From HPSG-based Persian Treebanking to
Parsing: Machine Learning for Data Annotation

A Dissertation
Submitted in Partial Fulfillment of the Requirements for the
Degree of
Doctor of Natural Sciences (Dr. rer. nat.)

to the Department of Mathematics and Computer Science
of Freie Universitit Berlin

by

Masood Ghayoomi

Berlin, 2014

Supervisor: Professor Dr. Raul Rojas
Second examiner: Professor Dr. Stefan Miiller

Third examiner: Professor Dr. Kiril Ivanov Simov

Date of the defense: June 27, 2014

©Copyright by Masood Ghayoomi 2014
All Rights Reserved.

Affidavit

I hereby swear in lieu of an oath that I have independently prepared this disser-
tation and without using other aids than those stated. The data and concepts
taken over from other sources or taken over indirectly are indicated with cita-
tions. This dissertation so far has not been submitted in either Germany or
any other country in the same or a similar form in a procedure for obtaining an

academic title.

Masood Ghayoomi
Berlin, 2014

To my wife Saeedeh,
who is my love.
To my daughter Noora,

who is my life.

Acknowledgements

No worthwhile work has ever completed in isolation. Finishing this dissertation
could not have been possible without the help of several mentors, colleagues,
friends, and relatives. I owe them a debt of gratitude for all of their support
and kindness.

I am very grateful to Professor Dr. Ratl Rojas, my first reviewer, Professor
Dr. Stefan Miiller, my second reviewer, and Professor Dr. Kiril Ivanov Simov,
my third reviewer, for their supervision and reviewing my dissertation. I am
truly thankful for their patience and their encouragement. They taught me
a tremendous amount about how to do good research. Their review of my
dissertation greatly improved my work to develop a clearer insight and expla-
nation of what I have done in my research. I would like to thank Professor
Dr. Marco Block-Berlitz, PD Dr. Christoph Benzmiiller and Dr. Tim Landgraf
for serving on my committee.

I am also grateful to Professor Dr. Jonas Kuhn for acting as my supervisor
when I was visiting the Institute for Natural Language Processing (IMS) at the
University of Stuttgart. His invaluable suggestions had a major impact on my
work.

I would like to thank Professor Dr. Kiril Ivanov Simov and Professor Dr. Petya
Osenova for their advice during my visit at the Linguistics Modeling Depart-
ment at the Bulgarian Academy of Sciences, Sofia, Bulgaria. In addition to
being my academic mentors, they have also been great friends to me.

My special appreciation goes to Professor Dr. Mahmood Binajkhan (Univer-
sity of Tehran, Tehran) and Professor Dr. Vida Shaghaghi (Allameh Tabatabaei
University, Tehran), and also to Professor Dr. Omid Tabibzadeh (Bu-Ali-Sina
University, Hamedan) for their guidance and the interesting discussions that we
had on Persian and the complex data analysis.

I greatly appreciate my colleagues in the German Grammar Group at the
Freie Universitdt Berlin (FU-Berlin) for their true friendship and the fruitful
conversations we had during my work: Dr. Felix Bildhauer, Dr. Bjarne @rsnes,
Dr. Philippa Cook, Dr. Roland Schaefer, Dr. Jakob Maché, and Janna Lipenkova.

My thanks also go to my colleagues in IMS at the University of Stuttgart for
the interesting discussions that we had: Dr. Helmut Schmid, Dr. Richard Farkas,

Wolfgang Seeker, and Anders Bjorkelund.

I would also like to thank Dr. Ines Rehbein (Potsdam University), Dr. Yi
Zhang (Nuance Communications Aachen GmbH), Dr. Mehran Taghvaipour, and
Thomas Triebwasser.Prado for the discussions, comments, and proofreading the
draft version of the dissertation. All remaining errors are of course mine. I also
appreciate Omid Moradiannasab to help me in programming.

I am very thankful to the German organizer Deutsche Forschungsgemein-
schaft (DFG) who provided me with the financial support for this research.
During my study, I was funded by DFG as a research assistant for three years
(2009-2012) in the project entitled “Implementation of a Head-driven Phrase
Structure Grammar of Persian and Creation of a Machine Readable Lexicon
of Persian” under the contract number MU 2822/3-1 at FU-Berlin. I was also
funded by DFG in the Integrated Graduate School for one year (2012-2013)
within Sonderforschungsbereich 732 (SFB 732) on “D2: Combining Contextual
Information Sources for Disambiguation in Parsing and Choice in Generation”
at the University of Stuttgart.

In addition to the people who provided me with scientific support, I would
like to acknowledge the people who provided me a conducive environment and
the condition to do my research: Viola Auermann, the Secretary of the Ger-
man Grammar Group at FU-Berlin, Dr. Jagoda Bruni, the Coordinator of the
Integrated Graduate School at IMS, and the ZEDAT, the Computer Center at
FU-Berlin, for their help and support with the server facilities.

This dissertation is written in the XHlATEX environment. I would like to
thank all package providers who facilitated compiling my dissertation very
nicely.

In my educational life, my beloved family has always been a great support
both spiritually and mentally. During the time that I was away from them,
they did all the best they could to keep me motivated to pursue my educa-
tion. My special gratitude goes to my parents, Naser Ghayoomi and Esmat
Mehrabi Ghomi, who always encouraged me to pursue my education. I also ap-
preciate my parents-in-law for their encouragement to seek knowledge. Without
their support, I could not have been where I am now. No words can express
my gratitude to my family for what they have done for me throughout my life.
Last, but not least, my appreciation goes out to my beloved wife, Saeedeh Mom-
tazi, for her true love and emotional support. She took care of me in my Ph.D.
education beside being a mother for our new born daughter, Noora. Being a
graduate student limited the time that I could spend with them as a husband
and a father. I am grateful to my wife for all her patience, tolerance, and un-
derstanding. Her ceaseless positivity has always been the best motivation for

me to keep working.

Short Summary

Parsing is a step for understanding a natural language to find out about the
words and their grammatical relations in a sentence. Statistical parsers require a
set of annotated data, called a treebank, to learn the grammar of a language and
apply the learnt model on new, unseen data. This set of annotated data is not
available for all languages, and its development is very time-consuming, tedious,
and expensive. In this dissertation, we propose a method for treebanking from
scratch using machine learning methods.

We first propose a bootstrapping approach to initialize the data annotation
process. We aim at reducing human intervention to annotate the data. After
developing a small data set, we use this data to train a statistical parser. This
small data set suffers from the sparseness of data at the lexical and syntactic
construction levels. Therefore, a parser trained with this amount of data might
have a low performance in a real application. To resolve the data sparsity prob-
lem at the lexical level, we propose an unsupervised word clustering approach
to provide a more coarse-grained representation of the lexical items. To resolve
the data sparsity problem at the syntactic construction level, we propose active
learning which is a promising supervised method to seek informative samples in
a data pool. The data that is annotated through an active learning approach
helps a learner to obtain performance similar to that of a learner trained with
the complete set of annotated data. Consequently, active learning is a great

help to reduce the amount of required annotated data.

Kurze Zusammenfassung

Parsing bezeichnet einen Schritt in der automatischen Analyse natiirlicher
Sprache, bei dem die grammatischen Relationen zwischen den Wortern eines
Satzes offengelegt wird. Um die Grammatik einer Sprache zu lernen und auf
neue Daten anwenden zu konnen, werden statistische Parser auf syntaktisch
annotierten Daten, sogenannten Baumbanken, trainiert. Baumbanken sind nur
fiir wenige Sprachen verfiighar, denn die manuelle Erstellung von Baumbanken
ist langwierig, mithsam und teuer. Diese Dissertation prasentiert eine Methode
zur Erstellung von Baumbanken mit Hilfe maschinellen Lernens.

Als erstes schlagen wir einen Bootstrapping-Ansatz vor, welcher den An-
teil an menschlicher Intervention zu minimieren sucht. Dabei verwenden wir
eine kleine Menge eigens dafiir annotierter Daten, um einen statistischen Parser
zu trainieren. Bedingt durch die geringe Grofle des Datensatzes zeigt das so
trainierte Modell Abdeckungsprobleme auf der lexikalischen und syntaktischen
Annotationsebene und wiirde in einer realistischen Anwendung schlechte Qual-
itdt liefern. Um die lexikalische Abdeckung zu verbessern, schlagen wir de-
shalb einen uniiberwachten Wort-Clustering-Ansatz vor, welcher Worter im
Lexikon zu grofleren Klassen gruppiert. Um die syntaktische Abdeckung zu
verbessern, verwenden wir Active Learning, eine iiberwachte Methode um infor-
mative Beispiele aus einem groflen Pool unannotierter Daten auszuwéahlen. Die
Verwendung von Active Learning bei der Datenannotation reduziert die Menge
an Daten, die annotiert werden muf3, bevor man dieselbe Performanz erreicht,
die man unter Verwendung der Gesamtdatenmenge erreichen wiirde. Active
Learning ist deshalb eine grofie Hilfe, wenn man die Menge an zu annotierenden

Daten reduzieren will.

Summary

Natural language understanding is a subfield of computational linguistics which
aims at making machines able to understand human languages. Obtaining
knowledge of the grammar of the language in question through parsing tasks
plays an important role in achieving this goal. A treebank is required to train
a statistical parser to induce and learn the grammar of a language. This set of
annotated data, however, does not exist for all languages. The main motivation
behind the present research is to propose a method to develop a treebank from
scratch for Persian. To this end, we use machine learning methods to reduce hu-
man intervention to annotate data in the framework of the Head-driven Phrase
Structure Grammar (HPSG). This process is done in two phases. In the first
phase, a small treebank is developed to train a statistical parser, and in the
second phase, the problems one might face in employing the trained parser in
a real application are taken into consideration and solutions are proposed to
resolve the problems.

To initialize the data annotation process, we use a bootstrapping approach
to develop a small treebank. In this method, a set of seed data is developed with
minimum human effort for initialization. Next, all grammar rules are extracted
from the annotated data and the most frequent ones are defined as regular
expressions in an annotation tool to be used for further data annotation. This
approach continues iteratively until the desired size of data is annotated. An
HPSG-based annotation scheme is exploited during the annotation process.

After developing this set of annotated data, it can be used for training sta-
tistical parsers. When using the trained parser in a real application, it suffers
from the sparseness of data at two levels, namely the lexical and syntactic con-
struction levels. To reduce the data sparsity problem at the lexical level, we
propose a class-based model. In this model, we use a raw corpus and the Brown
word clustering algorithm (Brown et all, 1992) to cluster the words. Then, we
map the words in the treebank to the corresponding clusters, and retrain the
parser. One drawback of the Brown word clustering algorithm is treating ho-
mographs the same. Since in Persian short vowels are not written, there are a
large number of homographs. We extend the Brown word clustering algorithm
by attaching the main part-of-speech tag of the words to the word forms before
clustering. In this data format, homographs are treated relatively distinctively.
The experimental results show that the extended clustering model outperforms
the normal one.

To reduce the data sparsity problem at the syntactic construction level,
we use active learning, which is a supervised machine learning method. In

this model, we seek informative samples in a data pool and ask a human for

their annotation. One metric for selecting informative samples is computing the
entropy of tree analyses provided by the parse, and the ones with high entropy
are selected as informative samples. Another metric is using a committee of
learners. If parse trees of a sentence, which are the output of two or more parsers,
have a minimum agreement among the committee members, that sentence can
be selected as an informative sample. Yet another criterion is computing the
rate of tree similarity between the tree analyses of sentences in the data pool
and the training data for selecting the informative samples. In this metric, the
most dissimilar sentences are the candidates to be selected through the active
learning process. All of the proposed active learning models are tested and
the results are compared. Our experimental results show that among all of
the proposed models, the word-based tree similarity model and the query-by-
committee sampling model, which is composed of word- and class-based parsing,
obtain a relatively better performance with the minimum number of lexical items

to be learnt by the parser.

Contents

|1 Introductiod

1.1 Motivatiod
1.2 Problemg
1.3 Contributionsl
1.4 Dissertation Overviewl
1.5 Published Papersl

II Linguistic Theory and Backgroundl

IZ The Persian Languagd

2.1

Introduction

.2

About the Lanp;uagel

.3

Basic Properties of Persian Syntaxl

2.4

Language Resources for Persian)

2.5

Challenges in Persian Text Processingl

2.5.1 Encoding Issue§.,
2.5.2 Internal Word Boundaries]
2.5.3 Writing Styled, .
2.5.4 Linguistic Creativityl
2.5.5 Homographs and Homonymsj
2.5.6 Borrowed Diacritic Characters from Arabicl
2.5.7 Various Orthographical Forms for Wordsl
2.5.8 Foreign Wordd,

Ig.6 Summarﬂ

|3 Grammar Formalisms, Treebanking, and Parsind
3.1 Introductiod
3.2 Grammar Formalismsl

3.2.1 Constituent-based Analysisi
3.2.2 Dependency-based Analysis’

10
11
13
14

17

19
19
20
22
28
30
30
31
33
34
34
35
35
36
36

CONTENTS 2

3.2.3 Head-driven Phrase Structure Grammarl 43

3.2.4 Previous Studies on Persian HPSd 47

b.3 Treebanking| 50
3.3.1 Previous Studies on Treebanking] 50

3.3.2 Previous Studies on Persian Treebankingi 54

l3.4 Parsingl 58
3.4.1 Constituency-based Parsing 59

3.4.2 Dependency-based Parsing 62

3.4.3 Parsing Evaluation) 63

3.4.4 Previous Studies on Parsing Persiad 65

E.5 Summarll 67
h Annotation Scheme for HPSG-based ’I‘reebankind 69
1.1 Introductiod 69
1.2 Annotation Schemej 69
1.3 Lexical and Phrasal Elementsl 76
1.4 Syntactic Construction of Phrasal Elements] 77
14.4.1 Verb Phrasq 78

1.4.2 Noun Phrasd 92

1.4.3 Determiner Phrasel 97

1.4.4 Adjectival Phrasel 101

1.4.5 Adverbial Phrasd 103

1.4.6 Prepositional Phrasq, 104

1.4.7 Coordination Phrasq 105

1.4.8 Interjectiod 107

h.5 Claused o o i e 107
1.5.1 Relative Clausd . . . o v o oo 107

4.5.2 Reduced Relative Clausq 107

1.5.3 Free Relative Clausd 108

1.5.4 Complement Clausq 110

1.5.5 Complement Clause without a Complementizerl 111

1.5.6 Interrogative Clausd 111

1.5.7 Other Types of Clausesi 113

1.6 Ellipsid. 114
1.7 Discontinuitﬂ 114
@.8 Summarﬂ 116

CONTENTS 3

III Computational Approaches{ 117
b Bootstrapping the Persian ’I‘reebankind 119
H.1 Introductionf. 119

5.2 The CLaRK System] oo oo 120

5.3 Bootstrapping via Grammar Rule Extra,ctiod 124

5.4 Steps of Treebanking 128
b.4.1 Pre-processing Steﬂ 128

5.4.2 Initialization Steg L. 132

b.4.3 Main-processing SteJ 133

5.4.4 Post-processing Step 133

b.5 Evaluatioﬂ 134
p.6 Summarg 136

b Statistical Parsing of Persiad 139
6.1 Introductiono i e 139
6.2 POS Tagging oo oo 140

6.2.1 TnT POS Tagget . . . o oo 140
5.2.2 Stanford POS Taggenl oo v oo 141
B.3 Parsingo 141
6.3.1 Berkeley Parsef 141
6.3.2 Stanford Parser] 142
6.3.3 Malt Parser], 142
6.3.4 Mate Parser] oo 143
b.4 Data Preparation for Parsing] 143
6.4.1 Constituency-based Datal 143
6.4.2 Dependency-based Datal 144
b.5 Annotation Granularity for Parsing] 151
6.5.1 Lexical Ttem| o oo 152
6.5.2 POS Tag 153
6.5.3 Constituent Labei 153
b.6 Evaluatiod 153
6.6.1 Experimental Setud 153
6.6.2 Results and Discussiod 154
b.? Summarﬂ 160

|7 Class-based Parsind 161
7.1 Introductiod 161
7.2 Properties of the Class-based Modei 162
7.3 Word Clustering with the Brown Alg‘orithn{ 164
7.4 Extension of the Brown Word Clusteriné 165

CONTENTS 4

E .5 Evaluatioa 166

7.5.1 Experimental Setud 166

7.5.2 Results and Discussiorl 166

|7.6 Other Aspects of Annotation Granularitsl 167
7.6.1 Experimental Setug 167

7.6.2 Results and Discussiod 168

|(7 Summar_xl 169
b Active Learning for Treebank Enlargemend 171
B.1 Introduction(. 171
8.2 Active Learningl 172
8.2.1 Learning Scenariosl 172

2.2 Sample Selection Methods « v oo v 173

8.2.3 Stopping Criterial oo 174

8.3 Previous Studies of Using Active Learning for Parsingl 174
8.4 Active Learning for Persian Treebankinp’ 176
8.4.1 Basic Sampling Methods oo oo 177

8.4.2 Entropy-based Samplingi 177

8.4.3 Query-by-Committed 179

8.4.4 Tree Similarity Samplingl 181

b.5 Evaluation| 183
8.5.1 Experimental Setuﬂ 183

8.5.2 Results and Discussiod 184

E.6 Summarﬂ 191
5 Conclusioa 193

0.1 Summarﬂ 193
0.2 Future Workl 195
|A Persian Alphabed 197
IB EAGLES-based POS tags in ‘Peykare1 201

k] MulText-East Format of POS Tags in the Bijankhan Corpu4 205

ID Hierarchy of Dependency Relations{ 211

List of Figures

3.1 Tree diagram of Example 3.28 39
3.2 CG inference of Example 3.2a 40
3.3 LTAG initial trees used for the substitution operatiod 40
3.4 LTAG initial tree used for the adjunction operatiod 40
3.5 f-structure of Example 3.24 42
3.6 Dependency representation of Example 3.24 42
3.7 Lexical entries of Example 3.2a defined based on Linkd 43
3.8 Syntactic analysis of Example 3.2a by LinkGl 43
3.9 AVM of the type index 44
3.10 DAG and linear representation of an AVMI 44
3.11 Feature description of the word ‘the’ in Example 3.24 45
3.12 Feature description of the word ‘boy’ in Example 3.24 46
3.13 Feature description of the word ‘eats’ in Example 3.2:4 46
3.14 HPSG analysis of Example 3.2 48
3.15 Architecture of the system proposed by SharifiAtashgah (2009* . 56
3.16 Languages in Chomsky’s hierarchyl 60
1.1 Graphical representation of lexical elementsi 71
1.2 Graphical representation of phrasal elementsl 71
1.3 Right-to-left and left-to-right representation of a sentence] ... T8
5.1 Tree analysis of Example 5.1 created by CLaRKI 121
5.2 Sample of HPSG signature type hierarchy] 122
.3 Sample of signature type hierarchy based on a DTD formad ... 123
b.4 Extracting grammar rules and ordering them hierarchicallyl L. 127
5.5 Feature structure of the word ‘] 129
5.6 Architecture of the algorithm used for splitting clitics{ 131
b.7 Human annotation rate in manual annotatiod 134
5.8 Recall measured every 5 iterationsl 136

6.1

Right-to-left tree representation of Example 6.]] 145

LIST OF FIGURES 6
6.2 Left-to-right tree representation of Example 6.]] 145
6.3 Traceless left-to-right tree representation of Example 6.]] 146
6.4 The Penn Treebank style for tree representation of Example 6.]] . 146
6.5 Projective dependency relation of Example 6.2 149
6.6 Non-projective dependency relations of Example 6.ﬂ 149
6.7 CoNLL 2006 non-projective dependency format of Example 6.2 . 149
6.8 CoNLL 2009 non-projective dependency format of Example 6.2 . 149
6.9 Dependency representation of our annotation schemd 152
6.10 Dependency representation of Seraji et al. annotation Schemel .. 152
6.11 Dependency representation of Rasooli et al. annotation scheme{ . 152
8.1 Substructure trees of Example 8.1 182
8.2 Substructure trees of Example 8.2 182
8.3 Common substructure trees between Examples 8.1 and S.ﬂ ... 182
8.4 Learning curve of entropy-based uncertainty sampling modelsl .. 184
8.5 Learning curve of query-by-committee modely 185
B.6 Learning curve of learnt sentences in entropy and committee mode14186
8.7 Learning curve of learnt words in entropy and committee modely 187
8.8 Learning curve of tree similarity for entropy and committee modelsIlSS
R.9 Learning curve of combo-committee and tree similarity modeld . 189
8.10 Learning curve of tree similarity for all models{ 190

List of Tables

2.1

List of Persian letters with the same pronunciatiod

.2

List of Persian voweld

2.3 Different types of word boundaries for afﬁxesl
2.4 Different word boundaries for derived and inflected Wordsl C
.5 Different kinds of word boundaries for multi token WOI‘d’SI

b1

Dependency relations for phrasal elementsl

H.1

Converting Bijankhan POS tags into MulText-East frameworkl

H.2

Various orthographical forms of verbs and pronouns as clitics

b.3

Bigram samples for multi tokens written as regular express1onsl

H.4

Bigram samples for constituents written as regular express1onsl

Summary of the bootstrapping result for the treebankingj

Evaluation resultsl

Parsing accuracy using raw datal

b.5
b.6
6.1
5.2

Test data information),

6.3

Tagging accuracy of the TnT and Stanford POS taggersl

6.4

Parsing accuracy tested on the output of the taggerl

6.5

Parsing accuracy with gold POS tagd

5.6

Dependency results of the constituency parsersl

Dependency parsing results by using gold POS tagsl

5.7

6.8 Parsing results for applying different annotation dimensionsj R
7.1 Performance of the extended class-based parsiné
7.2 Performance of word- and class-based parsing]

7.3

Parsing results for applying different annotation dimensionsl R

A1

List of the Persian alphabet (part 1: HAMZE—SINi

A2

List of the Persian alphabet (part 2: SHIN—YE)l

B.1

EAGLES-based POS tags for Persian in ‘Peykare’ (part—Ii C

7

. 128
. 130

133

. 133
. 135

135

154
155
155
156
156
157
158
159

166
167
168

198
199

202

LIST OF TABLES 8
IB.2 EAGLES-based POS tags for Persian in ‘Peykare’ (part—II)l . 203
C.1 POS tag of Adjectives based on the MulText-East Frameworkl .. 205
C.2 POS tag of Adverbs based on the MulText-East Framework . 205
C.3 POS tag of Classifiers based on the MulText-East Framework] 205
C.4 POS tag of Conjunctions based on the MulText-East Frameworkl 205
C.5 POS tag of Interjections based on the MulText-East Framework . 206
C.6 POS tag of the Post-position based on the MulText-East Frameworkl206
C.7 POS tag of Prepositions based on the MulText-East Framework . 206
C.8 POS tag of Punctuation based on the MulText-East Framework . 206
C.9 POS tag of Residuals based on the MulText-East Frameworkl .. 206
C.10 POS tag of Clitics based on the MulText-East Framework . 207
C.11 POS tag of Determiners based on the MulText-East Frameworkl 208
C.12 POS tag of Nouns based on the MulText-East Frameworkl 208
C.13 POS tag of Numbers based on the MulText-East Frameworkl . 208
C.14 POS tag of Pronouns based on the MulText-East Frameworkl .. 209
C.15 POS tag of Verbs based on the MulText-East Frameworkl . 209

Chapter 1

Introduction

1.1 Motivation

Natural language understanding is one of the active subfields in computational
linguistics. It seeks to enable computers to learn and understand human lan-
guages. Understanding the grammar of a language is one of the key steps
towards understanding a natural language. This goal is achieved by passing
through the syntactic analysis channel, because in this phase of the analysis, the
syntactic categories of words and the interaction of the words to construct a sen-
tence are determined. Furthermore, it is a fundamental step towards semantic
and discourse processing. This channel has two components: (a) part-of-speech
(POS) tagging for identifying the syntactic category of each word in the local
context, and (b) parsing for providing the syntactic analyses of sentences and
identifying the relations between the words that construct sentences. Both of
these components can be developed through the rule-based, the statistical, or
the hybrid approach.

One of the advantages of the rule-based approach is that no annotated data
is required. This approach, however, requires grammar rules written by a gram-
marian. All of the written grammar rules might not be reusable for other
languages due to differences between languages. Another disadvantage of this
approach is that if a grammar rule does not exist for analyzing a word or a
sentence, then the system cannot deal with it, and it halts.

The statistical approach can be used either without human supervision (unsu-
pervised method) or with human supervision (supervised method) to process the
language automatically. The main advantage of the statistical approach over
the rule-based approach is that it can automatically adapt to new domains,
genres, or languages for inducing the linguistic properties and building a gram-

mar model. In the unsupervised method, no preliminary linguistic knowledge

1.2. PROBLEMS 10

is required, and the system induces grammar rules automatically to create the
grammar model. Systems developed based on this approach are not expensive
to develop, but they usually do not perform well. With the supervised method,
annotated data is required to induce the grammar rules from the data and
create a grammar model to analyze unseen data. Developing the required an-
notated data for the supervised method is time-consuming and expensive since
it requires human effort. The drawback of this approach is its high degree of
sensitivity to the quality and quantity of the annotated data. The advantage of
this method is that it has a higher performance compared to the unsupervised
method, because correctly annotated data is used for creating the grammar
model. The advantages of the supervised method motivated us to use it in our

study for processing the Persian language.

1.2 Problems

As described above, the development of annotated data and its availability are
crucial for linguistic investigations and also data driven approaches in human
language technologies. Certain languages such as English and German have
been given a great deal of attention. This has resulted in the availability of
many types of data sources for these languages. The developed data sources can
be used for training tools in different applications. However, other languages
like Persian are less developed in terms of the availability and accessibility of
such annotated data. Developing data sources is one issue, and their public
availability and free accessibility for their reusability are other issues that need
to be taken into consideration.

In this dissertation, we aim at bridging the gap by proposing a method to
develop a treebank for Persian from scratch and to make the developed treebank
freely available online. This data source can be used as an annotated corpus to
train statistical parsers. Since we want to use a supervised approach in our study
for processing Persian, human effort is required to develop the treebank, which
is a very labor-intensive, time-consuming, tedious, and expensive task. Due to
the hardness of the data annotation task, we develop a small treebank in the
first step. This data set is then used for training a statistical parser. When
using the parser in a real application to parse unseen data, low performance
might result. The reason the parser might not perform well is due to the data
sparsity problem at the lexical and syntactic construction levels.

A treebank is an annotated corpus which consists of a set of sentences with
their corresponding syntactic analysis. This set of annotated data is errorless,
and it contains only grammatical sentences or phrases. This data set should

be the representative of the target language, in terms of both the lexicon and

1.3. CONTRIBUTIONS 11

the syntactic constructions that exist in the language. Taking the properties of
such a corpus into consideration, a treebank, even the most expansive one, does
not cover all properties of a language and it cannot be a good representative of
a language because it suffers from the sparseness of data. While developing a
treebank, we address the data sparsity problem, and we try to provide answers

for the following questions throughout our study.

e Considering that human effort is required for annotating data, is there
any way to reduce the labor-intensity of data annotation and reduce the

amount of human intervention in the development of annotated data?

o Considering that a statistical parser trained with a treebank suffers from
the sparseness of data, is there a way to reduce the sparseness of the lexical
items and syntactic constructions in a treebank? A simple answer to this
question might be increasing the size of the annotated data. But it may in
turn raise questions over how we can control the properties of sentences to
be added to the treebank. Should any sentence be added to the treebank
or should we be selective and seek sentences which are informative?

o A treebank contains sentences with their corresponding linguistic analysis,
and a more accurate grammar model is built with larger amount of training
data. This question may raise whether there exist other factors except the
size of the training data that affect the parsing performance. How fine- or
coarse-grained should the linguistic information be in a treebank? What

is the impact of the treebank annotation granularity on parsing?

1.3 Contributions

As mentioned, the development of a data source is very labor-intensive, time-
consuming, tedious, and expensive. To reduce the amount of human effort, we
propose a method to use machine learning techniques for reducing the degree of
human intervention in data annotation and increasing the speed of the annota-
tion process consequently. To this end, a bootstrapping approach is proposed
to start the data annotation process from scratch and incrementally develop
a treebank for Persian. In this approach, the most frequent grammar rules of
a Persian corpus are selected from the pool of extracted grammar rules to be
automatically applied at unannotated data and reduce human effort for the an-
notation task. The developed treebank can be used for training a statistical

parser.E To this end, we adapt different statistical parsers to be trained by this

Tt should also be noted that our developed data set is also used for training a statistical
parser developed by Sarabi and Analoui€ (2012).

1.3. CONTRIBUTIONS 12

data set. The treebank is developed based on the Head-driven Phrase Structure
Grammar (HPSG) formalism (Pollard and Sag, 1994).

As noted, using this parser in a real application suffers from the data spar-

sity problem at both the lexical and syntactic construction levels. To handle
the sparseness of lexical items, we propose using an unsupervised clustering ap-
proach to cluster the words into classes and to use this class-based model for
parsing rather than the original words in the treebank. In this approach, the
words with similar features are assigned to the same cluster, and it helps to
reduce the lexicon size. To deal with the sparseness of the syntactic construc-
tions, we propose using active learning.
Active learning is a supervised machine learning approach to find the difficult
samples from a data pool in which the syntactic constructions of the selected
examples do not exist in the grammar model, and it asks an oracle to annotate
the selected data. In the sample selection step, we aim at selecting the informa-
tive samples add them to the treebank. Since not all sentences are interesting
to be annotated in the treebank due to the existing redundancy in syntactic
constructions, sampling has to be done more deliberately. Therefore, the sen-
tences in which their syntactic constructions do not exist in the treebank should
be selected. This approach results in minimization of the treebank size while
still capturing the most informative samples from rare to frequent syntactic
constructions in the corpus.

In addition to solving the above problems, we study the effect of the treebank
annotation granularity (fine- vs coarse-grained annotation) on parsing in three
dimensions: the lexical item, the POS tag, and the constituent label. The
main contribution of this is studying the effect of different variables on parsing
performance besides the data sparsity problem.

Another contribution of this research is introducing an algorithm for au-
tomatically converting our developed HPSG-based treebank into its parallel
dependency-based treebank. We further evaluate the performance of the de-
pendency parsers trained with the converted treebank.

The preliminary study of this research was started in October 2009, when
there was no treebank available for Persian. We selected the HPSG formal-
ism (Pollard and Sag, 1994) as the backbone of the treebank to develop a data
source that contains both the constituents’ hierarchies along with head-daughter
dependency relations. This treebank was released onlineE in October 2011, and
its availability and accessibility were publicly announced on January 22, 2012.E

A short-while after this announcement, the first dependency treebank of Persian

2http://hpsg.fu-berlin.de/~ghayoomi/PTB.html
Shttp://linguistlist.org/issues/23/23-395.html (Accessed:19/08/2014)

http://hpsg.fu-berlin.de/~ghayoomi/PTB.html
http://linguistlist.org/issues/23/23-395.html

1.4. DISSERTATION OVERVIEW 13

developed by the D:idegénE group was also released for free.E

1.4 Dissertation Overview

This dissertation is composed of nine chapters in two parts. The structure of

the dissertation is as follows.

Part I mainly focuses on the linguistic perspective of our study by providing

linguistic theories and background.

Chapter 2 basically describes the properties of the Persian language, its syn-
tax, and the available language resources. Next, the problems of processing a
Persian text that should be resolved in the pre-processing step are categorized

and explained in detail.

Chapter 3 reviews the literature and provides background. The content of
this chapter covers the basic concepts in three dimensions. One dimension is
describing briefly some of the well-known grammar formalisms that have ap-
plications in computational linguistics. The HPSG formalism and the previous
studies on Persian HPSG are also discussed. In another dimension, treebank-
ing is defined and the previous studies on major treebanks in general and the
Persian treebanks in particular are described and discussed. In the third dimen-
sion, parsing and its methods, the evaluation metrics, and the previous studies

on parsing Persian sentences are discussed.

Chapter 4 covers the development of an annotation scheme to be used through-
out our treebanking process. Additionally, the order of realizing the dependency
relations and the element sets used in the treebank are defined. Furthermore,
to make the description of the annotation scheme precise, samples with their

corresponding tree analyses for the target syntactic constructions are provided.

Part II mainly focuses on the computational perspective of our study by

providing computational approaches for processing the Persian language.

Chapter 5 describes the bootstrapping approach used for treebanking. In this
chapter, the tool and the bootstrapping algorithm employed for the treebank
development are explained. In the bootstrapping process, the most frequent,
definite grammar rules are extracted from the treebank and defined as regular
expressions in the annotation tool to further annotate unseen data. The an-

notation process is done in four steps: (1) pre-processing: to make the data

4http://dadegan.ir
Shttp://mailman.uib.no/public/corpora/2012-January/014823.html (Accessed:19/08/2014)

http://dadegan.ir
http://mailman.uib.no/public/corpora/2012-January/014823.html

1.5. PUBLISHED PAPERS 14

ready, (2) initialization: to provide seed data, (3) main-processing: to shal-
lowly annotate the data automatically, and (4) post-processing: to complete
the annotation of sentences manually. The amount of human intervention to
annotate the data and the accuracy of the defined grammar rules in the tool

are also evaluated.

Chapter 6 introduces the required tools, data sets, and data preparation
for our study. To this end, the basic properties of Natural Language Processing
(NLP) tools used for the experiments in our study are explained, such as the TnT
and Stanford POS taggers, the Berkeley and Stanford constituency parsers, and
the Malt and Mate dependency parsers, which are trained with our developed
treebank and adapted to Persian. The tools can potentially be trained with three
dimensions of annotation granularity, namely the lexical item, the POS tag, and
the constituent label. In the rest of this chapter, the parsers’ performance are
evaluated and the obtained results are reported. Since the parsers are trained
with a small amount of data, they suffer from the data sparsity problem at two
levels, namely the lexical items and the syntactic constructions. Reducing the

two sparsity problems are the topics discussed in detail in Chapters H and E

Chapter 7 proposes class-based models to reduce the data sparsity problem
at the lexical level. To this end, the Brown word clustering algorithm (Brown
et all, 1992) is used for clustering words in an unsupervised mode. We further
propose an extension to this model to deal with homographs. Next, the perfor-
mance of the models is compared. Additionally, other aspects of the annotation

granularity which affect parsing are further investigated.

Chapter 8 deals with the data sparsity problem at the syntactic construction
level. This chapter employs active learning for data annotation. Among the
learning scenarios, a pool-based active learning scenario is used for our task
to select the most informative samples from the data pool. Considering our
ultimate goal to reduce the data sparsity problem at the syntactic construction
level, we propose several models to select the informative samples. Next, we
simulate active learning with our current data to show the usability of our

models in a real application for further data annotation.

Chapter 9 concludes our study and presents suggestions for future studies.

1.5 Published Papers

The significant parts of this dissertation have been published in the following

journals, conferences, and workshops:

1.5. PUBLISHED PAPERS 15

« JOURNALS

— International Journal on Asian Language Processing,
(k}hayoomi et al], IZOId).

— Language Resources and Evaluation,
(lBijankhan et alL l201]]).

— Linguistic Issues in Language Technology,

(bhayoomi, }20123]) .

o CONFERENCES and WORKSHOPS

— NAACL-HLT 2010 Workshop on Active Learning for Natural Lan-
guage Processing, Los Angeles, USA,

(E ihayoomi, M)

— International Multi-conference on Computer Science and Informa-

tion Technology — Computational Linguistics Applications, Wista,
Poland,
(|Miiller and Ghayoomi, IZOld).

— 4th International Conference on Iranian Linguistics, Uppsala, Swe-

den,
(bhayoomi and Miillell, lZOl]J).

— 8th International Conference on Language Resources and Evaluation,

Istanbul, Turkey,
(bhayoomi, lZOl?bI).

— 8th International Conference on Advances in Natural Language Pro-

cessing, Kanazawa, Japan,
(bhayoomi, l2012c|).

— 11th International Workshop on Treebanks and Linguistic Theories,

Lisbon, Portugal
(bhayoomi and Moradiannasad, l2012!).

— 8th Conference of Iranian Linguistics, Tehran, Iran,
(Eihayoomi, 5013).

— 12th International Workshop on Treebanks and Linguistic Theories,

Sofia, Bulgaria,
(bhayoomi and Kuhnl, lZOlﬂ).

— 9th International Conference on Language Resources and Evaluation,
Reykjavik, Iceland,
(bhayoomi and Kuhnl, l2014l)

Part 1

Linguistic Theory and
Background

17

Chapter 2

The Persian Language

2.1 Introduction

Text corpora are the electronic data sources used for linguistic investigations
or NLP applications. A corpus may contain texts in a single language (mono-
lingual corpus) or in multiple languages (multilingual corpus). Corpora are the
main data sources in corpus linguistics for studying the linguistic properties of
language(s) expressed in real world texts. There are several resources in written
texts that can be used for developing text corpora. Newswires and books are the
best-known resources for this task. Nowadays, web pages are also widely used
as rich resources to construct corpora, because the collection of texts in various
genres written by different authors is one of the main criterion of a corpus to be
representative of a language. The goal of collecting texts from such resources is
to provide a reasonably accurate picture of the entire language. Reaching this
goal, however, is not an easy task. One might face problems while building a
corpus from such resources, since not all texts are written in a standard form.
Therefore, before processing the corpus, the text should be normalized, and the
problems should be solved during the pre-processing step. In the development
of a Persian corpus, we face a number of problems due to particular charac-
teristics of this language, which are detailed in this chapter by representing a
comprehensive perspective of developing a corpus for Persian and discussing the
major problem areas that must be resolved to normalize a Persian text before
processing.

This chapter contains six sections. First, the basic properties of the Persian
language and its syntax are discussed in Sections @ and @ Next, the available
language resources for Persian are introduced in Section @ In Section @,
the various problems that one may face when processing a Persian text are

categorized and explained. The discussion of this section is mainly important

19

2.2. ABOUT THE LANGUAGE 20

for the pre-processing step in the annotation process. Finally, the chapter is
summarized in Section @

The content of this chapter is mainly based on the following papers:

o Ghayoomi, Masood and Saecedeh Momtazi and Mahmood Bijankhan (2010)
“A study of corpus development for Persian” In International Journal on

Asian Language Processing, 20 (1): 17-33.

e Bijankhan, Mahmood and Javad Sheykhzadegan and Mohammad Bahrani
and Masood Ghayoomi (2011) “Lessons from building a Persian written
corpus: Peykare” In Language Resources and Evaluation, 45 (2): 143-164,
Springer.

o Ghayoomi, Masood and Stefan Miiller (2011) “Multi-token units and multi-
unit tokens in developing an HPSG-based treebank for Persian” In Pro-
ceedings of the 4th International Conference on Iranian Linguistics, June

17-19, 2011; Uppsala University, Uppsala, Sweden, p: 29.

2.2 About the Language

Persian is a member of the Iranian branch of the Indo-European language family,
and it has many features and properties in common with other members in terms
of morphology, syntax, phonetics, and lexicon. Even though Persian adopted
the Arabic script, it differs fundamentally from the Arabic language, which is in
the Semitic language family. While Persian has 32 alphabetical letters, Arabic
only has 28. Persian has four more letters than Arabic, namely PE (‘>’), CHE
(‘z), ZHE (‘y’), and GAF (‘S’).E Like Arabic, Persian letters have joiner or
non-joiner forms based on their positions in a word. Most of the letters have
four forms. In three positions (the beginning, the middle, and the end of a
word), the letters appear in joined form attached to the neighboring letter(s).
The other form is an isolated non-joiner which appears at the very end of a
word. For instance, the letter EYN is written ‘<’ for the beginning joiner,
‘s’ for the middle joiner, ‘x’ for the end joiner, and ‘¢’ for the non-joiner.
Tables @ and @ in Appendix @ show all of the Persian letters and their
various written forms along with their Unicode character codes and examples.
Among the letters, there are seven letters which have only two forms: non-joiner
and end-joiner. These letters, namely ALEF (‘1_1"), DAL (‘s"), ZAL (), RE
(), ZE (*3"), ZHE (‘y), and VAV (‘g’), are the ones that cannot join to the

next letter. For instance, the letter DAL is written as ‘s’ for the non-joiner and

IThroughout this dissertation, all of the examples written with the Persian script are read
right-to-left.

2.2. ABOUT THE LANGUAGE 21

Table 2.1: List of Persian letters with the same pronunciation

‘ Alphabet ‘ Pronunciation ‘
oL b /t/
S L0 P /S/
T /b/
5 b) b k)o ’ ‘IG /Z/
[T /a/

‘2’ for the end joiner. It is necessary to mention that if either of these letters
comes in the middle of a word, the next letter will have the same form as it has
at the beginning of a word.

Despite Persian uses modifications to the Arabic alphabet, the alphabet is
still in a sense better-suited to the Arabic sound system. For instance, the
letters ZAL (‘Y’), ZE (‘y’), ZAD (‘_%’), and ZA (‘L’) exist in both Persian and
Arabic alphabets. Although they still have distinct pronunciations in Arabic,
all four letters are pronounced /z/ in Persian; i.e. there are different letters
for the same sound in Persian. Table EI shows the letters which have distinct
pronunciations in Arabic, but which have acquired identical pronunciations in
Persian. Pronouncing these letters identically in Persian increases the number of
homophones, such as /savab/ that can be written either ‘wlgs’ /savab/ ‘reward’
or ‘wlgs’ /savab/ ‘right action’

Some letters are also used for representing multiple sounds in Persian, such
as VAV (‘s’) in these examples: /v/ in ‘gL’ /nanva/ ‘baker’, /o/ in ‘g’ /do/
‘two’, Jow/ in ‘zel’ Jowj/ ‘climax’, and /u/ in ‘;9,” /ruz/ ‘day’. Sometime, this
letter is written but not pronounced, such as in ‘ls>’" /xahar/ ‘sister. We
can conclude that there is little correspondence between Persian letters and the
sounds.

Persian script is written right-to-left, but numbers are written left-to-right,
just as in Arabic. In terms of the lexicon, the Persian vocabulary has been
greatly influenced by Arabic, and to some extent by French, and a great number
of words are borrowed from these languages.

Persian has three short vowels, namely * * /a/, ¢ Jo/, and * * /e/, and
three long vowels, namely 1 — 1" /a/, 5" /u/, and ‘s’ /i/. The short vowels are
pronounced but usually not written. The Ezafe morpheme, which is described
in more detail in the following section, is always pronounced but rarely written.
Table @ shows both short and long vowels including their Unicode encodings
and examples.

The Persian script, similar to the Arabic script and contrary to the Latin
script, has neither upper nor lower case letters. Therefore, it is not possible

to easily identify the beginning of a sentence, and proper or foreign names.

2.3. BASIC PROPERTIES OF PERSIAN SYNTAX 22

Table 2.2: List of Persian vowels

‘ Vowel ‘ Pronunciation ‘ Unicode ‘ Example ‘ Transliteration ‘ Translation ‘

a u64E o mahr Mahr
o u064F oo mohr stamp
e 10650 gv) mehr love
T - u0622 ol adam man
| & u0627 5L mar snake
9 u 10648)9° mur ant
3 i u06CC juss miz table

Moreover, it is not easy to create acronyms.

There are some diacritic characters that are directly borrowed from the Ara-
bic script. Tanvin is one of these characters written as Jan/, " Jon/, and
* 7 Jen/. Another diacritic character is Tasdid (* ") that causes a consonant to
be repeated. The Short Alef “ s’ /a/ in s>’ /hatta/ ‘even’ and ‘JV in ‘oqally’
/belqovve/ ‘potential’ are two morphological elements borrowed from Arabic.
Words are isolated by spaces. Moreover, there exists a so-called ‘pseudo-space’
or ‘zero width non joiner’ as a boundary inside the Persian words. For instance,
in the word ‘ JoJlys’ /beynolmelali/ ‘international’, a pseudo-space is used be-
tween the letters ‘.’ and ‘V’. If the pseudo-space is not available, the letters will
have a joined form, and the word is written as ‘ JloJLy”. If the pseudo-space is
replaced by a white-space, this word is considered as two tokens, namely ‘.’
/beyn/ ‘inter-, between’ and ‘ JLJI’ /olmelali/ ‘-national’

Since character codes play the most important roll in typing a text in a
computer, standard character codes are used. In 1993, a standard 8 bit code for
information exchange was approved for Persian. In 1995, the keyboard standard
layout for Persian was approved; and in 1996, the Unicode standard, the 16 bit
code, was approved (FahimNiya, 2002).

2.3 Basic Properties of Persian Syntax

In this section, we briefly explain the basic properties of the Persian syntax.
Persian has a Subject Object Verb (SOV) constituent order, but the constituent
order is relatively free. The language does not make use of gender (JAssi, 2004).
Furthermore, this language is relatively case-less except for the accusative case
in which the post-position (particle) ‘,” /ra/ is mostly used as a direct object
marker or a specificity marker (Karimi, 1999, p. 13), and the genitive case which
is expressed by the Ezafe construction. Persian does not have a definite deter-
miner, but it has a pre-nominal indefinite determiner as ‘S5’ /yek/ ‘a, an’ and

a post-nominal indefinite determiner represented as the clitic ‘s’ /-i/. Def-

2.3. BASIC PROPERTIES OF PERSIAN SYNTAX 23

inite phrases can freely scramble while scrambling is restricted for indefinite
phrases (Karimi, 2003, p. 43).

Ezafe is an unstressed vowel * ’ /e/ recognized as a morpheme, and it is pro-
nounced but mostly not written. Samvelian (2007) considers Ezafe as phrasal
affix. In addition to its function as a genitive case marker, it causes to link
the constituents of a phrase, except the verb phrase. Since Eafe mostly does
not have an overt written form, it is very hard to predict the end of a con-
stituent (Bijankhan et al), 2011). Consequently, it makes the Persian text pro-
cessing a tough task.

Kahnemuyipour (2000) and Kahnemuyipour (2006) specified that the Ezafe
morpheme can potentially appear in 8 positions. To represent the Persian ex-

amples, we follow the Leipzig glossing mlesE to gloss the Persian examples.

a noun before another noun:

(21) e s
kif-e carm
bag-EZ leather
‘leather bag’

e a noun before an adjective or adjectival clause:
(2.2) ol S
sag-e siyah
dog-EZ black
‘black dog’

 a noun before a possessor (noun or pronoun):
(23) oS
kif-e maryam
bag-EZ Maryam
‘Maryam’s bag / the bag of Maryam’

e an adjective before another adjective in a noun phrase:
(24) S,poluw Xu
sag-e siyah-e bozorg
dog-EZ black-EZ big
‘big black dog’

e some prepositions before nouns:
(25) &S
zir-e kif
under-EZ bag
‘under the bag’

2http://www.eva.mpg.de/lingua/pdf/LGRO8.02.05. pdf

http://www.eva.mpg.de/lingua/pdf/LGR08.02.05.pdf

2.3. BASIC PROPERTIES OF PERSIAN SYNTAX 24

but not:

2.6) *ams s

* dar-e ganje
in-EZ closet
‘in closet’

e a pronoun before an adjective:

(2.7) moe
man-e pir
I-EZ old
‘old me’

o first names before last names, but not always:

(28) (053 dgme
mas?ud-e qayyumi
Masood-EZ Ghayoomi
‘Masood Ghayoomi’
Solo Lo,
reza sadeqi
Reza Sadeghi
‘Reza Sadeghi’

¢ a combination of the above:

(2.9) papn 53 oo Ko

sag-e siyah-e bozorg-e maryam
dog-EZ black-EZ big-EZ Maryam
‘the big, black dog of Maryam’

It is possible to have compounds with post-nominal adjectives in which Ezafe
is not used (Ghomeshi, 1996), such as ‘S, 3k’ /madar bozorg/ ‘grandmother’,
‘ S0y’ /sib zamini/ ‘potato’, ‘ JWs,, o' /ab porteqal/ ‘orange juice’, ‘g o’
/ab havij/ ‘carrot juice’ (but not ‘cew oI’ /abe sib/ ‘apple juice’), and the
different words in Persian which all mean ‘cousin’ in English, such as ‘4l ,..’
/persar xale/. One assumption to remove Ezafe can be treating the sequences as
collocation; i. e. these syntactic constructions are transforming from compound
to collocation.

Persian is a subject drop language (Mahootiyarn|, 1997). It is also possible

for an obligatory complement to be dropped in Persian. In other words, the

3Based on the convention, the symbol ‘#’ means that the syntactic constructions are syn-
tactically well-formed but semantically improper, and the symbol ‘*’ in the examples means

ungrammatical.

2.3. BASIC PROPERTIES OF PERSIAN SYNTAX 25

subject and the obligatory complement are not found in the surface realization
of a sentence. If the subject drops, it can be retrieved from the conjugation
of the main verb in the sentence. If a complement drops, the object of the
embedded clause that has a surface realization is considered as the object of the
matrix clause which does not have a surface realization. In Example , the
subject and a complement in the matrix clause are dropped. The verb ‘a5’
/goftan/ ‘say, tell’ in the matrix clause requires a subject, an indirect object,
and a direct object. The subject is dropped which can be retrieved from the

[4

conjugation of the verb. The indirect object is the prepositional phrase ;o 4’
/be man/ ‘to me’. The direct object of the verb in the matrix clause, which is

‘8> /harf/ ‘word’ in the embedded clause, is dropped.

(2.10) i oo e b iy 8, S
agar harf-i dast bayad be man mi-goft
if word-INDEF had.3SG should to I IMPF-said.3SG
‘If he/she had a word, he/she should have said [it] to me’

Topics can also drop in Persian. It is possible that the expletive ‘" /in/
‘this’ be dropped, such as Example a. The consequence of dropping this
element is the extrapositon of the other elements in the topic position to the

post-verbal position, such as Example b.

(211) a. Sl éj)o Cwloads w)swd\fd‘
in ke hamid varsekaste Sode-ast doruq ast
this that Hamid bankrupt become-3SG lie is

‘That Hamid is bankrupted is a lie’

doruq ast ke hamid varSekaste Sode-ast
lie is that Hamid bankrupt become-3SG

‘[It] is a lie that Hamid is bankrupted.

In Persian, a verb can accept maximum two arguments as objects, but rare
cases, mostly as idiomatic expressions, can be found that the verbs’ comple-
ments are three: one direct object and two indirect objects, such as the verb
‘ool 1,87 /qarar dadan/ ‘put’ in Example . In this example, the subject
is dropped, the particle 1,” /ra/ determines that ‘:y,ek & e opl>’ /jayezeye
simorge bolurin/ ‘Crystal Phoenix Award’ is the direct object, and the two
prepositional phrases ‘ oMb > opl> L’ /ba jayezeye xerse talayi/ ‘with the
Golden Bear Award’ and ‘a5, G ;o7 /dar yek radif/ ‘in a single rank’ are con-

sidered as two indirect objects. Elimination of any of these arguments makes

the sentence ungrammatical.

2.3. BASIC PROPERTIES OF PERSIAN SYNTAX 26

(2.12) olo 18 e, Gy (oMb B ol by oyeh & e ol el o0
mitavan jayeze-ye simorqg-e bolurin ra ba jayeze-ye
IMPF.can award-EZ phoenix-EZ crystal DOM with award-EZ
xers-e talayi dar yek radif qarar dad
bear-EZ golden in one rank put gave.3SG
‘One can place the Crystal Phoenix Award with the Golden Bear

Award in a single rank.

Persian has an SOV constituent order, therefore objects should appear before
the main verb. Since there are two types of objects (direct and indirect objects)
the order of the appearance of the objects is relatively fixed such that the direct
object comes before the indirect object. It is possible to freely change the
position of the direct and indirect objects and still have a grammatical sentence.

Passive and causative constructions change the number of verbs’ arguments.

The passive voice in Persian is questionable. Moyn€ (1974) does not believe that
passive constructions exist in Persian, but DabirMoghadamn (1986) argues that
passive constructions exist in Persian and it is constructed with the light verb
‘oad’ /Sodan/ ‘become’. [VahediLangaroodi (1999) considers passivization as
the incorporation of a pre-verbal element and the verb ‘;,ai’ /Sodan/ ‘become’
to create a compound verb.
In causative constructions, the suffixes ‘asl’ /-anidan/ and ‘&l /-andan/ are
added to the present stem of verbs to create the infinitive forms of causative
verbs for past and present tenses, respectively. As an example, the past and
present causative verbs ‘aubls>’ /xabanidan/ ‘have made sleep’ and ‘;,aiblgs’
/xabandan/ ‘make sleep’ are constructed of adding the causative affixes to ‘s>’
/xab/ ‘sleep’, the present stem of the verb ‘;uwls>’ /xabidan/ ‘sleep’

There are simple and compound verbs in Persian. The compound verbs are
constructed of a pre-verbal element, such as a prepositional phrase, a noun, or
an adjective, and a light verb (DabirMoghaddam), 1997).

KarimiDoostan (11997) divided the light verbs to three classes: (a) stative, such
as ‘omals’ /dastan/ ‘have’; (b) transition, such as ‘,ai’ /Sodan/ ‘become; (c) ini-
tiatory, such as ‘»,5”7 /kardan/ ‘do’. The author further added that there are
three classes of pre-verbal nouns: (a) the non-predicative nouns which are con-
crete nouns, such as ‘i5e37 /gus/ ‘ear’ in ‘5,5 445’ /gus kardan/ ‘listen’; (b) the
process nouns, such as ‘ olel,” /rahnemayi/ ‘advice’ in ‘oS olesl)’
/rahnemayi kardan/ ‘guide’. The process nouns can co-occur with the post
nominal indefinite determiner ‘.’ /-i/ and the direct object marker ,” /ra/;
(c) the verbal nouns, such as ‘slsl” /anjam/ ‘perform’ in ‘;jols plil’ /anjam
dadan/ ‘perform’. The verbal nouns can co-occur with adjectives.

It should be added that the pre-verbal elements are separable from the ver-

bal elements such that the pre-verbal elements might contain other elements

2.3. BASIC PROPERTIES OF PERSIAN SYNTAX 27

as their argument structureE and these pre-verbal elements dominate these el-
ements. Furthermore, it is possible for the argument structure of a compound
verb to be different from the argument structure of the light verb used in the
compound form. The simple and compound word forms in the lexicon are not
limited to the verbs only, but cases can also be found for adjectives, adverbs,
conjunctions, WH-question words (SharifiAtashgah and Bijankhan, 2009), and
prepositions (AbolhassaniChime, 2006; AbolhasaniChime and Ghayoomi, 2006).

To construct polar questions, the interrogative word ‘LI’ /aya/ ‘whether’ is
added to the front of a declarative sentence, and the placement of all elements
remains unchanged. In interrogative sentences with WH-question words, they
do not enforce any obligatory extraposition to the front of a sentence and the
elements of the sentence can remain in-situ.

The past, present, and future tenses exist in Persian. The verbs have the
present and past stems. The past stem of a verb is achieved simply by removing
the infinitive marker ‘¢~ /-an/ from the end of a verb, while the present stem is
irregular. Verbs have four aspects: (a) present, (b) present perfect, (c) progres-
sive (imperfect) such that the prefix ‘= »’ /mi-/ is followed by a verb either in
the past or present tense, and (d) past perfect such that the past participle form
of the verb is followed by the auxiliary verb ‘.8’ /budan/ ‘be’. To construct
the future tense, the auxiliary verb ¢ yuwls>’ /xastan/ ‘will, would’ comes before
either the past or present stem of the main verb. Using either of the stems
after the auxiliary ‘cyuwls>’ /xastan/ ‘will, would’ depends on the aspect of the
auxiliary. If the auxiliary appears in present aspect, the past stem of the verb
is used. Furthermore, if the auxiliary appears in imperfect aspect, the present
stem of the verb is used. In terms of mood, subjunctive and imperative forms
exist in Persian, and the subjunctive mood is frequently used.

Persian has three types of modal verbs: (a) it conjugates and there is an
agreement between the subject and the verb in terms of the person and num-
ber, such as ‘‘ywiles’ /tavanestan/ ‘can, could’ in Example , (b) it only
conjugates for the second and third persons singular, such as ‘cawl’ /bayest/,
‘el /bayesti/, ‘Cawb oo’ /mibayest/, ‘ swwb o’ /mibayesti/ which all mean
‘have to, has to, had to’ in Example ; (c) it is impersonal and it does
not conjugate, such as ‘b’ /bayad/ ‘must, should’, and ‘a,ls’ /sayad/ ‘might’,
‘Dgd o’ /miSavad/ ‘may’, ‘ad .’ /miSod/ ‘might’, and ‘ssis’ /beSavad/ ‘might’
in Examples and (MeshkatoDini, 2001, pp. 74-75); (Tabibzadel, 2012,
pp. 77-78).

4The argument structure refers to the syntactic and semantic configuration of a lexical

item.

2.4. LANGUAGE RESOURCES FOR PERSIAN 28

(213) par Olid & el (e
man tavanest-am be tehran be-rav-am
1 could-1SG to Tehran SUBJ-go-1SG
‘T could go to Tehran!

(2.14) por OIS & Soml (e
man bayest be tehran be-rav-am
I have_ t0.3SG to Tehran SUBJ-go-1SG

‘T have to go to Tehran’

(2.15) par Olis 4wk e
man bayad be tehran be-rav-am
I must to Tehran SUBJ-go-1SG
‘I must go to Tehran.

(2.16) por ols 4 wls e
man Sayad be tehran be-rav-am
I might to Tehran SUBJ-go-1SG
‘I might go to Tehran.

Gholamalizadely (1999) recognized five main lexical categories as constituents’
heads in Persian (noun, preposition, adjective, adverb, and verb) which con-
struct five phrasal categories: noun phrases which contain pre-nominal and post
nominal elements, prepositional phrases, adjectival phrases, adverbial phrases,
and verb phrases. The Persian pre-nominals are a superlative adjective, a
demonstrative, an indefinite, interrogative, or exclamatory word, a number (or-
dinal number (type I)E, or cardinal number), classifier, title (type I)E, and the in-
definite determiner ‘S’ /yek/ ‘a, one’. The post-nominal elements are a phrase
(nominal , adjectival, or prepositional), a title (type II), a relative clause, the

3

indefinite determiner ‘5’ /-i/ as a clitic, an adverb (place, time, or quantity),

and an ordinal number (type II).

2.4 Language Resources for Persian

There are a number of corpora for Persian that are developed for special pur-
poses and they vary in size and domain. Most of the developed corpora for
Persian are texts, but speech corpora exist for Persian as well. In this section,
we describe the existing text corpora for Persian along with their applications.

The Farsi Linguistic Data Base (FLDB) is a linguistic corpus which contains
3 million words in the ASCII format released by |Assi (1997) at the Institute for

5There are two types of ordinal numbers in Persian. Type (I) appears before a noun, such

as ‘s’ Javvalin/ ‘the first’, but type (II) appears after a noun, such as ‘JsI’ /avval/ ‘first’.
6There are two types of titles in Persian. Type (I) appears before a noun, such as ‘&I’
/aqaye/ ‘Mr., but type (II) appears after a noun, such as ‘>’ /xan/ ‘khan’.

2.4. LANGUAGE RESOURCES FOR PERSIAN 29

Humanities and Cultural Studies, Tehran, Iran. The most recent version of the
database in 1256 character encoding is named the Persian Linguistic Data Base
(PLDB), and it includes more than 56 million words (,) This database
is comprised of contemporary literary books, articles, magazines, newspapers,
parliament laws and regulations, transcriptions of news, reports, and telephone

speeches and it is employed for the lexicography purpose (,) In this
database four labels, such as phonetic tag, POS tag, semantic role label, and

lemma, are assigned to each word. The POS tag set is a set of 44 tags (
lHajiAbdolhosseinil, IZOOd). Phonetic tags are assigned semi-automatically, and

semantic role labeling and lemmatization are done manually. A small portion
of this corpus is fully annotated with these four types of labels.
The online archive of the Hamshahri newspaper has been used for creating

several Persian corpora. Eihayoomi (EOOZ}I) developed a corpus from 6 months of
the Hamshahri newspaper with more than 6.5 million words used for language

modeling. lDarrudi et al] (l2004|) developed another corpus from 4 years of the
Hamshahri newspaper which contains more than 37 million words.
() standardized the Hamshahri corpus according to TRECﬂ specifica-
tions (braswell and Hawkiné, l2004|). This data set, which was developed in the

DataBase Research Group Lab at the University of Tehran, Tehran, Iran, con-

tains 65 standard query topics along with 6,500 relevance judgments. The data

set is mainly employed for text retrieval. broumchian et al] (l20()4l) comprised

a 2.5 million words text collection that contains laws and regulations passed
by the Iranian Parliament. The Shiraz Corpus is a bilingual parallel corpus
that consists of 3,000 Persian sentences with the corresponding English sen-
tences. The corpus is collected from the Hamshahri newspaper. All sentences
are manually translated at the Computing Research Lab at New Mexico State
University (|Amtrup et alj, lZOOd).

Peykareh is a balanced corpus for contemporary Persian. This corpus is

developed at the Research Center for Intelligent Signal Processing, Tehran,

Iran, and it contains approximately 100 million words (lBijankhan et alj, l2004|;
IBijankhanl, l2007|; lBijankhan et alJ, lZOl]J). This corpus consists of newspapers,

books, magazines, articles, technical reports, as well as transcription of dialogs,

monologues, and telephone speech employed for the language modeling purpose.
Almost 10 million words of this corpus are POS tagged semi-automatically based
on the EAGLES guidelines (lLeech and Wilsoﬂ, llQQQ) such that a small fraction
of data is tagged manually to train a statistical POS tagger with 85% accuracy,

and the rest is tagged automatically and corrected manually. Based on the EA-
GLES guidelines, there is a hierarchy on the assigned POS tags. As a result, the

first tag which expresses the main syntactic category of a word is followed by

"http://trec.nist.gov/

http://trec.nist.gov/

2.5. CHALLENGES IN PERSIAN TEXT PROCESSING 30

morpho-syntactic and semantic features. The POS tag set used for annotating
this fraction of data is represented in Tables @ and @ in Appendix E A small
fraction of this annotated data set is called the Bijankhan CorpusE (Bijankhan,
2004), which is freely available online. The Bijankhan Corpus contains around
2.5 million word tokens. For our study, we select 1,000 sentences from this cor-
pus. This small fraction of data is used for starting the first phase of treebanking
that is described in Chapter E

2.5 Challenges in Persian Text Processing

When processing a Persian text corpus, there are problems that one might en-
counter because of the specific properties of the Persian script. These problems
can be solved automatically or manually. In this section, the most frequent

problems are listed and explained.

2.5.1 Encoding Issues

The control chaurauctelrsE for both Persian and Arabic are very similar to each
other, but in terms of other characters, there are differences between the two.
One difference is having four more letters in the Persian script that do not exist
in the Arabic script. The other one is that the written texts sometime employ
Arabic characters in addition to the range of the Unicode characters designed
for Persian. Hence, the letters KAF (‘S’) and YE (‘s’) can be expressed by
either the Persian Unicode encoding (u06a9 for ‘S’ and u06CC for ‘s’) or by
the Arabic Unicode encoding (10643 for ‘" and u064A for ‘s’) (Megerdoomian,
2004). Most of the operating systems have Arabic codes as their default charac-
ter encoding and only the codes for PE (‘<’), CHE (‘z’), ZHE (‘y’), KAF (‘S7),
GAF (‘S7), and YE (‘s’) are added to be compatible with Persian. This results
in mixing the character codes of the two languages. Since character codes play
the roll for sorting and running a query, the mixture of Arabic and Persian
character codes makes processing of a Persian text difficult.

Since these characters are limited, the problem of mixture of character en-
codings can be solved by converting these letters to their normalized forms. It
should be added that there is a corresponding mapping of the Arabic 1256 en-
coding to a particular Unicode encoding based on the ISIRI 6219 standard for
Persian. This solves the problem of character encoding, but not sorting. The
sorting problem still exists in the operating systems, and the problem should be

resolved in individual applications. The normal sorting of Persian letters is as

8http://ece.ut.ac.ir/dbrg/bijankhan/
9This set of characters does not print, and it does not have a written representation.

http://ece.ut.ac.ir/dbrg/bijankhan/

2.5. CHALLENGES IN PERSIAN TEXT PROCESSING 31

follows:

ERERA P R 20 R RN - R RS R R RN i o A R
S s 1 0o

Applying the sorting of Arabic letters on Persian will make two changes on the

order of Persian letters: (a) the positions of the letters VAV (‘s’) and HE ‘=’

are swapped as is in the Arabic alphabet, (b) the six letters, namely PE (‘%’),

CHE (‘g’), ZHE (‘3"), KAF (‘S”), GAF (‘S’) and YE (‘s’), which do not exist

in the Arabic script appear after the Arabic alphabet. So that, the following

incorrect order is what results:

R T RRR RN PR RN A 2 R R R P R RO R RN o RN R
@.Lg S S ST

2.5.2 Internal Word Boundaries

One of the biggest issues in processing Persian texts is the internal word bound-
ary that should ideally be represented with the so-called ‘pseudo-space’. In
many texts, the correct usage of pseudo-space is not given much importance,
and often either a white-space is inserted, or the internal word boundary is
completely ignored. Using a white-space instead of the pseudo-space causes
a problem in the tokenization, and it raises the ‘multi unit token’ problem.
Furthermore, this problem has a negative impact on the frequency distribution
of words in text processing. For instance, using a white-space in typing the
word ‘ Mooy’ /beynolmelali/ ‘international’ as ‘ MeJl -0’ splits this word to
two separate tokens, namely ‘o’ and ‘ JLJP. Nevertheless, ambiguity in the
tokenization makes this problem more severe since it has a negative effect on
POS tagging for assigning the word a proper POS tag. The tokenization of the
strings ‘bs” and ‘,ole’ can be either as one token to have ‘Lg’ /vaba/ ‘cholera’
and ‘,ole’ /madar/ ‘mother’; or two tokens to have ‘b ¢’ /va ba/ ‘and with’ and
‘L’ /ma dar/ ‘we in’

Moreover, optionality of the internal word boundary raises problems in the

<

analysis of detached affixes and morphemes, such as ‘— s’ /mi-/ (present and
past imperfective morpheme), ‘—e2’ /ham-/ (prefix ‘-mate’), ‘= o’ /bi-/ (pre-
fix ‘-less’), ‘le—’ /-ha/ (plural morpheme), ‘s!-’ /-i/ (post-nominal determiner
morpheme), ‘5_" /-tar/ (comparative suffix), or ‘n5-" /-tarin/ (superlative
suffix). The inflectional morphemes can appear either bound or separated as
represented in Table @ Bound morphemes join the host with a pseudo-space.

Separated morphemes contain an intervening white-space. Although usage of

0ALEF, BE, PE, TE, SE, JIM, CHE, HE, KHE, DAL, ZAL, RE, ZE, ZHE, SIN, SHIN,
SAD, ZAD, TA, ZA, EYN, GHEYN, FE, GHAF, KAF, GAF, LAM, MIM, NUN, VAV, HE,
YE

ALEF, BE, TE, SE, JIM, HE, KHE, DAL, ZAL, RE, ZE, SIN, SHIN, SAD, ZAD, TA,
ZA, EYN, GHEYN, FE, GHAF, LAM, MIM, NUN, HE, VAV, PE, CHE, KA, GAF, YE

2.5. CHALLENGES IN PERSIAN TEXT PROCESSING 32
Table 2.3: Different types of word boundaries for affixes
‘ Affix ‘ White-space ‘ Pseudo-space ‘ Attached ‘ Transliteration ‘ Translation ‘

- QS o QS RV I miguyad says

—® NS o PPN IOV hambkelasi classmate

- 3 e W — biniyaz needless

> _ & Js o Jg s pulha monies

sl= sl b sl — xane?i a house

I 5 S, 5SS, Sy bozorgtar bigger
o= | eSS OSSR Oy bozorgtarin biggest

Table 2.4: Different word boundaries for derived and inflected words

| White-space | Pseudo-space | Attached | Transliteration | Translation |

el oo el — beynolmelali international

wbes b bl ookl zabansenasi linguistics
o LS [Jotty [JOmcCS ketabsara, book-house
Sl Rsls Sl isle — danesamuz student
Qo addle Leoddde Leeddle alagemand interested

pseudo-space is the standard form for such cases, the other forms are frequently
used in varying combinations depending on the style of the person who compiles
the text.

Apart from affixes, there are other categories that have this problem, espe-
cially in derived and inflected words. Table @ shows a number of samples that
are usually written with or without white-space though they should be written
with pseudo-space to be considered as a single token.

Orthographically, clitics are always attached to their hosts. Samvelian (2007)
recognized clitics as phrasal affixes. The required changes on clitics are discussed
in more detail in Section .

The white-space problem and the tokenization problem make the process-
ing of complex words consisting of separate lexical items a tough task. This
problem is also called the ‘multi token’ problem, and it exists at various lev-
els (Megerdoomian, 2004; SharifiAtashgah and Bijankhan, 2009). If the ‘multi
token’ presents a concept, it is called ‘multi unit token’, such as compound
nouns that are mostly linked together with the Ezafe morpheme, compound
prepositions which are constructed based on the incorporation of two sim-
ple prepositions or a simple preposition and a noun (AbolhassaniChime, 2006;
AbolhasaniChime and Ghayoomi, 2006), compound adjectives, compound ad-
verbs, compound conjunctions, or numerals in the alphabetical form. If the
‘multi token’ does not present a concept and the containing elements are mor-

phologically independent, then it is called ‘multi token unit’. One reason that

2.5. CHALLENGES IN PERSIAN TEXT PROCESSING 33

Table 2.5: Different kinds of word boundaries for multi token words

‘ Type ‘ White-space ‘ Pseudo-space ‘ Attached ‘ Transliteration ‘ Translation ‘
Noun e ild ile el ile - masinelebassuyi | washing machine
[& oSS - toxmemorq egg
Preposition o 9;.»; Py 0 gusds 09l besiveye like
5o — Jie ba?daz after
Adjective o i,‘.;’&? o 5),')"&;{“ B sapgiivazil heavy
S Sy — abirang blue
o5 w5l e - ERCES haraz¢andgah rarely
Adverb 8285 jb (885, 9boay 32905k betoredaqiq exactly
yg0 ol ey [CIPWRN JOPSR) &ysail ey | dargeyre?insurat otherwise
i . &S ol oz &S oyl jamed - bemahze?inke as soon as
Conjunction oS ISl a5 JSCiscylay — berinseklke such taht
Numeral S5 Aw g G g do | A glanngio = sadobistosehezar 123000
Detenminer- 5 o 5 sl in kar this work
Pronoun- _
)l - 1)g! him/her
Post-position 3 » nra i /her
Conjunction- _ .
L - L a bé 2 itk
Preposition b9 59 va ba and with
Pronoun- _ .
Preposition »lb - b va ba we in
g;rﬂ?ral» Ao \YY — A\ VY sadobistose boske 123 barrels

this problem occurs is that certain words end with the non-joiner letters
(‘T _ Py s 44 %7 and ‘9) that do not attach to the next word. Another
source of the problem is numerals written in digit format and without inserting
a white space the numerals are attached to the next word. The first six rows
of Table @ represents samples for multi unit tokens; and the last five rows are

samples for multi token units.

2.5.3 Writing Styles

There exist three kinds of language varieties: standard, super-standard, and
sub-standard. The standard language both for oral and written is the one
used as the official language in press, mass media, formal communications and
correspondences, etc. The super-standard language which has more cultural
and artistic values is used in literary texts and scientific text books. The sub-
standard language is used in Short Message Services (SMS) and blogs. Slangs
are sub-branches of this variety. We cannot always have a rigid and clean border
between these varieties as there is a possibility to have an amalgamation of them
within a text. The reason is that the writer might shift from one style to another.
This language variability adds complexity to text processing. For instance, the
word ‘if’ can be written as ‘5 /agar/ in standard and super-standard texts,

‘5’ /gar/ in super-standard texts, and ‘a5’ /age/ in sub-standard texts.

2.5. CHALLENGES IN PERSIAN TEXT PROCESSING 34

2.5.4 Linguistic Creativity

Aside from the normal language changes, recent communication technologies
like SMS have added creativity to the written form of the words in Persian.
Typing complete words on a mobile phone, especially compound words that
contain several characters, is very time-consuming for the users, and pressing
less keys is more convenient. To speed up messaging, users might create a word
form from the original one which has less number of characters. For example,
the verb ‘,u%;’ /zangidan/ is used instead of the compound verb ‘55 &5y’
/zang zadan/ ‘call’ in SMS texts. It should be added that this phenomenon is
not limited to SMS texts as it is entered to the chat-rooms and blogs as well.

Additionally, some writers of literary and novel books that belong to the
super-language class use their own writing style, and they make minor changes
to the words borrowed from Arabic without any changes to the pronunciation,
meaning, or syntactic function. For example the words ‘s>’ or “' 2>’ /hatta/,
and ‘L’ /hatman/ ‘certainly’, which are the standard orthographical forms,
are written as ‘t>" and ‘yeu>’.

2.5.5 Homographs and Homonyms

Like other languages, Persian also has ambiguities in its lexicon. However,
because of two important properties of the Persian script, the number of homo-
graphs and homonyms is surprisingly high. One property is that usually short
vowels are not written in Persian. A Persian morphological analyzers should
deal with this problem to analyze and disambiguate them. As an example, the
homograph ‘S’ can be pronounced any of these along with their POS tags:
/kand/ ‘picked’ (Verb, Past Tense), /kanad/ ‘picking up’ (Verb, Present Con-
tinuous Tense), /konad/ ‘doing’ (Verb, Present Tense), /kond/ ‘slow’ (Adverb),
and /kond/ ‘blunt’ (Adjective). This property has a negative impact on the
tokenization to extract the word frequency, because these five words will be
treated as one. Bijankhan et al] (2011) defined syntactic patterns to classify the
homographs.

The other property is that capitalization does not exist in Persian, therefore
proper nouns cannot be simply distinguished from common nouns, unlike En-
glish. This makes the automatic recognition of the named entities a tough task.
For example, the word ,3I" /azar/ is either the name of the 9th month in the

Persian calendar, a woman’s name, or a common noun that means ‘fire’.

2.5. CHALLENGES IN PERSIAN TEXT PROCESSING 35

2.5.6 Borrowed Diacritic Characters from Arabic

There are four diacritic Arabic characters that add problems to Persian text
processing, namely Tanvin, Tasdid, Hamze, and Short Alef. Some typists use
Tanvin and some do not. This variability results in two entries in the lexicon
for a single token, such as e’ /fe?lan/ ‘yet’ and ‘M8’ This problem can be a
source of ambiguity for cases like ‘la>’ that can be either ‘o>’ /joda/ ‘separate’
or ‘o>’ /jeddan/ ‘really’.

Tasdid ¢’ can be written or ignored, such as ‘p-lbﬁ’ and ‘elee’ /mo?allem/
‘teacher’. Its missing can be another source of ambiguity. For instance, the word
‘Ls” could be either ‘ty’ /bana/ ‘building, base’ or ‘Cs’ /banna/ ‘bricklayer’.

Hamze is an Arabic character which optionally appears in Persian words.
This character can be written as ‘s’ at the end of a word, such as ‘!’ /emla/
P,

‘dictation’, or it can be ignored, such as . Hamze is written as ts’, or

‘s’ in the middle or end of words. There is a debate among Iranian linguists on
the subject of Hamze. The first group do not believe in the existence of Hamze
in Persian and they use the corresponding long vowel (‘I’) ‘s’, and ‘s’) instead
of Hamze, such as ‘dlu.’ /masale/ ‘problem’; ‘ ww,” /reyis/ ‘boss’, and ‘:yege’
/momen/ ‘believer’. Alternatively, these words can be written as ‘alivs’ or ‘alls’
/mas?ale/, ‘ ws,’ /re?is/, and ‘e’ /mo?men/ based on the assumption of the
second group who believe in the existence of Hamze in Persian. Having Hamze,
removing it, or replacing it with its associated long vowel is ambiguous and
undecided. For example, the word ‘mirror’ has three different written forms:
with Hamze as ‘el /a?ine/, without Hamze as ‘aul’ /ayene/, and with ‘s’
replacement as ‘awl’ /ayine/.

Similar to other borrowed characters, some typists use the Short Alef ‘'’

and some do not, such as ‘even’ that can be written as either ' o>’ or ‘ o>’

2.5.7 Various Orthographical Forms for Words

Persian orthography is not completely rule-based and standardized. Even though
the Persian Academy of Language and Literature (2005) has published a book
for this purpose, a list of exceptions is presented after the rules. Shamsfard
et al| (2010) designed a software to normalize a Persian text according to the
Persian Academy of Language and Literature (2005). Seraji et al) (2012h) and
Sarabi et al) (2013) also tried to normalize a Persian text automatically.
Besides the multi token problems, different typing styles also add further
problems. One of these problems is caused by the nature of ‘| — . As presented
in Tables @ and @ in Appendix @, the letter I’ appears quite often at the
very beginning of the words, very rarely in the middle of the words; but the

letter ‘I’ pronounced /a/ appears only in the middle or at the final positions.

2.6. SUMMARY 36

However, since these two letters are pronounced the same as /a/, some typ-
ists use ‘I’ instead of ‘. For instance, the word ‘el,l’ /aram/ ‘calm’ is typed as
‘el,I. Mixing this problem with the variability of using Hamze causes various
orthographical forms of words. For instance, the word ‘American’ is spelled
as ‘Sl Jemrika?i/, { oo yl’ Jemrikayi/, ¢ Sl /amrika?i/, and ‘ol el
Jamrikayi/. To overcome such inconsistencies, Ghayoomj (2004) used the high-
est frequency of the orthographical forms as a guide to decide on the default
spelling and replaced the various spellings with the selected candidate spelling.

In Persian, Ezafe is represented in two forms based on the syllabic restrictions

in Persian. In one form, it appears as °

" /e/ after a consonant, though it
is usually not written, such as in ‘w2 e uuf ’ /kife maryam/ ‘Maryam’s book’
The other form is when Ezafe appears after a vowel in which the intermediary
morpheme ‘s’ /y/, a consonant, is inserted to follow the syllabic restrictions in
Persian. Depending on whether the previous letter is a consonant or a vowel
and whether white-space or pseudo-space is used result in four types of writing
formats for Ezafe. In two of the formats, Ezafe is written with the intermediary
morpheme ‘s’ /y/ along with a white-space or pseudo-space at the end of the
word, such as ‘sal>" or ‘s 41> /xaneye/ ‘the house of’. Another written format
is writing Ezafe in the form of ‘4 at the end of a word like ‘Gl>’ /xaneye/. The

last form is writing no Ezafe in either of the above formats, such as ‘als>’.

2.5.8 Foreign Words

Since the Persian alphabet differs considerably from the Latin script, writing
foreign words in Persian is not straightforward. There is no standard method
for writing these words, and they may be written in different forms depend-
ing on how individual writers choose to adapt them to Persian phonology,
such as the word ‘intermediate’ which can be written as ‘Cesdwzil’ /inter-
mediyet/, ‘Cose,sol’ /intermediyet/, ‘Coduemiol /intermidiyet/, and ‘Cogoue ol
/intermidiyet /.

2.6 Summary

In this chapter, the basic properties of Persian, its syntactic properties, and
the available language resources for this language were described. Additionally,
most of the common problems one might face in processing a Persian text cor-
pus were mentioned. The source of the problems could be the Persian script
mixed with the Arabic script, the Persian orthography, the typing style used
in the compilation of a text, the characters’ encoding in the operating systems,

linguistic styles, and creativity in the written form of the words.

Chapter 3

Grammar Formalisms,

Treebanking, and Parsing

3.1 Introduction

In this chapter, we provide background and the related studies in the literature.
This chapter contains five sections. In Section , some of the well-known gram-
mar formalisms that have applications in computational linguistics are briefly
described, and their basic concepts are introduced. The HPSG formalism and
the previous studies on the Persian HPSG are also discussed in this section.
In Section @, the notion of treebanking is defined, and the previous studies
on major treebanks in general and the Persian treebanks in particular are de-
scribed. Section @ has a focus on parsing, and it deals with parsing methods,
evaluation metrics, and the previous studies on parsing Persian. Section @

summarizes this chapter.

3.2 Grammar Formalisms

A formal language is defined as “a set of strings [such that] each string [is] com-
posed of symbols from a finite symbol-set called alphabet” (Jurafsky and Martin),
2000, p.39). This formal language is used for modeling a natural language. In
the 1950s, Chomsky (l1957) proposed a formal language to describe the natural
language grammar formally. In Chomsky’s view, a language is constructed of a
finite set of grammar rules that are used recursively to create sentences. These
grammar rules describe a chain of words such that the grammar rules are orga-
nized hierarchically to provide the syntactic analysis of a sentence. Constituents

are the smallest syntactic units that are constructed based on the grammar rules.

37

3.2. GRAMMAR FORMALISMS 38

A set of labels are used for labeling the constituents. Since one word, called the
‘head’, plays the most important role to construct a constituent, the syntactic
category of the head word is projected to its constituent label.

This way of analyzing a natural language caught the attention of researchers
in other areas, and they proposed more advanced formalisms to describe the nat-
ural language more precisely. The consequence of their studies is proposing vari-
ous grammar formalisms with their own properties. There are two major ways to
provide the syntactic analysis of a sentence: (a) based on Chomsky’s generative
grammar which is topological (constituency-based), and (b) tecto-grammatical
(dependency-based) in which only the syntactic relations are considered.

A grammar formalism can serve as the backbone when building a treebank.
One advantage of such an approach, as will be described in Section @, is that
the development of a new treebank based on another grammar formalism can be
done through a conversion strategy, which is faster than its development from
scratch. As a result, we briefly introduce in this section the properties of well-

known grammar formalisms that have applications in computational linguistics.

3.2.1 Constituent-based Analysis

The major grammar formalisms of the constituent-based analysis that have rel-
evance to computational linguistics are Phrase Structure Grammar, Categorial
Grammar, Tree Adjoining Grammar, and Lexical Functional Grammar, which

are all briefly described in this section.

Phrase Structure Grammar

Phrase Structure Grammar (PSG) is the primary grammar formalism proposed
by Chomsky| (1957). This grammar is a generative device that is constructed of
a finite set of rewriting grammar rules containing terminals (words) and non-
terminals (constituents). The interaction between the grammar rules creates an
infinite number of sentences. Grammar Rules @ generate Examples @a—f but
not Examples @g and @h which violate the given grammar rules. Example

provides the linear analysis of the syntactic structure of Example @a in which
the sentence is bracketed and the constituent labels are assigned. Figure @ rep-
resents this analysis graphically as a tree diagram. Generalized Phrase Structure
Grammar (GPSG) (Gazdar et all, 1985), and HPSG (Pollard and Sag, 1994)

are the two advanced versions of the original PSG. HPSG is described in more

detail in Section .

(31) S—NP VP Det — the
NP — Det N N — boy | book | apple
VP -V NP V — studies | eats

3.2. GRAMMAR FORMALISMS 39

(3.2) a. The boy eats the apple.
b. The boy studies the book.
c. # The book eats the boy.
d. # The book studies the apple.
e. # The apple eats the boy.
The apple studies the book.

lw]

g. * The eats boy the apple.
h. * Eats the boy the apple.

(3.3) [[Thepe: boyn]np [eatsy [thepe: applen|nplvp]s

S

AN

Det N

AN

The boy eats Det N

the apple

Figure 3.1: Tree diagram of Example @a

Categorial Grammar

Categorial Grammar (CG) was first proposed by AdjukiewicZ (1935) and it was
modified later by Lambek ([1958) and others. A categorial grammar is con-
structed based on two components: (a) a categorial lexicon in which words
are associated with their syntactic and semantic categories where the words’
combinatorial potentials are defined, and (b) the inference rules which are the
functions to determine how and in which direction the arguments should follow
based on the constituents’ symbols (Steedman, 1993). This formalism, which is
mostly semantically oriented for syntactic combination, is motivated by Mon-
tague’s principle of compositionality (Montague, 1974). A category can be a
basic category, such as N, or a functor category, such as a transitive verb that
requires a function to map its required arguments. A functor category can be
defined by the left-right operators (X/Y and X\Y). X/Y means that if an el-
ement combines with the element Y on its right, it will produce X; and X\Y
means that the existence of an element on the left of Y will produce X. Figure @
illustrates the derivation of Example @a based on CG.

Combinatory Categorial Grammar (CCQG) is a specific version of CG, and it
differs slightly from CG in the way directionality is denoted (Steedmar, 1993).
It needs to be added that it is possible to enrich the functions with lambda

expressions for composing the elements.

3.2. GRAMMAR FORMALISMS 40

The boy
NP/N T eats the apple
NP NP\(S/NP) NP/N N
S/NP NP

S

Figure 3.2: CG inference of Example @a

Tree Adjoining Grammar

Tree Adjoining Grammar was proposed by Joshi (1985). The main property of
this formalism is that trees, rather than grammar rules, play the most important
role. There are two types of trees in this formalism: (a) the initial tree which
represents the lexical knowledge as a simple tree structure, and (b) the auxiliary
tree which allows for recursion. Two operations are used for combining the two
types of trees, namely substitution, and adjunction. The nodes of the trees
that allow substitution are represented with the arrow-down symbol ({), and
the nodes that allow adjunction are marked with a star (*). In the extended
version of this formalism, the trees are lexicalized such that at least one node
of a tree is anchored to a lexical item; as a result it is called Lexicalized Tree
Adjoining Grammar (LTAG) (Schabes, 1990).

The initial trees which allow substitution in Example @a are represented in
Figure @ The initial tree in Figure @ is used for adjunction in a sentence,
such as ‘The boy eats the apple greedily’.

Det NP NP S
| /N N N
the Det| N Det, N NP, VP
| | /N

boy apple V NP{

eats

Figure 3.3: LTAG initial trees used for the substitution operation

VP

/N

VP* ADV

greedily

Figure 3.4: LTAG initial tree used for the adjunction operation

Lexical Functional Grammar

Lexical Functional Grammar (LFG) was introduced by Bresnan and Kaplan

(1982). This formalism is a direct map between semantic argument structures

3.2. GRAMMAR FORMALISMS 41

and surface grammatical relations (Kaplan and Bresnan, 1995). This formalism
uses a set of syntactic rules and a set of lexical entries to provide a mapping be-
tween semantic functions and the surface grammatical functions. LFG consists
of several levels for describing the syntactic relations. Two of the most impor-
tant levels are: (a) the constituent structure (c-structure) represented by trees,
and (b) the functional structure (f-structure) represented by attribute-value
matrices (AVM). The LFG-style Grammar Rules @ enriched with functional
annotations represent the c-structure of Example @a.

The functional annotations are represented with the up and down arrows to
symbolize the meaning graphically. The up arrow points to the mother node
that is matched to a node in the f-structure with the defined function. The up
arrow in (1SUBJ)=] represented in Grammar Rules @ means that the mother
node NP attaches to the SUBJ node in the f-structure. The down arrow points
to the current node, and it corresponds the matching node in the f-structure to
this node. The syntactic and semantic properties of the lexical items in Exam-
ple @a are defined in Example @ As stated above, the provided information
in the c-structure should map to the semantic functions in the f-structure. Fig-

ure @ represents the relevant f-structure of Example @a.

(3.4) S — NP VP
(tSuB)=l 1t=1

VP — \% NP

NP — Det N

(3.5) Det : the
(1SPEC)='the’

N : boy | apple
(tNUM)=SG | (1NUM)=SG
(tPRED)=‘boy’ | ({PRED)=‘apple’

V : eats

(TPRED)=‘eat < SUBJ , OBJ >’
(TNUM)=SG

(1PERS)=3
(TTENSE)=PRESENT

3.2.2 Dependency-based Analysis

Besides the constituent-based generative grammars, dependency-based repre-

sentations (Mel’¢uk, 1988) have also been proposed. To display the data with

3.2. GRAMMAR FORMALISMS

42

PRED ‘eat <(T suBJ), (1 OBJ)>’
NUM SG
PERS &
TENSE PRESENT
SPEC the
SUBJ NUM SG
PRED ‘boy’
SPEC the
OBJ NUM SG
PRED ‘apple’

Figure 3.5: f-structure of Example @a

dependencies, the data is transformed to Directed Acyclic Graphs (DAG) with
labeled edges that determine the type of the dependency relations. Dependency
Grammar (DepG) has various approaches to define the relations, such as having
crossed edges (non-projectiveness) or having more than one incoming edge on a
node for structure sharing (re-entrancy) (Nivrd, 20054). Moreover, this sort of
analysis is a soft representation of the linguistic analysis, since in the analysis
there is no hierarchical constituent structures and the number of edges in the
graphs is equal to the number of tokens in the sentence (Hajid, 1998). Empty
categories like traces or multi-word expressions (either idiomatic expressions or
multi tokens, such as ‘to walk’ or ‘in addition to’) are not dealt with in this sort
of analysis. As a result, these properties might be the reason why dependency
representation is used for languages with less configurational word order than
the languages with more restricted constituent order like English. Figure @
represents the dependency analysis of Example @a.

T
ROO PUNC

DET SUBJ DET

NN N

The boy eats the apple

Figure 3.6: Dependency representation of Example @a

Link Grammar (LinkG) (Sleator and Temperley], 1993) is also a dependency-
based representation. This formalism is relatively similar to DepG, but it is
enriched with forward or backward directions in the relations between the words,
as represented in Figure @ The properties that make the linkage possible are
stored in a dictionary for each word. Moreover, the type of the relation is also

determined for each lexical entry. As represented in Figure @7 ‘D’ determines

3.2. GRAMMAR FORMALISMS 43

a determiner relation, ‘O’ determines an object relation, and ‘S’ determines a
subject relation. The syntactic analysis of Example @a by LinkG is represented

in Figure @

the boy cats
apple

Figure 3.7: Lexical entries of Example @a defined based on LinkG

o5
oliob A3 [ook
T S T T W

the boy cats the apple

Figure 3.8: Syntactic analysis of Example @a by LinkG

3.2.3 Head-driven Phrase Structure Grammar

Head-driven Phrase Structure Grammar (HPSG) is a constraint-based linguistic
theory that was first introduced in the mid-1980s by lPollard and Saﬁ (h987|)
The applicability of the formalism for empirical problems are demonstrated in
lPollard and Saé (|1994|)

Based on an assumption in HPSG, feature structures are considered as com-

plete models of linguistic objects. Linguistic generalizations are expressed as
constraints in this formalism. The constraints are descriptions of well-formed
feature structures for a particular language. Constraints are formulae of a logi-
cal description language as feature value pairs which are usually represented in
the form of AVMs. Each feature structure is required to be of a certain type.
The types are ordered hierarchically in such a way that the most general type
is at the top of the hierarchy and the most specific type at the bottom (,
, Sec. 1). Figure @ represents the AVM of the type indez.

In this AVM, the type index has the features PERSON, NUMBER, and GEN-
DER. The value of the features can be atomic or partial. If a type has no
attributes, it is called ‘atomic’ The atomic features do not have sub-types. The
feature description of a feature structure can be partial, i. e. maximally specific

types are not used, or one or more attributes are omitted. The partial features

3.2. GRAMMAR FORMALISMS 44

have sub-types. Feature descriptions can also be represented as a DAG or lin-
ear. The equivalent DAG and linear representation of the AVM in Figure @ is

shown in Figure .

PERSON person
NUMBER number
GENDER gender

index

Figure 3.9: AVM of the type index

@ person

PERSON

NUMBER

index

GENDER [)

number

gender

index & PERSON(X1,X2) & person(X3) & NUMBER/(X1,X4)
& number(X5) & GENDER(X1,X6) & gender(XT7)

Figure 3.10: DAG and linear representation of an AVM

Another property of this formalism is the inclusion of a small number of
principles and grammar rules (schemas), and massive information in the lexical
entries, which makes it highly lexicalized. In this formalism, the lexical knowl-
edge, especially the lexical knowledge of heads, plays the most important role in
providing the syntactic analyses. Additionally, each lexical entry is well-typed
and knowledge is ordered hierarchically according to an ontology.

Structure sharing is another property of this formalism “that is the token
identity between substructures of a given structure in accordance with lexical
specifications or grammatical principles” (Pollard and Sag, 1994, p.2). Struc-
ture sharing is indicated by numbered boxes in the feature descriptions.

HPSG is a constraint-based formalism, i. e. the feature descriptions of lexical
items or phrases are the constraints, and only those feature structures are well-
formed which satisfy all the constraints of the grammar.

HPSG is a system of signs which include words and phrases. Words carry

3.2. GRAMMAR FORMALISMS 45

[PHON (the)]

[sPEC noun||]]
HEAD DEF plus
det
CATEGORY |[SUBJ ()
coMP ()
LOC
SYNSEM SPR (>
| category _
[DET the
CONTENT
Lcontent
Lloc _
Lsynsem d

Lword

Figure 3.11: Feature description of the word ‘the’ in Example @a

two features: phonology (PHON) that encodes the phonological representation
of the word, and syntax-semantics (SYNSEM) that encodes the syntax and
semantic information of the word. Phrases carry three features such that in
addition to the PHON and SYNSEM features, the feature daughters (DTRS) is
used for constituent structures. The information in SYNSEM is represented in
the features local (LOC) and non-local (NON-LOC). The LOC feature contains
the information about the syntactic category (CATEGORY), semantic content
(CONTENT), and discourse context (CONTEXT)E. The NON-LOC feature is
used for unbounded dependencies, and it has two features, namely INHERITED
and TO-BIND to represent the information about the extraposition of an ele-
ment and binding the extraposed element. Either of the features INHERITED
or TO-BIND contains the information about the extraposition of an element
(SLASH), a WH-element (QUE), or a relative clause (REL).

Figures , , and display the AVMs of the words ‘the’, ‘boy’, and
‘eats’ in Example, @a, respectively. As represented in the feature description of
the word ‘the’, this definite determiner selects a noun through its SPEC feature.
The feature description of the word ‘boy’ states that this head noun requires a
determiner as its specifier (SPR). The CONTENT | INDEX feature defines the
morphological properties of this noun, which is a third person singular noun.
The feature description of the word ‘eats’ states that in the argument structure
of this finite verb as the head, a noun phrase, which is third person singular in
the nominative case, is required as its subject (SUBJ), and another noun phrase
in the accusative case is required as its complement (COMP).

To put the words together to create an acceptable sentence, a limited number

of schemas and principles are required. All of these schemas and principles

IThe CONTEXT feature contains the information about background and pragmatics. This
feature usually is not mentioned in AVMs.

3.2. GRAMMAR FORMALISMS 46

PHON (boy) 1
I r r CcASE nom|]7]
HEAD
noun
SUBJ O
CATEGORY
coMP ()
SPR (DET)
LOC Lcategor?
SYNSEM - gery
NUM sg
INDEX |PERS 38rd
CONTENT
index
Lcontent
Lioc _
Lsynsem i
Lword i

Figure 3.12: Feature description of the word ‘boy’ in Example @a

[PHON (eats)]

I i VFORM fin 17
HEAD TENSE pres

verb
HEAD [CASE nom]
SUBJ NP NUM s
CATEGORY < INDEX g
PERS 3rd
ASE
Loc COMP <NP [HEAD [cas acc]]>
SYNSEM SPR 0
Lcategory i

NUM sg

INDEX |PERS 3rd
CONTENT

index

Lcontent

Lloc i

synsem

Lword _

Figure 3.13: Feature description of the word ‘eats’ in Example @a

also belong to the constraints in HPSG. The type and the requirements of the
constituent structures are defined in the DTRS feature according to the ontology
of phrases. In the following paragraph, the sketch of a number of principles and
schemas in HPSG is described informally.

Most principles function as universals in HPSG like the Head-Feature Prin-
ciple where “the HEAD value of any headed phrase is structure-shared with the
HEAD value of the head daughter” (Pollard and Sag, 1994, p. 34). The Immedi-
ate Dominance (ID) Principle is the disjunction of the ID schemas among which
only one schema should be used. The ID schemas function as grammar rules.
The type of schema that should be selected depends on the type of the DTRS
feature and the phrase ontology. The Head-Complement, Head-Subject, Head-
Adjunct, Head-Specifier, Head-Marker, and Head-Filler schemata are among

3.2. GRAMMAR FORMALISMS 47

the basic ID schemata in HPSG. The Head-Complement-Schema is used for
combining the head with the elements specified in the COMP feature to con-
struct a phrase. The Head-Subject-Schema is used when all the elements in
the COMP feature of the head verb are saturated. This schema realizes the
subject of the sentence. The Head-Adjunct-Schema is used when the daugh-
ter element is not a head and this element is not selected as a complement
or subject. The Head-Specifier-Schema is used for combining a specifier and
a noun. The Head-Marker-Schema is used for phrases with complementizers
recognized as markers. The Head-Filler-Schema is used for binding the slashed
elements of unbounded dependencies. The NON-LOC | INHERITED | SLASH
feature contains the information about an extraposed dependent in a phrase.
The Head-Filler-Schema binds the slashed element in the NON-LOC | INHER-
ITED | SLASH feature and makes it structure shared with the element in the
NON-LOC | TO-BIND | SLASH feature.

In Example a, the determiner ‘the’ and the noun ‘boy’ are combined to-
gether through the Head-Specifier-Schema to construct a noun phrase as repre-
sented in the CATEGORY | HEAD | SPEC value of the determiner, and in the
CATEGORY | SPR value of the noun in Figures and . Likewise, the
Head-Specifier-Schema licenses the combination of ‘the’ and ‘apple’ to construct
a noun phrase. The Head-Complement-Schema is utilized to specify the require-
ments in the COMP feature of the head verb to construct a verb phrase. The
Head-Subject-Schema is used then to saturate the requirements in the SUBJ
feature of the verb to construct a verb phrase. The Head-Feature Principle en-
sures that the HEAD values of the mother node and the head daughter node
are token identical. The effect of this principle is that the information located
under the HEAD feature is projected from the head-daughter to the dominat-
ing phrase. Semantics can be expressed more formally by Minimal Recursion
Semantics (MRS) (Copestake et all, 2006) in which it reformulates the con-
straints at lexical and phrasal levels from semantic perspective and allows for
underspecification of scope constraints.

When all lexical requirements are satisfied and the constrains are specified,

the analysis of the sentence is complete as represented in Figure .

3.2.4 Previous Studies on Persian HPSG

In the previous section, the basic concepts of HPSG were defined. In this section,
we briefly review the HPSG literature for Persian.

Taghvaipour (2005) provided an HPSG analysis for relative clauses and free
relative clauses as unbounded dependencies at the theoretical level in his Ph.D.

dissertation. In this study, Taghvaipour divided the analyses of relative clauses

3.2. GRAMMAR FORMALISMS 48

S
HEAD
CAT|SUBJ ()
COMP ()
CONT
S/\{
NP VP
HEAD HEAD
=|SPR () car|suBj ([3INP)
COMP ()
SPR H CONT
Det N I-AC
PHON <the> PHON <boy>
SPEC [2]NOUN HEAD A\ NP
SPR. PHON <eats>

H

[IIEAD

HEAD SPR (

CAT |:SL‘BJ (BINP)] /\
comp ([5INP)

CONT [§]

SPEC [7]NOUN HEAD [7]

{PHON <rhe>:| PHON <(Lpplf>
SPR [6]

Figure 3.14: HPSG analysis of Example @a

and free relative clauses into two groups and studied them in terms of the
existence of a gap (trace) or a resumptive pronoun. The traceless and trace-
based HPSG analyses are provided for both relative clause and free relative
clause constructions. To provide the analyses, it was attempted to use a single
mechanism. To this end, the SLASH and GAPTYPE features are defined in
the NON-LOC attribute. The value of the SLASH feature is structure shared
with the local dependency that is a head noun. The GAPTYPE feature can
have either a resumptive pronoun value or a trace value.

Samvelian| (2007) had a study on the analysis of Ezafe. In this study, Ezafe
is treated as an affix attached to nouns, adjectives, and some prepositions, at
both the lexical and phrasal levels. Ezafe functions as a marker and it marks
nouns to expect adjectives as their modifiers or nouns as their complements.

3

Similarly, the post-nominal indefinite determiner ‘¢’ /-i/ and personal clitics,
which behave like Ezafe, are treated as phrasal affixes as well. The reason to
treat them as phrasal affixes is that they occur at the left edgeE of nominal
phrases, and they are placed after the inflectional plural maker affix ‘_’
/-ha/. The double functionality of Ezafe is also discussed. Ezafe functions as a
word affix when it is added to a head, such as a noun, adjective, or preposition.
But it functions as a phrasal affix when it is added to a modifier. The former
functionality requires a lexical suffixation rule when the syntactic rules are ap-
plied; and the latter functionality is applied once when the syntactic rules have

created a phrase through the lexical suffixation rule.

2The standard writing direction of Persian is right-to-left; and the left-hand side of the
element (either word or phrase) is the outer edge.

3.2. GRAMMAR FORMALISMS 49

IBonami and Samvelianl (lZOOd) studied five periphrastic constructions of verb

conjugation, such as the auxiliary verb ‘o’ /Sodan/ ‘become’ in passive voice,
the verbal clitic and the auxiliary verb ‘e’ /budan/ ‘be’ in the present and
past perfect tenses, the auxiliary ¢ yuls>" /xastan/ ‘will’ in future tense, and the
auxiliary ‘czils’ /dastan/ ‘have’ in the progressive tense. They then proposed
solutions to treat periphrastic constructions lexically rather than as phrasal
or multi-word lexical item. In their study, lexical entries for each of these
auxiliaries are provided. To this end, they integrated the Paradigm Function
Morphology (,) in HPSG and adapted it for the target periphrastic
constructions of Persian. In the analyses provided, these auxiliaries are licensed

as heads.

ISamvelian and Tsené (lZOld) had a study on clitic phenomena like pronominal

clitics, possessive clitics, pre-verbal object clitics, clitic doubling constructions,
and object clitics in the verbal domain. They presented a morpho-syntactic
analyses for them. In their study, these clitics are treated as suffixes, and when
they have wide scope (phrasal) they will function as a phrasal affix.

() studied light verb constructions. One salient feature of this
study in light of the previous studies is that the proposed ideas are implemented
within the TRALE system (7), an HPSG parser and generator, and the
semantic analyses use MRS (ICopestake et all, IZOOd). The MRSes are visualized
by UTOOL (IKoller and ThateIL l2005|). In this paper, first the author argues
the shortcomings of inheritance hierarchies for classifying complex predicates

proposed in () The author then enumerats several problems

of Goldberg’s analysis. The first problem is the semantic interpretation of a

complex predicate combined with the future auxiliary, where the semantic in-
terpretation of the complex predicate should be embedded under the meaning of
the future auxiliary. The other problems address the interpretation of negation,
the interaction between negation and object clitics and progressive/subjunctive
marking, the interaction of negation and the future auxiliary and their semantic
interpretation, the interaction between the future auxiliary, clitics, and complex
predicates, and finally the separation of pre-verbal elements in complex predi-

cates.

|Miiller and Ghayoomi (lZOld) performed a further study on Persian gram-

mar and explained the various phenomena covered in the grammar along with
the implementation of morphological rules, syntactic principles and schemas
in the TRALE system (,), and semantic interpretation as MRSes by

UTOOL. The implemented Persian grammar has a common core shared between

several other languages (,)7 namely German (|Mi'111er and @rsnes{,
), Mandarin Chinese (|Miiller and Lipenkova|, bOOd), Danish (,),
Maltese (Miillet, 200d), Yiddish, English, Spanish, and French. The imple-

3.3. TREEBANKING 50

mented grammar for Persian uses a Head-Adjunct-Schema, a Head-Complement-
Schema, a Head- Specifier-Schema, and a Head-Filler-Schema. In addition to
these schemata, a Head-Cluster-Schema is used for complex predicates. In
Miiller and Ghayoomi (2010), it is explicitly defined how a lexical item belonging
to various syntactic categories is defined in the grammar. It is further described
that the lexical rules in the system cover both inflectional and derivation mor-
phological rules, such as the plural maker affix, post-nominal determiner, the
Ezafe morpheme, and negation. In the lexicon, the lexical items, such as nouns,
verbs, clitics, prepositions, direct object marker, determiners, and symmetric
coordination are defined, and the number and the type of elements in their ar-
gument structures are determined. Additionally, dropness of the subject, empty
categories, and the embedded clauses marked by the complementizer or the rel-
ativizer ‘457 /ke/ ‘that’ are investigated. Finally, a small test suite is used for
testing the implemented fragment of the grammar in the TRALE system (Penn,
2004) is evaluated. This test suite contains 165 sentences, and both positive and
negative samples are involved. The grammar is able to parse all of the positive

samples without providing any analyses for negative samples.

3.3 Treebanking

The term ‘treebank’ appears to have been coined by Geoffrey Leech (Sampson,
2003). A treebank is an annotated corpus constructed of a collection of sen-
tences with their corresponding syntactic tree analyses. Therefore, the provided
analyses are one level higher than assigning POS tags in which the syntactic
category of each word in a sentence is determined. Generally, treebanking can
be theory-independent like the TiBa-D/ ZE developed for German, or it can be
dependent on a linguistic theory. If the latter approach is chosen, then based
on the grammar formalisms described in Section @, various treebanks might
be developed for a target language. In terms of the usage of treebanks, they
can be used as language resources by linguists to investigate specific phenomena
and test hypotheses in the target language, or by computational linguists who
want to analyze sentences automatically for natural language understanding.
In the followings, first we present the previous studies and the methods of

treebanking; and then we review the previous studies on Persian treebanking.

3.3.1 Previous Studies on Treebanking

Needless to say, theory-dependent treebanks require a grammar formalism as

their backbone. Consequently, a number of treebanks might be constructed

Shttp://www.sfs.uni-tuebingen.de/en/ascl/resources/corpora/tueba-dz.html

http://www.sfs.uni-tuebingen.de/en/ascl/resources/corpora/tueba-dz.html

3.3. TREEBANKING 51

based on either the syntactic constituent or dependency structure of sentences
in each language. It seems that the pioneer research on treebanking is the de-
velopment of TalbaunkenE in the 1970s at Lunds University for Swedish that
contains written and spoken Swedish (Teleman, 1974). The treebank contains
POS tags, and implicit head-dependent relations, which are defined hierarchi-
cally in the constituent structures. The development of the Prague Dependency
Treebank is among the earliest attempts to develop a data source with depen-
dency relations for Czech (Hajid, 1998; Bohmovd et all, 2003), and it is further
on developed for other languages like English (Haji¢ et alf, 2012).

In the followings, we describe the basic properties of the well-known tree-
banks that are developed semi-automatically for the English, German, and Bul-
garian languages, as well as the treebanks developed through an automatic
conversion.

One of the first large-scale treebanks is the Penn Treebank for English de-
veloped by Marcus et al! (1993). This treebanking is done in the framework of
Chomsky’s PSG (Chomsky, 1957) with relatively flat syntactic constructions.
The annotated texts in the treebank include a wide-range of genres, such as
IBM computer manuals, nursing notes, Wall Street Journal articles, and tran-
scribed telephone conversations ([Taylor et all, 2003). Out of approximately
7 million words in the text corpus that are POS tagged, 3 million words are
parsed, and over 2 million words of the corpus are parsed for predicate-argument
structure. The first release of the treebank contains limited empty categories
without the indication of non-contiguous structures and dependencies. In the
revised version, the Penn Treebank II, traces are co-indexed with the lexical el-
ements. Traces are inserted to the trees to indicate long-distance dependencies.
Moreover, the treebank is enriched with a small number of syntactic functions
including numerical indices for explicitly marking the logical subject and logical
objects of the verbs, and defining how sub-constituents are semantically related
to their predicates. In this data set, the type of the relation between the ele-
ments of a constituent as either a complement or an adjunct is not explicitly
determined for all constituents. POS tagging and syntactic parsing of the texts
are the product of a two-step method: automatic annotation followed by man-
ual correction. For POS tagging, the stochastic PARTS POS tagger (Church,
1988) is trained with a modified version of the Brown Corpus, and the output
is mapped to the Penn Treebank tag set and corrected manually. Next, this
data is used for training the deterministic Fidditch parser (Hindle, 1983). The
parse results are finalized by human intervention and manual correction using
a task-specific mouse-based interface implemented in GNU Emacs Lisp.

The TIGER Treebank (Brants et al), 2002) is a treebank for German de-

4http://w3.msi.vxu.se/~nivre/research/talbanken.html

http://w3.msi.vxu.se/~nivre/research/talbanken.html

3.3. TREEBANKING 52

veloped in the framework of Chomsky’s PSG (,) The syntactic

structures in the treebank are enriched with a set of syntactic functions to
determine the type of relations either as an argument or adjunct. The tree
structures in this treebank are relatively flat. The early version of this treebank
contains 35,000 sentences from newspaper texts which aimed at being extended
to 80,000 sentences. The treebank’s annotation scheme is an extended ver-
sion of the NEGRA Corpus annotation scheme (ISkut et all, h997|7 |1998|). This
treebank is developed in two steps: interactive annotation, and LFG parsing.
After POS tagging the data automatically with the TnT POS tagger (B g,

), the Cascaded Markov Model (, ,) trained on the NEGRA

Corpus is used for generating phrase-by-phrase annotation in which a human

annotator can intervene immediately after each new proposed phrase. Based on
the annotator’s decision, the parser proposes the next part of the annotation.
This process is repeated until the annotation of the sentence is complete. In

this method, both the tagger and the parser are implemented within the Anno-

tate tool (IPlaehn and Brants{, lZOOd), and no manual grammar rules or lexicon

development is necessary. In the second step, parts of the corpus are parsed

with the LFG parser developed for German (Dipper,), and the output is

disambiguated by a human annotator. A transfer module (hinsmeister et al],
) is employed to convert the selected LFG analysis to the TIGER format,
which is the flat phrase structure tree enriched with syntactic functions. This

module is also used for adding the tree to the treebank. The developed tree-
bank is enhanced with a search engine for queries (,) and a query
language (lK('jnig and Lezius!, l2()02al,).

The Linguistic Grammars Online (LinGO) Redwoods Treebank is an HPSG

treebank for English. This treebank is a collection of manually annotated cor-

pora analyzed with the LinGO English Resource Grammar (ERG) which con-
tains complete syntactic and semantic analyses (ﬁlickinge;i, 500(1) This tree-
bank is developed through a dynamic approach. One direction of this dynamic

approach is dealt with the ways to retrieve the linguistic data from the tree-
bank during varying the granularity level in the treebank. The other direction

of this dynamic approach is updating the treebank regularly synchronized to

the development of ideas in the syntactic theory (bepen et al], l2004|). Several

tools are used for developing this treebank, and it is possible to extract dif-
ferent types of linguistic information from the treebank. The treebank is built
on the [incr tsdb()] profiling environment (|Oepen and Callmeierl, fZOOd; bepenl,
). The tree comparison tool in the Linguistic Knowledge Building (LKB)
platform (E iopestaka, M) is used for extracting the elementary linguistic prop-

erties (the discriminants). Carter’s inference rules (,) are used for

determining the smallest set of discriminants. This disambiguated set is pre-

3.3. TREEBANKING 53

sented to the annotators to navigate through the proposed parse trees and make
a binary decision on selecting either the correct analysis or the most preferred
analysis of the sentence with respect to the context, or rejecting it. In the dy-
namic treebanking, the annotator’s choices are inferred automatically from the
recorded disambiguating decisions in the [incr tsdb()] database to re-apply the
disambiguating decisions of the updated grammar on the corpus. Three differ-
ent forms of information are available in the [incr tsdb()] environment: (a) a
derivation tree for representing the full HPSG analysis, (b) a normal phrase
structure tree, and (c) MRSes (Copestake et al), 2006) for semantic representa-
tion which look like elementary dependency graphs extracted from MRSes. The
nodes of the dependency graphs are the MRS relations, and the arcs are labeled
by MRS roles. 10,000 sentences of the transcribed dialogues from the Verbmo-
bil data (Wahlstex, 2000) are used as initial data. The PET unification-based
parser (Callmeier, 2000) is used for providing the HPSG analysis.

The DeepBank is another HPSG treebank for English (Flickinger et all,
2012). This treebank has adopted the dynamic approach described above, and
it is attempted to overcome the shortcomings in manual annotation of a cor-
pus. The dynamic approach helps to refine the treebank by the improvement
of the grammar. In the development of this treebank, it is aimed at provid-
ing the syntactic and semantic analyses of Wall Street Journal articles in the
English Penn Treebank. The tools that are used for this treebanking are the
PET parser (Callmeier, 2000), the LKB platform (Copestake, 2002) for gram-
mar development, the [incr tsdb()] profiling environment (Oepen and Callmeier),
2000; Oepern, 2001), and the ERG (Flickingen, 2000). Although the data set
which is used for this treebanking has already been annotated, the input data is
transformed into raw data, which is then fully re-annotated independent of its
original annotation. In the annotation process, each section of the Wall Street
Journal corpus is parsed with the PET parser trained with the ERG. Mean-
while, the TnT POS tagger (Brants, 2000) is employed to assign a POS tag
to unknown words. Next, the n-best (n=500) parse trees of each sentence are
extracted and ranked using a maximum entropy model built with the TADM
package (Malouf et all, 2000). The parse trees are stored in the [incr tsdb()]
treebanking tool, and the derivation tree of each parse tree is recorded in this
tool. Human annotators disambiguate the parse result of each sentence manu-
ally in the [incr tsdb()] treebanking tool with a binary decision, either selection
or rejection.

The Bulgarian TreeBank (BulTreeBank) is an HPSG-based treebank for
Bulgarian (Simov et all, 2002b). The development of this treebank is started
from scratch. To start data annotation, two sets of data are provided from

two sources: examples from the Bulgarian grammar books for basic linguistic

3.3. TREEBANKING 54

phenomena (1,500 sentence), and free texts from newspapers, government doc-
uments, and proses (10,000 sentences) (bsenova and Simovl, tZOOé\I). King’s Spe-

ciate Re-entrance Logic (SRL) (,) is used for representing an HPSG

grammar, therefore feature graphs as finite signatures are defined for repre-

senting the HPSG sort hierarchy and principles within the CLaRKE system for
developing the treebank. The system as well as its properties are described in
more detail in Section @

Conversion of treebanks from one grammar formalism to another, or creat-
ing a parallel treebank is another strategy for treebanking. This conversion can
be done automatically or manually.

In the former model of conversion, a monolingual treebank based on one gram-
mar formalism is converted into another formalism, for instance converting a
treebank from LTAG into HPSG for English (|Tateisi et alL |199d; |Yoshinaga|
land Miyao|, l2002|), PSG into HPSG for English (|Miyao et alL IZOOd), PSG into
HPSG for German (bramer and Zhané, l201d)7 PSG into HPSG for Chinese (@
,), DepG into HPSG for Russian (|Avgustinova and Zhané, }201d),
HPSG into DepG for Bulgarian (Chanev et all, 2006), PSG into CCG for En-
glish (IHockenmaieri, IZOOSI; lHockenamier and Steedmad, l2007|), DepG into CCG
for Italian (IBOS et alj, lZOOd) and Turkish (E}@, M), PSG into TAG for
English (bhen et alL l2006b|), PSG into LFG for English (bahill et al], bOOQI;

,) and Chinese (Eiuo et al], }2()_07|) and Arabic (ITounsi et al], lZOOQ)
and French (,)7 and PSG into DepG for French (,

Ro1d).

In the latter model of conversion, a parallel corpus is employed for creating

a parallel treebank such that first a parallel corpus is parsed for each lan-
guage individually, and then the parsed parallel corpus is automatically aligned
at either sub-sentential or tree level, such as the parallel treebanks of PSG

for Korean—English (Han et al], EOOQ), Estonian—German (|Uibo et alL l2005|),
English-Spanish—German (rfinsley et all, l2007|), and English-French (Ehechev

and Wa;l,)7 or the parallel treebank of DepG for Czech—English (Evimei'rek

et all, }2004]). ISamuelsson and Volk| (bOOd) created a parallel treebank manually

aligned between three languages, namely German, English, and Swedish.

3.3.2 Previous Studies on Persian Treebanking

There have been attempts to develop treebanks for Persian which are briefly
described in this section.
The study of lPouramini and Mozayanﬂ (l2007|) is one of the first studies

for developing a Persian treebank. In their study, they mainly focused on the

Shttp://bultreebank.org/clark/

http://bultreebank.org/clark/

3.3. TREEBANKING 55

methodological principles and the syntactic criteria to design an annotation
scheme for developing a treebank for Persian without a dependency on any
grammar formalism. After studying the pros and cons of PSG and DepG for
Persian, they established a hybrid framework which combines the advantages
of the both formalisms to annotate a Persian text. Their proposed approach is
constructed based on the properties of two treebanks: (a) the NEGRA Tree-
bank (Brants, 1997) for German, and (b) the Italian treebank (Montemagni
et all, 2003). To this end, they introduced feature descriptions for the lex-
ical items in their treebank. The feature descriptions contain three compo-
nents: (a) Morpho-Syntactic-Component for lexical information, (b) Functional-
Syntactic-Component for syntactic information, and (c) Semantic-Component
for semantic information. Since they found similarities between their proposed
method and the NEGRA annotation scheme, they used an incremental ap-
proach similar to the NEGRA project for Persian such that a human annotator
interacts with a parser to either accept or reject the proposed structures. In
this study, they used the data from FLDB (/Assi, 1997) and the semi-automatic
POS tagger developed by |Assi and HajiAbdolhosseini (2000).

Although the study of Pouramini and Mozayani established the preliminary
steps towards the development of a treebank for Persian, the paper lacks de-
tailed information of the annotation process, as well as the amount of the an-
notated data. Additionally, neither qualitative nor quantitative evaluation has
been done on the annotated data, and the amount of human intervention is not
clear either.

SharifiAtashgall (2009) proposed a semi-automatic approach in his Ph.D.
dissertation to generate a treebank for Persian in the framework of the Min-
imalist Program (Chomsky, 2000, 2001)). To this end, an algorithm with a
bottom-up approach was proposed for semi-automatic bracketing. The major
problems that SharifiAtashgah has to dealt with are the tokenization and an-
notation of multi-tokens. In this study, the multi-tokens are divided into static
and dynamic units. The static units are closed, unproductive units which can
be listed, such as compound words, while the dynamic units are open and pro-
ductive, such as the light verbs. The annotation scheme of the English Penn
Treebank (Marcus et al), 1993) and its modification for annotating Persian text
in the framework of the Minimalist Program are described in the dissertation as
well. The defined constituent labels are: the Declarative Sentence (vP), Time
Phrase (TP), Focus Phrase (FocP), Topic Phrase (TopP), Complement Phrase
(CP), and Fragment Phrase (FRAG). Moreover, a set of syntactic labels, such
as subject (—SBJ), object (—OBJ), predicate (—PRD), logical subject (—LGS),
and vocative (—VOC), are added to the constituents. Additionally, a num-
ber of semantic labels, such as property (—PRP), time expression (—TMP),

3.3. TREEBANKING 56

direction (—DIR), location (—LOC), and manner (-MNR), are added to the
constituent labels as well. In the annotation scheme, several empty categories,
including trace (*T*), null complementizer or relativizer (0), pro-dropped NP
(PRO (NP*)), canonical position of extracted constituent which is co-index with
its reference (*ICH*E), and ellipsis (*PNR*), are defined.

To generate the parse trees of Persian sentences, an algorithm is introduced,
whose architecture is demonstrated in Figure . The input data to the sys-
tem is the POS tagged Peykare corpus (Bijankhan et al), 2011). First, the
static and dynamic multi tokens are tokenized, then they are parsed. Finally,
the shallowly processed sentences are sent to the syntactic component where the
sentences are syntactically bracketed according to the defined grammar rules.
Even though a complete algorithm is proposed in the dissertation, the imple-
mentation is partial, and it is only limited to the recognition of noun phrases.
Therefore, the current version of the system cannot parse a complete sentence.
To evaluate the accuracy of the system for recognizing the noun phrases, two
text files which contain 6,273 word tokens are randomly selected and given to
the system for bracketing. Based on the given data sets, 3,452 noun phrases are
bracketed out of which 248 brackets are wrong; i. e. the error rate of the system

for bracketing noun phrases is 7%.

The POS-tagged
Persian Corpus
’ Tokenizing Static Multi-tokens ‘

¥

’ Tokenizing Dynamic Multi-tokens

Tokenized Text
with POS tags

’ Parsing the Multi-tokens ‘

¥

’ Parsing the Syntactic Constituents

Persian Treebank

Figure 3.15: Architecture of the system proposed by SharifiAtashgah (2009)

SICH stands for ‘Interpret the Constituent Here’. This element functions as the trace.

3.3. TREEBANKING 57

Pouramini and Moridj (2012) only described an annotation scheme to be used
for grammatical functions and extrapositions of relative clauses. Their general
proposed annotation scheme is similar to Pouramini and Mozayani (2007), and
it is enriched with additional features to handle grammatical functions and
extrapositions of relative clauses. Again, their study is not evaluated either
qualitatively or quantitatively.

Seraji et al] (20124) recently described a method to develop a dependency
treebank for Persian, called Uppsala Persian Dependency Treebank (UPDT)B,
through a bootstrapping approach. This data set is released online. A set of
215 manually annotated sentences is used as the seed data to initialize and train
the Malt parser (Nivre et all, 2006), the non-probabilistic, statistical parser for
DepG. Since this parser is language independent, it can be trained with the data
of any language to create the DepG model. Iteratively a number of sentences
are annotated and added to this treebank. As reported, the primary version of
the treebank is iteratively increasing up to 1,000 sentences. Seraji et al) (20124)
has stated that the aim is to enlarge the size of the treebank to 10,000 sentences
from the Bijankhan Corpus (Bijankhan, 2004). This fragment of annotated
data includes both long and short sentences, and the average sentence length
in this data set is 19 words. The annotation scheme used in the study is mainly
based on the Stanford Typed Dependencies (de Marneffe and Manning, 2008)
along with four newly defined dependency relations, such as acc as accusative
marker for direct objects, ez for Ezafe constructions, int for interjections, and
lvs for light verb constructions (acomp-lvc for adjectival complement in Light
Verb Construction (LVC), dobj-lvc for direct object in LVC, nsubj-lvc for nom-
inal subject in LVC, and prep-luc for prepositional modifier in LVC). Training
the Malt parser with the initial developed data set and evaluating it based on
the 10-fold cross validation resulted in 56.7% accuracy for labeled attachmentE.
It is further reported that the extended version of the data set (1,000 sentences)
is used for training two dependency parsers, namely the Malt parser and the
Maximum Spanning Tree (MST) parser (McDonald et al), 2005). The experi-
mental results of using gold POS tags have shown that the performance of the
Malt parser is increased to 68.68% for labeled attachment and 74.81% for unla-
beled auttauchmentE while the accuracy of the MST parser is 63.60% for labeled
attachment and 71.08% for unlabeled attachment.

The Persian Dependency Treebank (PDT) is also a recent dependency tree-
bank for Persian developed through a bootstrapping approach (Rasooli et all,

"http://stp.lingfil.uu.se/~mojgan/UPDT.html
8Labeled attachment is a relation with the correct head and the correct dependency label.
9Unlabeled attachment is a relation with the correct head disregarding the dependency

label.

http://stp.lingfil.uu.se/~mojgan/UPDT.html

3.4. PARSING 58

) in the Dadegan groupm. This data set is also available online. This data
set is developed according to the Tenth Conference on Computational Natural
Language Learning (CoNLL-X) shared task on multi-lingual dependency pars-
ing (|Nivre et all, l2007|). In this study, the MST parser (|McD0nald et all, I2005|)
is used. This treebank, which contains 29,982 sentences (498,081 word tokens)
with an average length of 16.61 words, is constructed from a corpus composed

of the online archives of the Mehr News Agency (3,000 sentence), art magazines,
randomly selected sentences from the contemporary Persian literary texts of fa-
mous writers, articles, transcribed speeches of famous speakers, and the teach-
ing texts used for teaching Persian to non-native speakers. Their annotation

depends heavily on the valence of nouns, adjectives, and verbs. To this end, a

Persian verb valence dictionary (IRasooli et all, }201]]) is developed based on the

Bijankhan Corpus (éijankhaa, EOOZ}I) and the Hamshahri Corpus (

,) The performance of the parser using raw text is reported to be
approximately 75% for labeled attachment and 80% for unlabeled attachment.

The HPSG (IPollard and Saﬁ, |1994|) properties and also the available re-
cent studies on Persian HPSG at both the theoretical level (|Taghvaip0uri, bOOﬂ;
SamvelianL lZOO?I; lBonami and Samveliad, lZOOd; Eamvelian and Tsené, lZOld;
w, lZOﬂ) and the system implementation level (|Miille1|, IZOld; |Miiller andl
Eihayoomi, M) motivated us to choose this formalism as the backbone of
our treebank. Due to the lack of any publicly available syntactically annotated

data when the present research commenced in 2009, either in the form of a
constituency or a dependency treebank, we decided to develop a treebank for
Persian and to release it online for free. Consequently, we started the anno-
tation task from scratch. To this end, we use a bootstrapping approach for
treebanking that is described in detail in Chapter E To maintain consistency
in the analyses throughout the treebank, we need an annotation scheme that is

described in Chapter H

3.4 Parsing

(7 p.41) defined parsing “as a method of analyzing a sentence [auto-
matically] to determine its structure according to [a] grammar”. In Section @7

we briefly introduced a number of well-known grammar formalisms. Each for-
malism requires its own parsing method. But all parsing methods have prop-
erties in common. In this section, we briefly describe the basic and general

properties of constituency- and dependency-based parsings.

10http://dadegan.ir/

http://dadegan.ir/

3.4. PARSING 59

3.4.1 Constituency-based Parsing

Constituents are the basic components of a sentence which are grouped together
according to a topological grammar to construct the sentence. There are three
approaches to develop the parsers: the rule-based, the statistical, are the hybrid
approach. In the following paragraphs, the main properties of the rule-based
and statistical approaches are briefly described. The description is limited to
the basic ideas originated in constituency-based parsing according to PSG to
analyze sentences automatically.

In the rule-based approach, a set of non-redundant competence grammar
rules are written manually for the parser. Therefore, these grammar rules are
the primary linguistic knowledge that the parser uses for analyzing a sentence.
The parser takes a POS tagged sentence as the input, and it returns a labeled
bracketed sentence as its output. The disadvantage of rule-based parsers is
their dependency on a language; i.e. if the set of grammar rules is used for
analyzing the sentences of one language, the defined grammar rules might not
be applicable to another language. The advantage of rule-based parsers is that
they do not require any annotated data at all to learn the linguistic knowledge
from the data, but they require a set of grammar rules written manually by a
grammarian.

In the statistical approach, a treebank is given to a statistical parser as the
input training data. Next, the parser learns the linguistic knowledge from the
data (supervised grammar induction), and it creates a grammar model based
on the data. Consequently, the grammar rules are induced from the treebank
automatically, and they are stored in the parser. The statistical information is
extracted from the data as well to be used for building a probabilistic grammar
model and to estimate the probabilities of the derivation trees of unseen data. A
statistical parser produces multiple derivation trees for each sentence by using
the equation (@) to estimate the probability of a tree ¢ based on the derived
trees d. To return a potential tree analysis of a sentence from the derived trees
as the canonical derivation, the parser computes the probability of a derivation
tree by using a chain of grammar rules r; that are conditioned to the previous
grammar rules (the history) from the collection of grammar rules as represented
in the equation (B.9) (Manning and Schiitzd, 1999, pp. 422-423).

P(t) = > [[P@ (3.1)

|d: d is a derivation of t|

m

P(d) = HP(’I“il’f‘l,...,Tifl) (32)

i=1

Based on the equation (@), it is possible to have more than one derivation

3.4. PARSING 60

Type0: Recursively Enumerable Languages

Type1: Context Sensitive Languages

Type2: Context Free Languages

Type3: Regular Languages

Figure 3.16: Languages in Chomsky’s hierarchy

parse tree for a sentence. In the case that each parse tree has one unique
canonical derivation, the Viterbi algorithm (Viterbi, 1967) is used for finding
the candidate derivation that has the highest probability score from the search
space. “[T]he Viterbi algorithm is a recursive optimal solution to the problem
of estimating the state sequence of a discrete-time finite-state Markov process
observed in memoryless noise” (Forney, 1973).

What was briefly described above ideally represents the general approach
used in statistical parsings. The disadvantage of such parsers is that they require
a large amount of annotated data which has already been analyzed by experts.
The development of this data is a labor intensive task. But the advantage of
such parsers is that they are language independent, and they can automatically
adapt to new domains, genres, or languages for inducing the linguistic properties
and building a grammar model.

PSG described in Section is a grammar formalism in linguistics. In com-
putational linguistics, this formalism is called Context Free Grammar (CFG)
according to Chomsky hierarchy. This hierarchy, displayed in Figure , is
the hierarchy of four types of formal grammars introduced by Chomsky ([1959).
Type2 of the formal grammars is CFG. CFG is powerful enough to describe a
great fraction of structures in a natural language. CFG additionally makes it
possible to build efficient parsers for analyzing sentences (Allen, 1995, p.42).
Using probabilities for estimating CFG rules results in having a probabilistic
grammar, called Probabilistic Context Free Grammar (PCFG).

Depending on the methodology used for modeling the grammar of a lan-
guage, various statistical parsers are created. If the parser uses a lexical item
as the head of a constituent, and the head is projected to the mother node,
it is called a ‘lexicalized parser’. If no knowledge of heads is used, the parser
is called an ‘unlexicalized parser’. The Stanford parser (Klein and Manning,
2003) is an implementation of the lexicalized parsing model, and the Charniak
parser (Charniak, 1996) and the Berkeley parser (Petrov et al), 2006) are sam-
ples of the unlexicalized parsing model.

It should be pointed out that the general approach of statistical parsing

3.4. PARSING 61

that was described above uses probabilities to create a grammar model. How-
ever, it is possible to have a statistical parser that does not use probabilities.
In our research, when we call a parser a ‘statistical parser’, we are referring
to a supervised statistical parser that uses probabilities to build the grammar
model. If the statistical parser only uses statistics and no probabilities to create
a grammar model, we explicitly express that the parser does not use probabili-
ties, such as the Link Grammar Parser (Sleator and Temperley], 1993) which is
a non-probabilistic, statistical parser for LinkG, the Malt parser (Nivre et all,
2006) and the Mate parser (Bohnet, 2009) which are non-probabilistic, sta-
tistical parsers for DepG, and SXLFG (Boullier and Sagoti, 2005) which is a
non-probabilistic, statistical parser for LFG.

The output of a parser is a bag of trees. There exist two parsing techniques
for searching the subtrees: (a) top-down, and (b) bottom-up (Ingerman, [1966).
In the implementation of these parsing techniques, the derived partial structures
are stored and organized in a chart, therefore the parsing process is called ‘chart
parsing’. In the following section, these two basic parsing techniques and their

corresponding algorithms are described.

Top-down

In top-down parsing (Allen, 1995; |Aho et all, 2007), the parser searches for a
candidate parse tree from the bag of trees, and it builds the structure of the
sentence from the root node S towards the leaves, i.e. the type of searching is
goal-directed. In this parsing technique, the parser finds the top nodes of the
trees which are started with the symbol S, and it derives the potential analyses
based on the right-hand side of the grammar rules which provide new expec-
tations for new grammar rules recursively. Next, with respect to the grammar
rules that have the same left non-terminal labels, partial structures are derived.
This process continues until it reaches the leaf nodes which are the words with
their corresponding POS tags. At the end of the process, the trees which fail
to match the words are eliminated. The result of this parsing technique is a set
of potential parse trees of the target sentence. The advantage of this parsing
technique is that the analyses which do not lead to the symbol S do not present
in the chart parse. This technique, however, needs a huge amount of effort
on the trees that contain the symbol S but do not match the input and they
should be eliminated afterwards. Furthermore, the trees are generated without
examining the input.

The Early algorithm (Earley, 1968) is an example of top-down parsing such
that its chart has (N + 1) x (N + 1) cells where N is the number of words in

the sentence. For efficient top-down search, a dynamic programming approach

3.4. PARSING 62

is used in this algorithm. In the dynamic programming approach, solutions are
built from sub-solutions compositionally, and the sub-solutions are stored for
reusing. The usage of the chart in this algorithm is for controlling the progress
of the completed subtrees and determining the position of the subtrees. This
algorithm involves four steps: start, prediction, scanning, and completion. First,
the start symbols .S should be searched and matched. Next, new expected states
are created in the prediction step of the parsing process. In the scanning step,
the input grammar rules are checked, and they are added to the chart with
respect to their predicted POS tags while creating a new state from the input
state. In the completion step, the right-hand side of grammar rules are covered

completely and the left-hand side non-terminals are completed.

Bottom-up

Bottom-up parsing (Allen, 1995; Aho et all, 2007) is quite in contrast to top-
down parsing. This parsing technique uses a data-directed search method to
find structures in the bag of trees. A dynamic programming approach is also
employed for this parsing technique in a chart. This parsing technique involves
three steps: start, scanning, prediction. Contrary to top down parsing, there
is no prediction for the expected cells. In this parsing technique, the parser
takes the words of a sentence as the input and the tree is built from the words
towards the top node S which dominates all of the input. When the right-hand
side of grammar rules are matched with the partial analyses from the bag of
trees, they produce the left-hand side non-terminals. If the right-hand side of
grammar rules do not match, the parsing process stops. This process continues
until it reaches the top node S. This parsing technique results in a set of
potential parses for a given sentence. The advantage of this parsing technique
is that it does not produce trees that potentially must not be produced due
to the words and their corresponding POS tags. Using this parsing technique,
however, does not guarantee that all derived trees lead to the node S.
Cocke-Kasami-Younger (CKY) algorithm (Kasami, [1965; Youngen, 1967;
Cockd, 1969) is an example of bottom-up parsing which is widely used for CFG

parsing.

3.4.2 Dependency-based Parsing

In the previous section, the rule-based and statistical approaches for constituency-
based parsing were described. Similarly, there are the rule-based, the statistical,
and the hybrid approaches for dependency-based parsing.

The dependency parsing model proposed by Hayg (1964) is among the first
attempts to develop a rule-based parser based on DepG. In the proposed ap-

3.4. PARSING 63

proach, the rules are defined based on the subcategorization requirements (ar-
gument structures) of the words in the lexicon. Grammar Rules @ are defined
according to DepG rules of Hays (1964). As demonstrated, the symbols in front
of the brackets are the heads, and the symbols within the brackets are the de-
pendents. The linear position of the head among its dependents is marked with
an asterisk (*). The assigned POS tags to the words in the lexicon serve as the
categories in the rules. Categories that are the heads in a sentence can serve as
the root of the dependency tree, and they must be marked during the generation

process. We use underline to determine the head in Grammar Rules @

(3.6) V(N*N) V = {studies, eats, etc}
N (T %) N = {boy, book, apple, etc}
T (%) Det = {the, a, an}

RelEX@ is a semantic dependency relationship extractor for English that gen-
erates dependency trees. A series of graph rewriting rules are employed to
identify subject, object, indirect object and many other syntactic dependency
relationships between the words in a sentence.

In the statistical approach of dependency-based parsing, similar to statistical
constituency-based parsing, training data is used for inducing the grammar
model. The Malt parser (Nivre et ali, 2006) and the Mate parser (Bohnet, 2009)
are two non-probabilistic, statistical parsers that are described in Section @

In the hybrid approach, both the rule-based and the statistical approaches

are used in the parsing algorithm. An advantage of this approach is that the
grammar model is created from different methods, rather than to create the
model from a treebank. The WCDG parser (Foth and Menzel, 2006) is an
example of a hybrid dependency-based parsing for German. Sennrich et al
(2009) also developed a hybrid dependency-based parsing for German that uses
a hand-written grammar with a probabilistic disambiguation system.
The hybrid approach cannot be built only based on the rule-based and statistical
approaches, but the hybrid approach can be built based on the constituency-
and dependency-based parsings, such as the parser developed by Hall et al.
(2007) for Swedish.

3.4.3 Parsing Evaluation

Black et al| (1991), Goodman ([1996), Carroll et al) (1998), and Manning and
Schiitze ([1999) presented a wide variety of evaluation metrics to evaluate the
performance of a parser. Among them, ‘Precision’, ‘Recall’; ‘F-measure’, ‘Cross-

ing Bracket rate’, and ‘Exact Matching rate’ are the very well-known measures

1 http://wiki.opencog.org/w/RelEx_Dependency_Relationship_Extractor

http://wiki.opencog.org/w/RelEx_Dependency_Relationship_Extractor

3.4. PARSING 64

which are widely used. The three metrics, namely precision, recall, and F-
measure, are together called the ‘PARSEVAL metric. The PARSEVAL metric
evaluates each piece of information in a parse tree. The original PARSEVAL
metric ignores the labels of the nodes and unary branching. But it is possi-
ble to include labels, and to have labeled precision and labeled recall. EvalbE
is the implementation of the labeled PARSEVAL metric which computes la-
beled precision and labeled recall to evaluate both bracketing and labeling of
the constituents.

Precision (P) and Recall (R) metrics measure the ratio of the number of
correct constituents against the number of constituents parsed by the parser and
the number of constituents in the gold data respectively. The gold data is the
reference and standard data created by experts. This data is used for comparing
the output of a parser with it to evaluate the performance of the parser. The

equations (@) and (@) represent how these metrics are computed.

Number of Correct Constituents

_ 3.3
Total Number of Constituents in Parser Qutput (3:3)

R Number of Correct Constituents
~ Total Number of Constituents in Gold Standard

(3.4)

F-measure is a weighted harmonic mean of precision and recall. This metric
is recognized as a standard evaluation metric for the accuracy of constituency
parsing represented in the equation (@)

1 (B2+1)xPxR

F — measure = = 3.5
oz%—i—(l—a)% 82 x (P+ R) (3.5)

where o = a € [0,1], 8 € [0,400], P is precision, and R is recall.

Assigning a small value to 8 (8 < 1) gives higher weight to precision, and
assigning a high value to 8 (8 > 1) gives higher weight to recall. Assigning the
value 1 to 8 (8 = 1), known as Fj, means that both precision and recall have
the same priority as represented in the equation (@)

2x PxR

F— = —— 3.6
measure iR (3.6)

The Crossing Bracket (CB) rate measures the average bracketing of the
parser’s output which is produced, say (A (B C)), against the number of gold
data which provides brackets like ((A B) C). The crossing bracket rate is eval-

uated according to the equation (B.7).

_ Num. of Cons.s in Parser Output that Cross Gold Cons.s
B Total Number of Constituents in Parser Output

CB

(3.7)

12http://nlp.cs.nyu.edu/evalb/

http://nlp.cs.nyu.edu/evalb/

3.4. PARSING 65

The Exact Matching (EM) rate, also called ‘tree accuracy’, is a tough crite-
rion which assigns the score 1 to a completely correct parse tree and 0 if there
is any kind of mistake in the parse tree as represented in the equation (@)

M — Number of Correctly Analyzed Sentences

Total Number of Analyzed Sentences (3:8)

Carroll et al| (1998) pointed out a shortcoming of the PARSEVAL metric.
If the bracketing and labeling are successful, then a complete score is assigned
to the structure; but in the case that there is any failure, no score is assigned.
Sampson (2000) proposed the Leaf-Ancestor (LA) metric which is a string-based
measure using the Levenshtein distance (Levenshtein, 1966), and it computes a
cost for converting a false label to the correct one. This metric compares the
similarity of the path to link each leaf (word) of a sentence to the root node in
both of the gold tree and the candidate tree, and it computes the overall average
of the correct paths. In this evaluation metric, if there is a mismatch on one
constituent, only the score of the words in that constituent is affected and this
failure is reflected in the overall average. This metric “quantifies the human
perceptions of relatively accurate or inaccurate parsing” (Sampson|, 2000).

A disadvantage of LA is its sensitivity to the number of brackets in the trees.
Lin (1998) proposed another evaluation strategy in which the constituent struc-
tures are converted to dependencies, and then the dependency relations of the
elements with the heads rather than the constituent boundaries are measured.
In this evaluation metric, each single word is involved in the evaluation, and it
is easier to search for errors. Labeled and unlabeled attachments are two stan-
dard metrics for evaluating the dependency relations. The labeled attachment
metric measures the ratio of relations with the correct head and the correct
dependency label to the total number of relations. The unlabeled attachment
metric measures the ratio of relations with the correct head and disregarding

the dependency label to the total number of relations.

3.4.4 Previous Studies on Parsing Persian

The lack of a treebank as a data resource for the Persian grammar has made it
impossible to train a statistical parse for Persia. This has restricted researchers
to analyze the sentences at the chunk level with a limited tree depth rather
than the hierarchical constituents. As another alternative, they have used the
rule-based, semi-supervised, or unsupervised parsers.

Kiani et al| (2009) used a hybrid model for chunking Persian. In this ap-
proach, first a rule-based chunker is used for labeling Inside/Outside/Beginning
segments. Next, a multilayer perceptron neural network is exploited for train-

ing the system with the provided chunks. On the top of the neural network,

3.4. PARSING 66

a fuzzy C-means clustering method (lBezdek et all7 |1984|) is used for chunking

new sentences.
To the best of our knowledge, the study of ISanamrad and Matsumotd (l198d)

is among the first studies to develop a parser for Persian. Their developed

parser, called PERSIS (PERsian analySIS), is a rule-based parser written in
Lisp to bracket an input sentence and to provide a dependency network for
representing meaning. The dependency network they provided is similar to the
conceptual dependency introduced by bchankl (|1975|) tRaisGhaserd (h99]J) also
developed a parser to produce the conceptual dependencies.

() built an Augmented Transition Network (ATN) system for pars-

ing Persian. This system is a constraint- and rule-based parser that analyzes a

substantial fragment of Persian. In the extended version of the ATN system,
the author used a two-step constraint-based parsing written in Prolog to handle
scrambling of the constituents in languages with free constituent order like Per-
sian (,) In the first step, the input sentence is partially analyzed
at a chunk level based on CFG rules, and then to a clause level based on an ID
rule or a leaner precedence rule.

|Nojoumiad (tZOOi) developed a parser for Persian within the LingBench IDETM

system which functions in two levels: morphology and syntax. The LingBench

IDE™™ system is a language independent parser which works based on the
combination of Recursive Transition Network (RTN), Finite State Automata
(FSA), and ATN. In this study, morphological and syntactic rules are defined

for the system.

|Montazeri et all (IZOOd) developed a robust rule-based top-down parser which

uses the Viterbi algorithm (,) on bi-grams recognized as ‘bi-rules’.

The developed parser is further expanded and used for parsing n-best hypotheses

of a speech recognition system (|Momtazi et all, }2007|).
lDehdari and Lonsdalel (bOOé) developed a parser based on LinkG. In another
study of implementing LinkG for Persian, Bajjadi and AbdollahzadeBarforoush|

() developed a parser that covers a fragment of Persian grammar.

@ () developed a rule-based parser for Persian based on HPSG. More-
over, () implemented a rule-based HPSG parser enriched with
MRS (bopestake et al], lZOﬂ) for a Persian—English machine translation.
bhayoomi and Guillaumd (lZOOd) implemented a rule-based parser to analyze
nominal and adjectival phrases based on the Interaction Grammar (,
). They reported that LEOPAR, the parser of the Interaction Grammar,
can parse all samples of the provided test suite according to the defined rules.
|Mﬁller| (lZOld) and |Miiller and Ghayoomi (lZOld) implemented a fragment of
Persian grammar based on HPSG in the TRALE system (,) The
grammar contains a core grammar shared among several languages (,

3.5. SUMMARY 67

l2013|). IBahrani et all (lZOl]J) developed a rule-based parser based on GPSG.
IArabsorkhi et all (bOOd) used a semi-supervised approach to induce Persian
grammar by employing the Genetic algorithm (|Mitche11, h99§). lFaili (lZOOd)

proposed a history-based inside-outside algorithm which is an extension on

the original Inside-Outside algorithm (lLari and Youné, |199d) for unsupervised

grammar induction. The proposed model has been applied on Persian and En-
glish. |Mirroshandel and GhassemSani (l2008|) extended the Constituent Context
Model (tKlein and Manninﬁ, lZOOQI), an unsupervised parsing model, and used the

context history and the constituent information of parents for inducing the Per-

sian grammar automatically.

3.5 Summary

In this chapter, we mainly reviewed the theoretical background and the previous
studies on well-known grammar formalisms, especially HPSG and the Persian
HPSG. Furthermore, we discussed treebanking, parsing, and the parsing evalu-

ation metrics.

Chapter 4

Annotation Scheme for
HPSG-based Treebanking

4.1 Introduction

In this chapter, we mainly focus on the annotation scheme required for de-
veloping our treebank. Contrary to the normal HPSG that was described in
Section , no feature structures are used in our treebank, but the basic
properties of the formalism are simulated. Consequently, we call our developed
treebank an HPSG-based treebank rather than an HPSG treebank. The anno-
tation scheme that is employed in the development of our treebank is defined
based on the basic properties of HPSG.

This chapter contains eight sections. The annotation task and the order
of realizing the dependency relations between the constituents at the phrasal
and clausal levels are explained in Section @ The elements of the lexical
and phrasal sets used in the treebank are defined in Section @ The employed
annotation scheme for phrasal and clausal elements are discussed in Sections @
and @ To make the descriptions precise, the tree analyses of the samples for
the target syntactic constructions are displayed. Sections @ and @ address
two linguistic phenomena that make the annotation of sentences very difficult,

namely ellipsis and discontinuity. The chapter is summarized in Section @

4.2 Annotation Scheme

In the annotation process of a treebank, the annotation scheme plays a major
role in producing a standardized result. This scheme can be developed either

based on or independent of a linguistic formalism. For our treebank, we employ

69

4.2. ANNOTATION SCHEME 70

the annotation scheme designed for the BulTreeBank (Simov}, 2003; Osenova and
Simov|, 2003, 2004), which relies on HPSG (Pollard and Sag, 1994). We adapt
the BulTreeBank annotation scheme for Persian. In the designed annotation
scheme, no feature structures are used, and the basic properties of HPSG are
simulated.

The annotation scheme employed in the BulTreeBank involves the character-
istics of both constituency hierarchies and dependency relations for representing
the HPSG sort hierarchy and principles via feature graphs to represent the lin-
guistic objects (Simov, 2003). A feature graph is a finite signature defined in
King’s SRL (King, 1989) to represent an HPSG grammar. According to King’s
SRL, a natural language is recognized as a set of objects that should be in-
terpreted, and the grammar of the language is essentially a set of description
of this set of objects. In the annotation scheme of the BulTreeBank, the fea-
ture graphs defined as mother-daughter relations in the constituent structure
of signs are the basic representations of a sentence analysis. The constituent
structures enriched with the mother-daughter relations are similar to normal
phrase structure trees.

The lexical or phrasal labels on the nodes correspond to the categories of the
signs, either word or phrase. The head-daughter relations (dependency relations)
are represented as functional labels beside the constituents’ labels. The labels
that represent the dependency relations are: ‘A’ for the Head-Adjunct relation,
‘C" for the Head-Complement relation, ‘S’ for the Head-Subject relation, and
‘F” for the Head-Filler relation. Each word has an argument structure in which
the number and the type of the required elements are defined. The words
which function as a head play a very important role in constructing a syntactic
structure and in assigning an appropriate label to the constituent. The analyses
provided for the sentences are based on the words’ linear appearance, but the
analyses might clash because of the extraposition of the constituents’ elements.
The extraposed constituents are labeled ‘DiscE’ (Discontinuous Extraposition).
In other words, this label is used for the displaced elements which belong to the
argument structure of the head, and they are dominated by the head. The Head-
Filler relation is defined at the topmost node to bind the extraposed elements.
Contrary to Kelleg (1995), in our annotation scheme, both extraposing and
fronting are analyzed with one operation, and they are bound with the Head-
Filler-Schema. The empty node ‘nid’ (non immediate dominance) defines the
canonical positions of the extraposed elements, and co-referential indexes are
used for linking nids to the extraposed elements. In fact, the nid node functions
as a trace in the analyses. The derived trees according to this scheme are
projective.

Based on the sort hierarchy defined in Osenova and Simov (2004), the sort

4.2. ANNOTATION SCHEME 71

Figure 4.1: Graphical representation of lexical elements

(™) > @

(c) (d)

Figure 4.2: Graphical representation of phrasal elements

sign can be either a word or a phrase. The word sign is unary branching with
a lexical item as its sole daughter, as displayed in Figure @ The daughters of
the phrase sign can be words or phrases, as demonstrated in Figure @ This

fragments of trees should be read right-to-left, because Persian is a right-to-left

language. The phrase sign can contain phrasal elements in Figures and {21,
lexical elements in Figure , or the combination of the two in Figure @.2d.
In addition to these signs, the unary branching functional elements, namely
nid, DiscE, ngmatz’cﬂ, S, and ROOT elements are added to the sign set.

Additionally, a set of unary branching elements that determines the type of

clausal saturated verb phrases is added to the sign set in the BulTreeBank.
The head-dependency realizations are governed by the ID Schemas, and

they are restricted to the below sequence throughout the development of the

BulTreeBank (ISimov and Osenoval, IZOOSI, Sec. 3), i.e. the schemas are prioritized

according to this sequence to combine the elements and to determine the type

of the head-daughter dependency relations:

Complement — Subject — Adjunct

1t is a functional label to indicate that this element has a pragmatic function.

4.2. ANNOTATION SCHEME 72

This sequence recognized as a strong constraint means that the realization of
obligatory arguments (complements) other than the subject has to precede the
realization of the Head-Subject relation, and the realization of the obligatory
arguments in general has to precede the realization of Head-Adjunct relation.
The Head-Filler relation is only used for binding the extraposed elements which
belong to the argument structure of a lexical element. It should be added that
this constraint for prioritizing the recognition of the dependencies does not exist
in HPSG where a collection of constraints without a specific order of application
is defined.

As mentioned in Section @, there are two goals behind the development
of a treebank. If the end users of the data source are computational linguists
who aim at processing the language automatically for applications like parsing,
the annotation of the data should be simple with minimum complexity, and it
should be limited to the linear word order. If the end users are linguists who
study linguistic theories and test hypotheses, the data source should contain
information which allows them to search for a specific linguistic phenomenon in
the corpus. Consequently, a rich data source should be provided in such a way
to meet the needs of the two groups of investigators.

The constraint proposed by Simov and Osenova (2003, Sec. 3) to prioritize
combining the elements is harmless for languages with fixed constituent order.
As a result, the developed data set based on this constraint can be used for both
computational and linguistic applications. Using this constraint for languages
with free or relatively free constituent order, however, increases the degree of
the annotation complexity. The reason for increasing the degree of complexity is
that the number of structures with extraposition and scrambling increases. Since
the canonical positions of the extraposed and scrambled elements are determined
by traces in the syntactic analyses to follow this constraint, the number of traces
increases. Consequently, the applicability of the data source for computational
applications will be limited. Moreover, the decision on the canonical position
of constituents, such as prepositional phrases is ambiguous and undecidable.
The advantage of providing such analyses is useful for linguistic investigations
which allow linguists to search for a specific phenomenon in the target language
and to find out how frequent the phenomenon is in the target language. Since
we aim at developing a multipurpose data set to be used for computational and
linguistic purposes, we modify the proposed constraint and adapt the constraint
according to the requirements of the Persian language.

Since in Persian, a subject, complement, or topic might drop, we add three
more specific relations to the list of the dependency relations to cover these
phenomena. The complete list of the recognized dependency relations in our

treebank for Persian are the Head-Subject, Head-Complement, Head-Adjunct,

4.2. ANNOTATION SCHEME 73

Head-Filler, Head-Subject-Drop (SD), Head-Complement-Drop (CompD), and
Head-Topic-Drop (TD) relations.

There is a class of adjunct elements, such as adverbs and conjunctions, which
have wide scope and cover the whole sentence rather than the local context. For
instance, the scope of the adverb ‘ 2>’ /hatta/ ‘even’ in Example @ is the whole
sentence as represented in the tree diagram. These elements are realized after

the realization of the Head-Subject relation.

(A1) 5% oo o b e 2
hatta ali ba man sohbat na-kard
even Ali with I talk NEG-did.3SG

‘Even Ali did not talk to me.

PREP PRON N v

ba man sohbat nakard

We modify the constraint proposed by Simov and Osenoval (2003, Sec. 3)
and adapt it for the Persian treebank to prioritize realization of the dependency

relations:

Complement Subject

Complement — Drop ¢ — {8 Subject — Drop) — Filler — Adjunct

Adjunct Topic — Drop

This constraint means that the realization of either a Head-Complement
or Head-Adjunct relation has to precede the realization of a subject, a dropped
subject, or a dropped topic. If the adjunct has wide scope, it is realized after the
realization of the Head-Subject relation. For discontinuous constructions, the
Head-Filler relation is applied solely after the realization of the Head-Subject
relation. Since the constituent order in Persian is relatively free and the elements
might scramble, we make the realization of the Head-Complement and Head-
Adjunct relations flexible, and either of the relations can be realized based on
their linear appearance in a sentence. It should be mentioned that the defined
head-daughter relations in our treebank rely mainly on the HPSG formalism
introduced by Pollard and Sag (1994) and the BulTreeBank experience (Osenova
and Simov], 2003). This set of head-daughter relations differs slightly from the

4.2. ANNOTATION SCHEME 74

head-daughter relations implemented in the Persian HPSG by Miilley (2010)
and Miller and Ghayoomi (2010). In their implementation the Head-Subject-
Schema does not exist among the head-daughter relations, but in our annotation
scheme we have it. Moreover, we do not use the Head-Cluster-Schema defined
in their grammar.

The tree diagram in Example @ shows how the head-dependency relations
are realized. As can be seen, first the Head-Complement relation is realized,
then the Head-Adjunct relation, and finally the Head-Subject relation.

(4.2) ol e ar]y QLS 59,0 6
u diruz ketab ra be man dad

he/she yesterday book DOM to me gave.3SG
‘He/she yesterday gave the book to me’

/\

VPS PUNC

/\ ‘
PRON VPA

/\

1‘1 ADV VPC
/\
dil"uz NPC [CASE acc] VPC

I N

ketab ra PREP PRON dad

be man

The tree diagram in Example @ represents how the head-dependency relations
for Subject-Drop and Complement-Drop are realized.

(4.3) .CdS o oy s Wb il 3> S
agar harf-i dast bayad be man mi-goft
if word-INDEF had.3SG should to me IMPF-said.3SG
‘If he/she had a word, he/she should have said [it] to me.

S

/\

VPA PUNC

/\

CL VPSD ‘

ADV VPSD VPC

agar VPC AUX VPCompD

N |

N [CLITIC ya] V bayad VPC

| | N

harf dast PPC \

o

PREP PRON migoft

be man

4.2. ANNOTATION SCHEME 5

The tree diagram in Example @ shows the head-dependency relation for Topic-
Drop.

(44) o W)ﬁ o> L éj)‘>

doruq ast ke hamid varsekaste Sode-ast
lie is that Hamid bankrupt become-3SG

‘[It] is a lie that Hamid is bankrupted.

S

/\
VPF PUNC
VPTD DiscE ‘
N |
DPC VPC CLR,
N T
nid; N V CONJ VPS
| N
doruq a‘%‘r ke N MV
‘ /\
hamid A% A%

Tabibzadelh (2012, pp. 10-13) has a finer classification of head-dependency
relations such that complements can be obligatory or optional, and adjuncts
can be general or specific. In this view, complements belong to the argument
structure of the head, and the head controls the number and the type of the
arguments, while adjuncts do not belong to the argument structure of the head,
and the head has no control over them. To make the obligatory complements
distinct, Tabibzadeh expresses that the lack of these elements makes the sen-
tence ungrammatical, but optional complements do not have such a property.
Specific adjuncts which have narrow scope have a special semantic relation with
the head, and any kind and any number of them can be used in any order. Gen-
eral adjuncts, on the other hand, have wide scope and they modify a constituent
that dominates the maximal projection in which it occurs. Example @ from
Tabibzadel (2012, p.12) illustrates these four types of head-dependencies. In
this example, the head of the sentence is the verb ‘sls Lig=s’ /tahvil dad/ ‘deliv-
ered’. The obligatory complements are ‘ Je’ /ali/ ‘Ali’ and ‘|, obs” /ketab ra/
‘the book’, and the optional complement is ‘e 4’ /be man/ ‘to me’. The general
adjunct is ‘;9,00” /diruz/ ‘yesterday’, and the specific adjunct is ‘ e L’ /ba meyl/

‘with pleasure’.

(45) 513 Jugoss o &y oo b | oS g0 e
ali diruz ketab ra ba meyl be man tahvil dad
Ali yesterday book DOM with pleasure to I delivery gave.3SG
‘Ali yesterday delivered the book to me with pleasure.’

4.3. LEXICAL AND PHRASAL ELEMENTS 76

Tabibzadelj (2012, pp. 339-343) believes that there is an order, but not nec-
essarily a strict order, between the dependents and the heads, and changing the
order relatively does not effect the dependency relations. By contrast, there is a
strict order between the dependents and the heads in noun phrases ([Tabibzadeh,
2012, p.39) such that the post-nominal elements are realized before the pre-
nominal elements ([Tabibzadeh, 2012, p.23). This is the order of realizing the
dependency relations in Tabibzadel (2012):

general adjunct — speci fic adjunct —

optional complement — obligatory complement — head

Contrary to [Tabibzadeh (2012), in the current study, we have a more coarse-
grained classification of dependency relations. If a lexical item contains an
obligatory element in its argument structure, this element is recognized as a
complement or subject, and the other elements (optional complements, gen-
eral or specific adjuncts) are recognized as adjuncts. The lack of an obligatory
element makes the sentence ungrammatical. To make the data usable for com-
putational applications, we treat general and specific adjuncts equally without
using specific labels for them in the process of data annotation.

In the following section, the properties of the annotation scheme used for

Persian treebanking are described.

4.3 Lexical and Phrasal Elements

In the original data set of the Bijankhan Corpus (Bijankhan, 2004) used for our
study, 14 main POS tags are defined, and clitics are not recognized as individual
elements. Since possessive and object clitics as well as copulative verbal clitics
play syntactic roles in a sentence, we split them from their hosts and assign
each split-off element a POS tag to represent a more accurate syntactic analysis
of the sentence. We assign these clitics the ‘clitic’ label, which results in an
increase in the number of the main syntactic categories to 15 POS tags. Other
types of clitics in which their morpho-syntactic properties are defined in the
POS tag of the host remain unchanged as they are in the Bijankhan Corpus.
The labels of the constituents are realized based on the syntactic category
of the head in the local context, such as adjective (ADJ), adverb (ADV), classi-
fier (CLASS), clitic (CLITIC), conjunction (CONJ), interjection (I), noun (N),
number (NUM), preposition (PREP), pronoun (PRON), post-position (PostP),
punctuation (PUNC), residual (RES). There are three subtypes of determiners
in the Bijankhan Corpus: a demonstrative (DEM), an interrogative word as a
determiner (Q), or a quantifier as a determiner (DET). There are four subtypes
of verbs in the Bijankhan Corpus: the auxiliary (AUX), infinitive form (INFV),

4.4. SYNTACTIC CONSTRUCTION OF PHRASAL ELEMENTS (s

Table 4.1: Dependency relations for phrasal elements

Phrasal Types of Relations
Element | Adjunct | Complement | Filler | Subject | Subject-drop [Topic-drop | Complement-drop

ADJP ADJPA ADJPC

ADVP ADVPA ADVPC

CP CPC

DP DPA DPC

1P IPA IPC

NP NPA NPC NPF

PP PPA PPC

VP VPA VPC VPF VPS VPSD VPTD VPCompD

past-participle form (PPARV), or conjugated form (V). Each of these lexical
labels contains morpho-syntactic and semantic information that is described
more in detail in the pre-processing step in Section .

In addition to these lexical labels, the complex lexical elements are recognized
as well based on their heads in the local context, such as a compound adjective
(MADJ), compound adverb (MADV), compound conjunction (MCONJ), com-
pound determiner (MD), compound noun (MN), compound preposition (MP),
and compound verb (MV). In the structure of phrasal elements, we treat com-
plex lexical elements in a similar way as simple lexical elements.

There are eight phrasal elements that are realized with respect to the syn-
tactic role of the head, such as an adjectival phrase (ADJP), an adverbial phrase
(ADVP), an interjection phrase (IP), a coordination phrase (CP), a determiner
phrase (DP), a noun phrase (NP), a prepositional phrase (PP), and a verb
phrase (VP). Table @ summarizes the set of phrasal elements enriched with
the dependency relations.

Similar to the BulTreeBank, we use unary branching to represent clauses
as saturated verb phrases and label the nodes with respect to the type of the
clause. In the Persian treebank, we label clauses as follows: relative clause
(CLR), reduced relative clause that is a relative clause without the relativizer
(CLRR), free relative clause (CLFR), complement clause (CLC), complement
clause with a dropped complementizer (CLCD), and an interrogative clause
(CLQ). The label CL is used for all other types of clauses.

In the next section, we describe the syntactic construction of the phrasal
elements and clauses, and provide examples for them along with their syntactic

analyses represented as tree diagrams.

4.4 Syntactic Construction of Phrasal Elements

In this section, we exemplify various constituents described in the previous sec-
tion and represent the dependency relations in tree diagrams. In Persian syntax,

most of the constituents are head first. Verb phrases are head-last because of the

4.4. SYNTACTIC CONSTRUCTION OF PHRASAL ELEMENTS 78

S S

/\ /\

VP NP NP VP
I VAN /NN
NP V. N Det Det N V NP
/\ | | /N

N Det wg wy wy w1 Wwg w3 Det N
L L
(a) (b)

Figure 4.3: Right-to-left (a) and left-to-right (b) representation of the sentence

W1 W2 W3 W4 W5

SOV constituent order, and noun phrases are conditioned to use pre-nominal or
post-nominal elements in a strict order. If the head adjective of an adjectival
phrase is modified with an adverb, the phrase is head last. If the head adjec-
tive takes elements as its argument, the phrase is head first. Since Persian is a
right-to-left language, the trees should also be represented right-to-left. To be
readable, we provide the transliterations and glosses of the Persian words in the
examples. Consequently, to be consistent, we represent the trees left-to-right
with transliterated Persian words along with the constituent labels. Changing
the direction of the tree does not have any effect on the order of dominance
relations. Therefore, in our study, the left-to-right tree representation in Fig-
ure @b is used instead of the right-to-left tree representation in Figure @a.
As displayed in Tables @ and @ of Appendix E, in the Bijankhan Corpus
the post-nominal indefinite marker ‘.’ /-i/ and Ezafe are encoded in the POS
tags of the words as clitics. In the displayed tree diagrams, we do not provide the
detailed POS tags of the words, but rather their main POS tags. To represent
clitics in the trees, the feature ‘CLITIC’ is used with the value {empty|ezafe|ya}
where the value ‘empty’ expresses no usage of clitic, the values ‘ezafe’ and ‘ya’
express the usage of Ezafe and the indefinite marker ‘. /-i/ respectively as
represented in the tree diagram of Example . Since the value
‘empty’ of the feature ‘CLITIC’ is very redundant, we do not add this feature

to all nodes on the tree diagrams.

4.4.1 Verb Phrase
Argument Structure

Verbs play the most important role in a sentence. The lexical property of
each verb determines the number and the type of arguments in its subcatego-
rization frame, and violating the verb’s lexical requirement makes a sentence

ill-formed. In Persian, there exist four types of verbal complements: (a) noun

4.4. SYNTACTIC CONSTRUCTION OF PHRASAL ELEMENTS 79

phrases or determiner phrases marked with the particle ‘1,” /ra/ as direct objects,
(b) prepositional phrases as indirect objects, (c¢) clausal complements marked
with the complementizer ‘a5” /ke/ ‘that’, and (d) noun phrases as bare comple-
ments without the direct object marker, or noun phrases as bare complements
with the post-nominal indefinite determiner ‘.’ /-i/. Since Persian has SOV
constituent order, the default positions of direct and indirect objects and bare
complements in a sentence are before the head verb, but clausal complements
might follow the head verb. It is possible to change the positions of direct and
indirect objects and bare complements only. Changing the position of clausal
complements makes the sentence ill-formed. In predicative sentences in which
copulas are the heads, adjectival phrases, adverbial phrases, noun phrases, num-
bers, or prepositional phrases are recognized as the predicate complements. To
determine the type of the dependency relations, the linear order of constituents
is taken into consideration.

In Example @, the noun ‘wts” /ketab/ ‘book’ is marked with the direct
object marker ‘,” /ra/. Since this marker is essential to realize the constituent
as the direct object, we determine the type of the dependency relation as com-
plement among our four types of dependency relations. The verb ‘cyuils 7 /bar
dastan/ ‘pick up’ is a compound verb composed of the particle ‘,,’ /bar/ ‘on’ and
the light verb ‘.yusls’ /dastan/ ‘have’. Particles are considered as prepositions
in the Bijankhan Corpus. We keep its assigned POS tag in our analyses. This
verb is realized as a compound verb under the node ‘MV’. The verb ‘;zils)’
/bar dastan/ ‘pick up’ requires a complement and a subject in its argument
structure. In this sentence, the noun ‘wts’ /ketab/ ‘book’ marked with the
direct object marker ‘l,” /ra/ is realized as the direct object. Since the subject
is dropped, the Head-Subject-Drop-Schema is employed such that the unary
branching node labeled ‘“VPSD’ is used for filling the subject argument, and the

node shares lexical properties retrieved from the verb conjugation.

(4.6) sl ol LS
ketab ra bar dsSt-am
book DOM PART had-15G
‘T picked up the book.

S
/\
VPSD PUNC
e |
NPC [CASE acc] MV

N N

N PostP PREP \Y%

ketab ra bar dastam

4.4. SYNTACTIC CONSTRUCTION OF PHRASAL ELEMENTS 80

In Example @, the verb ‘ols’ /dadan/ ‘give’ requires two objects (a direct
object and an indirect object) and a subject in its argument structure. The
noun ‘cbs’ /ketab/ ‘book’ is marked with the direct object marker and it is
realized as the direct object, and the prepositional phrase is realized as the
indirect object. The unary branching node labeled ‘VPSD’ is used for filling
the subject argument, and the node shares lexical properties retrieved from the

verb conjugation.

(4.7) pologlal, obs

ketab ra be u dad-am
book DOM to he/she gave.1SG
‘T gave the book to him/her’ g
/\
VPSD PUNC
|
VPC ‘
/\
NPC [CASE acc] VPC
PN /\
N PostP PPC '

N

ketab ra PREP PRON dadam

be u

In Examples @ and @7 the verb ‘.yxusls’ /dastan/ ‘have’ requires either a
noun or a determiner phrase as its complement and a subject in its argument
structure. The complement does not have the direct object marker, but it
appears with an indefinite determiner. The lexeme ‘S’ /yek/ ‘a, an, one’ can
function both as a number and an indefinite determiner, but in the Bijankhan
Corpus no distinction is made between them and they are assigned the POS tag
‘NUM’ (number), and the post-nominal indefinite marker ‘ .’ /-i/ is encoded as
a clitic in the POS tag of the host. In the annotation of the sentences, we keep
the original POS tag.

(4.8) .ol kS Sl

u yek ketab dast

he/she one book had.3SG
‘He/she had a book.

S
/\
VPS PUNC
A ‘
PRON VPC
w0y

NUM N dast

yek ketab

4.4. SYNTACTIC CONSTRUCTION OF PHRASAL ELEMENTS 81

(4.9) .cubls s
u ketabi dast
he/she book.INDEF had.3SG
‘He/she had a book.

S
VPS PUNC
PRON VPC ‘

u N [CLITIC ya] V

ket‘éb dé‘lét

In Example , the verb ‘85’ /goftan/ ‘say, tell’ requires a subject, an
indirect object, and a clausal complement in its argument structure. The prepo-
sitional phrase headed with the preposition ‘4’ /be/ ‘to’ is realized as its comple-
ment, and the clause marked with the complementizer ‘aS” /ke/ ‘that’ is realized
as its second complement. We use the label ‘CLC’ to determine that the sub-
ordinate clause is marked with the complementizer and the clause is realized as
the complement of the verb. The unary branching node labeled ‘VPSD’ is used
for filling the subject argument, and it shares lexical properties retrieved from

the verb conjugation.

(4.10) exdls ol SbS oS guaS gl 4
be u goft-am ke ketab ra bar dast-am
to he/she said-1SG that book DOM PART had-1SG
‘T said to him/her that I picked up the book.

S

/\

VPSD PUNC

| |
VPC .

/\

PPC VPC

/\

PREP PRON \% CLC

I N

be u goftam CONJ VPSD

ke VPC

T~

NPC [CASE acc] MV

AN N

N PostP PREP \Y%

ketab ra bar dastam

In Example , the verb ‘o4’ /budan/ ‘be’ is a copula and it always

requires a predicative complement and a subject in its argument structure.

4.4. SYNTACTIC CONSTRUCTION OF PHRASAL ELEMENTS 82

The potential predicative complements are adjectival phrases, adverbial phrases,
prepositional phrases, and noun phrases. In Persian, noun phrases, or deter-
miner phrases that are not marked with ‘l,” /ra/ and agree with the verb in
person and number are recognized as the sentential subject. When the overt
subject is used in the sentence, the Head-Subject relation is employed and the
label ‘VPS’ is assigned to the mother node.

(4].].) .ég.}o-oﬁ;\.wjd 9‘
u dust.e man bud
he/she friend. EZ1 was

‘He/she was my friend.

S

/\

VPS PUNC

= w |

PRON VPC
u NPC \%
N [CLITIC ezafe] PRON bud

dust man

The Light Verb Construction

There are simple and compound verbs in Persian. There are a number of stud-
ies on the construction of compound verbs in Persian, such as (),
DabirMoghaddam| (&97')7 IKarimiDoostad (|1997|), h“abatabayil (l2005|), brerdeq
and Samvelian| (M), |Miille1i (lZOld), tBagherbeygi and Shamsfardl (lZOlQ]), ISalehl
et alj (lZOlj), and 'I‘aslimipoor et all (bOl?l)

Compound verbs are composed of a pre-verbal element and a light verb. The

distinction between compositional or non-compositional light verb constructions
is out of the scope of our study, but in the annotation it should be determined
minimally that the pre-verbal and light verb elements form a compound verb.
Therefore, we do not use the Head-Cluster-Schema in (|Mi'111e1{, l20 ld; |Miiller andl
Eihayoomi, M) for light verb constructions. The most frequent light verbs

are (Kalbassi, M)

‘y%l” /amadan/ ‘come’ ‘oxlem’ /xandan/ ‘read’ ‘;al’ /Sodan/ ‘become’
‘3,91 /avardan/ ‘bring’ ‘59,5>" /xordan/ ‘eat’ ‘ooeiS” Jkesidan/ ‘pull’
‘ookal Joftadan/ ‘fall’ ‘ools’ /dadan/ ‘give’ ‘59,57 /kardan/ ‘do’
‘oslail Jandaxtan/ ‘drop” ‘omsls’ /dastan/ ‘have’ usldS? /gozastan/ ‘put’
‘4o, /bordan/ ‘take’ ‘oo’ /didan/ ‘see’ ‘8,57 [gereftan/ ‘get’
‘Ot /bastan/ ‘close’ ‘ou8,” /raftan/ ‘go’ ‘s /goftan/ ‘say, tell’

‘oaesl’ /pasidan/ ‘disperse’ ‘o3’ /zadan/ ‘hit’ ‘o8l /yaftan/ “find’

4.4. SYNTACTIC CONSTRUCTION OF PHRASAL ELEMENTS 83

In the annotation of compound verbs, we use the label ‘MV’ to express that
the two elements are treated and annotated as a compound verb. Whether there
is a long distance between pre-verbal elements and the light verbs, there are two
syntactic constructions for compound verbs. If the compound verbs are more
lexicalized, they are less splittable as is the case with the noun ‘sl=l’ /anjam/

‘perform’ and the light verb ‘:sls’ /dadan/ ‘give’ in Example .

(4.12) .ol sl]y IS ol
u an kar ra anjam dad
he/she that task DOM perform gave.3SG
‘He/she did that task’

S
/\
VPS PUNC
/\ ‘
PRON VPC .
1‘1 DPC [CASE acc| MV

N

DPC PostP N A%

AN

DEM N ra anjam dad

-
If the compound verbs are less lexicalized, there might be a long distance be-
tween the pre-verbal element and the light verb. In these cases, the pre-verbal
element dominates the intervening elements as represented in the tree anal-
yses of Examples and where the nouns ‘cewl’ /asib/ ‘damage’ and
‘oolel” /amade/ ‘ready’ are split from the light verbs ‘;os’ /didan/ ‘see’ and
‘9,57 /kardan/ ‘do’, respectively. In the tree diagram of Example , the
noun ‘cewl’ /asib/ ‘damage’ is modified by the adjective ‘(l3l,8" /faravan/ ‘a lot’,
which is appeared between the pre-verbal element and the light verb. Since the
pre-verbal element is marked with Ezafe, we annotated it as the post-nominal
modifier of the noun. As a result, the label ‘NPA’ is assigned for combining the
head noun and its modifier. In the tree diagram of Example , the pre-verbal
element requires a complement and satisfying the lexical requirement has caused

the distance between the pre-verbal element and the light verb.

(4.13) o Olsl® ol 5l (ile
masin-e u asib-e faravan did
car-EZ he/she damage-EZ a.lot saw.3SG
‘His/her car was damaged a lot.

4.4. SYNTACTIC CONSTRUCTION OF PHRASAL ELEMENTS 84

S
/\
VPS PUNC
— |
NPC MV
/\ /\
N [CLITIC ezafe] PRON NPA v
/\
Iné‘ﬁin 1‘1 N [CLITIC ezafe] ADJ dld
és‘ib faré‘vén

(4.14) 5,5 solepé Glage opdsoolel 1) 395 0
u zehn-e xod ra amade-ye pazirs-e ¢iz-ha-ye
he/she mind-EZ self DOM ready-EZ acceptance-EZ thing-PL-EZ
qgeyre-addi kard
un-usual did.3SG
‘He/she made his/her mind ready for accepting unusual things.’

S

//\

VPS PUNC
T |
PRON VPC .
L‘l NPC [CASE acc] MV
T T
NPC PostP NPC A%
/\
N [CLITIC ezafe] PRON 1'L N [CLITIC ezafe] NPC ka‘rd
ze‘hn xld ém‘ide N [CLITIC ezafe] NPA
paliré N [CLITIC ezafe| ADJ
6iz‘hé qeyre‘éddi

Modal Verbs

There are three groups of modal verbs in Persian described in Section @ The
default position of modals is after the subject and before the main verb. A

Head-Complement relation exists between the head modal verb and the sister
constituent, as in Example .

(4.15) pow gl], QLS @l
mi-tavan=am ketab ra be u be-dah-am
IMPF-can-1SG book DOM to he/she SUBJ-give-1SG

‘T can give the book to him/her’

4.4. SYNTACTIC CONSTRUCTION OF PHRASAL ELEMENTS 85

S
/\
VPSD PUNC
i w
/\
AUX VPC
/\
mitavanam NPC [CASE acc] VPC
/\
N/Estf’ PPC A%

I N,

ketab ra PREP PRON bedaham

be u

One property of Persian modal verbs is that they can be impersonal; i.e. in
these syntactic constructions, there is no overt subject, but the verb is conju-
gated third person singular, as in Example . Since the verb is conjugated, a
subject has to be realized to saturate the elements in the argument structure of
the verb and to complete the syntactic analysis of the sentence. In such syntac-
tic constructions, we assume that the subject is dropped and the label ‘VPSD’
is used to fill the subject position.

(4.16) .&lez> 1, oS Wb
bayad ketab ra xand
must book DOM read.3SG
‘One must read the book!

S

/\

VPSD PUNC
VPC ‘
AUX VPC

bayad NPC [CASE acc] V

/N

N PostP xand

ketab ra

Auxiliary Verbs

Auxiliaries like ‘ zisls’ /dastan/ ‘have’ and ‘o9’ /budan/ ‘be’ in periphrastic
constructions are used for progressive and perfect aspects respectively, and the
prefix ‘= ' /mi-/ is used for the imperfect aspect. The auxiliary ‘cyxils’ /das-
tan/ ‘have, has’ comes before the main verb and it conjugates for person and
number. Following the study of Bonami and Samvelian (2009), we use the Head-

Complement relation for combining the head auxiliary and the sister constituent
as presented in Example .

4.4. SYNTACTIC CONSTRUCTION OF PHRASAL ELEMENTS 86

(4.17) o pploly oS
ketab ra dar-am bar mi-dar-am
book DOM have-1SG PART IMPF-have-1SG
‘I am picking up the book’

S
/\
VPSD PUNC
VI‘DC ‘
/\
NPC [CASE acc] VPC
N PostP AUX/\MV

I N

ketab ra daram PREP \

bar midaram

The auxiliary ‘;,9s’ /budan/ ‘be’ as the syntactic head comes after the main
verb and it conjugates for person and number. If the main verb in the perfect
aspect is compound, first the main verb and the pre-verbal element combine to

form a compound verb, and then they combine with the auxiliary verb, as in

Example .

(4.18) .pog adls pl, obs
ketab ra bar daste bud-am
book DOM PART had was-1SG
‘T had picked up the book.

VPSD PUNC

VPC

/\

NPC [CASE acc] VPC

N T

N PostP MV AUX

I AN

ketab ra PREP V budam

bar daste

Tense, Mood, and Negation

The present and past tenses are expressed lexically because in Persian verbs
have present and past stems. To express the future tense, the auxiliary verb
‘mwlem’ /xastan/ ‘will, would’ is used. This auxiliary verb comes before the
main verb and conjugates for person and number. The Head-Complement re-

lation is used for such syntactic constructions as presented in the tree diagram

of Example .

4.4. SYNTACTIC CONSTRUCTION OF PHRASAL ELEMENTS 87

(4.19) .xlgs wales 1, SLS
ketab ra xah-am xand
book DOM will-1SG read.3SG
‘I will read the book.

S

VPSD PUNC
VPC ‘
NPC [CASE acc] VPC

N N

N PostP AUX \%

ketab ra xaham xand

If the main verb is a compound verb, the auxiliary verb can appear between
the pre-verbal element and the main verb, such as Example .

ketab ra bar xah-am dast
book DOM PART will-1SG had.3SG
‘T will pick up the book.

VPSD PUNC

VPC

/\

NPC [CASE acc] MV

NN

N PostP PREP VPC

L N

ketab ra bar AUX \%

xaham dast

If the object clitic is between the auxiliary and the main verb, first the Head-
Complement relation is used for combining the auxiliary and the clitic (Miille,
2010, Sec. 5). Then, the phrase headed by the auxiliary combines with the main
verb. Finally, the phrase combines with the particle to form a compound verb,
as in Example . In our annotation, we split clitics from their hosts described
in the pre-processing step in Section .

(4.21) .caslo jionly>
bar xah-am=as dast
PART will-1SG=3SG had.3SG
‘I will pick it up’

4.4. SYNTACTIC CONSTRUCTION OF PHRASAL ELEMENTS 88

s
/\
VPSD PUNC
| |
MV
/\
PREP VPC
| TN
bar VPC v

AUX CLITIC dast

xaham as

If the object clitic is after the particle, first the Head-Complement-Schema
is used for combining the auxiliary and the verb. Then, this relation is re-used
for combining the particle and the clitic, and the label ‘PPC’ is assigned to the
node, as in Example . The two nodes combine together, and the node is
labeled ‘MV".

(4.22) .cils plgs> oy
bar=as xah-am dast
PART=3SG will-1SG had.3SG
‘T will pick it up.

S
/\
VPSD PUNC
“ |
/\
PPC VPC

PREP CLITIC AUX V

bar as xaham dast
The subjunctive and imperative moods are expressed by the prefix ‘=’ /be-/
attached to the verb. It should be added that it is possible for a verb to be used
in the subjunctive mood without the subjunctive prefix. Negation of the verbs

3

is expressed by attaching the negation prefix ‘3’ /na-, ne-/ to the verb or the

¢

progressive prefix ‘— .’ /mi-/. Both mood and negation are treated lexically

and they are encoded in the POS tags of the verbs.

Passive and Causative Constructions

Although the argument structure of a verb is fixed, it is possible to change
the number of the verb’s required argument in passive and causative construc-
tions. Following [VahediLangaroodi (1999), we treat the passive construction as
a compound verb construction, and we use the label ‘MV’ in the annotation, as
represented in the tree diagram of Example .

4.4. SYNTACTIC CONSTRUCTION OF PHRASAL ELEMENTS 89

(4.23) .o oxler LS
ketab xande Sod
book read became.3SG
‘The book was read.

xande Sod

A number of verbs with two arguments like ‘5,5 oolazw!’ /estefade kardan/
‘use’ require a prepositional phrase headed with the preposition ;1> /az/ ‘of,
from, than’ as their complements, as in Example .

(424) .«J; ool ULSJ‘ 5‘
u az ketab estefade kard
he/she from book use did.3SG
‘He/she used the book!

The passivization of such verbs is problematic, because on the one hand the
prepositional phrase takes the subject position and it should be recognized as the
subject of the sentence, and on the other hand a prepositional phrase cannot be a
subject. For these cases, we realize the prepositional phrase as the complement
of the passivized verb, and we use the label ‘VPSD’ as a placeholder for the
subject to follow the order of defining the head-daughter schemas. Example

is passivized in Example .

(4.25) .o oolamwl LS ;]
az ketab estefade Sod

from book use became.3SG
‘The book was used.

VPSD PUNC

VPC

T

PPC MV
/\ A
PREP N N v

az ketab estefade Sod

It is possible to have this verb in subjunctive mood as well without an overt

subject, as in Example .

4.4. SYNTACTIC CONSTRUCTION OF PHRASAL ELEMENTS 90

(4.26) .ogis oolanwl LLS
az ketab estefade be-sav-ad
from book use SUBJ-become-3SG
‘Use the book./ the book should be used.

S
/\
VPSD PUNC
. |
A
PPC MV
PRé\N N \Y

az ketab estefade beSavad
In the causative construction, a complement is added to the verb’s argument
list. The verb ‘0,5’ /xordan/ ‘eat’ normally requires two arguments, as in
Example . After causitivization of the verb, it requires three arguments as
represented in the tree diagram of Example .
(4.27) 0,55 1) o o
u sib ra xord

he/she apple DOM ate.3SG
‘He/she ate the apple.

(4.28) .ilys e @ |y o ol
u sib ra be man xor-and
he/she apple DOM to I~ eat-CAUS.3SG

‘He/she fed me an apple’

S
/\
VPS PUNC

= w |
PRON VPC .

1‘1 NPC [CASE acc] VPC

si‘b r‘é PR@ON Xor‘énd
be man

Raising Construction

Raising verbs are the ones that do not require an external argument, and their
subject originates from the embedded clause ([Taleghani, 2008, p.6) such as
‘seem’ in English. Contrary to Karimj (2005, pp. 12-14) who argues that Persian
does not have a raising verb because of the lack of agreement between the subject
of the matrix clause and the extraposed embedded clause, such as Example ,
Darzi (1996, pp.93-94) believes that an expletive, such as ‘:p’ /in/ ‘this’, can

be used in raising constructions to fill the subject position, as in Example .

4.4. SYNTACTIC CONSTRUCTION OF PHRASAL ELEMENTS 91

(4.20) il oas |, ok ol otz (¢8) o o 5155 &

be nazar mi-a-yad (ke) bafe-ha in film ra dide
to view IMPF-come-3SG (that) child-PL this movie DOM seen
bas-and
be-3PL

‘It seems that the children have seen this movie’

(4.30) sew gl |y obs Jeas el oY oyl
in lazem ast ke ali ketab ra be u be-dah-ad
this necessary is that Ali book DOM to he/she SUBJ-give-3SG

‘Tt is necessary that Ali give the book to him/her’

|Moyne and Carded (|1974|) and Boheililsfahanﬂ (|1976|) believe that in syntac-
tic constructions like Example , ‘!’ /in/ ‘this’ is the head and it constructs
a noun phrase with the clause. Additionally, |Moyne and Carden| (|1974|) fur-
ther express that the sentential subject as a clause is obligatorily extraposed
to the post-verbal position. Similar to the idea of |Moyne and Cardenl (|1974|),
ITabibzadeH (l2012l, p.-79) believes that in such syntactic constructions the ele-

ments that are extraposed to the post-verbal position are ‘clausal subjects’ of

the predicative sentences, such as the clause ‘s, 457 /ke beravim/ ‘that we go’

in Example .

lazem ast ke be-rav-im
necessary is that SUBJ-go-1PL
‘It is necessary that we go.

In the annotation of such syntactic constructions, we follow the analysis
provided by |Moyne and Carden| (|1974|), boheililsfahani (t1976|)7 and I'[‘abibzadeh|
(), and we propose that in the topic position the expletive ‘!’ /in/ ‘this’
as the head is modified by a relative clause marked with the relativizer ‘a5’ /ke/
‘that’. Consequently, Example is rewritten as Example . If the expletive

in the topic position is dropped, the clausal subject will obligatorily extrapose

to the post-verbal position as represented in the tree diagram of Example .
We will discuss extraposition more in Section @ Since the main verb of the
sentence is conjugated as third person singular, the subject should be retrieved.
To represent the topic position that is dropped in these syntactic constructions,
the label ‘VPTD’ is used for filling the subject position and to indicate that the

subject of the verb in topic position is an expletive that is dropped.

(4.32) cwlpYasn glal, obS Lo oS ol
in ke ali ketab ra be u be-dah-ad lazem ast
this that Ali book DOM to he/she SUBJ-give-3SG necessary is

‘That Ali give the book to him/her is necessary’

4.4. SYNTACTIC CONSTRUCTION OF PHRASAL ELEMENTS 92

(4.33) cewnglalyobs Jo oS ol g3y
lazem ast ke ali ketab ra be u be-dah-ad
necessary is that Ali book DOM to he/she SUBJ-give-3SG
‘[Tt] is necessary that Ali give the book to him/her’

S
/\
VPF PUNC
/\ ‘
VPTD DiscE .
/\
niLl N/\V CONJ VPS
/\
léz‘cm ait k‘c N VPC
/\
a‘li NPC [CASE acc] VPC
/\
N/>ostP PP \%

I N

ketab ra PREP PRON bedahad

be u

4.4.2 Noun Phrase

Ezafe Construction and Noun Complements

The head of a noun phrase is a noun that might take a number of dependents be-
fore or after the head noun. The head nouns should be marked with Ezafe as the
phrasal affix (Samvelian, 2007) to be combined with the post-nominal elements,
as discussed in Section @ If the next element of the head noun marked with
Ezafe is a modifier, the Head-Adjunct-Schema is used, and if the next element
of the head noun marked with Ezafe is a complement the Head-Complement-
Schema is used, as represented in the tree diagram of Example . In this
example, the label ‘NPA’ is used for combining the head noun ‘©tS’ /ketab/
‘book’ and the adjective ‘o>’ /jadid/ ‘new’, as its modifier. Moreover, the
the label ‘NPC’ is used for combining the head noun ‘LS’ /ketab/ ‘book’ and
the proper noun ‘Je’ /ali/ ‘Ali’, as its complement to construct a possessive

construction.

(4.34) lgs 1, de spaz S
u ketab-e jadid-e ali ra xand
he/she book-EZ new-EZ Ali DOM read.3SG
‘He/she read Ali’s new book’

4.4. SYNTACTIC CONSTRUCTION OF PHRASAL ELEMENTS 93

NPC

NPA [CLITIC ezafe] N

N [CLITIC ezafe] ADJ [CLITIC ezafe] ali

| |
ketab jadid
Possessive constructions are expressed by either the Ezafe construction de-
scribed in Example or possessive clitics. If a clitic is used for possessive
construction, the Head-Complement-Schema is used for combining the posses-
sive clitic and the head noun as represented in the tree diagram of Example .

u ketab-e jadid=as ra xand
he/she book-EZ new=3SG DOM read.3SG
‘He/she read his/her new book.

NPC

NPA CLITIC

N [CLITIC ezafe] ADJ af

ketab jadid

Using Ezafe as a genitive case marker results in having a noun phrase or
a determiner phrase as the complement of the head noun. It is possible for a
noun to require a prepositional phrase in its argument structure, like ‘g ,1s pase’
/nosxebardari/ ‘copy’ which requires a prepositional phrase headed with the

preposition ‘31’ /az/ ‘of, from, than’ in Example :

nosxebardari az asar-e ali jorm ast
copy from work-EZ Ali crime is
‘Copying from Ali’s works is a crime.

NPC
N PPC
nosxebardari PREP NPC

az N [CLITIC ezafe] N

| |

asar ali
Based on the study of [Taghvaipour (2005), the relative clauses are treated as
the complement of nouns because of using the restrictive marker ‘. /-i/ after
the noun and the relativizer ‘a5’ /ke/ ‘that’ This idea is represented in the tree
diagram of Example . In this example, the noun ‘wLs” /ketab/ ‘book’ is

4.4. SYNTACTIC CONSTRUCTION OF PHRASAL ELEMENTS 94

marked with the restrictive marker ‘ 5’ /-i/ encoded in its POS tag, and it has a
Head-Complement relation with the relative clause. The relative clause, which
is labeled ‘CLR’, is marked with the relativizer ‘as” /ke/ ‘that’ that follows the

- C s
restrictive marker ‘. /-i/.

ketab-i ke u nevest mohem ast

book-REST that he/she wrote.3SG important is
‘The book that he/she wrote is important.

NPC

/\

N [CLITIC ya] CLR

\ T

ketab CONJ VPS

N

ke PRON VPCompD

u \

nevest

Internal Structure

As mentioned, the internal structure of a noun phrase is highly strict, and it
is not possible to change the elements within a noun phrase freely. There are
pre-nominal and post-nominal elements in which there exist Head-Adjunct and
Head-Complement relations between the head noun and the sister elements. The
priority to define the head-dependency relations are on post-nominal elements
because most of post-nominal elements have internal structure, whereas this
property does not exist on pre-nominal elements (Tabibzadel, 2012, p.250).
Bateni (1969), Gholamalizadeh (1999), and Megerdoomian (2000) described the
type and the position of the pre-nominal elements. Numbers (ordinal (type I) or
cardinal), classifiers, superlative adjectives, and titles (type I) come before the
head noun, and the Head-Adjunct-Schema is used for them. Determiners and
quantifiers are also used before a head noun which are explained in Section .

As shown in Examples @», the head-dependency relations of the head
noun and post-nominals like nouns, prepositional phrases, relative clauses, and
reduced relative clauses are realized by applying the Head-Complement-Schema.
The Head-Adjunct-Schema is applied for the rest of post-nominal elements.

The priority to combine a pre-nominal element to the head is based on its
linear appearance. In our annotation, if the sequence of a cardinal number, a
classifier, and a noun appears in a sentence, as in Example 7 first the number
as the head takes the classifier as its modifier, and the Head-Adjunct-Schema
is used. Since a number functions as a modifier, the node is labeled ‘ADJPA".
This adjectival phrase modifies the head noun, and the label ‘NPA’ is used by
applying the Head-Adjunct-Schema.

4.4. SYNTACTIC CONSTRUCTION OF PHRASAL ELEMENTS 95

(4.38) .o,ls LS sus g0l
u do adad ketab dar-ad
he/she two number book has-3SG

‘He/she has two books. NPA

N

ADJPA N

N

NUM CLASS ketab

do adad

Depending on the local syntactic function, it is possible for the sequence of a
number and a classifier to function as an adverb in predicate position as repre-
sented in the tree diagram of Example . For such cases, the label ‘MADV’
is used for representing a compound adverb. The reason that sequences like
‘aw,0 Y7 /do darsad/ ‘2 percent’ in Example are recognized as an adverb is
that they can be removed and we still have a grammatical sentence. Further-
more, they can be replaced by the adverbs, such as ‘,Luw’ /besyar/ ‘highly’ or

‘@il bl ,4bas” /betore nabavarane/ ‘unbelievably’.

(4.39) .Cl puin 2oy ¥ Jluol py95 7 15
nerx-e tavarrom-e emsal 2 darsad bistar ast
rate-EZ inflation-EZ this_ year 2 percent more is
‘This year’s inflation rate is 2 percent more.

MADV ADJ

NUM CLASS bistar

2 darsad

The infinitive form of verbs functions as a noun, regardless of whether the
verb is a simple or a light verb. In the annotation, if an infinite light verb
and the pre-verbal element form an infinite compound verb that functions as

a noun, then the label ‘MN’ is used for representing a compound noun, as in
Example .

sigar kesidan bara-ye salamati mozer ast

cigarette pull for-EZ health harmful is
‘Smoking is harmful for health’

MN

VN

N INFV

sigar kesidan
Changing the position of the pre-verbal element changes this structure, as in
Example , because the infinite light verb is marked with Ezafe and it takes

the adjacent noun as its complement.

4.4. SYNTACTIC CONSTRUCTION OF PHRASAL ELEMENTS

96

kesidan-e sigar bara-ye salamati mozer ast
pull-EZ cigarette for-EZ health harmful is
‘Smoking is harmful for health’

NPC

T

INFV [CLITIC ezafe] N

kesidan sigar

The post-nominal elements of a noun phrase are nouns, simple and com-
parative adjectives, as in Example ; titles (type II), as in Example ;
ordinal numbers (type II), as in Example ; appositions, as in Example ;

prepositional phrases, as in Example ; reduced relative clauses, and relative

clauses. The last two post-nominal elements are described more in Section @

(4.42) 0y55 1) 25,50 S
u keyk-e bozorg-tar ra xord
he/she cake-EZ big-COMP DOM ate.3SG

‘He/she ate the bigger cake.
NPA

N [CLITIC ezafe] ADJ

keyk bozorgtar

(4.43) el Gl X ol ol
nam-e u cangiz xan ast
name-EZ he/she Genghis Khan is
‘His name is Genghis Khan/

NPA

N

N N

Cangiz xan
(444) ! J}‘ u.u}ls B 5‘
u dar kelas-e avval ast
he/she in class-EZ first is
‘He/she is in the first class’

NPA
N [CLITIC ezafe] NUM

kelas avval

4.4. SYNTACTIC CONSTRUCTION OF PHRASAL ELEMENTS 97

(445) 058 oo plall sl (s 4 |
u be berlin paytaxt-e alman safar kard
he/she to Berlin capital-EZ Germany trip did.3SG

‘He/she travelled to Berlin, the capital of Germany.

NPA

/\

N NPC

berlin N [CLITIC ezafe] N

paytaxt alman
(4.46) .col gaian Ko 1y Jos 3Ll 4 5459

vorud be otag-e Pamal bara-ye hame-gan mamnu? ast
entrance to room-EZ operation for-EZ all-PL forbiden is

‘Entrance to the operation room is forbidden for public’

NPC
N PPC
vorud PREP NPC

be N [CLITIC ezafe] N

otaq ‘?Pamal

4.4.3 Determiner Phrase

There are two types of determiners as quantifiers and demonstratives that are
syntactically considered as the head in the Generative Grammar. In the Bi-
jankhan Corpus (Bijankhan, 2004), however, three kinds of determiners are rec-
ognized: (a) quantifiers like ‘ass’ /hame/ ‘all’, ¢ sas’ /ba?zi/ ‘some’, (b) demon-
stratives like ‘;!” /in/ ‘this’, ‘4I’ /an/ ‘that’, and (c) interrogative words like
‘az’ /Ce/ ‘what’.

Shaghaghi (2002) and Tabibzadeh (2012, p.250) recognized Persian deter-
miners as pre-nominal dependencies and classified them as adjectives. [Iabibzadeh
(2012, p.217) believes that due to the possibility of eliminating quantifiers, as
in Example , they cannot be considered as heads. Aghaei (2006, p. 38) ex-

plains that elimination of demonstratives makes sentences ungrammatical, as in

Example .

(4.47) a2 Glez gl Gy don
hame-ye dust-an-e u javan hast-and
alllEZ friend-PL-EZ he/she young is-3PL
‘All of his/her friends are young.

4.4. SYNTACTIC CONSTRUCTION OF PHRASAL ELEMENTS 98

dust-an-e u javan hast-and
friend-PL-EZ he/she young is-3PL
‘His/her friends are young.’

(4.48) a. .Cuwl E40 Cunlonds wnS g s oS 5l
in ettefaq ke hamid varsekaste Sode-ast doruq ast
this occurrence that Hamid bankrupt become-3SG lie is

‘This occurrence that Hamid is bankrupted is a lie’

b. * .ol éﬁ)‘) Cwo A S :")3 S>> oS dLO.:‘
* ettefaq ke hamid varSekaste Sode-ast doruq ast
occurrence that Hamid bankrupt become-3SG lie is

In our annotation, we recognize quantifiers, demonstratives, and interrog-
atives as heads, as in Examples M . There are two reasons for that:
(a) they agree with verbs in number, and (b) some of them are marked with
Ezafe, which means they require a noun complement. To have a consistent
analysis of determiners, whether marked with Ezafe or not, we recognize them
as heads. Furthermore, we do not have a Head-Specifier relation among our
defined head-dependency schemas in the manner defined in [Pollard and Sag
(1994) and described in Section . The potential complements of the deter-

miners are noun phrases, numbers, and prepositional phrases used in partitive
constructions, as in Example .

(4.49) .xiwwd Glez gl iy don
hame-ye dust-an-e u javan hast-and
alllEZ friend-PL-EZ he/she young is-3PL
‘All of his/her friends are young.

DPC

DET [CLITIC ezafe] NPC

hame N [CLITIC ezafe] PRON

dustan u

an ketab bara-ye ali mohem ast
that book for-EZ Ali important is

‘That book is important for Ali.

4.4. SYNTACTIC CONSTRUCTION OF PHRASAL ELEMENTS 99

¢e kas-an-i dust-e u hast-and
what person-PL-INDEF friend-EZ he/she is-3PL
‘Who are his/her friends?’

DPC [CLITIC ya]

N

Q N [CLITIC ya]

|
Ce kasan
In partitive constructions, the partitive element is recognized as a quanti-
fier and it agrees in number with the verb. Therefore, we also recognize this
set of quantifiers as a head. The quantifiers like ‘ sas’ /ba?zi/ ‘some’, ‘S’
/yeki/ ‘one’, ‘golass’ /te?dadi/ ‘a number’, etc., require a prepositional phrase

headed with the preposition ;I /az/ ‘of, from, than’ as their complements, as

in Example .

yek-i az dust-an-e u javan ast
one-INDEF from friend-PL-EZ he/she young is
‘One of his/her friends is young.

DPC

DET PPC
yveki PREP NPC

az N [CLITIC ezafe] PRON

dustan u

Example demonstrated that the sequence of a number and a classifier
forms an adverb. Marking this sequence with Ezafe in Example changes its
function to a quantifier to form a partitive construction. The reason to consider
this sequence as a partitive quantifier is that it can be replaced by a quantifier
like ‘4sn’ /hame/ ‘all’ which is marked by Ezafe or ‘ sa%’ /ba?zi/ ‘some’.

(4.53) .xiwd Glex gl liwgs aoye £
60 darsad-e dust-an-e u javan hast-and
60 percent-EZ friend-PL-EZ he/she young is-3PL
‘60 percent of his/her friends are young.

DPC

/\

MD [CLITIC ezafe] NPC

T

NUM CLASS [CLITIC ezafe] N [CLITIC czafe] PRON

60 darsad dustan u

4.4. SYNTACTIC CONSTRUCTION OF PHRASAL ELEMENTS 100

The preposition ‘" /az/ ‘of, from, than’ in Example functions as Ezafe
and not as a preposition. This preposition can be replaced by Ezafe without any
changes on the syntactic construction of the constituent, as in Example .
In our annotation, the sequence of these words is combined together under one
node labeled ‘MD’ as a compound determiner, and it is recognized as the head

of the determiner phrase.

(4.54) azes Glg ol liwgs 3l aus s £
60 darsad az dust-an-e u javan hast-and
60 percent from friend-PL-EZ he/she young is-3PL
‘60 percent of his/her friends are young/’

DPC
MD [CLITIC ezafe] NPC

NUM CLASS PREP N [CLITIC ezafe] PRON

60 darsad az dustan u

Any of the mentioned determiner phrases might appear in the direct object
position. Similar to noun phrases that the Head-Complement-Schema is used
for combing the noun phrase and the particle ‘l,” /ra/, this schema is used for
combining a determiner phrase and the particle ‘1,” /ra/. The combination is
labeled ‘DPC’, as in Example .

(4.55) .paws |y ol ylwgs 51 S
yek-i az dust-an-e u ra did-am
one-INDEF from friend-PL-EZ he/she DOM saw-1SG
‘T saw one of his/her friends’

DPC [CASE acc]

/\

DPC PostP
DET PPC ra
yeki PREP NPC

az N [CLITIC ezafe] PRON

dustan u

Contrary to Example , in Example , the preposition ‘I’ /az/ ‘of,
from, than’ functions as a preposition and not Ezafe. The reason is that if the
preposition ‘5" /az/ ‘of, from, than’ is replaced by Ezafe, the sentence will be
ungrammatical, as in Example .

(4.56) * paus |y ol lwgs S

* yek-i-e dust-an-e u ra did-am
one-INDEF-EZ friend-PL-EZ he/she DOM saw-1SG

4.4. SYNTACTIC CONSTRUCTION OF PHRASAL ELEMENTS 101

‘

There are a number of adverbs, such as ‘35’ /niz/ ‘also’, and ‘e’ /ham/

‘too’, that modify a determiner phrase, as in Example .

(457) s ooy 5l plinss 51 S
yek-i az dust-an-e u ra ham did-am
one-INDEF from friend-PL-EZ he/she DOM too saw-1SG
‘T saw one of his/her friends too.

DPA [CASE acc]

DPC [CASE acc] ADV
/\
DPC PostP ha‘m
A
DET PPC r‘é
/\
yc‘ki PREP NPC

az N [CLITIC ezafe] PRON

dustan u

4.4.4 Adjectival Phrase

The head of an adjectival phrase is an adjective. Potentially, the complement
of an adjective can be a determiner phrase, a noun phrase, a number as a date
expression, or a prepositional phrase. The number of arguments that adjectives
require varies from zero to two. The adjective ‘auelg,3’ /servatmand/ ‘rich’

requires no argument, and it mostly appears in the predicative position, as in

Example .

in mard servatmand ast
this man rich is

‘This man is rich’

The required argument for the adjective ‘bgs,e’ /marbut/ ‘related’ is one,
and it is two for the adjective ‘ea3,ls;L" /bazdarande/ ‘disincentive’ ([Tabibzadeh),
2012, pp.269-270). The adjective ‘bg,0’ /marbut/ ‘related’ requires a prepo-

sitional phrase headed with the preposition ‘4’ /be/ ‘to’ as its complement
represented in Examples .

moskel-at-e marbut be kudak-an mohem ast
problem-PL-EZ related to child-PL important is

‘Problems related to children are important.

4.4. SYNTACTIC CONSTRUCTION OF PHRASAL ELEMENTS 102

ADJPC

N

ADJ PPC

N

marbut PREP N

be kudak-an
The adjective ‘ous,lo;L” /bazdarande/ ‘preventive’ in Example is marked
with Ezafe, and it requires a noun as one of its complement. The second com-
plement is the prepositional phrase headed with the preposition ‘" /az/ ‘of,

from, than’.

(4.60) .l (5locs Dl 51 ludl 005, l05b oy gumlaanSTly
vaksinasiyun bazdarande-ye ensan az ebtela be bimari ast
vaccination preventive-EZ human from affection to illness is
‘The vaccination prevents a human from getting a disease.

ADJPC

ADJPC

A/Pm\

ADJ [CLITIC ezafe] N PREP

NPA
bazdarande ensan az N PPC
N

ebtela PREP N

be bimari
The comparative form of a simple adjective requires a prepositional phrase
with the headed preposition ‘I’ /az/ ‘of, from, than’ as its complement rep-
resented in the tree diagram of Example . As shown in this example, an
adverb can appear before an adjective to modify it. The Head-Adjunct-Scheme

is used for combining the adjective and the adverb.

(4.61) .l VLS)5 WS 5 jiago (s 5045 IS

moskel-at-e kudak-an xeyli mohem-tar az
problem-PL-EZ child-PL very important-COMP from
moskel-at-e bozorgsal-an ast

problem-PL-EZ adult-PL is
‘Children’s problems are highly more important than adults’ problems.

ADJPA

/\
ADV ADJPC
/\

xc‘yli ADJ PPC

/\
mohe‘,mtar PREP NPC

|
az N [CLITIC ezafe] N

moskelat bozorgsalan

4.4. SYNTACTIC CONSTRUCTION OF PHRASAL ELEMENTS 103

The superlative form of adjectives functions as a modifier of a noun or the
complement of a copula, as in Example .

(4.62) .Col 5045 4 bogs o i (2 yiago
mohem-tarin moskel-at marbut be kudak-an ast
important-SUP problem-PL related to child-PL is
‘The most important problems are related to children.

NPA

TN

ADJ N

mohemtarin moskelat

Compound adjectives like ;)35 (3w’ /sangin vazn/ ‘heavy-weighted’ consist
of an adjective like ‘.5’ /sangin/ ‘heavy’ and a noun like ‘59" /vazn/ ‘weight’.
The two elements combine together and they are labeled as ‘MADJ’ to be treated

as a compound adjective.

4.4.5 Adverbial Phrase

An adverb can potentially take an adjectival phrase, a determiner phrase, a
prepositional phrase, a noun phrase, or a clause as its argument. In Persian,
adverbs can be divided into two groups in terms of their markedness with Ezafe.
Adverbs like ‘aile’ /manand/, ‘.’ /nazir/, ¢ i’ /mesl/ need to be marked by
Ezafe when used in a sentence, while adverbs like ‘s>’ /Con/ and ‘; szes’
/hamcon/ do not need to be marked by Ezafe. All of these adverbs mean ‘like’.

In terms of the scope, an adverb can have narrow scope to a local context, and

it might require an element in its argument structure, such as ‘pegde’ /alavebar/
‘in addition to’ in Example .

(4.63) ool @il (I3 55 Sy Soslllgn Sl pogdle

alavebar aludegi-ye hava aludegi-ye souti niz afzayes
in_ addition_ to pollution-EZ air pollution-EZ sound also increase
vafte ast

found is

‘In addition to the air pollution, the sound pollution has also increased.

ADVPC

/\

ADV NPC

alavebar N [CLITIC ezafe] N

aludegi hava

Furthermore, an adverb can have wide scope over the whole sentence and it does

not require an element as its complement, such as ‘wliwte’ /mote?assefane/
‘unfortunately’ or ‘ JS,sbas” /betorekolli/ ‘generally’ in Example .

4.4. SYNTACTIC CONSTRUCTION OF PHRASAL ELEMENTS 104

(4.64) ol g L 5055 WSl S5 sloas
betorekolli moskel-at-e kudak-an xeyli mohem ast
generally problem-PL-EZ child-PL very important is

‘Generally children’s problems are very important.

4.4.6 Prepositional Phrase

Prepositions can take a determiner phrase, a number, a noun phrase, or the
infinitive form of a verb as a noun in their argument structures. In addition
to simple prepositions, AbolhassaniChim¢ (2006) and AbolhasaniChime and
Ghayoomi (2006) believe that compound prepositions also exist in Persian. The
compound prepositions are the product of incorporating two simple prepositions,
or a simple preposition and a noun. In our annotation, compound prepositions
like ‘camas’ /besamte/ ‘to, towards’ are treated as a simple preposition displayed
in the tree diagram of Example .

(4.65) .05 ¢8> olye0 Coomnds g
u besamt-e tehran harekat kard
he/she to-EZ Tehran move did.3SG

‘He/she moved to Tehran/

PPC

T

PREP [CLITIC czafe] N

besamt tehran

Generally, the number of arguments that prepositions require is one, such
as the preposition ‘Cwwwds’ /besamte/ ‘to, towards’ in Example , but it is
possible to have two arguments, such as ‘5’ /bar/ ‘against’ in Example .

(4.66) .0ls CunSs G 90 1y 0,5 0 el JL3 g8 05
tim-e futbal-e asemilan team-e kore ra do bar
team-EZ football-EZ AC-Milan team-EZ Korea DOM two against
yek sekast dad
one beat gave.3SG

‘AC-Milan football team beat the Korean team two to one.
PPC
NUM PREP NUM

do bar yek

4.4. SYNTACTIC CONSTRUCTION OF PHRASAL ELEMENTS 105

4.4.7 Coordination Phrase

Coordinations, such as ‘s’ /va/ ‘and’, ‘LI’ /amma/ ‘but’, or ‘b’ /ya/ ‘or’, are
freely used in various syntactic constructions to coordinate two or more words or
phrases. It is possible for a comma to function as a coordination as well (Maier
and Kiibler, 2013). In the annotation of coordination constructions, we recognize
coordinators as heads, and their complements can be symmetric or asymmetric
lexical items or phrases. Examples and represent a symmetric coor-
dination phrase and an asymmetric coordination phrase, respectively. In some
special syntactic constructions, it is possible for one argument of the coordina-

tion phrase to be extraposed. This phenomenon is described in Section @

u doxtar-i ziba va javan ast
he/she girl- INDEF beautiful and young is

‘She is a beautiful and young girl’

CPC

PN

ADJ CPC

N

ziba CONJ ADJ

|
va Jjavan
(4.68) .oyl Slg> bl 5 olpdy e SG als ol

in xane yek salon-e pazirayi va cand otag-e xab darad
this house one hall-EZ reception and several room-EZ sleep has.3SG
‘This house has one reception hall and several sleeping rooms.’

CPC
/\
NPA CpPC
T~ T~
NUM NPC CONJ DPC
/\ /\
ylk N [CLITIC ezafe] N VL DET NPC
sél‘on pazi‘réyi éa‘nd N [CLIT®
ot‘éq xlb

In the annotation of correlative coordinations, each pair of the correlative
conjunction is a head and it combines with the sister element through the Head-
Complement-Schema. Then, the Head-Complement-Schema is used for combin-
ing each pair of the correlative conjunction under one node represented in the
tree diagram of Example .

4.4. SYNTACTIC CONSTRUCTION OF PHRASAL ELEMENTS 106

(4.69) .o)l Slg> bl aca asly olpdy Lo Lesas wls
in xane na.tanha salon-e pazirayi balke cand otaq-e xab
this house not.only hall-EZ reception but several room-EZ sleep

darad
has.3SG
‘This house has not only a reception hall but also several sleeping
rooms.
CPC
CPC CPC
CONJ NPC CONJ DPC
na.tanha N [CLITIC ezafe] N balke DET NPC
salon pazirayi ¢and N [CLITIC ezafe] N

otaq xab

It is possible to use a coordinator between the pairs of correlative conjunc-

tions as well like:
‘.p® 9 ... /ham .. vaham ../ ‘both ... and ..

kgL /na ... vana .../ ‘neither ... nor ...
“obig ol /xah .. vaya ../ ‘whether ... or ...
fndzg..ax’ [Ce ... vale ../ ‘either ... or ...

In the annotation of these syntactic constructions, we consider each of the el-
ements like ‘o2’ /ham/, ‘&’ /na/, ‘lg>’ /xah/, and ‘4>’ /Ce/ as a head. To
annotate the coordination /va/ ‘and’, we select this element as the head, and
the phrases with correlative conjunctions are the coordination argument as rep-
resented in the tree diagram of Example . It is possible for the left pair
of the correlative conjunctions, along with the coordination ‘s> /va/ ‘and’ to be
extraposed to the post-verbal position. Because of this property, [Tabibzadeh
(2012, p.330) calls these coordinations ‘split coordinators’. In Section @, the

extraposition of such syntactic constructions is described.

(4.70) 0e28) Glies & fowgs oo g Je oo
ham ali va ham dust=as be tehran raft-and
also Ali and also friend=3SG to Tehran went-3PL
‘Both Ali and his friend went to Tehran.

CPC

T

CPC CpPC

VAN

CONJ N CONJ CPC

I N

ham ali va CONJ NPC

VN

ham N CLITIC

dust as

4.5. CLAUSES 107

4.4.8 Interjection

Interjections are a class of words that construct a sentence or an utterance
without a verb, as in Example . In these syntactic constructions, the in-

terjector is the head that might take a clause as its complement (Tabibzadeh,
2012, p. 336), as in Example .

(4.71) 1 jwgudl
afsus
pity
‘What a pity!’
S
INTJ PUNC

afsus !

(4.72) 1, ol & _ogud]
afsus ke u raft
pity that he/she went.3SG
‘What a pity that he/she went!’

S
/\
PC PUNC
/\ ‘
I CLC !
‘ /\
afsus CONJ VPS

N

ke PREP V

u raft

4.5 Clauses

4.5.1 Relative Clause

The annotation scheme of the relative clause is described in Sections with

the relevant examples. Therefore, we do not repeat it here.

4.5.2 Reduced Relative Clause

A reduced relative clause is a relative clause that has no relativiser. This syntac-
tic construction is labeled ‘CLRR’ rather than ‘CLR’, as represented in the tree
diagram of Example . The phenomenon demonstrated in this example is

similar to Example . The only difference is that in Example
a relative clause is used with the relativizer ‘a5’ /ke/ ‘that’, but in Example

no relativizer is used.

4.5. CLAUSES 108

lazem ast be-rav-im
necessary is SUBJ-go-1PL

‘It is necessary [that] we go/

S
VPF PUNC
VPTD DiscE ‘

N |

DPC VPC CLRR;

N

nid; ADJ V VPSD

lazem ast \%

be-rav-im

4.5.3 Free Relative Clause

In the syntactic construction of a free relative clause in Persian, there is no
explicit antecedent, and the clause might take the place of an argument in the
matrix clause. [Taghvaipoun (R005) expressed that most of the clauses that
start with ‘a>,»’ /harde/ ‘whatever’, ‘aS,»’ /harke/ ‘whoever’, ‘84,8’ /harvaqt/
‘whenever’; etc., and take a noun phrase position in the matrix clause create a
free relative clause. Taghvaipour further added that free relative clauses might
be marked by the optional relativiser ‘a5’ /ke/ ‘that’. In all of the examples
provided here, the free relative clauses function as one of the arguments of the
matrix clause.

In our annotation, we use the label ‘CLFR’ for free relative clause construc-
tions in subject and object positions, as in Examples and , respectively.
If the relativizer does not exist, the embedded clause is treated as a reduced
relative clause and the clause is labeled ‘CLRR’, as in Examples .

(4.74) o9 G595 05 paeo Sl 4z
ance bara=ya$ mohem bud zendegi=yas bud
whatever for=3SG important was.3SG life=3SG was.35G
‘What was important for him/her was his/her life.

4.5. CLAUSES 109

S
/\
VPS PUNC
T |
CLFR VPC
/\ /\
PRON CLRR NPC A%
| | N
ance VPSD I‘\I CLI‘TIC bud
|
VPA zendegi yas
/\
PPC VPC

/N

PREP CLITIC ADJ \Y%

bara yas mohem bud

In Example , the particle ‘l,” /ra/ after the free relative clause functions as a
specificity marker (Karimi, 1999, p. 13). In our annotation, a Head-Complement
relation is defined between the free relative clause and the specificity marker, and
we use the label ‘CLFRC’ as represented in the tree diagram of the Example .

(4.75) lg>) pogy o> (ol LS azye e
ali harce ketab bara=yas xaride bud-am ra xand
Ali whatever book for=3SG bought was-1SG DOM read.3SG
‘Ali read whatever book I had bought for him/her’

VPS PUNC

ali CLFRC [CASE acc] %

_—— |

CLFR PostP xand

DET CLRR ra

harce VPSD

PREP CLITIC \Y \Y%

bara yas xaride budam

If a relativizer is used in a free relative clause, the embedded clause is
treated as a relative clause and labeled ‘CLR’. Then, it combines with the ele-

ments like ‘a>,»” /harée/ ‘whatever’ and ‘aS,»’ /harke/ ‘whoever’, and the label

4.5. CLAUSES 110

‘CLFR’ is assigned, as in Example . In this example, the free relative clause
‘Sgpoas ke a5 azl’ /ance ke matrah Sode bud/ ‘what had been mentioned’ is
used as the complement of the preposition ‘I’ /az/ ‘of, from, than’ in the object

position of the verb ‘54 5T /agah budan/ ‘be aware’.

(476) Ogu o5 09..»0.).;;} C)Ja.a as ADUT)‘ 9‘

u az ance ke matrah Sode_ bud agah
he/she from whatever that mention become was.3SG aware
na-bud

NEG-was.35G

‘He/she was not aware of what had been mentioned.

S
/\
VPS PUNC
T |
PRON VPC
/\
1‘1 PPC MV
P RN
PREP CLFR N \Y
T |
a‘z PRON CLR agah nabud
‘ /\
ance CONJ VPSD
| |
ke MV
/\
N v

matrah sSodebud

4.5.4 Complement Clause

Phrasal complements are marked with the complementizer ‘a5’ /ke/ ‘that’ in
Persian. They are represented with the label ‘CLC’ in the tree diagram of
Example . In this example, the verb ‘a5’ /goftan/ ‘say, tell’ requires a
subject and two complements in its argument structure. If one of its arguments,
which functions as an object, comes after the verb, this argument is marked with
the complementizer ‘as” /ke/ ‘that’. A prepositional phrase, which is the second
complement of this verb, is dropped in this example, therefore it is represented
as ‘VPCompD".

(4.77) ol oS S
u goft ke mi-a-yad
he/sh said.3SG that IMPF-come-3SG
‘He/she said [to me] that he/she comes.

4.5. CLAUSES 111

S

/\

VPS PUNC

PRON VPCompD ‘

u VPC

N

v CLC

N

goft CONJ VPSD

ke A%

miayad

4.5.5 Complement Clause without a Complementizer

It is possible for a phrasal complement belonging to the argument structure
of the verb in the matrix clause to be used without the complementizer ‘S’
/ke/ ‘that’. To be consistent with clausal complements, we use the label ‘CLCD’
to represent that the complementizer is dropped, as in Example .

(4.78) .JﬁT@CAﬁfj\
u goft mi-a-yad
he/sh said.3SG IMPF-come-3SG
‘He/she said [to me that] he/she comes’
S

/\

VPS PUNC
/\ ‘
PRON VPCompD .
| |
u VPC
/N
A% CL‘CD
|
goft VPSD
|
A%
|
miayad

4.5.6 Interrogative Clause

The interrogative words, like ‘4>’ /¢e/ ‘what’ and ‘slas” /kodam/ ‘which’, are
recognized as determiners. These interrogative words take a noun as their argu-
ments. Since in these syntactic constructions, the interrogative phrase remains

in-situ, we annotate them in a manner similar to declarative sentences, as in

Examples and .

4.5. CLAUSES 112

(479) Sl S o
¢e ketab-i mi-xan-i
what book-INDEF IMPF-read-2SG
‘What book do you read?’

S
VPSD PUNC
we
DPC [CLITIC ya] A%

Q N [CLITIC ya] mixani

| |

ce ketab
kodam ketab ra mi-xan-i
which book DOM IMPF-read-2SG
‘Which book do you read?’

VPSD PUNC

VPC

o —

DPC [CASE acc] A%

o~

DPC PostP mixani
Q N ra
kodam ketab
To annotate polar interrogative sentences, we use the label ‘CLQ’, as in

Example .

(4.81) Suly3 o oS LT
aya ketab mi-xan-i
whether book IMPF-read-1SG
‘Do you read a book?’

CLQ PUNC
PN |
ADV VPSD ?
|
a\‘/a VPC
N
N \%

ketab mixani

4.5. CLAUSES 113

4.5.7 Other Types of Clauses

There are other types of clauses which are excluded from the clauses described
above, such as subordinate or conditional clauses. Since these syntactic con-
structions share properties, we use the label ‘CL’ for them, as in Example .
The Head-Adjunct relation is used for combining the subordinate or conditional
clauses and the matrix clause.
(4.82) poye OIS & 2w ol 5l ST
agar u ejaze dah-ad be tehran mi-rav-am

if he/she permission give-3SG to Tehran IMPF-go-1SG
‘If he/she gives permission, I will go to Tehran.

u N A% PREP N miravam

ejaze dahad be tehran
If an adverb has wide scope and modifies a subordinate clause, like the focus

adverb ‘ s>’ /hatta/ ‘even’, the Head-Adjunct relation is used for combining
the adverb and the subordinate clause, and they are labeled ‘CLA’, as in Ex-

ample .
(4.83) .poyse Oolps @ i ojlal ol ST 2o
hatta agar u ejaze na-dah-ad be tehran
even if he/she permission NEG-give-3SG to Tehran

mi-rav-am
IMPF-go-1SG
‘Even if he/she does not give permission, T will go to Tehran.
S
/\
VPA PUNC
T |
CLA VPSD .
/\
ADV CL VP"C
/\ /\
hatta CONJ VPS PPC v
agar PRON MV PRé\N mira‘vam
1‘1 N/\V b‘e teh‘rén

ejaze nadahad

4.6. ELLIPSIS 114

4.6 Ellipsis

In elliptical constructions, one or more words that are required in the sentence
are omitted. Depending on the type of ellipsis, the elliptical constructions are
created. In our annotation, ellipsis is represented by inserting an empty node
labeled according to the type of the elliptic element, as in Example . In
this example, the elliptic element is a verb displayed by the label ‘V-Elip’ in the
tree analysis. Moreover, the ellipsis and the retrieved element are co-indexed to
share the argument structure.
(4.84) o alp (S0 509 S Ly

pedar=as karegar bud va zendegi bara=yas saxt
father=3SG worker was.3SG and life for=3SG hard

‘His/her father was a worker and life [was] hard for him/her’

S
//\
CPC PUNC
— |
VPS CPC
A A
NPC VPC CONJ VPS
/\
N CLITIC N/\V vL N VPA
A
pe(‘lar a‘i kﬁre‘zgar bu‘dl zenLegi PPC VPC

PREP CLITIC ADJ V-Elip;

bara yas saxt

4.7 Discontinuity

At the sentence level, it is possible for a phrase or a clause, which belongs to the
argument structure of a head, to extrapose. After applying the Head-Subject-
Schema to realize the subject of a sentence, the extraposed element should be
bound. As mentioned, we use a trace-based analysis in our annotation such
that both the trace and the extraposed element are co-indexed. To bind the
extraposed elements, the Head-Filler-Schema is used. To make the trace and
the extraposed elements explicit, the empty node ‘nid’ and the unary branching
node labeled ‘DiscE’ are used, as in Example where the relative clause is
extraposed to the post-verbal position.
(4.85) a0 Yo Codly b1y L5 a5 Gl gty
u honarmand-i ast ke taxayyol ra ba vaqe?iyyat
he/she artist-REST is that imagination DOM with reality

peyvand mi-zan-ad
link IMPF-hit-3SG

‘He/she is an artist who links imagination to reality’

4.7. DISCONTINUITY 115

S
VPF PUNC
T |
VPS DiscE .
/\
PRON VPC CL‘Rl
/\
1‘1 NPC/\V CONJ VPSD
N [CLH{yzhdl alt k‘e VI‘DC
/\
honar‘mand NPC [CASE acc] VPC
/\
N/>OS‘GP PPC

MV
N N A%

taxayyol ra PREP

ba vaqeriyyat peyvand mizanad

In comparative constructions, we analyze sentences according to the linear
appearance of the words. It is possible for comparative constructions to extra-
pose to the post-verbal position. Since we do not use feature structures, we
do not define a new schema for comparative constructions. Therefore, in these
constructions, we assume that the elements headed by the coordination ‘G’ /ta/
‘rather than’ are extraposed to the post-verbal position, as in Example .
These elements are bound by the Head-Filler-Schema.

(4.86) .0 b siid g bgzasls 1S
aksar-e danesju-yan pesar hast-and ta doxtar
majority-EZ student-PL. boy is-3PL rather_than girl
‘The majority of students are boys rather than girls.

S
/\
VPF PUNC
5 e |
VPS DiscE .
/\
DPC VPC CP‘Cl
DET [CLITIC ezafe] N CPC/\V COé\N
akLar dﬁneé‘juyén N/>d1 hast‘,and ta dox‘tar
|
pesar

There is also a possibility that in coordination phrases, which are constructed
by correlative conjunctions, one of the elements extraposes to the post-verbal
position, as in Example . In this example, there are two instances of extra-

positions: (a) the extraposition of the relative clause to a post-verbal position,

4.8. SUMMARY 116

and (b) the extraposition of the correlative conjunction. Both extrapositions
are bound by the the Head-Filler-Schema.

ali ham kas-i ast ke kar mi-kon-ad va ham
Ali also person-REST is that work IMPF-do-3SG and also
kas-i ke dars mi-xan-ad

person-REST that lesson IMPF-read-3SG

‘Ali is both a person who works and a person who studies.

S

///\

VPF PUNC
T |
VPF DiscE .
/\
VPS DiscE CPC,
/\ /\
N VPC CL‘Rl CONJ CPC
a‘li CPC V. CONJ VPSD va CONJ NPC
/\
CPC nidy a‘st kL M‘V ha‘m N [CLITIC ya] CLR
CONJ NPC [CLITIC ya] N v ke‘ls CONJ VPSD
ha‘m N [CLI@(M k:‘u‘ mikr‘mad k‘e M‘V
ki‘m N v

dars mixanad

4.8 Summary

In this chapter, we described the annotation scheme used for developing our
HPSG-based treebank. The annotation was restricted to the lexical, phrasal,
and clausal elements. Furthermore, various constructions were described along

with examples and their corresponding tree analyses.

Part 11

Computational Approaches

117

Chapter 5

Bootstrapping the Persian
Treebanking

5.1 Introduction

In previous chapters, the cruciality of developing and making annotated data
available for feeding linguistic investigation and data driven approaches in hu-
man language technologies were discussed. It was pointed out that while a great
deal of effort has been expended to develop annotated data, such as treebanks,
for languages like English and German, similar data sources are not available for
all languages. There are many languages like Persian that have been given less
attention, and consequently less annotated data is available for them. In this
chapter, we describe a bootstrapping approach for bridging the gap to develop
a treebank for Persian. When this research was commenced, there were as of
yet no publicly available treebanks for Persian, no statistical parser to process
the sentences of this language automatically, and no gold data for evaluation.
These shortcomings motivated us to develop the treebank from scratch for Per-
sian using a bootstrapping approach and to make the annotated data publicly
available for free.

Bootstrapping is a sample selection approach which aims at increasing the
size of the annotated data iteratively and making a steady improvement on the
performance as a result; i.e. in each iteration a small fragment of the data
and not the whole data is annotated, and incrementally the data is anno-
tated and added to the annotated data set. This approach is used for many
data oriented NLP applications, like parsing (Aldezabal et al), 2000), machine
translation (Pal and Bandyopadhyay|, 2012), information extraction ([osif et all,

2012), named-entity recognition ([Teixeira et alf, 2011), word sense disambigua-

119

5.2. THE CLARK SYSTEM 120

tion (,), term extraction (,), opinion extraction (,
), topic analysis (lFerret and Grad, fZOOQI), lexicon learning (
,), and speech synthesis (lBulyko and Ostendoﬂt, bOOQI). Moreover,

this method is employed in the development of monolingual treebanks (
kt alL hOOd; lBrants et alL }2002‘; |Nivre and Megyesi, l2007|; lDridan and BaldwirJ,
lZOld; Beraji et alJ, }20123]; tRasooli et all, }2013|) as well as parallel treebanks (
land Samuelssod, I2004|).

This chapter contains six sections. In Section @, the tool employed for our

data annotation is introduced. Next, the algorithm used for bootstrapping the
development of the treebank is explained in Section @ In the bootstrapping
process, the most frequent grammar rules are extracted from the treebank, and
they are defined in the annotation tool to further annotate unseen data. The
annotation process is done in four steps, which are explained in Section @ In
Section @, the amount of human intervention needed to annotate the data and
the accuracy of the defined grammar rules are evaluated. Section @ summarizes
this chapter.

The content of this chapter is mainly based on these two papers:

o Ghayoomi, Masood (2012) “Bootstrapping the development of an HPSG-
based treebank for Persian”. In Linguistic Issues in Language Technology,
7 (1). CSLI Publications.

o Ghayoomi, Masood (2012) “From grammar rule extraction to treebanking:
A bootstrapping approach” In Proceedings of the 8th International Con-
ference on Language Resources and Evaluation (LREC’12), May, 23-25,
2012; Istanbul, Turkey, pp: 1912-1919.

5.2 The CLaRK System

To start treebanking, a tool for the data annotation is required. To this end,

we employ the CLaRK systemEI (lSimov and Osenova|, bOO?‘) for our application.

The CLaRK system is an XMLE—based tool for corpus development implemented
in Java. The development of the system is carried out by the Tiibingen-Sofia
International Graduate Program. Minimization of human intervention during
the creation of the language resource has been the main aim for designing this
tool. This tool is primarily used for developing a treebank for Bulgarian based
on HPSG, called the BulTreeBank (bimov et all, lZOO]J).

There is a Unicode-based tokenizer in the system to support the tokens.

Additionally, there is a deterministic finite state automaton behind the system

Thttp://www.bultreebank.org/clark/
2eXtensible Markup Language

http://www.bultreebank.org/clark/

5.2. THE CLARK SYSTEM 121

to support writing cascaded finite state grammar rules and facilitate the search
for patterns defined as regular expressions. It is possible to write the grammar
rules as regular expressions in the system to facilitate data annotation. The
defined regular expressions can be applied at the data bidirectionally, either
left-to-right or right-to-left. The XML Path Language (XPath) is the query
language used in the system to support navigation over the whole document
and to select specific elements. To apply regular expressions at sentences in
an XML document, first the patterns as regular expressions are converted into
automata, then into the XPath query language. The system is empowered with
XSLTE7 which is a language for transforming XML documents to other XML
documents and it is used as part of XSLE7 the stylesheet language for XML.
Supporting XSLT makes it possible to draw graphical tree structures from the
XML document. Figure a illustrates the tree analysis of Example @ created
by the CLaRK system.

(5.1) 55 Srlen Sl by Gialyl 31 S sl
born be?ettefag-e yek-i az aqvam=as be sahr-e perag
Born with-EZ one-INDEF from relatives=3SG to city-EZ Prague
mohajerat kard
move did.3SG
‘Born moved to the city of Prague with one of his relatives.

Figure 5.1: Tree analysis of Example @ created by CLaRK

The entire XML document is controlled with DTDs. DTDs play several roles
in the CLaRK system (ISimov and Osenoval, IZOOSI, IZOOQI; bsenova and Simovl,

3eXtensible Stylesheet Language Transformations
4eXtensible Stylesheet Language

5.2. THE CLARK SYSTEM 122

sign
WORD:word
PHONE:phone-list
SYNSEM:synsem
LOCAL:local
CATEGORY:category
HEAD:head
CONTENT: content
INDEX:index
CONTEXT:context
NON-LOCAL:non-local
PHRASE:phrase
DAUGHTERS: constituent structures
HEAD-DTR:sign
COMP-DTRS:list of phrases
HEAD-ADJUNCT:head-adjunct
HEAD-DTR:word
ADJUNCT-DTR:phrase
HEAD-COMP:head-complement
HEAD-DTR:word
COMP-DTR:phrase
HEAD-SUBJ:head-subject
HEAD-DTR:word
SUBJECT-DTR:phrase
HEAD-FILLER:head-filler
HEAD-DTR:word
FILLER-DTR:phrase
NON-HEADED-PHRASE:non-headed-phrase

Figure 5.2: Sample of HPSG signature type hierarchy

2004): (a) they represent a sort hierarchy similar to the sort hierarchy used in
TRALE (Penn, 2004) as represented in Figures @ and @, (b) they function
as a constraint on ID schemas and linear precedence in HPSG, and (c) they
monitor and check the consistency during the annotation process.

The CLaRK system supports the cascaded regular grammar introduced
by Abney (1996); i.e. the product of one grammar rule is the input to an-
other grammar rule, and the grammar rules defined as regular expressions in
the system will recognize only a portion of a string and not the whole string.
The result of the cascaded regular grammar is a hierarchical ordering of the
grammar rules. In CLaRK, the hierarchy of the grammar rules is constructed
manually. King and Simov, (1998), Simov| (2001), and Simov| (2002) proved that
a finite theory defined as a set of feature graphs is suitable for the representation
of HPSG. As a result, the annotated sentences based on this assumption will

not have feature structures similar to the normal HPSG, but the analyses are

5.2. THE CLARK SYSTEM 123

<!DOCTYPE sign [

<IELEMENT sign (WORD,PHRASE)>

<!ELEMENT WORD (PHONE,SYNSEM)>

<!ELEMENT PHONE (#PCDATA)>

<!ELEMENT SYNSEM (LOCAL,NON-LOCAL)>
<!ELEMENT LOCAL (CATEGORY,CONTENT,CONTEXT)>
<!ELEMENT CATEGORY (HEAD)>

<!ELEMENT HEAD (#PCDATA)>

<!ELEMENT CONTENT (INDEX)>

<!ELEMENT INDEX (#PCDATA)>

<IELEMENT CONTEXT (#PCDATA)>

<!ELEMENT NON-LOCAL (#PCDATA)>

<!ELEMENT PHRASE (DAUGHTERS,NO-HEADED-PHRASE)>
<!ELEMENT DAUGHTERS (HEAD-DTR,COMP-DTR)>
<!ELEMENT HEAD-DTR (#PCDATA)>

<!ELEMENT COMP-DTR (HEAD-AJCT,HEAD-COMP,HEAD-SUBJ,HEAD-FILLER)>
<!ELEMENT HEAD-AJCT (HEAD-DTR,AJCT-DTR)>
<!ELEMENT HEAD-DTR (WORD)>

<!ELEMENT AJCT-DTR (PHRASE)>

<!ELEMENT HEAD-COMP (HEAD-DTR,COMP-DTR)>
<!ELEMENT COMP-DTR (PHRASE)>

<!ELEMENT HEAD-SUBJ (HEAD-DTR,SUBJ-DTR)>
<!ELEMENT SUBJ-DTR (PHRASE)>

<!ELEMENT HEAD-FILLER (HEAD-DTR,FILLER-DTR)>
<!ELEMENT FILLER-DTR (PHRASE)>

<!ELEMENT NON-LOCAL (NO-HEADED-PHRASE)>
<!ELEMENT NO-HEADED-PHRASE (WORD)>

1>

Figure 5.3: Sample of signature type hierarchy based on a DTD format

composed of phrase structure trees enriched with the simulation of basic prop-
erties of HPSG, such as morpho-syntactic information to represent the lexical
knowledge, structure sharing, sort hierarchy, ID schemas (Head-Subject, Head-
Complement, or Head-Adjunct), and binding the slashed elements through the
Head-Filler-Schema.

There are several reasons that the CLaRK system is selected as a tool for our
application: (a) since there was no accessible treebank for Persian at the time
of this research, the data annotation process had to be started from scratch. As
a result, a tool is required to provide an environment to define regular grammar
rules to speed up the annotation task and to ease and reduce the amount of
human effort; (b) since the grammar formalism used in the BulTreeBank (Simov
et al), 2003) is similar to our treebank, it was a strong motivation for us to use
this tool for our task; (c) the system supports Unicode which nicely handles
the Persian script; (d) the data structure of the system’s output is an XML

document that makes it possible to add layers for representing the linguistic

5.3. BOOTSTRAPPING VIA GRAMMAR RULE EXTRACTION 124

knowledge, such as POS tags, named-entity tags, lemmas, and verb stems.

5.3 Bootstrapping via Grammar Rule Extrac-
tion

Stochastic modeling is frequently used in supervised grammar induction. Gram-
mar induction, also known as grammar inference, automata induction, or auto-
matic language acquisition in the literature (Parekh and Honavai, 2000), means
to automatically induce the formal grammar of a language from a set of anno-
tated data, such as a treebank. Machine learning approaches can be used for
learning the grammar from a treebank to recognize the syntactic patterns.

As said in Section @, the CLaRK system does not support stochastic model-
ing for the cascaded regular grammars, and defining the regular grammar rules
and their hierarchical ordering are done manually. Nevertheless, the reasons
mentioned in the previous section persuaded us to use this system to develop
a treebank for Persian. To simplify the annotation task, to decrease human
intervention in the development of the data source, and to profit more from the
CLaRK system, we introduce a non-stochastic grammar induction approach to
learn the grammar rules from the annotated Persian data to annotate further
unseen data.

In our view, grammar induction is a task that recognizes the grammar G
of the sentence S in the language L. This grammar is composed of a set of
grammar rules R (r € R), which is manually defined in CLaRK and organized
in a hierarchical order, to analyze unseen data. After the compilation of the
grammar rules R in CLaRK, each rule r in the system is transformed to a
deterministic automaton automatically. When an unseen sentence S is given
to the system, given that the local constrains defined for r are satisfied, the
grammar rule r is applicable to . The result is a robust analysis for strings
that satisfy the local constrains.

To find and define the most frequent grammar rules as regular expressions
in CLaRK, we establish a bootstrapping process introduced in Algorithm m to
speed up treebanking.

In this bootstrapping process, 1,000 sentences from the Bijankhan Corpus
(Bijankhan, 2004) are pre-processed to realize multi tokens. Next, to provide
the seed grammar rules (R;) and start the annotation process, frequent bigrams,
which construct constituents, are defined as regular expressions in CLaRK. Us-
ing bigrams to define seed grammar rules is described in Section . The
result of applying R, is shallowly processed sentences. These rules are used for
annotating the first 50 sentences of the data set. The result of these applied

5.3. BOOTSTRAPPING VIA GRAMMAR RULE EXTRACTION 125

Algorithm 1 Bootstrapping process for treebanking

Input: Set of Sentences from the Bijankhan Corpus,
Set of Seed Grammar Rules R defined in CLaRK
while all sentences are added to the treebank do
Choose N sentences S from the corpus
Use R, to annotate S automatically
Complete the annotation of S manually
Add the annotated S to Treebank T
Extract all applied manual grammar rules R,, from T
Select K most frequent grammar rules from R,, which have met prerequisite
grammar rules
Define the K selected grammar rules as regular expressions in CLaRK
Augment Rs with the K selected grammar rules and remove them from R,,
end while

grammar rules are checked so as to not over-generate. In the case of over-
generation, constraints are defined for them to limit their domain to the local
context.

After defining the seed grammar rules, the bootstrapping process is initial-
ized. To this end, the remaining sentences (950 sentences) are segmented to
sets containing N sentences (N=10). In each iteration, the N sentences are
annotated automatically with the seed grammar rules R;. The shallowly pro-
cessed sentences are manually annotated to have the complete analyses of the
N sentences. In the next step, the manual grammar rules (R,,) are extracted
from the completely annotated sentences. The extracted grammar rules are
sorted in descending order based on their frequency. For the next step of the
bootstrapping process, the K most frequent grammar rules (K=5) which have
a high degree of reusability and have met their prerequisite grammar rules are
selected and defined as new regular expressions in CLaRK. R, is augmented
with the newly selected grammar rules from R,,. Finally, the updated Ry is
used for the next iteration. The bootstrapping process continues iteratively,
and it terminates when the remaining 950 sentences are annotated completely.

The proposed algorithm for treebanking, in general, might seem very sim-
ilar to the bootstrapping approach utilized in the development of the German
TIGER treebank (Brants et al), 2002) described in Section . But the differ-
ence between our approach and their approach is that in our task treebanking
is started from scratch without any preliminary annotated data for Persian.
Moreover, our data is annotated based on the HPSG formalism.

In the grammar rule extraction step of our proposed model, in each iteration,
all the grammar rules are extracted from the set of annotated sentences. Then,
the extracted grammar rules are distinguished based on whether they are already
defined in the system, or the annotator inserted the grammar rules manually.

To make this distinction explicit, the attribute ‘r’ is added to the grammar rules

5.3. BOOTSTRAPPING VIA GRAMMAR RULE EXTRACTION 126

defined as regular expressions in CLaRK. The absence of the attribute ‘r’ means
that the rule is applied manually. Now, there exist two sets of grammar rules: (a)
a set of grammar rules which is already defined in CLaRK as regular expressions
and does not require redefinition, and (b) a set of grammar rules added in the
manual annotation step. The grammar rules can be the potential candidates
for selection and definition as new regular expressions in the system to annotate
new sentences. To select among the grammar rules that are inserted during
the manual annotation step, this question may raise: “Which of the extracted
grammar rules have a priority over other grammar rules to be defined as regular
expressions in the CLaRK system?”

In the cascaded regular grammar, the product of one rule is the input of
another rule, and in each rule only a portion of a string and not the whole
string is recognized. An important property of the cascaded regular grammar is
that there is an ordering on the grammar rules, and the next rule is not applied
unless the local conditions are satisfied. Thus, after defining the extracted
grammar rules manually as new grammar rules in CLaRK, they are ordered
hierarchically. Since the parsing strategy in CLaRK is bottom-up, the grammar
rule extraction approach and their hierarchical ordering are also bottom-up; i. e.
the grammar rules belonging to the higher level of the grammar rule hierarchy
are extracted and defined in CLaRK under the condition that the grammar
rules belonging to the lower level of the grammar rule hierarchy are already
extracted and defined in the system. As a result, the grammar rules in the
lower level of the grammar rule hierarchy have priority over the grammar rules
in the higher level of the grammar rule hierarchy. To identify the hierarchy of
grammar rules in our algorithm, we create a matrix of N x N where N is the
total number of grammar rules. Each row of this matrix stores the prerequisites
of the corresponding rules. Prerequisites are the grammar rules that belong to
the lower level of the grammar rule hierarchy. In each iteration, the grammar
rules that have already met their prerequisites can be considered as candidates.
These candidates should then be ranked to find the most frequent grammar

rules inserted by a human annotator and to assign them a priority based on their

frequency. Figure b.4 on the following pagd illustrates this idea for Example @

bu page 121]

As mentioned, after extracting the grammar rules from the tree structures,

they are ordered hierarchically. As shown in Figure @, the extracted grammar
rules from the tree structures are organized in several hierarchical levels in the
bottom-up model. In the first level of the grammar rule hierarchy, the grammar
rules are linked to the lexical items shown with a solid-line triangle in the figure.
Most of the grammar rules at this level are the ones added to the system in

the initialization step to handle multi-tokens and frequent constituents. The

5.3. BOOTSTRAPPING VIA GRAMMAR RULE EXTRACTION 127

S\ S — VPS, PUNC
L. . ’
A
J O\ vesmN.veA
»
/ \
J O\ veasrec,vee
./‘\
RN PPC — PREP, DPC
b ome
/‘\
N DPC - DET,PPC VPC— PPC, MV

PPC = PREP, NPC

NPC = N, CLITIC NPC—N,N MV-—=N,V

Figure 5.4: Extracting grammar rules and ordering them according to their
hierarchical levels

grammar rules of each level in the hierarchy are the ones in which all of their
prerequisites in the lower level(s) have been met. Building this hierarchical
structure of grammar rules continues in a loop until a grammar rule is met that
contains the non-terminal S in its left-hand side. Since not all grammar rules
are equally effective, we do not treat the grammar rules in each level equally.
As a result, the grammar rules which are very productive and frequent have
priority over less productive and infrequent grammar rules to be defined in the

system. Based on this idea, the most frequent grammar rules from the ranked

5.4. STEPS OF TREEBANKING 128

list which have satisfied all prerequisites are defined in CLaRK.

5.4 Steps of Treebanking

5.4.1 Pre-processing Step

We found two shortcomings in the original format of the POS tags in the Bi-
jankhan Corpus (Bijankhan, 2004) used in our research. As can be seen in
Table EI, the length of the tags and the position that certain information is de-
clared are not fixed. To solve the problems, the original tags are converted into
the MulText—EastE framework to encode the morpho-syntactic and semantic in-
formation as a single tag. Appendix E provides the POS tags of the Bijankhan
Corpus according to the format in the MulText-East framework. In this new tag
format, the length of a tag with respect to the main syntactic category is fixed,
and each position in the tag corresponds to one specific feature of the word. If
the value of certain information is unspecified, then the symbol ‘-’ is used. The

lexical features in this linear format can also be displayed in an AVM used in

normal HPSG. Figure b.5 on the following pagd illustrates the feature structure
of the word ‘S’ /¢ek, ¢ak/ ‘cheque, whack’ with the POS tag ‘Ncsp---_

Table 5.1: Conversion of POS tags in the Bijankhan Corpus into MulText-East
framework

‘ Persian word ‘ Transliteration ‘ Meaning ‘ Original tag ‘ Converted tag ‘
S Cek/cak cheque;check/whack | N,COM,SING Nesp---
S cek.e/cak.e cheque/whack N,COM,SING,EZ Ncsp--z
S cek Czech N,PR,SING Nasp---
S cek Czech N,PR,SING,LOC Naspk--

It is totally natural that the POS tag of a certain word is changed depending
on the context. Therefore, we try to collect as much lexical information as
possible for each lexical item from the corpus and store it as meta-information
in the XML document. To store this information, we define two attributes for
each word: (a) the ‘gc’ (global context) attribute which contains various POS
tags of a word in different contexts; (b) the ‘I¢’ (local context) attribute which
represents the POS tag of the word in the local context.

We also lemmatize word forms by removing inflectional suffixes of nouns and
adjectives automatically, such as plural, comparative, and superlative suffixes,
and Ezafe and indefinite clitics (if they have a written form). Since Persian
has borrowed a large number of Arabic words, irregularities of noun plural

forms and adjective superlative and comparative forms are unavoidable. These

Shttp://nl.ijs.si/ME/

http://nl.ijs.si/ME/

5.4. STEPS OF TREEBANKING 129

[PHON (<>) 1

TYPE com||]]
HEAD |:ABBR -
noun
CATEGORY [SUBJ ()
COMP ()
SPR O
L category J
LoC [NUM sg
SYNSEM INDEX |PERS 3&rd
CONTENT index
TYPE empty
Lcontent
CONTEXT
EzAFE —
PoLARITY +
Lloc i

Lsynsem .

Lword J

Figure 5.5: Feature structure of the word ‘<&’

cases are lemmatized semi-automatically. Verbs are lemmatized differently. The
infinitive forms, and the past and present stems of each verb are defined semi-
automatically for each verb.

To have a multi-functional data source, we define the types of the named-
entities as well. Five named-entities, namely ‘person’, ‘location’, ‘organization’,
‘time’, and ‘other’, are defined in the data set. It should be added that in
our data annotation, the named-entity ‘time’ is coarse-grained and it refers
to any time expressions and dates, contrary to the BBN named-entity anno-
tationd (Brunstein, 2002) in which time expressions and dates are more fine-
grained, and they are recognized as separate named-entities to be used in a
Question Answering system.

Examples @ and @ display the available meta-information for the noun
‘S7 /éek/ ‘Czech’ and the verb ‘yols’ /dadan/ ‘give’

(5.2) <w gc=“Nasp---;Naspk--;Ncsp-—;Ncsp--z” lc=“Naspk--" clitic=“empty”
ne_sort=%“loc” lemma="“S>">S></w>

(5.3) <w gc=“Nasp---;Ncsp---;Nesp--z; Vpyssht----" lc=“Vpyssht-—--" clitic="empty”

inf_form=¢%:sl>” past_ stem=%sls” pres_ stem="%"c0”>olo< /w>

In Chapter E, we discussed the multi-token problem in Persian. Since our
ultimate goal is to develop a treebank for Persian, the multi-token problem
should be solved at both the syntactic and morphological levels. Clitics are the

problematic cases at the syntactic level. If the clitic has a written form and it

Shttp://catalog.ldc.upenn.edu/docs/LDC2005T33/BBN-Types-Subtypes.html

http://catalog.ldc.upenn.edu/docs/LDC2005T33/BBN-Types-Subtypes.html

5.4. STEPS OF TREEBANKING 130

is orthographically represented in the fused form, the clitic should split from its
host, as in Examples @ and @ The orthographical hosts of the clitic ‘u-’
/-a8/ in Example @ is ‘obs” /ketab/ ‘book’ and it is ‘wax’ /jadid/ ‘new’ in
Example @7 whereas syntactically its host is the noun ‘wLS” /ketab/ ‘book’ or
the noun phrase ‘s> obS” /ketabe jadid/ ‘new book’.

(5.4) ks

ketab=as
book=3SG
‘his/her book’

(5.5) e oLS

ketab-e jadid=as
book-EZ new=3SG
‘his/her new book’

While splitting clitics from their hosts in the Bijankhan Corpus (Bijankhan),
2004), we found varieties of orthographical forms for copulative verbs and pos-

sessive and object pronouns as clitics. This variety is summarized in Table @

Table 5.2: Various orthographical forms of copulative verbs and posses-
sive/object pronouns as clitics in the Bijankhan Corpus

l [Copulative Verb Possessive/Object Pronoun ‘

1SG | oo op cp] P e el el e

2SG | o 15 1S 152 18] ORI PPN NS

3SG | s s sy o) 85 s 10 IR LY
IPL | o 5 o o oled roygal spbel i pley 1o)bo
T e I I R R R

R o U R PR PR CRA] B VIR v I R 9

To solve the multi-token problem at the morphological level, we use the
method proposed by Miiller (2010) to handle the Persian light verb construction.
To exploit this idea and to be consistent in the entire corpus, we split the
pre-verbal elements from the light verbs. The pre-verbal elements are mostly
particles, such as 5L’ /baz/ ‘again’ in Examples @ and @, which are POS
tagged as prepositions in the Bijankhan Corpus.

(5.6) .cu8 5l
baz-mi-gast
again-IMPF-turn.3SG
‘He/she was returning’

5.4. STEPS OF TREEBANKING 131

Select the POS tags
Bijankhan Corpus

NO

Fused
elements
exist?

Remain Unchanged

Split the fused element

#

The host and NO
Word Dictionary its tag exist in
the dictionary?
_—

The remaining
element and its Aska humap for
tag exist in WD NO or confirmation
CcD? .
or Ambiguous
Confirm the split and assign a POS Assign a POS tag to the
Clitic Dictionary tag to each splited element splited element

Figure 5.6: Architecture of the algorithm used for splitting clitics

(5.7) .Cuwlanassl
baz-gaste-ast
again-turned-3SG
‘He/she has returned.

We split clitics from their hosts semi-automatically. The architecture of the
algorithm used for splitting clitics is represented in Figure @ In this algorithm,
first the POS tag of each word is checked to determine whether any fused el-
ements exist in the word or not. If not, the word and its corresponding POS
tag remain unchanged. If yes, the fused elements should split. To avoid any
mistake in splitting these items, we use a hypothesis testing approach in our
algorithm such that the fused elements are split into a host and the remaining
element(s) with respect to the information in the POS tags. Next, this hypoth-
esis is validated based on whether the host and the remaining element exist in
the dictionaries (the Word Dictionary (WD) which contains the lexical items
and the Clitic Dictionary (CD) which contains the clitics). If the answer to the
hypothesis is ‘yes’, then the word which contains the fused element splits into
sub-elements, and each sub-element is assigned an individual POS tag. Other-
wise, the hypothesis is returned to a human and the algorithm asks the human
to provide the correct split and assign the elements a correct POS tag. Human
intervention is required for ambiguous and unknown cases.

When using the above algorithm to resolve the morphological multi-token

5.4. STEPS OF TREEBANKING 132

problem in the Bijankhan Corpus (Bijankhan, 2004) described in , cases are
still found that should be resolved either manually or automatically. A special
POS tag is used in the Bijankhan Corpus for tokens like ‘,olo’ /madar/ ‘we in’
in which two tokens are recognized as one unit. The above algorithm can be
used for finding such units, splitting them into two tokens, and assigning each
token an individual POS tag. A solution for handling multi unit tokens for
treebanking is proposed in the following section.

Thus far, we have provided as much lexical information as possible for each
lexical item, since in HPSG a huge amount of lexical knowledge is required.

This information is useful for the next steps of the data annotation process.

5.4.2 Initialization Step

To initialize the annotation process, we require seed grammar rules as described
in the bootstrapping process in Algorithm . The seed grammar
rules are a set of very basic grammar rules with high coverage defined and or-
dered hierarchically in the CLaRK system. To have binary branching in the
trees and to define the dependency relations between the elements, either ad-
junct or complement, we extract bigrams from the Bijankhan Corpus. To this
end, bigrams of the POS tags only, and bigrams of the words with their corre-
sponding POS tags are extracted from the whole corpus, and the most frequent
sequences are defined as seed regular grammars in the system.

Two sets of regular expressions are defined based on the bigrams. One set
handles multi tokens in the pre-processing step, such as compound conjunctions,

and compound verbs. The other set recognizes the most frequent constituents

to initialize the data annotation process. Table b.S on the following pagel dis-

plays sample bigrams for multi tokens, and Table @ shows sample bigrams
for frequent constituents with their corresponding absolute frequencies from the
Bijankhan Corpus written as regular expressions in CLaRK.

As shown in the tables, the morpho-syntactic and semantic information in
the POS tags of the words is used for defining the grammar rules as regular
expressions. It is possible to write productive grammar rules with a sequence
of only POS tags, relatively productive grammar rules with partially lexicalized
sequences, and restricted grammar rules with fully lexicalized sequences to rec-
ognize frozen strings. To make the grammar rules more general and productive,
wild card symbols can be used in the regular expressions, such as @ for zero or
one symbols, % for zero or more symbols, and # for one or more symbols.

After defining a set of regular expressions as seed grammar rules, they are ap-
plied on the set of 50 sentences as seed data and their annotation are completed

manually.

5.4. STEPS OF TREEBANKING 133

Table 5.3: Bigram samples for multi tokens written as regular expressions (RE)

Absolute Absolute . .
Pattern Sample Translation | RE in CLaRK
Freq. Freq.

Left RE
RE: <“Ncsp---">,<“V%ys%%t----">

Nesp--- Vpyssht-—— 39213 o 10 moved

P pyss o5 ke Right RE

RM: <MV r=¢1-001"> \ w< /MV>
Left RE
RE: <“Ncsp---">,<“V%ys%%-f---">

Nesp— Vpyssh-fr 12011 oo ool 138 was done B sp RE
Right RE
RM: <MV r=41-002"> \ w< /MV>

Table 5.4: Bigram samples for constituents written as regular expressions (RE)

Absolute
Freq.

Absolute

Pattern Freq.

Sample

Translation RE in CLaRK ‘

Left RE

RE: <“Ncspk-z">,<“Naspk--">
Right RE

RM: <NPC r=“1-001"> \ w< /NPC>
Left RE

RE: <“Ncspt-z2">,<“Urns---">

Right RE

RM: <NPC r=“1-002"> \ w< /NPC>

Nespk-z ~ Naspk-- 11260 S s 1 the city of Prague

Nespt-z ~— Urns— 6976 145y Jls 11 the year 1963

5.4.3 Main-processing Step

After annotating the set of 50 sentences as seed data, the main-processing and
the post-processing steps are launched and continued iteratively on the remain-
ing data (950 sentences), i.e. the main-processing and the post-processing steps
follow each other and the both steps are processed in each iteration. The main
processing step is done fully automatically such that in each iteration a set of
k new rules (k=5) are extracted from the whole annotated data and added to
the seed grammar rules as regular expressions in CLaRK. The updated seed
grammar rules are then applied on the remaining unannotated sentences in the
next iterations. Detailed description of this step together with the algorithm

were already described in Section @

5.4.4 Post-processing Step

Similar to the main-processing step, the post-processing step is also performed
iteratively such that in each iteration after the automatic annotation of sen-
tences, a human annotator finishes the shallowly annotated sentences manually
based on the annotation scheme described in Section @ The output of this
step is a set of fully annotated sentences, such as Figure :5.1 on Eaée 121l. The

completely annotated sentences are used for extracting new grammar rules.

Similar to Marcus et al] (1993) and Simov et al} (20024, only one analysis is

provided for sentences with syntactic ambiguities in our treebank. The provided

5.5. EVALUATION 134

analyses rely on the most appropriate analyses based on the contexts.

5.5 Evaluation

In the initialization of the annotation process, 50 seed sentences are completed
manually after being shallowly processed. Constraints are defined on the gram-
mar rules to avoid their over-generation. The process of automatic and manual
annotations of sentences in the main- and post-processing steps are continued
iteratively. While more data is annotated in the bootstrapping process, in each
iteration the rate of the grammar rules applied automatically and manually to
complete the annotation of each sentence is recorded. Figure @ displays the
human annotation rate for each five iterations (for each 50 sentences). As can
be seen in the figure, as the number of the grammar rules defined in the system
grows, human effort to annotate the data decreases steadily which results in
reducing human intervention in developing the data source. In the first itera-
tions of the bootstrapping process, 74.05% of the analyses are done manually,
and they are reduced to 39.01% in the last iterations. Since the length of sen-
tences vary and longer sentences are more complicated than the shorter ones,

the presented result is normalized with respect to the length of the sentences.

N
& 3 &

3

Percent Human Annotation Rate
5 &8 9 9 g o N
8 & & &

@
&

o » o i) i))] o o i)
& &SP e“’é) bge’(? e"’@ > w@n ¢ &S
RS S R A S o R S A R

Number of Sentences

Figure 5.7: Human annotation rate in manual annotation

Even though the reduction of human annotation effort is significant, it is
increased in some of the iterations due to the complexities of the sentences in
these iterations. Consequently, their annotations require more human effort.
As can be seen in the figure, there is a gradual decrease in manual annotation
again in the next iterations which shows that the defined grammar rules of the
seen contexts are enough for analyzing the sentences of these iterations.

In Table @, the coverage of the rules (automatic vs. manual) is reported. To
annotate this small treebank for Persian, which on average is 27 words long, on
average 15.84 grammar rules (around 57.25% of the task) are applied manually

for each sentence and the rest automatically.

5.5. EVALUATION 135

Table 5.5: Summary of the bootstrapping result for the treebanking

num. of average length average num. of | average num. of
sentences | of sentences (words) | automatic rules manual rules
[1000 | 27.67 [12.19 [15.84 |

To evaluate the overall performance of the grammar rules used in our method,
precision, recall, and F-measure are computed. To compute precision in the
equation (@), the correct grammar rules (GR) which are applied automatically
against the total number of grammar rules applied automatically are measured:

. number of correct automatic GR
Precision =

5.1
total number of automatic GR (5.1)

To compute recall in the equation (@), the correct grammar rules which are ap-
plied automatically are measured against the sum of correct automatic grammar
rules and the manual grammar rules:

number of correct automatic GR
Recall =

5.2
number of correct automatic GR + manual GR (5:2)

F-measure in the equation (@) weights the interaction of precision and recall:

2 X precision X recall
F — measure =

5.3
precision + recall (5.3)

The summary of the result is reported in Table @ As can be seen, 86.20% of
the applied automatic grammar rules are correct, and they cover 45.65% of all

the automatic and manual grammar rules required to annotate the sentences.

Table 5.6: Evaluation results

’ F-measure \ Precision \ Recall ‘
[5969 [8620 [45.65 |

Based on the results, precision is relatively high, but recall is low for two
reasons: (a) there are contexts that have not been seen so far, and the rele-
vant grammar rules are not extracted as a result; (b) even if a grammar rule
is extracted, there is no grantee that it is defined in the system during the
bootstrapping process because of its low frequency. Of course annotating more
sentences helps to increase recall, since having more annotated data and defining
more grammar rules increase the coverage of the total grammar rules.

To verify this statement, we measure recall of our method for every 5 itera-
tions and display it in Figure @ As shown in this figure, recall is constantly
increasing, which is a signal that newly defined grammar rules in each iteration

have a positive effect on the coverage, and even higher recall can be achieved

5.6. SUMMARY 136

Percent Recall

N N N N N
S T S R N
o

& S &
S P R ¢
& &S & ¢
ST S S

S S S S S S

T $

5 P, ISR
L A S R

Number of Sentences

Figure 5.8: Recall measured every 5 iterations

in further iterations. There are two considerable drops in the graph. After
consulting the data, we find that extraposition and ellipses frequently happened
in this portion of data, and a higher amount of human intervention is required
to complete the analyses. Moreover, errors in the assigned POS tags have a
negative effect on the usage of the grammar rules. Additionally, changing the
genre and the domain of the texts from politics to economy or sport news is
another factor that affects recall.

The developed treebank is the preliminary data set which might require
further editing because of changing the annotation scheme. Further editing of
the developed treebank and re-segmenting sentences, in addition to deletion
of the ungrammatical sentences, increased the number of trees to 1028 with a
total number of 27026 word tokens. It is necessary to add that in 18.96% of the

sentences extraposition is occurred.

5.6 Summary

In this chapter, we mainly described the development of an HPSG-based tree-
bank for Persian. To this end, we used a bootstrapping approach for the data
annotation. Developing this annotated data was the first attempt to build a
treebank for Persian based on the HPSG formalism as its backbone.

In the first step, a set of seed grammar rules were defined as regular ex-
pressions in the CLaRK system and they were used for processing the 50 seed
sentences shallowly. This initialization step was finished by completing the an-
notation of seed sentences manually. In the next steps of the annotation process
(the main-processing and post-processing steps), a set of new sentences were au-
tomatically processed with this set of grammar rules and a human annotator
completed the annotation of sentences manually in each iteration. To increase
the automatic annotation, we extracted the grammar rules applied manually

and iteratively augmented the seed grammar rules with the grammar rules ap-

5.6. SUMMARY 137

plied frequently in the manual annotation.

The results showed that the proposed method could steadily reduce human
intervention. It could be concluded that more seen contexts will result in more
grammar rule definitions and gradual reduction of human intervention for fur-

ther data annotation.

Chapter 6

Statistical Parsing of

Persian

6.1 Introduction

One usage of treebanks is to train statistical parsers to build a grammar model
and provide syntactic analyses for the new unseen data. In this chapter, we
mainly describe the basic NLP tools and the data used for this goal. The
tools are adapted to the Persian language when required. To represent the ad-
vantage of our developed treebank, this data set is converted into its parallel
dependency-based treebank. The converted data is then used for training de-
pendency parsers as well. The impact of the treebank annotation granularity
on parsing performance is also taken into consideration when training a parser.

This chapter contains seven sections. Sections @ and @ briefly explain the
basic properties of the NLP tools used for the rest of our study. These tools
are the TnT and Stanford POS taggers, the Berkeley and Stanford constituency
parsers, and the Malt and Mate dependency parses. Section @ describes the
data preparation steps for the constituency and dependency parsers. The data
can potentially have three dimensions of annotation granularity, namely the
lexical item, POS tag, and constituent label, which should be considered when
training the tools. These three dimensions are defined in Section @ In Sec-
tion @, we evaluate the performance of the parsers. Then, we study the effect
of the annotation granularity on parsing. To this end, we change the data format
from fine-grained to coarse-grained and compare the results. Since the parsers
are trained with a small amount of data, they suffer from the data sparsity
problem when used in a real application. The two levels for the data sparsity

problem are the lexical and syntactic construction levels which are studied in

139

6.2. POS TAGGING 140

more detail in Chapters H and E This chapter is summarized in Section @

The content of this chapter is mainly based on the following papers:

o Ghayoomi, Masood and Omid Moradiannasab (2012) “The effect of tree-
bank annotation granularity on parsing: A comparative study” In Pro-
ceedings of the 11th International Workshop on Treebanks and Linguistic
Theories, November 30-December 1, 2012, Lisbon, Portugal, pp: 109-114.

o Ghayoomi, Masood (2013) “Introducing a treebank and a statistical parser
for Persian” In Proceedings of the 8th Conference of the Iranian Linguistics,
February 13-14, 2013, Tehran, Iran, pp: 666—679.

o Ghayoomi, Masood and Jonas Kuhn (2014) “Converting an HPSG-based
treebank into its parallel dependency-based treebank” In Proceedings of
the 9th International Conference on Language Resources and Fvaluation,
May 26-31, 2014, Reykjavik, Iceland.

6.2 POS Tagging

POS tagging is the process of assigning a syntactic category to a word in its
local context. There are two challenges that statistical POS taggers should
usually deal with: (a) assigning a candidate POS tag to unknown words which
are unseen in the training data, and (b) disambiguating the correct POS tag of a
word if the word has more than one tag. Statistical methods are always sensitive
to the data. As a result, the amount of the training data, and the difference
between the training data and the test data are the variables that play important
roles in this task. In this study, we use two POS taggers, namely the TnT and
the Stanford POS taggers, that are described in this section.

6.2.1 TnT POS Tagger

The TnT POS tagger is developed by Brants (2000). This tagger is the im-
plementation of the Viterbi algorithm (Viterbi, 1967) for second order Markov
models. Moreover, a context-independent variant of the linear interpolation
smoothing method (Manning and Schiitze, 1999, p. 218) is used for dealing with
the data sparsity problem. To handle the problem for unknown words in in-
flected languages, the suffix analysis method proposed by Samuelsson (11994) is
used. In this method, the m last letters of a word are considered as a suffix and
they are removed from the word forms to determine the base form of the word.
To find the length of the suffix m, a maximum likelihood (Edwards, 1992) is
estimated according to the frequencies of affixes derived from the corpus. To

further reduce the data sparsity problem and improve the performance of the

6.3. PARSING 141

tagger, capitalization of the words is also taken into consideration in building
the statistical model. The NLTK Toolkitﬂ (Bird and Lopern, 2004; Bird et all,
2009) contains the Python implementations of the TnT POS tagger.

6.2.2 Stanford POS Tagger

The Stanford POS Taggera, developed at the Stanford Natural Language Pro-
cessing Group (SNLPG), is the Java implementation of a Maximum Entropy
(MaxEnt) tagger which learns the log linear conditional probability model from
a POS tagged text. A number of features are added to the feature set to handle
the data sparsity problem for unknown words ([Toutanova and Manning, 2000).

There exists a bi-directional dependency network tagger in the model which
takes the local context into account to assign a POS tag. In this tool, the re-
quired information is extracted automatically from the training data as features,
and it is used for tagging. Among the available options to extract the features,
empirically we found that bidirectional features have the highest impact on the
accuracy of the tagger for Persian words: the previous and the next word forms,
two previous and two next word forms, the previous and the next POS tags, the
current word form along with the POS tag of the previous and the next words,
and the previous and the next bigrams.

To handle the data sparsity problem for unknown words, maximally 6 char-
acters are determined as a prefix or suffix to realize the base form of a word. This
property of the tagger is similar to the method used in the TnT tagger (Brants,
2000) except that the length of the affix is a predefined number, such as 6

characters, rather than a parameter to be set automatically.

6.3 Parsing

As mentioned, statistical parsers require annotated data to build the grammar
model. The method used for creating this model has a direct effect on the

performance of the parser. To this end, we describe two tools in this section.

6.3.1 Berkeley Parser

The Berkeley paurserE is the Java implementation of an unlexicalized, constituency
parser developed in the Berkeley Natural Language Processing Group (Petrov
et al), 2006). This parser is a PCFG parser with latent annotation in the training

data to refine grammar induction automatically such that the two-step method

Thttp://nltk.org/
2http://nlp.stanford.edu/software/tagger.shtml
3http://nlp.cs.berkeley.edu/Software.shtml

http://nltk.org/
http://nlp.stanford.edu/software/tagger.shtml
http://nlp.cs.berkeley.edu/Software.shtml

6.3. PARSING 142

of ‘splitting” and ‘merging’ is used for non-terminal symbols to maximize the
likelihood (Edwardd, 1992) of the training data. The Viterbi algorithm ([Viterbi,
1967) is implemented inside the parser to find the best parse candidates. White-

space is used for tokenization.

6.3.2 Stanford Parser

The Stanford palrserE is the Java implementation of a lexicalized, probabilis-
tic natural language parser developed by SNLPG (Klein and Manning, 2003).
The parser is composed of a joint optimized PCFG and lexicalized dependency
parser, and a lexicalized PCFG parser. There is a module in the parser that
makes the parser able to learn the lexical items and to assign them POS tags
while parsing a raw text. The most important function of this module is to
calculate the probability of a word given its tag, P(word|tag), to let the parser
choose the best tag for the word in the local context, and utilize this probability
to find the best tree structure for a sentence. It should be added that the Max-
Ent POS tagger, described in Section , is implemented within the Stanford
CoreNLP package as well for assigning POS tags. In this parser, white-space is
used for tokenization. There is a built-in Viterbi algorithm (Viterbi, 1967) in
the parser to select the k best parse results (Huang and Chiang|, 2005). Follow-
ing the study of Colling (1999), heads have to be provided for the parser and
they play a major role in the chart parse.

The evaluation of the parsing result is done with EvadbE to report the stan-
dard bracketing metric results like precision, recall, and F-measure as well as
exact matching.

In the adaptation of the Stanford parser for Persian, we provide a head
table for the parser developed semi-automatically based on the head-daughter
relations defined in the treebank. To resolve the multi token problem and the
tokenization, we implement the pre-processing step described in Section

within the parser.

6.3.3 Malt Parser

The Malt paurserE is a data driven dependency parser that uses a transition-based
approach but not probabilities for dependency parsing (Nivre et al), 2006). The
inductive dependency parsing introduced by Nivrg (2005h) is implemented in
the parsing algorithm. A history-based feature model is also used for predicting

the next parser action. The embedded classifiers of the learning algorithm,

4http://nlp.stanford.edu/software/lex-parser.shtml
Shttp://nlp.cs.nyu.edu/evalb/
Shttp://www.maltparser.org/

http://nlp.stanford.edu/software/lex-parser.shtml
http://nlp.cs.nyu.edu/evalb/
http://www.maltparser.org/

6.4. DATA PREPARATION FOR PARSING 143

namely the Support Vector Machine (SVM) and large linear classification, use
the features that are extracted from the training data. The input data format
of this parser is the CoNLL 2006 shared taskﬂ.

6.3.4 Mate Parser

The Mate parserE is another data driven dependency parser that uses the MST
approach for dependency parsing (Bohnet, 2009). In the parser, the second or-
der MST parsing algorithm introduced by Eisner (1996) is implemented. The
exploited parsing algorithm is a bottom-up parsing algorithm which is similar
to the CKY chart parsing algorithm. In this parser, instead of computing prob-
abilities, syntactic and semantic features are extracted as vectors to be used by
the SVM classifier. The dependency score of a sentence is the sum of the scores
on all of the edges in that sentence, therefore no probability is used. The score
of the edge is the product of the feature vector representation for each edge with
a weight vector (Bohnet,, 2009). This parser is able to do semantic parsing as
well by assigning semantic role labels. The input data format of this parser is
the CoNLL 2009 shared taska.

6.4 Data Preparation for Parsing

In Section @, two types of statistical parsers were introduced: a constituency
parser and a dependency parser. In this section, we describe the data prepara-
tion steps for both types of the parsers.

6.4.1 Constituency-based Data

To prepare the required data format for the Berkeley and Stanford parsers, the
Persian treebank has to be normalized and converted from the XML format into
the plain text Penn Treebank style. To this end, several conversions are done
on the treebank. As said, Persian is a right-to-left language, and since neither
the Berkeley nor the Stanford parsers supports bidirectional parsing, we have
to convert the treebank into the left-to-right direction, similar to what is done
in the Penn Arabic Treebank experimentE without losing any information as

displayed in Figure .

"http://ilk.uvt.nl/conll/#task

8http://code.google.com/p/mate-tools/

http://ufal.mff.cuni.cz/conl12009-st/task-description.html
10http://www.ircs.upenn.edu/arabic/

http://ilk.uvt.nl/conll/#task
http://code.google.com/p/mate-tools/
http://ufal.mff.cuni.cz/conll2009-st/task-description.html
http://www.ircs.upenn.edu/arabic/

6.4. DATA PREPARATION FOR PARSING 144

Figures @ and ki.2 on the next page{ display the right-to-left and left-to-right

tree representations of Example @

(6.1) . Cewldisls 5g2g LB oS 35k |y g5 45 el ol Loty 90

born bedonbal-e in ast ke ¢iz-i ra
Born after-EZ this is that something-RES DOM
be-saz-ad ke gablan vojud na-daste-ast

SUBJ-create-3SG that before existence NEG-had-35G
‘Born is after this [namely] to create something that did not exist

before.

In this conversion, the constituents’ hierarchies have to remain unchanged.
Additionally, since we want to train the parsers with traceless trees, the ‘nid’
nodes must be removed from the trees. Before removing the nodes, the mother
node should rename as X —nid, where X is the label of the mother node. The
label ‘—nid’, which functions as a slashed element in HPSG, is propagated to the
parent nodes. The extraposed elements which are considered as slashed elements
are bound at the topmost node by the Head-Filler-Schema as represented in
Figure @

After converting the XML format of the trees into the plain text Penn Tree-
bank style displayed in Figure , the data is used for training
the constituency parsers. Moreover, in the normalization process, the following
information is lost from the original treebank: structure sharing, the links of the
extraposed elements to their associated canonical positions, the Pragmatic node,
the attributes and the values of named entities, lemmas, and the attributes for
determining types of ‘a5’ /ke/ ‘that’ and ‘ ./’ /-i/ and clitics. Since it is possible
for white-spaces to be used between the elements of a word, the white-spaces
are replaced with ‘—s—’ to recognize multi tokens as one unit and to solve the
tokenization problem.

In the treebank, a hierarchical analysis is provided for coordination phrases.
To be more precise in the analyses of this syntactic construction, we add a
functional label to the symmetric coordination phrase to determine the type of

the coordination phrase according to its dependents.

6.4.2 Dependency-based Data

To train the dependency parsers, we need a dependency treebank. Despite
the existing Persian dependency treebanks, namely UPDT and PDT developed
by Seraji et al| (2012a) and Rasooli et al} (013) respectively, there are reasons
that motivated us to use our treebank to train a dependency parser.

One major advantage of our treebank is the ease with which it can be con-

verted to another grammar formalism, such as a dependency grammar. We aim

6.4. DATA PREPARATION FOR PARSING 145

Figure 6.2: Left-to-right tree representation of Example @

6.4. DATA PREPARATION FOR PARSING 146

Figure 6.3: Traceless left-to-right tree representation of Example @

(S
(VPF
(VPS-nid
(Nasp--- cus)
(VPC-nid
(PPC-nid
(Ez 4-s-Ju)
(NPC-nid
(Zms----- &)))
(Vpykshs---- <ud)))
(DiscE
(CLR
(JI- 45)
(VPF
(VPSD-nid
(VPC-nid
(NPC-nid
(NPC
(Ncsp--y s 32)
(P1))
(Vpyssh--u-- 3ls)))
(DiscE
(CLR
(JI- <)
(VPSD
(VPA
(Dgp-t-- %)
(MV
(Ncsp--- 252)
(00 J) (Vnysshsf--- ads-s-cud))))))))))
e.

Figure 6.4: The Penn Treebank style for tree representation of Example @

6.4. DATA PREPARATION FOR PARSING 147

Algorithm 2 Converting a constituency treebank into a dependency treebank

Input: A tree of a sentence from the HPSG-based treebank for Persian,
The Head Table (HT),
The modified version of Dependency Relations (DR) based on the Stanford
Typed Dependencies (de Marneffe and Manning, 2008)
if Projective option selected then
repeat
Stepl: Traverse the tree to find a pair of sibling leaves
Step2: Select the head node of the sibling leaves based on HT
Step3: Detect the DR between the sibling leaves based on the head-daughter
dependency relations
Step4: Write the corresponding DR according to the CoNLL format
Step5: Remove both of the leaves and transfer the head information to the
parent node
until The tree root node is met
else if Non-projective option selected then
repeat
Do Stepl
if The parent node has a slashed element then
Transfer the information of the leaf node along with the slashed element to
the parent node as ‘np-head’
else if The parent node has the Head-Filler relation then
Use the ‘np-head’ of the leaf node with a slashed element instead of the head
end if
Do Steps 2 to 5
until The tree root node is met
end if
Write the ROOT relation for the head of the tree
Sort the CoNLL format according to the sequence of the words in the input sentence

at showing this advantage practically. To this end, we reformat the XML data
format into the CoNLL shared task format in such a way that each lexical entry
of the sentence is on one line and its relevant morpho-syntactic and semantic
information is organized in separate columns (10 columns in the CoNLL 2006
data format, and 14 columns in the CoNLL 2009 data format). Algorithm E
is employed to convert our constituency treebank into its parallel dependency
treebank.

In the conversion process, we employ a depth-first searching approach to
identify the constituents. In this process, each tree is traversed to find sibling
leaves. A dependency relation is defined for each pair of sibling leaves in which
the head of the pair is determined in a head table. The head table is provided
by extracting the grammar rules from the original treebank. After defining each
pair of sibling leaves as a dependency relation, the leaves are removed, and the
information of the head node is transferred to the parent node. The process of
removing the leaves in each step produces new leaves which are in fact the old
parents, and they must be processed in the next steps. The conversion steps

continue in a loop to process all nodes of the tree, and the algorithm halts when

6.4. DATA PREPARATION FOR PARSING 148

the root of the tree is reached.
Since the positions of the extraposed elements as slashed elements are de-

3

termined in the trees (displayed by the ‘—nid’ functional label on trees) and
they are bound at the topmost node by the Head-Filler-Schema, it is possible
to convert the projective trees into non-projective trees. After traversing a tree
to find a pair of sibling leaves, if a parent node contains a slashed element, the
information of the slashed element in addition to the head node is transferred to
the parent node. To draw a non-projective tree, it is important to keep the in-
formation of the leaf node that has a slashed element. This information, which
is related to the head of a non-projective tree, is temporally kept in a vari-
able, which we called it ‘np-head’, and it is transferred to the upper nodes until
the Head-Filler relation is met. By binding the slashed element, the ‘np-head’
information is retrieved, and it is used for defining the dependency relation.

In the dependency conversion, besides defining the dependents, the types of
dependencies should be defined. Contrary to the constituency-based treebanks,
which consist of intermediate nodes that contain the type of the dependency
relations, in the converted dependency-based treebank no intermediate node
exists. Consequently, we modify the Stanford Typed Dependencies (de Marneffe
and Manning, 2008) and exploit the modified version to define the types of
the dependency relation in our dependency-based treebank instead of the basic
dependency relations in the original treebank. Appendix E demonstrates the
hierarchy of the defined dependency relations in the dependency conversion.

In the conversion, we rely only on the linear word order without inserting

any empty categories like ellipses or traces. Figures @ and b.6 on the next page

display the projective and non-projective dependency trees of Example M
respectively. For convenience, this example is repeated in Example @
The non-projective equivalent data formats based on the CoNLL 2006 and 2009
shared tasks are represented in Figures @ and @@

11 Each column of the CoNLL 2006 and 2009 data format contains certain information in-
troduced as follows: ID contains the index of the word in the linear order; FORM contains
the word form; LEMMA contains the lemma of the word; CPOSTAG contains the coarse-
grained POS tag; FPOSTAG contains the fine-grained POS tag; FEATURE contains morpho-
syntactic features; DEPREL contains the dependency relation; HEAD contains the index of
the word that functions as a head; PHEAD contains the projective head; PDEPREL contains
the dependency relation to the projective head; PL contains the predicted lemma; PT con-
tains the POS tag; PPT contains the predicted POS tag; F contains features; PF contains the
predicted feature; PH contains the predicted head; PDR contains the predicted dependency

relation; SR contains the semantic role; PSR contains the predicted semantic role.

6.4. DATA PREPARATION FOR PARSING 149

(6.2) Conlanslas 599 W3 oS 35lus | (s o5 ol ol JLisas 90

born bedonbal-e in ast ke ¢iz-i ra
Born after-EZ this is that something-RES DOM
be-saz-ad ke gablan vojud na-daste-ast

SUBJ-create-3SG that before existence NEG-had-3SG
‘Born is after this [namely] to create something that did not exist

before.

PUNC

ROOT

RELSUBJ NSUBJ

RELSUBJ

BoB) OPCOMP

ACC POBJ

N

sl 3525 s Ry (e I Sr Ry ol o JUsa Ry

Figure 6.5: Projective dependency relation of Example @

PUNC

RELSUBJ NSUBJ

TMOD

TwWE

ol Se2g s o o5les h S o O o Jlssa e

Figure 6.6: Non-projective dependency relations of Example @

ID FORM LEMMA CPOSTAG FPOSTAG FEATURE HEAD DEPREL PHEAD PDEPREL
1 o 37 N Nasp--- asp--- 4 NSUBJ _ _
2 Jlse Jla E Ez z 4 COPCOMP -
3 ol ol Z Zms----- ms----- 2 POBJ
4 ol 0% v Vpykshs---- pykshs---- 0 ROOT
5 & as J Jl- I- 8 RELSUBJ
6 Sz o N Nesp--y csp--y 8 DOBJ _ o
70 i P P B 6 ACC _ _
8 ojles ol \Y% Vpyssh--u-- pyssh--u-- 3 COMP _
9 & & J J- I 12 RELSUBJ B B
10 W s D Dgp-t— gp-t— 12 TMOD _ _
11 5929 S99 N Nesp--- csp-—- 12 MWE
12 cuwlesls il v Vnysshsf-—- nysshsf-—- 6 COMP
13 (0] Oe e 4 PUNC

Figure 6.7: CoNLL 2006 non-projective dependency format of Example @

ID FORM LEMMA PL PT PPT F PF HEAD PH DEPREL PDR SR PSR
LT % N _ asp-- o 4 _ NSUBJ -
2 Jlisa Jlssas E oz _ 1 _ COopCOMP _ _
3 o o oz me— 2 ~ POBJ -
4 el 0% _ v _ pykshs---- 0 _ ROOT o o _
5 a5 as 1 IS _ 8 _ RELSUBJ _ _
6 Sz jocs o N o csp--y o 8 _ DOBJ o .
7, i P 6 ACC
8 ol oSl v pyssh--u-- 3 COMP
9 « as o J o 1- o 12 _ RELSUBJ - -
10 S s D gpte B 12 ~ TMOD -
11 ey Sz _ N _ csp— _ 12 _ MWE _ _
12 cuwlasls ouals _ A _ nysshsf-—- 6 __ COMP _ _
13 O e 4 PUNC

Figure 6.8: CoNLL 2009 non-projective dependency format of Example @

6.4. DATA PREPARATION FOR PARSING 150

In the followings, the general properties of the Persian dependency tree-
banks, such as the UPDT developed by Seraji et al| (20124) and the PDT
developed by Rasooli et al) (2013) are briefly described, and they are compared
with our converted dependency-based treebank. In the comparison, we focus on
the following properties: the size of the treebanks, the number of the defined
dependency relations, the projectivity of trees, and the syntactic properties,
such as POS tags, lemmatization, clitics, multi tokens, determiner phrases, and

coordination phrases along with their corresponding annotation schemes.

Treebank Quantity and Dependency Relations: currently our treebank
contains 1,028 sentences (27,026 word tokens), and 49 labels are used for defin-
ing the dependency relations in the sentences. We modified the Stanford Typed
Dependencies (de Marneffe and Manning|, 2008) and utilized the modified ver-
sion to define the dependency relations in our treebank. The current online
release of UPDT contains 6,000 sentences (151,671 word tokens). The depen-
dency relations are defined by 102 labels in this treebank. The dependency
relations defined in this treebank are also a modified version of the the Stan-
ford Typed Dependencies (de Marneffe and Manning, 2008). The PDT contains
29,982 sentences (498,081 word tokens), and 46 labels are used for defining the

dependency relations.

Projectivity vs Non-projectivity : our dependency treebank can have both
projective and non-projective trees for discontinuous constructions, whereas only

non-projective analyses exist in the UPDT and the PDT .

POS Tag and Lemmatization: in the three treebanks, morpho-syntactic
information of the words is available, but they differ in the degree of granularity
of the information. Our treebank contains more fine-grained POS tags than
the other two treebanks. In terms of the availability of lemma information, our
treebank and the PDT contain lemmas, but the words in the UPDT are not

lemmatized.

Clitic: in our treebank, the morpho-syntactic information of Ezafe and the
post-nominal indefinite determiner are defined in the POS tags of hosts, but
this information is overlooked in the UPDT and the PDT. In our treebank,
we provide accurate syntactic analyses for possessive and object clitics as well
as copulative verb clitics by splitting them from their hosts, as described in
Section , whereas in the UPDT and the PDT no analyses are provided for
the clitics, and in their analyses, the dependency relations are provided for the

host and these clitics are not analyzed accurately.

6.5. ANNOTATION GRANULARITY FOR PARSING 151

Multi tokens: our treebank provides an internal syntactic analysis for the
light verb construction, while light verb constructions are mostly considered as
one token in the PDT except the ones that there is a long distance between the
pre-verbal element and the light verb. In these cases, the pre-verbal element

dominates the intervening elements as its argument.

Determiner Phrase: in the annotation scheme of our treebank, a determiner
is the head of a determiner phrase, but this is not the case in the UPDT and

the PDT where a noun is the head. Figure b.9 on the next page{ illustrates the

dependency tree of Example @ based on our annotation scheme where a deter-
miner is the head. Figures and illustrate the analyses of Example @
according to the annotation scheme of Seraji et al] (2012a) and Rasooli et al.
(2013).

Coordination Phrase: a coordinator is the head of a coordination phrase in
the annotation scheme of our treebank, as represented in Figure @, whereas in
the UPDT, a coordinator is not a head at all, and in the PDT, a coordinator is

the head of the sister element. Figures and illustrate the annotation
scheme of a coordination phrase in the UPDT and the PDT, respectively.

(6.3) The boy ate the apple and the orange.

6.5 Annotation Granularity for Parsing

The state-of-the-art statistical parsers trained with treebanks (Collins, 1999;
Charniak, 2000) are mainly developed based on PSG. The POS tags of the
words in the treebanks are defined according to a tag set which contains the
syntactic categories of the words with the optional morpho-syntactic informa-
tion. Moreover, the constituent labels in treebanks might also be enriched with
syntactic functions. The developed annotated data in the framework of a deeper
formalism, such as HPSG, provides a fine-grained representation of the linguis-
tic knowledge. The performance of the parsers trained with such fine-grained
information has not beaten the state-of-the-art results (Miyad, 2006) due to the
complexities that are added to the parsers. We believe that different dimen-
sions and levels of the annotation granularities affect the parsing performance.
To study this assumption, we consider three dimensions, namely lexical item,
POS tag, and constituent label, and the two levels of fine- and coarse-grained

annotations.

6.5. ANNOTATION GRANULARITY FOR PARSING 152

PUNC

ROOT

SUBJ

TCOMP ETCOMP DETCOMP

The boy ate the apple and the orange

Figure 6.9: Dependency representation of Example @ according to our anno-
tation scheme

PUNC

ROOT

The boy ate the apple and the orange

Figure 6.10: Dependency representation of Example @ according to
ﬁl@lQ

() annotation scheme

PUNC

The boy ate the apple and the orange

Figure 6.11: Dependency representation of Example @ according to
t al) (R013) annotation scheme

6.5.1 Lexical Item

The words of a language represent fine-grained concepts, and they play a very
important role in lexicalized, statistical parsers. Since the sparseness of data is
the biggest challenge in data oriented parsing, statistical parsers will perform
poorly if they are trained with a small set of data, or when the domain of the
training and the test data is not similar. To represent coarse-grained concepts, a
clustering approach is proposed in Chapter H to handle the data sparsity problem
at the lexical level. In Section , we will study the impact of coarse-grained

representation of lexical items on parsing.

6.6. EVALUATION 153

6.5.2 POS Tag

The syntactic categories of words at the sentence level are the very basic lin-
guistic knowledge that the parser learns. Therefore, they play a very important
role for of a parser. The quality of the assigned POS tags to the words and
the amount of information that they contain have a direct effect on the per-
formance of the parser. The representation of this knowledge can be either
coarse-grained, such as Noun, Verb, Adjective, etc., or fine-grained to contain
morpho-syntactic and semantic information, such as Noun-Single, Verb-Past,
Adjective-Superlative, etc. The fine-grained representation of the POS tags in-
creases the tag set size and intensifies the complexity of the tagging task for a
statistical POS tagger to disambiguate the correct labels. Moreover, it provides
detailed information for the parser which can help the parser to provide more

accurate analyses of sentences.

6.5.3 Constituent Label

Depending on the formalism used as the backbone of a treebank, the labels of
the nodes at the phrasal level can be either fine- or coarse-grained. The an-
notated data in the Penn Treebank (Marcus et all, 1993) provides relatively
coarse-grained constituent labels in which mostly the types of the phrasal con-
stituents like NP, VP, etc. are determined. However, in the latest version of the
Penn Treebank, the syntactic functions are added to the labels as well, but this
information is not available for all nodes. In contrast, annotated data developed
based on a deep formalism like HPSG, such as the BulTreeBank (Simov et all,
2004), provides fine-grained representations of constituent labels since the types
of head-daughters’ dependencies are defined explicitly for all nodes. Represen-
tation of dependency information on constituents adds complexities to a parser
for disambiguating the type of the dependency relation as the size of the con-
stituent label set increases. This information, however, can be very helpful for

applications that require more fine-grained analysis of the syntactic relations.

6.6 Evaluation

6.6.1 Experimental Setup

Parsers can potentially be used and evaluated in three different scenarios: (a) us-
ing raw sentences, (b) using POS tagged sentences which are tagged with an
external POS tagger, or (c) using sentences with the assigned gold POS tags.
In the following, the empirical results of the constituency parsing scenarios, as

well as the dependency parsers are reported and discussed. In Section , a

6.6. EVALUATION 154

number of parsing evaluation metrics were introduced. Among them, we use
the labeled PARSEVAL metric, EM, and LA for evaluating the performance of
the constituency parsers. The labeled- and unlabeled attachment metrics are
used as the evaluation metrics for the dependency parsers. Additionally, the
obtained results for studying the impact of annotation granularity on parsing
are reported and discussed.

Since there is no further gold standard data to evaluate the parsing perfor-
mance, we divide the sentences in our developed treebank into non-overlapped
training and test sets, without filtering the sentences in terms of their length.
To this end, 10-fold cross validation is used such that in each fold only 10% of
the treebank is considered as test data and the remaining as training data.

Since the treebank is small, a parser will face the data sparsity problem for
unknown words. Smoothing methods (Manning and Schiitzd, 1999, pp. 196-221)
can be used to handle this problem. In all of our experiments, no smoothing
technique is used so as to have reliable performance and to be able to compare
the performance of the parsers.

One problem that the parsers has is that they do not handle ellipses. Even
though these elements exist in training data of the constituency parsers, none
of them are able to predict and insert ellipses. Consequently, the sentences that
contain ellipsis (7% of the data) are excluded in the evaluation of the parser
performance and the reported results are based on the remaining data (93% of
the data).

6.6.2 Results and Discussion
Constituency Parsing: Scenario I

In Scenario I, raw sentences are used as input; i.e. no POS tags are assigned to
the input data. The parser first must use a built-in POS tagger trained with the
treebank data to assign POS tags to the words, and then it performs parsing.
In a real application, usually, the parsing model in Scenario I is used. The

performance of the Berkeley and Stanford parsers is reported in Table @

Table 6.1: Parsing accuracy using raw data

’ Tool \ F-measure \ Precision | Recall \ EM \ LA ‘
Berkeley Parser 54.95 55.15 54.76 | 5.219 | 81.57
Stanford Parser 46.90 46.93 46.86 3.229 | 82.11

As can be observed from the results, in Scenario I the Berkeley parser out-
performs the Stanford parser in F-measure, while the Stanford parser has a

slightly higher performance based on the LA measure.

6.6. EVALUATION 155

Table 6.2: Test data information

Granularit Num. of Num. of Num. of Num. of

Y | POS Labels | Word Types | Word Tokens | Unknown Words
fine 248 5700 27026 513
coarse 15

Table 6.3: Tagging accuracy of the TnT and Stanford POS taggers

| Tool | Granularity | Accuracy (%) |
fine 81.48
T coarse 95.70
fine 95.90
Stanford coarse 98.38

After checking the number of sentences parsed by the parsers, we realized
that out of 1,028 sentences, the Stanford parser parsed all of the sentences,
but the Berkeley parser parsed around 90% of the data (920 sentences), which
demonstrates that the Stanford parser is more robust to be able to provide

analyses for all sentences.

Constituency Parsing: Scenario II

Although Persian suffers from a lack of available treebanks for parsing, there is
a large amount of POS tagged data that can be used for training POS taggers
and creating more accurate tagging models to achieve a higher performance. In
Scenario II, raw sentences are first POS tagged by an external POS tagger, then
the output of the tagger is used as the input to the parser in a pipeline.

For tagging, we first train the TnT and Stanford POS taggers with the Bi-
jankhan Corpus (Bijankhan, 2004) and test them with the sentences in our
treebank. The shared data between the Bijankhan Corpus and the treebank
is excluded from the training data so as to have no overlap between the test
and training data. The information about the test data is summarized in Ta-
ble @ The accuracy of both the TnT and Stanford POS taggers are reported
in Table @

To study the impact of the annotation granularity on POS tagging described
in Section , the fine-grained POS tags of both training and test data are con-
verted into coarse-grained POS tags and the tools are retrained and evaluated.
As shown in the results, coarse-grained POS tagging obtains higher accuracy
than the fine-grained POS tagging. This determines that the complexity of
fine-grained annotation has a negative effect on the performance of the POS

tagger. Comparing the results of the taggers, it can be observed that the Stan-

6.6. EVALUATION 156

Table 6.4: Parsing accuracy tested on the output of the tagger

’ Tool \ F-measure \ Precision \ Recall \ EM \ LA ‘
Berkeley Parser 57.59 57.53 57.66 6.9 81.90
Stanford Parser 52.43 52.56 52.30 | 4.167 | 82.30

Table 6.5: Parsing accuracy with gold POS tags

’ Tool F-measure | Precision \ Recall \ EM \ LA ‘
Berkeley Parser 62.27 62.25 62.28 | 8.485 | 83.51
Stanford Parser 59.42 59.44 59.40 5 85.65

ford tagger has outperformed the TnT tagger in both coarse- and fine-grained
tagging.

Since in HPSG lexical knowledge plays a very important role, we use the
Stanford tagger with fine-grained POS tags in our next experiments. In the
parsing step, the constituency parsers are trained with the treebank to build
the grammar model. Table @ represents the performance of the parsers. In
Scenario II, the Berkeley parser outperforms the Stanford parser in F-measure,
while the Stanford parser has a slightly higher performance based on the LA
measure. Checking the output of the parser, we realized that the Berkeley
parser was able to parse around 91% of the test data (927 sentences), while the

Stanford parser provided analyses for all sentences.

Constituency Parsing: Scenario ITI

When we checked the output of the parsers in Scenario II, we found that the
low performance of the POS tagger has a negative impact on parsing due to the
errors in the POS tags assigned to both known and unknown words. Since the
assigned incorrect POS tags propagate in the parsing step, the accuracy of the
parser reduces. We experiment with another scenario (Scenario III) in which
the sentences with the assigned gold POS tags are given to the parsers and the
parsers are forced to use these POS tags. The performance of the parsers based
on Scenario IIT is reported in Table @ As can be observed, the parsing model
in Scenario I1I outperforms Scenarios I and IT which determines the importance
of the quality of the assigned POS tags and also the accuracy of the tagger. To
avoid the negative impact of tagging on parsing, and to only focus on parsing
in our study, we use the gold POS tags in training data for the rest of our
experiments.

Although, in general, the performance of the Berkeley parser is better than

the Stanford parser, the Berkeley parser has a poor performance using the LA

6.6. EVALUATION 157

Table 6.6: Dependency results of the constituency parsers

Labeled Unlabeled

Learning Scenario Tool Attachment | Attachment
Scenario I Berkeley Parser 59.63 67.63
Stanford Parser 56.75 65.74
Scenario 11 Berkeley Parser 63.06 70.39
Stanford Parser 57.58 66.55
Scenario 11 Berkeley Parser 66.96 73.36
Stanford Parser 63.69 72.44

metric in the three parsing scenarios. This difference indicates that the errors
on choosing the constituent labels by the Berkeley parser is higher than the
Stanford parser. This means that the output of the Berkeley parser compared
with the gold data requires a higher degree of editing. Kiibler et al| (2008)
had a similar finding when they compared the performance of three constituent
parsers trained with two German treebanks.

After checking the number of parsed sentences for each parser, we realized
that out of 1,028 sentences, around 90% of the data (920 sentences) is parsed by
the Berkeley parser which shows that due to the small amount of the training
data, the parser is not robust enough to provide analyses for all sentences. In
contrast, the Stanford parser is a robust parser which provided parse trees for all
of the sentences. Although the F-measure of the Berkeley parser is higher than
the Stanford parser, the robustness of the parser is very important for further
steps of our task, especially the application of the parser for active learning
described in Chapter E Therefore, we chose the Stanford parser as the parsing

tool for the rest of our experiments.

Dependency Evaluation and Parsing

In Section , we discussed a dependency-based evaluation metric to evaluate
the performance of a constituency parser by converting the constituency trees
into dependency relations. To evaluate the performance of the constituency
parsers in Scenarios I, II, and III described above, we convert the output of the
parsers as well as the test data into their parallel dependency relations by using
Algorithm , and then we evaluate the performance of the parser
based on the dependency relations. Since the constituent trees are projective,
in the dependency evaluation we also use projective trees. Table @ represents
the dependency evaluation of the trees in Scenarios I, II, and III.

In the model proposed in Chapter E, we require a dependency parser for a
part of our study. Therefore, we need to train a dependency parser by convert-

ing the constituency treebank into its parallel dependency treebank using the

6.6. EVALUATION 158

Table 6.7: Dependency parsing results by using gold POS tags

Tool | Proiectivit Labeled Unlabeled
J Y | Attachment | Attachment
projective 77.07 82.63
Malt | on-projective 76.63 82.04
projective 80.21 84.86
Mate non-projective 80.17 84.38

Algorithm . The converted data, containing either projective or

non-projective trees along with gold POS tags, is used for training and testing
the Malt and Mate dependency parsers. Table @ reports the performance of
both dependency parsers as the upper bound with projective and non-projective
trees.

As can be observed, the Mate parser outperforms the Malt parser in both
projective and non-projective trees. Additionally, both of the parsers achieve
higher performance when the attached dependencies are unlabeled. Compar-
ing the results of the parsers in terms of projectivity, the performance of both
parsers is to some extent decreased in non-projective parsing mode. It must
be mentioned that 0.8% of the dependency relations in our dependency-based
treebank are non-projective which have a slight negative impact on the over-
all performance of the parser compared with the parser trained with projective

trees. We use the projective Mate parser for our experiments in Chapter E

Annotation Granularity Results

Section @ described three possible annotation dimensions for parsing. In the
following, we describe the data preparation and the experimental setup to study
the effect of each annotation dimension on parsing performance.

To provide a coarse-grained representation of morpho-syntactic information
of words, only the main POS tags of the words (15 POS tags) are used rather
than all the information available in the POS tags. To provide simple head-
daughter relations as coarse-grained constituent labels, only the type of the
dependency relations from the constituency-based data are removed like the
dependency labels for Head-Adjunct and Head-Complement relations as well as
the type of clauses, without any changes on other head-daughter relations.

In the first step of our experiments, we train the Stanford parser with our de-
veloped treebank without any changes on its annotation granularity (Model 1),
and we consider it as the baseline. To further study the effect of each anno-
tation dimension, we do our experiments in three steps such that in each step

only one dimension is focused on. The fine- vs coarse-grained granularities at

6.6. EVALUATION 159

Table 6.8: Parsing results for applying different annotation dimensions using
gold POS tags where L stands for ‘Lexical Item’, T for ‘POS Tag’, C for ‘Con-
stituent Label’ (The differences are statistically significant according to 2-tailed
t-test (p < 0.01))

Model AEnotati;n Dim(glsion F-measure | Precision | Recall | EM LA
Model 1 | Word Fine Fine 59.42 59.44 59.40 | 4.992 | 85.65
Model 2 | Word Coarse Fine 47.38 47.39 47.37 | 4.046 | 80.64
Model 3 | Word Fine Coarse 61.26 61.26 61.25 8.35 | 86.34
Model 4 | Word Coarse Coarse 48.25 48.27 48.23 | 5.811 | 81.48

each of the annotation dimensions result in four possible configurations of which
the obtained results are reported in Table @ The differences between the per-
formance of the models are statistically significant according to 2-tailed ¢-test
(p < 0.01). The effect of annotation granularity at the lexical level is studied
further in Chapter H

To find out the effect of detailed morpho-syntactic information on parsing,
we build a model that its POS tags are coarse-grained but its lexical items
and constituent labels are fine-grained (Model 2). Comparing this model with
the baseline, there is a significant drop on the performance of the parser which
indicates that the detailed morpho-syntactic information in the POS tags plays
a very important role on parsing. Even though fine-grained POS tags increase
the complexity of the tagging task as observed in the accuracy of the taggers,
they have a positive impact on the parsing performance because of using detailed
information for defining the dependencies.

To study the effect of the HPSG-based annotation on parsing, we build a
model in which the constituent labels are coarse-grained, but the lexical items
and the POS tags are fine-grained (Model 3). The results indicate that identify-
ing the type of head-daughter dependencies is a hard task for a statistical parser,
since the number of constituent labels in the HPSG-based treebank is higher
than the simple labels in a treebank developed based on PSG. This might be
the main reason that parsers trained with the data based on PSG have a higher
performance and wider usage for NLP applications than the ones trained with
the data based on the HPSG-based annotation. However, it must be empha-
sized that coarse-grained annotation loses valuable linguistic information that
resembles the lexical semantic information. Simplifying the parsing complexity
by using coarse-grained constituent labels is useful for applications that require
simple syntactic analyses of sentences; whereas the semantic information mod-
eled in the HPSG-based data set is valuable for applications, such as semantic
role labeling, which need a deep analysis.

In Model 4, both of the POS tags and the constituent labels are coarse-

6.7. SUMMARY 160

grained and only the lexical items are fine-grained to study the effect of the
interaction between POS tags and constituent labels. As can be seen, this
model does not beat the baseline which indicates that there is a positive inter-
action between the POS tags and the constituent labels. The obtained results

determine that losing detailed information has a negative impact on parsing.

6.7 Summary

In this chapter, we mainly introduced the NLP tools and the data required for
our study. In the first run of our experiments, we assumed a real application
by training the Stanford POS tagger with the Bijankhan Corpus and training
the constituency parsers with our developed treebank. The obtained results
showed the negative impact on parsing caused by the POS tagger. Two other
parsing scenarios were proposed among which the one that used the gold POS
tags was employed for the rest of the experiments to reduce the interfering of
POS tagging on parsing. We experimentally found that the Stanford parser,
which is a robust constituency parser, is a good choice for our further studies
and experiments. In the next step of parsing, the constituency treebank was
converted into its parallel dependency-based treebank to train and evaluate two
dependency parsers. We use the dependency parsing in Chapter E Furthermore,
we studied the impact of the treebank annotation granularity on parsing to
demonstrate that the performance of the parser depends on other factors in
addition to the size of the training data. To reduce the data sparsity problem,

we propose two machine learning methods discussed in Chapters H and B

Chapter 7

Class-based Parsing

7.1 Introduction

Statistical parsers are very sensitive to the data they are trained with. The
main problem with these parsers is that they require a large amount of data to
create an accurate grammar model, therefore it is very difficult to build an accu-
rate model confronted with sparseness of data. Additionally, it is very likely to
encounter unknown words while parsing in a real application. Word clustering
has caught attention in NLP to represent more coarse-grained concepts in place
of the words themselves. In this approach, similar words are grouped together
in one cluster according to a similarity metric. The words are clustered in an
off-line process based on their occurrence in an unannotated corpus using an
unsupervised method. In our study, we use the Brown word clustering algo-
rithm (Brown et all, 1992), which is a bottom-up hard clustering algorithm,
to reduce the data sparsity problem. In this chapter, we describe this clus-
tering method and study its impact on reducing the data sparsity problem at
the lexical level in parsing. We further investigate the effect of the annotation
granularity on class-based parsing.

This chapter contains seven sections. Section @ proposes class-based pars-
ing to reduce the data sparsity problem. The Brown word clustering algorithm
is then described in Section E Section @ proposes an extended version of the
normal Brown word clustering to deal with homographs. The performance of
our proposed class-based model is compared with the normal Brown word clus-
tering and the word-based model as the baselines in Section @ Furthermore,
other aspects of the annotation granularity that affect parsing performance are
studied and evaluated in Section @ This chapter is summarized in Section @

161

7.2. PROPERTIES OF THE CLASS-BASED MODEL 162

The content of this chapter is mainly based on the following paper:

o Ghayoomi, Masood (2012) “Word clustering for Persian statistical pars-
ing”. In Advances in Natural Language Processing, editors Hitoshi Isahara
and Kyoko Kanzaki, volume 7614 of Lecture Notes in Computer Science:
JapTAL ’12: Proceedings of the 8th International Conference on Advances
in Natural Language Processing, pp: 126-137. Springer Berlin Heidelberg.

o Ghayoomi, Masood and Omid Moradiannasab (2012) “The effect of tree-
bank annotation granularity on parsing: A comparative study” In Pro-
ceedings of the 11th International Workshop on Treebanks and Linguistic
Theories, November 30-December 1, 2012, Lisbon, Portugal, pp: 109-114.

7.2 Properties of the Class-based Model

lRokach and Maimod (bOOd) identified two major clustering methods: (a) hierar-
chical clustering in which there is taxonomy on the clusters by using bottom-up

or top-down clustering techniques, such as hierarchical agglomerative clustering
and hierarchical divisive clustering, and (b) partitioning clustering, which is a
flat clustering method with or without any overlap on the clustered data, such

as the k-means clustering algorithm (NacQueea, 1961)

lBrown et all (h992|) pioneered the use of the word clustering method and

its application for language modeling. They used a hierarchical bottom-up ap-
proach for this goal. Later on, word clustering was widely used in various
NLP applications including parsing (IKOO et alj, lZOOﬂ; bandito and Crabbd,
IZOOd; bandito and Seddaﬂ, l201d; |Candit0 et alJ7 lZOl]J), word sense disambigua-
tion (@,), automatic thesaurus generation (lHodge and Austid, lZOOQI), ma-
chine translation (Uszkoreit and Brants, 2008), sentence retrieval (
, M), named-entity tagging (|Miller et alj7 l2004|), language model adap-
tation (IKneser and Peteré, |1997|), speech recognition (ISamuelsson and Reichi7
), query expansion (IAono and Doil, l2()05|), and text categorization (
ot all, 2004).

Word clustering has advantages and disadvantages. One of the advantages of

word clustering is that it reduces the data sparsity problem. Hence, if a word in
the training data is not seen but its mapped class is met, then the performance of
the system will not drop due to the sparseness of data and encountering unknown
words (the out of the vocabulary problem). This approach is very effective,
especially when the genre and domain of data change. Another advantage of
word clustering is its flexibility to capture different features like semantic or
syntactic properties of words by employing different word clustering algorithms.

Since our aim is to group words with similar syntactic and semantic behavior,

7.2. PROPERTIES OF THE CLASS-BASED MODEL 163

this flexibility gives us the opportunity to choose an algorithm which captures
the syntactic and semantic similarities of words to be used for parsing. Assuming
that the word clustering algorithm clusteres the words of a text accurately, it
is obvious that there is a clear relationship between the words belonging to
the same cluster. Example @ shows instances of word clusters created by the

Brown algorithm (Brown et all, 1992) for Persian.

(7.1) CLUSTER-I CLUSTER-II ~ CLUSTER-III
el =St Slosge s
/porxatartarin/ /pakizegi/ /farmude?id/
‘the most dangerous’ ‘cleanness’ ‘have prescribed’
ool - s S
/Somalitarin/ /bastani/ /kardeast/
‘the most Northern’ ‘ice-cream’ ‘has done’
Onfend =) xlos S
/zaliftarin/ /zibayi/ /kardeand/
‘the weakest’ ‘beauty’ ‘have done’

The word clusters help us to find the set of terms that are syntactically and
semantically related to each other. If only one of the words from a cluster ap-
pears in the training data, the statistical parser can parse the input sentences
which contain other words of the same cluster, even though these words do not
exist in the training data. For example, if the word ‘i ,a>,,’ /porxatartarin/
‘the most dangerous’ has been seen in the training data and this word creates a
noun phrase with the word ‘e’ /masir/ ‘path’ as ‘,uwe oy ,5,0s " /porxatar-
tarin masir/ ‘the most dangerous path’, the class-based model is able to parse
sentences that contain the word ‘cy 5 Jleis’ /Somalitarin/ ‘the most Northern’
which is unseen in the training data but belongs to the same cluster of ‘ s 5 oz’
/porxatartarin/ ‘the most dangerous’ Consequently, it can combine with the
term ‘,es’ /masir/ ‘path’ to create a constituent like ‘s oy Jlois’ /Somali-
tarin masir/ ‘the most Northern path’

The disadvantage of word clustering is that different syntactic behaviors of
homographs are not distinguished, and they are grouped in one cluster. This
problem might have a negative effect on applications like parsing. To reduce the
problem of mis-clustering homographs when using a hard clustering approach,
we extend the normal Brown word clustering algorithm described in Section
to recognize homographs distinctly. Furthermore, a soft clustering approach
may sound a good solution to overcome this problem as well, but Dhillon et al,

(2002) showed that the overall performance of hard clustering is still better than

7.3. WORD CLUSTERING WITH THE BROWN ALGORITHM 164

soft clustering.

When the clustering approach is used for the parsing application, two parsing
models, namely word- and class-based parsing, can be created. In word-based
parsing, the parser is trained with the treebank containing the words with their
associated POS tags and the syntactic annotations. Class-based parsing is per-
formed in two steps. In the first step, all lexical items of a corpus are clustered
into a set of classes. Next, the words in the treebank are mapped to their cor-
responding clusters. The result is a treebank that contains clusters of words
rather than the actual words. In the next step, the parser is trained with the
treebank containing word clusters. In the following section, the Brown word

clustering algorithm is described in detail.

7.3 Word Clustering with the Brown Algorithm

The Brown word clustering (Brown et al), 1992) is a hierarchical bottom-up
algorithm which uses Average Mutual Information (AMI) of adjacent clusters
to merge cluster pairs. When AMI is used, the algorithm examines contextual
information to find similar words and put them in the same cluster. To this
end, a set of word bigrams, f(w,w’), from the input corpus is required, where
f(w,w") is the number of times the word w’ is seen after the word w. Both w
and w’ are assumed to come from a common vocabulary. When this algorithm
is used for word clustering, different words seen in the same contexts will merge,
because the appearance of the words in the same context shows that these target
words can be replaced by each other and they are assigned to the same cluster
as a result (Morita et all, 2004). Samples can be found in Example EI

As mentioned, the Brown algorithm (Brown et all, 1992) uses AMI as the
similarity measure. Mutual Information (MI) computes the amount of informa-
tion that two words share. The MI of the two adjacent clusters (Cy,, Cy) is
calculated in the equation (EI)

P(Cu}a Cw’)

MI(Cy,Cy) = 10gm

(7.1)

If w’ follows w less often than we expect on the basis of their independent
frequencies, then MI is negative. If w’ follows w more often than we expect,
then MI is positive (Brown et all, 1992). Algorithm E shows the Brown word
clustering algorithm in more detail.

As shown in the algorithm, clusters are initialized with a single term in
each cluster. Then, in each iteration, the best cluster pair, which offers a mini-
mum decrement in AMI, combines together. The process continues for V' — K

iterations, where V' is the number of terms and K is the predefined number

7.4. EXTENSION OF THE BROWN WORD CLUSTERING 165

Algorithm 3 Brown word clustering algorithm

Initial Mapping: Put a single word in each cluster
Compute the initial AMI of the collection
repeat
Merge the pair of clusters which has the minimum decrement in AMI
Compute the AMI of the new collection
until reach the predefined number of clusters
repeat
Move each word to the cluster that offer the highest AMI
until no change is observed in AMI

of clusters. In the final step of the iterative process, all words are temporarily
moved from one cluster to the other cluster one by one, and AMI is recalculated.
If this reassignment increases AMI, then the word will move to a cluster which
offers the highest AMI. The algorithm stops when no additional increment in
AMI is observed.

7.4 Extension of the Brown Word Clustering

As described in the previous section, the Brown algorithm originally uses the
word bigrams from a raw corpus for clustering (thereafter we call it Model A).
The output of this clustering is hard, i.e. each word is assigned to only one
cluster. The advantage of using clustering is that it reduces the data spar-
sity problem, which consequently has a positive impact on statistical parsing.
However, the main shortcoming of hard clustering is that each lexical item is
restricted to one class, which is not ideal for homographs. This problem is more
pronounced for Persian text processing, since short vowels are written rarely
and this property makes the number of homographs relatively high. Bijankhan
et al) (2011) defined syntactic patterns to distinguish Persian homographs.

To reduce the problem of mis-clustering homographs, we propose using the
main POS tag of the words to disambiguate a large portion of homographs for
clustering (thereafter we call it Model B). As an example, the word ‘pss’ can be
either pronounced /Sum/ as an adjective which means ‘evil’ or /Savam/ as a verb
in first person singular which means ‘become’. The word ‘culs s’ /bardast/ is
another example which is both a homograph and a homophone. It can be a noun
which means ‘understanding’ or a verb in third person singular which means
‘picked up’ The normal word clustering treats these homographs equally, and
they are assigned to only one cluster as a result. While in our extension, the main
POS tag of the word is used as additional lexical information for clustering. As
a result, the homographs which have different POS tags are assigned to different

clusters. To prepare the input corpus for the extended model as the input data

7.5. EVALUATION 166

of the Brown algorithm, the POS tag of a word is attached to the word with a

¢

hyphen, such as: ‘psi-ADJ and ‘psi-V’, or ‘cuils p-N” and ‘cubls 5=V

7.5 Evaluation

7.5.1 Experimental Setup

To evaluate the performance of parsing in the class-based model, we must clus-
ter lexical items by the Brown word clustering algorithm described in Section
@. To this end, we use the SRILM toolkit (Stolcke, 2002) which contains
the implementation of the Brown algorithm. This toolkit is developed to build
statistical language models.

For class-based models, the treebank is converted in such a way that the
words of the treebank are mapped to the associated clusters in the proposed
class-based parsing models. We use 10-fold cross-validation to evaluate our

models and study the clustering impact on parsing performance.

7.5.2 Results and Discussion

Since the Brown algorithm requires a pre-defined number of clusters, we per-
form our experiments on 100, 500, 1000, and 1500 clusters of the vocabulary
terms from the Bijankhan Corpus (Bijankhan, 2004) and PLDB (|Assi, 2005).
Table EI represents the performance of the class-based parsing using Model B
with different numbers of clusters.

Table 7.1: Performance of the Stanford parser for extended class-based parsing
(Model B)

’ Number of Clusters \ F-Measure

100 63.70
500 67.25
1000 67.36
1500 67.00

As can be see in the table, the performance of the parser is not very sensitive
to the number of clusters, which demonstrates that fine-tuning the number of
clusters is unnecessary, and we can still obtain a reasonable result when different
number of clusters is used. Nonetheless, according to the experimental results,
the best performance is achieved by clustering all vocabulary terms into 1000
clusters. We use the clustered lexical items of the 1000 clusters for class-based
models.

Table @ compares the results of the class-based parsing (Model A and
Model B) with word-based parsing (the baseline). As shown in the table, the

7.6. OTHER ASPECTS OF ANNOTATION GRANULARITY 167

Table 7.2: Performance of the Stanford parser for word- and class-based parsing

’ Model \ F-Measure \ Precision \ Recall \ EM \ LA ‘

Word 59.42 59.44 59.40 | 4.992 | 85.65
Class (A) 66.91 67.02 66.79 | 7.175 | 87.67
Class (B) 67.36 67.46 67.26 | 6.966 | 87.74

class-based models outperform the baseline. The differences between the per-
formance of the class-based models and the word-based model are statistically
significant according to the 2-tailed t-test (p < 0.01). This result indicates
that even though the class-based approach generalizes the word representation,
it reduces the data sparsity problem at the lexical level and it has a positive
impact on the performance of statistical parsing. Moreover, the proposed ex-
tension of clustering algorithm (Model B) outperforms Model A. Based on the
results, resolving the problem of clustering homographs does have a positive
impact on parsing. The improvement in Model B compared with Model A is
statistically significant according to the 2-tailed t-test (p < 0.05).ﬂ Based on the
results summarized in Table @, we can see the same behavior in the precision
and recall of the models; i. e. precision and recall of the class-based models are
higher than the word-based model and Model B performs the best. We use our
extended class-based model using 1000 clusters, which performs the best, for
the rest of our study.

In terms of the vocabulary size used in the clustering models, 64,820 terms
are used for Model A, and 67,877 terms for Model B. This shows that around
3,057 more terms are added to the vocabulary of Model B which obviously indi-

cates that our proposed extended model has a softer clustering for homographs.

7.6 Other Aspects of Annotation Granularity

7.6.1 Experimental Setup

Section @ described three possible annotation dimensions for parsing: lexical
item, POS tag, and constituent label. In Section , we studied the impact of
fine- and coarse-grained annotation of POS tags and constituent labels on word-
based parsing (fine-grained lexical items). In the following, we further study
the impact of POS tags and constituent labels annotation granularity using
class-based parsing (coarse-grained lexical items). The procedure for developing
coarse-grained POS tags and constituent labels of the data for our experiments

is described in Section .

1We further employed the extension of the Brown word clustering on the Bulgarian language

for the parsing application and obtained similar results (Ghayoomi et all, 2014).

7.6. OTHER ASPECTS OF ANNOTATION GRANULARITY 168

Table 7.3: Parsing results for applying different annotation dimensions using
gold POS tags where L stands for ‘Lexical Item’, T for ‘POS Tag’, C for ‘Con-
stituent Label’ (The differences are statistically significant according to 2-tailed
t-test (p < 0.01))

Annotation Dimension

Model L T C F-measure | Precision | Recall LA EM
Model 1 | Word Fine Fine 59.42 59.44 59.40 | 4.992 | 85.65
Model 2 | Word Coarse Fine 47.38 47.39 47.37 | 4.046 | 80.64
Model 3 | Word Fine Coarse 61.26 61.26 61.25 8.35 | 86.34
Model 4 | Word Coarse Coarse 48.25 48.27 48.23 | 5.811 | 81.48
Model 5 | Class Fine Fine 67.36 67.46 67.26 | 6.966 | 87.74
Model 6 | Class Coarse Fine 61.31 61.46 61.16 | 7.166 | 85.16
Model 7 | Class Fine Coarse 68.89 68.97 68.81 | 11.76 | 88.35
Model 8 | Class Coarse Coarse 62.56 62.73 62.40 | 9.898 | 85.82

7.6.2 Results and Discussion

Section reported the results of the annotation granularity using word-based
parsing (Models 1 to 4). In this section, we report the impact of coarse-grained
lexical items on parsing (Models 5 to 8) and compare the results with the word-
based parsing. Table B summarizes the obtained results of all models.

To determine the effect of the data sparsity problem at the lexical level,
we examine a class-based model with fine-grained annotations of POS tags and
constituent labels (Model 5). When comparing the results with the baseline
(Model 1), the class-based parsing outperforms the word-based model. The
achieved result indicates the negative impact of the data sparsity problem and
the superiority of coarse-grained representation of lexical items on parsing. In
Model 6, the lexical items and the POS tags are coarse-grained and the con-
stituent labels are fine-grained to study the effect of the HPSG-based annotation
without the impact of the morpho-syntactic information and the data sparsity
problem. Similar to the results obtained between Models 1 and 2, the negative
impact of losing morpho-syntactic information of POS tags on parsing is obvi-
ous when Models 5 and 6 are compared. In Model 7, the lexical items and the
constituent labels are coarse-grained, while the POS tags are fine-grained. This
model is built to study the effect of available morpho-syntactic information in
case there is a reduction on the sparseness of data without the effect of the
HPSG-based annotation. From the results of Models 2, 3, and 5, we infer that
the detailed morpho-syntactic information in the POS tags, the coarse-grained
representation of the constituent labels, and the class-based parsing have pos-
itive impacts on parsing. The impact of these three variables are represented
together in Model 7, which outperforms all of the models. In contrast, Model 2,
which has the opposite configuration, performs the worst. Finally, in Model 8,

the coarse-grained representation of the information at the three dimensions is

7.7. SUMMARY 169

studied. The comparison of Models 1 and 8 indicates that better results are
obtained when there is a coarse-grained representation of the linguistic knowl-
edge, but higher results are obtained when richer POS tags are used, as is done
in Model 7. The comparison of Models 4 and 8 indicates that reducing the data
sparsity problem results in a high performance. The comparison of Models 6
and 8 indicates the negative impact of the HPSG-based annotation on parsing,
since it is a hard task for the parser to determine the type of the dependency
relations when the coarse-grained representation of the POS tags is used. While
a better performance is obtained when more fine-grained syntactic categories is
available as determined in Model 5.

Based on the results reported in Table E, we can study the effect of each
annotation dimension on all possible configurations. The comparison of Mod-
els 5 and 1, Models 6 and 2, Models 7 and 3, and Models 8 and 4 shows that the
first model in each pair beats out the second model. This result indicates that
the class-based model always outperforms the word-based model, disregarding
the granularity of the POS tags and the constituent labels. There can be a sim-
ilar study on the effect of POS tag annotation by comparing Models 1 and 2,
Models 3 and 4, Models 5 and 6, and Models 7 and 8. In all of the models,
the first model in each pair beats out the second model. This result indicates
the superiority of using fine-grained annotation for POS tags in parsing, dis-
regarding the granularity of the lexical items and constituent labels. To study
the impact of the constituent labels, Models 2 and 4, Models 3 and 1, Models 7
and 5, and Models 8 and 6 are compared. In all of the models, the first model in
each pair beats out the second model. This result shows that the coarse-grained
annotation of the constituent labels always result in a higher parsing perfor-
mance, disregarding the granularity of lexical items and the POS tags. It must
be mentioned that the differences between the performance of all eight models

are statistically significant according to the 2-tailed t-test (p < 0.01).

7.7 Summary

In this chapter, we proposed a word clustering approach for parsing as an alter-
native method for reducing the data sparsity problem at the lexical level. To
this end, we employed the Brown word clustering and its extended version to
handle homographs, and then trained the parsers with the clustered data. We
proved experimentally that using a clustering method to reduce the data spar-
sity problem has a positive impact on parsing to outperform the word-based
model as the baseline. Additionally, we showed that the proposed extended
model performs the best.

We further studied the effect of annotation granularity on parsing from three

7.7. SUMMARY 170

dimensions on Persian. Comparing the results determined that coarse-grained
representation of the lexical items has a positive impact on parsing. Further-
more, the detailed morpho-syntactic information of POS tags plays an important
role in parsing and losing this information drops the performance. Moreover,
determining the appropriate label for constituents reduces the performance of
the parser due to increasing the complexity for determining the correct type of

head-daughter dependencies.

Chapter 8

Active Learning for

Treebank Enlargement

8.1 Introduction

Machine learning is one of the sub-fields of artificial intelligence which tries to
simulate the intelligent abilities of humans in machines. The learning process
can be unsupervised or supervised. In the former learning model, the learner
uncovers the hidden regularities in the data and clusters the unannotated data
based on its similarity without any preliminary knowledge. The latter learning
model is a two-step learning process in which it first infers patterns inductively
from the training data, and then it makes predictions on unseen events based
on the learnt patterns.

In the previous chapter, we proposed an unsupervised approach to reduce
the data sparsity problem at the lexical level for the parsing application. In
this chapter, we propose models to relatively reduce the data sparsity problem
at the syntactic construction level. To this end, we use active learning as one
of the supervised machine learning methods to select new informative sentences
to be added to the treebank and to enlarge the treebank. Consequently, we can
improve parsing performance and minimize the amount of human effort required
for data annotation. To reach the goal, we propose several models according to
two sampling methods: uncertainty sampling, and query-by-committee.

This chapter contains six sections. In Section @, we first describe active
learning. The active learning scenarios, and two of the most well-known methods
used for selecting informative samples from the data pool are introduced. In
Section @, the previous studies on using this learning method for parsing are

discussed. Our proposed sampling methods and the baselines are described in

171

8.2. ACTIVE LEARNING 172

Section @ The evaluation results of the proposed active learning models are
discussed in Section @ Section @ summarizes the chapter.
The content of this chapter is mainly based on the following paper:

o Ghayoomi, Masood and Jonas Kuhn (2013) “Sampling methods in active
learning for treebanking”. In Proceedings of the 12th International Work-
shop on Treebanks and Linguistic Theories, December 13-14, 2013; Sofia,
Bulgaria, pp: 49-60.

8.2 Active Learning

Supervised learning models require annotated data, but the development of
such data is expensive, time-consuming, and tedious. Active learning is one of
the supervised machine learning methods which creates annotated data with the
help of human intervention in an iterative process (Thompson et al), 2003; Busser
and Morantd, 2005). The motivation behind active learning is to maximize the
performance of a system with minimum amount of data to be annotated. The
consequence is minimizing the amount of human effort required to annotate new
data. In each iteration of the active learning process, the learner is trained with
the training data, and then a small subset of the unannotated data is selected
and handed to the oracle to be annotated. Finally, the newly annotated data
is added to the initial learner’s training data, and the learner is retrained with
the augmented data. This process continues in a loop until it terminates.

In the followings, the learning scenarios and the well-known sampling meth-
ods frequently used in active learning for NLP applications as well as the stop-
ping criteria to stop the active learning process are briefly explained. Further
detail can be found in Settleg (2009, 2012) which gives a comprehensive expla-

nation of active learning, in general.

8.2.1 Learning Scenarios

There are two main learning scenarios in active learning: (a) stream-based, and
(b) pool-based. In the former scenario, the learner takes one sample at a time
from the data and tries to decide whether to select and hand it to the oracle
to be annotated or to disregard it. In the latter scenario, first the learner takes
all the samples from a data pool, and then it ranks them based on a sampling
criterion in ascending order. Finally, the learner selects the top k samples from
this ranked list in each iteration and hands the selected samples to the oracle
for annotation.

In the pool-based scenario, the number of informative samples to be selected

from the pool of unannotated data is fixed and does not change, and the selection

8.2. ACTIVE LEARNING 173

is done based on ranking. Whereas in the stream-based scenario, the selection is
done based on a threshold, and it immediately asks the oracle for the annotation
of the selected sample (Baram et all, 2004).

8.2.2 Sample Selection Methods
Uncertainty Sampling

Lewis and Galg (1994) introduced ‘uncertainty sampling’, and it has become
the most well-known and simple sampling method. In this method, the active
learner hands the most uncertain samples to the oracle. When the learner an-
notates unannotated data, a distinction should be made between uninformative
and informative samples. Uninformative samples are the ones in which the
learner has the highest confidence and certainty on the provided annotation.
These samples are not very useful for the learner, and it is not necessary to
ask the oracle to annotate them since they contain redundant information. The
informative samples are the ones for which the learner does not have a good
solution with high confidence, and therefore they are more interesting for the
active learner.

The border line between uninformative and informative samples can be de-
fined by a confidence score that the learner returns for the proposed anno-
tation. There are different ways to use the confidence score. Among them,
‘entropy’ (Shannon| 1948) is the most popular sampling criterion used for infor-
mation retrieval (Zhang and Chen, 2002) and NLP applications, such as pars-
ing (Hwa, 2000, 2001, 2004; Baldridge and Osborng, 2003), word sense disam-
biguation (Chen et al}, 2006a; Zhu and Hovy, 2007), and text classification Zhu
et al! (R008h). To select the informative samples according to the entropy-based
sampling for parsing, entropy of all possible annotations for each sample is first
computed. Next, samples which have high entropy are selected as informative
samples. When entropy is high, the prediction score of the learner for these sam-
ples is low, as a result the samples with high entropy are the best candidates to
be annotated by the oracle.

One property of uncertainty sampling is that only one learner is needed for
sampling. It is also possible to employ more than one learner for sampling which

is described in the following section.

Query-by-Committee

Seung et al| (1992) and Freund et al| (1997) proposed ‘query-by-committee’ as
another sampling method widely used for different applications. In this method,

more than one learner is used such that each learner predicts an annotation

8.3. PREVIOUS STUDIES OF USING ACTIVE LEARNING FOR
PARSING 174

for the unannotated data. Among the samples, those which have the highest
degree of disagreement in the predicted annotation between the committee of
the learners are selected as informative samples, and they are handed to the

oracle for annotation.

8.2.3 Stopping Criteria

As mentioned, active learning is an iterative process that should be stopped
at some point. Depending on the application of active learning, one can stop
the active learning process when a desired amount of data is annotated. It is
also possible to use confidence measures to stop it in an ideal point when the
confidence score of the learner for annotation is higher than the pre-defined
threshold. The other alternative to stop it is to use the performance of the
learner as a criterion. In this method, the learning process stops when the
learner has reached its maximum performance and annotating more data does
not have any impact on the performance of the learner. In our current proposed
models, we do not use any stopping criteria since it is out of the scope of our
study. However, this feature, which is taken into consideration in the literature
by researchers like Zhu and Wang (2008), Vlachod (2008), Laws and Schiitze
(2008), and Ghayoomi (2010) among others, can be considered as future work

when the model is used in a real application.

8.3 Previous Studies of Using Active Learning

for Parsing

Active learning is used for reducing the amount of data to be annotated while
obtaining a performance similar to the performance of a learner trained with the
complete set of annotated data. This leads to reduction of human effort to anno-
tate data. Active learning can be used for various NLP applications, including
constituency or dependency parsing. In the followings, we briefly describe the
sketch of the previous studies on using active learning for constituency parsing
and treebanking. The main idea behind using active learning for parsing in
the studies is to find informative sentences with minimum redundancy in the
training data.

Ratnaparkhi (1999) proposed an active learning model which used a max-
imum entropy parser. This parser selects the parse trees with maximum en-
tropy probability from a set of derived parsed trees. In the maximum entropy
framework, features are required as evidences to build the model. These fea-
tures provide the contextual information represented as chunks. The less spe-

cific contextual information is more interesting in this active learning model to

8.3. PREVIOUS STUDIES OF USING ACTIVE LEARNING FOR
PARSING 175

“provide reliable probability estimates when the words in the history are rare”
(Ratnaparkhi, 1999). The advantages of this sampling method are reduction of
the impact of sentence length on selection and building an independent domain
model.

Hwa (2000, 2001, 2004) proposed a sampling method for inducing ‘proba-
bilistic lexicalized tree insertion grammar’. In each iteration of the model, the
entropy of each sentence is calculated based on the probability scores of its can-
didate parse trees. If a grammar is certain about the structure of a sentence,
then one parse tree will be assigned a high probability score and the rest low
scores, which results in a low entropy. Whereas, for uncertain sentences, all
candidate parse trees will have a uniform probability score and a high entropy,

as a result. The Tree Entropy (TE) of sentence s is calculated according to the

equation (Ell)
E(s,G) ==Y p(v)loga(p(v))

veV
- POIG), PEIG) ®.1)
- _v; P66 2 PEie)

where V' (v € V) is the set of possible parses of s. P(v|G) is the probability
score of parse tree v which is provided by the parser using the built-in grammar
G. P(s|G) is the sum of probabilities of its parses as in the equation (@)

P(s|G) = ¥ P(v|@) (8.2)

veV

Steedman et al) (2003) proposed a co-training model in which two different
parsers are employed for sampling without any manual annotation. In each
iteration of the model, a small set of sentences is pulled out from the data pool
and stored in a cache. Next, the parsers parse the sentences in the cache. After
that, a subset of the parsed sentences is selected and added to the training data.
The selected data is the output of one parser, which is added to the training
data of the other parser. During the selection step, one parser first acts as a
teacher and the other parser as a student, and then the roles are reversed. The
most important feature in this model is the selection process, which is based on
the accuracy score rate. To this end, two scoring functions are defined: (a) a
scoring function based on the F-measure of the analysis against the gold data,
and (b) a scoring function based on the conditional probability of the parser.
Three sampling methods are exploited in the model: (a) defining a score as
a threshold to select the most accurate analyses, (b) computing the difference

between the score of the teacher and the student to choose the candidates in

8.4. ACTIVE LEARNING FOR PERSIAN TREEBANKING 176

which the teacher is more accurate, and (c) finding the intersection between the
n percent highest scores of the teacher and the n percent lowest scores of the
student for the same sentence to select sentences which are accurately parsed
by the teacher and incorrectly by the student.

Baldridge and Osborne (2003), Baldridge and Osborng (2008), and Osborne
and Baldridge (2004) described a method for active learning of HPSG parse se-
lection. They used the entropy-based uncertainty sampling, a query-by-committee
sampling method between log-linear and perceptron algorithm (Rosenblatt),
1957) as the learners, and a combined selection method that takes the intersec-
tion of entropy- and disagreement-based models. Features are required to build
the models. Two feature selection methods are exploited: (a) selecting fea-
tures from derivation trees, and (b) extracting n-gram features from flattened
derivation trees treated as a sequence of rule names. Baldridge and Osborne
(2004) further studied the model to measure the annotation cost to evaluate the
effectiveness of different experiments of active learning conditions.

Hughes et al| (2005) described a system for selecting CCG parses through
an interactive correction process. In this model, human annotators have an
interaction with the system such that they add constraints to the parser, and
the parser returns the most probable parse results which satisfy all constraints.
The informative samples are selected via a pool-based active learning process
in a query-by-committee model.

Lynn et al{ (2012) built a query-by-committee model for developing the Irish
dependency treebank. In their model, the disagreement between a committee
of two parsers is considered as the sampling metric. The Malt and Mate depen-

dency parsers are employed in their models.

8.4 Active Learning for Persian Treebanking

In this section, we describe our sampling methods to select the most informative
sentences from a data pool to enrich our treebank and to reduce the sparseness of
the syntactic constructions. In our active learning application for treebanking,
the learner is a parser that learns the grammar of the Persian language. To
create the models, we employ the two introduced sampling scenarios to find the
best strategy for our purpose. In this study, instead of enlarging the current
treebank, we simulate the active learning process, and we use our developed
treebank to be able to implement all models proposed and to compare them

with each other. The best model can be further used for a real application.

8.4. ACTIVE LEARNING FOR PERSIAN TREEBANKING 177

8.4.1 Basic Sampling Methods

Random Sampling

Random sampling is a basic method for selecting samples without using any
intelligence for the selection. In this sampling method, k sentences are selected
randomly from the data pool. The method which creates a model according to
the data of this sampling method is called passive learning. Passive learning is

usually considered as a baseline for active learning.

Sentence Length Sampling

We introduce a naive sampling method as another simple baseline. This sam-
pling method uses sentence length as a criterion to select complex sentences
that contain more lexical items. The longest sentences are assumed to be the
most informative samples. In this passive learning method, first the sentences
in the data pool are ranked in descending order according to their length, and

then k sentences are selected from the top of the list.

8.4.2 Entropy-based Sampling

We use the entropy-based uncertainty sampling method proposed by Hwa| (2000),
which was described in Section @, as a metric to measure the uncertainty of a
sentence in a grammar according to the parse results. Based on this criterion,
we propose three different models. In the first two models, only the tree entropy
is used as the sampling criterion. In the third model, we exploit the two models

and use a meta-ranker on top of the models to select the informative samples.

Model 1: Word-Entropy

In Model 1, the actual sentences in the treebank are used for training and testing
the active learning model. Since we have a small treebank, we suffer from the
data sparsity problem at both the lexical and syntactic construction levels. In
each iteration of the active learning process, k informative sentences which have
high entropy and contain informative lexical items and syntactic constructions
for the grammar model are selected from the data pool.

Algorithm @ displays the steps for selecting uncertain samples in the un-
certainty models. In our active learning application, which is treebanking, the

learner is a parser that learns the grammar of the Persian language.

8.4. ACTIVE LEARNING FOR PERSIAN TREEBANKING 178

Algorithm 4 Active learning with entropy-based uncertainty sampling

Input: Seed data S from the Persian HPSG-based treebank,
Pool of unlabeled samples U

repeat
Stepl: Use S to train the parser P
Step2: Use P to parse U, and extract n-best parse trees for each sentence
Step3: Compute tree entropy TE of each sentence based on the probability score
of the n-best parse trees
Step4: Sort the sentences based on their TE score in descending order
Stepd: Select top K samples from the sorted parsed trees
Step6: Augment S with K samples, and remove K from U
until the stopping criterion is met

Model 2: Class-Entropy

In Model 1, two sparsity levels (at the lexical and syntactic construction lev-
els) are taken into consideration for sampling simultaneously. As a result, the
sentences which are the most informative ones at the both levels are selected.
To minimize the data sparsity problem at the lexical level and to select sen-
tences with informative syntactic constructions, we use a class-based parsing
model (Model 2). In this model, we use the extended Brown word clustering
algorithm described in Section @ After mapping the words of the treebank
into their corresponding clusters, the active learning process starts as demon-
strated in Algorithm @ In this model, the tree entropy is calculated based on
the class-based parsing. Next, k informative sentences with high entropy are
selected from the data pool. The selected sentences are then reconverted into
the word-based format and added to the treebank. To make the result of this
model comparable with other models and have a fair comparison, the perfor-
mance of the parser is evaluated according to the word-based data format. The
advantage of the class-based parsing is that the data sparsity problem at the

lexical level is reduced and it has a minimum impact on sampling.

Model 3: Combo-Entropy

Model 3 is a combination of Models 1 and 2. In this model, after using Al-
gorithm @ to find the informative samples in Models 1 and 2 separately, a
meta-ranker on the top of the models are employed to re-rank sentences based
on their average rank in both models. As an example, assume that sentence S is
parsed with Models 1 and 2. The outputs of the models, S, for the word-based
model and S, for the class-based model, obtain the ranks 12 and 4 in descend-
ing order of the outputs. Using the meta-ranker on the top of the models, the
score 8 is assigned to S, and the position of S will be re-ranked based on the

assigned new score. After re-ranking the sentences, the top k sentences from the

8.4. ACTIVE LEARNING FOR PERSIAN TREEBANKING 179

re-ranked list are selected as the most informative samples. The advantage of
this model is that the properties of Models 1 and 2 are taken into consideration

for sampling.

8.4.3 Query-by-Committee
Model 4: Combo-Committee

In Model 4, a combination of word- and class-based parsing is used as repre-
sented in Algorithm B In this model, sentences are first parsed with either of
the models individually, without using any criterion for sampling. Next, the
samples which have the highest degree of disagreement between the learners
are selected as the most informative samples. In this sampling, the output of
the class-based parsing is converted into its equivalent word-based model. This

conversion makes the output of the two parsing models comparable.

Algorithm 5 Active learning with query-by-committee sampling

Input: Seed data S from a treebank,
Pool of unannotated samples U
repeat
Stepl: Train parsers P; (i € I) with S
Step2: Use P; to parse U
Step3: Find samples that have the highest degree of disagreement between P
Step4: Sort the samples based on a disagreement score in ascending order
Stepb: Select top K samples from the sorted samples
Step6: Augment S with K samples, and remove K from U
until the stopping criterion is met

To find the disagreement between the learners, we use a method similar to
the ‘F-complement’ sampling method proposed by Ngai and Yarowsky (2000).
The equation in (@) computes the disagreement (D).

D=5 Y (1-F(Mfe), M;e))) (8.3)
M;,M;eK
where K is the committee model and M; and M; are the individual models in
K, and Fy(M;(e), M;(e)) is Fq of M;’s labeling of e relative to M;’s evaluation
of e.

To find the samples that the parsers disagree upon in our sampling method,
the output of one parsing model is assumed as gold data (word-based parsing)
and it is compared with the output of the other model assumed as guess data
(class-based parsing). Next, we compute the F-measure based on the outputs
of the two parsing models and sort sentences according to the F-measure in

ascending order. The top k sentences, which obtain the lowest F-measure, are

8.4. ACTIVE LEARNING FOR PERSIAN TREEBANKING 180

the most informative sentences in which the two parsing models disagree upon
the provided analyses.

The main difference between the F-complement method (Ngai and Yarowsky,
2000) and our method is that in F-complement method two different con-
stituency parsers are used as the committee members, whereas in our model
a single parser with two different parsing models is employed. This makes it
possible for us to find a simpler way to find the disagreements between the

parsers.

Model 5: Dependency-Constituency-Committee

In Models 14, only a constituency parser is used for selecting the informative
samples. In Model 5, we propose using constituency and dependency parsers
such that first the sentences in the data pool are parsed by either of the parsers.
To select samples in each iteration of this model, the constituency trees are
converted into their equivalent dependency relations. Having the two sets of
trees based on the dependencies makes it possible to consider one set of trees
as gold data and the other set as guess data. After evaluating and sorting
the results in ascending order of the unlabeled attachment score, k sentences
which obtain the lowest score are selected as informative sentences in which the
two parsing models disagree upon the provided analyses. To make the results
comparable to other models, the dependency trees of the selected sentences are
reconverted into their equivalent constituency trees to evaluate the performance

based on constituency.

Model 6: Dependency-Combo-Committee

In Model 6, in an offline mode, the complete constituency treebank is con-
verted into its equivalent dependency-based treebank. Next, the word-based
dependency-based treebank is mapped to its equivalent class-based dependency
treebank. The provided data sets are used for training a dependency parser.
In Model 6, only a dependency parser is employed to construct the query-by-
committee sampling method by involving word- and class-based parsing models.

In this model, sentences are first parsed by each individual word- or class-
based parsing models. Next, the output of one parsing model (word-based
parsing) is considered as gold data, and the output of the other parsing model
(class-based parsing) is considered as guess data to compare the two parsing
models. Similar to Model 5, the results are sorted in ascending order of the
unlabeled attachment score. Finally, the top k sentences with the lowest unla-
beled attachment score are selected as the informative sentences in which the

two parsing models disagree upon the provided analyses. To make the results

8.4. ACTIVE LEARNING FOR PERSIAN TREEBANKING 181

comparable to other models, the dependency trees of the selected sentences are
reconverted into their equivalent constituency trees to evaluate the performance

based on constituency.

8.4.4 Tree Similarity Sampling

Aside from the models proposed, we introduce a new criterion for selecting in-
formative samples. In this sampling method, the degree of similarity between
the syntactic trees of the parser’s output and the input training data are com-
puted. We hypothesize that the most informative samples in the data pool are
those which have the lowest degree of similarity to the training data.

To measure the tree similarity, we use the tree kernel method proposed

by Collins and Duffy| (2001, 2002). To compute the tree similarity between two
trees, first the two trees are decomposed into their corresponding subtrees to
construct the feature vector. This vector is used for capturing the structural
information. Next, the number of subtrees with the same vector are summed
up. Since the length of sentences vary, this score should be normalized. For the
normalization, the square of the product of the total number of substructure
trees in the two trees is computed. The similarity degree is the ratio of the
number of completely identical substructure trees to this normalization value.
The similarity degree is a number between 0 and 1, where 0 indicates totally
dissimilarity and 1 indicates 100% similarity between the two trees.
We use the similarity degree as a metric for selecting the informative sentences.
As a result, all sentences in the active learning process are sorted in ascending
order according to their tree similarity degree, and then the top k sentences
which have the lowest similarity degree are selected as the informative samples.
The set of selected sentences shares a minimum amount of similarity in their
syntactic structures with the training data, and the sentences whose substruc-
tures are rare in the training data are the best candidates to be selected.

The following example illustrates how the tree similarity degree is computed.
To measure the similarity degree of the tree in Example @ to the tree in
Example , the two trees must be first decomposed into their corresponding
substructure trees, as represented in Figures @ and @ Next, the number of
the substructure trees which are totally identical in the two tree sets are divided
by the square of the product of the total number of substructure trees. In this
example, out of the 5 recognized substructure trees in Figure @, 3 of them are
totally identical to the trees in Figure @ Figure @ displays the set of common
identical substructure trees. The similarity degree of the tree in Example @ to

the tree in Example @ is \/% = 0.6.

8.4. ACTIVE LEARNING FOR PERSIAN TREEBANKING 182

(8.1) a car (8.2) a book
NP NP
I 4
NP NP NP NP
l ! i o
NP Det N NP Det N
AT YA T T

Figure 8.1: Substructure trees of
Example

Figure 8.2: Substructure trees of
Example

Det NP NP
YA NVAN
a Det N Det N

Figure 8.3: Common substructure trees between Examples @ and @

In our tree similarity metric, we use the words in the sentences, their corre-
sponding POS tags, and the substructure trees as the features to compute the
similarity degree. We propose two models for the tree similarity metric as the

criteria to select informative samples.

Model 7: Word-Similarity

In Model 7, the words in the sentences, in addition to their corresponding POS
tags, and the substructure trees derived from the parser’s output are used in the
feature set to compute the tree similarity degree between a tree as the output
of the parser and the trees in the training data. Next, sentences are sorted in
ascending order of their tree similarity degree, and the k samples with the lowest

similarity degree are selected as informative samples.

8.5. EVALUATION 183

Model 8: Class-Similarity

The drawback of Model 7 is that due to the data sparsity problem at the lexical
level, the existence of unknown words in the data pool is unavoidable. To
minimize this impact on selection, we use a class-based model. To this end, we
use the extended Brown clustering algorithm described in Section @ After
computing the similarity degree of sentences, they are sorted in ascending order
of their tree similarity degree, and k samples with the lowest similarity degree
are selected as the informative samples. To make the results comparable with
other models and to have a fair comparison, the output of the class-based parsing
is reconverted into the word-based format, then the performance of the parser

is evaluated.

8.5 Evaluation

8.5.1 Experimental Setup

We use the Stanford constituency parser (Klein and Manning, 2003) and the
Mate dependency parser (Bohnet, 2009) in our proposed models. The HPSG-
based treebank that we developed is used for training the constituency parser,
and Algorithm is used for converting the constituency treebank
into its parallel dependency-based treebank to train the dependency parser.
Gold POS tags are used for parsing in our experiments to avoid the negative
interfering of POS tags on parsing. The class-based approach described in Sec-
tion @ with cluster number 1000 is used for building the class-based models.
To compute tree similarities, we use the FLinK softwaureﬂ developed by Pighin
and Moschitti (2009).

The reported results are based on the simulation of active learning to choose
the best approach for a real application to enlarge the current treebank. To
this end, we divide the treebank into three subsets such that 20% of the data is
considered as seed data to initialize the model, 10% as test data to evaluate the
performance of the model in each iteration, and the remaining data is assumed
as unannotated data to be annotated within the active learning process. 10-fold
cross validation is used for evaluating the experiments. Since our experiments
are based on the pool-based scenario, k informative sentences (k=10) are se-
lected in each iteration. To compute tree entropy, the n-best parses (n=20) of

each sentence are extracted in each iteration.

Thttp://danielepighin.net/cms/software/flink

http://danielepighin.net/cms/software/flink

8.5. EVALUATION 184

52

50

Random
—a— M1: Word-Entropy
—— M2: Class-Entropy
—m— M3: Combo-Entropy

Performance (F-measure)
['=N
[oe)
T

a4
42|
40 .

1 1 1 1 1 1 1
0 100 200 300 400 500 600 700
Size of the training set (sentences)

Figure 8.4: Learning curve of the learnt sentences in entropy-based uncertainty
sampling models and the baseline

8.5.2 Results and Discussion

To make the results comparable, we first demonstrate the learning curves of the
set of models with similar sampling criterion along with the baselines and then
compare the results. Next, we compare the learning curves of the best models
in each set and discuss the performance of the active learning models.

Figure @ represents the learning curves of the entropy-based uncertainty
sampling models (Models 1 to 3) and the results of random sampling as the
baseline. To make the results more readable, instead of representing the result
of each iteration, the average performance for each 5 iterations is shown in this
figure. As can be seen in the curves, the three uncertainty sampling models have
beaten random sampling, the baseline. This result indicates the superiority of
using active learning models for our goal. In the early iterations, the results of
Models 1 and 2 are comparable, but Model 3 outperforms the two models. In
iteration 31, Model 1 beats Model 2, and later in iteration 35, it beats Model 3,
and this model consistently performs better in the second half of the annotation
process. Since it is expected to find the informative samples in early iterations
of the active learning process, the first half of the annotation process is more
important than the second half. Comparing Models 1 to 3 and the baseline, we
can conclude that Model 3 that has a meta-ranker can be chosen as the best
entropy-based uncertainty sampling for selecting informative samples to enlarge
the treebank.

8.5. EVALUATION 185

54

52

50

Random
—2— M4: Combo-Committee
—e— M5: DepCons-Committee
—— M6: DepCombo-Committee

Performance (F-measure)
['=N
[oe)
T

44

42

1 1 1 1 1 1 1
0 100 200 300 400 500 600 700
Size of the training set (sentences)

Figure 8.5: Learning curve of the learnt sentences in query-by-committee models
and the baseline

Figure @ represents the learning curves based on the average performance
for each 5 iterations of the query-by-committee methods (Models 4 to 6), along
with the learning curve of random sampling as the baseline. As can be seen in the
curves, Model 4 beats the baseline, while Models 5 and 6, which use dependency
relations for sampling rather than constituency trees, have a worse performance
than the baseline. Model 4 has a slightly better performance compared with
the baseline in early iterations, but from iteration 20, Model 4 significantly
outperforms the baseline and the performance rises steadily until the end of the
annotation process. Model 6, which has a slightly better performance than
Model 5, loses against Model 5 until iteration 35, where it beats Model 5.
This model has a relatively comparable performance with Model 5 to the end
of the annotation process. In early iterations, Models 5 and 6 have a worse
performance than the baseline, but they beat it in iteration 40. From these
models, we can conclude that Model 4, which uses a committee of word- and
class-based constituency models, can be selected as the best query-by-committee
model to select informative samples.

Figure @ represents the learning curves of Models 3 and 4, which are the
best models of the entropy-based uncertainty sampling and query-by-committee
sampling, in addition to random sampling and sentence length sampling meth-
ods as the baselines. As can be seen in the curves, Models 3 and 4 beat random

sampling. Moreover, Model 3 outperforms Model 4 in the early iterations, but

8.5. EVALUATION 186

—— Random
SentenceLength

—m— M3: Combo-Entropy

—&— M4: Combo-Committee

Performance (F-measure)
S
e}
T

a4
a2
40 .

1 1 1 1 1 1 1
0 100 200 300 400 500 600 700
Size of the training set (sentences)

Figure 8.6: Learning curve of the learnt sentences in Combo-Entropy and
Combo-Committee models and baselines

Model 4 beats it in iteration 37 which is almost half of the annotation pro-
cess. From the results of the entropy-based uncertainty sampling method in
Model 3 and the query-by-committee sampling method in Model 4, we can con-
clude that entropy-based uncertainty sampling with a meta-ranker is the best
sampling method to be used for a real application. This method, however, has
a shortcoming.

The general drawback of the entropy-based uncertainty sampling is that
sentences which are relatively long and might contain complex syntactic con-
structions are selected as informative samples in early iterations. As a result, a
huge amount of information is added to the training data in the iterative process.
To study this point, we use sentence length as the second baseline and compare
the performance of Models 3 and 4 against it. As can be seen in Figure @, in
early iterations, the sentence length model has a comparable performance with
Model 3. This indicates that the performance of the entropy-based uncertainty
sampling is comparable to a naive model that uses no intelligence to select the
informative sentences but only uses the length of sentences.

In Figure @, we display the learning curves of the baselines and Models 3
and 4 based on the learnt words rather than the sentences (see the z-axis). As
shown in the figure, there is a competition between the models in early iterations.
The performance of Model 3 is similar to random sampling, and the sentence

length baseline has the worst performance. The low performance of the sentence

8.5. EVALUATION 187

56 | b
54| :

< 521 B

=

=]

wn

g 50

= 50+ -

i

B

g 48| 8

=1

g Random

5 46| SentenceLength

E —m— M3: Combo-Entropy

a8 —&— M4: Combo-Committee
44 - B
42 - B
40 8

I

1 1 1 1 1 1 1 1 1 1
0 2,000 4,000 6,000 8,000 10,000 12,000 14,000 16,000 18,000 20,000

Size of the training set (words)

Figure 8.7: Learning curve of the learnt words in Combo-Entropy and Combo-
Committee models and baselines

length baseline indicates that learning long sentences is not guaranteed to be
informative and effective for the parser. Model 4 outperforms Model 3 and the
baselines in iteration 23 by learning a minimum of 6,400 words. Learning this
amount of words is almost a third of the words in the data pool. In iteration 36
where almost half of the words in the data pool are equally learnt by the parsers
in the models, the difference between the performance of the parsers in Models
3 and 4 and the baselines in this iteration is statistically significant according to
the 2-tailed #-test (p < 0.01). Consequently, Model 4 can be selected as the best
model for treebanking with respect to the number of words learnt by the parser,
since this model has obtained a higher performance when the parser learns a
minimum number of words from the data pool.

So far, we studied the sampling methods based on the results of a parser; i. e.
the performance of the parser is taken into consideration to select the informa-
tive samples and to compare different sampling models. We further study our
proposed models from another perspective to find out what inside the selected
sentences is to make them informative. To this end, we draw the active learn-
ing curves based on the similarity degree between the selected samples from
the data pool and the training data (see the y-axis). This evaluation makes it
possible to study the models from the linguistics point of view rather than their
application.

In this study, we calculate the pairwise tree similarities between the parse

8.5. EVALUATION 188

0.1} *

e

o

3]
T

Random

SentenceLength
—a— M1: Word-Entropy
—e— M2: Class-Entropy
—a— M3: Combo-Entropy
—~— M4: Combo-Committee

Tree similarity degree
o
o
[=2]
T

e

o

'S
T

0.02 |- —6— M5: DepCons-Committee
—— M6: DepCombo-Committee
0F i

1
0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 75

Size of the training set (sentences)

Figure 8.8: Learning curve of the learnt sentences based on tree similarity for
entropy-based and committee models and baselines

trees of the selected samples in each iteration and all available parse trees in
the training data. The average score of all pairwise similarities for each 5 it-
erations is represented in Figure @ This figure is meaningful regarding the
selected informative data in Models 1-6 and the baselines. As can be seen in
the curves, random sampling has an almost flat curve, whereas after a small
boost in tree similarity of the sentence length baseline, the similarity degree de-
creases constantly. The entropy-based uncertainty sampling models also have
such a behavior. This result indicates that the selected informative samples
in entropy-based uncertainty samplings are not linguistically informative, but
they are informative for the parser. After examining the similarity curves of
the query-by-committee models, we can conclude that in early iterations of
these models, they try to find the most dissimilar samples, and the similar-
ity degree consistently increases in the next iterations, and then they have flat
curves, and finally the similarity degree decreases. We can conclude that the se-
lected informative samples in early iterations of the query-by-committee models
are linguistically more interesting than the entropy-based uncertainty sampling
models. Among the query-by-committee models, Model 6 selectes the most
dissimilar trees in early iterations. It should be recalled that among the query-
by-committee models this model has the worst performance based on the learnt
sentences.

Considering tree similarity as a sampling criterion to study and compare

8.5. EVALUATION 189

Random
SentenceLength

—— M4: Combo-Committee
—— MT7: Word-Similarity
—o— M8: Class-Similarity

46 -

Performance (F-measure)
.
oo
T

44

42 -

40 *
1 1 1 1 1 1 1 1 1 1
0 2,000 4,000 6,000 8,000 10,000 12,000 14,000 16,000 18,000 20,000

Size of the training set (words)

Figure 8.9: Learning curve of the learnt words in Combo-Committee and tree
similarity models and baselines

different models motivated us to use this method for sampling. This sampling
method helps to find the variability in the data pool that does not exist in the
training data of the learner.

Figure @ represents the learning curves of the tree similarity methods (Mod-
els 7 and 8) based on the learnt words. Additionally, the learning curves of the
baselines and Model 4 are also demonstrated in this figure. As can be seen in
the curves, the tree similarity models have relatively higher performance than
the baselines. Among the tree similarity models, Model 7 has mostly better
performance than Model 8, while Model 8 beats all models at a very late point
when almost 75% of the words in the data pool are learnt. Moreover, in early
iterations, Model 7 has a comparable performance with Model 4 to achieve a
high performance with a minimum size of words to be learnt by the parser.

In Figure , we demonstrate the learning curves of models in Figure @
in addition to the learning curves of the tree similarity models. As shown in
the curves, the tree similarity models select the most dissimilar trees to the
training data from the data pool in early iterations, and the similarity degree
increases steadily as expected. In these models, the similarity degree is lower
than random sampling and sentence length as the baselines which determines
that the selected samples in Models 7 and 8 are linguistically informative either
based on word forms, the corresponding POS tags, or syntactic constructions.

Model 8 finds slightly more dissimilar trees in early iterations than Model 7,

8.5. EVALUATION 190

0.1}

e

=)

3]
T

SentenceLength

0.04 - —a— M1: Word-Entropy

—e— M2: Class-Entropy

—a— M3: Combo-Entropy

—~— M4: Combo-Committee
0.02 - —6— M5: DepCons-Committee
—— M6: DepCombo-Committee
—e— M7: Word-Similarity

—o— M8: Class-Similarity

Tree similarity degree

1 1
0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 75

Size of the training set (sentences)

Figure 8.10: Learning curve of the learnt sentences based on tree similarity for
all models and baselines

but the difference between the two models is not statistically significant. As
demonstrated in the curves, the similarity degree of the two models increases
steadily in the next iterations.

Based on the presented empirical results, we conclude that selecting a specific
sampling method depends on the application. If we aim at increasing the per-
formance of a parser, disregarding its shortcomings, entropy-based uncertainty
sampling with a meta-ranker on the top of the word- and class-based models
might be the best choice. If we want to increase the parsing performance with
minimum number of words to be learnt by the parser, the committee of word-
and class-based models for constituency parsing is a better alternative. How-
ever, if we want to select samples which are linguistically interesting, tree sim-
ilarity models are the best options. The advantage of the query-by-committee
and tree similarity models over the entropy-based uncertainty sampling mod-
els is that the query-by-committee and tree similarity models do not have the
drawback of the entropy-based uncertainty sampling. The disadvantage of the
query-by-committee models compared with the tree similarity models is that
the query-by-committee models are more complex than the tree similarity mod-
els and they require at least two learners, whereas the tree similarity models
require one learner and this model helps to develop a treebank with the most

linguistically interesting variability on the data.

8.6. SUMMARY 191

8.6 Summary

In this chapter, we employed two well-known sampling methods, namely uncer-
tainty sampling and query-by-committee sampling, in active learning for Persian
treebanking. In addition to random sampling, a naive sampling, which selects
the longest sentences, was used as the baseline.

We used three entropy-based uncertainty sampling methods in which word-
and class-based parsing and the combination of the two with a meta-ranker
on the top were developed to select informative samples. The experimental
results showed that the combo entropy-based uncertainty sampling, which ben-
efits from both word- and class-based parsing, outperforms the individual word-
and class-based uncertainty models. Although entropy-based sampling meth-
ods outperformed random sampling, comparing its result with sentence length
determined that selecting relatively long sentences has been the main reason for
achieving a good performance.

We also proposed query-by-committee models that exploited two parsing
models for finding informative samples. These samples were the ones for which
the parsers disagree. Our proposed models were constructed of word- and class-
based parsing for either constituency or dependency parsers. In the models, the
informative samples, disregarding their sentence length, were selected. Out of all
of the models, the query-by-committee model which used word- and class-based
constituency parsers achieved the best result.

We further studied the linguistic properties of the selected samples, and com-
pared the models. We found out that in entropy-based uncertainty sampling
models, the tree similarity degree of the selected samples relatively decreases,
whereas in query-by-committee models it relatively increases. This means that
query-by-committee models select samples which are linguistically more inter-
esting. Moreover, when we used the tree similarity as a metric for sampling, we
proposed word- and class-based models.

When the overall results were compared, we found out that the query-by-
committee model composed of word- and class-based constituency parsers and
the word-based tree similarity model have selected informative samples with the
minimum number of the words learnt by the parser, and they have a slightly bet-
ter performance than other models. Since the tree similarity sampling method
used a simple criterion compared with the query-by-committee sampling and
does not have the shortcoming of the entropy-based uncertainty sampling, this
model can be selected as the best method to select linguistically interesting

samples to enlarge our treebank.

Chapter 9

Conclusion

9.1 Summary

Recent studies have attempted to make machines understand natural languages.
Learning the grammar of a language plays a major role in attaining this goal.
The automatic parsing of a sentence is the preliminary step to achieve this. To
train a statistical parser, a set of annotated data, called a treebank, is required.
Not all languages are rich in terms of the availability of such a language resource.
The motivation of the present research is proposing a method to develop a
treebank for Persian from scratch according to the HPSG formalism. Since
data annotation is a time-consuming task, we aim at using machine learning
methods to reduce human intervention for data annotation. The developed
annotated data can then be used as a data source to train statistical parsers.
We described our ideas and the methodology in two parts.

In part I, we mainly concentrated on the theoretical level and the previous
studies. Since Persian was our target language, we provided background for
the general syntactic properties of this language and the problems one might
face in corpus development and text processing of this language. Next, we
reviewed the literature about grammar formalisms, including HPSG, along with
treebanking, and parsing. To standardize our developed treebank, we explained
an annotation scheme to be used throughout our treebanking.

In part II, we mainly focused on the computational perspective and applica-
bility of the developed treebank. In this part, machine learning methods were
exploited for developing and increasing the size of the treebank. To initialize
treebanking, we employed a bootstrapping approach to select the most frequent
grammar rules from the manually annotated data to be defined in the annota-
tion tool for further usage. The proposed method significantly reduced human

intervention during the data preparation process. The data set was then used

193

9.1. SUMMARY 194

to train statistical constituency parsers. Availability of the information for the
type of the dependency relations between the constituents based on the heads’
argument structures made it possible to convert this treebank into its parallel
dependency-based treebank. The converted data was used for training depen-
dency parsers.

We further studied the effect of annotation granularity (fine- vs coarse-grained
annotation) in three dimentions, namely lexical item, POS tag, and constituent
label. We concluded that coarse-grained representation of the lexical items has
a positive impact on parsing. We further concluded that using fine-grained con-
stituent label reduces parsing performance due to increasing the complexity for
determining the correct type of head-daughter dependencies. We also concluded
that fine-grained morpho-syntactic information of POS tags plays an important
role on parsing and losing this information causes reduction of performance.

The size of the developed treebank is very small. Due to the data sparsity
problem of the developed treebank, a parser may not be able to create accurate
grammar models. As a result, when the parser is used in a real application,
it may not have a high performance. The data sparsity problem exists at two
levels: at the lexical and at the syntactic construction levels. We proposed
solutions to resolve the problem.

We proposed an unsupervised method to deal with the data sparsity problem
at the lexical level. To this end, we used the Brown word clustering algorithm.
In the class-based model, an unannotated corpus was used for clustering words
into a pre-defined number of classes. We noted that one shortcoming of word
clustering is that homographs are treated equally and since in Persian short
vowels are not usually written, this problem is intensified. To deal with the
problem, we attached the main POS tag of the words to the word forms to make
a large portion of homographs distinct. Experimentally, we demonstrated the
positive impact of using the class-based model for reducing the data sparsity
problem at the lexical level. We further illustrated that using the extended
version of clustering in the class-based parsing model improves the performance
of the parser significantly.

To handle the data sparsity problem at the syntactic construction level, we
proposed a supervised method. For this, we used active learning which is a
promising machine learning method for selecting informative data from a cor-
pus and asking a human to annotate the selected data. The consequence of
this model is developing a data set which has a high impact on the learner with
minimum increase in the data size and human effort for annotation. To reach
the goal, we simulated the active learning process and employed several models
to find the best one for further data annotation in order to enlarge the current

Persian treebank.

9.2. FUTURE WORK 195

We employed uncertainty sampling by computing the entropy of sentences for
word- and class-based parsing models to select the informative samples. On top
of these models, then, we constructed a meta-ranker to select informative sam-
ples based on the output of the word- and class-based models. The meta-ranker
had a better learning process than the two individual models and the baseline.
However, one drawback of the entropy-based uncertainty sampling was that the
length of sentences has an adverse impact on selecting the samples. To resolve
this problem, we employed several query-by-committee models for sampling.
In these models, we used query-by-committee models composed of word- and
class-based models. Dependency and constituency parsers were employed in
the proposed models as well. The learning curves of the models demonstrated
that the committee of word- and class-based constituency parsing performed
the best. We therefore concluded that this model, which did not have the short-
coming of the entropy-based uncertainty sampling, could be used for further
data annotation.

We further studied the uncertainty sampling from another perspective such that
the similarity degree between the syntactic trees of the parser’s output and the
trees in the training data was computed. In this method, the most dissimilar
trees in the data pool to the training data were selected as informative samples.
This criterion was employed using the word- and class-based models. Compar-
ing all proposed models, the word-based tree similarity model and the query-
by-committee model composed of word- and class-based parsing demonstrated

the best performance by learning the minimum lexical items.

9.2 Future Work

Possible continuations of the present research can go in several directions. One
possibility is finding the minimum morpho-syntactic information that should
exist in the POS tags of the words and studying its impact on the parsing pro-
cess. As an example, which morpho-syntactic information, for instance between
Ezafe and plurality, has a greater impact on parsing?” The consequence of this
study is determining the most important morpho-syntactic information that is
very informative for a parser and must be available in the POS tags of the words.

In our study, we employed a hard clustering approach for parsing, though our
extended clustering model made this clustering approach soft to some extent.
One possibility for further study will be using a soft clustering approach for
parsing. In this approach, one word will be assigned to more than one cluster.
The challenge of this approach can be to find the correct cluster that a word in
the local context should map to.

We explained that active learning can be used for data annotation, and we

9.2. FUTURE WORK 196

found alternative models for this purpose. Another possibility to continue this
research will be to use the proposed method for a real application to enlarge
the current treebank. It is also possible to propose new sampling methods. One
option can be to add more parsers to the committee members, therefore more
learners are involved in making decisions. And yet another possibility will be
to use the entropy of constituents instead of using the entropy of sentences to
find the informative constituents as a criterion to find uncertain samples.
Stopping the active learning process at an ideal point before annotating all
data in the data pool can also be considered as another possibility to continue

the present research.

Appendix A

Persian Alphabet

197

Table A.1: List of the Persian alphabet (part 1: HAMZE-SIN)

Letter Form

Letter Form

Name Non-joiner | Begin | Middle | End Phonetics Non-joiner | Begin | Middle [End Unicode
u0621
HAMZE A 3 s foi | ? ooy el | ey | U | o ol | 10623
10626
ALEF with tilda [- — L a,ra ol - — Ale 10622
ALEF ! - - apasta, el - 10627
e,?,0,2 | Lol g5l
BE o - — - b ots o | S o 10628
PE < = - G- P ulS o= Ola.u) wy U.OG?E
TE < 5 EY e t Cigd . o Cewsd u062A
SE & 3 A o s U LS Cdo Cod> u0628B
JIM z = = | = &5 zl5 & | g N 1062C
CHE @ = > = §,¢ B o | S el u0686
HE Z = = = h C?J o> ‘):bo @Lc u062D
KHE : = = | & X X dG | oo " 1062E
DAL N - — o“ d IS - — S u062F
ZAL 3 — — & Z IRV — — add 10630
RE] - - - T R - - O 10631
ZE 3 — — ju z 4o, — — jo u0632
ZHE ; - - 5 3.7 [- - 0y 10698
SIN " " — | o= s ") | e K 10633

86T

Table A.2: List of the Persian alphabet (part 2: SHIN-YE)

Letter Form

Letter Form

Name Non-joiner \ Begin \ Middle \ End Non-joiner \ Begin \ Middle \ End Unicode
SHIN o ™ i e , S Ooge £ o Sas oS u0634
SAD P e e o> S uoL&- T2 CJ‘"“ QaJL‘> u0635
ZAD) -5 —a o z oo sl o,hae U0 u0636
TA b b da L t Lbles obb JUs Ll, u0637
ZA L L da L z Lgame N1 PUESHS Lo u0638
EYN & < -~ & ? el e olro &> u0639
GHEYN & < = & q s cole Jbes! & u063A
FE <3 S e S f By 20 S8 gy @S u0641
GHAF 3 3 i & q B9 oB oo E% u0642
KAF S S < e k Sl S S S u06A9
GAF S s < X g SHp axS oo S u06AF
LAM J J L S 1 Js RWRY ole J= u0644
MIM P - - >~ m oy Sippele | S8 N1 u0645
NUN O S - O n ohb Lo PUEDW O u0646
% v, 0, — PR le> ,SeJel | 10648
VAV B - T u, ow zs 9, - B 390 rdwgs u0648
HE 2 %+ a h, -) o2 e EHEY u0647
YE ﬁ — - y, i sk P ol ol u064A

661

Appendix B

EAGLES-based POS tags in
‘Peykare’

201

Table B.1: EAGLES-based POS tags for Persian in ‘Peykare’ (part-I)

Recommen

d Attributes

Special Extensions

Obligatory Attribute [Type Number Person | Mood | Tense | Copulation | Status | Person & Number | Degree tic Attribute Tanguage Specific Attributes
Semantic Features Polarity | Enclitic Fusion
Adverb (ADV) general (GEN) comparative (COM) (EXAM) Ezafe (BZ) | conjunction (CONJ)
intensifier (INTSF) simple (SIM) locative (LOC) pronominal | post-position (PostP)
negative (NEG) (1,2,3,4,5,6)

order (ORD)
interrogative word (QU)
repetition (REPT)

wish (WISH)

Adjective (ADJ)

comparative (COMP)
simple (SIM)
superlative (SUP)

Erzafe (BZ)
Ye (YE)

Pronominal
3.4,5,6)

conjunction (CONJ)
post-position (PostP)

Classifier (CL)

plural (PL)
singular (SING)

conjunction (CONJ)

Conjunction (CONJ)

conditioner (COND)
correlative (CORR)

Frafe (EZ)
pronominal
(1,2,3,4,5,6)

adverh (ADV)

conditioner (COND)

determiner, demonstrative (DET,DEMO)
(INT)

noun (N)

post-position (PostP)

preposition, adverh (PREP,ADV)
preposition, determiner (PREP,DET)
fon, post-position (PREP,PostP)
preposition, pronoun (PREP,PRO)
pronoun (PRO)

Determiner (DET)

demonstrative (DEMO)
indefinite (INDF)
interrogative words (QU)

Ezafe (EZ)
pronominal
(1,2,3,4,5,6)

classifier (CL)
determiner (DET)

Tnterjection (INT)

Noun (N)

common (COM)
proper (PR)

plural (PL)
singular (SING)

acronym (ACR)
day (DAY)
infinitive (INFI)
locative (LOC)
month (MON)
negation (NEG)
season (SEAS)
surname (SURN)
time (TIME)
vocative (VOC)

Frafe (BZ)
Ye (YE)

pronominal
(1,2,3,4,5,6)

Conjunction (CONJ)
Post-position (POSTP)

¢0¢

Table B.2: EAGLES-based POS tags for Persian in ‘Peykare’ (part-1I)

Recommended Attributes

Special Extensions

Obligatory Attribute | Type Number Person | Mood Tense Copulation Status Person & | Degree ¢ Attribute Attributes
Number Semantic Features Polarity Fusion
Numeral (NUM) cardinal (CAR) plural (PL) adjective (AJC) classifier (CL)
ordinal (ORD) singular (SING) nominative (NOMI) Ye (YE) noun (N)
pronominal
(1,2,34,5.,6)
Preposition (PRED) Frafe (EZ) | determiner (DET)
pronominal | noun (N)
(1.2,34,5.6) | pronoun (PRO)
Pronoun (PRO) demonstrative (DEMO) | plural (PL) I Ezafe (BZ) | conjunction (CONJ)
indefinite (INDF) singular (SING) | 2 Ye (YE) post-position (PostP)
(PEFL) 3 Pronominal
personal (PERS) (1.2,34,5.6)
reciprocal (REC)
Post-position (PostP)
Punct (PUNC)
Residual (RES) alphabet (ALPHAB) Arabic (ARAB) Ezafe (EZ)
foreign word(FW) latin (LAT)
mathematical sign(MS) Persian (PERSN)
poem (POEM)
phrasal sentence (PS)
unclear (UNCL)
Verb (V) {COPR) (EIMPERF) adverbial complement auxiliary (AUX) | 1 Tegative | pronominal | conjunction (CONJ)
imperative (IMP) future (FUT) (ADVC) non-inflectional | 2 (NEG) | (1,2,34,5,6)
past participle (PASTP) | imperfect (IMPERF) | adjectival complement (NIN) 3 positive
subjunctive (SUB) past (PA) (AJCC) 4 (POS)
perfect (PERF) nominative complement 5
present (PRES) (NC) 6
prepositional complement
(PREPC)

prepositional+nominative
complement (PREPNC)
pronominal complement
(PROC)

€0¢

Appendix C

MulText-East Format of

POS Tags in the Bijankhan
Corpus

Table C.1: POS tag of Adjectives based on the MulText-East Framework

CATEGORY | POLARITY | TYPE

CLITIC

Adjective (A) | Positive (p)

Simple (s) Ezafe (z)

Negative (n)

Comparative (¢) | Ya (y)

Superlative (u)

Table C.2: POS tag of Adverbs based on the MulText-East Framework

CATEGORY

TYPE POLARITY

SUB-TYPE

SEMANTIC FUSION

CLITIC

Adverb (D)

General (g) Negative (n)

Simple (s)

Time (t) Post-position (p)

Ezafe (z)

Intensifier (i) | Positive (p)

Comparative (c)

EXAM (e) Conjunction (j)

Ya (y)

QU (q)

Location (k)

Order (o)

Repetition (r)

Wish (w)

Table C.3: POS tag of Classifiers based on the MulText-East Framework

CATEGORY | NUMBER

CLITIC

Classifier (L)

Singular (s)

Ezafe (z)

Plural (1)

Ya (y)

Table C.4: POS tag of Conjunctions based on the MulText-East Framework

CATEGORY TYPE CLITIC
Conjunction (J) | Condition (o) Ezafe (z)
Coordinator (r) Ya (y)

Restrictive (r)

Complementizer (m)

205

206

Table C.5: POS tag of Interjections based on the MulText-East Framework

CATEGORY

Interjection (I)

Table C.6: POS tag of the Post-position based on the MulText-East Framework

CATEGORY
Post-position (P)

Table C.7: POS tag of Prepositions based on the MulText-East Framework

CATEGORY CLITIC
Preposition (E) | Ezafe (z)
Ya (y)

Table C.8: POS tag of Punctuation based on the MulText-East Framework

CATEGORY TYPE
Punctuation (O) | End Position (e)
Quotation Mark(q)
Hash Sign (x)
Dollar Sign (d)
Ampersand (a)
Bracket (b)
Mathematical Signs (m)
Comma (c)
Hyphen (h)

Etc (z)

Underline (u)
Colon (o)

Question Mark (u)
At Sign (t)
Semi-colon (k)
Sokun (s)

Table C.9: POS tag of Residuals based on the MulText-East Framework

CATEGORY | TYPE NUMBER SEMANTIC | CLITIC
Residual (R) | MS (m) Singular (s) | Latin (t) Ezafe (z)
PS (p) Plural (1) Persian (f) Ya (y)
UNCL (u) Arabic (b)
FW (w)
ALPHAB (a)
POEM (o)
MADJ (j)
MADV (v)
MN (n)

Table C.10: POS tag of Clitics based on the MulText-East Framework

CATEGORY | TYPE MINOR-POS POLARITY | VERB-TYPE | HOST NUMBER PERSON | HOST-FINAL-LETTER
Clitic (C) Enclitic (¢) | Pronoun (z) Positive (p) | Copula (k) Adjective (a) Singular (s) | First (o) Consonant (c)
Proclitic (p) | Verb (v) Negative (n) Noun (n) Plural (1) Second (t) | Vowel (v)

Post-Position (p)

Preposition (e)

Third (h)

Conjunctor (j)

Adverb (d)

Preposition (e)

Pronoun (z)

Adverb (d)

Number (u)

Determiner (t)

Conjunctor (j)

Past-Participle (p)

Abbreviation (b)

Residual (s)
)

Punctuation (
Determiner (t

o
)
)

Cimperfect (q

Imperfect (i)

Classifier (1)

Interjection (r)

Clitic (c)

Perfect (f)

Post-position (m)

Verb (v)

L0¢

Table C.11: POS tag of Determiners based on the MulText-East Framework

CATEGORY TYPE FUSION Definiteness | SUB-TYPE SEMANTIC SUB-TYPE | NUMBER CLITIC
Determiner (T) | Demonstrative (m) | Adverb (d) Indefinite (f) | General (g) Time (t) Common (c) | Singular (s) | Ezafe (z)
Indefinite (f) Classifier (1) Intensifier (i) | EXAM (e) Proper (a) Plural (1) Ya (y)
Quantifier (q) Determiner (t) QU (q)
Noun (n) Location (k)
Order (o)
Repetition (r)
Wish (w)

Table C.12: POS tag of Nouns based on the MulText-East Framework

CATEGORY | TYPE NUMBER POLARITY | SEMANTIC | ABBREVIATION | CLITIC
Noun (N) Common (c) | Singular (s) | Negative (n) | Location (k) | Abbreviation (b) Ezafe (z)
Proper (a) Plural (1) Possitive (p) | Time (t) Ya (y)
Day (d)

Month (m)

Season (e)

Title (f)

Vocalic (v)

Direction (c)

Table C.13: POS tag of Numbers based on the MulText-East Framework

CATEGORY | TYPE LOCAL-FUNCTION | NUMBER FUSION CLITIC | SEMANTIC
Number (U) | Ordinal (o) | Adjective (a) Singular (s) | Adjective (a) | Ezafe (z) | Time (t)
Cardinal (r) | Noun (n) Plural (1) Classifier (1 Ya (y)

80¢

Table C.14: POS tag of Pronouns based on the MulText-East Framework

CATEGORY

TYPE NUMBER PERSON | LOCAL-FUNCTION | FUSION CLITIC | PLURALITY
Pronoun (Z) | Demonstrative (m) | Singular (s) | First (o) INO (b) Post-position (p) | Ezafe (z) | Plural (1)
Indefinite (f) Plural (1) Second (t) Ya (y)
Reflexive (x) Third (h)
Recursive (c)
Personal (r)
Interrogative (i)
Table C.15: POS tag of Verbs based on the MulText-East Framework
CATEGORY | POLARITY | AUXILIARY/MAIN | TYPE NUMBER PERSON | TENSE ASPECT MOOD CLITIC | IMPERSONAL-MODAL
Verb (V) Negative (n) | Auxiliary (x) Simple (s) Singular (s) | First (o) Present (s) | Perfect (f) Subjunctive (u) Ezafe (z) | Impersonal Modal (n)
Possitive (p) | Main (y) Light (b) Plural (1) Second (t) | Past (t) Imperfect (i) Imperative (m) Ya (y)
Copula (k) Third (h) | Future (u) | Cimperfect (q) | Copr (r)
Infinitive (i) Past-Participle (p)

60¢

Appendix D

Hierarchy of Dependency

Relations

BOT - bottom
ROOT - root
DEP - dependent
PUNC - punctuation
ARG - argument
COMP - complement
ADJCOMP - adjective complement
ADVCOMP - adverb complement
AUX - auxiliary
COPCOMP - copula complement
COORCOMP - coordination complement
CCOMP - clausal complement
DETCOMP - determiner complement
INTCOMP - interjection complement
NN - nominal complement
POSS - possession complement
POSSESSIVE - possessive complement
REFLCOMP - reflexive complement
OBJ - object
DOBJ - direct object
IDOBJ - indirect object
POBJ - preposition object
XOBJ - dropped object
SUBJ - subject

211

212

NSUBJ - nominal subject
RELSUBJ - relativizer subject
XSUBJ - dropped subject
MOD - modifier
ADJMOD - adjective modifier
CLMOD - clausal modifier
DETMOD - determiner modifier
MWE - multi-word expression modifier
INTMOD - interjection modifier
NMOD - noun modifier
NUM - numeric modifier
APPOS - appositional modifier
REFLMOD - reflexive modifier
NUMBER - element of compound number numeric
PREPMOD - preposition modifier
PURPCL - purpose clause modifier
RCMOD - relative clause modifier
RES - residual modifier
VMOD - verb modifier
CC - coordination
ADJCOOR - adjective coordination
ADVCOOR - adverb coordination
CLCOOR - clause coordination
DETCOOR - determiner coordination
NOUNCOOR - noun coordination
NUMCOOR - number coordination
PREPCOOR - preposition coordination
RESCOOR - residual coordination
VERVCOOR - verb coordination
MARKER - marker
ACC - accusative marker
COMPM - complementizer marker
MARK - clausal marker

Bibliography

Abney, Steven. Partial parsing via finite-state cascades. Journal of Natural
Language Engineering, 2(4):337-344, 1996.

AbolhasaniChime, Zahra and Masood Ghayoomi. enzemam: farayande
vazesaziye harfe ezafe va payamadhaye karbordiye an dar zabansSenasiye
rayaneyi [“Incorporation: Word production of Persian prepositions and its
application in computational linguistics”]. In Proceedings of the 2nd Work-

shop on the Persian Language and Computer, pages 16—24, 2006.

AbolhassaniChime, Zahra. An account for compound preposition in Farsi. In
Proceedings of the International Conference on Computational Linguistics and

Association for Computational Linguistics, pages 113—119, 2006.

Adjukiewicz, Kazimierz. Die syntaktische Konnexitét. Studia Philosophica, 1:
1-27, 1935. “Syntactic Connexion” by H. Weber in McCall, S. (Ed.) Polish
Logic, pp. 207-231, Oxford University Press, Oxford, 1967.

Aghaei, Behrad. Clausal Complementation in Modern Persian. PhD thesis,
University of Texas at Austin, 2006.

Aho, Alfred V., Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles,
Techniques, and Tools. Pearson Education, Inc., Boston, MA, USA, 2 edition,
2007.

Aldezabal, Izaskun, Koldo Gojenola, and Kepa Sarasola. A bootstrapping ap-
proach to parser development. In International Workshop on Parsing Tech-

nologies, pages 1728, 2000.

AleAhmad, Abolfazl, Hadi Amiri, Ehsan Darrudi, Masoud Rahgozar, and
Farhad Oroumchian. Hamshahri: A standard Persian text collection.
Knowledge-Based Systems, 22(5):382-387, 2009.

Allen, James. Natural Language Understanding. The Benjamin/Cummins Pub-

lishing Company, Redwood City, California, 2 edition, 1995.

213

BIBLIOGRAPHY 214

Amtrup, Jan W., Hamid Mansouri-Rad, Karine Megerdoomian, and Rémi Za-
jac. Persian-English machine translation: An overview of the Shiraz project.
Memoranda in Computer and Cognitive Science MCCS-00-319, Computing
Research Laboratory, New Mexico State University, Las Cruces, NM, 2000.

Aono, Masaki and Hironori Doi. A method for query expansion using a hierarchy
of clusters. In Proceedings of the Asian Information Retrieval Symposium,
pages 479-484, 2005.

Arabsorkhi, Mohsen, Hesham Faili, and Mansoor Zolghadri Jahroumi. Using
genetic algorithm for Persian grammar induction. In Proceedings of the 2009
IEEE International Conference on Natural Language Processing and Knowl-
edge Engineering, pages 146-151, September 24-27 20009.

Assi, Mostafa and Mohammad HajiAbdolhosseini. Grammatical tagging of a
Persian corpus. International Journal of Corpus Linguistics, 5(1):69-82, 2000.

Assi, SeyyedMostafa. Farsi linguistic database (FLDB). International Journal
of Lexicography, 10(3):5, 1997.

Assi, SeyyedMostafa. Persian language and IT. In Proceedings of the 2nd
Workshop on Information Technology and Its Disciplines, pages 85-94, Kish
Island, Iran, 2004.

Assi, SeyyedMostafa. PLDB: Persian Linguistics DataBase. PaZuhesgaran [Re-
searchers], 2005.

Assi, SeyyedMostafa. paygahe dadeye zabane farsi dar internet [‘The Persian
linguistics data base on Internet’]. Technical report, Institute for Humanities
and Cultural Studies, Tehran, Iran, 2006. URL http://pldb.ihcs.ac.ir/
Files/PLDB-REPORTS85. pdf.

Avgustinova, Tania and Yi Zhang. Conversion of a Russian dependency treebank
into HPSG derivations. In The 9th International Workshop on Treebanks and
Linguistic Theories, pages 7-18, 2010.

Ayat, Maryam. yek geramere mohasebati baraye zabane farsi [“A Computa-
tional Grammar for the Persian Language”]. Master’s thesis, Department of

Computer Engineering and IT, Amirkabir University, Tehran, Iran, 2002.

Bagherbeygi, Somayeh and Mehrnoush Shamsfard. Corpus based semi-
automatic extraction of Persian compound verbs and their relations. In Cal-
zolari, Nicoletta, Khalid Choukri, Thierry Declerck, Mehmet Ugur Dogan,
Bente Maegaard, Joseph Mariani, Jan Odijk, and Stelios Piperidis, editors,

Proceedings of the 8ht International Conference on Language Resources and

http://pldb.ihcs.ac.ir/Files/PLDB-REPORT85.pdf
http://pldb.ihcs.ac.ir/Files/PLDB-REPORT85.pdf

BIBLIOGRAPHY 215

FEvaluation, Istanbul, Turkey, May 23—-25 2012. European Language Resources

Association.

Bahrani, Mohammad, Hossein Sameti, and Mehdi HafeziManshadi. A com-
putational grammar for Persian based on GPSG. Language Resources and
Evaluation, 45(4):387-408, 2011.

Baldridge, Jason and Miles Osborne. Active learning for HPSG parse selection.
In Proceedings of the 7th Conference on Natural Language Learning at Human
Language Technology-Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics, pages 17-24, Stroudsburg, PA, USA,

2003. Association for Computational Linguistics.

Baldridge, Jason and Miles Osborne. Active learning and the total cost of
annotation. In Lin, Dekang and Dekai Wu, editors, Proceedings of Empirical

Methods in Natural Language Processing, pages 9—16, Barcelona, Spain, 2004.

Baldridge, Jason and Miles Osborne. Active learning and logarithmic opinion
pools for HPSG parse selection. Natural Language Engineering, 14(2):191—
222, 2008.

Baram, Yoram, Ran El-Yaniv, and Kobi Luz. Online choice of active learning

algorithm. Journal of Machine Learning Research, pages 255-291, 2004.

Bateni, MohammadReza. tousife saxtemane dasturiye zabane farsi [“A De-
scription of the Grammatical Structure of the Persian Language”]. Amikabir,
Tehran, Iran, 1969.

Bezdek, James C., Robert Ehrlich, and William Full. FCM: The fuzzy c-means
clustering algorithm. Computers & Geosciences, 10(2-3):191-203, 1984.

Bijankhan, Mahmood. naqgse peykarehaye zabani dar nevestane dasture zaban:
mo‘arrefiye yek narmafzare rayaneyi [“The role of corpora in writing a gram-

mar: Introducing a software”]. Journal of Linguistics, 19(2):48-67, 2004.

Bijankhan, Mahmood. motale?e va tahqiq jahate tadvine pazuhesnameye
amaliyatiye dadegan: piyadesaziye estandarde igolz dar peykareye mat-
niye zabane farsiye moaser [“The study and research for a database devel-
opment: Applying the EAGLES guidelines on the contemporary Persian
text corpus”]. Corpus annotation technical report, Supreme Council of In-
formation and Communication Technology and the University of Tehran—
Iran, 2007. URL http://www.scict.ir/portal/File/ShowFile.aspx?ID=
c93e415f-£977-46bd-8545-911867752e2b.

http://www.scict.ir/portal/File/ShowFile.aspx?ID=c93e415f-f977-46bd-8545-911867752e2b
http://www.scict.ir/portal/File/ShowFile.aspx?ID=c93e415f-f977-46bd-8545-911867752e2b

BIBLIOGRAPHY 216

Bijankhan, Mahmood, Javad Sheykhzadegan, Ali Darzi, Hosein RaziZadeh,
MohammadEsma’il Ghasedi, Javad Bagheri, Vahid Sadeghi, Zahra Mah-
moudzadeh, Maryam DanayTousi, and Arezoo Moazzemi. peykareye matniye
zabane farsi [“The Persian text corpus”]. In Proceedings of the 1st Workshop
on the Persian Language and Computer, pages 143—144, University of Tehran,
Iran, 2004.

Bijankhan, Mahmood, Javad Sheykhzadegan, Mohammad Bahrani, and Ma-
sood Ghayoomi. Lessons from building a Persian written corpus: Peykare.
Language Resources and Fvaluation, 45(2):143-164, 2011.

Bird, Steven and Edward Loper. NLTK: The natural language toolkit. In The
Companion Volume to the Proceedings of the Association for Computational
Linguistics, pages 214-217, Barcelona, Spain, 2004. Association for Compu-

tational Linguistics.

Bird, Steven, Ewan Klein, and Edward Loper. Natural Language Processing
with Python. O’Reilly Media, Inc., Sebastopol, CA, USA, 2009.

Black, Ezra W., Steven Abney, Daniel P. Flickinger, Claudia Gdaniec, Ralph
Grishman, Philip Harrison, Donald Hindle, Robert J. P. Ingria, Frederick
Jelinek, Judith L. Klavans, Mark Y. Liberman, Mitchell P. Marcus, Salim
Roukos, Beatrice Santorini, and Tomek Strzalkowski. Procedure for quanti-
tatively comparing the syntactic coverage of English grammars. In Black, E.,
editor, Proceedings of the workshop on Speech and Natural Language, pages
306-311, 1991.

Bohmova, Alena, Jan Haji¢, Eva Hajicova, and Barbora Vidova-Hladka. The
Prague Dependency Treebank: A Three-Level Annotation Scenario, chapter 7,
pages 103-127. Kluwer Academic Publishers, The Netherlands, 2003.

Bohnet, Bernd. Efficient parsing of syntactic and semantic dependency struc-
tures. In Proceedings of the 13th Conference on Computational Natural Lan-
guage Learning: Shared Task, pages 67-72, Stroudsburg, PA, USA, 2009.
Association for Computational Linguistics.

Bonami, Olivier and Pollet Samvelian. Inflectional periphrasis in Persian. In
Proceedings of the 16th International Conference on Head-driven Phrase
Structure Grammar, pages 26-46, Stanford, California, 2009. CSLI Publi-

cations.

Bos, Johan, Cristina Bosco, and Alessandro Mazzei. Converting a dependency-

based treebank to a categorial grammar treebank for Italian. In Passarotti,

BIBLIOGRAPHY 217

M., Adam Przepiérkowski, S. Raynaud, and Frank Eyndevan , editors, Pro-
ceedings of the 8th Workshop on Treebanks and Linguistic Theories, pages
27-38, 2009.

Boullier, Pierre and Benoit Sagot. Efficient and robust LFG parsing: SXLFG. In
Proceedings of the 9th International Workshop on Parsing Technology, pages
1-10, Stroudsburg, PA, USA, 2005. Association for Computational Linguis-

tics.

Brants, Sabine, Stefanie Dipper, Silvia Hansen, Wolfgang Lezius, and George
Smith. The TIGER treebank. In Proceedings of the 1st Workshops on Tree-
banks and Linguistic Theories, pages 24-41, 2002.

Brants, Thorsten. The NeGra export format for annotated corpora. CLAUS
Report 98, Universitéit des Saarlandes, Computerlinguistik, Saarbriicken, Ger-

many, 1997.

Brants, Thorsten. Cascaded Markov models. In Proceedings of the 9th Confer-
ence on FEuropean Chapter of the Association for Computational Linguistics,
pages 118-125, 1999a.

Brants, Thorsten. Tagging and Parsing with Cascaded Markov Models: Automa-
tion of Corpus Annotation. PhD thesis, German Research Center for Artificial

Intelligence and Saarland University, Saarbriicken, Germany, 1999b.

Brants, Thorsten. TnT - A statistical part-of-speech tagger. In Proceedings of
the Association for Neuro-Linguistic Programming and the North American
Chapter of the Association for Computational Linguistics, pages 224-231,
2000.

Bresnan, Joan and Ronald M. Kaplan. The Mental representation of grammati-
cal relations. MIT press series on cognitive theory and mental representation.
The MIT Press, Cambridge (Massachusett), London, 1982.

Brown, Peter F., Peter V. deSouza, Robert L. Mercer, Vincent J. Della Pietra,
and Jenifer C. Lai. Class-based n-gram models of natural language. Compu-
tational Linguistics, 18:467—-479, 1992.

Brunstein, Ada. Annotation guidelines for answer types: BBN tech-
nologies, 2002. URL http://catalog.ldc.upenn.edu/docs/LDC2005T33/
BBN-Types-Subtypes.html.

Bulyko, Ivan and Mari Ostendorf. A bootstrapping approach to automating

prosodic annotation for limited-domain synthesis, 2002.

http://catalog.ldc.upenn.edu/docs/LDC2005T33/BBN-Types-Subtypes.html
http://catalog.ldc.upenn.edu/docs/LDC2005T33/BBN-Types-Subtypes.html

BIBLIOGRAPHY 218

Burke, Michael. Automatic Treebank Annotation for the Acquisition of LFG
Resources. PhD thesis, Dublin City University, 2006.

Busser, Bertjan and Roser Morante. Designing an active learning based system
for corpus annotation. In Revista de Procesamiento del Lenguaje Natural,
number 35, pages 375381, 2005.

Cahill, Aoife, Mairead Mccarthy, Josef Van Genabith, and Andy Way. Auto-
matic annotation of the Penn treebank with LFG f-structure information. In
LREC Workshop on Linguistic Knowledge Acquisition and Representation:
Bootstrapping Annotated Language Data, pages 8-15, 2002.

Callmeier, Ulrich. PET — A platform for experimentation with efficient HPSG
processing techniques. Natural Language Engineering, 6(1):99-107, 2000.

Candito, Marie and Benoit Crabbé. Improving generative statistical parsing
with semi-supervised word clustering. In Proceedings of the 11th International

Conference on Parsing Technologies, pages 138—141, Paris, France, 2009.

Candito, Marie and Djame Seddah. Parsing word clusters. In Proceedings of
the Human Language Technology-Conference of the North American Chapter
of the Association for Computational Linguistics, First Workshop on Statis-
tical Parsing of Morphologically-Rich Languages, pages 76-84, Los Angeles,
California, 2010.

Candito, Marie, Benoit Crabbé, and Pascal Denis. Statistical French depen-
dency parsing: Treebank conversion and first results. In Proceedings of the
Tth International Conference on Language Resources and Evaluation, pages
1840-1847, La Valletta, Malta, 2010. European Language Resources Associ-

ation.

Candito, Marie, Enrique Henestroza Anguiano, and Djame Seddah. A word
clustering approach to domain adaptation: Effective parsing of biomedical
texts. In Proceedings of the 12th International Conference on Parsing Tech-

nology, pages 37-42, Dublin City University, 2011.

Carroll, John, Ted Briscoe, and Antonio Sanfilippo. Parser evaluation: A survey
and a new proposal. In Proceedings of the 1st International Conference on

Language Resources and Evaluation, pages 447-454, 1998.

Carter, David M. The TreeBanker: A tool for supervised training of parsed
corpora. In Proceedings of the Workshop On Computational Environments

For Grammar Development And Linguistic Engineering, pages 9-15, 1997.

BIBLIOGRAPHY 219

Cakici, Ruken. Automatic induction of a CCG grammar for Turkish. In Pro-
ceedings of the ACL Student Research Workshop, pages 73-78, 2005.

Chanev, Atanas, Kiril Simov, Petya Osenova, and Svetoslav Marinov. Depen-
dency conversion and parsing of the BulTreeBank. In Proceedings of the
LREC workshop Merging and Layering Linguistic Information, pages 1623,
2006.

Charniak, Eugene. Tree-bank grammars. In Proceedings of the 13th National
Conference on Artificial Intelligence, pages 1031-1036, 1996.

Charniak, Eugene. A maximum-entropy-inspired parser. In Proceedings of the
1st North American Chapter of the Association for Computational Linguis-
tics Conference, pages 132-139, Stroudsburg, PA, USA, 2000. Association for

Computational Linguistics.

Chen, Jinying, Andrew Schein, Lyle Ungar, and Martha Palmer. An empiri-
cal study of the behavior of active learning for word sense disambiguation.
In Proceedings of the Human Language Technology Conference of the North
American Chapter of the Association for Computational Linguistics, pages
120-127, Stroudsburg, PA, USA, 2006a. Association for Computational Lin-

guistics.

Chen, John, Srinivas Bangalore, and Vijay K. Shanker. Automated extraction
of tree-adjoining grammars from treebanks. Natural Language Engineering,
12(3):251-299, 2006b.

Chen, Wenliang, Xingzhi Chang, Huizhen Wang, Jingbo Zhu, and Tianshun
Yao. Automatic word clustering for text categorization using global informa-
tion. In Proceedings of the Asian Information Retrieval Symposium, volume

3411 of Lecture Notes in Computer Science, pages 1-11. Springer, 2004.
Chomsky, Noam. Syntactic structures. Mouton (Hague), Berlin, 1957.

Chomsky, Noam. On certain formal properties of grammars. Information and
Control, 2:137-167, 1959.

Chomsky, Noam. Minimalist inquiries: The framework. In Martin, R.,
D. Michaels, and J. Uriagereka, editors, Step by step: FEssays in honor of
Howard Lasnik. The MIT Press, Cambridge, MA, USA, 2000.

Chomsky, Noam. Derivation by phase. In Kenstowicz, Michael, editor, Ken
Hale: A Life in Language. The MIT Press, Cambridge, MA, USA, 2001.

BIBLIOGRAPHY 220

Church, Kenneth Ward. A stochastic parts program and noun phrase parser for
unrestricted text. In Proceedings of the Second Conference on Applied Natural
Language Processing, pages 136-143, Stroudsburg, PA, USA, 1988.

Cmejrek, Martin, Jan Cuifn, Jifi Havelka, Jan Haji¢, and Vladislav Kubori.
Prague Czech-English dependency treebank: Syntactically annotated re-
sources for machine translation. In Proceedings of the 4th International Con-
ference on Language Resources and Fvaluation, pages 1597-1600. European

Language Resources Association, 2004.

Cocke, John. Programming Languages and Their Compilers: Preliminary Notes.

Courant Institute of Mathematical Sciences, New York University, 1969.

Collins, Michael. Head-driven Statistical Models for Natural Language Parsing.
PhD thesis, University of Pennsylvania, 1999.

Collins, Michael and Nigel Duffy. Convolution kernels for natural language.
In Proceedings of the 14th Conference on Advances in Neural Information
Processing Systems, pages 625-632, Cambridge, MA, USA, 2001. The MIT

Press.

Collins, Michael and Nigel Duffy. New ranking algorithms for parsing and
tagging: Kernels over discrete structures, and the voted perceptron. In Pro-
ceedings of the Association for Computational Linguistics, pages 263-270,
Stroudsburg, PA, USA, 2002. Association for Computational Linguistics.

Copestake, Ann. Implementing Typed Feature Structure Grammars. CSLI Pub-
lications, Stanford, 2002.

Copestake, Ann, Dan Flickinger, Carl Pollard, and Ivan A. Sag. Minimal recur-
sion semantics: An introduction. Research on Language and Computation, 4
(3):281-332, 2006.

Cramer, Bart and Yi Zhang. Constraining robust constructions for broad-
coverage parsing with precision grammars. In Proceedings of the 23rd Interna-
tional Conference on Computational Linguistics, pages 223-231, Stroudsburg,
PA, USA, 2010. Association for Computational Linguistics.

Craswell, Nick and David Hawking. Overview of the TREC 2004 web track. In
Proceedings of the Thirteenth Text REtrieval Conference. National Institute
of Standards and Technology (NIST), 2004.

DabirMoghadam, Mohammad. majhul dar zabane farsi [“Passive in the Persian

language”]. majalleye zabansSenasi [Journal of Linguistics], 2(1):31-64, 1986.

BIBLIOGRAPHY 221

DabirMoghaddam, Mohammad. Compound verbs in Persian. Studies in the
Linguistic Sciences, 27(2):25-59, 1997.

Darrudi, Ehsan, MohammadReza Hejazi, and Farhad Oroumchian. Assessment
of a modern Farsi corpus. In Proceedings of the 2nd Workshop on Information
Technology and Its Disciplines, pages 73-77, Kish Island, Iran, 2004.

Darzi, Ali. Word Order, NP Movement, and Opacity Conditions in Persian.
PhD thesis, University of Illinois at Urbana-Champaign, 1996.

Marneffe, Marie-Catherinede and Christopher D. Manning. The Stanford
typed dependencies representation. In Proceedings of the workshop on Cross-
Framework and Cross-Domain Parser FEvaluation, pages 1-8, Stroudsburg,
PA, USA, 2008. Association for Computational Linguistics.

Dehdari, Jon and Deryle Lonsdale. A link grammar parser for Persian. In
Karimi, Simin, Vida Samiian, and Don Stilo, editors, Aspects of Iranian Lin-

guistics, volume 1. Cambridge Scholars Press, 2008.

Dhillon, Inderjit S., Subramanyam Mallela, and Raul Kumar. Enhanced word
clustering for hierarchical text classification. In Proceedings of the 8th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
pages 191-200, 2002.

Diab, Mona T. An unsupervised approach for bootstrapping Arabic sense tag-
ging. In Proceedings of the Workshop on Computational Approaches to Arabic
Script-based Languages, pages 43-50, Stroudsburg, PA, USA, 2004. Associa-

tion for Computational Linguistics.

Dipper, Stefanie. ~Grammar-based corpus annotation. In Abeillé, Anne,
Thorsten Brants, and Hans Uszkoreit, editors, Proceedings of the Workshop
on Linguistically Interpreted Corpora, pages 56—64, 2000.

Dridan, Rebecca and Timothy Baldwin. Unsupervised parse selection for HPSG.
In Proceedings of the 2010 Conference on Empirical Methods in Natural Lan-
guage Processing, pages 694-704, 2010.

Earley, Jay. An Efficient Context Free Parsing Algorithm. PhD thesis, Computer
Science Department, Carnegie Mellon University, Pittsburgh, USA, 1968.

Edwards, Anthony William Fairbank. Likelihood. Johns Hopkins University
Press, Baltimore, USA, 2 edition, 1992.

BIBLIOGRAPHY 222

Eisner, Jason M. Three new probabilistic models for dependency parsing: An
exploration. In Proceedings of the 16th International Conference on Compu-
tational Linguistics, pages 340-345, Stroudsburg, PA, USA, 1996. Association
for Computational Linguistics.

FahimNiya, Farzin. moskelate amuzes va yadgiriye zatte farsi dar danesamuzane
sale dovvome ebtedayi [“Problems in Teaching and Learning Persian Script
for the Second-grade Primary Students”]. Master’s thesis, Institute for Hu-

manities and Cultural Studies, Iran, 2002.

Faili, Hesham. estentaje esteqrayiye geraamere ehtemalatiye yek zabane tabi‘i
be ravese bimorabbi [“Unsupervised Grammar Induction for a Natural Lan-
guage”]. PhD thesis, Computer Engineering Department, Sharif University
of Technology, Tehran, Iran, 2006.

Ferret, Olivier and Brigitte Grau. A bootstrapping approach for robust topic
analysis. Natural Language Engineering, 8(3):209-233, 2002.

Flickinger, Dan. On building a more efficient grammar by exploiting types.
Natural Language Engineering, 6(1):15-28, 2000.

Flickinger, Daniel, Yi Zhang, and Valia Kordoni. DeepBank: A dynamically
annotated treebank of the Wall Street Journal. In Proceedings of the 11th
International Workshop on Treebanks and Linguistic Theories, pages 85-96,
Lisbon, Portugal, 2012. Edi¢des Colibri.

Forney, G. David. The Viterbi algorithm. In Proceedings of the IEEFE, volume 61,
pages 268-278, 1973.

Foth, Kilian A. and Wolfgang Menzel. Hybrid parsing: Using probabilistic mod-
els as predictors for a symbolic parser. In Proceedings of the 21st International
Conference on Computational Linguistics and the International Conference of
the Association for Computational Linguistics, pages 321-328, Stroudsburg,
PA, USA, 2006. Association for Computational Linguistics.

Freund, Yoav, H. Sebastian Seung, Eli Shamir, and Naftali Tishby. Selective
sampling using the query by committee algorithm. In Machine Learning, vol-
ume 28, pages 133-168, Hingham, MA, USA, 1997. Kluwer Academic Pub-

lishers.

Gazdar, Gerald, Ewan Klein, Geoffrey K. Pullum, and Ivan A. Sag. Generalized

Phrase Structure Grammar. Harvard University Press, 1985.

Gerdes, Kim and Pollet Samvelian. A statistical approach to Persian light verb
constructions. In Proceedings of the 27th International Conference on Lexis
and Grammar, 2008.

BIBLIOGRAPHY 223

Ghayoomi, Masood. pishiniye vaze dar pardazese rayaneyiye zabane farsi [“Word
Prediction in Computational Processing of the Persian Language”]. Master’s

thesis, Islamic Azad University, Tehran Central Branch, Iran, 2004.

Ghayoomi, Masood. Using variance as a stopping criterion for active learning
of frame assignment. In Proceedings of the Human Language Technology-
Conference of the North American Chapter of the Association for Computa-
tional Linguistics, Workshop on Active Learning for Natural Language Pro-

cessing, pages 1-9, Los Angeles, USA, 2010.

Ghayoomi, Masood. Bootstrapping the development of an HPSG-based tree-
bank for Persian. Linguistic Issues in Language Technology, 7(1), 2012a.

Ghayoomi, Masood. From grammar rule extraction to treebanking: A boot-
strapping approach. In Proceedings of the Sth International Conference
on Language Resources and Evaluation, pages 1912-1919, Istanbul, Turkey,
2012b.

Ghayoomi, Masood. Word clustering for Persian statistical parsing. In Isa-
hara, Hitoshi and Kyoko Kanzaki, editors, Advances in Natural Language
Processing, volume 7614 of Lecture Notes in Computer Science: JapTAL
’12: Proceedings of the 8th International Conference on Advances in Natural

Language Processing, pages 126—137. Springer Berlin Heidelberg, 2012c.

Ghayoomi, Masood. mo’arrefiye dadegane deraxti va tajziyegare xodkare farsi
[“Introducing a treebank and a statistical parser for Persian”]. In Proceedings
of the 8th Conference of Iranian Linguistics, volume 2, pages 666-679, 2013.

Ghayoomi, Masood and Bruno Guillaume. Interaction grammar for the Persian
language: Noun and adjectival phrases. In Proceedings of the Association
for Computational Linguistics and International Joint Conference on Natural
Language Processing, Tth Workshop on Asian Language Resources, pages 107—

114, Suntec, Singapore, 2009. Association for Computational Linguistics.

Ghayoomi, Masood and Jonas Kuhn. Sampling methods in active learning for
treebanking. In Proceedings of the 12th International Workshop on Treebanks
and Linguistic Theories, pages 49-60, Sofia, Bulgaria, 2013.

Ghayoomi, Masood and Jonas Kuhn. Converting an HPSG-based treebank into
its parallel dependency-based treebank. In Proceedings of the 9th International
Conference on Language Resources and Fvaluation, pages 802-809, Reykjavik,
Iceland, 2014.

Ghayoomi, Masood and Omid Moradiannasab. The effect of treebank annota-

tion granularity on parsing: A comparative study. In Proceedings of the 11th

BIBLIOGRAPHY 224

International Workshop on Treebanks and Linguistic Theories, pages 109114,
Lisbon, Portugal, 2012. Edi¢ées Colibri.

Ghayoomi, Masood and Stefan Miiller. Multi-token units and multi-unit tokens
in developing an HPSG-based treebank for Persian. In 4th International

Conference on Iranian Linguistics, page 29, 2011.

Ghayoomi, Masood, Saeedeh Momtazi, and Mahmood Bijankhan. A study of
corpus development for Persian. International Journal on Asian Language
Processing, 20(1):17-33, 2010.

Ghayoomi, Masood, Kiril Simov, and Petya Osenova. Constituency parsing of
Bulgarian: Word- vs class-based parsing. In Proceedings of the 9th Interna-
tional Conference on Language Resources and FEvaluation, pages 4056-4060,
Reykjavik, Iceland, 2014.

Gholamalizadeh, Khosro. sazte zabane farsi [“The Structure of the Persian
Language”]. Ehyaye Ketab, Tehran, Iran, 1999.

Ghomeshi, Jila. Projection and Inflection: A Study of Persian Phrase Structure.
PhD thesis, University of Toronto, 1996.

Goldberg, Adele E. Words by default: The Persian complex predicate construc-
tion. In Francis, Elaine and Laura Michaelis, editors, Linguistic Mismatches,
pages 117-146. CSLI Publications, 2003.

Goodman, Joshua. Parsing algorithms and metrics. In Proceedings of the As-

sociation for Computational Linguistics, pages 177-183, 1996.

Guo, Yuqing, Josef Genabithvan , and Haifeng Wang. Treebank-based acquisi-
tion of LFG resources for Chinese. In Proceedings of the 12th International
Lexical Functional Grammar Conference, Stanford, California, 2007. CSLI

Publications.

Haji¢, Jan. Building a syntactically annotated corpus: The Prague dependency
treebank. In Hajicova, E., editor, Issues of Valency and Meaning. Studies
in Honor of Jarmila Panevovd, pages 106-132. Karolinum, Prague, Czech
Republic, 1998.

Haji¢, Jan, Eva Hajicova, Jarmila Panevova, Petr Sgall, Ondiej Bojar, Silvie
Cinkové, Eva Fucikova, Marie Mikulova, Petr Pajas, Jan Popelka, Jifi Se-
mecky, Jana Sindlerova, Jan Stépanek, Josef Toman, Zdeiika UreSova, and
Zdenék Zabokrtsky. Announcing Prague Czech-English dependency treebank
2.0. In Calzolari, Nicoletta, Khalid Choukri, Thierry Declerck, Mehmet Ugur
Dogan, Bente Maegaard, Joseph Mariani, Jan Odijk, and Stelios Piperidis,

BIBLIOGRAPHY 225

editors, Proceedings of the 8th International Conference on Language Re-
sources and Evaluation, pages 3153-3160, Istanbul, Turkey, 2012. European

Language Resources Association.

Hall, Johan, Joakim Nivre, and Jens Nilsson. A hybrid constituency-dependency
parser for Swedish. In Proceedings of the 16th Nordic Conference of Compu-
tational Linguistics, pages 284-287, 2007.

Han, Chung-hye, Na-Rare Han, Eon-Suk Ko, and Martha Palmer. Development
and evaluation of a Korean treebank and its application to NLP. In Proceed-
ings of the 3rd International Conference on Language Resources and Evalua-

tion, pages 1635-1642. European Language Resources Association, 2002.

Hays, David G. Dependency theory: A formalism and some observations. Lan-
guage, 40(4):511-525, 1964.

Heid, Ulrich. A linguistic bootstrapping approach to the extraction of term
candidates from German text. Terminology, 5(2):161-181, 2000.

Hindle, Donald. User manual for Fidditch, a deterministic parser. Technical
Memorandum 7590-142, Naval Research Laboratory, 1983.

Hockenamier, Julia and Mark Steedman. CCGbank: A corpus of CCG deriva-
tions and dependency structures extracted from the Penn treebank. Compu-

tational Linguistics, 2007.

Hockenmaier, Julia. Data and Models for Statistical Parsing with Combina-
tory Categorial Grammar. PhD thesis, School of Informatics, University of
Edinburgh, Edinburgh, Scotland, UK, 2003.

Hodge, Victoria J. and Jim Austin. Hierarchical word clustering - automatic

thesaurus generation. Neurocomputing, 48:819-846, 2002.

Huang, Chu-Ren, Feng-Yi Chen, Keh-Jiann Chen, Zhao Gaosming , and Kuang-
Yu Che. Sinica treebank: Design criteria, annotation guidelines, and on-line
interface. In Proceedings of 2nd Chinese Language Processing Workshop,

Association for Computational Linguistics, 2000.

Huang, Liang and David Chiang. Better k-best parsing. In Proceedings of the
9th International Workshop on Parsing Technologies, pages 53—64, Vancouver,
BC, 2005.

Hughes, Baden, James Haggerty, Saritha Manickam, Joel Nothman, and
James R. Curran. A distributed architecture for interactive parse annota-
tion. In In Proceedings of the Australasian Language Technology Workshop,
pages 207-214, 2005.

BIBLIOGRAPHY 226

Hwa, Rebecca. Sample selection for statistical grammar induction. In Proceed-
ings of the 2000 Joint special interest group for linguistic data and corpus-
based approaches to NLP on Empirical Methods on Natural Language Pro-
cessing and very large corpora held in conjunction with the Association for
Computational Linguistics, pages 45-52, Stroudsburg, PA, USA, 2000. Asso-

ciation for Computational Linguistics.

Hwa, Rebecca. On minimizing training corpus for parser acquisition. In Daele-
mans, Walter and Rémi Zajac, editors, Proceedings of the 5th Conference
on Computational Natural Language Learning (CoNLL-2001), pages 84—89.
Toulouse, France, 2001.

Hwa, Rebecca. Sample selection for statistical parsing. Computational Linguis-
tics, 30(3):253-276, 2004.

Ingerman, Peter Zilahy. A Syntaz-oriented Translator. Academic Press, New
York and Lonodn, 1966.

Tosif, Elias, Georgios Petasis, and Vangelis Karkaletsis. Ontology-based Infor-
mation Extraction under a Bootstrapping Approach, chapter 1, pages 1-21.
IGI Global, Hershey, PA, USA, April 2012.

Joshi, Aravind K. Tree Adjoining Grammars: How Much Context Sensitivity
is Required to provide Reasonable Structural Descriptions?, chapter 6, pages
206-250. Cambridge University Press, 1985.

Jurafsky, Daniel and James H. Martin. Speech and Language Processing: An
Introduction to Natural Language Processing, Computational Linguistics, and

Speech Recognition. Prentice Hall, Upper Saddle River, New Jersey, 2000.

Kahnemuyipour, Arsalan. Persian Ezafeh construction revisited: Evidence for
modifier phrase. In Jensen, J.T. and G. Herkvan , editors, Proceedings of
the 2000 Annual Conference of the Canadian Linguistic Association, pages
173-185. Cahiers Linguistique d’Ottawa, 2000.

Kahnemuyipour, Arsalan. Persian Ezafeh construction: Case, agreement or
something else. In Proceedings of the 2nd Workshop on Persian Language

and Computer, University of Tehran, Iran, 2006.

Kalbassi, Iran. sazte esteqagiye vaze dar farsiye emruz [“The Derivational
Structure of Word in Modern Persian”]. Institute for Humanities and Cul-
tural Studies, Tehran, Iran, 2001.

Kaplan, Ronald M. and Joan Bresnan. Lezical-Functional Grammar: A Formal

System for Grammatical Representation, chapter 2, pages 29-130. Center

BIBLIOGRAPHY 227

for the Study of Language and Information Publication Lecture Notes. CSLI
Publications, Stanford, California, 1995. URL http://www2.parc.com/isl/
groups/nltt/papers/kb82-95.pdf.

Karimi, Simin. Persian compound verbs: Compositional or idiomatic. Lexicol-
ogy, 3(2):273-318, 1997.

Karimi, Simin. Specificity effect: Evidence from Persian. The Linguistic Review,
16(2):125-141, 1999.

Karimi, Simin. On Object Positions, Specificity, and Scrambling in Persian,
chapter 5, pages 91-125. Blackwell Publishing Ltd, Oxford, UK, 2003.

Karimi, Simin. A Minimalist Approach to Scrambling: FEvidence from Persian.
Mouton de Gruyter, 2005.

KarimiDoostan, GholamHosein. Light Verb Constructions in Persian and Kur-
dish. PhD thesis, University of Essex, 1997.

Kasami, Tadao. An efficient recognition and syntax-analysis algorithm for
context-free languages. Technical report, Air Force Cambridge Research Lab,
Bedford, MA, 1965.

Keller, Frank. Towards an account of extraposition in HPSG. In Proceedings
of the Tth Conference on European Chapter of the Association for Compu-
tational Linguistics, pages 301-306, San Francisco, CA, USA, 1995. Morgan

Kaufmann Publishers Inc.

Kiani, Soheila, Tara Akhavan, and Mehrnoush Shamsfard. Developing a Per-
sian chunker using a hybrid approach. In International Multi-conference on
Computer Science and Information Technology, pages 227-234, October 12-14
2009.

King, Paul. A Logical Formalism for Head-driven Phrase Structure Grammar.
PhD thesis, Department of Mathematics, University of Manchester, 1989.

King, Paul J. and Kiril Simov. The automatic deduction of classificatory systems
from linguistic theories. Grammars, 1(2):103-153, 1998.

Klein, Dan and Christopher D. Manning. A generative constituent-context
model for improved grammar induction. In Proceedings of the Association for
Computational Linguistics (ACL’02), pages 128-135, 2002.

Klein, Dan and Christopher D. Manning. Accurate unlexicalized parsing. In
Proceedings of the 41st Meeting of the Association for Computational Lin-
guistics, pages 423-430, 2003.

http://www2.parc.com/isl/groups/nltt/papers/kb82-95.pdf
http://www2.parc.com/isl/groups/nltt/papers/kb82-95.pdf

BIBLIOGRAPHY 228

Kneser, Reinhard and Jochen Peters. Semantic clustering for adaptive language
modeling. In Proceedings of the IEEE International Conference on Acoustics,

Speech, and Signal Processing. IEEE Computer Society, 1997.

Koller, Alexander and Stefan Thater. Efficient solving and exploration of scope
ambiguities. In Proceedings of the Association for Computational Linguistics
Interactive Poster and Demonstration Sessions, pages 9-12. Association for

Computational Linguistics, Ann Arbor, 2005.

Konig, Esther and Wolfgang Lezius. The TIGER language - A description
language for syntax graphs - part 1: User’s guidelines. Technical report, IMS,
University of Stuttgart, 2002a.

Konig, Esther and Wolfgang Lezius. The TIGER language - A description
language for syntax graphs - part 2: Formal definition. Technical report,
IMS, University of Stuttgart, 2002b.

Koo, Terry, Xaviar Carreras, and Michael Collins. Simple semi-supervised de-
pendency parsing. In Proceedings of the Association for Computational Lin-
guistics (ACL-08), pages 595-603, Colimbus, USA, 2008.

Kiibler, Sandra, Wolfgang Maier, Ines Rehbein, and Yannick Versley. How to
compare treebanks. In Calzolari, Nicoletta, Khalid Choukri, Bente Maegaard,
Joseph Mariani, Jan Odijk, Stelios Piperidis, and Daniel Tapias, editors, Pro-
ceedings of the 6th International Conference on Language Resources and Eval-

uation. European Language Resources Association (ELRA), May 28-30 2008.

Lambek, Joachim. The mathematics of sentence structure. American Mathe-
matical Monthly, 65(3):154-170, 1958.

Lari, Karim and Steve J. Young. The estimation of stochastic context-free gram-
mars using the inside—outside algorithm. Computer Speech and Language, 4:
35-56, 1990.

Laws, Florian and Hinrich Schiitze. Stopping criteria for active learning of
named entity recognition. In Proceedings of the 22nd International Conference

on Computational Linguistics, pages 465-472, Manchester, 2008.

Leech, Geoffrey and Andrew Wilson. Standards for Tag Sets, pages 55—80. Text,
speech, and language technology. Kluwer Academic Publishers, Dordrecht,
The Netherlands, 9 edition, 1999.

Levenshtein, Vladimir I. Binary codes capable of correcting deletions, insertions,
and reversals. Technical Report 8, 1966. URL http://profs.sci.univr.
it/~liptak/ALBioinfo/files/levenshtein66.pdf.

http://profs.sci.univr.it/~liptak/ALBioinfo/files/levenshtein66.pdf
http://profs.sci.univr.it/~liptak/ALBioinfo/files/levenshtein66.pdf

BIBLIOGRAPHY 229

Lewis, David D. and William A. Gale. A sequential algorithm for training
text classifiers. In Proceedings of the ACM SIGIR Conference on Research
and Development in Information Retrieval, pages 3—12, New York, NY, USA,
1994. Springer-Verlag New York, Inc.

Lezius, Wolfgang. Ein Werkzeug zur Suche fiir Syntaktisch Annotierten Textko-
rpora. PhD thesis, IMS, University of Stuttgart, Stuttgart, Germany, 2002.

Li, Hang. Word clustering and disambiguation based on co-occurrence data.
Natural Language Engineering, 8(1):25-42, 2002.

Lin, Dekang. A dependency-based method for evaluating broad-coverage

parsers. Natural Language Engineering, 4(2):97-114, 1998.

Lynn, Teresa, Jennifer Foster, Mark Dras, and Elaine Ui Dhonnchadha. Active
learning and the irish treebank. In Proceedings of the Australasian Language
Technology Association Workshop 2012, pages 23-32, Dunedin, New Zealand,
December 4-6 2012.

MacQueen, Jacob. Some methods for classification and analysis of multivariate
observations. In Proceedings of the 5th Berkeley Symposium on Mathematical
Statistics and Probability, volume 1, pages 281-297, Berkeley, California, 1967.
University of California Press.

Mahootiyan, Shahrzad. Persian. Routledge, 1997.

Maier, Wolfgang and Sandra Kiibler. Are all commas equal? Detecting co-
ordination in the Penn Treebank. In Proceedings of the 12th International
Workshop on Treebanks and Linguistic Theories, pages 121-132, Sofia, Bul-
garia, 2013.

Malouf, Robert, John Carroll, and Ann Copestake. Efficient feature structure
operations without compilation. Natural Language Engineering, 6(1):29-46,
2000.

Manning, Christopher D. and Hinrich Schiitze. Foundations of Statistical Nat-
ural Language Processing. The MIT Press, Cambridge, MA, USA, 1999.

Marcus, Mitchell P., Beatrice Santorini, and Mary Ann Marcinkiewicz. Build-
ing a large annotated corpus of English: the Penn treebank. Computational
Linguistics, 19(2), 1993.

McDonald, Ryan, Koby Crammer, and Fernando Pereira. Online large-margin
training of dependency parsers. In Proceedings of the Association for Compu-
tational Linguistics, pages 91-98, Stroudsburg, PA, USA, 2005. Association

for Computational Linguistics.

BIBLIOGRAPHY 230

Megerdoomian, Karine. A computational analysis of the Persian noun phrase.
Memoranda in Computer and Cognitive Science MCCS-00-321, Computing
Research Laboratory, New Mexico State University, Las Cruces, NM, 2000.

Megerdoomian, Karine. Developing a Persian part of speech tagger. In Pro-
ceedings of the 1st Workshop on the Persian Language and Computer, pages
99-105, University of Tehran, Iran, 2004.

Mel’¢uk, Igor A. Dependency syntax: Theory and practice. State University of
New York, Albany, 1988.

MeshkatoDini, Mehdi. dasture zabane farsi bar payeye nazariyeye gastari [“In-
troduction to Persian Transformational Syntaz”]. Ferdowsi University Press,
Mashad, Iran, 2 edition, 2001.

Miller, Scott, Jethran Guinness, and Alex Zamanian. Name tagging with word
clusters and discriminative training. In Proceedings of Human Language
Technology-Conference of the North American Chapter of the Association
for Computational Linguistics, pages 337-342. Association for Computational
Linguistics, 2004.

Mirroshandel, Seyyed Abolghasem and Gholamreza GhassemSani. Unsupervised
grammar induction using a parent based constituent context model. In Pro-
ceedings of the 18th European Conference on Artificial Intelligence, pages
293-297, Amsterdam, The Netherlands, The Netherlands, 2008.

Mitchell, Melanie. An Introduction to Genetic Algorithms. The MIT Press,
Cambridge, MA, USA, 1998.

Miyao, Yusuke. From Linguistic Theory to Syntactic Analysis: Corpus-Oriented
Grammar Development and Feature Forest Model. PhD thesis, University of
Tokyo, 2006.

Miyao, Yusuke, Takashi Ninomiya, and Jun’ichi Tsujii. Corpus-oriented gram-
mar development for acquiring a head-driven phrase structure grammar from
the Penn Treebank. In Proceedings of the 1st International Joint Conference
on Natural Language Processing, pages 684—693, Berlin, Heidelberg, 2005.
Springer-Verlag.

Momtazi, Saeedeh and Dietrich Klakow. A word clustering approach for lan-
guage model-based sentence retrieval in question answering systems. In Pro-
ceedings of the Annual International ACM Conference on Information and
Knowledge Management, pages 1911-1914. ACM, 2009.

BIBLIOGRAPHY 231

Momtazi, Saeedeh, Hosein Sameti, Maryam FazelZarandi, and Mohammad
Bahrani. Robust parsing for word lattices in continuous speech recognition
systems. In Proceedings of the 9th International Symposium on Signal Pro-

cessing and Its Applications, pages 1-4, February 12-15 2007.

Montague, Richard. Formal Philosophy; Selected Papers of Richard Montague.
New Haven,Yale University Press, 1974.

Montazeri, Niloofar, Gholamreza GhassemSani, and Hossein Sameti. A fast
and robust parser based on the Viterbi algorithm. In Proceedings of the
11th Computer Society of Iran Conference, Sharif University of Technology,
Tehran, Iran, 2006.

Montemagni, Simonetta, Francesco Barsotti, Marco Battista, Nicoletta Calzo-
lari, Ornella Corazzari, Alessandro Lenci, Antonio Zampolli, Francesca Fanci-
ulli, Maria Massetani, Remo Raffaelli, Roberto Basili, Maria Teresa Pazienza,
Dario Saracino, Fabio Zanzotto, Nadia Mana, Fabio Pianesi, and Rodolfo
Delmonte. Building the Italian syntactic-semantic treebank. In In Abeillé
(Abeillé, 2003), chapter 11, pages 189-210. Kluwer, 2003.

Morita, Kazuhiro, El-Sayed Atlam, Masao Fuketra, Kazuhiko Tsuda, Masaki
Oono, and Junichi Aoe. Word classification and hierarchy using co-occurrence

word information. Information Processing and Management, 40(6):957-972,
2004.

Moyne, John and Guy Carden. Subject reduplication in Persian. Linguistic
Inquiry, 5(2):205-249, 1974.

Moyne, John Abdel. The so-called passive in Persian. Foundations of Language,
12(2):249-267, 1974.

Miiller, Stefan. Towards an HPSG analysis of Maltese. In Comrie, Bernard,
Ray Fabri, Beth Hume, Manwel Mifsud, Thomas Stolz, and Martine Vanhove,
editors, Introducing Maltese Linguistics, number 113 in Studies in Language
Companion series, pages 83-112. John Benjamins Publishing Company, Am-
sterdam, Philadelphia, 2009.

Miiller, Stefan. Persian complex predicates and the limits of inheritance-based
analyses. Journal of Linguistics, 46(3):601-655, 2010.

Miiller, Stefan. The CoreGram project: A brief overview and motivation. In
Duchier, Denys and Yannick Parmentier, editors, Proceedings of the Workshop

on High-level Methodologies for Grammar Engineering, pages 93-104, 2013.

BIBLIOGRAPHY 232

Miiller, Stefan. HPSG — A synopsis. In Alexiadou, Artemis and Ti-
bor Kiss, editors, Syntaxr — Fin internationales Handbuch zeitgendssischer
Forschung, Handbiicher zur Sprach- und Kommunikationswissenschaft. Wal-
ter de Gruyter Verlag, Berlin, 2 edition, To Appear. URL http://hpsg.
fu-berlin.de/~stefan/Pub/hpsg-hsk.html.

Miiller, Stefan and Masood Ghayoomi. PerGram: A TRALE implementation
of an HPSG fragment of Persian. In Proceedings of 2010 IEEFE International

Multi-conference on Computer Science and Information Technology, pages
461-467, Wista, Poland, 2010.

Miiller, Stefan and Janna Lipenkova. Serial verb constructions in Mandarin
Chinese. In Miiller, Stefan, editor, Proceedings of the 16th International Con-
ference on Head-driven Phrase Structure Grammar, pages 234—254, Stanford,
California, 2009. CSLI Publications.

Miiller, Stefan and Bjarne @Qrsnes. Positional expletives in Danish, German, and
Yiddish. In Miiller, Stefan, editor, Proceedings of the 18th International Con-
ference on Head-Driven Phrase Structure Grammar, pages 167-187, Stanford,
2011. CSLI Publications.

Ngai, Grace and David Yarowsky. Rule writing or annotation: Cost-efficient
resource usage for base noun chunking. In Proceedings of the Association
for Computational Linguistics, pages 117-125, Stroudsburg, PA, USA, 2000.

Association for Computational Linguistics.

Niknejad, Seyed Ali. tarrahi va sazte yek memune motarjeme masiniye farsi
be engelisi [“Design and Development of a Persian to English Translator
Prototype”]. Master’s thesis, Department of Computer Engineering, Sharif
University of Technology, Tehran, Iran, 2008.

Nivre, Joakim. Dependency grammar and dependency parsing. Journal Of The

International Linguistic Association, 2005a.

Nivre, Joakim. Inductive Dependency Parsing of Natural Language Text. PhD
thesis, Vaxjo University, 2005b.

Nivre, Joakim and Béata Bandmann Megyesi. Bootstrapping a Swedish tree-
bank using cross-corpus harmonization and annotation projection. In Pro-

ceedings of Treebanks and Linguistic Theories, 2007.

Nivre, Joakim, Johan Hall, and Jens Nilsson. MaltParser: A data-driven parser-
generator for dependency parsing. In Proceedings of the 5th International

Conference on Language Resources and Fvaluation, pages 2216-2219, 2006.

http://hpsg.fu-berlin.de/~stefan/Pub/hpsg-hsk.html
http://hpsg.fu-berlin.de/~stefan/Pub/hpsg-hsk.html

BIBLIOGRAPHY 233

Nivre, Joakim, Johan Hall, Sandra Kiibler, Ryan McDonald, Jens Nilsson, Se-
bastian Riedel, and Deniz Yuret. The CoNLL 2007 shared task on dependency
parsing. In Proceedings of the CoNLL Shared Task Session of EMNLP-CoNLL
2007, pages 915-932, Prague, Czech Republic, June 2007. Association for

Computational Linguistics.

Nojoumian, Peyman. Modeling Persian language syntax and morphology in
LingBench IDETM | Internship technical report, Faculty of Applied Sciences,
Katholieke Universiteit Leuven, 2003. URL http://www.teachmepersian.

com/personal/Internship_Nojoumian2.pdf.

Oepen, Stephan. [incr tsdb()] — competence and performance laboratory. User
manual. Technical report, Computational Linguistics, Saarland University,

Saarbriicken, Germany, 2001.

Oepen, Stephan and Ulrich Callmeier. Measure for measure: Parser cross-
fertilization. Towards increased component comparability and exchange. In
Proceedings of the 6th International Workshop on Parsing Technology, pages
183-194, 2000.

Oepen, Stephan, Daniel Flickinger, Kristina Toutanova, and Christopher D.
Manning. LinGO Redwoods: A rich and dynamic treebank for HPSG. Journal
of Research on Language and Computation, 2(4):575-596, 2004.

Oroumchian, Farhad, Ehsan Darrudi, Fattane Taghiyareh, and Neeyaz An-
goshtari. Experiments with Persian text compression for web. In Proceedings
of the 13th International World Wide Web Conference, New York, USA, 2004.

(Orsnes, Bjarne. Preposed sentential negation in Danish. In Miiller, Stefan, edi-
tor, Proceedings of the 16th International Conference on Head-driven Phrase
Structure Grammar, pages 255-275, Stanford, California, 2009. CSLI Publi-

cations.

Osborne, Miles and Jason Baldridge. Ensemble-based active learning for parse
selection. In Susan Dumais, Daniel Marcu and Salim Roukos, editors, Pro-
ceedings of the Human Language Technology-Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics, pages 8996,
Boston, Massachusetts, USA, 2004.

Osenova, Petya and Kiril Simov. The Bulgarian HPSG treebank: Specializa-
tion of the annotation scheme. In Proceedings of The Second Workshop on

Treebanks and Linguistic Theories, 2003.

http://www.teachmepersian.com/personal/Internship_Nojoumian2.pdf
http://www.teachmepersian.com/personal/Internship_Nojoumian2.pdf

BIBLIOGRAPHY 234

Osenova, Petya and Kiril Simov. BTB-TRO05: BulTreeBank Stylebook—
BulTreeBank Version 1.0. Technical report, Linguistic Modeling Laboratory,
Bulgarian Academy of Sciences, Sofia, Bulgaria, 2004.

Pal, Santanu and Sivaji Bandyopadhyay. Bootstrapping method for chunk align-
ment in phrase based SMT. In Proceedings of the Joint Workshop on Exploit-
ing Synergies between Information Retrieval and Machine Translation and
Hybrid Approaches to Machine Translation, pages 93-100, Avignon, France,
April 2012. Association for Computational Linguistics.

Parekh, Rajesh G. and Vasant Honavar. Automata Induction, Grammar In-
ference, and Language Acquisition, chapter 29, pages 746-785. Handbook of
Natural Language Processing. Marcel Dekker, New York, 2000.

Penn, Gerald. Balancing clarity and efficiency in typed feature logic through
delaying. In Proceedings of the Association for Computational Linguistics,
pages 239-246, 2004.

Perrier, Guy. Interaction grammars. In Proceedings of the 18th International

Conference on Computational Linguistics, pages 600-606, 2000.

Persian Academy of Language and Literature, . dasture zatte farsi [Grammar
of Persian Orthography]. Decisions of the Persian Academy of Language and

Literature. Persian Academy of Language and Literature, Tehran, Iran, 2005.

Petrov, Slav, Leon Barrett, Romain Thibaux, and Dan Klein. Learning accu-
rate, compact, and interpretable tree annotation. In Proceedings of the 21st
International Conference on Computational Linguistics and the Association
for Computational Linguistics, pages 433-440, Stroudsburg, PA, USA, 2006.

Association for Computational Linguistics.

Pighin, Daniele and Alessandro Moschitti. Efficient linearization of tree kernel
functions. In Proceedings of the 13th Conference on Computational Natural
Language Learning, Boulder, Colorado, 2009. Association for Computational

Linguistics.

Plaehn, Oliver and Thorsten Brants. Annotate - An efficient interactive anno-
tation tool. In 6th Applied Natural Language Processing Conference, Seattle,
Washington, USA, 2000.

Pollard, Carl J. and Ivan A. Sag. Information-Based Syntax and Semantics.
Number 13 in CSLI Lecture Notes. CSLI Publications, Stanford, California,
1987.

BIBLIOGRAPHY 235

Pollard, Carl J. and Ivan A. Sag. Head-driven Phrase Structure Grammar.
University of Chicago Press, 1994.

Pouramini, Ahmad and Elham Moridi. Annotation of grammatical function in
the Persian treebank. Procedia - Social and Behavioral Sciences: The 4th
International Conference of Cognitive Science, 32:302-307, 2012.

Pouramini, Ahmad and Nase Mozayani. An annotation scheme for a Persian
treebank. In Proceedings of Computational Linguistics In the Netherlands,
2007.

RaisGhasem, Mohsen. pardazese zabane tabi?i va pardazese zabane farsi [“Nat-
ural Language Processing and Processing of the Persian Language”]. Master’s
thesis, Department of Computer Engineering, Sharif University of Technol-
ogy, Tehran, Iran, 1991.

Rasooli, MohammadSadegh, Amirsaeid Moloodi, Manouchehr Kouhestani, and
Behrouz MinaeiBidgoli. Syntactic valency lexicon for Persian verbs: The
first steps towards Persian dependency treebank. In Proceedings of the 5th
Language and Technology Conference: Human Language Technologies as a
Challenge for Computer Science and Linguistics, pages 227-231, Poznan,
Poland, June 2011.

Rasooli, MohammadSadegh, Manouchehr Kouhestani, and Amirsaeid Moloodi.
Development of a Persian syntactic dependency treebank. In Proceedings of
the Human Language Technology Conference of the North American Chapter
of the Association for Computational Linguistics, pages 306-314, Atlanta,
Georgia, 2013.

Ratnaparkhi, Adwait. Learning to parse natural language with maximum en-
tropy models. Machine Learning, 34(1-3):151-175, 1999.

Rezaei, Siamak. Constraint-based Parsing of a Free Word Order Language:
Persian. Master’s thesis, Department of Artificial Intelligence, University of
Edinburgh, Edinburgh, Scotland, UK, 1993.

Rezaei, Siamak. Parsing scrambling with path set: A graded grammatical-
ity approach. In Proceedings of the 6th International Workshop on Parsing
Technologies, 2000.

Rokach, Lior and Oded Maimon. Clustering Methods, chapter 15, pages 321—
352. Data Mining and Knowledge Discovery Handbook. Springer, USA, 2005.

Rosenblatt, Frank. The perceptron — A perceiving and recognizing automaton.
Report 85-460-1, Cornell Aeronautical Laboratory, 1957.

BIBLIOGRAPHY 236

Sajjadi, Armin and Ahmad AbdollahzadeBarforoush. tahlile nahviye zabane
farsi be komake geramere peyvandi [“Syntactic analysis of the Persian lan-
guage by Link grammar”]. pardazese alayem va dadeha [Signal and Data
Processing], 1:25-40, 2009.

Salehi, Bahar, Narjes Askarian, and Afsaneh Fazly. Automatic identification
of Persian light verb constructions. In Proceedings of the 13th International
Conference on Computational Linguistics and Intelligent Text Processing,
pages 201-210, Berlin, Heidelberg, 2012. Springer-Verlag.

Sampson, Geoffrey. A proposal for improving the measurement of parse accu-

racy. International Journal of Corpus Linguistics, 5:53—-68, 2000.

Sampson, Geoffrey. Thoughts On Two Decades Of Drawing Trees, chapter 2,
pages 23-41. Treebanks: Building and Using Parsed Corpora. Kluwer Aca-
demic Publishers, The Netherlands, 2003.

Samuelsson, Christer. Morphological tagging based entirely on Bayesian infer-
ence. In Eklund, R., editor, Proceedings of the 9th Scandinavian Conference

on Computational Linguistics, pages 225-238, Stockholm, Sweden, 1994.

Samuelsson, Christer and Wolfgang Reichl. A class-based language model for
large-vocabulary speech recognition extracted from part-of-speech statistics.
In Proceedings of the IEEE International Conference on Acoustics, Speech,
and Signal Processing. IEEE Computer Society, 1999.

Samuelsson, Yvonne and Martin Volk. Phrase alignment in parallel treebanks.

In Proceedings of Treebanks and Linguistic Theories, pages 91-102, 2006.

Samvelian, Pollet. A (phrasal) affix analysis of the Persian Ezafe. Journal of
Linguistics, 43:605-645, 2007.

Samvelian, Pollet and Jesse Tseng. Persian object clitics and the syntax-
morphology interface. In Miiller, Stefan, editor, Proceedings of the 17th
International Conference on Head-driven Phrase Structure Grammar, pages
212-232, Stanford, California, 2010. CSLI Publications.

Sanamrad, MohammadAli and Haruy Matsumoto. PERSIS: A natural-language
analyzer for Persian. Journal of Information Processing, 8(4):271-279, 1986.

Sarabi, Zahra and Morteza Analouie. A new DOP model for phrase-structure
parsing of Persian sentences. In Proceedings of the 10th Workshop on Asian

Language Resources, pages 45-54, 2012.

BIBLIOGRAPHY 237

Sarabi, Zahra, Hooman Mahyar, and Mojgan Farhoodi. ParsiPardaz: Persian
language processing toolkit. In Proceedings of the 3rd International eConfer-
ence on Computer and Knowledge Engineering, pages 79-85, Ferdowsi Uni-
versity of Mashhad, Mashhad, Iran, 2013.

Schabes, Yves. Mathematical and Computational Aspects of Lexicalized Gram-

mars. PhD thesis, University of Pennsylvania, 1990.

Schank, Roger C. Conceptual Information Processing. Elsevier Science Inc.,
New York, NY, USA, 1975.

Schluter, Natalie. Treebank-based Deep Grammar Acquisition for French Prob-
abilistic Parsing Resources. PhD thesis, Dublin City University, 2011.

Sennrich, Rico, Gerold Schneider, Martin Volk, and Martin Warin. A new hy-
brid dependency parser for German. In Chiarcos, C., R. E. Castilhode , and
M. Stede, editors, Von der Form zur Bedeutung: Texte automatisch verar-
beiten “[From Form to Meaning: Processing Texts Automatically. Proceedings
of the Biennial GSCL Conference 2009]”, pages 115-124, Tiibingen, 2009.

Seraji, Mojgan, ata Megyesi Be and Joakim Nivre. Bootstrapping a Persian
dependency treebank department. Linguistic Issues in Language Technology,
7(18), 2012a.

Seraji, Mojgan, Beata Megyesi, and Joakim Nivre. A basic language resource
kit for Persian. In Calzolari, Nicoletta, Khalid Choukri, Thierry Declerck,
Mehmet Ugur Dogan, Bente Maegaard, Joseph Mariani, Jan Odijk, and Ste-
lios Piperidis, editors, Proceedings of the 8th International Conference on Lan-
guage Resources and Evaluation, pages 22452252, Istanbul, Turkey, 2012b.

European Language Resources Association (ELRA).

Seraji, Mojgan, Beata Megyesi, and Joakim Nivre. Dependency parsers for
Persian. In Proceedings of the 10th Workshop on Asian Language Resources,
pages 35-43, 2012c.

Settles, Burr. Active learning literature survey. Computer Sciences Technical
Report 1648, University of Wisconsin-Madison, 2009.

Settles, Burr. Active Learning: Synthesis Lectures on Artificial Intelligence and
Machine Learning. Morgan & Claypool Publishers, 2012. URL http://wuw.
morganclaypool.com/doi/abs/10.2200/S00429ED1V01Y201207AIMO18.

Seung, H. Sebastian, M. Opper, and H. Sompolinsky. Query by committee. In
Proceedings of the 5th Annual Workshop on Computational Learning Theory,
pages 287-294, New York, NY, USA, 1992. ACM.

http://www.morganclaypool.com/doi/abs/10.2200/S00429ED1V01Y201207AIM018
http://www.morganclaypool.com/doi/abs/10.2200/S00429ED1V01Y201207AIM018

BIBLIOGRAPHY 238

Shaghaghi, Vida. kamminamahaye zabane farsi [“Persian quantifiers”]. magjall-
eye adabiyat va olume ensani [Journal of Literature and Humanities], 35(3):
621-650, 2002.

Shamsfard, Mehrnoush, Hoda Sadat Jafari, and Mahdi Ilbeygi. STeP-1: A
set of fundamental tools for Persian text processing. In Calzolari, Nico-
letta, Khalid Choukri, Bente Maegaard, Joseph Mariani, Jan Odijk, Ste-
lios Piperidis, Mike Rosner, and Daniel Tapias, editors, Proceedings of the
7th International Conference on Language Resources and Evaluation, pages
859-865, Valletta, Malta, May 19-21 2010. European Language Resources
Association (ELRA).

Shannon, Claude E. A mathematical theory of communication. Bell System
Technical Journal, 27:379-423,623-656, 1948.

SharifiAtashgah, Masood and Mahmood Bijankhan. Corpus-based analysis for
multi-token units in Persian. In Third Workshop on Computational Ap-
proaches to Arabic Script-based Languages [at] MT, Ottawa, Canada, 2009.

SharifiAtashgah, Massoud. toulide nimezxodkare deraxtbanke goruhhaye nahvi
dar motune farsi [“Semi-automatic Generation of Treebanks in Persian
Texts”]. PhD thesis, University of Tehran, 2009.

Simov, Kiril. Grammar extraction from an HPSG corpus. In Proceedings of the
Recent Advances in Natural Language Processing Conference, pages 285287,
Tzigov Chark, Bulgaria, 2001.

Simov, Kiril. Grammar extraction and refinement from an HPSG corpus. In
of the ESSLLI Workshop on Machine Learning Approaches in Computational
Linguistics, pages 38-55, Trento, Italy, 2002.

Simov, Kiril and Petya Osenova. CLaRK system: Construction of treebanks. In
Proceedings of the 1st Workshop on Treebanks and Linguistic Theories, pages
183-198, 2002.

Simov, Kiril and Petya Osenova. Practical annotation scheme for an HPSG
treebank of Bulgarian. In Proceedings of the 4th International Workshop on
Linguistically Interpreted Corpora, pages 17-24, 2003.

Simov, Kiril, Zdravko Peev, Milen Kouylekov, Alexander Simov, Marin Dim-
itrov, and Atanas Kiryakov. CLaRK - An XML-based system for corpora de-
velopment. In Corpus Linguistics Conference, pages 558-560, Lancaster, UK,
2001.

BIBLIOGRAPHY 239

Simov, Kiril, Gergana Popova, and Petya Osenova. HPSG-based syntactic tree-
bank of Bulgarian (BulTreeBank). In Wilson, Andrew, Paul Rayson, and
Tony McEnery, editors, A Rainbow of Corpora: Corpus Linguistics and the
Languages of the World, pages 135-142, 2002a.

Simov, Kiril, Gergana Popova, and Petya Osenova. HPSG-based syntactic tree-
bank of Bulgarian (BulTreeBank), chapter 13, pages 135-142. Lincom GmbH,
Muenchen, 2002b.

Simov, Kiril, Alexander Simov, Milen Kouylekov, Krasimira Ivanova, Ilko Grig-
orov, and Hristo Ganev. Development of corpora within the CLaRK system:
The BulTreeBank project experience. In Proceedings of the Demo Sessions
of the 10th Conference of the FEuropean Chapter of the Association for Com-
putational Linguistics, 2003.

Simov, Kiril, Petya Osenova, Alexander Somov, and Milen Kouylekov. Design
and implementation of the Bulgarian HPSG-based treebank. Research on
Language and Computation, 2:495-522, 2004.

Simov, Kiril Ivanov. HPSG-based annotation scheme for corpora develop-
ment and parsing evaluation. In Nicolov, Nicolas, Kalina Bontcheva, Galia
Angelova, and Ruslan Mitkov, editors, Recent Advances in Natural Lan-
guage Processing III, volume 260, pages 327-336. John Benjamins, Amster-
dam/Philadelphia, 2003.

Skut, Wojciech, Brigitte Krenn, Thorsten Brants, and Hans Uszkoreit. An an-
notation scheme for free word order languages. In Proceedings of the 5th
Conference on Applied Natural Language Processing, pages 88-95, Strouds-
burg, PA, USA, 1997.

Skut, Wojciech, Thorsten Brants, Brigitte Krenn, and Hans Uszkoreit. A lin-
guistically interpreted corpus of german newspaper text. In In Proceedings
of the ESSLLI Workshop on Recent Advances in Corpus Annotation, pages
705-711, 1998.

Sleator, Daniel D. K. and Davy Temperley. Parsing English with a link grammar.
In Proceedings of the 3rd International Workshop on Parsing Technologies,
1993.

Soheililsfahani, Abulghasem. Noun Phrase Complementation in Persian. PhD
thesis, University of Illinois at Urbana-Champaign, 1976.

Steedman, Mark. Categorial grammar. Lingua, 90:221-258, 1993.

BIBLIOGRAPHY 240

Steedman, Mark, Rebecca Hwa, Stephen Clark, Miles Osborne, Anoop Sarkar,
Julia Hockenmaier, Paul Ruhlen, Steven Baker, and Jeremiah Crim. Example
selection for bootstrapping statistical parsers. In Proceedings of the 2003 Con-
ference of the North American Chapter of the Association for Computational
Linguistics on Human Language Technology, pages 157-164, Stroudsburg, PA,
USA, 2003. Association for Computational Linguistics.

Stolcke, Andreas. SRILM - an extensible language modeling toolkit. In Proceed-

ings of the International Conference on Spoken Language Processing, 2002.

Stump, Gregory T. Inflectional Morphology: A Theory of Paradigm Structure.
Cambridge Studies in Linguistics. Cambridge University Press, 2001.

Tabatabayi, Alaeddin. fe’le morakkab dar zabane farsi [“Compound verb in
Persian”]. Nameye Farhangestan [Academia’s letter], 26:26-34, 2005.

Tabibzadeh, Omid. sazte zabane farsi: bar asasenazariyeye goruhhaye rodgardan
dar dasture vabastegi [“Persian Grammar: A Theory of Autonomous Phrases
Based on Dependency Grammar”]. Nasr-e Markaz [Markaz Publication],
Tehran, Iran, 2012.

Taghvaipour, Mehran A. Persian Relative Clauses in Head-driven Phrase Struc-
ture Grammar. PhD thesis, Department of Language and Linguistics, Uni-

versity of Essex, 2005.

Taleghani, Azita H. Modality, Aspect and Negation in Persian. John Benjamins
Publishing, Amsterdam/Philadelphia, 2008.

Taslimipoor, Shiva, Afsaneh Fazly, and Ali Hamzeh. Using noun similarity
to adapt an acceptability measure for Persian light verb constructions. In
Calzolari, Nicoletta, Khalid Choukri, Thierry Declerck, Mehmet Ugur Dogan,
Bente Maegaard, Joseph Mariani, Jan Odijk, and Stelios Piperidis, editors,
Proceedings of the 8th International Conference on Language Resources and
Evaluation, Istanbul, Turkey, May 23-25 2012. European Language Resources

Association.

Tateisi, Yuka, Kentaro Torisawa, Yusuke Miyao, and Jun’ichi Tsujii. Translating
the XTAG English grammar to HPSG. In The 4th International Workshop
on Tree Adjoining Grammars and Related Formalisms, pages 172-175, 1998.

Taylor, Ann, Mitchell Marcus, and Beatrice Santorini. The Penn Treebank:
An OQverview, chapter 1, pages 5—22. Treebanks: Building and Using Parsed
Corpora. Kluwer Academic Publishers, The Netherlands, 2003.

BIBLIOGRAPHY 241

Teixeira, Jorge, Luis Sarmento, and Eugénio Oliveira. A bootstrapping approach
for training a NER with conditional random fields. In Proceedings of the 15th
Portugese Conference on Progress in Artificial Intelligence, pages 664—678,
Berlin, Heidelberg, 2011. Springer-Verlag.

Teleman, Ulf. Manual for grammatisk beskrivning av talad och skriven svenska.

Lundastudier i nordisk sprakvetenskap. Studentlitteratur, Lund, 1974.

Thelen, Michael and Ellen Riloff. A bootstrapping method for learning semantic
lexicons using extraction pattern contexts. In Proceedings of the Association
for Computational Linguistics Conference on Empirical Methods in Natural
Language Processing, pages 214-221, Stroudsburg, PA, USA, 2002. Associa-

tion for Computational Linguistics.

Thompson, Cindi, Roger Levy, and Christopher Manning. A generative mode
for FrameNet semantic role labeling. In Lavrac, Nada, Dragan Gamberger,
Ljupco Todorovski, and Hendrik Blockeel, editors, Proceedings of the 14th
FEuropean Conference on Machine Learning, volume 2837 of Lecture Notes
in Computer Science, pages 397-408, Cavtat-Dubrovnik, Croatia, 2003.
Springer.

Tinsley, John, Mary Hearne, and Andy Way. Exploiting parallel treebanks to
improve phrase-based statistical machine translation. In The Sizth Interna-

tional Workshop on Treebanks and Linguistic Theories, 2007.

Tounsi, Lamia, Mohammed Attia, and Josef Genabithvan . Automatic treebank-
based acquisition of Arabic LFG dependency structures. In Proceedings of
the European Chapter of the Association for Computational Linguistics 2009,
Workshop on Computational Approaches to Semitic Languages, pages 45-52,
Stroudsburg, PA, USA, 2009. Association for Computational Linguistics.

Toutanova, Kristina and Christopher D. Manning. Enriching the knowledge
sources used in a maximum entropy part-of-speech tagger. In Proceedings of
the Joint SIGDAT Conference on Empirical Methods in Natural Language
Processing and Very Large Corpora, pages 6370, Hong Kong, October 2000.

Uibo, Heli, Krista Liin, and Martin Volk. Phrase alignment of Estonian-German
parallel treebanks. In Proceedings of the Workshop on Exploiting parallel
corpora in up to 20 languages, 2005.

Uszkoreit, Jakob and Thorsten Brants. Distributed word clustering for large
scale class-based language modeling in machine translation. In Proceedings of
the International Conference of the Association for Computational Linguistics.

Association for Computational Linguistics, 2008.

BIBLIOGRAPHY 242

VahediLangaroodi, MohammadMehdi. saxthaye fe’liye majhul ba fe’le “Sodan”
dar zabane farsi [“Verbal passive constructions with the verb “be” in the
Persian language”]. Modarrese olume ensani [Human Sciences Modarres],
7:75-101, 1999. URL http://www.noormags.com/view/fa/articlepage/
50037.

Viterbi, Andrew J. Error bounds for convolutional codes and an asymptotically
optimum decoding algorithm. IEEE Transactions on Information Theory, 13
(2):260-269, 1967.

Vlachos, Andreas. A stopping criterion for active learning. Journal of Computer,
Speech and Language, 22(3):295-312, 2008.

Volk, Martin and Yvonne Samuelsson. Bootstrapping parallel treebanks. In
Hansen-Schirra, Silvia, Stephan Oepen, and Hans Uszkoreit, editors, COL-
ING 2004 5th International Workshop on Linguistically Interpreted Corpora,
pages 63-70, Geneva, Switzerland, 2004.

Wahlster, Wolfgang, editor. Verbmobil: Foundations of Speech-to-Speech Trans-
lation. Springer Verlag, Berlin, 2000.

Xia, Yunqging, Boyi Hao, and Kam-Fai Wong. Opinion target network and
bootstrapping method for Chinese opinion target extraction. In Proceedings
of the 5th Asia Information Retrieval Symposium on Information Retrieval

Technology, pages 339-350, Berlin, Heidelberg, 2009. Springer-Verlag.

Yoshinaga, Naoki and Yusuke Miyao. Grammar conversion from ltag to hpsg.
In Proceedings of the Sixth ESSLLI Student Session, pages 309-324, 2002.

Younger, Daniel H. Recognition and parsing of context-free languages in time
n3. Information and Control, 10(2):189-208, 1967.

Yu, Kun, Miyao Yusuke, Xiangli Wang, Takuya Matsuzaki, and Junichi Tsujii.
Semi-automatically developing Chinese HPSG grammar from the Penn Chi-
nese treebank for deep parsing. In Proceedings of the International Conference

on Computational Linguistics, pages 14171425, Beijing, China, 2010.

Zhang, Cha and Tsuhan Chen. An active learning framework for content-based
information retrieval. In ITEEE Transactions on Multimedia, volume 4, pages
260268, 2002.

Zhechev, Ventsislav and Andy Way. Automatic generation of parallel treebanks.
In Proceedings of the 22nd International Conference on Computational Lin-
guistics, pages 1105-1112; 2008.

http://www.noormags.com/view/fa/articlepage/50037
http://www.noormags.com/view/fa/articlepage/50037

BIBLIOGRAPHY 243

Zhu, Jingbo and Eduard Hovy. Active learning for word sense disambiguation
with methods for addressing the class imbalance problem. In Proceedings
of the 2007 Joint Conference on Empirical Methods in Natural Language
Processing and Computational Natural Language Learning, pages 783-790,
Prague, Czech Republic, 2007. Association for Computational Linguistics.

Zhu, Jingbo and Huizhen Wang. Learning a stopping criterion for active learning
for word sense disambiguation and text classification. In Proceedings of the
3rd IJNLP, pages 366-372, Heydarabad, India, 2008.

Zhu, Jingbo, Huizhen Wang, Tianshun Yao, and Benjamin K. Tsou. Active
learning with sampling by uncertainty and density for word sense disam-
biguation and text classification. In Proceedings of the 22nd International

Conference on Computational Linguistics, pages 1137-1144, 2008b.

Zinsmeister, Heike, Jonas Kuhn, Bettina Schrader, and Stefanie Dipper. TIGER,
Transfer - From LFG structures to the TIGER Treebank. Technical report,
IMS, University of Stuttgart, 2001.

	Introduction
	Motivation
	Problems
	Contributions
	Dissertation Overview
	Published Papers

	I Linguistic Theory and Background
	The Persian Language
	Introduction
	About the Language
	Basic Properties of Persian Syntax
	Language Resources for Persian
	Challenges in Persian Text Processing
	Encoding Issues
	Internal Word Boundaries
	Writing Styles
	Linguistic Creativity
	Homographs and Homonyms
	Borrowed Diacritic Characters from Arabic
	Various Orthographical Forms for Words
	Foreign Words

	Summary

	Grammar Formalisms, Treebanking, and Parsing
	Introduction
	Grammar Formalisms
	Constituent-based Analysis
	Dependency-based Analysis
	Head-driven Phrase Structure Grammar
	Previous Studies on Persian HPSG

	Treebanking
	Previous Studies on Treebanking
	Previous Studies on Persian Treebanking

	Parsing
	Constituency-based Parsing
	Dependency-based Parsing
	Parsing Evaluation
	Previous Studies on Parsing Persian

	Summary

	Annotation Scheme for HPSG-based Treebanking
	Introduction
	Annotation Scheme
	Lexical and Phrasal Elements
	Syntactic Construction of Phrasal Elements
	Verb Phrase
	Noun Phrase
	Determiner Phrase
	Adjectival Phrase
	Adverbial Phrase
	Prepositional Phrase
	Coordination Phrase
	Interjection

	Clauses
	Relative Clause
	Reduced Relative Clause
	Free Relative Clause
	Complement Clause
	Complement Clause without a Complementizer
	Interrogative Clause
	Other Types of Clauses

	Ellipsis
	Discontinuity
	Summary

	II Computational Approaches
	Bootstrapping the Persian Treebanking
	Introduction
	The CLaRK System
	Bootstrapping via Grammar Rule Extraction
	Steps of Treebanking
	Pre-processing Step
	Initialization Step
	Main-processing Step
	Post-processing Step

	Evaluation
	Summary

	Statistical Parsing of Persian
	Introduction
	POS Tagging
	TnT POS Tagger
	Stanford POS Tagger

	Parsing
	Berkeley Parser
	Stanford Parser
	Malt Parser
	Mate Parser

	Data Preparation for Parsing
	Constituency-based Data
	Dependency-based Data

	Annotation Granularity for Parsing
	Lexical Item
	POS Tag
	Constituent Label

	Evaluation
	Experimental Setup
	Results and Discussion

	Summary

	Class-based Parsing
	Introduction
	Properties of the Class-based Model
	Word Clustering with the Brown Algorithm
	Extension of the Brown Word Clustering
	Evaluation
	Experimental Setup
	Results and Discussion

	Other Aspects of Annotation Granularity
	Experimental Setup
	Results and Discussion

	Summary

	Active Learning for Treebank Enlargement
	Introduction
	Active Learning
	Learning Scenarios
	Sample Selection Methods
	Stopping Criteria

	Previous Studies of Using Active Learning for Parsing
	Active Learning for Persian Treebanking
	Basic Sampling Methods
	Entropy-based Sampling
	Query-by-Committee
	Tree Similarity Sampling

	Evaluation
	Experimental Setup
	Results and Discussion

	Summary

	Conclusion
	Summary
	Future Work

	Persian Alphabet
	EAGLES-based POS tags in `Peykare'
	MulText-East Format of POS Tags in the Bijankhan Corpus
	Hierarchy of Dependency Relations

