is con�rms a negative correlation of the number of hits with τ . Signi�cant increases
in the number of SWIFT hits in turn a�ect the running time (e. g. for ε = 0.075 at n0 = 55, 108,
and 481 or for ε = 0.1 at n0 = 32 and 81). However, the negative correlation of the running
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time with τ is not visible between the jumps and also not in the tests with �xed q. Furthermore,
there are jumps in the running time that do not co-occur with jumps in the number of SWIFT
hits.

�e remaining jumps can be explained with the algorithm parameters that determine the width
of SWIFT hits. Since STELLAR sets the width to e + ∆ and ∆ ∈ N to the minimal value where
2∆ > e, the width jumps to higher levels where e exceeds powers of two. �ese jumps occur
at the same values of n0 as the remaining jumps in the running time (dashed vertical lines in
Fig. 3.15 and 3.16) con�rming an in�uence of the width of SWIFT hits on the veri�cation time. In
addition, the behavior of the running time between the jumps conforms with the expectations
regarding the values of e and w and increases with growing e and w. �us, the in�uence of the
size of SWIFT hits appears to dominate over the in�uence of the number of SWIFT hits except
for values of τ close to 1, where the number of hits is largest.

Dependency on the maximal error rate. �e two �gures 3.17 and 3.18 display the results
of the tests for maximal error rates between 0 and 0.1. In all four tests with di�erent minimal
lengths, the percentage of covered sequence grows as expected for increasing error rates. �e
�ltering time is again low compared to the total running time with a slight increase close to
ε = 0.1. �e two �gures display the natural logarithm of the total running time to visualize the
extreme variation in the veri�cation time.

�e running time variation is caused by peaks in the number of SWIFT hits. Like in the tests with
di�erent minimal lengths, the number of hits increases when τ falls to 1. With increasing error
rate, smin converges towards 1 in integer steps. With q = smin (see Fig. 3.17), τ falls to many
minima in the range of ε between 0 and 0.1 leading to many peaks in the number of hits and
also in the running time. �e peaks become larger with growing ε, where q = smin decreases.
At values of ε where smin falls to the next smaller integer value, τ jumps to a value larger than
1. Figure 3.18 illustrates how the number of hits gets larger for values of τ close to 1. �e �gure
also demonstrates that di�erences of τ at large values (e.g. τ > 50) have a minor e�ect.

�e running time depends less on the size of SWIFT hits across the tested maximal error rates than
on the size of hits across the tested minimal lengths. Only in Fig. 3.18 at values of ε where q >
smin, the running time visibly grows together with the width and length determining parameters
e, ∆, and w.

Dependency on the q-gram length. Figure 3.19 displays the results of the tests for q-gram
lengths between 7 and 32 and Fig. 3.20 the corresponding values of the �ltering parameters.
In all 16 �xed combinations of ε and n0, the coverage stays mostly constant with few decreases
of less than 1 % right and le� of q = smin. We did not verify whether this indicates a loss of
sensitivity or is a side e�ect. Lemma 4 only guarantees full sensitivity for STELLAR if q = smin.

�e �ltering time is low (around 2.5 s) for most values of q. Values of q below 10 are the only
tested parameter combinations where the �ltering time is much higher and has a signi�cant
in�uence on the total running time in this data set. For all other values, the veri�cation time
dominates over the �ltering time. �e total running time reaches a local maximum at q = smin
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Figure 3.17: Systematic testing of the maximal error rate parameter of STELLAR with default q =
smin. �e four rows display the results for di�erent minimal lengths of 50, 100, 150, and 200. See
Fig. 3.15 for details on the displayed values. Note that the natural logarithm of the running time is
shown here. Vertical lines denote values of n0 where smin starts dropping to the next level.
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Figure 3.18: Systematic testing of the maximal error rate parameter of STELLAR with the q-gram
length �xed to 15. �e four rows display the results for di�erent minimal lengths of 50, 100, 150,
and 200. Note that for q = 15 only error rates up to 0.06 are possible because STELLAR requires the
q-gram length to be greater than 1/ε. See Fig. 3.15 for details on the displayed values. Analogously
to Fig. 3.17, the natural logarithm of the running time is shown here. �e light blue bars denote the
range of ε where smin = 15.
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Figure 3.19: Systematic testing of the q-gram length parameter of STELLAR for 16 combinations of ε
andn0. �e rows show four di�erent error rates and the columns four di�erent minimal lengths. Each
plot displays the �ltering time, the total running time, the number of SWIFT hits, and the percentage
of covered sequence. �e do�ed vertical lines denote q = smin, and the solid lines indicate the
maximum possible value q = 1/ε.
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Figure 3.20: Systematic testing of the q-gram length parameter of STELLAR for 16 combinations of
ε and n0. �e rows show four di�erent error rates and the columns four di�erent minimal lengths.
Each plot displays the �ltering parameters τ , e+∆, smin, andw. Analogously to Fig. 3.19, the do�ed
vertical lines denote q = smin, and the solid lines indicate the maximum possible value q = 1/ε.
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for some combinations of ε and n0 and it increases when q climbs towards 1
ε . �is variation in

the running time is again due to the �ltering speci�city expressed as both the number and size
of SWIFT hits.

�e q-hit threshold τ drops from q = 7 to q = smin and reaches τ = 1 at or shortly behind
q = smin. �is correlates with the number of hits, which climbs to a maximum at q = smin for
most parameter combinations. However, the size parameters of SWIFT hits fall to a minimum at
q = smin for most parameter combinations and counteract the e�ect on the running time. For
ε = 0.025 and for n0 = 50 there is a peak in the running time at q = smin caused by the increase
in the number of hits. For larger ε or n0, the minimum in the hit size keeps the running time
low. �e increase of the running time towards q = 1

ε can be explained with a large increase in
w and e+ ∆.

3.3.3 Comparison of local aligners – Setup

�e aim of the comparison of local aligners is to investigate STELLAR’s gain in sensitivity com-
pared to seed-based methods and to compare its speed to the other full-sensitivity methods. �e
simulated data provides the opportunity to �nd the range of error rates and sequence lengths
where we can bene�t from using STELLAR instead of other tools. �is section describes the
setup of the comparison including the data sets, the evaluation method that measures sensitivity
according to our objective of �nding ε-matches, a list of compared tools, and tested parameter
values for STELLAR.

Data sets. We compare the performance of STELLAR on two simulated data sets, sim-err and
sim-len, and on one real data set from �y genomes. Simulated data is useful for systematic testing
of sensitivity, but can have biases or artifacts in comparison to real data. Our simulations gen-
erated random sequences with randomly implanted ε-matches. As alternative with fewer biases
one could implant ε-matches into real sequences at random positions. �e advantage of random
sequences is that similarities occur by chance only with a very small probability. �us, the sim-
ulated data sets allow for examination of the dependence of the performance on one parameter
independently from other factors.

�e data set sim-err tests di�erent error rates and the data set sim-len several sequence lengths.
Both simulated data sets consist of pairs of random sequences with local alignments implanted at
random positions. All sequences have uniformly distributed characters from the DNA alphabet.
�e implanted local alignments have lengths between 50 and 200 bp and contain substitutions, in-
sertions, and deletions of single characters with uniform probabilities. �e number of implanted
local alignments n per sequence pair varies depending on the lengths of the sequences, with
n = dlength/2000e. For example, for a pair of two 1 Mbp sequences n = 500.

In the data set sim-err, which tests di�erent error rates, all sequences have a length of 1 Mbp.
�e implanted local alignments have error rates of 0 %, 2.5 %, 5 %, 7.5 %, or 10 %. For each error
rate, the data set has 5 pairs of sequences, making in total 25 alignment instances with 12,500
implanted local alignments.
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Figure 3.21: Coverage of green local alignments Bi by dark blue local alignments Ai. A green local
alignment is only covered if the same positions from sequence 1 are aligned to the same positions
from sequence 2 in a dark blue local alignment.

In the data set sim-len, the sequences have a length of 1 kbp, 10 kbp, 100 kbp, 1 Mbp, or 10 Mbp.
�e error rates of the implanted local alignments are uniformly distributed in the range from 0
to 10 %. To partially compensate for the di�erent numbers of local alignments in sequences of
di�erent lengths, the data set has 50 pairs of 1 kbp sequences, 10 pairs of 10 kbp and 100 kbp se-
quences each, and one pair of 1 Mbp and 10 Mbp sequences each. �is gives in total 72 alignment
instances with 6,100 implanted local alignments.

�e data set with real genomic data consists of sequences from �y genomes of the species Dro-
sophila melanogaster (release 5.26) andDrosophila pseudoobscura (release 2.14) available from Fly-
Base [157]. We selected chromosome 2L from D. melanogaster, which has a length of∼23.5 Mbp,
and the ∼11.7 Mbp group 3 from the chromosome 4 assembly of D. pseudoobscura [137] for our
comparison.

Evaluation method. For all three data sets, we measured the running times of STELLAR and
the compared programs on the same Intel machine as used in the comparison of di�erent local
aligners (see Section 3.3.1), a 2.66 GHz Intel Xeon X5550 with 72 GB of RAM running Linux. For
all tools we include indexing of input sequences in the running times. We omit details on memory
usage as it was below 1 GB in all test runs.

To measure sensitivity, we compare computed local alignments to those that were implanted
into the simulated sequences, or we compare local alignments of di�erent programs among each
other for the �y data. �e search strategies of the di�erent programs o�en result in slightly
di�erent local alignments. �erefore, we say that a reference local alignment (e. g. an implanted
local alignment) is covered by the set of computed local alignments if at least 10 % of all positions
of the reference alignment are aligned to the same positions in any of the computed alignments
(see Fig. 3.21). Only below 10 % we consider the reference alignment to be missed. �is is a very
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general check whether signi�cant similarities are found by a tool or not, which is in favor of the
compared programs. We report the percentage of covered local alignments as the sensitivity.

Compared tools. In comparison to STELLAR, we tested the two exact programs SSEARCH [126]
and BWT-SW [95] that compute Smith-Waterman alignments, and the seed-based methods imple-
mented in the programs BLAST [6, 7], LAST [92], LASTZ [76], and BLAT [90].

�e program SSEARCH is provided with the FASTA package [128] and we used version 36. BWT-SW
is available from github2; we used version 20080713. For the BLAST search we used the NCBI
blastn implementation [28] version 2.2.23+. Furthermore, we downloaded version 278 of LAST3.
LASTZ4 is the replacement of BLASTZ [148] and we used version 1.03.02. Finally, we used version
34 of BLAT from the UCSC Genome Bioinformatics Site5.

We ran all programs with default se�ings. In addition, we ran BLAST with the word size pa-
rameter set to smin and denote this with BLAST∗. According to Lemma 3, this parameter se�ing
enables full sensitivity for the BLAST method. For SSEARCH, we used an e-value cut-o� of 0.01.

Parameter se�ings for STELLAR. For the test runs on simulated data, the minimal length
parameter in STELLAR was set to 50 and the maximal error rate was set according to the error
rates in the data sets. Applying the �ndings from the parameter study (see Section 3.3.2 and
Fig. 3.19), a q-gram length of smin − 1 was used.

On the �y data, we tested three combinations of parameters: A maximal error rate of 10 % with a
minimal length of 100, a maximal error rate of 10 % with a minimal length of 200, and a maximal
error rate of 5 % with a minimal length of 200. In all three combinations, the x-drop parameter
was set to 20. For the runs with 10 % errors, we used a q-gram length of 8, and for the run with
5 % errors a q-gram length of 17, which is again q = smin − 1.

3.3.4 Comparison of local aligners – Results

Simulated data. �e running times and sensitivity of STELLAR and all compared tools are
shown in Table 3.1 for the data set sim-err and in Table 3.2 for the data set sim-len.

Table 3.1 demonstrates that STELLAR clearly outperforms the other full sensitivity tools SSEARCH
and BWT-SW in terms of running time for the tested range of error rates. In addition, STELLAR is
faster than LASTZ and BLAT and in most cases LAST, which use the heuristic seed-based approach
and miss signi�cant percentages of local alignments. Only BLAST is faster than STELLAR, but it
also misses considerable amounts of local alignments with larger error rates. �e BLAST* run is
much more sensitive than BLAST but still misses a small fraction of matches while its running
time is similar to STELLAR at high error rates. Figure 3.22 displays a simulated local alignment
that only STELLAR, SSEARCH, and BWT-SW identify but not the seed-based approaches.

2https://github.com/mruffalo/bwt-sw
3http://last.cbrc.jp/
4http://www.bx.psu.edu/~rsharris/lastz/
5http://genome.ucsc.edu/FAQ/FAQblat.html

https://github.com/mruffalo/bwt-sw
http://last.cbrc.jp/
http://www.bx.psu.edu/~rsharris/lastz/
http://genome.ucsc.edu/FAQ/FAQblat.html
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Table 3.1: Running times and sensitivity on simulated sequences containing local similarities of
di�erent error rates.

error rate 0 % 2.5 % 5 % 7.5 % 10 %
time missed time missed time missed time missed time missed

SSEARCH 133:17 h 0.00 % 132:55 h 0.00 % 133:24 h 0.00 % 132:25 h 0.00 % 132:52 h 0.00 %
BWT-SW 14.38 s 0.00 % 14.28 s 0.00 % 14.18 s 0.00 % 14.09 s 0.00 % 14.02 s 0.04 %
STELLAR 0.55 s 0.00 % 0.52 s 0.00 % 0.57 s 0.00 % 0.88 s 0.00 % 3.81 s 0.00 %
BLAST 0.25 s 0.00 % 0.25 s 0.16 % 0.26 s 5.36 % 0.25 s 17.00 % 0.24 s 38.80 %
BLAST* 0.24 s 0.16 % 0.25 s 0.00 % 0.27 s 0.04 % 0.49 s 0.28 % 3.56 s 2.60 %
LAST 1.84 s 0.00 % 1.85 s 0.00 % 1.85 s 1.12 % 1.86 s 4.60 % 1.86 s 10.16 %
LASTZ 6.14 s 0.00 % 6.13 s 0.72 % 5.90 s 5.56 % 5.58 s 12.68 % 5.02 s 24.92 %
BLAT 13.05 s 29.36 % 10.53 s 29.64 % 12.81 s 28.88 % 13.42 s 31.44 % 13.38 s 34.32 %

Sequences have a length of 1 Mbp and contain local alignments of lengths between 50 and 200 bp. �e simula-
tions were repeated �ve times, the displayed values are the average of all runs except for SSEARCH which was
run only once. Sensitivity is measured by the percentage of missed local alignments (Fig. 3.21). BWT-SW, BLAST,
LAST, LASTZ, and BLAT were run with default parameter se�ings. BLAST* stands for a more sensitive run of
BLAST with the word size parameter set to the minimal length of an ε-core smin.

. : . : . : . : . :

628613 AAGGATTGTCCATCTACAGCGCTTTATTTAAGCTGGGCATAGCGAACTGC

|||||||||||||||||| ||||||||||||||| |||||||||||| ||

407615 AAGGATTGTCCATCTACA -CGCTTTATTTAAGCT -GGCATAGCGAAC -GC

. : . : . : . :

628663 CCGCTCCATAGACTTAAATGCTTTCCTCTAC -ATACAAGTCG

||||||||||||| ||| ||||||||||||| || || |||

407662 CCGCTCCATAGAC -TAAGTGCTTTCCTCTACGAT -TAA -TCG

Figure 3.22: �is local alignment from the simulated data set sim-err was only found by STELLAR,
SSEARCH, and BWT-SW, but not by the seed-based methods. It has an e-value of 7×10-26.

Table 3.2 indicates that STELLAR’s running time scales less well to 10 Mbp sequences than all of
the other tested tools. �is limitation on long sequences is due to a high number of veri�cations
in STELLAR at as high error rates as 10 %. �e �ltering speci�city of SWIFT is low for high error
rates since the q-gram length has to be set to a small value (smin = 8 for ε = 0.1 and n0 = 50)
in order to guarantee full sensitivity. �us, spurious q-hits and false positive SWIFT hits become
probable. �e resulting large number of veri�cations are the reason for an increase in running
time.

However, except for the 10 Mbp sequences, STELLAR is faster than most other tools on the data set
sim-len just as observed on the data set sim-err. �e data set sim-len also con�rms full sensitivity
for STELLAR, SSEARCH, and BWT-SW. BLAST and LASTZ show up to 14 % and 10 % of missed local
alignments and also LAST misses up to 4 %. Among the seed-based approaches with default
se�ings, LAST is the most sensitive and only slower than BLAST.

For BLAT, the test results suggest a dependency of the sensitivity on the sequence length: While
it is fully sensitive on sequences of up to 10 kbp, the number of missed local alignments almost
reaches 70 % on the 10 Mbp sequences. A possible explanation for this lossy performance is that
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Table 3.2: Running times and sensitivity on simulated sequences of di�erent lengths.
seq length 1 kbp 10 kbp 100 kbp 1 Mbp 10 Mbp

time missed time missed time missed time missed time missed

SSEARCH 2.45 s 0.00 % 259.5 s 0.00 % 7:16 h 0.00 % 136:16 h 0.00 % – –
BWT-SW – – 67 ms 0.00 % 0.62 s 0.00 % 14.17 s 0.00 % 465.60 s 0.10 %
STELLAR <1ms 0.00 % <1ms 0.00 % 0.06 s 0.00 % 3.76 s 0.00 % 733.16 s 0.00 %
BLAST 3 ms 14.00 % 8 ms 6.00 % 0.03 s 11.40 % 0.25 s 13.40 % 3.23 s 12.64 %
BLAST* 3 ms 0.00 % 8 ms 0.00 % 0.07 s 0.00 % 3.54 s 0.60 % 471.38 s 1.46 %
LAST <1 ms 4.00 % 10 ms 0.00 % 0.17 s 2.60 % 1.85 s 3.40 % 37.75 s 2.70 %
LASTZ 10 ms 10.00 % 57 ms 2.00 % 0.53 s 7.80 % 5.71 s 9.40 % 116.87 s 9.12 %
BLAT 22 ms 4.00 % 34 ms 0.00 % 0.36 s 1.00 % 13.98 s 33.00 % 349.22 s 69.30 %

Sequences contain dlength/2000e local alignments with a maximal error rate of 10 % and lengths between 50 and
200 bp. �e simulation of the 1 kbp sequences was repeated 50 times, the simulation of the 10 kbp and 100 kbp
sequences ten times. �e displayed values are the average of all runs except for SSEARCH which was run only
once. Sensitivity is measured by the percentage of missed local alignments (Fig. 3.21). BWT-SW, BLAST, LAST,
LASTZ, and BLAT were run with default parameter se�ings. BLAST* stands for a more sensitive run of BLAST
with the word size parameter set to the minimal length of an ε-core smin.

Table 3.3: Results of STELLAR on �y chromosomes.

error min. running num. of overlap
rate length time ε-matches BLAST1

10 % 100 2077 s 3940 100 %
10 % 200 1300 s 341 100 %
5 % 200 18 s 44 100 %

We used chromosome arm 2L from D.melanogaster (∼ 23.5 Mb) and group 3 of chromosome 4 from D. pseudo-
obscura (∼ 11.7 Mb). STELLAR was run with the X-drop parameter set to 20.
1 Percentage of covered ε-matches from �ltered BLAST output.

BLAT was originally designed for the comparison of many short sequences (ESTs or sequencing
reads) against one long reference sequence, and not for the comparison of two long sequences.

Both tables demonstrate STELLAR’s gain of sensitivity in comparison to the seed-based methods,
and a gain of running time e�ciency in comparison to other full-sensitivity methods. �e results
from the data set sim-err (Table 3.1) suggests that we bene�t most from using STELLAR when
we compare closely related sequences that still have signi�cant di�erences. �e data set sim-len
(Table 3.2) indicates that STELLAR is especially fast on short and moderately long sequences.

Fly chromosomes. �e tests on real data compare STELLAR only to BLAST because BLAST is
the standard tool for local alignment searches and, in addition, performed well on simulated data.
�e results are shown in tables 3.3 and 3.4.

�e set of local alignments computed by BLAST contains some alignments with low e-values that
are shorter than the minimal length for ε-matches or that have more errors than allowed by the
maximal error rate for ε-matches. Since STELLAR does not �nd such alignments and also does
not intend to �nd them, these alignments were �ltered from the BLAST output. Some long �ltered
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Table 3.4: Results of BLAST on �y chromosomes.

word running num. of overlap overlap
size time hits STELLAR 2001 STELLAR 1001

default 9 s 9504 95.01 % 89.24 %
9 792 s 28434 100.00 % 99.26 %

We used chromosome arm 2L from D.melanogaster (∼ 23.5 Mb) and group 3 of chromosome 4 from D. pseudo-
obscura (∼ 11.7 Mb).
1 Percentage of covered STELLAR matches (error rate 10 %, minimal length 200 or 100).

. : . : . : . : . : . : . : . :

17794720 TTTCAGTTGCAGCGAGGGTCGCATCATGTCCTCGGACACCAAGGGATGTGTGGACCGCAACGAGTGCCTGGACCTGCCAT

|||||||||||||||||| ||||||||||| |||||||||||||| ||||| || |||||||| |||||||| ||||| |

10600229 TTTCAGTTGCAGCGAGGGACGCATCATGTCGTCGGACACCAAGGGCTGTGTCGATCGCAACGAATGCCTGGATCTGCCCT

. : . : . : . : . : . : . : . :

17794640 GTCTGAACGGAGCCACCTGCATCAATCTGGAGCCCCGGCTGCGGTACCGATGCATTTGCCCGGAGGGCTACTGGGGCGAA

| |||||||| ||||| |||||||||||||||||||| |||||||| || ||||| |||||||||||||||||||||||

10600309 GCCTGAACGGGGCCACGTGCATCAATCTGGAGCCCCGTCTGCGGTATCGCTGCATCTGCCCGGAGGGCTACTGGGGCGAG

. : . : . : . : . : . : . : . :

17794560 AACTGCGAGCTGGTGCAGGAGGGACAGCGCCTGAAGCTGAGCATGGGCGCCCTGGGGGCCATATTCGTTTGCCTGATTAT

|||||||||||||| |||||||| ||||||||||||||||||||||| ||||| || |||||||||||||||||||||||

10600389 AACTGCGAGCTGGTCCAGGAGGGCCAGCGCCTGAAGCTGAGCATGGGGGCCCTCGGCGCCATATTCGTTTGCCTGATTAT

. : . : .

17794480 CATACTGAGTAAGTA -G-AGTGATGG

|||| |||||||||| | | || |||

10600469 CATATTGAGTAAGTACGAAATG -TGG

Figure 3.23: �is local alignment of the �y chromosomes was found by STELLAR with ε= 10 % and
n0 = 200, but not by BLAST with default parameters. It has an e-value of 6×10-84.

BLAST hits with an error rate above ε may contain shorter ε-matches, thus valid ε-matches from
long �ltered BLAST hits were extracted and added to the set of BLAST ε-matches. �is results
in a set of ε-matches identi�ed by BLAST. �e output of STELLAR was compared to this set of
ε-matches (last column of Tab. 3.3).

As expected, STELLAR covers all of the BLAST ε-matches. In accordance with the �ndings from
the simulated data and the parameter tests, the running time of STELLAR is smaller for a minimal
length of 200 and again much smaller for an error rate of 5 %. However, the number of ε-matches
also shows that real sequences can have less conserved similarities, which we only �nd when
allowing high error rates and short minimal lengths.

Table 3.4 shows that BLAST with default parameters is much faster than STELLAR. At the same
time, BLAST identi�es a very large number of local alignments. Although all these BLAST hits
have low e-values, there are 17 ε-matches with a minimal length of 200, and 424 ε-matches with
a minimal length of 100 that BLAST misses if ε is set to 10 %. One of these matches is displayed
in Fig. 3.23. While BLAST identi�es a large number of similarities, it misses some signi�cant
local alignments. With the word size parameter set to smin in order to improve the sensitivity
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of BLAST, the output is an even larger number of local alignments (many of them short) but
with hardly any false negatives. �e running time becomes comparable to that of STELLAR.
Depending on the parameter se�ings of STELLAR, the one or the other program is faster.

3.4 Conclusion to the chapter

�e chapter concludes with a summary, a short discussion, and an outlook on how it may be
possible to further improve STELLAR’s running time through sophisticated parameter selection.

Summary. STELLAR is an e�cient method to solve the pairwise local alignment problem with
full sensitivity according to a clear quality de�nition for local alignments. �is quality de�nition
includes a minimal alignment length as well as the established measures of a maximal error rate ε
and a maximal score drop-o�. With its guarantee for full sensitivity, the method is well suited to
be applied in genome alignment approaches.

�e novel methodological contribution of STELLAR is an exact veri�cation strategy for the pre-
viously published �ltering algorithm SWIFT [134]. �e �ltering algorithm is lossless. However,
its hits were veri�ed only by heuristics until now. For STELLAR, a thorough analysis of the hits
allowed the development of a fully sensitive veri�cation strategy. �e key to full sensitivity is
the de�nition of ε-cores, which serve as starting point in the veri�cation strategy. A theoretical
proof substantiates full sensitivity according to the quality de�nition.

Systematic parameter tests for the two most important parameters of STELLAR, ε and n0, as
well as for the �ltering parameter q indicate the existence of more and less bene�cial parameter
combinations. �e tests suggest at �rst glance a general trend of the running time to increase
both with growing minimal lengths and growing maximal error rates. A careful analysis of the
test results, though, reveals a non-linear dependency of STELLAR’s running time on the maximal
error rate and minimal length, a�ributable to the �ltering speci�city.

Finally, a performance comparison to widely used and established local alignment tools con�rms
e�ciency and full sensitivity of STELLAR. On simulated data, STELLAR is the fastest of three fully
sensitive programs. Seed-based approaches can be faster but o�en miss a considerable amount
of local alignments. A comparison against BLAST on �y genomes indicates that the performance
is similar on real genomic data. �e results suggest that STELLAR is an a�ractive alternative if
full sensitivity is sought especially for moderate error rates below 10 %.

Discussion. STELLAR is an exact local alignment tool from the algorithmic point of view. From
the biological point of view, it models homology like all alignment tools with an objective func-
tion and formalizes properties that we think probable for homologous segments. Identifying
homologous segments with absolute certainty is impossible since the evolutionary history of ex-
tant biological sequences is unknown. �us, STELLAR accepts the risk of missing homologous
segments that have other properties than formalized by the objective function.
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Among the objective functions introduced in the �rst part of this chapter, the most widely ac-
cepted indicator of homology is the e-value. Local alignments with an e-value below a threshold
are called signi�cant. For feasible values of the maximal error rate and minimal length param-
eters, alignments reported by STELLAR are generally signi�cant with very low e-values. �e
implementation of STELLAR reports the maximal possible e-value for the user speci�ed param-
eters.

Nevertheless, it is possible that there are signi�cant local alignments that STELLAR does not iden-
tify: for example, a very long alignment with an error rate above ε. Seed-and-extend approaches
like BLAST put no constraint on the length and error rate and, hence, may identify these align-
ments. At the same time, they miss some signi�cant local alignments even if these alignments
have much lower e-values than many of the reported alignments. Depending on the application,
the approach of STELLAR or BLAST may be more advantageous.

Related to this, the performance evaluation described in Section 3.3.3 and 3.3.4 may seem unfair.
It compares tools that apply di�erent quality de�nitions for local alignments on a data set with
implanted local alignments that match the quality de�nition used by STELLAR: ε-matches with-
out X-drops. Implanting local alignments that match another quality de�nition would lead to
di�erent results. For example, the seed-and-extend approach implemented in BLAST promises to
be fully sensitive for local alignments without X-drops that contain a seed of a certain length.
However, BLAST uses an e-value cuto� in addition, because not all of the seed-containing align-
ments are signi�cant for homology prediction. In contrast, ε-matches of a minimal length are
guaranteed to have good (low) e-values. Consequently, the implanted local alignments in the
simulated data sets are all signi�cant and, hence, form a reasonable reference set for sensitivity
measurements.

Outlook. A disadvantage of STELLAR is that the complex parameter dependencies make the
running time unpredictable for an average user of local alignment tools. Addressing this issue,
the results of the parameter tests suggest a simple change to the method: Instead of using the
user speci�ed maximal error rate and minimal length for �ltering, STELLAR could achieve higher
�ltering speci�city with a higher maximal error rate or smaller minimal length. Eventually, only
the local alignments that conform with the user speci�ed parameters will pass veri�cation. �e
goal is to avoid the peaks in the running time.

A method to determine the next larger maximal error rate and next smaller minimal length that
result in a be�er �ltering speci�city is le� for future work. What we already observed in the
parameter tests of one data set is that a combination of ε and n0 is typically bene�cial for the
speci�city if

• τ is as large as possible but at least greater than 1,

• smin has the same or a lower value than for surrounding values of ε and n0,

• e and w are smaller than for surrounding values of ε and n0, and

• q has a value between about 10 and smin.

It remains open if it these observations can be generalized for all genomic sequences. One task
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will be to test other data sets with various degrees of similarity and di�erent sequence lengths.

Furthermore, it remains open if a q-gram length smaller than smin a�ects the sensitivity of
STELLAR. It is possible that Lemma 4 provides the only valid value of q for full sensitivity, or
maybe all q ≤ smin are valid. A detailed analysis of the results of the parameter test for smaller
q might answer this question. Values of q larger than smin and manual changes in the q-hit
threshold τ lead to lossy �ltering, but at the same time decrease the running time. One could test
whether such se�ings make STELLAR competitive to the seed-based approaches.

Finally, it might be worth to examine thoroughly the parameter ∆ introduced in the SWIFT

algorithm for saving memory. �e memory consumption was never an issue in the tests, but
the value of ∆ has an in�uence on the running time. Possibly, smaller values of ∆ improve the
running time without exceeding reasonable amounts of memory. Ideally, ∆ and the memory
consumption are automatically adapted to the available amount of memory.

All in all, there is potential to improve the performance of STELLAR, but already now it provides
an alternative to other local aligners especially if sensitivity is sought. As a further step, it will be
interesting to test the impact of missing local alignments on the accuracy of genome alignments
with a tool like STELLAR.





Chapter 4

Graph representations for genome alignments

�e comparison of graph data structures described in this chapter was realized in collaboration with
Kathrin Trappe, Manuel Holtgrewe, and Knut Reinert and has been submi�ed for publication [88]:

B. Kehr, K. Trappe, M. Holtgrewe, and K.Reinert. Graph representations for genome alignment:
a comparison. Submi�ed, 2013.

�e focus of this chapter is the representation of genome alignments in graph structures. Within
the last decade, several graph-based genome alignment approaches have been published [121,
124, 132, 133]. �ese approaches build a graph from a set of local alignments and exploit the
graph structure in order to remove inconsistencies from the set of local alignments, eventually
yielding a valid genome alignment.

�e graph structures used for genome alignment have many similarities. However, the ability of
a graph structure to represent non-colinearity o�en depends on small di�erences. Unfortunately,
the di�erences among the used graph structures and advantages over each other remain rather
elusive. In addition, labels on vertices and edges are o�en not described in detail. In some cases,
the implementation of the graph data structure even slightly deviates from the description in the
publication.

�is chapter examines alignment graphs [83], A-Bruijn graphs [131], Enredo graphs [124], and
cactus graphs [122] in detail. �e �rst part of the chapter provides formal de�nitions of the
four graph structures and of labels. Di�erences of the structures become apparent in the second
part: It compares the graph structures by describing transformations among them. �e idea
is that a graph structure provides at least as much information about a genome alignment as
all graph structures that it can be transformed into. �e third part addresses the appearance
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A B C D E F G H I J K

A C B D E F G H I J K

A C D B E H G I J J K

Figure 4.1: �ree example genomes as sequences of eleven blocks (A-K). Blocks B, C, and D have
di�erent orders and orientations in all three genomes, and blocks G and H changed with respect to
the third genome. Block F does not appear in the third genome and the reverse complement of block
J appears twice. Figures 4.2, 4.3, 4.6, and 4.8 show the representation of this set of blocks as alignment
graph, A-Bruijn graph, Enredo graph, and cactus graph.

of substructures in the graphs. Substructures indicate inconsistencies in the initial set of local
alignments and are subject to removal in graph-based genome alignment approaches. �e fourth
part of the chapter describes modi�cations for the removal of substructures and their e�ects on
the graphs. Finally, the conclusion in the last part of the chapter summarizes and discusses this
comparison of graph data structures for genome alignments.

4.1 Definitions of selected graph representations

�is part of the chapter uni�es de�nitions of the four graph representations by assuming the same
input for building the graphs and by using the same terminology, namely the terms segment,
block, and adjacency (see Chapter 2). Given is always a set of non-overlapping blocks B de�ned
on a set of genomes G. We assume the blocks to be a tiling of G. A tiling (see de�nition in
Section 2.4) can be obtained from an arbitrary set of non-overlapping blocks by adding blocks of
size one for all non-empty adjacencies.

For all four graphs, we de�ne a graph model M = (G, `) as an ordered pair of a graph structure
G = (V,E) and a labeling function `. �e function ` labels the vertices V or the edges E of
the structure G. We de�ne ` such that the set of blocks B can be recovered from the model M .
�e following sections display example structures of each graph for the three genomes given in
Fig. 4.1.

Furthermore, this part of the chapter addresses the capabilities of the graph structures to model
non-colinear changes among the genomes. We discuss whether duplications, translocations,
and inversions are visible in the graph structures, i. e. without using labels. Some non-colinear
changes are ambiguous or not visible in several graph structures, which is proven by examples.
In addition, each section suggests sparse labeling functions for the respective graph that provide
only as much information as necessary to model all non-colinear changes. �e next part of the
chapter (Part 4.2) uses the sparse labeling functions to describe transformations.
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4.1.1 Alignment graphs

Alignment graphs were originally de�ned for colinear multiple alignments [83]. Still, they allow
the modeling of non-colinear changes (see below). In Kececioglu’s original de�nition of the
alignment graph structure [83], vertices represent single sequence characters, and edges connect
vertices of aligned characters. �e alignment graph has since been used in various versions, e. g.
with additional sequence edges [136] and with vertices representing genes [62] or segments [135]
instead of single characters. We use the more general segment-based version with additional
sequence edges.

Definition of graph model and structure. In the following section, let M = (G, `) be an
alignment graph model de�ned by an alignment graph structure G = (V,E) and a labeling
function ` for the vertices V of the structure G. �e vertices of the alignment graph structure G
represent segments (occurrences of the blocks B) and are connected by two sets of edges E =

EA ∪ EB . Directed adjacency edges EA connect vertices that represent adjacent segments, and
undirected block edges EB connect vertices that represent occurrences of the same block. �us,
alignment graphs are mixed graphs. See Fig. 4.2 for an example alignment graph.

Vertices. �e alignment graph structure has a vertex v ∈ V for each segment s ∈ SB from the
set of all occurrences SB =

⋃
B∈B B of the blocks B. �e labeling function ` : V → SB of the

alignment graph model M associates each vertex v ∈ V of the alignment graph structure with
the corresponding segment s ∈ SB such that `(v) = s.

Directed edges. �e set of directed adjacency edgesEA represents adjacencies between pairs of
segments s1, s2 ∈ SB in the alignment graph structure. A directed edge e ∈ EA exists for every

A B C D E F G H I J K

A C D B E H G I J J K

A C B D E F G H I J K

A B C D E F G H I J K

A C B D E F G H I J K

A C D B E H G I J J K

Figure 4.2: An example alignment graph (bo�om) for the same set of blocks as shown in Fig. 4.1
(top). Vertices and adjacency edges are colored by genome. Block edges are shown in black. Dashed
block edges connect vertices that represent segments in opposite orientation. Note that colors, line
styles, and vertex labels (e.g. A or C) do not belong to the structure G of an alignment graph but are
labels.
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two vertices v1, v2 ∈ V that are labeled with adjacent segments s1 = `(v1) and s2 = `(v2). Let
s1 = (i1, l1, o1) and s2 = (i2, l2, o2), then e = (v1, v2) if i1 < i2, and e = (v2, v1) if i2 < i1.

Undirected edges. In the alignment graph structure, there is an undirected block edge e ∈ EB
between any two vertices v1, v2 ∈ V that are labeled with two occurrences s1, s2 ∈ B of the
same block B ∈ B. As a consequence, each block forms an EB-connected component.

Recovering B. By determining the set of all EB-connected components C, we may recover the
set of blocks B from the alignment graph model. Given that B is a tiling of G, each connected
component C ∈ C corresponds to one block B ∈ B. Let VC ⊆ V be the set of vertices of the
component C , then B = {`(v) | v ∈ VC} is the corresponding block.

Representation of non-colinearity in the graph structure. �e above de�nition of the
alignment graph structure models duplications and translocations but no inversions. Dupli-
cations appear in G as block edges connecting vertices that represent segments of the same
genome1. Translocations appear in G as mixed cycles. Inversions are not visible in the align-
ment graph structure because the orientation of segments remains unclear without labels (see
also Fig. 4.2).

To model inversions in the alignment graph without using full labels, we de�ne the sparse label-
ing function `inv : V → {+,−}. �e function `inv associates each vertex v ∈ V only with an
orientation bit. If `(v) = (i, l, o), the sparse label of v is `inv(v) = o. As an alternative to sparse
vertex labels, it is possible to model inversions by block edge labels: bits that indicate equal or
opposite orientation of the two segments represented by the endpoints of the edge (visualized as
dashed and solid lines in Fig. 4.2 or red and black edges in [14]).

4.1.2 A-Bruijn graphs

Pevzner et al. introduced A-Bruijn graphs originally for de novo repeat classi�cation [131] as a
generalization of de Bruijn graphs [32, 39]. �e structure of A-Bruijn graphs revisits the idea of
merging aligned vertices in the alignment graph structure, which was already brie�y mentioned
by Kececioglu [83].

Definition of graph model and structure. In this section, let M = (G, `) be an A-Bruijn
graph model de�ned by an A-Bruijn graph structure G = (V,E) and a labeling function ` for
the vertices V of the structureG. A-Bruijn graph structures have one vertex per block. All edges
are directed and represent sequence adjacencies. See Fig. 4.3 for an example A-Bruijn graph.

Vertices. In the A-Bruijn graph structure, there is a vertex v ∈ V for every block B ∈ B.
�ere is only one vertex per block regardless of the block’s size and of duplications. �e labeling
function ` : V → B of the A-Bruijn graph model associates each vertex v ∈ V of the A-Bruijn
graph structure with the corresponding block B ∈ B such that `(v) = B.

1Note that G is not n-partite as in the original de�nition of an alignment graph [83] because of these edges.
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A B C D E F G H I J K

A B C D E F G H I J K

A C B D E F G H I J K

A C D B E H G I J J K

Figure 4.3: An example A-Bruijn graph (bo�om) for the same set of blocks as shown in Fig. 4.1 (top).
Edges are colored by genome. Note that colors and vertex labels are not present in the structure G
of an A-Bruijn graph.

A

B

C

D

E

A B C B E

A D C D E

or

A B C D E

A D C B E

Figure 4.4: A section of an A-Bruijn graph structure (le�) representing �ve blocks each of size two.
�e example demonstrates the ambiguity of A-Bruijn graph structures. �e structure results either
from duplications (top right) or from translocations (bo�om right) of block B and D.

Edges. �e A-Bruijn graph structure has an edge e ∈ E for every pair of adjacent segments
s1 ∈ B1 and s2 ∈ B2, where B1, B2 ∈ B. �e edge e connects the two vertices v1, v2 ∈ V

that represent the blocks B1 = `(v1) and B2 = `(v2). If two adjacent segments are occurrences
of the same block B1 = B2, the edge is a loop. Let s1 = (i1, l1, o1) and s2 = (i2, l2, o2), then
e = (v1, v2) if i1 < i2, and e = (v2, v1) if i2 < i1. If multiple pairs of adjacent segments exist
in the same two blocks, then there are multiple edges in E that connect the same two vertices.
�us, G is a multigraph.

Recovering B. Given the labeling function ` of the A-Bruijn graph model M , which labels each
vertex v ∈ V of an A-Bruijn graph structure G with a block B ∈ B, recovering the set of blocks
B from M is straightforward: �e set of blocks B is simply the set of labels `(v) of all vertices
v ∈ V .

Representation of non-colinearity in the graph structure. �e A-Bruijn graph structure
models translocations and duplications although they create ambiguity. Inversions are not vis-
ible in the A-Bruijn graph structure. Fig. 4.4 shows an example A-Bruijn graph structure that
represents either duplications or translocations.

�e ambiguity of duplications and translocations in the A-Bruijn graph structure results from
the fact that a vertex represents multiple segments (all block occurrences). Hence, a vertex can
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Figure 4.5:A section of an A-Bruijn graph structure representing two blocks each of size three where
the vertices are labeled with sets of orientation bits (le�). According to the labels, one segment per
block is in the reverse complemented orientation. �e labels do not resolve ambiguity since, the
two reverse complemented segments can belong to two di�erent genomes (middle) or to the same
genome (right).

have multiple incoming and outgoing edges – one for each occurrence of the block. �erefore,
labels that allow a mapping of incoming edges to outgoing edges resolve the ambiguity.

We de�ne the sparse labeling function `dup : E → N as a strict total order on the edges E to
resolve ambiguity. �e function `dup assigns numbers to the edges such that `dup(e1) < `dup(e2)

for two edges e1, e2 ∈ E if a1 < a2, where a1 is the adjacency position represented by e1 and
a2 is the adjacency positions represented by e2. Note that the full labels ` of the graph model are
necessary for determining the adjacency positions.

To model inversions in the A-Bruijn graph without providing the full labels `, we de�ne the
sparse labeling function `inv : E → {+,−} × {+,−}. �e function `inv associates each edge
E with two bits indicating the orientations of the two adjacent segments that de�ne the edge.
�en, the sparse label of the edge e = (v1, v2) is `inv(e) = (o1, o2) where (i1, l1, o1) ∈ `(v1) and
(i2, l2, o2) ∈ `(v2) are the two adjacent segments. Only one orientation bit per block occurrence
as label on the vertices is not su�cient as the example in Fig. 4.5 proves.

4.1.3 Enredo graphs

Enredo graphs have been introduced in the context of a pipeline for genome alignment that
consists of the programs Enredo and Pecan [124]. �e program Enredo partitions genomes into
segments with the help of Enredo graphs, and the program Pecan computes nucleotide-level co-
linear alignments of the segments. �e structure of Enredo graphs resembles breakpoint graphs
from rearrangement studies [3, 12, 86].

Since we describe Enredo graphs separately from the Enredo method, the de�nitions below di�er
slightly from the original de�nition [124]. See Section B of the appendix for a description of the
di�erences.

Definition of graph model and structure. Let now M = (G, `) be an Enredo graph model
de�ned by the Enredo graph structure G = (V,E) and a labeling function ` for undirected
edges of the structure G. Enredo graphs have two vertices per block that are connected by two
sets of edges E = EA ∪ EB . Directed adjacency edges EA represent segment adjacencies, and
undirected block edges EB connect the head and tail vertex of blocks. �us, Enredo graphs are
mixed graphs. See Fig. 4.6 for an example Enredo graph.
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Figure 4.6: An example Enredo graph (bo�om) for the same set of blocks as shown in Fig. 4.1 (top).
Adjacency edges are colored by genome, block edges are shown in black. Note that colors and block
edge labels are not present in the structure G of an Enredo graph.

Vertices. An Enredo graph structure has two vertices for each blockB ∈ B, a tail vertex vt ∈ V
and head vertex vh ∈ V . �e two vertices represent the ends of B. Given only the structure and
not the model, the tail vertex and the head vertex are o�en not distinguishable from each other.

Undirected edges. In the Enredo graph structure, there is an undirected block edge e ∈ EB for
every pair of tail and head vertex vt, vh ∈ V that represents the two ends of a block B ∈ B. �e
labeling function ` : EB → B of the Enredo graph model associates each block edge e ∈ EB of
the Enredo graph structure with the corresponding block B ∈ B such that `(e) = B.

Directed edges. �e Enredo graph structure has a directed adjacency edge e ∈ EA for every
pair of adjacent segments s1 ∈ B1 and s2 ∈ B2, where B1, B2 ∈ B. Like in A-Bruijn graphs,
the orientation of e depends on the start positions i1 and i2 of the segments s1 = (i1, l1, o1)

and s2 = (i2, l2, o2), the edge is a loop if B1 = B2, and G is a multigraph. W. l. o. g. let i1 < i2.
�en, the source vertex of the edge e is the head vertex of block B1 if o1 = +, and the tail vertex
of B1 if o1 = −. Further, the target vertex of the edge e is the tail vertex of block B2 if o2 = +,
and the head vertex of B2 if o2 = −.

Recovering B. Given the labeling function ` of the Enredo graph model M , which labels each
block edge e ∈ EB of the Enredo graph structure G with a block B ∈ B, recovering the set of
blocks B from M is straightforward: �e set of blocks B is simply the set of labels `(e) of all
block edges e ∈ EB .

Representation of non-colinearity in the graph structure. All the types of non-colinear
changes are visible in the Enredo graph structure but duplications and translocations create am-
biguity. Fig. 4.7 shows the same example for ambiguity in the Enredo graph structure as Fig. 4.4
shows in the A-Bruijn graph structure. �e representation of blocks in two vertices that are con-
nected by a block edge does not resolve this ambiguity but visualizes the relative orientations of
block occurrences, thus models inversions.

To resolve ambiguity of duplications and translocations, we de�ne the sparse labeling function
`dup : EA → N as a strict total order on the edges E. �e function `dup numbers the edges such
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Figure 4.7: A section of an Enredo graph structure (le�) representing �ve blocks each of size two.
�e example demonstrates the ambiguity of Enredo graph structures. �e structure results either
from duplications (top right) or from translocations (bo�om right) of block B and D.

that `dup(e1) < `dup(e2) for two edges e1, e2 ∈ EA if a1 < a2, where a1 is the adjacency position
represented by e1 and a2 is the adjacency position represented by e2. �is is analogous to the
de�nition of `dup in A-Bruijn graphs. Again, the full labels ` of the graph model are necessary to
determine the adjacency positions.

4.1.4 Cactus graphs

Paten et al. introduced cactus graphs for whole-genome alignments in 2011 [121, 122]. Cactus
graphs in general date back to 1953 [75]. �ey have the property that every edge belongs to at
most one simple cycle, or equivalently, any two simple cycles share at most one vertex. �is is
called the cactus property. Cactus graphs for whole-genome alignments have a second property,
the existence of an Eulerian circuit. As a consequence, every edge belongs to exactly one simple
cycle. In the following, we only refer to cactus graphs that ful�ll both properties.

�e two properties of cactus graphs are favorable for representing genome alignments: �e cac-
tus property subdivides the graph (and genomes) into independent units, and the Eulerian circuit
conveniently provides a consensus genome.

Definition of graph model and structure. In the following, let M = (G, `) be a cactus
graph model de�ned by a cactus graph structure G = (V,E) and a labeling function ` for the
edges of the structure G. �e vertices of cactus graph structures represent sets of adjacencies.
All edges are undirected and represent blocks. See Fig. 4.8 for an example cactus graph.

Vertices. �e vertices V of the cactus graph structure G partition the set of all segment adja-
cencies into a set of pairwisely disjoint subsets Ω. �ere is a vertex v ∈ V for each subset ν ∈ Ω.
�e exact steps to determine Ω are described in Section 4.2.3 along with the transformation from
Enredo graphs.

Edges. �e cactus graph structure has an undirected edge e ∈ E for every block B ∈ B. �e
edge e connects the two vertices u, v ∈ V that represent two sets of adjacencies µ, ν ∈ Ω, where
µ contains all adjacencies of one end of B and ν contains all adjacencies of the other end of B.
�e edge e is a loop if µ = ν. �e labeling function ` : E → B of the cactus graph model
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Figure 4.8: An example cactus graph (bo�om le�) for the same set of blocks as shown in Fig. 4.1
(top). Adjacencies are hidden in the vertices of cactus graphs. On the bo�om right, all adjacencies
are shown in enlarged vertices colored by genome.
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Figure 4.9: A section of a cactus graph (le�) representing a set of three blocks. �e example demon-
strates the ambiguity of cactus graph structures. �e structure results either from an inversion (mid-
dle) or from a duplication (right) of block B.

associates each edge e ∈ E of the cactus graph structure with the corresponding block B ∈ B
such that `(e) = B.

Recovering B. Given the labeling function ` of the cactus graph model M , which labels each
edge e ∈ E of the cactus graph structure G with a block B ∈ B, recovering the set of blocks B
from M is straightforward: �e set of blocks B is simply the set of labels `(e) of all edges e ∈ E.

Representation of non-colinearity in the graph structure. All the types of non-colinear
changes can be visible in the cactus graph structure and appear as cycles, but they all create
ambiguity. Fig. 4.9 shows an example cactus graph structure that either represents an inversion
or a duplication. �e �gure demonstrates that it is not possible to unambiguously recognize
single duplications or inversions in the cactus graph structure G, and the example in Fig. 4.14
demonstrates the same for translocations. Inverted tandem duplications may not be visible at all
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Figure 4.10: A section of a cactus graph structure (le�) representing a set of three blocks, and two
possible sections of genomes (right) that result in the structure. �e inverted tandem duplication in
the �rst genome is not visible in the cactus graph structure.
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Figure 4.11: �e transformations between the four graph structures (light blue boxes) described in
4.2. Bent arrows indicate that a transformation is ambiguous without labels and green boxes name
the sparse labeling functions used as additional input for describing these transformations.

as Fig. 4.10 shows.

To resolve ambiguity in the cactus graph structure, we de�ne the sparse labeling function `adj :

E → 2{+,−}×N. �e function `adj associates an edge e ∈ E of the cactus graph structure
with a set of pairs of orientation bits and positive numbers, one pair for each occurrence of the
block `(e) = B. �e orientation bits in the labels `adj indicate the relative orientation of the
block occurrences. �e numbers impose a strict total order ≺ on all block occurrences s ∈ SB:
�e relation s1 ≺ s2 holds for two block occurrences s1, s2 ∈ SB if i1 < i2, where s1 =

(i1, l1, o1) and s2 = (i2, l2, o2). �e total order on the edges resolves ambiguity for duplications
and translocations as well as for inversions of blocks that are not represented by loop edges. To
resolve ambiguity for all inversions, the orientation bits are necessary.

4.2 Transformations between the graph structures

A transformation from a graph structure G to another graph structure G′ is an operation that
outputs G′ given G, where both G and G′ represent the same genome alignment. �is part of
the chapter describes how it is possible to transform the four graph structures described in 4.1
into each other. More precisely, it addresses the transformations depicted as arrows in Fig. 4.11.

Transformations between graph models are trivial. �e labeling functions ` are de�ned such that
it is possible to recover the set of blocks B from the graph modelsM = (G, `). �e set B is input
for building all four graph models as described in 4.1. �us, a transformation from a graph model
M to another graph model M ′ is always possible via B.
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Figure 4.12: A section of an A-Bruijn graph (le�) that can be transformed into two alternative sec-
tions of alignment graphs (right). �e example demonstrates that a transformation from A-Bruijn
graph structures to alignment graph structures is ambiguous.

Since the graph structures di�er in their representation of non-colinear changes, some transfor-
mations between the graph structures are impossible (bent arrows in Fig. 4.11). More precisely,
a transformation from G to G′ is impossible if G comprises less information than G′. If this is
the case, the sections below provide examples for ambiguity that prove di�erences in the infor-
mation content of the graph structures. �e corresponding transformations are described using
the sparse labeling functions as additional input.

4.2.1 Transformations between alignment and A-Bruijn graphs

�e alignment graph structure and the A-Bruijn graph structure both do not model inversions
(see Section 4.1.1 and 4.1.2). �us, additional labels that recover information about the orienta-
tion of segments are not necessary for a transformation between the two graph structures. How-
ever, the A-Bruijn graph structure is ambiguous for duplications and translocations, whereas the
alignment graph structure is not. For this reason, the transformation from A-Bruijn graph struc-
tures to alignment graph structures requires additional labels that resolve this ambiguity (see
also Fig. 4.12).

From alignment graphs to A-Bruijn graphs. Given only the structure of an alignment
graph G = (V,EA ∪ EB), the following describes the transformation from G to an A-Bruijn
graph structure G′ = (V ′, E′). �e description follows the construction of A-Bruijn graphs
in [131] and uses a many-to-one mappingm from alignment graph vertices V to A-Bruijn graph
vertices V ′.

First, compute the set of EB-connected components C of the alignment graph structure. Next,
add a vertex v′ to the initially empty set of A-Bruijn graph vertices V ′ for each EB-connected
component C ∈ C. Let VC ⊆ V be the set of vertices of the EB-connected component C . Keep
the mappings of all vertices v ∈ VC to the vertex v′ as labels m[v] = v′.

Using this mapping, transfer the adjacency edges EA to the A-Bruijn graph structure as follows:
For the source and target vertices u, v ∈ V of each edge e = (u, v) in the set of alignment
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graph adjacency edges EA, determine the corresponding A-Bruijn graph vertices u′ = m[u] and
v′ = m[v]. Finally, add an edge e′ = (u′, v′) to the set of A-Bruijn graph edges E′.

From A-Bruijn graphs to alignment graphs. Given the structure of an A-Bruijn graph
G = (V,E) and the sparse labeling function `dup : E → N, this section describes the trans-
formation fromGwith the labels `dup to an alignment graph structureG′ = (V ′, E′A∪E′B). �e
transformation successively creates a one-to-many mapping m from A-Bruijn graph vertices V
to alignment graph vertices V ′.

Initially, set m[v] = {} for all v ∈ V . Every time when adding a vertex v′ to the set of alignment
graph vertices V ′ in the following steps, update the mappingm[v] of the corresponding A-Bruijn
graph vertex v ∈ V . Furthermore, connect v′ with all other vertices u′ ∈ m[v] by block edges
E′B . �en, the mapping m[v] = {v′1, v′2, . . . , v′|V ′C |} holds all vertices V ′C of a E′B-connected
component C of G′ at the end of the transformation.

Iterate over the edges E = {e1, e2, . . . , e|E|} of the A-Bruijn graph in increasing order of labels:
`dup(e1) < `dup(e2) < · · · < `dup(e|E|). For each edge ei ∈ E, i = 1, . . . , |E| apply the
following steps: If ei = (u, v) represents the adjacency of the �rst block in a chromosome, add a
vertex u′ to the set of alignment graph vertices V ′. Add block edges between u′ and all vertices
in the set m[u] to the set E′B , and update m[u] by adding u′. Next, add a vertex v′ to the set of
alignment graph vertices V ′. Add block edges between v′ and all vertices in the setm[v] to the set
E′B , and then update m[u] by adding v′. Finally, add an edge e′ = (u′, v′) to the set of alignment
graph adjacency edges E′A. If the edge represents not the last adjacency in a chromosome, keep
v′ for the next edge ei+1 ∈ E as u′.

4.2.2 Transformations between A-Bruijn and Enredo graphs

In both the A-Bruijn graph structure and the Enredo graph structure duplications and translo-
cations create ambiguity. �e two structures have the same information content with respect
to duplications and translocations as the transformations below show. However, the A-Bruijn
graph structure does not model inversions, whereas the Enredo graph structure does. �us, the
transformation from A-Bruijn graph structures to Enredo graph structures requires additional
labels that indicate the orientation of block occurrences in the A-Bruijn graph (see also Fig. 4.13).

�e following transformations are based on the de�nition of Enredo graphs from Section 4.1.3
with the di�erences to the original de�nition as explained in Section B of the appendix.

From A-Bruijn graphs to Enredo graphs. Given an A-Bruijn graph structure G = (V,E)

and the sparse labeling function `inv : E → {+,−} × {+,−}, the following describes the
transformation from G with the labels `inv to an Enredo graph structure G′ = (V ′, E′A ∪ E′B).
�e transformation uses a one-to-one mapping m from A-Bruijn graph vertices V to Enredo
graph block edges E′B . Furthermore, the Enredo graph vertices V ′ need to be labeled as head or
tail vertices to correctly add the adjacency edges E′A.
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Figure 4.13: A section of an A-Bruijn graph structure (le�) that can be transformed into two alter-
native sections of Enredo graph structures (right). �e example demonstrates that a transformation
from A-Bruijn graph structures to Enredo graph structures is ambiguous.

First, add a tail vertex v′t and a head vertex v′h to the set of Enredo graph vertices V ′ and a block
edge e′ = {v′t, v′h} to the set of Enredo graph block edges E′B for each A-Bruijn graph vertex
v ∈ V . Keep the mappings of all vertices v ∈ V to the block edges e′ ∈ E′B as labels m[v] = e′

for the next steps.

Transfer the A-Bruijn graph edges E to the Enredo graph structure using `inv and m as follows:
For the source and target vertices u, v ∈ V of every edge e = (u, v) in the set of A-Bruijn
graph edges E, determine the corresponding Enredo graph block edges m[u] = {u′t, u′h} and
m[v] = {v′t, v′h}. Add an edge e′ = (u′x, v

′
y) to the set of Enredo graph adjacency edges E′A and

choose u′x and v′y according to the label `inv(e) = (o1, o2). If o1 = +, the source vertex u′x = u′h
and otherwise u′x = u′t. If o2 = +, the target vertex v′y = v′t and otherwise v′y = v′h.

From Enredo graphs to A-Bruijn graphs. Given only the structure of an Enredo graphG =

(V,EA ∪ EB), this section describes the transformation from G to an A-Bruijn graph structure
G′ = (V ′, E′). �e description uses a one-to-one mapping m from Enredo graph block edges
EB to A-Bruijn graph vertices V ′.

As a �rst step, add a vertex v′ to the set of A-Bruijn graph vertices V ′ for each Enredo graph
block edge e ∈ EB . Keep the mapping of the edge e to the vertex v′ as a label m[e] = v′.

Transfer the Enredo graph adjacency edges EA to the A-Bruijn graph structure as follows: For
each adjacency edge e = (u, v), �nd the two block edges eu, ev ∈ EB that are incident to the the
two endpoints u, v ∈ V of e. Determine the corresponding vertices u′ = m[eu] and v′ = m[ev]

in the set of A-Bruijn graph vertices V ′. Finally, add an edge e′ = (u′, v′) to the set of A-Bruijn
graph edges E′.

4.2.3 Transformations between Enredo and cactus graphs

In both the Enredo graph structure and the cactus graph structure all types of non-colinear
changes can be visible but both structures are ambiguous. However, the Enredo graph struc-
ture is only ambiguous for duplications and translocations, whereas the cactus graph structure
is also ambiguous for inversions. Furthermore, the transformation from Enredo graph structures
to cactus graph structures can be ambiguous even if no inversions are present as the example in
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Figure 4.14: A section of a cactus graph structure (le�) that can be transformed into two alternative
sections of Enredo graph structures (middle and right). �e example demonstrates that a transfor-
mation from cactus graph structures to Enredo graph structures is ambiguous.

Fig. 4.14 proves. �e cactus graph structure hides information about adjacencies in vertices that
is visible in the Enredo graph structure. For this reason, the transformation from cactus graph
structures to Enredo graph structures requires additional labels that indicate the orientation and
adjacencies of block occurrences in cactus graphs.

From Enredo graphs to cactus graphs. Given only the structure of an Enredo graph G =

(V,EA∪EB), this section describes the transformation fromG to a cactus graph structureG′ =
(V ′, E′). �e description follows the construction of cactus graphs in [121, 122]. It uses a one-
to-many mapping m from Enredo graph vertices V to cactus graph vertices V ′ for constructing
a precursor cactus graph. �is precursor cactus graph is subsequently modi�ed in two steps to
yield the �nal cactus graph G′.

First, add additional adjacency edges to the Enredo graph that connect the ends of each genome.
Compute the set of EA-connected components CA of the Enredo graph structure. Next, add
a vertex v′ to the set of cactus graph vertices V ′ for each C ∈ CA. Let VC ⊆ V be the set
of Enredo graph vertices of C . Keep the mappings of all vertices v ∈ VC to the vertex v′ as
labels m[v] = v′. �e additional adjacency edges in the Enredo graph ensure that the ends of all
genomes are represented by a single vertex in the cactus graph, the origin vertex φ.

Using the mapping, transfer the block edgesEB to the cactus graph structure as follows: For the
source and the target vertices u, v ∈ V of each edge e = {u, v} in the set of Enredo graph block
edges EB , determine the corresponding cactus graph vertices u′ = m[u] and v′ = m[v]. Add an
edge e′ = {u′, v′} to the set of cactus graph edgesE′. �is yields the precursor cactus graph (see
Fig. 4.15 for an example).

Compute the set of 3-edge connected components C3 of the precursor cactus graph. Add a vertex
v′ to the set of cactus graph vertices V ′ for each 3-edge connected component C ∈ C3. Let
V ′C ⊆ V ′ be the set of vertices of C . For each cactus graph vertex w′ ∈ V ′C , determine the set
of precursor cactus graph edges E′w ⊆ E′ incident to w′. For each edge e′ = {u′, w′} in the set
E′w, add another edge e′ = {u′, v′} to the set of cactus graph edges E′. Finally, remove w′ and
all incident edges e′ ∈ E′w from the precursor cactus graph.

In a last step, identify the set of edges E′2 ⊆ E′ that disconnect the modi�ed precursor cactus
graph. Compute the set of connected components C2 of theE′2-induced subgraph of the modi�ed
precursor cactus graph. Replace the vertices VC ⊆ V of each connected component C ∈ C2

and the incident edges by a single vertex v′ and corresponding edges as described for 3-edge
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Figure 4.15: An example precursor cactus graph (bo�om le�) for the same set of blocks as shown
in Fig. 4.1 (top) and the �nal cactus graph shown in Fig. 4.8. Adjacencies are already hidden in the
vertices of the precursor cactus graph. On the bo�om right, all adjacencies are shown in enlarged
vertices colored by genome.

connected components in the previous step. �is concludes the transformation to the cactus
graph G′ = (V ′, E′).

From cactus graphs to Enredo graphs. Given the structure of a cactus graph G = (V,E)

and the sparse labeling function `adj : E → 2{+,−}×N, the following describes the transfor-
mation from G with the labels `adj to an Enredo graph structure G′ = (V ′, E′A ∪ E′B). �e
transformation uses a one-to-one mapping m from cactus graph edges E to Enredo graph block
edges E′B with a direction. �e direction of the block edges in the mapping is arbitrary but �xed
and allows to distinguish between tail and head vertex.

Iterate over the cactus graph edges E visiting each edge e ∈ E as many times as there are pairs
in the label `adj(e) (this is the number of occurrences of the represented block): Start with the
edge e0 ∈ E that contains the smallest number n0 in one of the pairs in its label `adj(e0). �is
edge e0 = {φ, α} is incident to the origin vertex φ ∈ V and another vertex α ∈ V . It is possible
that α = φ. Continue with the edge e1 ∈ E that contains the next larger number n1 > n0 in one
of the pairs in its label `adj(e1). �e edge e1 = {α, β} is incident to the vertex α and to another
vertex β ∈ V . Note that e0 = e1 is possible if φ = β. Repeat the same until reaching the end of
all genomes G.

During the iteration, add vertices and edges to the Enredo graph. For e0, add a pair of vertices
u′t, u

′
h to the set of Enredo graph vertices V ′ and an edge e′ = {u′t, u′h} to the set of Enredo graph
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block edges E′B . Map e0 to e′ as a label m[e0] = (u′t, u
′
h), and keep u′h for the next edge as u′x.

For every further edge ei ∈ E visited during the iteration, add a pair of vertices v′t, v′h and a block
edge e′ = {v′t, v′h} to the Enredo graph if the mapping of the edge ei is unspeci�ed. Otherwise,
determine the block edge e′ ∈ E′B using the label m[ei] = (v′t, v

′
h). In both cases, add a directed

edge e′a = (u′x, v
′
y) to the set of Enredo graph adjacency edges E′A. �e vertex u′x is from the

previous step. �e orientation bit o associated with the number in the label `adj(ei) determines
v′y . If o = +, then v′y = v′t and keep v′h for the next step as u′x. If o = −, then v′y = v′h and keep
v′t for the next step as u′x.

4.3 Substructures in the alignments

Substructures in genome alignments provide information about the rearrangement of the ge-
nomes with respect to each other and about inconsistencies in the alignment. �is part of the
chapter describes classes of substructures that we compiled from several graph-based genome
alignment approaches, namely from ABA [133], DRIMM-Synteny [132], Enredo [124], and Cac-

tus [121].

�e following three sections provide de�nitions for colinear paths, visiting paths, and small cy-
cles on the set of blocksB. In addition, the sections describe the appearance of these substructures
in the graph structures, and discuss whether it is possible to unambiguously identify them in the
graph structures. Identi�cation in the graph models is always possible given that B can be recov-
ered from MG. Finally, the last section brie�y addresses two somewhat di�erent substructures
used by the Cactus method, chains and groups.

4.3.1 Colinear paths

�e set of maximal colinear paths of a genome alignment de�nes the segmentation of the ge-
nomes. Although only the Enredo method explicitly addresses colinear paths (see also Sec-
tion 4.4.3), all graph-based genome alignment approaches aim at maximizing colinear paths in
size and length.

Definition of maximal colinear paths. Given a set of blocks B de�ned on a set of genomes
G. A colinear path is a set of k ≥ 1 blocks B1, . . . , Bk ∈ B with the following property for all
Bi with i = 2, . . . , k − 1: One end of block Bi and one end of block Bi−1 are adjacent without
breakpoint, and the other end of Bi and one end of block Bi+1 are adjacent without breakpoint.
For the remainder of this chapter, we assume w. l. o. g. that the head of B1 is adjacent to B2

and the tail of Bk is adjacent to Bk−1 for any colinear path. A colinear path is maximal if it is
bounded by breakpoints, that is, any block that is adjacent to B1 or Bk other than B2 and Bk−1

is adjacent with breakpoint.

All blocks of a colinear path have the same size b, which is also the size of the colinear path. �e
concatenations of the adjacent segments in a colinear path give longer segments s1, . . . , sb of
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Figure 4.16: A colinear path formed by three segments each being the concatenation of occurrences
of blocks A, B, C, D, and E. �e �gure displays the relevant parts of genomes as sequences of blocks
(top le�) as well as the appearance of this colinear path in an alignment graph (bo�om le�), in an
A-Bruijn graph (top right), in an Enredo graph (middle right), and in a cactus graph (bo�om right).

the genomes G reaching from the tails of the segments in B1 to the heads of the segments in Bk.
For every j = 1, . . . , b, the segment sj can be in the forward orientation or in the reverse com-
plemented orientation. �e length of the colinear path is the length of the segments s1, . . . , sb. If
the segments have varying lengths, we suggest to use the median of |s1|, . . . , |sb| as the length
of the colinear path.

Appearance in graph structures. Figure 4.16 shows an example colinear path and its repre-
sentation in the four graph structures.

In an alignment graph structure G = (V,EA ∪ EB), a colinear path appears as a set of EB-
connected components C1, . . . , Ck. In this set, all EB-connected components Ci with i =

1, . . . , k have the same number of vertices b. Furthermore, exactly b adjacency edges connect
the vertices of two consecutive EB-connected components Ci and Ci+1 for all i = 1, . . . , k− 1.

In an A-Bruijn, Enredo, and cactus graph structure, colinear paths appear as simple paths without
branching vertices except for the �rst and last vertex. More formally, let V be the set of vertices of
any of the three graph structures. �en, a colinear path appears as a simple path v1v2 . . . vk−1vk
where v1, . . . , vk ∈ V and where v2, . . . , vk−1 are non-branching vertices.

Identification in graph structures. In order to identify a colinear path unambiguously, a
graph structure needs to model all inversions. �erefore, the identi�cation of colinear paths in
alignment, A-Bruijn, and cactus graph structures is not possible.

�e Enredo graph structure is the only structure that allows to identify colinear paths unam-
biguously. Inversions are visible and do not create ambiguity. In addition, duplications and
translocations introduce branching vertices. �us, every simple path in Enredo graphs without
branching vertices as described above is a colinear path.
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4.3.2 Visiting paths

We here suggest to summarize a number of similar substructures as visiting paths. �ese sub-
structures include “microblocks” from DRIMM-Synteny, the blocks split in the “joining” opera-
tion of the Enredo method, and the �rst type of “aberrant homologies” from the Enredo method
as well as retrotransposed pseudogenes from the Enredo method.

Definition of visiting paths. Visiting paths are maximal colinear paths with an additional
property of the adjacencies of the �rst and last block. Given again a set of blocks B de�ned on
a set of genomes G. Let the set of blocks B1, . . . , Bk ∈ B be a maximal colinear path of size
b and let s1, . . . , sb be the concatenations of the adjacent block occurrences along the colinear
path. �en, B1 . . . Bk is also a visiting path if there is a pair of blocks B0, Bk+1 ∈ B where B0

is adjacent to B1 and Bk+1 is adjacent to Bk such that each segment sj , j ∈ {1, . . . , b}, that
is adjacent to a segment in Bk is also adjacent to a segment in B0, and each segment sj that is
adjacent to B0 is also adjacent to Bk.

Appearance in graph structures. Figure 4.17 shows an example visiting path and its repre-
sentation in the four graph structures. �e appearance of visiting paths in the graph structures
is similar to the appearance of colinear paths. In cactus graph structures, it is even identical. �e
following describes the di�erences for alignment, A-Bruijn, and Enredo graph structures.

For every visiting path in alignment graph structures, there are EB-connected components C0

and Ck+1 that are connected by adjacency edges to the �rst and last EB-connected components
C1 and Ck of the visiting path, respectively. Furthermore, there is a path without block edges
from C0 to Ck+1 for every segment in C0 that is adjacent to a segment in C1 and for every
segment in Ck+1 that is adjacent to a segment in Ck.

V A B C

I A B C

I A B C

A B C

A B C

A B C

A B C

A B C

A
B C

Figure 4.17: A visiting path formed by three segments each being the concatenation of occurrences
of blocks A, B, and C. �e �gure displays the relevant parts of genomes as sequences of blocks (top
le�) as well as the appearance of this visiting path in an alignment graph (bo�om le�), in an A-Bruijn
graph (top right), in an Enredo graph (middle right), and in a cactus graph (bo�om right). Do�ed
and incomplete vertices indicate the possibility of more incident edges.
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Figure 4.18: A piece of an Enredo graph structure (le�) representing �ve blocks A-E, where block
C is potentially a visiting path. Block C is a visiting path if the two occurrences of block A are
adjacent to the two occurrences of C that are adjacent to block D (middle). However, the Enredo
graph structure shown on the le� can as well represent the genome segments where one occurrence
of block C that is adjacent to block A is adjacent to block E (right).

For every vising path in A-Bruijn graph structures and in Enredo graph structures, there are two
vertices v0, vk+1 ∈ V connected to the branching vertices v1 and vk of the visiting path. �e
vertex v0 is connected to v1 by the same number of directed edges as vk+1 is connected to vk.

Identification in graph structures. In order to identify a visiting path unambiguously, a
graph structure needs to model inversions and it must be possible to pair the two adjacencies of
each block occurrence. In alignment, A-Bruijn, and cactus graph structures, not all inversions are
visible just as described above for colinear paths. In A-Bruijn, Enredo, and cactus graph struc-
tures, only the labels `, `dup, or `adj provide the pairings of adjacencies of each block occurrence.
�erefore, the identi�cation of visiting paths is not possible in any of the four graph structures.
Fig. 4.18 shows an example for the ambiguity of the Enredo graph structure for visiting paths.

4.3.3 Short cycles

Cycles are characteristic for non-colinear alignments. Graph structures without cycles represent
colinear alignments [97, 136]. �erefore, cycles play an important role for graph-based genome
alignment approaches. �e A-Bruijn graph approaches ABA and DRIMM-Synteny mainly focus
on cycles, and also the Enredo method handles cycles.

Definition of short cycles. Given a set of blocks B de�ned on a set of genomes G. A cycle is
a set of k ≥ 1 blocks B1, . . . , Bk ∈ B where Bk and B1 are adjacent and all Bi and Bi+1 are
adjacent for i = 1, . . . , k − 1. �e set of block adjacencies along a cycle has exactly k di�erent
elements. Any of the adjacencies can be breakpoints and the blocks may have di�erent sizes.

�e length of a cycle is the total length of all blocks forming the cycle. If the segments in a block
have varying length, we suggest to use the median. Given a length threshold t, a cycle is short if
its length is at most t.

Appearance in graph structures. Figure 4.19 shows three example cycles and their represen-
tation in the four graph structures. In alignment graph structures, most cycles appear as mixed
simple cycles with at least one adjacency edge. In A-Bruijn graph structures, they appear as



88 CHAPTER 4. GRAPH REPRESENTATIONS FOR GENOME ALIGNMENTS

A B C

B C D A

A B C

B C D A

A

B C

D

A

B C

D

B C

A D

A B C A

A B C A

A

BC

A

BC

B

C

A

A B C

A B C

A B C

A B C

A B C

A B C

A C

B

Figure 4.19: �ree cycles that result from a translocation (top panel), a duplication (middle panel),
and an inversion (bo�om panel). Each panel displays the relevant parts of genomes as sequences of
blocks (top le�) as well as the appearance in an alignment graph (bo�om le�), in an A-Bruijn graph
(top middle), in an Enredo graph (bo�om middle), and in a cactus graph (right).

simple cycles. However, since alignment and A-Bruijn graph structures do not model inversions,
some cycles are not visible in the two structures. In Enredo graph structures, all cycles appear as
mixed simple cycles. A single cycle in the set of blocks can appear as several cycles in all three
graph structures. Finally in cactus graph structures, most cycles appear as cycles that are not
necessarily simple. Note that the direction of edges does not ma�er for the de�nition of a cycle
in a graph structure (see Section 2.5).

Identification in graph structures. A cycle in the alignment, A-Bruijn and Enredo graph
structures always corresponds to a cycle in the set of blocks though several cycles in the graph
structures may correspond to the same cycle in the set of blocks. It is possible to detect cycles in
the graph structure with established algorithms [60].

However, since not all cycles in the set of blocks appear as cycles in alignment and A-Bruijn
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graph structures, it is not possible to identify all cycles given only the structures of these two
graphs. Similarly, not all cycles in the set of blocks appear as cycles in the cactus graph structure.
�us, only the Enredo graph structure allows identi�cation of all cycles in the set of blocks.

4.3.4 Substructures in cactus graphs

As a result of the complex construction steps, the cactus graph structure exhibits distinct sub-
structures compared to the other graph structures. In an iterative procedure, the Cactus method
addresses sets of blocks, called chains and sets of adjacencies called groups.

Chains. Chains are sets of blocks that form simple cycles in the cactus graph structure. �ey
do not necessarily represent continuous genome segments, but they represent conserved orders
of blocks (for example blocks A, E, I, K in Fig. 4.8 on page 77). Chains appear as a substructure
only in the cactus graph structure.

Groups. Groups are sets of adjacencies that form EA-connected components in the Enredo
graph structure. In the publication of the Cactus method [121], adjacencies are segments and
blocks have at least two occurrences. To account for the di�erence when blocks with one occur-
rence are present and all adjacencies are single positions, we include in groups all blocks with
one occurrence along chains that start incident to an adjacency of theEA-connected component.
Note that in the original de�nition, each group is represented by one vertex of the cactus graph,
but a vertex of the cactus graph can represent several groups. In the strict sense, identi�cation
of groups is only possible in Enredo graph structures but not in cactus graph structures without
labels.

4.4 Alignment modifications

�is part of the chapter describes operations that modify the set of blocks. �rough modi�cations,
genome alignment approaches decide which of the local alignments are kept for the �nal genome
alignment. Along with this selection of local alignments, the modi�cations determine breakpoint
positions and the resulting genome segmentation.

�e following sections de�ne the spli�ing and merging of blocks as well as the segmentation of
genomes. �ese modi�cations are small operation entities from which more complex operations
like the “joining” or “annealing” operation in the Enredo method can be assembled. In addition
to the de�nitions on the set of blocks, the sections describe the e�ects that the modi�cations have
on the four graph structures. Generally, the aim is to eliminate visiting paths and small cycles.

�e algorithmic goal of alignment modi�cations is typically to maximize both the size and length
of colinear paths. �is part of the chapter does not address algorithms that �nd the best trade-o�
between the sizes and lengths of colinear paths. Nevertheless, we acknowledge that the choice
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Figure 4.20: An example for the reciprocal modi�cations of merging and spli�ing blocks. A block A
with three occurrences is split into two blocks A1 and A2 with two and one occurrences, respectively
(top le�). �e two blocks A1 and A2 can again be merged to form the block A. In addition, the �gure
displays the e�ect in an alignment graph (bo�om le�), in an A-Bruijn graph (top right), in an Enredo
graph (middle right), and the simplest e�ect in a cactus graph (bo�om right).

of blocks and adjacencies for modi�cation and the order of applying the modi�cations is not a
trivial task and crucial for obtaining accurate genome alignments.

4.4.1 Spli�ing blocks

Both visiting paths and short cycles can be eliminated by spli�ing blocks into several blocks of
smaller size. With the goal of creating longer colinear paths, ABA and Enredo eliminate cycles
and visiting paths from the graph structures by partitioning the set of segments of one block into
two blocks. DRIMM-Synteny splits only single segments from a block for eliminating visiting
paths and cycles. Most rigorous is the “melting” operation in Cactus that simultaneously splits
all blocks along a chain into single segments.

Definition of block spli�ing. A single spli�ing modi�cation divides a larger block into two
smaller blocks. Let B ∈ B be a block of size n ≥ 2. �e modi�cation replaces the block
B = {s1, . . . , sn} in the set of blocks B by two new blocks B1 = {s1, . . . , sk} and B2 =

{sk+1, . . . , sn} of sizes k and n − k where 1 ≤ k < n. �is corresponds to the removal of
alignments between the segments s1, . . . , sk and the segments sk+1, . . . , sn.

E�ect on the graph structures. Figure 4.20 shows an example for the e�ect of spli�ing a
block in all four graph structures. Spli�ing blocks has the smallest e�ect on alignment graph
structures. �e modi�cation simply removes a subset of the block edges from oneEB-connected
component such that it decomposes into two components.

�e e�ect on A-Bruijn graph structures is very similar to the e�ect on Enredo graph structures.
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In A-Bruijn graph structures, the modi�cation replaces the vertex representing the split block
by two new vertices. �e incoming and outgoing edges are assigned to the two new vertices
according to the adjacencies of the segments in the new blocks. In Enredo graph structures, the
modi�cation replaces a pair of head and tail vertices connected by a block edge by two head and
tail vertex pairs each connected by a block edge. Each adjacency edge incident to the original
tail vertex is reconnected to one of the new tail vertices and each adjacency edge incident to the
original head vertex is reconnected to one of the new head vertices.

In cactus graphs, the spli�ing modi�cation can lead to complex rearrangements, where a vertex
is replaced by two new vertices or two vertices are merged to a single vertex. For example,
spli�ing a block can create a 3-edge connected component, whose vertices are subsequently
merged. Fig. 4.20 shows only the simple case where the modi�cation replaces one block edge by
two new block edges.

4.4.2 Merging parallel blocks

Speci�c cycles can be eliminated by merging parallel blocks to form only a single block. �is is
the reverse modi�cation to spli�ing blocks. �e A-Bruijn graph approaches ABA and DRIMM-Syn-
teny apply this modi�cation to cycles where edges in both directions are present. But also the
Enredo method and Cactus merge parallel blocks and term the modi�cation “annealing”.

Definition of parallel blockmerging. �e merging modi�cation for parallel blocks joins the
sets of segments of two blocks. LetB1, B2 ∈ B be two blocks of size k andn−kwhere 1 ≤ k < n.
�e modi�cation replaces the two blocks B1 = {s1, . . . , sk} and B2 = {sk+1, . . . , sn} by a new
block B = {s1, . . . , sn} of size n. �is corresponds to adding alignments between the segments
s1, . . . , sk and the segments sk+1, . . . , sn.

E�ect on the graph structures. Figure 4.20 illustrates that merging parallel blocks has the
reverse e�ect of spli�ing blocks. In alignment graph structures, the modi�cation adds at least
one block edge between two di�erent EB-connected components. In A-Bruijn graph structures,
the modi�cation replaces two vertices by a single vertex. In Enredo graph structures, the modi-
�cation replaces two pairs of head and tail vertices connected by block edges by a single pair of
head and tail vertices connected by a block edge. In both A-Bruijn and Enredo graph structures
the incoming and outgoing edges of the replaced vertices are reconnected to the new vertices.
In cactus graphs, merging parallel blocks can lead to complex rearrangements analogously to
spli�ing blocks.

4.4.3 Merging adjacent blocks

�e elimination of cycles and visiting paths creates longer colinear paths. O�en, these paths of
adjacent blocks can be merged to a single block in order to reduce the complexity of the set of
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Figure 4.21: An example for the merging modi�cation of adjacent blocks. Two blocks A1 and A2

that are adjacent without breakpoint are merged into a single block A with the same number of
occurrences (top le�). In addition, the �gure displays the e�ect in an alignment graph (bo�om le�),
in an A-Bruijn graph (top right), in an Enredo graph (middle right), and in a cactus graph (bo�om
right).

blocks. As a result, all maximal colinear paths become single blocks. �e Enredo method applies
this modi�cation as part of the “joining” operation.

Definition of adjacent block merging. �e merging modi�cation for adjacent blocks joins
the segments from the sets of two blocks. LetB1, B2 ∈ B be two blocks that are adjacent without
breakpoint. �e modi�cation replaces the two blocks B1 = {r1, . . . , rn} and B2 = {t1, . . . , tn}
by a new block B = {s1, . . . , sn} of the same size where si is the concatenation of the adjacent
segments ri and ti for all i = 1, . . . , n. �e modi�cation has no direct e�ect on the genome
alignments but it prevents the creation of breakpoints between the two blocks.

E�ect on the graph structures. Figure 4.21 shows an example for the e�ect of merging two
adjacent blocks in all four graph structures. In alignment, A-Bruijn, and Enredo graph structures,
the modi�cation removes n directed edges, where n is the size of the merged blocks. In the
alignment and A-Bruijn graph structures the endpoints of the removed edges are replaced by a
single vertex. In the Enredo graph structure, the removed edges connect two end vertices each
incident to a block edge. �ese two end vertices and block edges are replaced by a single block
edge. In the cactus graph structure, the modi�cation replaces a vertex incident to two edges by
a single edge that represents the new block.

4.4.4 Genome segmentation

�e segmentation modi�cation a�ects the set of genomes rather than the set of blocks by �xing
breakpoints in the �nal genome alignment. Using genome segmentation, ABA and the Enredo

method remove small cycles. In addition, the Enredo method achieves segmentation by exclud-
ing long adjacencies from the beginning.
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Figure 4.22: An example for the genome segmentation modi�cation. �e modi�cation cuts the
genomes at the adjacency position of two blocks A and B that are adjacent with breakpoint (top le�).
�e �gure also displays the e�ect in an alignment graph (bo�om le�), in an A-Bruijn graph (top
right), and in an Enredo graph (bo�om right).

�e �nal genome segmentation process corresponds to applying the modi�cation to all break-
points at once. Instead of modifying the graph structures, we may derive the �nal segmentation
directly from the graphs: A�er merging all blocks that are adjacent without breakpoint, the labels
of all vertices or edges that represent blocks form the �nal segmentation.

Definition of the segmentation modification. �e segmentation modi�cation cuts the ge-
nomes G into segments. Given two adjacent segments s1 ∈ B1 and s2 ∈ B2 from two blocks
B1, B2 ∈ B that are adjacent with breakpoint. Let a = i2 = i1 + l1 be the adjacency position of
the two segments s1 = (i1, l1, o1) and s2 = (i2, l2, o2). �e modi�cation cuts the corresponding
genome g ∈ G at the position a into a segment of length i2 and a segment of length |g| − i2.
�e modi�cation has no direct e�ect on the set of blocks but it �xes a breakpoint in the genome
alignment.

E�ect on the graph structures. Figure 4.22 shows an example for the e�ect of cu�ing adja-
cencies in the alignment, A-Bruijn, and Enredo graph structures. In all three graph structures,
the modi�cation removes a single directed edge. Segmentation may decompose the graph struc-
tures into several connected components. In cactus graphs, the e�ect may be hidden in a vertex
if we do not connect the loose ends to the origin vertex. Connection to the origin vertex can
again lead to complex rearrangements of the cactus graph.

4.5 Conclusion to the chapter

�is part concludes the chapter with a summary, discussion, and outlook. �e discussion ad-
dresses points that are not covered by the comparison and describes the bene�ts from repre-
senting genome alignments in graph structures. �e outlook mentions more steps in genome
alignment that this chapter did not cover and suggests a combination of the graph structures.
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Summary. In the �rst part of this chapter, the clear distinction between graph structures and
graph models allows to evaluate to what extent alignment graph structures, A-Bruijn graph struc-
tures, Enredo graph structures, and cactus graph structures model non-colinearity of a genome
alignment. Alignment and A-Bruijn graph structures lack information about the orientation of
segments, thus are less suited to detect inversion in the alignments. In A-Bruijn and Enredo
graph structures, labels are necessary to reconstruct the sequence of blocks since they represent
duplications and translocations ambiguously. Cactus graph structures are even ambiguous for
duplications, translocations, and inversions but they subdivide the genomes into units that none
of the other structures exhibit.

Transformations among the graph structures con�rm the di�erences in information content.
Ambiguity occurs in the transformations from A-Bruin to Enredo graph structures, from A-Bruijn
to alignment graph structures, and from cactus to Enredo graph structures. Such ambiguities can
be resolved with sparse labels that provide the missing information.

Substructures de�ned on the set of blocks o�en do not appear in the graph structures as sub-
graphs of certain topology. Labels are necessary to identify many substructures in most graph
structures. Only Enredo graphs model colinear paths in their structure. Visiting paths cannot be
identi�ed in any of the four structures without labels. Cycles in the set of blocks mostly appear
as cycles in all graph structures, but several cycles in the graph structures may represent a single
cycle in the set of blocks.

Substructures indicate inconsistencies in the alignments that can be resolved by applying mod-
i�cations, operations that change the set of blocks or segment the genomes. Modi�cations that
split blocks and merge parallel and adjacent blocks have analogous e�ects on alignment, A-Bruijn
and Enredo graph structures. In addition, genome segmentation has a clear correspondence in
these structures. In contrast, simple modi�cations to the set of blocks can lead to complex rear-
rangements of the cactus graph structure.

Discussion. �e aim of this chapter was to formally evaluate and compare the graph structures
and graph-based approaches in a consistent way. For that ma�er, special features of individual
graphs received less a�ention although they are worth mentioning and o�en very favorable. In
addition, the list of compared graph structures and sets of transformations, substructures, and
modi�cations are certainly not exhaustive. For the four selected graph structures, the chapter
examines only one of several possible formal de�nition.

For example, the �rst part of this chapter de�nes A-Bruijn graphs with one vertex per block.
Pevzner et al. however brie�y mention in the �rst A-Bruijn graph publication a second vertex
representing the reverse complement of each block. Furthermore, they “analyze both vertices of
such pairs at the same time” [131]. One may consider the pairs of vertices to be connected by a
second type of edges. �e resulting graph structure has two vertices and one edge per block like
the Enredo graph structure, but with a substantial di�erence: �e two adjacencies of each block
are represented by directed edges that are incident to the same vertex (see Fig. 4.23).

In addition, the A-Bruijn graph approaches address cycles not in general but classify them into
several types of cycles. �e �rst classi�cation was introduced for repeat classi�cation and then
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Figure 4.23: Two occurrences of a block A in opposite orientation as genome segments (le�), alter-
native A-Bruijn graph structure with two vertices per block (middle), and Enredo graph structure
(right).
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Figure 4.24: A cycle with edges in both directions (le�) called “bulge” in [131] and a directed cycle
(right) called “whirl” in [131] both formed by two segments from di�erent genomes. When reverse
complementing the green genome, the bulge becomes the whirl and vice versa.

used in ABA [133]. It classi�es directed and undirected cycles (“whirls” and “bulges”). �e direc-
tion, however, depends on the orientation of the genomes (see Fig. 4.24). Subsequently, Pham et
al. [132] re�ned the classi�cation in DRIMM-Synteny into “one-way”, “two-way”, and “compos-
ite” cycles. �is classi�cation is more detailed than the description of cycles in Section 4.3.3.

Independent from a speci�c graph structure, the chapter makes assumptions on the set of blocks
that are not necessarily consistent with the output of local alignment tools. Most commonly, only
pairwise and not multiple local alignments are given. Combining pairwise alignments to multiple
alignments is not a trivial task since pairwise alignments can have con�icting gap pa�erns. We
can avoid this problem and ignore gap pa�erns at this stage if a colinear realignment is carried
out for each block a�er �nishing the segmentation.

�e analysis of the cactus graph structure demonstrates noticeable di�erences to the other struc-
tures with respect to the e�ects of modi�cations as well as the appearance of non-colinear
changes and substructures. �e cactus graph structure comprises less information about the
adjacencies of blocks in the genomes. On the one hand, the cactus graph structure completely
hides this information, but on the other hand, cactus chains are not visible in any of the other
graphs. �e cactus graph can be viewed as a structure with additional properties on top of the
Enredo graph. Indeed, the Cactusmethod operates on two structures, the cactus graph structure
and an “adjacency graph” that is essentially an Enredo graph.

�e bene�ts of cactus graphs become intelligible when analyzing the biological meaning of the
algorithmic steps in the transformation of Enredo graphs to cactus graphs. For example, the
computation of 3-edge connected components seems arbitrary at �rst, but it reveals parts of a
genome alignment that split into several alternatives (similar to ”bulges” in A-Bruijn graphs).
In cactus chains, only blocks are present that always occur in a conserved order. �us, 3-edge
connected components are being removed from chains by merging them into a single vertex,
which creates separate chains for the alternatives.
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�e example of 3-edge connected components demonstrates the usefulness of representing ge-
nome alignments in graph structures: �e genome alignment approach bene�ts from existing
graph theoretical algorithms. Similarly, Pevzner et al. [131, 133] formulate the problem of A-
Bruijn graph-based genome alignment as the maximum subgraph with large girth (MSLG) prob-
lem, a generalization of the maximum spanning tree problem [33].

Apart from the algorithmic bene�ts, graph structures established themselves also conceptually
for genome alignment. �e Enredo method mainly relies on the graph as a convenient data
structure without resorting to standard graph algorithms. Furthermore, the Cactus method
selects subsets of local alignments that results in the most favorable graph structure using the
cactus alignment �lter (CAF) algorithm. Although Paten et al. [121] formulate their objective
as the maximum weight cactus subgraph with large chains (MSLC) problem, they search for a
subset of the initial set of local alignment rather than for a subgraph of the initial cactus graph
structure.

Outlook. As mentioned in the discussion, the evaluation of graph representations for genome
alignments can be extended by more graphs, transformations, substructures, and modi�cations.
Apart from this, a number of steps of graph-based genome alignment has not been addressed
in this chapter at all. While 4.3 assesses whether identi�cation of substructures in the graph
structures is possible or not, it does not mention algorithms and corresponding complexities
to identify them. Furthermore, algorithms that determine the order of modi�cations have the
potential to greatly in�uence genome alignment accuracy. �e mentioned approaches mostly
apply iterative algorithms with various strategies and end criteria. However, a detailed analysis
of the algorithms is beyond the scope of this chapter and le� for future work.

Another important task will be to give advice or even automate the selection of customized
parameter values. Several parameters are mentioned above, for example the length threshold
for short cycles. Such parameters in�uence the trade-o� between length and size of blocks in
the �nal genome alignment. A good choice of parameter values typically depends on the input
data, for example the similarity of the genomes. In very similar genomes we can expect much
longer and larger blocks than in more diverged genomes although homology can exist at various
scales [91]. A recent approach takes the trade-o� between size and length of blocks one step
further: �e tool Sibelia [109] builds a hierarchy of blocks at di�erent resolutions and uses
another graph structure called “iterative de Bruijn graphs”.

As a result from the comparison in this chapter, a combination of the alignment and Enredo graph
structures suggests itself: A graph structure with two vertices per block occurrence and three
types of edges. �is graph structure might be interesting for future genome alignment represen-
tations since it models duplications, translocations, and inversions and allows to unambiguously
identify colinear and visiting paths without labels. However, it is much larger than, for example,
the compact A-Bruijn graph structure. Furthermore, we may distinguish two sets of edges by
their directedness (block and adjacency edges in alignment and Enredo graphs) while one might
understand three types of edges already as labeled edges. Eventually, the most appropriate graph
structure depends on the application and speci�c objective.



Chapter 5

Rearrangement breakpoints in multiple genome
alignments

�e study described in this chapter was carried out in collaboration with Aaron Darling and Knut
Reinert, presented at the Workshop on Algorithms in Bioinformatics (WABI) 2012, and published in
the conference proceedings [87]:

B. Kehr, K. Reinert, and A. E. Darling. Hidden breakpoints in genome alignments. In B. Raphael
and J. Tang, editors, Algorithms in Bioinformatics, volume 7534 of Lecture Notes in Computer
Science, pages 391–403. Springer Berlin Heidelberg, 2012

�is chapter proposes a concept for rearrangement breakpoints in the comparison of multiple
genomes. Breakpoints are the evidence for non-colinear rearrangement events that happened
since the divergence of genomes from a common ancestral genome. �e number of break-
points among pairs of genomes o�en serves as an estimate of the evolutionary distance between
species [114]. Similarly, scoring functions for selecting local alignments in methods for com-
puting genome alignments use pairwise breakpoint counts [37]. However, some breakpoints of
rearrangement events are not visible in the comparison of two genomes when sequence segments
were lost during evolution or when the resolution of the alignment is low with missing blocks.
By taking into account multiple genomes, identi�cation of such hidden breakpoints becomes
possible.

�is chapter demonstrates the existence of hidden breakpoints in alignments of multiple ge-
nomes. �e �rst part introduces relevant background from the �eld of genome rearrangement.
�e second part presents the concept of hidden breakpoints and a counting method for sets of
three genomes. �e third part evaluates the concept by comparing the counts of pairwise and

97
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hidden breakpoints in a large number of simulated and calculated alignments. Finally, the last
part concludes the chapter with a summary, a discussion of both the potential and limitations of
hidden breakpoints, and an outlook on future research.

5.1 Background on genome rearrangement

�e question for the breakpoint-based evolutionary distance of two genomes is only one of many
problems studied in the �eld of genome rearrangement. Further problems in this �eld ask for
the sequence arrangement of ancestral genomes or even the precise evolutionary changes that
led to extant genomes. �is part of the chapter only introduces the modeling of genomes used in
all these problems (Section 5.1.1) and types of rearrangement distance measures (Section 5.1.2).
Furthermore, Section 5.1.3 addresses the re-use of breakpoints and its in�uence on the distance
measures. Finally, Section 5.1.4 describes in more detail how rearrangement distance measures
integrate into methods for computing genome alignments. For a comprehensive overview of
genome rearrangement problems see for example the book by Fertin et al. [57].

5.1.1 Modeling genomes for rearrangement analysis

Studies of genome rearrangement examine genomes on the level of blocks. �e input to these
studies is a set of blocks and a set of genomes modeled as sequences of the blocks. O�en, blocks
are assumed to be genes, and therefore functional units of the genomes. We leave the biolog-
ical function of blocks open and only assume occurrences of the same blocks to be generally
homologous.

�e following three parameters further specify the model of genomes as sequences of blocks.
�e choices for these parameters can be arbitrarily combined to de�ne a model of genomes.

• Number of chromosomes: A model distinguishes unichromosomal from multichromosomal
genomes. Unichromosomal genomes have only one chromosome, while multichromoso-
mal genomes have an arbitrary number of chromosomes.

• Shape of the chromosomes: A model either requires all chromosomes to be linear, or requires
all chromosomes to be circular, or allows both linear and circular chromosomes in the
genomes.

• Copy number of blocks per genome: A model di�erentiates between genomes with or with-
out gain/loss of blocks and with or without duplication of blocks. In genomes without
gain/loss and without duplications, each block occurs exactly once. In the presence of
gain/loss but without duplications, each block occurs at most once per genome. If both
gain/loss and duplications are present, the blocks occur in arbitrary copy numbers per
genome.

Depending on the genomes under comparison, a model is appropriate that is more or less re-
strictive with respect to these parameters. A widely studied model of genomes in rearrangement
studies are signed permutations of blocks (where signs indicate the orientation of blocks). Signed
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permutations correspond to a model of unichromosomal genomes with linear chromosomes and
exactly one occurrence of each block per genome. A slightly less restrictive but well-recognized
model is the Hannenhalli-Pevzner (HP) model [72, 73]. �e HP model allows for multichromo-
somal genomes but also requires linear chromosomes and exactly one block occurrence per
genome. If we allow the chromosomes to be linear or circular in addition, we obtain the model
of genomes underlying the basic double-cut and join (DCJ) distance [17, 168]. Finally, the least
restrictive model allows for multichromosomal genomes with circular and linear chromosomes
and arbitrary copy numbers of block occurrences per genome.

�e choice of model parameters does not only make strong biological assumptions, but also
has an in�uence on the theoretical complexity of a rearrangement problem. Problems that are
NP-hard in one model, are sometimes solvable in polynomial time in another model [153]. Mod-
els with gain/loss and duplications usually make the problems more challenging. For this rea-
son, more restrictive models without gain/loss or without duplications are o�en employed, even
though the genomes have varying copy numbers of blocks.

If a model restricts the copy number of blocks per genome, pre-processing of the genomes is
necessary to exclude gain/loss or duplications. A frequently-used solution for avoiding gain/loss
is projecting the genomes to the set of common blocks and thereby excluding blocks from the
genomes that are unique to a subset of the genomes. Excluding all but one copy of a duplicated
block is more challenging since the position of the chosen copy a�ects the distance to other
genomes. As a possible solution, Sanko� suggested the calculation of an exemplar genome [144],
which chooses the copy that best re�ects the block’s position in a common ancestor of the
genomes. However, the exclusion of block occurrences from the genomes is known to degrade
the comparison and leads to breakpoint re-use (see Section 5.1.3).

5.1.2 Rearrangement distance measures

�ere are two signi�cantly di�erent types of rearrangement distance measures for pairs of ge-
nomes. �e breakpoint distance is a solely descriptive distance measure. Other distance measures
are based on assumptions on the mode of evolution and count the minimum number of operations
necessary to transform one genome into the other. In the following we brie�y introduce and
discuss both the breakpoint distance and operation-based distance measures.

Breakpoint distance measure. �e breakpoint distance describes only visible di�erences of
genomes and makes no additional assumptions on the mode of genome evolution. �us, it is an
only descriptive distance measure.

Formally, the breakpoint distance d(g1, g2) counts the number of breakpoints in one genome g1

with respect to another genome g2. �us, it counts the number of adjacencies present in one
genome that are not conserved in the other. �e idea is that each breakpoint corresponds to a
genome breakage event that happened during evolution.

Already in 1984, Nadeau and Taylor used the number of “disruptions”, by which they refer to
breakpoints, to calculate a rate of chromosomal evolution [114]. Because the breakpoint distance
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Gain/loss:
A B C D

A B D

Duplication:

A B C D

A B A C D D

Figure 5.1: �e asymmetric e�ect of gain/loss and duplications on the breakpoint distance. Red
arrows indicate breakpoints (adjacencies that are not present in the other genome). On the le�,
block C is unique to the upper genome and results in an extra breakpoint in this genome. On the
right, the dispersed duplication of block A and the tandem duplication of block D each result in an
extra breakpoint in the lower genome.

is simple but meaningful, it is used until today in phylogenetic studies, for example in [18].

�e breakpoint distance is only symmetric if all blocks occur exactly once per genome. In the
presence of gain/loss or duplications, extra breakpoints appear in that genome that has the addi-
tional block occurrences. Figure 5.1 displays examples for this asymmetry. To avoid asymmetry,
the breakpoint distance is usually computed only for genomes without duplications and for the
projections of these genomes to the set of blocks common to both of them.

Operation-based measures. �e other type of distance measures counts operations in evo-
lutionary scenarios of two genomes. A scenario is a sequence of operations that transforms one
genome into another. Generally, the length (number of operations) of the shortest scenario is
used as the operation-based distance of two genomes.

Underlying this type of distance measure are assumptions about the operations by which the
genomes have evolved. For example, the reversal distance [74, 84, 163] assumes that genomes
evolve through inversions of one or several consecutive blocks. Further, the translocation dis-
tance [71, 85] counts operations by which sets of consecutive blocks at the ends of genomes are
exchanged. Being less restrictive, the double-cut and join (DCJ) distance [17, 168] allows for all
operations that involve two breakpoints, which includes inversions, translocations, chromosome
circularization and more.

Operation-based distance measures rely on the correctness of the assumptions about the opera-
tions. �ey limit the set of operations by which genomes can evolve. However, new mechanisms
of genome evolution are still being discovered. For example, none of the operation-based mea-
sures accounts for the recently described process of chromothripsis [152] that leads to massive
rearrangement of a chromosome in one event. �us, operation-based measures could be too
restrictive for general estimations of evolutionary distances [145].

5.1.3 Re-use of breakpoints

When several evolutionary events interrupt colinearity of two genomes at the same breakpoint,
this is called breakpoint re-use. Breakpoint re-use does not imply that a genome broke twice at
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Figure 5.2: breakpoint re-use Breakpoint re-use caused by loss of three blocks occurrences. �e le�
hand side shows the evolution of a genome through two inversion events and one loss event from
an initial genome with seven blocks to a �nal genome with four blocks. �e right hand side shows
the projection of the initial and �nal genome to common blocks. Although two inversion events
occurred resulting in four breakpoints, the projection reveals only three breakpoints (red arrows).
�e breakpoint between blocks C and E seems to be due to both inversion events.

the exact same genomic position. Despite distinct breakage positions, several breakage events
can appear as a single breakpoint.

�is e�ect primarily arises from modeling genomes as sequences of blocks. On the one hand,
the resolution of the blocks a�ects how close breakpoints approximate the breakage positions.
On the other hand the projection to only blocks common to both genomes leads to coinciding
breakpoints. �e following three paragraphs describe both these causes of breakpoint re-use in
more detail.

�e resolution of blocks depends on the precision with which similarities were detected. If only
highly signi�cant local alignments are de�ned as blocks, conservation and rearrangement events
of shorter segments remain invisible. By de�nition, a breakpoint is a non-conserved adjacency
of two blocks, and an adjacency is a possibly non-empty segment. �ese segments are longer
at low resolution of blocks than at high resolution of blocks. Hence, at low resolution small
undetected blocks are hidden in adjacencies and breakpoints. Rearrangement events that involve
the undetected blocks create the e�ect of breakpoint re-used.

Low block resolution as a cause of breakpoint re-use was extensively discussed in the literature.
For example, Pevzner and Tesler studied the presence of small undetected blocks between the
human and mouse genomes [130]. An alignment of mammalian genomes at higher resolution
by Ma et al. [103] con�rmed less breakpoint re-use when small blocks are included in the anal-
ysis. Further studies systematically examined the direct in�uence of alignment resolution on
breakpoint re-use [11].

�e second known cause of breakpoint re-use is loss of sequence segments. Loss in one genome
leads to unique segments in the other genome. As described above, unique segments are usually
excluded from the comparison. However, along these segments there can be breakage positions
of rearrangement events that happened prior to the loss. �ese breakage positions create the
e�ect of breakpoint re-use in the projected genomes even at the highest alignment resolution.
Figure 5.2 displays an example for breakpoint re-use caused by loss of three blocks.

Breakpoint re-use has an in�uence on the accuracy of distance estimation with the types of
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measures described in Section 5.1.2. �e breakpoint distance accounts for each breakpoint only
once, and hence underestimates the number of breakage events in the presence of breakpoint re-
use. In general, the breakpoint distance is a lower bound to the actual number of breakage events
that happened during evolution. Operation-based distance measures can compensate for some
breakpoint re-use [130]. However at high rates of breakpoint re-use, distances estimated with
operation-based measures come close to distances of random block permutations [145]. �us,
sequences of blocks are not su�cient to reconstruct the evolutionary history of two genomes
at high rates of breakpoint re-use [145]. In short, both types of distance measures su�er from
breakpoint re-use.

Computation of a rate of breakpoint re-use from both types of rearrangement distance measures
recently initiated a controversial discussion in the literature [4, 101, 103, 129, 130, 145, 146]. Sub-
ject of the discussion was whether this rate of re-use is appropriate to make implications on the
randomness of evolutionary changes. Since the following parts of the chapter are independent
from this speci�c rate, we refer to the literature for details on the controversy.

5.1.4 Rearrangement distances in methods for computing genome
alignments

Rearrangement distances assist methods for computing genome alignments in selecting the sub-
set of local alignments. �e idea is analogous to applying similarity scores for optimizing colinear
alignment (see Section 3.1.1). Similarity scores reward matches with positive scores and apply
negative penalties for mismatches and gaps. �us, they apply penalties for substitutions, inser-
tions, and deletions.

�e genome aligner progressiveMauve [37] logically extends similarity scoring schemes to
non-colinear alignments by adding a negative penalty for non-colinear changes. Rearrangement
distances provide the necessary information for this extension: the number of breakpoints or
evolutionary changes. �is number multiplied by a penalty can guide methods for computing
genome alignments in �nding the subset of local alignments with the best trade-o� between
alignment score and genome segmentation.

Speci�cally, let A be the set of all local alignments and S(a) be the score of the local align-
ment a ∈ A. Colinear alignment methods select the subset A ⊆ A that maximizes the sum of
alignment scores without violating colinearity. Non-colinear alignment methods can replace the
requirement for colinearity by a penalty p for non-colinearity:

argmax
A⊆A

−p · d(A) +
∑
a∈A

S(a)

where d(A) is the rearrangement distance among all genomes given the segmentation induced
by the subset A.

Since rearrangement distances are typically de�ned for pairs of genomes, progressiveMauve
uses a sum-of-pairs approach to determine d(A) from pairwise breakpoint distances. As men-
tioned above, the pairwise breakpoint distance is, however, only a lower bound to the actual
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Figure 5.3: An example for a hidden breakpoint in three genomes (le�). Only two of the three blocks
occur in each of the genomes such that the pairwise projections to common blocks (right) reveal no
pairwise breakpoints.

number of breakage events. In addition, multiple genomes contain more information than pairs
of genomes for resolving breakpoint re-use [103], and hence allow the actual distance to be ap-
proximated more closely. �e following presents an extension of the breakpoint distance for sets
of more than two genomes that is suited to be applied in scoring functions for genome align-
ments.

5.2 Hidden rearrangement breakpoints

�is part of the chapter introduces the concept of hidden breakpoints (Section 5.2.1) and presents
a method for counting them in alignments of three genomes (Section 5.2.2). Hidden breakpoints
reveal breakpoint re-use in pairwise comparison of genomes using the information provided by
additional genomes. �e counting method for hidden breakpoints employs the distance of these
multiple genomes to a median genome. �e last section of this part (Section 5.2.3) provides details
on the calculation of median distances in the breakpoint model.

5.2.1 The concept of hidden breakpoints

Multiple alignments of evolutionarily related sequences achieve higher accuracy in predicting
homology than pairwise alignments [140]. When considering a third sequence in the alignment
of two sequences, we gain information for resolving ambiguities in the pairwise alignments. �e
concept of hidden breakpoints exploits this gain of information through a third sequence for
extending the breakpoint distance measure.

As described in Section 5.1.3, the breakpoint distance is only a lower bound to the actual number
of breakage events that happened during the course of evolution. �rough loss of sequence
segments and low alignment resolution, several breakage events appear as a single breakpoint in
the pairwise comparison of genomes. Looking at more than two genomes at once reveals some
of these additional breakage events.

Consider the example of three genomes consisting of three blocks in Fig. 5.3 (see also [36, p. 78f.]).
In pairwise comparison of the three genomes, only gain/loss of blocks is visible, but the order
of the blocks remains unchanged (in this example only one block is common to each pair of
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genomes). �us, the sum-of-pairs breakpoint distance is 0. However, inference of an order of the
three blocks as they could have appeared in an ancestral genome, reveals a circular dependency:
block A precedes block B, which precedes block C, which precedes again block A. �is cycle
becomes visible only when considering all three genomes. It implies a rearrangement event in
the evolutionary history of the three genomes.

Figure 5.4 displays possible evolutionary scenarios along a phylogenetic tree of the three ge-
nomes. Notably, the order of blocks in the three extant genomes of this example can only be
explained with a rearrangement event but not with gain/loss alone. However, the rearrangement
event creates no breakpoints visible in the pairwise projections.

�e lack of breakpoints in the pairwise projections is caused by breakpoint re-use. �e rearrange-
ment event uses the same breakpoints as the gain/loss events, and thus it is hidden in pairwise
comparisons.

Although the order of blocks in the ancestral genome is ambiguous and unknown as is the evo-
lutionary scenario, the three-way comparison provides evidence for an additional evolutionary
change. �is evolutionary changes implies additional breakage events that are hidden through
breakpoint re-use. We call these breakage events hidden breakpoints.

�e number of hidden breakpoints added to the number of pairwise breakpoints approximates
the actual number of breakage events more closely. Nevertheless, this distance estimate is still a
lower bound: A third genome reveals hidden breakpoints only if it di�ers from both genomes at
the re-used breakpoint.

Comparison to cycles in genome alignment graphs. �e representation of the example from
Fig. 5.3 in an alignment graph structure, A-Bruijn graph structure, or Enredo graph structure
contains a cycle. �is cycle uses adjacencies from all three genomes. �e example suggests a
correspondence between hidden breakpoints and cycles formed by three or more genomes in
graph structures. However, Fig. 5.5 provides an example of three genomes with a hidden break-
point but without a three-way cycle in the graph representations. Furthermore, Fig. 5.6 shows
an example without hidden breakpoint but with three-way cycle in the graph representations.
�us, there is no equivalence between three-way cycles and hidden breakpoints.

5.2.2 A median approach for counting hidden breakpoints

�is section presents a counting approach for hidden breakpoints among three genomes. �e
approach leaves the location of hidden breakpoints within the genomes open and only provides
a count H. Furthermore, the approach provides no information about the distribution of the
hidden breakpoints over the branches of the tree. �e countH is the total number of breakpoints
for all branches of the phylogenetic tree of three genomes.

�e counting approach is based on the breakpoint distance of the input genomes to a median
genome. In median genomes the blocks are arranged such as to minimize the total distance to
all genomes. Median genomes are used, for example, to predict the order of blocks in ancestral
genomes [21].
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Figure 5.4: �ree possible evolutionary scenarios (top) for the example from Fig. 5.3 and ancestral
genomes (bo�om) that label the inner vertices of the trees. In each scenario there is a rearrangement
event in addition to gain/loss events of all blocks. Note that the displayed ancestral genomes may
be a common ancestor of only two of the three genomes assuming that the root of the trees is along
one of the three branches.
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Figure 5.5: A hidden breakpoint in three genomes (le�) and a possible evolutionary scenario (right).
�e rearrangement event is visible in the pairwise comparison of genomes A and B. It happened
either on the branch from genome 1 to the inner vertex or on the branch from genome 2 to the inner
vertex. �us, either in the comparison of genomes 1 and 3 or in the comparison of genomes 2 and 3,
an additional rearrangement breakpoint is hidden by the loss of block B.
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Figure 5.6: �ree genomes without hidden breakpoint (le�) that result in a three-way cycle (red)
in graph representations. Each of the four evolutionary events in the scenario (right) uses di�erent
breakpoints. �e cycle appears due to both loss and rearrangement of block B. However, the rear-
rangement is embedded in block A and C. Hence, it creates no hidden breakpoint but breakpoints
visible in pairwise comparisons.
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Usually, median genomes are computed from only blocks present in all genomes and, thus, pro-
vide no information about gain/loss. �e counting approach presented here is founded on the
premise that the median genome contains any block present in at least two of the three genomes.
Blocks unique to a single genome are assumed not to be present in the median. With blocks
present in at least two of the three genomes, the median genome preserves information about
some gain/loss events and reveals hidden breakpoints.

More formally, given a set of blocks B and a genome g, let g(B) be the projection of g to blocks
present in B. Further, let dB(g1, g2) := d(g1(B), g2(B)) be the breakpoint distance of two
genomes g1 and g2 projected to the same set of blocks B. �en, a generalized de�nition of a
median genome is given as follows:

De�nition 2 (Median genome). A median genome M for n genomes g1, . . . , gn is a permutation
of all blocks in a given set B such thatM minimizes the sum

dM :=
n∑
k=1

dB(gk,M) .

�e counting approach uses the median of three genomes g1, g2, and g3 with the set of blocks
present in at least two of them. More precisely, the counting approach uses the distance to the
median dM , but not the median genome itself. Many median genomes with the same minimal
dM may exist. �e hidden breakpoint countH is independent from the permutation of blocks in
the median genome and also from the number of median genomes that exist.

In the remainder of this section, let B be the set of blocks present in at least two of the three
genomes g1, g2, and g3. Furthermore, let the distance to the median dM of the three genomes be
given. Section 5.2.3 describes an e�cient algorithm for calculating dM .

�e three distances dB(gk,M), where k = 1, 2, 3, that sum up to dM take into account all blocks
in B. �is includes blocks that are not present in gk but in the other two genomes. As a result,
the distance dM accounts for breakpoints of some gain/loss events and not only for breakpoints
of rearrangement events among the three genomes g1, g2, and g3. However, gain/loss creates
asymmetry in the breakpoint distance (see Fig. 5.1), and hence these breakpoints are usually
avoided through projection.

In order to remove breakpoints of gain/loss events, the counting approach subtracts the fraction f
that is a�ributed to pairwise breakpoints from dM . �e below de�nition of f includes breakpoints
of gain/loss and breakpoints of rearrangement events. What remains is the number of hidden
breakpointsH.

Let Mk,l with k, l ∈ {1, 2, 3} be the permutation of all blocks in B that minimizes the distance
to gk and gl. In other words, if k = 1 and l = 2, M1,2 is the median of the two genomes g1 and
g2, which is aware of blocks in g3. �en, the fraction f of the distance dM that is a�ributed to
pairwise breakpoints is

f :=
1

2

∑
k<l∈{1,2,3}

dB(gk,Mk,l) + dB(gl,Mk,l) .
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Figure 5.7: Summary of the hidden breakpoint counting approach. Given three genomes, the count-
ing approach computes the distance to a median genome (dark blue) and the distances between the
pairs of genomes (green) for the set of blocks common to at least two of the three genomes. �e sum
of the pairwise distances accounts for each branch of the tree twice. When removing half the pair-
wise distances from the median distance, the number of breakpoints hidden in pairwise projections
remains.

�e sum runs over the three possible pairs of genomes in the three-way comparison. Even though
the pairwise medians are possibly di�erent and possibly di�erent from M , the sum counts the
distance from each genome to a median exactly twice (see Fig. 5.7). �us, multiplication by 1

2 is
required to set f in relation to dM .

Having calculated all pairwise distances and the distance to the median, the hidden breakpoint
count is

H := dM − f .
Figure 5.7 illustrates the simplicity of this approach.

5.2.3 Computation of the median distance in the breakpoint model

For practical usage of the hidden breakpoint count, an e�cient algorithm for computing the dis-
tances to the medians is necessary. For most distance measures and genome models, including
the breakpoint distance measure with only linear chromosomes, the median problem is NP-hard.
However, for the breakpoint distance and a more general model with genomes consisting of mul-
tiple, possibly circular chromosomes, Tannier et al. recently obtained a polynomial result [153,
�eorem 1]. �eir proof provides a polynomial time algorithm for the breakpoint median prob-
lem for multichromosomal genomes.

�e computation of median distances for calculating counts of hidden breakpoints follows the
proof by Tannier et al. [153]. In short, the algorithm constructs a weighted graph from the set of
genomes and computes a maximum weight perfect matching (see below). �e matching corre-
sponds to a median genome, and the weight of the graph reduced by the weight of the matching
corresponds to the median distance.

�e following describes in detail the graph construction, explains how a the median distance
derives from a maximum weight perfect matching, and suggests a graph reduction. In the graph
described by Tannier et al. [153] the number of edges is quadratic in the number of vertices. �is
slows down the computation of a maximum weight matching and is prohibitive for large-scale
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g1: A B D C E

g2: B A C D E

g3: A C D E

Median M:

B A C D E

Figure 5.8: An instance of the median problem with three genomes and a set of �ve blocks. �e le�
hand side shows three genomes projected to the �ve blocks occurring in at least two of the three
genomes. Each of these blocks occurs once in median genomes, as for example in the median shown
on the right.
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Figure 5.9: �e graph for the median instance from Fig. 5.8. �e graph has two sets of vertices V
and T and three sets of edges EV , EU , and ET . Line widths denote edge weights. Red edges form a
maximum weight perfect matching, which corresponds to the median genome shown in Fig. 5.8.

hidden breakpoint counting. �e graph reduction cuts down the number of edges by a linear
factor.

Another limitation of the algorithm by Tannier et al. [153] is the model of genomes: multichro-
mosomal genomes with both linear and circular chromosomes but without gain/loss and du-
plications. Including gain/loss as does De�nition 2, has an in�uence on the input set of blocks
for graph construction, but is otherwise consistent with the algorithm. In contrast, duplications
change the underlying matching problem. �is section ends with considerations for genomes
with duplications.

Graph construction from blocks and genomes. Using the generalized de�nition of a me-
dian, the input to the median problem is a set of blocks B and a set of genomes g1, . . . , gn (see
Fig. 5.8 for an example). �e blocks de�ne the vertices and the genomes de�ne the edges and
edge weights of a weighted undirected graph G = (V ∪ T,EV ∪ ET ∪ EU ). �e graph G has
two sets of vertices V and T , and three sets of edges EV , ET , and EU . Edges in EV connect
vertices from V , edges in ET connect vertices from T , and edges in EU connect vertices from V

with vertices from T (see Fig. 5.9 and [153]).
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�e graph has four vertices for each block bi ∈ B: A head vertex vhi ∈ V , a tail vertex vti ∈ V ,
a head telomere vertex thi ∈ T , and a tail telomere vertex tti ∈ T . �e head and tail vertices
represent the two ends of a block bi, and the telomere vertices represent the possibilities that
chromosomes start or end with bi. Because median genomes can consist of arbitrarily many
chromosomes, the four vertices per block, in particular separate telomere vertices for all blocks,
are necessary.

Edges connect vertices of V and T such that the subgraphs GV = (V,EV ) and GT = (T,ET )

are complete. �at is, all pairs of vertices u, v ∈ V are connected by edges eV ∈ EV and all pairs
of vertices s, t ∈ T are connected by edges eT ∈ ET . In addition, edges eU ∈ EU connect each
head vertex vhi ∈ V with its head telomere vertex thi ∈ T and each tail vertex vti ∈ V with its
tail telomere vertex tti ∈ T . �e edges EV represent possible genome adjacencies of blocks, and
the edges EU possible telomere adjacencies. �e edges ET are necessary for technical reasons.

Edge weights indicate the number of genomes in which the corresponding adjacency or telomere
adjacency is present. All edgesET are assigned a weight of 0. For assigning weights to the edges
EV and EU , we start by initializing all edge weights with 0. Next, we iterate over all genomes
and increase for each adjacency of two blocks the weight of the corresponding edge eV ∈ EV
by 1, and for each telomere adjacency the weight of the corresponding edge eT ∈ ET by 1

2 [153].
Depending on the orientation of the adjacent blocks, we increase the weight of the edge between
the tail and head vertex, tail and tail vertex, head and tail vertex, or head and head vertex; or
between the head and head telomere vertex or tail and tail telomere vertex. �e total weight of
the resulting graph is the total number of block occurrences in the input genomes.

Maximumweight perfectmatching. A maximum weight perfect matching on this weighted
graph corresponds to a median genome (see Fig. 5.8 and Fig. 5.9). Together with the total weight
of the graph, the weight of the matching allows to derive the distance to the median dM .

�e computation of a maximum weight perfect matching is a standard graph theoretical problem:
Given a graph G = (V,E), a subset of the edges EM ⊆ E is called a matching if every vertex
v ∈ V has a degree of 0 or 1 in the subgraph GM = (V,EM ). A perfect matching is a matching
in which every vertex of the subgraph GM = (V,EM ) has a degree of 1, thus every vertex
is incident to exactly one edge of the matching EM . Perfect matchings do not exist for every
graph, and other graphs have multiple perfect matchings. A maximum weight perfect matching
of a weighted graph G = (V,E) is a perfect matching EM ⊆ E that maximizes the sum of the
weights of all edges e ∈ EM .

A perfect matchingEM ⊂ EV ∪EU ∪ET on the above described graphG = (V ∪T,EV ∪ET ∪
EU ) corresponds to a genome M formed by all blocks in B. Each vertex v ∈ V of the graph is
incident to exactly one edge of the matching EM , and hence each block end represented by the
vertices is adjacent to exactly one other block end or telomere. �us, the edgesEM ∩ (EV ∪EU )

represent the adjacencies of a genome M . �e edges in ET guarantee that a perfect matching
exists: All vertices in T that are not matched to vertices in V can be matched by an edge from
ET to an arbitrary unmatched vertex in T .

�e genomeM is a median genome ifEM is a maximum weight perfect matching onG. A max-
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Figure 5.10: �e reduced graph for the median instance from Fig. 5.8 and Fig. 5.9. Note that the
maximum weight perfect matching (red) uses other edges between telomere vertices than that in
Fig. 5.9.

imum weight perfect matching maximizes the weight of the edges in the matching and thereby
minimizes the weight of the remaining edges (EV ∪ EU ∪ ET ) \ EM . An edge in the weighted
graph G has a weight greater than 0 if it corresponds to an adjacency in at least one genome
from which G was constructed. Edges that have a weight greater than 0 and are not part of the
perfect matching, represent breakpoints between this input genome and M . �us, if we add up
the weights of the edges in (EV ∪ EU ) \ EM , we obtain the sum of the breakpoint distances of
all input genomes to M . �is sum is the distance to the median dM .

In summary, the total weight of the graph G reduced by the total weight of a maximum weight
perfect matching EM is the median breakpoint distance dM .

Reducing the number of graph edges. Algorithms for computing a maximum weight per-
fect matching depend on the number of vertices and number of edges in the graph. Edmonds
showed that maximum weight perfect matchings can be computed in polynomial time by in-
venting the blossom algorithm [52, 53]. �e blossom algorithm was followed by many imple-
mentations and running time improvements [93]. For example, a recent implementation in the
LEMON graph library [46] needs O(nm log n) time where n is the number of vertices and m is
the number of edges.

�e computation of maximum weight perfect matchings is the computationally most expen-
sive task in calculating hidden breakpoint counts. �erefore, running time improvements of
the matching computation greatly in�uence the overall e�ciency. �e graph described above is
highly connected, with the number of edges being quadratic in the number of blocks. Since the
number of edges a�ects the running time, the removal of edges reduces the running time.

�e example in Fig. 5.9 illustrates that a large number of the edges inG have a weight of 0. Edges
with a weight of 0 do not contribute to the weight of a perfect matching, but nevertheless can
be necessary for a perfect matching to exist. However, a large fraction of the edges in G is not
necessary for a perfect matching to exist and also does not a�ect the weight of the maximum
weight perfect matching. �e following theorem and its proof allow the number of edges to be
reduced by a linear factor when computing the distance to a median genome dM . Figure 5.10
displays the reduced graph for the example from Fig. 5.8.
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Figure 5.11: Edge replacements in the maximum weight perfect matching EM (red) for graph re-
duction according to �eorem 2. �e le� shows the replacement of two edges from ET by two other
edges from ET as to create pairs of edges in EV and ET . �e right shows the replacement of such
pairs by edges from EU . As a result, all edges in EM ∩ EV have a weight greater than 0.

�eorem 2. Let w be the weight of a maximum weight perfect matching in the graph G = (V ∪
T,EV ∪ET ∪EU ) constructed as described above from a set of blocks B and genomes g1, . . . , gn.
A�er removing from G

1. the edges in EV that have a weight of 0 and connect vertices vpi and v
q
j and

2. the corresponding edges in ET that connect vertices tpi and t
q
j

where p, q ∈ {h, t} and bi, bj ∈ B, a perfect matching of weight w still exists in G.

Proof. Given an arbitrary maximum weight perfect matchingEM , this proof will replace subsets
of edges in EM without changing the degree of any vertex in the subgraph GM = (V ∪ T,EM )

and without changing the total weight ofEM . A�er the replacements, the matchingEM does not
use any of the edges listed in �eorem 2, and thus they can be removed. A �rst edge replacement
a�ects only edges fromET (see Fig. 5.11, le�). A second edge replacement substitutes edges from
EV and ET by edges from EU (see Fig. 5.11, right).

�e �rst edge replacement involves the ends p, q, r, s ∈ {h, t} of four blocks bi, bj , bk, bl ∈ B.
Let an edge between the vertices vpi , v

q
j ∈ V be part of the matchingEM . Further, letEM contain

an edge connecting the vertex tpi ∈ T to a vertex trk ∈ T where trk 6= tqj . �en, the vertex tqj ∈ T
is connected to another vertex tsl ∈ T in EM . Since all edges between vertices from T have a
weight of 0, we can replace the edges between tpi and trk and between tqj and tsl inEM by the edges
between tpi and tqj and between trk and tsl without a�ecting the weight of EM . A�er repeating
this replacement for all edges in EM ∩ EV , the matching contains pairs of edges from EV and
ET .

�e second edge replacement addresses edges inEM ∩EV that have a weight of 0. A�er the �rst
edge replacement, the matching EM contains an edge between the vertices tpi , t

q
j ∈ T for each

edge in EM ∩ EV between the vertices vpi , v
q
j ∈ V . If the weight of both edges is 0, then these

two edges can be replaced by the two edges between vpi and tpi and between vqj and tqj from EU
without a�ecting the weight of EM . �e two edges in EU also have a weight of 0, otherwise the
matching EM was not of maximum weight.
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A�er both replacements, the maximum weight perfect matchingEM does not contain any edges
fromEV that have a weight of 0 nor the corresponding edges inET . �us, we can safely remove
these edges from the graph G without a�ecting the weight of the resulting maximum weight
perfect matching.

In the reduced graph, the number of edges is linear in the number of blocks multiplied by the
number of genomes: �e reduced graph contains at most two edges per adjacency of the genomes
and one edge per telomere adjacency. �us, the simpli�cation reduces the running time, which
depends linearly on the number of edges, by a linear factor.

Note that the reduction is only possible when computing some median genome or when com-
puting the distance to a median genome. For computing all possible median genomes, the full
graph with all edges is necessary. �e second edge replacement in the proof substitutes adja-
cencies of possible median genomes by telomere adjacencies. �us, the median genomes that
we obtain from a reduced graph are preferentially divided into multiple chromosomes instead
of using adjacencies not present in any of the input genomes. However, the distance dM is the
same for all median genomes such that the reduction considerably speeds up the calculation of
hidden breakpoint counts.

Considerations for duplications. In a median genome as de�ned by De�nition 2 and com-
puted with the above described algorithm, each block from the input set of blocks B occurs
exactly once. �is limits the median approach for counting hidden breakpoints to genomes with
at most one copy per block. To consider duplications in the calculation of hidden breakpoint
counts, the median de�nition and computation needs to be generalized. �e following suggests
such a generalization.

If more than one input genome has multiple copies of a block, it is likely that an ancestral genome
as represented by the median genome had multiple copies. Analogously to including all blocks
that occur in at least two of the three genomes, we suggest to include the number of copies that
are present in at least two genomes in a median genome. �us, we assume additional copies of a
single genome not to be present in a median genome.

With di�ering copy numbers of blocks in the compared genomes and the median, we suggest to
compute the breakpoint distance based on positional assignments. An input genome has either
fewer copies, an equal number of copies, or more copies than the median genome. We suggest to
treat additional copies in the input genomes or the median genome as gain/loss and to assume
for the other copies a positional assignment that minimizes the breakpoint distance. As we are
only interested in the distance, we can leave the actual assignment task open.

When constructing the graph for the median computation, there are two options for representing
duplicated blocks: in multiple sets of four vertices (one set for each copy) or in a single set of four
vertices (head, tail, head telomere, and tail telomere). If the graph has one set of vertices for each
copy in the median, the assignment of weights to the edges leads to ambiguities. If the graph has
only one set of vertices per block, then the median genome corresponds to a subgraph in which
some vertices are incident to multiple edges. �is subgraph is not a perfect matching anymore.
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A generalization of the perfect matching problem in graphs is the f -factor problem. An f-factor
of a graph G = (V,E) is a subset of edges EM ⊆ E such that each vertex v ∈ V is incident to
exactly f(v) edges in EM , where f : V → N is a function that assigns each vertex a positive
integer number. If we represent each block of the genomes as a single set of four vertices in the
graph, we can use the function f to speci�es the number of copies of the corresponding block in
the median genome and replace the computation of a maximum weight perfect matching by the
computation of a maximum weight f -factor.

Before solving the f -factor problem, a further extension of the graph is necessary for the edge
weighting according to adjacencies. If an adjacency of the same blocks is present multiple times
in a genome, we have to add multiple edges between the same two vertices. �e weight of the
�rst edge represents the number of genomes that contain the adjacency at least once, the weight
of the second edge the number of genomes that contain it at least twice, and so on. �e median
genome is a maximum weight f -factor in this weighted multigraph.

To solve the f -factor problem, Tu�e suggested a graph transformation that turns the f -factor
problem into a perfect matching problem [156, 165]. If this transformation generalizes to the
maximum weight problem, we can compute the distance to a median genome and, consequen-
tially, a hidden breakpoint count for genomes with duplications.

5.3 Breakpoint analysis of genome alignments

�e previous part of the chapter introduced hidden breakpoints as a theoretical concept. To
demonstrate that hidden breakpoints are abundant and relevant in the comparison of genomes,
this part of the chapter examines the numbers of pairwise and hidden breakpoints in simulated
and calculated genome alignments.

�e �rst section of this part describes the setup of the analysis (Section 5.3.1). �e next section
examines pairwise and hidden breakpoint counts in true alignments of simulated genomes (Sec-
tion 5.3.2), and the last section evaluates breakpoint counts in calculated alignments of the same
simulated genomes and compares them to the true alignments (Section 5.3.3).

5.3.1 Setup of analysis

�is section describes the setup of the analysis on simulated data both for the true alignments
and the calculated alignments. �e setup includes a description of the data sets, details of the
evaluation metrics, and a brief summary of the tested alignment programs.

Simulated data sets. Sections 5.3.2 and 5.3.3 examine breakpoint counts in two data sets,
InvNt and InvGL, with 400 and 200 alignment problems, respectively. Each alignment problem
consists of nine evolved sequences of length 1 Mbp and their true alignment. �e data sets allow
for testing the in�uence of di�erent evolutionary mutation rates on the breakpoint counts.
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Table 5.1: Mutation rates for the simulations of the two data sets InvNt and InvGL.

inversions indels small gain/loss large gain/loss nt subst.

InvNt 0 .. 2× 10−4 1× 10−3 5× 10−4 2× 10−5 0 .. 1
InvGL 0 .. 2× 10−4 1× 10−3 5× 10−4 0 .. 1× 10−4 0.01

�e large gain/loss rate and the inversion rate are sampled in steps of 1 × 10−5, the nucleotide substitution rate
(nt subst.) in steps of 0.05.

�e alignment problems were generated with the program sgEvolver [35]. It simulates evo-
lution with a standard Markov process by changing the sequences with �ve di�erent mutation
events at speci�ed rates along a given phylogeny. �e mutation events include inversions, nu-
cleotide substitutions, and insertions and deletions of three di�erent size distributions: indels,
small gain/loss events, and large gain/loss events.

In the simulation of the data sets InvNt and InvGL, inversions have geometrically distributed
lengths with an expected value of 50, 000, nucleotide substitutions follow an HKY process, in-
dels have Poisson distributed lengths around λ = 3, small gain/loss events have geometrically
distributed lengths with an expected value of 200, and large gain/loss events have uniformly
distributed lengths between 10, 000 and 50, 000. �e phylogeny that relates the nine sequences
in all alignment problems is displayed in Fig. C.1 in the appendix.

Each of the 600 alignment problem uses a di�erent set of mutation rates along the branches of the
phylogeny scaled by the respective branch length. �e data set InvNt samples di�erent inversion
rates and di�erent nucleotide substitution rates, and the data set InvGL di�erent inversion rates
and di�erent large gain/loss rates while keeping the other rates at a �xed value (see Table 5.1).
More details of the simulation process with sgEvolver can be found in the paper [87].

In the true alignments, we expect only the inversion rate and large gain/loss rate to in�uence the
breakpoint counts but not the nucleotide substitution rate. Hence, InvNt is well suited to analyze
the e�ect of the inversion rate, and InvGL adds the e�ect of the large gain/loss rate. In calculated
alignments, a high nucleotide substitution rate can lead to missing blocks. Here, both data sets
allow for examination of the e�ect of two evolutionary rates.

Evaluation metrics. Section 5.3.2 reports pairwise and hidden breakpoint counts in the true
alignments, and Section 5.3.3 reports pairwise and hidden breakpoint counts in the calculated
alignments. In addition, Section 5.3.3 evaluates the di�erence of breakpoint counts in the cal-
culated alignments with respect to the true alignments and correlates this error with previously
described metrics for alignment accuracy.

�e alignments of the data sets InvNt and InvGL consist of nine genomes, but the numbers of
breakpoints reported in Sections 5.3.2 and 5.3.3 are pairwise or three-way counts. �e reported
pairwise breakpoint counts are the sum of counts from the projections to all pairs of genomes,
and the hidden breakpoint counts are the sum of counts from the projections to all triplets of
genomes calculated with the median approach. For nine genomes, there are 36 pairs and 84
triplets. �e pairwise breakpoint error is the di�erence of pairwise breakpoint counts in calculated
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and true alignments, and the hidden breakpoint error is the di�erence of hidden breakpoint counts
in calculated and true alignments.

As a breakpoint-independent metric, Section 5.3.3 measures precision and recall of nucleotide
alignment accuracy and of indel alignment accuracy [37] in the calculated alignments with re-
spect to the true alignments. �e nucleotide alignment accuracy compares each pair of aligned
nucleotides in the calculated alignments with the aligned pairs in the true alignments. �e indel
alignment accuracy compares the alignment to gaps as described in detail in [37, Section “Ac-
curacy evaluation metrics”]. Both comparisons give numbers of true positives (TP), false posi-
tives (FP), and false negatives (FN), which can be combined to the indel or nucleotide precision
TP/(TP+FP) and the indel or nucleotide recall TP/(TP+FN). �e F1 score combines precision and
recall to one accuracy measure:

F1 = 2× precision× recall
precision + recall .

Tested alignment programs. For comparing breakpoint counts in calculated alignments, we
tested the genome alignment programs TBA, progressiveMauve, and Mugsy. All three programs
compute positional homology alignments, and hence avoid alignment of duplications. �us, it is
possible to analyze breakpoint counts in the alignments calculated by these programs using the
median approach without an extension to duplications.

�e threaded blockset aligner (TBA) [20] initially generates pairwise local alignments with the
program BLASTZ [148] and then uses a procedure called MULTIZ to merge pairwise alignments
into multiple alignments (blocks) following a guide tree. In addition, TBA splits blocks generated
by MULTIZ to ensure a partial order of “threaded” blocks. For the breakpoint analysis in this work,
alignments were calculated with the guide tree displayed in Fig. C.1 and TBA version 2009-Jan-21.

�e algorithm implemented in progressiveMauve [37] begins by identifying multiple local
alignments (approximate multi-matches) among the input genomes, and progressively groups co-
linear matches into blocks, “locally colinear blocks” (LCBs). It distinguishes positionally homol-
ogous regions from random sequence matches with a sum-of-pairs breakpoint scoring scheme
as described in Section 5.1.4. At the end of the algorithm, progressiveMauve realigns each
block with Muscle [51] and rejects alignments that are unrelated according to a homology
hidden Markov model. �e alignments for the breakpoint analysis below were obtained using
progressiveMauve version 2011-02-02 with default options.

�e most recent of the three tested programs is Mugsy [9]. Mugsy generates local pairwise align-
ments with NUCmer [41] from the MUMmer 3.0 package [94], which includes a �lter for dupli-
cations. A�er removing overlaps of the NUCmer matches with a match re�nement procedure,
Mugsy constructs an alignment graph, which is then collapsed into a graph similar to the A-
Bruijn graph (see Section 4.1.2). Mugsy extracts blocks from this graph using heuristics that
eliminate breakpoints including a min-cut max-�ow algorithm, and realigns the blocks using
SeqAn::T-Coffee. �e analysis below uses alignments from Mugsy version v1r2.2.
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Figure 5.12: Breakpoint counts in true alignments of the data set InvNt. Each point corresponds to
one alignment in the data set. �e two sides display the same data by di�erent mutation rates: by
inversion rates (le�) or by nucleotide substitution rates (right). Colors indicate the respective other
rate: the nucleotide substitution rate (le�) or the inversion rate (right). �e black line indicates the
average breakpoint counts.
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Figure 5.13: Breakpoint counts in true alignments of the data set InvGL. Each point corresponds to
one alignment in the data set. �e two sides display the same data by di�erent mutation rates: by
inversion rates (le�) or by large gain/loss rates (right). Colors indicate the respective other rate: the
large gain/loss rate (le�) or the inversion rate (right). �e black line indicates the average breakpoint
counts.
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5.3.2 Breakpoint counts in true alignments

Fig. 5.12 displays the pairwise and hidden breakpoint counts in the true alignments of InvNt and
Fig. 5.13 displays the counts in the true alignments of InvGL. Both �gures display the pairwise
and hidden breakpoint counts by inversion rate (le�), and in addition by nucleotide substitution
rate or large gain/loss rate, respectively (right). �e pairwise breakpoint counts range from 0 to
3840 and the hidden breakpoint counts from 0 to 1263 across all 600 alignment problems.

Fig. 5.12 demonstrates that both the pairwise breakpoint counts and the hidden breakpoint counts
grow nearly linearly with the inversion rate in InvNt. �ere are no breakpoints without inversion
events, and the number of breakpoints is largest with the largest inversion rate. �us, inversion
events are necessary for both pairwise and hidden breakpoints to be present in alignments gen-
erated with sgEvolver. As expected, the nucleotide substitution rate has no in�uence on the
breakpoint counts in the true alignments.

Fig. 5.13 con�rms this dependence on the inversion rate with the second data set InvGL. Again,
the pairwise and hidden breakpoint counts grow nearly linearly with increasing inversion rate.
However, in the presence of large gain/loss events (blue on the le� in Fig. 5.13), the pairwise
breakpoint counts grow slower and the hidden breakpoint counts grow faster than without large
gain/loss events (red on the le� in Fig. 5.13). �us, the ratio of hidden to pairwise breakpoints
changes with the large gain/loss rate.

�e data set InvGL illustrates that the large gain/loss rate has a reverse e�ect on pairwise break-
point counts than on hidden breakpoint counts (Fig. 5.13, right). �e pairwise breakpoint counts
drop for growing gain/loss rates. However, the hidden breakpoint counts grow with the gain/loss
rate up to about 0.5×10−4. Inversions alone create hardly any hidden breakpoints but they cre-
ate pairwise breakpoints. Gain/loss events lead to fewer pairwise breakpoints but instead more
hidden breakpoints.

In both data sets, the variance in breakpoint counts is due to insertion and deletion events of all
three size distributions (indels, small gain/loss, and large gain/loss) at random positions. With a
small inversion rate, the probability that a deletion event hides a breakage event from pairwise
comparison is smaller. �erefore, the variance is smaller at small inversion rates than at large
inversion rates.

In summary, the true alignments con�rm that hidden breakpoints are abundant in multiple
genome alignments. Furthermore, the e�ect of the gain/loss rate indicates that hidden break-
point counts recover some breakage events that are hidden from the pairwise breakpoint distance
through loss of sequence.

5.3.3 Breakpoint counts in calculated alignments

Fig. 5.14 and Fig. 5.16 display the breakpoint counts in alignments calculated with progres-

siveMauve, Mugsy, and TBA for the two data sets by mutation rates. Furthermore, Fig. 5.15 and
Fig. 5.17 display the breakpoint errors in relation to nucleotide accuracy and indel accuracy of
the same alignments. Figures that show the alignment accuracies by mutation rates can be found
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in the appendix (Fig. C.2 and C.3 for InvNt, and Fig. C.4 and C.5 for InvGL).

Fig. 5.14 reveals that the tested programs mostly overestimate the number of breakpoints in the
tested range of inversion rates and nucleotide substitution rates of InvNt. For all programs, both
the pairwise and hidden breakpoint counts are lowest without inversions and grow roughly linear
with an increasing inversion rate similar to the breakpoint counts in true alignments. �e two
programs progressiveMauve and Mugsy that implement a breakpoint-reducing algorithm are
closer to the breakpoint counts in the true alignments than TBA, which does not explicitly account
for breakpoints.

While progressiveMauve and TBA constantly overestimate both pairwise and hidden break-
point counts, Mugsy sometimes underestimates pairwise breakpoint counts. At nucleotide sub-
stitution rates above 0.5, the pairwise breakpoint counts in Mugsy alignments drop signi�cantly
below the pairwise breakpoint counts in true alignments. However, the hidden breakpoint counts
do not drop together with the pairwise breakpoint counts. In Fig. 5.14 on the right, the hidden
breakpoint counts do not show a signi�cant change at a nucleotide substitution rate of 0.5.

Fig. 5.15 demonstrates a very high overall nucleotide accuracy and high indel accuracy in pro-

gressiveMauve and TBA. However, those Mugsy alignments that underestimate the pairwise
breakpoint count have a very low nucleotide and indel accuracy. As opposed to the hidden break-
point counts in Fig. 5.14, the hidden breakpoint error reveals a visible increase for the alignments
with lower pairwise breakpoints.

�ese results suggests that Mugsy misses a signi�cant fraction of blocks at high nucleotide sub-
stitution rates (see also Fig. C.2 and C.3 in the appendix). Some breakage events remain hidden
from pairwise comparison due to low alignment resolution, but the hidden breakpoint counts
seem to recover some of them.

�e data set InvGL and Fig. 5.16 further demonstrate that all three programs constantly over-
estimate both the pairwise and hidden breakpoint counts across the tested range of inversion
rates if the nucleotide substitution rate is �xed at a value as low as 0.01. �e breakpoint error is
on average even higher in this data set. For example, the average pairwise breakpoint error of
progressiveMauve at an inversion rate of 0 is approximately 796 (Fig. 5.16, top le�), whereas it
is 218 in InvNt (Fig. 5.14, top le�).

Both the pairwise and the hidden breakpoint counts in the calculated alignments are closest to
the counts in the true alignments if there are no large gain/loss events (Fig. 5.16, right). For
growing large gain/loss rates, the pairwise breakpoint count in the true alignments goes down,
but it stays constant or even increases in the calculated alignments. Furthermore, the hidden
breakpoint counts in the calculated alignments do not only grow up to a large gain/loss rate of
0.5× 10−4 as in the true alignments but over the full tested range of large gain/loss rates. �us,
both the pairwise breakpoint error and the hidden breakpoint error increase together with the
large gain/loss rate.

Fig. 5.17 indicates that the breakpoint error correlates with nucleotide and indel accuracy of the
alignments. Both the pairwise and the hidden breakpoint error is lowest in alignments with
high nucleotide and indel accuracy. �is suggests that large gain/loss events generally make
the alignment of genomes more di�cult for the tested programs (see also Fig. C.4 and C.5 in the
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appendix).

In summary, high nucleotide substitution rates and high large gain/loss rates can make the align-
ment of genomes more di�cult but with di�erent e�ects on the breakpoint counts. Many nu-
cleotide substitutions can lead to an underestimation of pairwise breakpoints whereas the large
gain/loss events lead to overestimation of both hidden and pairwise breakpoints. �e inversion
rate in�uences the number of breakpoints, but not the breakpoint error and alignment accuracy
in these data sets.

Together with the observations for the breakpoint counts in true alignments, these results con-
�rm that loss of sequence and low alignment resolution decrease pairwise breakpoint counts and
create hidden breakpoints. Moreover, all tested programs systematically overestimate both pair-
wise and hidden breakpoint counts. �e two programs progressiveMauve and Mugsy, which
explicitly account for breakpoints, have a higher overall accuracy than TBA. Hence, a penalty for
hidden breakpoints in a scoring function for local alignment selection appears promising.

5.4 Conclusion to the chapter

�is part concludes the chapter with a summary, a discussion, and an outlook. �e discussion
addresses the potential and limitations of the concept and counting method of hidden break-
points. �e outlook suggests both future research on hidden breakpoints and future research
using hidden breakpoints.

Summary. �is chapter introduced the concept of hidden breakpoints in alignments of three
or more genomes. �ree or more genomes provide evidence for genome breakage events that are
hidden from pairwise comparison. In pairwise genome alignments, these breakage events create
the impression of breakpoint re-use due to sequence loss events or low alignment resolution.
Hidden breakpoints partly recover the lost information using a third genome. Conceptually,
hidden breakpoints give a lower bound to the number of re-used breakpoints – independent
from the controversially discussed breakpoint re-use rate.

Besides describing the concept, the chapter contributes a counting method for hidden break-
points in three genomes. �e counting method projects the genomes to blocks common to at
least two of the three genomes. A median of the projected genomes serves as a basis for comput-
ing a hidden breakpoint count. �is count is the distance to the median reduced by the fraction
a�ributed to pairwise breakpoints.

For the computation of a median genome, the counting method follows recent results of Tan-
nier et al. [153]: It constructs a graph and computes a maximum weight perfect matching that
represents a median genome. A reduction of the graph described in this chapter allows for ef-
�cient computation of the matching, and thus for e�cient computation of the median distance
and hidden breakpoint count.

�e analysis of pairwise and hidden breakpoint counts in the third part of the chapter suggests
that hidden breakpoints are abundant if not pervasive in genome alignments. Gain/loss events
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in the simulated genome alignments as well as low resolution in calculated alignments reduce
pairwise breakpoints and create hidden breakpoints. Furthermore, low alignment accuracy cor-
relates with overestimation of pairwise and hidden breakpoint counts. �e results con�rm the
concept and suggest that hidden breakpoints are suited to measure the degree of non-colinearity
in a scoring function of genome alignment methods.

Discussion. Hidden breakpoint counts improve the lower bound to the number of breakage
events given by the breakpoint distance. �ey use a third genome to provide evidence for break-
point re-use. In contrast to the controversially discussed breakpoint re-use rate [130], the concept
and counting method for hidden breakpoints makes no assumptions on the set of evolutionary
operations. Hidden breakpoint counts are independent from the biological mechanisms, and thus
not speci�c to a particular rearrangement model.

However, the amount of breakpoint re-use predicted with hidden breakpoint counts is limited to
the information provided by the third genome. Breakpoint re-use along a single branch of the
phylogeny of the compared genomes cannot be identi�ed with hidden breakpoints. Only if a
speciation event is between two usages of a breakpoint, the re-use can be identi�ed as a hidden
breakpoint. �us, the number of breakpoints including both hidden and pairwise breakpoints is
still a lower bound to the actual number of breakage events that happened during evolution.

Furthermore, the location of hidden breakpoints in the genomes remains unknown. Hidden
breakpoint counts only provide a number, but provide no information about which breakpoints
have been re-used. Moreover, the breakage events can not even be assigned to one branch of
the phylogeny of the compared genomes. �e median approach counts hidden breakpoints only
among triplets of genomes.

�e median genome calculated in the counting approach does not necessarily represent an an-
cestral genome. O�en, many median genomes with the same distance to the compared genomes
exist. �e reduction of graph edges described in Section 5.2.3 excludes some possible median
genomes from consideration. �e counting approach only makes use of the distance to the me-
dian, which is equal for all median genomes. Hence, the approach can use any median genome
without predicting the actual ancestral genome.

Despite these limitations, the concept of hidden breakpoint counts seems promising for improv-
ing the resolution and accuracy of genome alignments. Pairwise breakpoint penalties in the
scoring function of genome alignment methods o�en remove blocks with low positive scores
from the alignment. However, these blocks can represent homology. Figure 5.18 shows an ex-
ample where a small block creates a pairwise breakpoint. Without the small block, there is no
pairwise breakpoint but a hidden breakpoint (see also Fig. 5.5). �us, low alignment resolution
replaces the pairwise breakpoint by a hidden breakpoint in this example. With a penalty for hid-
den breakpoints, a genome alignment method might keep the small block. Hence, a penalty for
hidden breakpoints could help distinguishing spurious local alignments from true homologies.

Outlook. �e presented counting method and analysis of hidden breakpoint counts provide
new opportunities for genome alignment methods and leave room for future research. �is in-
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Figure 5.18: �e example from Fig 5.5 at higher alignment resolution with an additional small block
(red). In contrast to Fig. 5.5, the rearrangement event between genomes 1 and 3 is visible in pair-
wise comparison. �us, identi�cation of the red block turns a hidden breakpoint into a pairwise
breakpoint.

cludes generalizations of the counting method as well as additional analysis of the abundance of
hidden breakpoints among real genomes (see below). Possibly, hidden breakpoint counts can also
contribute to research on models of genome evolution. Furthermore, the integration of hidden
breakpoint counts into scoring functions of genome alignment methods is an open but promising
task.

A �rst generalization of the counting method will be to allow for arbitrary copy numbers of
blocks in the genomes. It requires a generalized graph construction as described at the end of
Section 5.2.3 and a graph transformation following Tu�e [156] for solving the f -factor problem.
�e counting method itself as described in Section 5.2.2 remains the same. Testing and evaluating
a generalized counting method could include again both simulated alignments and calculated
alignments. Tests on calculated alignments can then include genome aligners that allow for
duplications, such as Cactus [121].

Another generalization of the counting method could address breakpoints hidden from the com-
parison of three or more genomes. For example, the four genomes AB, BC, CD, and DA hide
breakpoints of a rearrangement event from all pairwise and all three-way comparisons. Although
the phylogenetic tree of four or more genomes has not only one inner vertex, the distance to a
median genome of more than three genomes provides information about hidden breakpoints.
Reduced by the number of pairwise and three-way breakpoints, the median distance of four
genomes might further improve the lower bound to the number of breakage events.

Further analyses of hidden breakpoint counts should examine alignments of real genomes. �ese
analyses could test the in�uence of alignment resolution on pairwise and hidden breakpoint
counts by calculating genome alignments with di�erent parameter se�ings. Furthermore, align-
ments of di�erent sets of species with known di�erences in the rate of gain/loss can con�rm the
results from simulated data. Comprehensive testing might potentially reveal signi�cant ratios of
hidden to pairwise breakpoints.

For integrating hidden breakpoint counts into the scoring function of genome alignment meth-
ods, future research needs to set pairwise and hidden breakpoint counts in relation to each other.
�e number of three-way comparisons grows faster with the number of genomes than the num-
ber of pairwise comparisons does. A scoring function has to account for this di�erence when
applying penalties for pairwise and hidden breakpoints.
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In addition, the integration into genome alignment methods requires development of an algo-
rithm that optimizes a scoring function with pairwise and hidden breakpoint penalties. A pos-
sible �rst step will be to investigate how removal or addition of local alignments a�ect hidden
breakpoint counts, and thus the score of genome alignments. A change of the score that depends
only on the arrangement of a limited number of blocks would, for example, be favorable for
algorithm development.



Chapter 6

Conclusion

�is thesis contributed to three aspects of computing and modeling multiple whole-genome
alignments. It suggested an e�cient approach for the computation of local similarities in whole-
genomes, examined graph data structures for representing non-colinear alignments, and ex-
tended the breakpoint distance for measuring the degree of non-colinearity in multiple align-
ments. �e following summarizes these contributions, discusses their integration into a genome
alignment method including additional steps for future research, and mentions the latest devel-
opments and challenges.

Summary of contributions

�e �rst contribution of this thesis is a fully sensitive and e�cient local alignment approach.
Chapter 3 extended a previously introduced, lossless and e�cient �ltering algorithm for local
alignments by a veri�cation strategy that guarantees full sensitivity. �e chapter substantiated
this guarantee by a theoretical proof (see �eorem 1 on page 48). �e �ltering algorithm and
veri�cation strategy were implemented in the tool STELLAR and evaluated with a parameter
study and with a comparison to other local alignment tools. �e comparison con�rms that the
novel approach, despite being fully sensitive, is fast enough to compete with the most widely
used seed-and-extend approaches, which o�en miss a signi�cant amount of local alignments.
�us, STELLAR is well-suited for identifying local similarities of whole-genomes.

�e next contribution is a comparison and theoretical assessment of graph data structures for
genome alignments. Chapter 4 described alignment graphs, A-Bruijn graphs, Enredo graphs, and
cactus graphs using consistent terminology for the �rst time, and revealed that all four graphs
rely on vertex or edge labels for representing non-colinearity. Furthermore, the description of
transformations proved that the graph structures without labels di�er in their information con-
tent. Substructures that assist graph-based genome alignment approaches in processing the set
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of local alignments appear only partly in the graph structures. �us, the graph structures have
limitations in identifying non-colinearity. �ey trade di�erent amounts of information about
non-colinear changes for compactness of the representation. Nevertheless, the graph data struc-
tures conceptually provide a valuable basis for methods that compute genome alignments.

�e third contribution is the de�nition and a counting method for breakpoints that are hidden
from pairwise comparisons but become visible in multiple genome alignments. Hidden break-
points give evidence for breakpoint re-use without making assumptions on evolutionary mech-
anisms. We consider hidden breakpoint counts as an extension of the pairwise breakpoint dis-
tance to multiple genomes, an extension that takes into account gain/loss of blocks. Chapter 5
introduced hidden breakpoints as well as a counting method that handles genomes without du-
plications. In addition, it proposed a generalization of the counting method to genomes with
duplications. An analysis of breakpoint counts in alignments of simulated genomes suggested
that hidden breakpoints can improve genome alignment resolution and accuracy if included in
the scoring functions of methods for computing genome alignments.

The genome alignment context

�e three contributions of this thesis are per se independent from each other, but each addresses
challenges that are characteristic of the multiple genome alignment problem: the enormous
length of genomes and non-colinearity of homologous regions. More speci�cally, local alignment
approaches have to be both e�cient and sensitive for computing genome alignments (Chapter 3);
non-colinearity among genome sequences requires new data structures for alignment represen-
tation (Chapter 4); and scoring functions for selecting subsets of local alignments need to measure
the degree of non-colinearity among multiple genomes (Chapter 5).

In future work, the three contributions can be combined in a new genome alignment method.
�is method would compute local alignments using STELLAR, apply the insights from the graph
comparison of Chapter 4 for choosing an appropriate data structure to represent the set of local
alignments, and select those local alignments that optimize a scoring function with a penalty for
both pairwise and hidden breakpoints. However, additional steps would be necessary to obtain
a valid and accurate genome alignment.

�ese additional steps could include those mentioned in Chapter 1 such as the re�nement of
partial overlaps, consistency extension, recursion, and realignment, but also further steps that
are less well established. �e following paragraphs consider the selection of fewer genome pairs
for local alignment computation, the integration of other match types with the set of local align-
ments, and an algorithm for �nding the optimal subset of local alignments. �ese steps seem
promising but need further investigation before being applied in methods for computing genome
alignment.

Genome pair selection. �e computation of local alignments among all genome pairs is
very time consuming and prohibitive when comparing many genomes. �e number of pairs
is quadratic in the number of input genomes. However, the number of pairwise comparisons can
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be reduced since the homology relation is transitive (see Fig. 1.8 on page 7). Transitivity allows
derivation of similarities between all pairs given alignments of only a linear number of pairs. A
similar idea underlies progressive alignment [55]. Fewer pairwise comparisons will allow more
genomes in one alignment.

�e challenge is to select those pairs for computing local alignments that keep the accuracy of
the resulting genome alignment high. �e program FSA [22] proves that colinear alignments
sacri�ce hardly any accuracy when reducing the number of pairwise comparisons, and the same
seems likely for genome alignments. However, according to the authors of FSA, “developing a
good theory of which pairs to use to construct the best alignment with the fewest comparisons
[…] remains an open problem” [22].

Future research will need to investigate the factors that in�uence accuracy when selecting pairs.
FSA selects all pairs of a spanning tree computed from common q-gram counts and determines
a number of additional, random pairs with the Erdős-Rényi theory about the connectivity of
random graphs [54]. However, using this theory for adding extra pairs seems arbitrary since a
spanning tree already ensures connectivity. Maybe methods for identifying uncertain branches
in a guide tree computed from common q-gram counts can lead to a be�er selection of pairs.

Integration of other match types. �e integration of information other than sequence sim-
ilarity in genome alignments could guide the selection of local alignments, and thus improve the
prediction of homologies. For example, functional annotations of many sequenced genomes are
available in databases and sometimes expression data is present. �is information could be used
to con�rm the identi�ed sequence similarities and clarify ambiguities during the processing of
local alignments.

Approaches for this integration would have to bring together information from di�erent levels.
Local alignments have nucleotide level resolution, but annotations are given only on the level
of sequence segments. A possible solution is to extrapolate alignments of the segments with
matching annotations, and then check the agreement of extrapolated matches with local align-
ments using a certain tolerance. An annotation match that overlaps with a local alignment could
raise the score of the local alignment. To handle partial overlaps, a procedure similar to segment
match re�nement [69, 135] for extrapolated matches could be developed in future research.

Finding the optimal subset of local alignments. Chapter 1 mentioned that many methods
for computing genome alignments use greedy approaches to select a subset of local alignments.
�ese greedy approaches risk running into local optima instead of �nding the globally optimal
genome alignment. A promising alternative to greedy algorithms might be a simulated annealing
algorithm for �nding the optimal subset of local alignments with a high probability.

Simulated annealing algorithms combine two ideas of recent alignment approaches: iteratively
adding and removing local alignments and a probabilistic model. �e approach taken by the
Cactus program [121] iteratively adds and removes local alignments. However, the algorithm in
Cactus asks the user to de�ne the parameters for a deterministic sequence of iterations. Pachter
and coworkers suggested a probabilistic algorithm called sequence annealing [22, 147] for com-
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puting colinear alignments. However, this algorithm only adds local alignments with a random
component and does not have a removal (melting) step. �us by combining the two ideas, sim-
ulated annealing algorithms overcome limitations and might be able to approximate optimal
genome alignments more closely.

Latest developments and challenges

�e above examples of additional steps demonstrate that the genome alignment problem leaves
room for future research. Apart from developing individual steps of computational methods, an
important task is to further establish what a good genome alignment is. �is includes formal
problem de�nitions as well as evaluation metrics and benchmarking sets.

Methods for computing genome alignments share the strategy of combining local alignments
into a set of blocks, but they disagree in the de�nition of a genome alignment. In particular,
they disagree in how to handle duplications. A method decides whether to align all copies of
a duplicated segment in one block or to choose only the positionally conserved copy (see also
Fig. 1.7 on page 7). �ese are two di�erent objectives. Both are correct predictions of homology,
however at di�erent resolutions.

�e ultimate goal should be a prediction of homology at all resolutions. Genomes can be aligned
at di�erent resolutions [91], but a genome alignment represented as a set of blocks can predict
homology only at one. �us, prediction of homology at all resolutions will require new data
structures.

Current developments already face the challenge of homology prediction at several resolutions.
�e authors of the recent genome alignment method Sibelia [109] suggest a hierarchical struc-
ture of alignments. Furthermore, Paten et al. recently introduced a new data structure, a history
graph, that uni�es alignments with evolutionary scenarios [125]. Future research may need to
discuss and develop such structures.

Evaluation of methods for computing genome alignments is being addressed by a current e�ort,
the Alignathon [50]. �e initiators invited researchers to compute and submit genome align-
ments of provided data sets. At the time of this writing the �nal results have not yet been pub-
lished, but the submissions con�rm that the available methods di�er in their objectives. For
making a comparison possible, the initiators had to process the submi�ed alignments with sev-
eral additional �lters.

In addition, the submissions to the Alignathon indicate that not very many so�ware implementa-
tions of genome alignment methods are available. Implementations of several methods discussed
in this thesis are not available or maintained anymore (for example ABA and DRIMM-Synteny)
and other implementations have many dependencies that make installation hard. Hopefully the
availability of genome alignment so�ware will change with further development of the �eld.

As sequencing technologies keep improving, the availability of genome alignment tools will be-
come relevant for more and more studies. Currently, the comparison of genomes from multiple
individuals of the same species is gaining importance. Furthermore, the comparison of cancer
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genomes, where massive rearrangement is observed, might be a future application for genome
alignments.

Despite its enormous potential, the multiple genome alignment problem remains a challenging
task in terms of both computing and modeling. Future research needs to establish a common
understanding of genome alignment and related problems, and certainly will further improve
available methods. �e three contributions of this thesis are a promising basis for a novel multiple
whole-genome alignment program.
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[7] S. F. Altschul, T. L. Madden, A. A. Schä�er, J. Zhang, Z. Zhang, W. Miller, and D. J. Lipman.
Gapped BLAST and PSI-BLAST: a new generation of protein database search programs.
Nucleic Acids Res, 25(17):3389–3402, 1997.

[8] S. V. Angiuoli, J. C. Dunning Hotopp, S. L. Salzberg, and H. Te�elin. Improving pan-genome
annotation using whole genome multiple alignment. BMC Bioinformatics, 12:272, 2011.

131



132 Bibliography

[9] S. V. Angiuoli and S. L. Salzberg. Mugsy: fast multiple alignment of closely related whole
genomes. Bioinformatics, 27(3):334–342, 2011.
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[135] T. Rausch, A.-K. Emde, D. Weese, A. Döring, C. Notredame, and K. Reinert. Segment-based
multiple sequence alignment. Bioinformatics, 24(16):i187–i192, 2008.

[136] K. Reinert, H.-P. Lenhof, P. Mutzel, K. Mehlhorn, and J. D. Kececioglu. A branch-and-cut
algorithm for multiple sequence alignment. In Proceedings of the �rst annual international
conference on Computational molecular biology, RECOMB ’97, pages 241–250, New York,
NY, USA, 1997. ACM.

[137] S. Richards, Y. Liu, B. R. Be�encourt, P. Hradecky, S. Letovsky, R. Nielsen, K. �ornton,
M. J. Hubisz, R. Chen, R. P. Meisel, O. Couronne, S. Hua, M. A. Smith, P. Zhang, J. Liu, H. J.
Bussemaker, M. F. van Batenburg, S. L. Howells, S. E. Scherer, E. Sodergren, B. B. Ma�hews,
M. A. Crosby, A. J. Schroeder, D. Ortiz-Barrientos, C. M. Rives, M. L. Metzker, D. M. Muzny,
G. Sco�, D. Ste�en, D. A. Wheeler, K. C. Worley, P. Havlak, K. J. Durbin, A. Egan, R. Gill,
J. Hume, M. B. Morgan, G. Miner, C. Hamilton, Y. Huang, L. Waldron, D. Verduzco, K. P.
Clerc-Blankenburg, I. Dubchak, M. A. F. Noor, W. Anderson, K. P. White, A. G. Clark, S. W.
Schae�er, W. Gelbart, et al. Comparative genome sequencing of Drosophila pseudoob-
scura: chromosomal, gene, and cis-element evolution. Genome Res, 15(1):1–18, 2005.

[138] E. J. Richardson and M. Watson. �e automatic annotation of bacterial genomes. Brief
Bioinform, 14(1):1–12, 2013.

[139] C. Rinke, P. Schwientek, A. Sczyrba, N. N. Ivanova, I. J. Anderson, J.-F. Cheng, A. Darling,
S. Malfa�i, B. K. Swan, E. A. Gies, J. A. Dodsworth, B. P. Hedlund, G. Tsiamis, S. M. Sievert,
W.-T. Liu, J. A. Eisen, S. J. Hallam, N. C. Kyrpides, R. Stepanauskas, E. M. Rubin, P. Hugen-
holtz, and T. Woyke. Insights into the phylogeny and coding potential of microbial dark
ma�er. Nature, 499(7459):431–437, 2013.

http://fasta.bioch.virginia.edu/fasta_www2/fasta_down.shtml
http://fasta.bioch.virginia.edu/fasta_www2/fasta_down.shtml


Bibliography 141

[140] M. S. Rosenberg. Multiple sequence alignment accuracy and evolutionary distance esti-
mation. BMC Bioinformatics, 6:278, 2005.

[141] R. K. Saiki, T. L. Bugawan, G. T. Horn, K. B. Mullis, and H. A. Erlich. Analysis of enzymat-
ically ampli�ed beta-globin and HLA-DQ alpha DNA with allele-speci�c oligonucleotide
probes. Nature, 324(6093):163–166, 1986.

[142] F. Sanger, G. M. Air, B. G. Barrell, N. L. Brown, A. R. Coulson, C. A. Fiddes, C. A. Hutchison,
P. M. Slocombe, and M. Smith. Nucleotide sequence of bacteriophage Φ X174 DNA. Nature,
265(5596):687–695, 1977.

[143] F. Sanger, S. Nicklen, and A. R. Coulson. DNA sequencing with chain-terminating in-
hibitors. Proc Natl Acad Sci U S A, 74(12):5463–5467, 1977.

[144] D. Sanko�. Genome rearrangement with gene families. Bioinformatics, 15(11):909–917,
1999.

[145] D. Sanko�. �e signal in the genomes. PLoS Comput Biol, 2(4):e35, 2006.

[146] D. Sanko� and P. Trinh. Chromosomal breakpoint reuse in genome sequence rearrange-
ment. J Comput Biol, 12(6):812–821, 2005.

[147] A. S. Schwartz and L. Pachter. Multiple alignment by sequence annealing. Bioinformatics,
23(2):e24–e29, 2007.

[148] S. Schwartz, W. J. Kent, A. Smit, Z. Zhang, R. Baertsch, R. C. Hardison, D. Haussler, and
W. Miller. Human-mouse alignments with BLASTZ. Genome Res, 13(1):103–107, 2003.

[149] S. Schwartz, Z. Zhang, K. A. Frazer, A. Smit, C. Riemer, J. Bouck, R. Gibbs, R. Hardison,
and W. Miller. PipMaker–a web server for aligning two genomic DNA sequences. Genome
Res, 10(4):577–586, 2000.

[150] E. Siragusa, D. Weese, and K. Reinert. Fast and accurate read mapping with approximate
seeds and multiple backtracking. Nucleic Acids Res, 41(7):e78, 2013.

[151] T. F. Smith and M. S. Waterman. Identi�cation of common molecular subsequences. J Mol
Biol, 147(1):195–197, 1981.

[152] P. J. Stephens, C. D. Greenman, B. Fu, F. Yang, G. R. Bignell, L. J. Mudie, E. D. Pleasance,
K. W. Lau, D. Beare, L. A. Stebbings, S. McLaren, M.-L. Lin, D. J. McBride, I. Varela, S. Nik-
Zainal, C. Leroy, M. Jia, A. Menzies, A. P. Butler, J. W. Teague, M. A. �ail, J. Burton,
H. Swerdlow, N. P. Carter, L. A. Morsberger, C. Iacobuzio-Donahue, G. A. Follows, A. R.
Green, A. M. Flanagan, M. R. Stra�on, P. A. Futreal, and P. J. Campbell. Massive genomic
rearrangement acquired in a single catastrophic event during cancer development. Cell,
144(1):27–40, 2011.

[153] E. Tannier, C. Zheng, and D. Sanko�. Multichromosomal median and halving problems
under di�erent genomic distances. BMC Bioinformatics, 10:120, 2009.



142 Bibliography

[154] �e Chimpanzee Sequencing and Analysis Consortium. Initial sequence of the chimpanzee
genome and comparison with the human genome. Nature, 437(7055):69–87, 2005.

[155] J. D. �ompson, D. G. Higgins, and T. J. Gibson. CLUSTAL W: improving the sensitivity of
progressive multiple sequence alignment through sequence weighting, position-speci�c
gap penalties and weight matrix choice. Nucleic Acids Res, 22(22):4673–4680, 1994.

[156] W. T. Tu�e. A short proof of the factor theorem for �nite graphs. Canadian Journal of
Mathematics, 6:347–352, 1954.

[157] S. Tweedie, M. Ashburner, K. Falls, P. Leyland, P. Mc�ilton, S. Marygold, G. Mill-
burn, D. Osumi-Sutherland, A. Schroeder, R. Seal, H. Zhang, and F. Consortium. Fly-
Base: enhancing drosophila gene ontology annotations. Nucleic Acids Res, 37(Database
issue):D555–D559, 2009.

[158] J. C. Venter, M. D. Adams, E. W. Myers, P. W. Li, R. J. Mural, G. G. Su�on, H. O. Smith,
M. Yandell, C. A. Evans, R. A. Holt, J. D. Gocayne, P. Amanatides, R. M. Ballew, D. H. Huson,
J. R. Wortman, Q. Zhang, C. D. Kodira, X. H. Zheng, L. Chen, M. Skupski, G. Subramanian,
P. D. �omas, J. Zhang, G. L. G. Miklos, C. Nelson, S. Broder, A. G. Clark, J. Nadeau, V. A.
McKusick, N. Zinder, A. J. Levine, R. J. Roberts, M. Simon, C. Slayman, M. Hunkapiller,
R. Bolanos, A. Delcher, I. Dew, D. Fasulo, M. Flanigan, L. Florea, A. Halpern, S. Hannenhalli,
S. Kravitz, S. Levy, C. Mobarry, K. Reinert, K. Remington, J. Abu-�reideh, E. Beasley, et al.
�e sequence of the human genome. Science, 291(5507):1304–1351, 2001.

[159] L. Wang and T. Jiang. On the complexity of multiple sequence alignment. J Comput Biol,
1(4):337–348, 1994.

[160] M. S. Waterman and M. Eggert. A new algorithm for best subsequence alignments with
application to tRNA-rRNA comparisons. J Mol Biol, 197(4):723–728, 1987.

[161] J. D. Watson. �e human genome project: past, present, and future. Science, 248(4951):44–
49, 1990.

[162] J. D. Watson and F. H. Crick. �e structure of DNA. Cold Spring Harb Symp �ant Biol,
18:123–131, 1953.

[163] G. Wa�erson, W. Ewens, T. Hall, and A. Morgan. �e chromosome inversion problem.
Journal of �eoretical Biology, 99(1):1–7, 1982.
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Appendix A

STELLAR parameters and implementation

A.1 Appropriate parameter values for ε and q

For the �ltering algorithm to work, we require ε-matches to contain at least one q-hit. �en,

T (n, q, ε) ≥ 1 (A.1)

where T (n, q, ε) = n + 1 − q · (bεnc + 1) as de�ned in the q-gram lemma (Lemma 1). To
equation A.1, we apply the following simple transformations:

T (n, q, ε) ≥ 1
∣∣∣ (Lemma 1)

n+ 1− q · (bεnc+ 1) ≥ 1
∣∣∣ −1 + q · (bεnc+ 1)

n ≥ q · (bεnc+ 1)
∣∣∣ / (bεnc+ 1)

q ≤ n

bεnc+ 1
.

Since bεnc+ 1 > εn,
n

bεnc+ 1
<

n

εn
=

1

ε

and therefore we have to choose q and ε such that

q <
1

ε
.
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Figure A.1: A greedy approach might fail to identify the longest ε-match. Here, a possible greedy
approach always cuts the end of the extended ε-core that is closer to an error until the error rate is
≤ ε. In this example, it would return the ε-match between the two grey bars with a length of 24
(ε = 1/8, n0 = 20). However, there is a longer ε-match (between the black bars) of length 25 with
the same number of errors.
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A.2 Overview of STELLAR source code

STELLARmakes use of mainly three modules from the SeqAn library: the indexmodule for �lter-
ing, the align module for DP alignment algorithms, and the seeds module for ε-core extension.
�e main function stellar() in the �le stellar.h uses the Finder interface from the index
module specialized with SwiftLocal to identify SWIFT hits. For each SWIFT hit, stellar()
calls the function verifySwiftHit(), which de�nes a LocalAlignmentEnumerator<> from
the align module for banded Waterman-Eggert alignment. From the resulting ε-cores, which
are of the type Align<>, ε-X-drops are �ltered with the function splitAtXDrops(). �is
function implements the post-processing algorithm, which is not integrated in the the SeqAn

library, yet. �e veri�cation steps 3 and 4, extension and identi�cation of ε-matches, are car-
ried out in extendAndExtract(). �is function de�nes a Seed<> for each ε-core and ex-
tends it using extendSeed() from the seeds module. A�erwards, extendAndExtract() calls
the function bestExtension() to detect ε-matches. �e computation of additional values in
DP alignment algorithms was not possible with SeqAn at the time of implementation, so a
customized banded alignment was added for Step 4a. �e function longestEpsMatch() car-
ries out Step 4b. �e traceback (Step 4c) is taken from the SeqAn library again. When an ε-
match is found, STELLAR adds it to a String of StellarMatch<> objects with the function
insertMatch(). insertMatch() calls maskOverlaps() to remove overlapping ε-matches if
a preset number of ε-matches has been inserted. At the end, the ε-matches are passed to the
function outputMatches(), where e-values are computed and the matches are wri�en to a �le.

stellar()

outputMatches()

find()

verifySwiftHit()

patternInit()

swiftMultiProcessQGram()

swiftMultiFlushBuckets()

localAlignment()

splitAtXDrops()

extendAndExtract()

insertMatch()

extendSeed()

bestExtension()

maskOverlaps()

alignBandedNWBestEnds()

longestEpsMatch()

Figure A.2: Overview of functions in the STELLAR implementation. Functions shaded in green are
already part of the SeqAn core library.





Appendix B

Generalization of Enredo graphs

�e de�nition of Enredo graphs in Section 4.1.3 di�ers from its original de�nition [124] in some
aspects. Paten et al. de�ne adjacencies as non-empty segments, their initial Enredo graph is not
a multigraph, and they use a length threshold for adjacencies [124]. �e following paragraphs
describe each of these di�erences to the de�nition in Section 4.1.3 in more detail.

Non-empty adjacencies. Section 4.1 assumes that the set of blocks B is a tiling of the ge-
nomes. Segments that are not aligned to any other segments appear in B as blocks of size 1.
However, the Enredo method constructs the Enredo graph structure from a set of preferentially
short alignments (to avoid overlaps). �us, the blocks cover only parts of the genomes and adja-
cencies can have arbitrary lengths.

In Section 4.1, adjacencies that have a length > 0 are replaced by blocks that have a single
occurence. Transferred to the Enredo graph structure, a single adjacency edge is replaced by a
component consisting of a block edge between a head and a tail vertex connected to the rest of
the graph structure by two directed edges that represent empty adjacencies (see Fig. B.1).

Multigraph. Paten et al. represent multiple adjacency edges between the same two vertices
by a single adjacency edge in the initial phase of the Enredo method. �is is a requirement to

A B C⇔A CGTACCAT

Figure B.1: Replacement of a non-empty adjacency by a block B of size one in an Enredo graph.
�e labeled adjacency edge (le�) becomes a block edge with two vertices and two adjacency edges
(right).

149



150 APPENDIX B. GENERALIZATION OF ENREDO GRAPHS

distinguish them from additional adjacency edges created in later steps of the Enredo method.
In addition, they assume the initial adjacencies to be homologous segments.

Section 4.1.3 expects all sets of segments that are assumed to be homologous being de�ned as
blocks.1 Given this, it is possible to generally allow multiple adjacency edges between the same
two vertices. Segments assumed to be homologous are represented as a single block edge and
segments assumed to be non-homologous are represented as separate adjacency edges.

Length threshold. �e original Enredo graph structure does not represent adjacencies that
are longer than a prede�ned length threshold. �e Enredo method only adds edges to the graph
structure that represent shorter adjacencies. �is results already in a partial segmentation of the
genomes. Section 4.1.3 de�nes the graph with all adjacencies and leaves segmentation to later
stages.

1According to the de�nitions in Chapter 2, the only formal di�erence between a set of homologous adjacencies and
a block are the orientation bits in block occurences. Once a set of adjacencies is assumed to be homologous, these
bits can usually be added with minor sequence comparison e�ort.
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Supplementary figures of breakpoint analysis
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Figure C.1: �e phylogeny of nine taxa used for the simulation of alignment problems in Sec-
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