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Towards Paleoclimate Reanalysis via Ensemble Kalman

Filtering, Proxy Forward Modeling and Fuzzy Logic

by John Walter ACEVEDO VALENCIA

Abstract

This thesis investigates several aspects of the assimilation of climate proxy records

with the purpose of eventually generating retrospective paleo-climate analyses, namely a

paleo-reanalysis.

Firstly, the problem of estimating the Time-Averaged (TA) state of a system out of TA

observations using Ensemble Kalman Filter (EnKF) is revisited under strongly nonlinear

coupled conditions. A comparison is performed for the two previously used updating

algorithms as well as for a newly introduced one. We find that for our experimental setting

these updating strategies exhibit significantly different performances depending on the

length of the time averaging, which complements the prior knowledge on TA estimation

via EnKF. Furthermore, our proposed approach appears as a very promising option for

the regime of short averaging periods.

Secondly, the process-based Tree-Ring-Width (TRW) model Vaganov-Shashkin-Lite

(VSL) is analyzed in terms of Fuzzy Logic (FL) theory. Based on the Principle of Limiting

Factors (PLF), VSL combines temperature and moisture time series in a nonlinear fashion

to obtain simulated TRW chronologies. We show that the entire model formulation can

be embedded into the FL framework and that the traditional mathematical formulation

of the PLF corresponds to a particular representation of a fuzzy intersection operation.

Accordingly, this reinterpretation suggest several natural modifications to VSL’s modeling

approach and fosters new interpretations of tree-ring-growth limitation processes. The

impact of several FL-based formulation changes on VSL’s forward modeling performance

is assessed for a global network of TRW chronologies, finding a remarkable insensitivity

to the particular representation of the PLF.
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Finally, the assimilation of TRW chronologies is investigated within a perfect model

Data Assimilation (DA) setting using VSL as observation operator and a EnKF-based TA

state estimation strategy. VSL’s formulation implies three compounding, challenging fea-

tures when used as observation operator: (i) time averaging, (ii) “switching recording”

of 2 variables and (iii) bounded response windows leading to “thresholded response”.

DA experiments involving pseudo-TRW observations are performed first for a chaotic 2-

scale dynamical system, used as a cartoon of the atmosphere-land system, and then

for an Atmospheric General Circulation Model (A-GCM). Results reveal that VSL’s non-

linearities may considerable deteriorate the performance of EnKF for TA estimation, as

compared to the utilization of a TA linear observation operator. Moreover, this assimila-

tion skill loss appears to be strongly linked to the lack of smoothness of the growth rate

function. Consequently, VSL’s performance as observation operator can be enhanced by

resorting to smoother FL representations of the principle of limiting factors. Additionally,

our results suggests that the efficiency of a TRW chronology at reducing analysis errors

is limited by the yearly internal variability strength at the chronology site. This finding

can in principle be profitably used to guide and optimize future proxy record sampling

campaigns.
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CHAPTER 1

Introduction

1.1 The Paleo-Reanalysis Idea

Global prediction centers deliver every six hours high quality estimates of the atmospheric

state by merging model predictions and observations in a process called Data Assimila-

tion (DA)1 [Talagrand, 1997]. These estimates, denoted as analysis in the DA jargon,

can in principle be gathered so as to create archives of the weather state that can be

employed in climate studies. Such collections of analyses, nonetheless, would necessar-

ily exhibit numerous discontinuities due to frequent updates of an operational prediction

system, and as a consequence their usability would be rather limited.

A strategy to enhance the homogeneity of analysis datasets was proposed in the

late 1980s [Trenberth and Olson, 1988; Bengtsson and Shukla, 1988] under the name of
1The DA terminology have started to be used for methods that estimate the optimal parameters of model

given certain observational information. Along this monograph, these techniques will be referred to as model
optimization methods while the DA term will be reserved for state estimation approaches.

1
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retrospective climate analysis, or simply “reanalysis”. An unchanging combination of pre-

diction model and DA scheme can be rerun during a recent climate period, assimilating

historical instrumental records. Furthermore, due to the absence of operational time con-

strains many new off-line observations can be used. The first atmospheric reanalysis was

accomplished in the early 1990s by a collaboration between NCEP and NCAR [Kalnay

et al., 1996] and since then an ever growing number of reanalysis projects has taken

place, covering several components of the earth system e.g., atmosphere, hydrosphere

and terrestrial biosphere [Bosilovich et al., 2013].

Nowadays, reanalyses constitute one of the most important information sources in

climate research [Rood and Bosilovich, 2010]. They assimilate big amounts of obser-

vations and provide fields with consistent spatial and temporal resolutions for all model

variables. Nevertheless, it should be borne in mind that reanalyses still present several

important drawbacks e.g., (i) the evolving nature of observational systems tends to intro-

duce spurious variability and trends, (ii) observational constrains are strongly dependent

on variable, location and time, and (iii) invariant physical quantities such as water content

may not be strictly preserved [Dee et al., 2013].

Current reanalysis development efforts are mainly focused on two directions: (i) ef-

fectively assimilating the wealth of observation available for recent decades, particularly

satellite data, and (ii) extending the length of the datasets as much as possible. Fol-

lowing the later, the 20th Century Reanalysis (20CR) [Compo et al., 2011] has already

achieved an atmospheric reanalysis starting in 1871 by assimilating only surface pres-

sures [Compo et al., 2006]. Despite the sparsity of the assimilated observations, 20CR

quality for the extratropical Northern Hemisphere is comparable to present three-day op-

erational weather predictions. Moreover, the employed ensemble DA technique directly

provides uncertainty estimates, which do not exist for most of the reanalysis datasets.

Given the great success of the reanalysis concept into climate science, since the early

2000s the paleoclimate community have started investigating the possibility of assimi-

lating paleoclimate records into climate models, with the purpose of generating paleo-

reanalysis datasets stretching beyond the instrumental period [Hughes and Ammann,

2009; Guiot et al., 2009; Brönnimann, 2011], very much in the in the spirit of 20CR.
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Paleo-reanalysis appear as a very promising approach to paleoclimate reconstruction,

as the states obtained in this way are in principle consistent both with historic records

and the physics of the climate system as represented by the model equations. In prac-

tice, however, there are numerous stumbling blocks arising from the challenging features

of paleoclimate data as well as from the sheer complexity of the climate system.

1.2 Paleoclimate Proxy Data

Spatially extended meteorological networks date back to the middle of the 19th century,

accordingly, climate conditions previous to this time can only be inferred from natural

archives such as tree trunks, coral reefs, glacials and sediments. These archives have

been long sampled by the paleoclimate research community in order to create the so-

called proxy records [Jones and Mann, 2004]. Currently, there is an impressive variety

of proxy data types and their records are systematically developed and stored in world-

wide databanks. Some proxy records are able to resolve annual or seasonal features

and accordingly they are classified as high-resolution ones, e.g., tree rings, coral data,

speleothems, high accumulation ice cores and laminated sediment cores. The rest of the

proxy types present lower temporal resolutions ranging from decades to millennia [Jones

et al., 2009].

The formation of a proxy record involves biological, physical, and/or chemical mech-

anisms, driven by multiple environmental factors including climate and human activities.

As a consequence, there exist several challenging features that distinguish proxy data

from standard instrumental observations, most notably, low time resolution, pronounced

spatial sparseness, high noise levels and potentially nonlinear relationship with climate

variables [Evans et al., 2013]. Additionally, the climatic signal recorded in a proxy record

typically corresponds to Time-Averaged (TA) climate quantities, rather than instantaneous

ones.

This thesis will pay special attention to the proxy record type with the longest tradition:

Tree-Ring-Width (TRW) chronologies [Fritts, 1976]. This terrestrial proxy presents the
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largest and densest spatial coverage among all proxies currently available (albeit strongly

biased towards the Northern hemisphere). Additionally, together with coral data, TRW

chronologies present a highly stable yearly resolution. Besides the width of the ring,

there are several other numerical quantities that can be retrieved from tree rings e.g.,

wood density and isotopic composition. Oxygen and carbon isotope ratios have shown

very strong climatic signals even for the tropical zones where TRW is typically weakly

connected to climate [McCarroll and Loader, 2004]. On the other hand, isotopic analysis

is a rather expensive procedure. As a result, the availability of isotope chronologies is still

quite limited.

1.3 Statistical Climate Reconstructions

Proxy records have been traditionally inverted into climate quantities by means of statis-

tical approach, consisting of two steps:

1. Calibration of a statistical model between proxy records and instrumental records

of a target climate quantity during their overlapping time period.

2. Reconstruction of the targeted climate variable by applying the calibrated model to

the non-overlapping section of the proxy records.

The employed statistical models have been largely dominated by multivariate linear re-

gression techniques, the paleo-data used have been either mono- or multi-proxy net-

works, and the climate targets have been either broad indices, e.g., global mean surface

temperature and El Niño Southern Oscillation (ENSO), or 2-dimensional fields, e.g., sur-

face temperature and Palmer Drought Severity Index (PDSI) [Mann et al., 2008; Cook

et al., 1999].

Statistical inversion has been profusely used to reconstruct paleoclimate quantities

at local, regional and global scales [Jones et al., 2009]. However, since recent years

there has been an increasing awareness of the caveats of statistical reconstructions. Ac-

cordingly, many papers have been devoted to the analysis of the performance of climate
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reconstruction methodologies under simplified conditions using the idea of Pseudo-Proxy

Experiment (PPE) [Smerdon, 2012]. Within these methodological studies, a trajectory of

a climate model is selected as the “true” climate evolution and from it, artificial proxy

records are generated, typically by adding noise to a time-averaged climate variable. Af-

terwards, pseudo-proxies are used as input data for a reconstruction method and the

reconstructed climate quantities are compared to the “real” ones, which are known in this

simplified setting.

PPEs have revealed that even assuming a linear climate-proxy relationship, climate

fields reconstructed through linear regression are not physically consistent in general, and

are prone to show variance losses and spatially variable mean biases [Smerdon et al.,

2011]. In reality, proxy formation comprises complex processes that can easily introduce

nonlinear dependencies [Hughes et al., 2010; Evans et al., 2013]. Moreover, different

proxy data kinds react in distinctive ways to specific sets of climate variables. Therefore,

the validity of combining different proxy types into a multi-proxy reconstruction is currently

discussed [Evans et al., 2013].

1.4 Process-based Proxy Forward Modeling

Given the high complexity of the climate-proxy relationship, since recent years the pale-

oclimate community has been interested in adopting more realistic methodologies, that

take into account the different processes by which climate conditions get imprinted into

proxy records. One of the most promising approaches in this direction is “Proxy Forward

Modeling” [Hughes et al., 2010; Evans et al., 2013], which take climate forcing as input

data and generate artificial proxy records that can be directly compared to actual proxy

records. This strategy is diametrically opposed to the traditional inverse approach where

climate conditions are directly inverted from proxy data.

Proxy forward models can be used for different purposes such as model-paleodata

comparison in the proxy space [Evans et al., 2013] and the prediction of the future evolu-

tion or proxy archives [Vaganov et al., 2006]. Despite its forth direction, forward models
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can also be used for reconstruction by resorting to probabilistic inversion strategies, such

as Bayesian hierarchical modeling [Tolwinski-Ward et al., 2014], Markov Chain Monte

Carlo (MCMC) [Boucher et al., 2014] and DA [Hughes et al., 2010].

Nowadays, there exist process-based forward models for many different proxy types,

most notably TRW chronologies [Vaganov et al., 2006; Evans et al., 2006; Tolwinski-Ward

et al., 2011], tree-ring isotopes [Roden et al., 2000; Danis et al., 2012; Evans, 2007], coral

isotopes [Thompson et al., 2011], ocean sediments [Heinze, 2001; Schmidt, 1999] and

stalagmite isotopes [Baker et al., 2012]. There are also initiatives to model the transport

of isotopes within the atmosphere [Sturm et al., 2010]. Depending on the particular ap-

plication and the availability of data, proxy forward models assume different complexity

levels which go from the minimalistic linear pseudo-proxies, introduced in section 1.3,

to comprehensive models that simulate the proxy generation process as realistically as

possible.

1.4.1 Tree ring growth forward models

Tree ring growth has been studied during several decades, mostly from the point of view

of ecological disciplines. As a result there exist several eco-physiological models, most

notably TREERING 2000 [Fritts et al., 1999], MAIDEN [Danis et al., 2012; Misson et al.,

2004] and the Vaganov-Shashkin (VS) model [Vaganov et al., 2006; Evans et al., 2006],

which simulate many complicated phenomena such as photosynthesis, carbon alloca-

tion and cellular wood formation processes. All these comprehensive tree growth mod-

els have shown remarkable skill for local studies in data-rich areas. However, because

of their high complexity, ecophysiological models are very demanding in terms of data

quantity and quality, and consequently their applicability for global studies is rather lim-

ited. Additionally, their high number of parameters make very costly, or even prohibitively

expensive, the usage of systematic tuning procedures.

With the purpose of developing a process-based forward model for TRW chronologies

which could be applied to global climate studies, a simplified version the VS model, called

Vaganov-Shashkin-Lite (VSL), was recently introduced by Tolwinski-Ward et al. [2011].



7

This model has been shown to skilfully simulate the climate-driven tree-ring growth for

very diverse species and climate regimes, both at regional [Tolwinski-Ward et al., 2011;

Acevedo et al., 2013] and global scales [Breitenmoser et al., 2014], based solely on 3 ex-

ternal factors - temperature, soil moisture and solar radiation - and 4 tunable parameters.

Moreover, thanks to its small number of parameters, VSL can be systematically calibrated

using for example a MCMC scheme [Tolwinski-Ward et al., 2013]. With that VSL presents

itself as a perfect candidate for a TRW observation operator within a paleo-DA setting.

1.5 Paleo-Reanalysis Studies

1.5.1 Data assimilation techniques for paleoclimate

To date, several very diverse paleo-DA schemes have been proposed, all of them with ad-

vantages (⊕) and disadvantages (	) (see [Hughes and Ammann, 2009; Widmann et al.,

2010] as reference material):

Pattern Nudging [von Storch et al., 2000] and Forcing Singular Vectors [Barkmeijer

et al., 2003; van der Schrier and Barkmeijer, 2005] techniques were designed to

curb the atmospheric circulation towards a target pattern by means of an artificial

term added to the model dynamics. ⊕: useful to test hypothesis regarding paleo-

climate circulation anomalies. 	: no probabilistic basis; proxy records cannot be

directly assimilated.

4-Dimensional Variational Analysis (4D-Var) methodology has been used to assimi-

late pseudo-proxies into an ocean model [Paul and Schäfer-Neth, 2005; Kurahashi-

Nakamura et al., 2014]. ⊕: time dependent statistics; high robustness to obser-

vational sparsity [Whitaker et al., 2009]. 	: Gaussian statistics assumed; very

demanding implementation due to the need of the adjoint operator, which is not

available for current coupled climate models.

Ensemble Kalman Filter (EnKF) was adapted to time-averaged observations [Dirren

and Hakim, 2005] and tested in an hierarchy of atmospheric models [Huntley and
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FIGURE 1.1: Schematic of paleoclimate data assimilation approaches. Sharp (rounded)
cornered boxes represent data (processes).

Hakim, 2010; Bhend et al., 2012; Pendergrass et al., 2012; Steiger et al., 2014]. ⊕:

time dependent statistics; very robust to very sparse observation networks; straight-

forward to implement; provides uncertainty estimates. 	: Gaussian statistics as-

sumed; Accuracy depends on ensemble size.

Particle filter has been tested with a Earth system model of intermediate complexity

[Annan and Hargreaves, 2012; Dubinkina and Goosse, 2013; Mathiot et al., 2013].

⊕: time dependent statistics; no Gaussian statistical assumptions. 	: very large
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ensembles needed; tendency to collapse for small ensembles [Annan and Harg-

reaves, 2012].

Among all this techniques, EnKF offers an appealing trade-off between accuracy, im-

plementation easiness and computational expense. EnKF works robustly for very sparse

observation networks and moderate number of ensemble members [Whitaker et al.,

2009]. Its implementation does not require adjoint model and uncertainty estimates can

be directly obtained from the ensemble spread [Hamill, 2006].

The main disadvantage of EnKF within a paleoclimate setting is its inability to han-

dle strongly non-Gaussian Probability Density Functions (PDFs), which can result from

the nonlinearities of climate models and observation operators. Nonetheless, it is very

difficult to remove this limitation, given that strictly non-Gaussian DA techniques have

been so far prohibitively expensive to run for high dimensional systems. In particular,

particle filters are known to be strongly liable to the “curse of dimensionality”: accurate

estimation requires ensembles whose size grows exponentially with the system dimen-

sion [Bengtsson et al., 2008; Annan and Hargreaves, 2012]. Recent improvements to the

sampling strategies of particle filters have enhanced significantly their scaling properties

[van Leeuwen, 2010; Dubinkina and Goosse, 2013], however it is still unclear whether

particle filters will reach the robustness of traditional Gaussian DA techniques at an af-

fordable computational price.

1.5.2 Link between climate forcing and proxy records

Regarding the relationship between climate state and climate-driven proxy signals, all the

studies considered in this section have assumed a linear dependency. Few works have

assimilated statistical climate reconstructions coming from actual proxy records [van der

Schrier and Barkmeijer, 2005; Goosse et al., 2010; Mathiot et al., 2013], whereas most

of the studies have assimilated linear pseudo-proxies.
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Given the high complexity of the real climate-proxy relationship (see section 1.2), a

natural step to increase the realism of paleo-DA experiments would be the use of process-

based proxy forward models to directly link climate model output with proxy records (see

figure 1.1(b)). This approach offers in principle several potential advantages over the

assimilation of climate reconstructions (see figure 1.1(a)), e.g., (i) the dependency on

statistical stationarity must be weaker due to the process-knowledge contained into the

forward model, (ii) the limitations of statistical reconstructions would not be directly inher-

ited by paleo-reanalyses and (iii) the extraction of the proxy climate signal would be more

consistent with the proxy recording mechanisms. An important complication of using for-

ward models into paleo-DA setting is the necessity of an specific forward model for each

proxy data type. In this research work I focus on the modelling and assimilation of TRW

chronologies via VS-Lite model.

1.6 Thesis Outline

This manuscript investigates several aspects of the problem of assimilating proxy records

into climate models using EnKF techniques and process-based proxy forward models.

First of all, chapter 2 briefly reviews the general concepts of DA and EnKF, so as to set

the context for the TA filtering techniques, which are described in detail at the end of

the chapter. Chapter 3 presents a new comparison of the different filtering strategies to

estimate TA states, this time under strongly nonlinear coupling conditions. Chapter 4 is

devoted to the reinterpretation of VSL in terms of Fuzzy Logic (FL) theory, which reveals

several natural modifications to the model equations. The sensitivity of the model per-

formance to this FL-based formulation changes is assessed for a global network of TRW

chronologies. Chapter 5 studies the applicability of VSL as forward operator into a sim-

plified DA setting, paying special to the influence of the FL-based model modifications on

the DA skill. Chapter 6 presents a set of DA experiments analogous to the ones studied in

chapter 5, this time utilizing an Atmospheric General Circulation Model (A-GCM) Finally,

a summary of the results as well as an outlook are provided in chapter 7.



CHAPTER 2

Filtering Time-Averaged Observations

2.1 Data Assimilation Basics

The term Data Assimilation (DA) was initially used to designate the process of estimating

the state of a system using observations and the physical laws governing the evolution

of the system as represented in a numerical model [Talagrand, 1997]. DA is typically

performed in the shape of an analysis cycle comprising two phases:

Analysis step: the state of a system is estimated at a given time by combining proba-

bilistically available observations and the prior knowledge of state. This estimate is

normally referred to as analysis or posterior.

Forecast step: a numerical model of the system is used predict the future state of the

system, using as starting point the analysis. The obtained prediction is used in turn

as prior information for the next analysis step.

11
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The period of the analysis cycle is determined by several factors such as availability

of observations, computational resources and the time scales of the modeled system.

Within operational atmosphere prediction settings, the typical periods of global and re-

gional analysis cycles are 6 hours and 1 hour respectively [Kalnay, 2003]. DA methods

have evolved from very empirical approaches, such as Newtonian relaxation, to proba-

bilistic ones that estimate the state Probability Density Function (PDF) conditional to the

observations. (see Kalnay [2003] Lahoz et al. [2010] for comprehensive accounts of DA

methods for geophysical applications).

2.1.1 Kalman Filter

Given a model with state x(t) ∈ Rn, the Kalman Filter (KF)[Kalman, 1960] assumes that

the forecast state PDF is given by a Gaussian function with mean xf and covariance

Pf ∈ Rn×n:

p(x) ∝ exp(−1

2
(x− xf )T (Pf )−1(x− xf )). (2.1)

Observations y(tj) ∈ Rk are assumed to have Gaussian distributed measurement errors

and therefore the conditional probability of the observation vector y given the state x

follows the expression:

p(y | x) ∝ exp(−1

2
(y − Ĥxf )TR−1(y − Ĥxf )), (2.2)

where Ĥ denotes the observation operator and R ∈ Rk×k is the observation covariance

matrix. By virtue of Bayes theorem, the conditional probability of the state given the

observations, i.e., the analysis PDF, takes the form:

p(x | y) ∝ exp(−1

2
(x− xf )T (Pf )−1(x− xf )− 1

2
(y − Ĥxf )TR−1(y − Ĥxf )). (2.3)

Given the Gaussianity of functions 2.1 and 2.2, function 2.3 is again a Gaussian PDF

whose mean and covariance can be calculated, provided that Ĥ is linear, yielding the
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so-called Kalman update equations (see [Lorenc, 1986] for details):

xa = xf + K(y − Ĥxf ), (2.4)

Pa = (I−KĤ)Pf ; (2.5)

where the Kalman gain matrix K is given by the expression:

K = Pf Ĥ†(ĤPf Ĥ† + R)−1. (2.6)

2.1.2 Ensemble Kalman Filter (EnKF)

For geophysical systems, the model state size can be of the order millions and hence the

calculation of covariance matrices becomes prohibitively expensive. In order to overcome

this limitation, Evensen [1994] proposed to approximate the KF equations by way of an

ensemble of model states X(t) = (x1, . . . ,xm), that represents the model state PDF.

This approach constitutes a Monte Carlo approximation, where the best estimate and

its uncertainty are given by the ensemble mean and spread, respectively. This latter

characteristic of the ensemble is typically quantified by means of the standard deviation

of the ensemble around its mean.Within EnKF the aforementioned DA cycle steps take

the following form:

Forecast step: an initial ensemble members are simultaneously propagated in time us-

ing the model dynamics, so as to generate a forecast ensemble.

Analysis step: the empirical mean and covariance of the forecast ensemble are calcu-

lated and used as approximations of the corresponding quantities in the KF equa-

tions:

〈Xf 〉 =
1

m

m∑
i=1

xfi , Pf =
1

m− 1
Xf
′(Xf

′)T . (2.7)

Here Xf
′ ∈ Rn×m denotes the forecast ensemble deviation matrix:

Xf
′ = Xf − 〈Xf 〉eT . (2.8)
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where e = (1, . . . , 1) ∈ Rm. In order to start a new forecast step, it is necessary to

generate an analysis ensemble whose covariance satisfies equation 2.5. This can

be achieved in many different ways, giving rise to two main families of Ensemble

Kalman Filters: Stochastic and Deterministic filters (see [Hamill, 2006] for a detailed

account of available updating algorithms). For the stochastic EnKF [Burgers et al.,

1998], an observational ensemble Y is created by adding a set of realization of

the observational noise to the observation vector y, and the analysis ensemble is

generated via the following update equations:

Xa = Xf + K
(
Y − ĤXf

)
. (2.9)

Notice that the use of random noise introduces sampling error, which can be signifi-

cant for small ensemble sizes. This additional error source is not present for deterministic

updating algorithms, given that they avoid the generation of an observational ensemble.

Instead, they calculate the analysis mean Xa and deviations Xa
′ using different update

formulae (see Tippett et al. [2003] for a description of the most representative determin-

istic updating approaches).

EnKF converges to KF in the limit of infinite number of ensemble members. In prac-

tice, however, the spread of the ensemble is typically too low due to the finite ensemble

size, and therefore the forecast uncertainty is underestimated. In these circumstances,

the filter is overconfident on the prediction and after some assimilation cycles the obser-

vations become completely ignored. This phenomenon, known as filter divergence, is

pragmatically counteracted by increasing the spread of the ensemble. This procedure is

known as covariance inflation and is typically achieved by multiplying the ensemble devi-

ations by a constant greater than one. A different situation where the filter operation can

diverge has been observed for sparse observational grids with small observational noise

[Gottwald and Majda, 2013]. In these conditions the update step can produce analysis

states which are not consistent with the true dynamics. Subsequently, this analysis states

are very strongly pushed towards the attractor by the model dynamics, and doing so the

integrator my generate machine infinity values. When this happens the model crashes

and the filter is said to experience a catastrophic divergence.



15

Another undesired consequence of the finite ensemble size is that an observation will

typically present significant spurious correlations with distant grid points. This side effect,

which can be very detrimental for the filter performance, is normally prevented by an-

other pragmatic remedy called “covariance localization”. There are two main localization

methodologies:

B-localization [Hamill et al., 2001]: the elements of the background covariance matrix

are multiplied by a function that decreases monotonically with distance, so that

large-range correlations are discarded. The most traditional function utilized for

B-localization is the one introduced by Gaspari and Cohn [1999].

R-localization [Hunt et al., 2007]: the elements of the observation error covariance ma-

trix are multiplied by a function that increases exponentially with distance, in such a

way that far away observations appear as having infinite error and accordingly are

not taken into account for the analysis.

The EnKF forecast step allows model nonlinearity given that the whole model, poten-

tially nonlinear, is utilized to evolve the ensemble. The analysis step, in turn, is linear due

to the Gaussian assumption and then its performance might be deteriorated by nonlinear

effects coming from the model or the observation operators. Notice that there exist fully

nonlinear DA methods, however for high-dimensional applications they are currently un-

wieldy and appear to remain that way in the foreseeable future. Consequently, there is

an strong interest in adapting Gaussian DA techniques to work into nonlinear settings.

2.1.3 Observation System Simulation Experiments

Given a prediction system comprising a dynamical model and a DA scheme, forecast and

analysis errors arise from many different sources, e.g. model imperfections, inadequacy

of the DA strategy and insufficiency of observational information, which interact with each

other in practice. In order to disentangle the effects of these error sources, a DA scheme

is typically tested under simplified conditions by means of numerical experiments, cur-

rently known as OSSEs, whose realism level is gradually increased.
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FIGURE 2.1: Schematic of a typical Observation System Simulation Experiment (OSSE)
with an ensemble DA method. t designates the time axis and X(Y ) denotes the model
state (observation) space. Sharp (rounded) cornered boxes represent data (processes).

An OSSE consists of (i) a single model trajectory xNATURE, typically referred to as “true”

run or “nature” run, that is used as prediction target, (ii) pseudo-observations created by

applying the observation operator to xNATURE and adding simulated observational noise,

and (iii) an observationally constrained run XDA, obtained by performing a sequence of

analysis cycles where the pseudo-observations are assimilated (see figure 2.1). Notice

that an OSSE follows essentially the same rationale as the Pseudo-Proxy Experiment

(PPE) introduced in section 1.3.

The nature run is normally generated by running the dynamical model starting from
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a random sample of the model climatology. Notice that thanks to the availability of the

truth model evolution for an OSSE, the forecast and analysis skill of the observationally

constrained run can be directly assessed, using for example the Root Mean Square Error

(RMSE) of the ensemble mean:

RMSE(〈XDA〉) =
(

(xNATURE − 〈XDA〉)2
) 1

2
, (2.10)

where and 〈 〉 denote the time and ensemble mean operators, respectively.

An additional run frequently performed for OSSEs involving ensemble DA methods, is

a free ensemble run XFREE, where no observations are assimilated and then the ensemble

just freely evolved under the action of the model dynamics (see figure 2.1). XFREE is

intended to provide a benchmark of performance, against which it is possible to asses

the the added value of the DA scheme, using for example the error reduction regarding

the free run, εFREE
REDUCTION, given by the following expression:

εFREE
REDUCTION(X

DA
) = 100% ·

(
1− RMSE(XDA)

RMSE(XFREE)

)
. (2.11)

As mentioned before, the development and evaluation of a DA setting should be car-

ried out gradually, by way of a hierarchy of increasingly realistic OSSEs. A typical first

step is to create xNATURE, XFREE and XDA using the same model, which leads to the so-called

“perfect model” OSSEs. In a real-world setting the dynamical model is always an imper-

fect representation of reality, then a natural next step is a “imperfect model” OSSE, where

XFREE and XDA are performed using for example a simplified version of the model utilized

to create xNATURE.

2.2 Assimilating Time-Averaged Observations through EnKF

Measuring the instantaneous value of a quantity is not possible, strictly speaking, due to

the finite response time of every sensor. However, in practice it is common that the time

scales of the system under study are much longer that the response time, and hence the
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FIGURE 2.2: Schematic of the state-observation relationship for instantaneous (a) and
Time-Averaged observations (b). t designates the time axis andX(Y ) denotes the model

state (observation) space. τobs (τaver) stands for the observational (averaging) period.

observations can be assumed instantaneous. There are, nonetheless, situations where

this assumption does not hold and the Time-Averaged (TA) nature of the observations

ought to be taken into account, e.g., rain gauges, wind meters and climate proxy records.

Observational time averaging periods range from hours, in the case of precipitation

or wind measurements, to years or even decades, in the case of proxies. In general, the

time averaging period does not coincide with the observation period, and can be even

longer as is the case of Tree-Ring-Width (TRW) records where a ring typically carries in-

formation of a time period longer than one year, as a result of biological and/or ecological

persistence [Wu et al., 2013].

The problem of assimilating TA observations differs in several respects from the tradi-

tional assimilation of instantaneous quantities. One TA observation conveys information

of a segment of the model state trajectory, as opposed to an instantaneous observation

whose signal relates only to an instant of the model evolution (see figure 2.2). Moreover,

due to the low pass filter action of time averaging, high frequencies are smoothed out and

do not get recorded into the TA observations. Consequently, a new estimation target is

pursued: the TA state.
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Along this thesis the symbol τaver is used to represent the following time averaging

operator:

∗(t)τaver
=

1

τaver

∫ tn

tn− τaver

∗(t) dt, (2.12)

where ∗ represents an arbitrary time dependent quantity, τaver is the length of the averaging

period and tn is the instant at which the observations becomes available (see figure 2.2).

Using this notation, a TA observation yτaver can be written as

yτaver(tn, τaver) = Ĥ(x(t))
τaver

+ noise, (2.13)

where Ĥ designates the instantaneous observation operator.

2.2.1 Updating approaches for Time-Averaged state estimation

Given TA observations of a system, the estimation of its TA state can be pursued using

EnKF by altering the structure of the traditional analysis step. This modifications of the

analysis algorithm give rises to different updating approaches.

2.2.1.1 Time-Augmented Update (TAug-Up) strategy

All the instantaneous states belonging to the averaging interval are updated [Huntley and

Hakim, 2010]. This can be conveniently expressed in mathematical terms making use

of the state augmentation concept [Nichols, 2010], which essentially attaches additional

variables to the estimated state, typically with the purpose of estimating model parame-

ters. In the present case, the instantaneous state corresponding to the observation arrival

time is augmented with all the previous states contributing to the observation, giving rise

to a higher dimensional control vector called the Time-Augmented state:

X(tn, τaver) = [x(ti)], tn − τaver > ti > tn. (2.14)
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An equivalent procedure can be applied to the ensemble in order to create the Time-

Augmented (TAUG) ensemble:

X(tn, τaver) = [X(ti)], tn − τaver > ti > tn, (2.15)

over which the EnKF update equations are applied (see figure 2.4(a) for an schematic

view of the updating scheme and appendix A.1 for details of the algorithm).

2.2.1.2 Time-Averaged Update (TA-Up) strategy

Only the TA part of the system dynamics is constrained by updating the TA component

of the TAUG state [Dirren and Hakim, 2005]. This can be achieved by performing at

assimilation time the following TA decomposition:

Xf = Xf
τaver + X̃f . (2.16)

where X̃f designates the TA deviations. Subsequently, a EnKF update is applied over

Xf
τaver to obtain the TA analysis, which is finally added to the unaltered TA deviations

providing the instantaneous analysis states (see figure 2.4(a) for an schematic view of

the updating scheme and appendix A.2 for details of the algorithm). The rationale of this

approach is that TA linear observations can only contain TA information. This comes from

the commutation of the TA operator and a linear observation operator:

yτaver(tn, τaver) = Ĥ(x)
τaver

+ noise = Ĥ(xτaver) + noise. (2.17)

2.2.2 Comparison of updating strategies

In the limit τaver = 0, the two aforementioned updating approaches reduce to the standard

instantaneous updating strategy, while for τaver > 0 they present significant differences in

several respects:
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FIGURE 2.3: Schematic of updating strategies for Time-Averaged state estimation.
Sharp (rounded) cornered boxes represent data (processes).

• Estimation skill: to the present, TA-Up and TAug-Up strategies have only been

compared once for the assimilation of surface and tropopause TA linear observa-

tions into a quasi-geostrophic atmospheric model [Huntley and Hakim, 2010]. This

research work reported equivalent numerical error levels in the TA quantities for

both updating strategies, while for the instantaneous quantities, TAug-Up presented

slightly better performance but only for short averaging periods. This numerical
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evidence was supported by an analytical proof showing that TAug-Up reduces to

TA-Up one provided (i) a linear observation operator and (ii) negligible covariances

between TA ensemble observations and the TA ensemble deviations (see appendix

A.3 for details of the proof).

• Computational expense: For the TAug-Up, each instantaneous state within the av-

eraging period should be updated using the EnKF equations. Therefore, the compu-

tational cost of the analysis step increases linearly with the length of the averaging

interval. On the other hand, the TA-Up demands only the update of the TA ensem-

ble. There are some additional costs arising from the accumulation of the ensemble

state during the forecast step, as well as the TA decomposition and recomposition

of the ensemble at analysis time. These latter expenses are, nonetheless, small

compared to the multiple instantaneous updates needed for the TAug-Up.

In these state of affairs, the convenience of using a particular updating approach

clearly depends on the time averaging length. In the regime of long averaging peri-

ods, TAug-Up strategy becomes highly –or even prohibitively– expensive, hence TA-Up

methodology clearly appears as the only cost-effective option. Moreover, given that a

τaver increment involves a size increase for the TAUG state X but no more observational

information, TAug-Up is expected to be more liable to statistical noise coming from the

finite ensemble size, especially for large values of τaver [Huntley and Hakim, 2010]. On

the other hand, in the regime of long averaging periods TAug-Up offers better estimation

capabilities. Notice, however, that even for low τaver values this technique can become

unaffordable in practice due to the very high dimensionality of geophysical models. This

strong downside of the TAug-Up approach motivates us to propose in the following sec-

tion a new hybrid updating strategy hereafter referred to as the TAI-Up methodology.

Finally, it is important to notice that the comparison conducted by Huntley and Hakim

[2010] is considerably limited. The mid latitude atmospheric model utilized does present

multi-scale phenomena, however it lacks the strong inter-component interactions present

in the global climate system, e.g., the tropical atmosphere-ocean coupling responsible for

El Niño Southern Oscillation (ENSO). Accordingly, in the next chapter a new comparison

study is perform under strongly multi-scale coupling conditions.
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2.2.2.1 Time-Averaged + Instantaneous Update (TAI-Up) strategy

Instantaneous and TA states are estimated independently, each one by means of its own

EnKF analysis step (see figure 2.4(c)). This can be expressed in mathematical terms as

a normal EnKF update performed over the following augmented vector:

XTAI(tn, τaver) = [Xf
τaver ,X(tn)], (2.18)

which comprises the TA state and last instantaneous state within the observation interval.

Notice that compared to TA-Up, TAI-Up involves only an additional instantaneous EnKF

update. Hence their computational costs are comparable.

The TAI-Up methodology proposal is motivated on two aspects of the TAug-Up strat-

egy: (i) the TA state is estimated in a very costly way by updating all the instantaneous

forecast states contributing to the observation and, subsequently averaging the corre-

sponding instantaneous analyses, (ii) the forecast solely depends on the last instanta-

neous analysis state within the observation interval. Accordingly, we hypothesize that the

estimation of the TA state can be achieved in a more effective way by updating directly

the TA ensemble state, while keeping the instantaneous estimation unaltered. It is our

hope then that our hybrid updating strategy combines the outstanding scaling properties

of the TA-Up approach, regarding τaver, and the TA estimation efficiency of the TAug-Up

methodology for short averaging periods.





CHAPTER 3

Assimilation of Time-Averaged Observations into a Coupled

2-Scale Model

In this chapter the problem of estimating the Time-Averaged (TA) state of a model out

of TA observations is revisited. The 2-component coupled model of Peña and Kalnay

[2004] (PK2004) is used to perform a set of Data Assimilation (DA) experiments designed

to shed light on the role of inter-scale coupling in the performance of for the different TA

state estimation strategies described in chapter 2.
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3.1 Experimental setting

3.1.1 Dynamical model

The PK2004 dynamical system features a coupling of two Lorenz [1963] (L63) models

[Lorenz, 1963] with different time scales:

ẋ1 = σ(x2 − x1) − c(sax4 + k)

ẋ2 = rx1 − x2 − x1x3 + c(sax5 + k)

ẋ3 = x1x2 − bx3 + cz x6

(3.1)

ẋ4 = st( σ(x5 − x4))− c( x1 + k)

ẋ5 = st(rx4 − x5 − sax4x6 ) + c( x2 + k)

ẋ6 = st( sax4x5 − bx6 )− cz x3,

where (x1,x2,x3)
† and (x4,x5,x6)

† are the fast and slow model components, respec-

tively; σ = 10, b = 8/3, and r = 28 are the typical L63 parameter values, c (cz) is the

coupling strength for the x − y (z) variables, sa (st) is the amplitude (time) scale factor,

and k is an “uncentering” parameter. Equations 3.1 constitute a minimalistic non linear

dynamical system which allows as to focus on the role of coupling for the filtering of TA

observations. All along our numerical exploration, we set c = cz (symmetric coupling)

k = −11, sa = 1.0 (equal amplitude scales) and st = 0.1 (fast component time scale ten

times shorter than slow component one). It is important to mention that the actual time

and scale ratios depend on the coupling details. We consider three configurations regard-

ing the inter-component interaction: (i) no coupling: c = 0.0, (ii) weak coupling: c = 0.1

and (iii) strong coupling: c = 0.5. The numerical integration of the model equations is

achieved via the standard Runge-Kutta method of fourth order with time step ∆t = 0.01,

where the model variables are represented by 64-bit FORTRAN real variables.
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FIGURE 3.1: Schematic of the runs performed with the PK2004 model

3.1.2 Filter configuration and experiment characteristics

In our experiments we use ensembles with 20 members and a typical Ensemble Kalman

Filter (EnKF) setting consisting of a stochastic analysis step [Burgers et al., 1998] (equa-

tion 2.9) and multiplicative inflation between 1% and 5% before the ensemble update.

Additionally, in order to investigate the role of the inter-component interaction on the DA

skill, we study the operation of the filter when the observations from the fast and slow

components are allowed to impact only the state of fast and slow components, respec-

tively. This filter configuration is achieved by setting to zero the covariance terms between

state variables and observations corresponding to different model components. We re-

fer to this procedure as component-wise covariance localization, or simply component

localization.

We perform a set of standard “perfect model” Observation System Simulation Ex-

periments (OSSEs)1, meant to study the sensitivity of the DA scheme to the updating

approaches introduced in section 2.2.1, as well as to the use of component-wise covari-

ance localization. A diagram of the numerical exploration performed is provided in figure

3.1.

The model climatology is obtained by starting a model trajectory from a random initial

condition and storing the model state every 5000 time steps. All ensemble runs are ini-

tialized identically from a random sampling of the model climatology that does not include

the initial condition of the nature run. TA linear pseudo-observations are extracted from
1see section 2.1.3 for a description of OSSEs
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the nature run following the equation 2.13, using the following instantaneous operator:

Ĥ =


0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

 , (3.2)

which linearly measures the last two variables of each model component. Given that

the variance of TA quantities decreases with time average length, for each τaver value we

calculate the variance of the “clean” TA observation series and set the noise variance so

as to keep a constant Signal-To-Noise ratio (SNR) equal to 10.0.

3.1.3 Diagnostic statistics

Given that the impact of time averaging on the error levels depends strongly on the time

scale of the model internal variability, components with different time scales are expected

to react differently to the same time averaging length. Accordingly, we analyze separately

the error levels of slow and fast components. Analysis and forecast error levels are mon-

itored by means of the root mean square error, RMSE, and the error decrease regarding

the free run, εFREE
REDUCTION, for the unobserved model variables (x1 and x4) after 105 analysis

cycles2. The first 104 analysis cycles of the runs are regarded as spin-up period, and

therefore they are not considered in the statistics.
2see section 2.1.3 for the definition of these diagnostic quantities
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3.2 Results

3.2.1 Uncoupled configuration

3.2.1.1 Dynamics

For this configuration the dynamical system reduces to two independent L63 models,

whose time scales present a ratio equal to 10 (see figure 3.3(a)). One consequence of

this speed difference between the dynamics of the model components, is that their cor-

responding “butterfly” attractors are covered by a trajectory at different paces (see figure

3.3(b)). Given the absence of inter-component coupling, state variables corresponding

to different components exhibit negligible correlations and their power spectra present no

interaction (see figure 3.3(c) and 3.3(d)).

3.2.1.2 TA-Up performance using component localization

Given the independence of the model components, when component localization is em-

ployed our experimental setup setting effectively splits into two completely disconnected

DA settings, each one comprising a L63 model and a EnKF assimilating TA observations.

Instantaneous quantities Due to the low-pass filtering action of the Time-Averaging

operator, TA observations get gradually decorrelated from the instantaneous variables as

τ increases. As a consequence, errors in the estimate of the instantaneous state, i.e.,

the instantaneous ensemble mean, tend to grow by increasing τ . This process can be

readily seen in the red lines of figure 3.4(a), where the instantaneous forecast Root-

Mean-Square (RMS) error for the fast (slow) component converge to the free run values

at around τ = 1.0 (τ = 3.3). Analysis errors undergo an equivalent process but at a

slightly slower pace.

Time-Averaged quantities As opposed to the instantaneous state, the TA state

remains correlated to the TA observations regardless of the τ value. Consequently, TA
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analysis error curves remain below their corresponding free run curves for much longer

averaging periods than the instantaneous error curves (see figure 3.4(a)). Regarding TA

forecasting skill, despite the considerable TA analysis skill for all τ values considered, the

TA forecast errors saturate and reach the free run values at around τ = 1.0 (τ = 4.0) for

the fast (slow) component (see figure 3.4(a)). This situation, where a DA method presents

TA analysis skill for averaging periods where the TA forecasting skill is completely lost, has

been previously observed in studies applying EnKF techniques on TA quantities [Huntley

and Hakim, 2010; Bhend et al., 2012; Pendergrass et al., 2012; Steiger et al., 2014]. DA

performed under these circumstances is currently labeled as “offline”. This term is used

to indicate that, under the randomizing action of chaotic model dynamics, at assimilation

time the prior ensemble is completely decorrelated from the previous analysis state. As

a consequence, the observational information cannot accumulate over time, as opposed

to the typical application of DA for short-range prediction.

3.2.1.3 TA-Up performance without component localization

Considering the negligible correlation between variables belonging to different model

components observed in figure 3.3(c), fast observations would not be expected to im-

pact the slow component and vice versa. However, due to the finite ensemble size, in

absence of component localization the filter still detects spurious inter-component covari-

ances which allow inter-component observational influence. As a consequence, model

components pollute each other during the EnKF analysis step, as it can be observed

in figure 3.4(b), where the strong error increase of the fast component for τaver values

around 0.6 gets imprinted in the error curves for the slow component. This inter-scale

contamination phenomenon has been already observed in the first numerical test of the

Time-Averaged Update (TA-Up) strategy on another uncoupled, 2-scale chaotic dynami-

cal system [Dirren and Hakim, 2005].
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FIGURE 3.2: Analysis error reduction vs averaging period τaver for the uncoupled setting.

3.2.1.4 Comparison between update strategies

An interesting feature of figures 3.2(a) and 3.2(b) is the remarkable similarity of the error

levels between Time-Augmented Update (TAug-Up) an Time-Averaged + Instantaneous

Update (TAI-Up) approaches. Given this strong resemblance, only TAug-Up will be men-

tioned in the following comparison.

Instantaneous quantities In the presence of component localization, all update ap-

proaches exhibit similar performance, with a subtle supremacy of TAug-Up for short aver-

aging periods and of TA-Up for long ones. Once component localization is turned off, the
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FIGURE 3.3: Some dynamical diagnostics for the uncoupled setting

error reduction levels for the fast component are only slightly modified, whereas for the

slow component big changes take place: all the update strategies now become strongly

affected by the above mentioned inter-scale contamination, with a clear edge of TA-Up

over the other update techniques (see figure 3.2(a)).

Time-Averaged quantities Concerning TA assimilation skill, TA-Up is undoubtedly the

dominant update approach. TAug-Up only shows a little advantage at τaver values around

1.0 for the slow component using component localization, while for larger τaver values the

performance difference becomes striking, especially without component localization (see

figure 3.2(b)).
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FIGURE 3.4: Error levels vs averaging period τaver for the uncoupled setting using the
Time-Averaged Update (TA-Up).

3.2.2 Weak coupling setting

3.2.2.1 Dynamics

An increasing the coupling constant from 0.0 to 0.1 barely affects the attractor structure

as can be seen in figure 3.5(b). Nonetheless, the obtained weak interaction between

components does lead to non-negligible inter-component correlations (see figure 3.5(c))

and enhancement of the low frequencies in the fast component spectrum (see figure

3.5(d).
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FIGURE 3.5: Some dynamical diagnostics for the weak coupling setting

3.2.2.2 DA skill dependence on averaging length

For our weakly coupled setting, the picture regarding analysis error levels remains con-

siderably similar to the no coupling case (see figures 3.6(a) and 3.6(b)).

Short averaging regime The effect of the inter-scale contamination becomes smaller.

This is consistent with the fact that for this configuration the components of the system do

covary, although weakly, and therefore the inter-scale correlations detected by the filter

are not completely spurious.

Long averaging regime The performance differences between the studied updat-

ing approaches are now considerably smaller. Regarding instantaneous quantities, TA-Up
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FIGURE 3.6: Error reduction vs averaging period τaver for the weak coupling setting

is now outperformed by the other update strategies when component localization is em-

ployed.

3.2.3 Strong coupling setting

3.2.3.1 Dynamics

For coupling parameters in the range 0.22 . c . 0.55, the components of the PK2004

model become strongly coupled. Accordingly the inter-component variable correlations

come to be very significant and the spectra exhibit several dominant common frequencies
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FIGURE 3.7: Some dynamical diagnostics for the strong coupling setting

(see figures 3.7(c) and 3.7(d)). In these conditions, the butterfly-like structure is still

roughly preserved, however the dynamics in the fast attractor is now strongly asymmetric

with one the lobes being much more visited than the other (see figure 3.7(a)).

3.2.3.2 DA skill dependence on averaging length

Short averaging regime Figures 3.8(a) and 3.8(b) show how by increasing the av-

eraging length from τaver = 0, TA-Up presents a sudden important drop in the error re-

duction, as opposed to TAug-Up whose error reduction decreases gradually. Analyzing

in more detail the range of small τaver values (see figures 3.9(a) and 3.9(b)) it can be seen

that TA-Up remains stable for very small τaver values (0 . τaver . 0.2) and the onset of

the above mentioned instability takes place at around τaver ≈ 0.3. Notice that component
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FIGURE 3.8: Error reduction vs averaging period τaver for the strong coupling setting.

localization significantly alleviates TA-Up’s skill loss for the slow component, while for the

fast component the effect is hardly noticeable.

Long averaging regime The TA-Up strategy becomes again the dominant one,

whith error reduction levels not significantly changed by the introduction of component

localization. Au contraire, the TAug-Up and TAI-Up strategies becomes fairly unstable

in the absence of component localization, exhibiting catastrophic filter divergence for

τaver & 1.0. In presence of component localization, these two update approaches get

stabilized, showing error reduction levels slightly smaller than the ones offered by TA-Up.
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FIGURE 3.9: Zoom of figure 3.8 for the short averaging regime.

3.3 Discussion and Outlook

3.3.1 TA updating strategies

Our EnKF experiments using the PK2004 model indicate that the currently used EnKF al-

gorithms for Time-Averaged state estimation, i.e., TA [Dirren and Hakim, 2005] and Time-

Augmented (TAUG) [Huntley and Hakim, 2010] algorithms, might exhibit significantly dif-

ferent performances when TA linear observations from a strongly coupled, multi-scale

dynamical system are assimilated.

In our DA experiments employing the PK2004 model, the operation of the different

updating approaches is heavily determined by the strength of the coupling between the
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model components. For null or weak inter-component coupling, the TA-Up update ap-

proach showed the best overall performance, especially in absence of component-wise

covariance localization, being less liable to inter-scale contamination than the other up-

date approaches. On the other hand, when the components of the PK2004 model are

allowed to interact strongly the situation regarding updating approaches becomes more

complicated and the length of the averaging period starts playing a key role:

Short averaging periods: For τaver values where the fast scales of the system are still

predictable, TAug-Up shows a very stable operation, as opposed to TA-Up which

present significantly higher error error levels both for instantaneous and TA quanti-

ties.

Long averaging periods: TA-Up significantly recovers and shows again a reliable per-

formance. On the other, TAug-Up presents either lower error reduction levels when

component localization is employed, or catastrophic filter divergence otherwise.

It is worth mentioning that regarding the estimation of instantaneous quantities, the

TAug-Up strategy is fully equivalent to the standard EnKF algorithm, whose skill assimi-

lating TA observations decreases gradually by increasing the averaging length. This fact

explains the stability of TAug-Up for short averaging periods, where the fast scale is still

predictable.

Contrarily, the TA-Up strategy estimates instantaneous quantities by means of se-

quence of operations (TA decomposition, update of the TA state and TA recomposition)

that according to our numerical results not necessarily preserves the instantaneous anal-

ysis skill for small τaver values. On the other hand, the stability of TA-Up for long averaging

periods can be accounted for considering that it directly updates the TA state, which ap-

pear to be the best strategy for long averaging periods where the TA observations are

significantly decorrelated from the instantaneous state of the system. To the contrary,

TAug-Up keeps updating instantaneous states based on strongly decorrelated TA obser-

vations. Accordingly it generates instantaneous analysis states which can be far away

from the attractor of the dynamical system and then the filter becomes prone to catas-

trophic divergence.
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As mentioned in section 2.2.1, the only previous comparison of TA-Up and TAug-Up

presented highly similar performance for a quasi-geostrophic atmospheric model [Huntley

and Hakim, 2010] and since then TA-Up has been favored [Pendergrass et al., 2012;

Steiger et al., 2014] due to its much lower computational cost. Accordingly, our results

increase the knowledge on the EnKF-based estimation of TA states and call for caution

at the moment of selecting the filtering approach to assimilate TA observations into a

multi-component climate model.

Regarding more realistic paleo-DA experiments, we consider that given the the wealth

of dynamical time scales present in the climate system and the broad range of time

resolutions provided by proxy records, favorable conditions for both updating strategies

will probably appear in the future. Consider for example El Niño Southern Oscillation

(ENSO), which originates from the strong ocean-atmosphere coupling taking place in

the tropics. In this geographical area one of the most important sources of paleoclimate

information are coral records, which have a very stable yearly resolution. Given that the

average period of ENSO is around 4 years MacMynowski and Tziperman [2008], the

one year averaging period of coral records is well below ENSO’s typical time scales and

then TAug-Up might be the best choice. On the other hand, the typical decadal time

resolution of ice cores is considerably longer than the time scales of most atmospheric-

related processes and consequently the TA-Up strategy may prevail in this conditions.

3.3.2 Component-wise covariance localization

The localization of observations within their corresponding model components appeared

to be a very effective measure against the inter-scale contamination. In the weak cou-

pling regime, the inter-scale correlations observed by the EnKF are mostly spurious and

accordingly the inter-scale contamination becomes strong. In these conditions the per-

formance of filter can be greatly improved by component localization. On the other hand,

under strong coupling conditions, inter-scale correlations are no longer dominantly arti-

ficial and then the effect of component localization is less evident. Still, it appears very
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effective at preventing catastrophic filter divergence for the TAug-Up and TAI-Up updating

approaches.

Regarding real-world applications, it is worthwhile to mention that proxy systems can

be simultaneously driven by several components of the climate system. A clear example

of this are trees, whose growth is strongly influence by atmospheric and soil conditions. In

this circumstances, the assignment of the proxy record to one climate system component

is not possible and then the component-wise localization is not adequate.

3.3.3 Hybrid updating strategy

All along our numerical exploration, the performance of the proposed hybrid updating al-

gorithm (TAI-Up) was practically equivalent to the one of the TAug-Up algorithm. Conse-

quently, as hypothesized in the previous chapter, our proposed hybrid updating algorithm

successfully estimates the TA state without updating all the instantaneous forecast states

contributing to the observation, and preserves the skill of the TAI-Up strategy for short

averaging periods. The main advantage of TAI-Up over TAug-Up is its much lower com-

putational cost given that only two EnKF updates need to be performed. Likewise TA-Up,

for TAI-Up it is still necessary to aggregate the instantaneous ensemble states during the

forecast step so that the TA state can be calculated at the end of the observation interval.

Nonetheless, this aggregation is considerably cheaper than the several instantaneous

EnKF updates required by TAug-Up, particularly for long averaging intervals. Accord-

ingly, TAI-Up appears as an efficient alternative updating approach, convenient for the

aforementioned conditions where the TA-Up strategy becomes inadequate.





CHAPTER 4

Fuzzy Logic Approach to Tree-Ring Growth Forward Modeling

Tree-ring growth forward models have reached a rather mature state of development.

In particular within climate applications, there exists a sufficiently realistic yet affordable

process-based forward model for Tree-Ring-Width (TRW) chronologies called Vaganov-

Shashkin-Lite (VSL) Tolwinski-Ward et al. [2011, 2013]. This chapter is devoted to the

analysis and extension of VSL’s modelling approach by means of Fuzzy Logic (FL) the-

ory. Firstly, it is shown that VSL’s formulation can be completely reinterpreted in FL terms,

which exposes multiple representations of the Principle of Limiting Factors (PLF). Sec-

ondly, the sensitivity of VSL’s to three possible FL-based modifications is studied for a

global network of TRW chronologies. The conceptual implications of the FL reinterpreta-

tion are discussed at the end of the chapter.
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4.1 Vaganov-Shashkin-Lite (VSL) Model

The VSL model for TRW chronologies offers an intermediate complexity approach be-

tween ecophysiological and completely data-driven models [Tolwinski-Ward et al., 2011;

Tolwinski-Ward, 2012], where the climate-driven component of tree-ring growth is pa-

rametrized by way of a simple representation of the PLF [Fritts, 1976]. This biological

concept states that the pace at which a plant develops is controlled by the single basic

growth resource, typically either energy or water, that is in shortest supply. Within VSL,

the limiting factors relevant for tree-ring growth are near-surface air temperature T and

soil moisture M . Their impacts on tree development are accounted for via the “growth

response” functions gT and gM . Making use of the piece-wise linear “standard ramp”

function [Tolwinski-Ward et al., 2014]

Ψ(u) =


0 if 0 > u

u if 0 < u 6 1

1 if u > 1,

VSL’s growth responses at a particular time can be expressed as:

gT = Ψ

(
T − TL

TU − TL

)
(4.1)

and

gM = Ψ

(
M −ML

MU −ML

)
. (4.2)

Here TL and ML denote lower thresholds below which there is no growth and trees

are said to be dormant, while TU and MU designate upper thresholds above which tree

growth is optimal. Given a pair of gT and gM values, the corresponding growth rate GMIN

is determined by the smallest growth response, i.e.,

GMIN = min{gT , gM}, (4.3)
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which defines a non-smooth surface in the T − M plane, displaying 4 distinct growth

regimes: (i) dormancy, (ii) optimal growth, (iii) temperature limited and (iv) moisture limited

(see fig. 4.3(a)).

The TRW values W for each year are obtained via time integration of the growth rate

function modulated by the relative local insolation I.

Wn =

∫ tn

tn−τ
GMIN(t)I(t) dt. (4.4)

Finally, the obtained TRW series are standardized so as to allow for comparison against

actual TRW chronologies, which are given as non-dimensional index series. The overall

structure of VSL formulation can be visualized in figure 4.1.

It is important to notice that for climate forcing trajectories confined within either

temperature- or moisture-limited zones (see figure 4.3(a)), VSL’s formulation reduces

to an univariate linear approach. In this case a single input variable is imprinted in the

final TRW chronology, as opposed to the general case where tree growth is limited by T



46

and M in a fluctuating fashion resulting in a mixed chronology. This “response-switching”

mechanism [Tolwinski-Ward et al., 2014] presents a challenge to inverse problem appli-

cations of VSL. As a matter of fact, in the context of simultaneous temperature-moisture

reconstructions via Bayesian Hierarchical modeling, it has been linked to non-Gaussian,

bimodal posterior probability densities [Tolwinski-Ward et al., 2014].

4.2 Basic Fuzzy Logic Concepts

FL mimics the kind of reasoning achieved by human language, and by doing so it pro-

vides a mathematical framework where definite conclusions can be drawn from imprecise

data and vague knowledge of the underlying mechanisms. Accordingly, FL constitutes a

powerful modeling approach in areas dealing with complex systems. As opposed to the

classical Boolean logic, where a preposition can be either true or false, FL allows for par-

tial truth values between 1 (completely true) and 0 (completely false), and then it provides

a rigorous mathematical foundation for the implementation of approximate reasoning sys-

tems [Zadeh, 1975].

Since its introduction in the 1960s by Zadeh [1975], FL has greatly influenced many

applied disciplines, most notably control theory Nguyen et al. [2002]. Within the envi-

ronmental sciences, FL has also found numerous applications, including ecological and

hydrological modeling Marchini [2011]; Salski [2006]; Se [2009]. Regarding climate proxy

forward modeling, however, FL theory has not yet been explicitly employed. As we will

show below, several of the tree growth modeling concepts have direct “fuzzy” analogues

and in particular, VSL model can be completely reinterpreted in terms of FL.

Assuming U as the set of all elements or conditions considered in a particular appli-

cation, e.g., all the climate conditions a tree can be subjected to, a classical set A in U

can be defined by a membership function µA that assigns to each element of U a number

from the set {0, 1}. Here 0 (1) represents non-membership (membership) to the set A.

This definition can be rephrased in classical logic terms by interpreting the value µA(x)

as the truth value of the preposition “x is in A”, where x denotes a generic element of
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U . Fuzzy set theory generalizes the classical one by extending the range of membership

functions to the real interval [0, 1]. This modification allows the existence of elements with

partial membership: {x : 0 < µA(x) < 1}, for which the preposition “x is in A” is partially

true [Zadeh, 1965].

Fuzzy membership functions can adopt very different shapes depending on the par-

ticular application. Piecewise-linear forms – such as ramps, triangles and trapezoids –

are frequently used because of their simplicity in terms of implementation and interpre-

tation. On the other hand, when smoothness is a concern, membership functions with

continuous derivative are preferred, e.g., Gaussian and sigmoidal functions.

Given two fuzzy sets A and B, the intersection set A ∧ B (or equivalently the truth

value of the composed statement “x is in A” AND ”x is in B”) can be found by the following

expression:

µA∧B = T (µA, µA) (4.5)

where T is a function, technically referred to as Triangular Norm (t-norm) [Nguyen et al.,

2002], satisfying the following requirements:

Commutativity: T (a, b) = T (b, a),

Associativity: T (a, T (b, c)) = T (T (a, b), c),

Monotonicity: T (a, b) ≤ T (c, d) if a ≤ c and b ≤ d,

Number 1 is an identity element : T (a, 1) = a,

(4.6)

which determine the admissible representations of the fuzzy intersection or equivalently

the fuzzy AND operation.

T-norms constitute a rather ample class of functions, from which the first and most

popular example is the minimum function, also called Gödel t-norm [Zadeh, 1965]. Abun-

dant types of t-norms have been studied [Nguyen et al., 2002] and, similar to membership

functions, the selection of the particular t-norm depends heavily on the problem consid-

ered.
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4.3 VSL Model from the Fuzzy Logic Perspective

Bearing in mind the concepts introduced in section 4.2, VSL’s growth response gT (gM )

can be understood as a membership function defining the fuzzy set ST (SM ) of climate

states whose temperature (moisture) values are optimal for tree growth. Furthermore,

the minimum function used to obtain the growth rate can be regarded as a t-norm that

determines the fuzzy intersection set ST∧M in the T −M plane. Analogously, the growth

rate can be interpreted as the degree of truth of the statement “temperature AND moisture

values are optimal for tree growth”.

Therefore, we claim that VSL ’s formulation of the PLF – which is inherited from the full

Vaganov-Shashkin (VS) model [Vaganov et al., 2006] – essentially determines the fuzzy

set of temperature-moisture conditions that are optimal for tree growth. The final two

steps of VSL’s TRW calculation, insolation modulation and time integration, can also be

translated to fuzzy terms as examples of aggregation and defuzzification methods (see

figure 4.2). Furthermore, the whole mathematical formulation of VSL can be viewed as a

zero-order Sugeno-type fuzzy inference system [Sugeno, 1985] with 2m arguments , i.e.,
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monthly temperature and moisture values for m months, and one output, i.e., TRW (see

Nguyen et al. [2002] for details).

An important consequence of representing the fuzzy intersection via the minimum

t-norm is that the growth rate at an specific time is only determined by the most limiting

factor. This fact implies that the growth limitation is exclusive and that the transitions be-

tween growth-limited regimes necessarily take place in a sharp manner. Notice that this

abrupt response-switching mechanism might be problematic for the application of VSL

model as observation operator within a Data Assimilation (DA) setting, given that com-

pletely smooth growth responses would typically lead to non-smooth growth rate func-

tions. Consequently, we make use of the freedom we have to select the fuzzy intersec-

tion representation and study three alternative t-norms (see figure 4.3): (i) the algebraic

product:

GPROD = gT · gM , (4.7)

(ii) Yager t-norm of second order:

GYAG = max{0, ((1− gT )2 + (1− gM )2)1/2}, (4.8)

and (iii) Lukasiewicz t-norm:

GLUK = max{0, gT + gM − 1}. (4.9)

All of these new representations of the PLF exhibit an additional regime where T and

M concurrently limit tree-ring growth (see zones (v) in figure 4.3), which allows a gradual

transition between temperature- and moisture-limited modes and thus a progressive alter-

nation of the recorded variable. In the case of GYAG this transition is perfectly smooth while

for GPROD there are still two subtle edges in the growth rate surface (see figure 4.3(b)).

Nonetheless, the product t-norm offers high stability to input variable errors and mem-

bership function selection, given that it exhibits the smallest average sensitivity among

all t-norms [Nguyen et al., 2002]. Finally, for the Lukasiewicz t-norm, the temperature-

moisture limited growth area presents a perfectly linear dependence, unfortunately at the

expense of increasing the sharpness of the above mentioned edges.
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(a) GMIN (b) GPROD

(c) GYAG (d) GLUK

FIGURE 4.3: Growth rate surfaces for different representations of the fuzzy intersection
operation. (a) minimum, (b) product, (c) Yager and (d) Lukasiewicz t-norms. Growth
regimes: (i) dormancy, (ii) optimal, (iii) moisture limited, (iv) temperature limited and
(v) temperature-moisture limited. Crossed hatched areas correspond to additional dor-
mancy conditions introduced by the t-norm used. (Threshold values: T1 = 5 C.deg,

T2 = 25 C.deg, M1 = 0.3 v/v and M2 = 0.70 v/v).

One important feature of the growth rate surfaces obtained using Yager and Lukasie-

wicz t-norms is the appearance of new points in the T −M plane leading to null growth

rates, regardless none of their corresponding growth responses is null (see figures 4.3(c)

and 4.3(d)). This new dormancy area is due to the presence of the maximum function in

equations 4.8 and 4.9.
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4.4 VSL’s Sensitivity to the Representation of the Principle of

Limiting Factors

4.4.1 Climate and Tree-Ring-Width (TRW) data

In order to test the robustness of VSL’s performance to the use of a particular PLF repre-

sentation, we perform a validation study using the global TRW network recently compiled

by Breitenmoser et al. [2014]. This dataset comprises 2918 chronologies from 163 dif-

ferent tree species, which are freely available at the International Tree Ring Data Bank

(ITRDB, http://www.ncdc.noaa.gov/paleo/treering.html). These chronologies were gath-

ered in raw format (individual ring width series from each tree of the chronology), cor-

rected for data and metadata errors, and systematically processed with standard dendro-

climatological methods using the the program ARSTAN [Cook, 1985] (see [Breitenmoser

et al., 2014] for more details of the chronology development methodology). Finally, for our

sensitivity study we selected from the whole network the series that completely covered

the period 1901− 1970, which yielded a subset with 2415 chronologies.

As for the climate data, monthly time series of surface temperature and precipitation

were extracted from the Climatic Research Unit Time Series (CRU-TS) product version

3.21, generated by University of East Anglia [Harris et al., 2014]. This dataset provides

high-resolution gridded fields (0.5◦ × 0.5◦) of many climatic variables for the period Jan.

1901 - Dec. 2012, based on more than 4000 weather stations distributed around the

world. In order not to interfere with the gridding algorithm of the dataset, we refrain from

interpolating and utilize the times series corresponding to the nearest grid point to the

chronology site as forcing data for VSL.

4.4.2 Modeling setting

We utilize the version 2.3 of VSL model, which is freely available at the USA’s National

Oceanic and Atmospheric Administration (NOAA) Paleoclimatology software library. This

matlab software provides implementations of the forward model itself, a hydrological

http://www.ncdc.noaa.gov/paleo/treering.html
http://www.ncdc.noaa.gov/paleo/softlib/softlib.html
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model and a Bayesian tuning framework. For the present study we extend both the

forward model and its tuning scheme so that the growth rate function can be calculated

using any of the previously introduced t-norms, i.e., minimum, product, Yager and Lu-

kasiewicz t-norms. The TRW forward models obtained in this fashion will be refer to as

VSL-Min, VSL-Prod, VSL-Yager and VSL-Luka, respectively

4.4.2.1 Forward model

VSL v2.3 requires as input data the latitude of the studied site as well as monthly time

series of local temperature and soil moisture. After calculating the response and growth

rate functions, the obtained monthly growth rate time series is integrated over a moving

window. Notice that this integration time window has previously set to a length of 16

months (starting in September of the previous year) in order to account for the autocor-

relation observed in real TRW chronologies [Tolwinski-Ward et al., 2011; Breitenmoser

et al., 2014; Acevedo et al., 2013]. Accordingly, for the sake of comparability, we use the

same integration period in the present study.

4.4.2.2 Hydrological model

Given the very limited availability of soil moisture data in historical observational records,

VSL’s code provides also an implementation of the USA’s Climate Prediction Center

Leaky Bucket Model (CPC-LBM) [Huang et al., 1996]. This hydrological model simu-

lates the water balance cycle considering most of the relevant water exchange processes

(precipitation, evapo-transpiration, surface and subsurface runoff, and groundwater loss)

and provides soil moisture monthly time series out of latitude data, and monthly time

series of temperature and precipitation.

4.4.2.3 Model calibration

VSL v2.3 code allows to estimate probabilistically the model parameters, i.e., temperature

and moisture response thresholds, by means of a Markov Chain Monte Carlo (MCMC)
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strategy [Tolwinski-Ward et al., 2013]. Within this Bayesian tuning framework –given

climate and TRW data, as well as a literature-informed prior Probability Density Func-

tion (PDF) of the parameters– the posterior PDF of the parameters is inferred by way of a

set of random walkers, known as chains, which sample the parameter space and whose

distribution converges to the sought posterior PDF.

For the present sensitivity study, the modeling time period is splited randomly into

two disjunct equally-sized sequences of years to be used to calibrate and validation,

respectively. For the calibration period, VSL’s parameters are tuned using the setting

described by Tolwinski-Ward et al. [2013], which consist of three chains ran during 30000

iterations after a spin-up period of 300 iterations. Subsequently, the obtained sample

sequences are sub-sampled every 50th value so as to remove the autocorrelation of the

chains, yielding a collection of 1800 approximately independent samples. Finally, the

optimal parameter values and their uncertaities are estimated from the medians and the

interquartile ranges of the smaple collections

The performance of the model is assessed by means of the Pearson correlation be-

tween actual and simulated chronologies, denoted by the letter ρ, and the corresponding

statistical significance s = 100%(1 − PVALUE). Notice that due to the significant auto-

correlation of TRW chronologies, every PVALUE is corrected for the effective number of

degrees of freedom.

4.4.3 Results

Figures 4.4 and 4.5 illustrate the quantities involved in VSL’s modeling process for two

different chronologies. For the first TRW record, VSL presents the best performance

over the whole network, characterized by ρ values around 0.9 both for the calibration and

validation periods. Growth limitation appears to be dominated by moisture from April to

November, and by temperature during the rest of the year. Notice that the lower threshold

both for temperature and moisture were hardly altered by the tuning procedure whereas

the upper threshold did experience strong changes (see figure 4.4). On the other hand,

for the second chronology VSL’s performance is much more modest, with rather low ρ
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FIGURE 4.4: VSL-Min modeling output for a blue oak TRW chronology. (Location= Mt.
Diablo state Park, lon.= −121.9500◦, lat.= 37.8667◦, alt.= 245 m.). Actual and simulated
chronologies (a), multi-year monthly means of growth response and growth rate (b), and

parameter PDFs (c-f).

values around 0.2. tree growth is limited in this case only by temperature during the

whole year and only parameter modified by the tuning scheme was the upper moisture

threshold (see figure 4.5).

Regarding global performance, VSL is considerably skillful in most of the globe (as

previously observed by Breitenmoser et al. [2014]), presenting areas of high model-data

agreement in USA, central Europe, Scandinavia and eastern/central Siberia (see figure

4.6(a)). There are, nonetheless, problematic areas where the correlations between real

and modeled chronologies can be near to zero or even negative, as is the case of New

Zealand, Tasmania, Alaska, North West/South East band going from central Canada to

North East USA, and southern Europe.
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FIGURE 4.5: VSL-Min modelling output for a chestnut oak TRW chronology. (Location=
Blue Ridge Parkway, lon.= −79.4500◦, lat.=37.5500◦, alt.= 1000 m.). Actual and simu-
lated chronologies (a), multi-year monthly means of growth response and growth rate

(b), and parameter PDFs (c-f).

Figure 4.6(b) shows that for all the t-norm studied, ρ values were very similarly dis-

tributed. VSL-Min and VSL-Prod presented almost equivalent network histogram me-

dian values around 0.23. This constitutes a subtle improvement over VSL-Yager and

VSL-Luka, which behaved very similarly with median values around 0.21. Regarding

the statistical significance of real-modeled chronology inter-correlations, the performance

difference between t-norms is more noticeable with VSL-Prod exhibiting the highest sig-

nificance median, being followed first by VSL-Min and then by the other two models

Finally, concerning the behavior of the tuning framework at global scale, figure 4.7(a)

shows that the use of the four studied t-norms to represent the PLF does not change

greatly the network histogram of optimal parameter values. Notice that the only big differ-

ences in the network histogram medians took place with VSL model with PLF represented

by the Yager t-norm (VSL-Yager) and VSL model with PLF represented by the Lukasiewcz
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FIGURE 4.6: VSL’s performance statistics over the chronology network during the vali-
dation period.

t-norm (VSL-Luka) for the lower and upper moisture thresholds, respectively. As for the

parameter uncertainties, figure 4.7(b) reveals that the lower moisture threshold is the only

parameter significantly sensitive to the the PLF representation.

4.5 Discussion and Outlook

The validation studies described in this chapter reveal that at global scale VSL model is

remarkably insensitive, both in terms of model-data agreement and parameter optimiza-

tion, to the particular representation of the PLF by means of different t-norms. This fact

supports our hypothesis that VSL’s formulation can be embedded into the FL framework
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FIGURE 4.7: Network statistics of posterior parameter PDFs. t-norms studied: Mini-
mum (red), product (blue), Yager (green) and Lukasiewicz (purple). Solid (dashed) lines

represent histograms (median values).
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and that the traditional mathematical formulation of the PLF corresponds to a particular

representation of a fuzzy AND operation.

An important conceptual implication of this viewpoint shift is that the exclusory char-

acter of growth limitation, implied by the minimum function, becomes an unnecessary

feature of a tree growth model. From the FL perspective, the real essence of the PLF is

then that tree growth takes place only when all limiting factors are simultaneously favor-

able, which naturally defines a fuzzy AND operation. Accordingly, we claim that the abrupt

shifting of growth limitation regime is not a necessary component of the PLF but rather

a consequence of the specific formulation of VSL. Notice that this new interpretation of

tree growth limitation provides freedom to select the representation depending on the

application at hand and accommodates the possibility of several factors concurrently reg-

ulating tree development, which is currently refer to as co-limitation. This growth limitation

regime was initially recognized by Singh and Lal [1935], who called attention to the limita-

tions of the original formulation of the PLF due to Blackman [1905]. Within the ecological

research community, co-limitation has been widely acknowledged as an crucial resource

limitation phenomenon [Harpole et al., 2011], with abundant observational support both

in terrestrial [Niinemets and Kull, 2005] and aquatic [Saito et al., 2008] environments. In-

terestingly, within the vegetation modeling community the original PLF formulation is still

the predominant approach to model photosynthesis [Yin and Struik, 2009].

The translation of VSL into the FL language suggest other possible extensions for

VSL. (i) growth response functions can be generalized using the extensive knowledge

on membership functions gathered in the FL research community [Nguyen et al., 2002].

In particular, it might be possible to tailor the shape of the growth response functions so

as to optimize the performance of VSL regarding the particular application at hand, (ii)

additional limiting factors, e.g., CO2 concentration, can in principle be incorporated by

adding to the fuzzy inference system new rules designed to mathematically express the

expert knowledge about the influence of these factors on tree growth. (iii) the intrinsic

uncertainty on the VSL parameters might be taken into account for the first time making

use of the emerging theory of stochastic FL [Luhandjula and Gupta, 1996]. Furthermore,

this ability of the FL approach to efficiently simulate complex processes involving vaguely
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understood mechanisms can be used in the development of new proxies forward models,

as well as the extension of the existing ones, following the rationale of our proposed

modifications to VSL (see Reviewer 1 comments in appendix B).

Finally, regarding the application of VSL as a observation operator within a DA setting,

we will show in the next two chapters how co-limitation-permitting representations of the

PLF, particularly the product t-norm, can be more compatible with an Ensemble Kalman

Filter (EnKF) approach that the minimum t-norm. Given the essentially equivalent for-

ward modeling skill observed in our sensitivity study, these alternative t-norms appear as

promising options within a EnKF-based paleo-reanalysis scheme.





CHAPTER 5

Assimilation of Pseudo-Tree-Ring-Width Observations into a

2-Scale Nonlinear Model

This chapter investigates the applicability of the Vaganov-Shashkin-Lite (VSL) forward

model for Tree-Ring-Width (TRW) chronologies as observation operator within a proxy

Data Assimilation (DA) setting. Based on the Principle of Limiting Factors (PLF), VSL

combines temperature and moisture time series in a nonlinear fashion to obtain simu-

lated TRW chronologies. When used as observation operator, this forward modeling ap-

proach implies two nonlinear characteristics: (i) “switching recording” of 2 variables and

(ii) bounded response windows leading to “thresholded response”. The impact of these

compounding, challenging features on the Ensemble Kalman Filter (EnKF) estimation of

the Time-Averaged (TA) state is studied using a 2-scale chaotic model meant to be serve

as a cartoon of the atmosphere-land system.

61
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FIGURE 5.1: (a) Model grid schematics and (b) State Variables Snapshot for the two-
scale Lorenz [1996] model model.

5.1 Experimental Setting

5.1.1 Dynamical system

Soil processes are known to have a significantly longer memory than atmospheric ones

[Wanru and Dickinson, 2004] and, consequently their corresponding variables present

significantly different time scales. In order to mimic this multi-scale environmental driving

on tree growth, we utilize the chaotic two-component dynamical system introduced by

Lorenz [1996], given by the following nonlinear equations:

Ṫi = Ti−1(Ti+1 − Ti−2)− Ti −
hc

b

n∑
j=1

Mj,i + F,

Ṁj,i = cbMj+1,i(Mj−1,i −Mj+2,i)− cMj,i +
hc

b
Ti, (5.1)

where i = 1 . . .m, j = 1 . . . n, F is a constant forcing term, c and b are factors controlling

the time scale and amplitude of the component M , and h is the coupling constant. Ad-

ditionally, T and M variables are assumed to be periodic, i.e., T1 = Tn+1; M1 = Mn+1

(see figure 5.2(a)). Model state trajectories are obtained numerically via the standard

Runge-Kutta method of fourth order with time step ∆t = 0.01, where the model variables

are represented by 64-bit FORTRAN real variables. The results shown in this paper cor-

respond to the parameter setting m = 40, n = 1, F = 8.0, c = 0.5, b = 1.0 and h = 1.0,

which is representative of our whole numerical exploration. For these parameter values,
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FIGURE 5.2: Schematic of the runs performed with the L96 model

the faster component T oscillates with roughly 2.5 times the amplitude of the slow compo-

nent M . Moreover, the predictability horizon for instantaneous quantities is roughly four

times longer in the slow component than in the fast one (see figure 5.5(a)). This config-

uration is meant to resemble the typical ratios of predictability time scale and amplitude

between near-surface air temperature and soil moisture variables. Notice that the use of

the letters T and M to denote fast and slow variables is made only for the sake of notation

simplicity and there is no actual relation to the details of atmosphere-land interaction.

5.1.2 Experiment characteristics and filter configuration

In this chapter we present the results of a set of standard “perfect model” Observation

System Simulation Experiments (OSSEs)1 designed to study the influence of the repre-

sentation of the PLF on the filter performance when VSL-based pseudo-TRW observa-

tions are assimilated. Four different sets of pseudo-observations and their corresponding

observationally constrained runs are generated using the four Triangular Norms (t-norms)

introduced in section 4.3. Furthermore, in order to have a reference that allows us to as-

sess the loss of optimality due to the nonlinearities of VSL, we perform an additional

ensemble run, XDA
TA-Linear, constrained by TA linear observations. The details of the creation

of these pseudo-observations are provided in section 5.1.3. An schematic representation

of the OSSEs performed can be found in figure 5.2.

Concerning the ensemble filter, we utilize an EnKF comprising 20 members, a sto-

chastic analysis step with multiplicative inflation between 1% and 5%, and B-localization,
1see section 2.1.3 for a description of OSSEs
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given the spatially extended nature of the L96 model. This was obtained using the

Gaspari-Cohn function [Gaspari and Cohn, 1999] with localization radius r = 2, assuming

a grid spacing ∆x = 1.

5.1.3 Pseudo-observation generation

We create VSL-based pseudo-TRW observations from the nature run, by using the time

series of fast and slow variables of the L96 model, T and M , as input data for the VSL

model. We follow the steps outlined in section 4.1 employing the four t-norms introduced

in section 4.3 to compute the growth rate2 and add a final contamination step with un-

biased Gaussian noise. We set the period between observations equal to the length

of the integration period τ . Since the variance of the clean pseudo-TRW observations

changes with τ , we set the variance of the noise so as to keep a constant Signal-To-

Noise ratio (SNR). Our focus in this paper are the additional challenging features of VSL

as an observation operator, therefore for our experiments we use optimistic observability

conditions, i.e., observations at every grid point and SNR = 10, unless otherwise stated.

Given that our interest lies in the non-linear combination of 2 variables performed by

VSL, we present results corresponding to mixed pseudo-TRW observations, obtained by

setting the growth response windows to the values:

[TL, TU ] = [T −RAσ(T ), T +RBσ(T )],

[ML,MU ] = [M −RAσ(M), M +RBσ(M)].
(5.2)

Here ∗ and σ(∗) denote the mean and standard deviation values of the quantity ∗, esti-

mated during the nature run; while RA and RB are constants that control the position of

upper and lower response thresholds, respectively. We will focus on two particular con-

figurations for the response functions: (i) wide windows (RA = RB = 3.0) and (ii) narrow

windows (RA = RB = 1.5). In the first case, most of the climatological values of T and M

are contained within the response windows and hence the response functions basically
2Given that the forcing term of the dynamical system used is constant, we replace the insolation term I

by the unity
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FIGURE 5.3: Example time series of the quantities involved in the generation of pseudo-
TRW observations. (For simplicity the quantities corresponding to the slow component

are not shown in the upper panels).
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act as linear rescaling operators (see figure 5.4(a)). Contrarily, in the second case, T and

M time series are constantly cropped by the response functions and thus the recording

thresholding becomes significant (see figure 5.4(b)).

As previously mentioned, we perform an additional ensemble run constrained by TA

linear observations, obtained with the following instantaneous observation operator:

HL = gT + gM , R
A = RB = 3.0. (5.3)

This setting corresponds to the wide response window configuration where the response

thresholding is negligible. In these conditions, as mentioned in the previous paragraph,

the response functions become lineal.

5.1.4 Diagnostic statistics

Similarly to the experiments presented in chapter 3, for a particular run XDA
VSL constrained

with VSL-based pseudo-TRW observations, the filter operation is evaluated by way of

the root mean square error, RMSE(XDA
VSL), and the error decrease regarding the free run,

εFREE
REDUCTION(X

DA
VSL). Additionally, in order to quantify the DA skill loss due to the nonlinearity

of VSL we calculate the error increase regarding XDA
TA-Linear, εNONLINOBS

INCREASE (XDA
VSL), given by the

following expression:

εNONLINOBS
INCREASE (X

DA
VSL) = 100% ·

(
RMSE(XDA

VSL)

RMSE(XDA
TA-Linear)

− 1

)
. (5.4)

We will refer to εNONLINOBS
INCREASE (XDA

VSL) as the error increase due to observation nonlinearities.

The above mentioned diagnostic quantities are calculated for each model variable

during 5 × 104 analysis cycles, and afterwards averaging within each component. The

first 5×103 analysis cycles of the runs are regarded as spin-up period, and therefore they

are not considered in the statistics.
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5.2 Results

5.2.1 Assimilation of Time-Averaged linear observations

5.2.1.1 Instantaneous quantities

Due to the low-pass filtering action of the Time-Averaging operator, TA observations get

gradually decorrelated from the instantaneous variables as τ increases. As a conse-

quence, errors in the estimate of the instantaneous state, i.e., the instantaneous ensem-

ble mean, tend to grow by increasing τ . This process can be readily seen in the red lines

of figure 5.5(a), where the instantaneous forecast Root-Mean-Square (RMS) error for the

fast (slow) component converge to the free run values at around τ = 0.8 (τ = 2.8). Anal-

ysis errors undergo an equivalent process but at a slightly slower pace. Notice that for

the fast component the analysis error curve presents a clear overshoot around τ = 1.0,

where the analysis skill is negative and then the DA run performs worse than the free

ensemble run.

5.2.1.2 Time-Averaged quantities

As opposed to the instantaneous state, the TA state remains correlated to the TA obser-

vations regardless of the τ value. Consequently, TA analysis error curves remain below

their corresponding free run curves for much longer averaging periods than the instan-

taneous error curves (see figure 5.5(a)). Notice that the TA analysis skill is moderately

sensitive to to the noise level and can be considerably diminished for low SNR values

(see figure 5.5(b)).

Regarding TA forecasting skill, despite the considerable TA analysis skill for all τ val-

ues considered, the TA forecast errors saturate and reach the free run values at around

τ = 1.0 (τ = 4.0) for the fast (slow) component (see figure 5.5(a)). This situation, where a

DA method presents TA analysis skill for averaging periods where the TA forecasting skill

is completely lost, has been previously observed in studies applying EnKF techniques on
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FIGURE 5.4: Error statistics for DA experiments assimilating TA linear observations. (a)
RMS error vs averaging period τ for SNR = 10. Free Run curves correspond to an
ensemble run without DA. (b) Time-Averaged Analysis Error Reduction (regarding a free

run) vs τ and Signal-To-Noise ratio.

TA quantities Huntley and Hakim [2010]; Bhend et al. [2012]; Pendergrass et al. [2012];

Steiger et al. [2014]. DA performed under these circumstances is currently labeled as

“off-line”. This term is used to indicate that, under the randomizing action of chaotic

model dynamics, at assimilation time the prior ensemble is completely decorrelated from

the previous analysis state. As a consequence, the observational information cannot ac-

cumulate over time, as opposed to the typical application of DA for short-range prediction.
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FIGURE 5.5: Averaging period length dependency of the TA analysis error increase due
to observation nonlinearities.

5.2.2 Assimilation of pseudo-TRW observations

As expected, assimilation experiments involving pseudo-TRW observations presented

higher error levels than the ones already analyzed for linear observations. The record-

ing efficiency of the different growth rate functions considered strongly depends on the
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characteristics of the response windows.

Wide response windows

For this configuration of the response thresholds, as discussed in section 5.1.3, gT and

gM reduce to linear rescaling operators and therefore the only nonlinearities present in

the pseudo-TRW observations are those introduced by the particular t-norm used to rep-

resent the fuzzy intersection. Figure 5.4(a) shows how, in absence of recording thresh-

olding coming from the response functions, GPROD generates a completely smooth growth

rate curve, as opposed to GMIN whose corresponding line exhibits a cusp at every in-

tersection of the growth response functions. GYAG also leads to very smooth g curves,

however, in this case there is already a subtle lower thresholding arising from the addi-

tional dormancy area generated by this t-norm, as discussed in section 4.3. Finally, for

GLUK this lower response thresholding effect is remarkably stronger.

Concerning the filter performance detriment caused by the nonlinerities of pseudo-

TRW observations, figure 5.6(a) reveals that the t-norms yielding the smoothest growth

rate curves (GYAG and GPROD) are the ones displaying the smallest optimality losses, as

measured by the error increases with regard to the ensemble run assimilating linear ob-

servations. GMIN showed considerably larger error increase values, particularly for short

time averaging periods, while GLUK clearly presented the poorest performance, with an

error increase value for the slow component of around 40 % in the offline zone.

Narrow response windows

For this configuration of the response thresholds, the recording thresholding becomes

evident in all growth rate curves (see figure 5.4(b)) and accordingly the optimality losses

become more pronounced (see figure 5.6(b)). Interestingly, GMIN and GLUK curves are

barely affected by the addition of recording thresholding. Accordingly, the performance

level of all growth rate functions considered becomes comparable, with the only exception

being GLUK whose operation for the slow component remains especially poor.
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Asymmetric impact of lower and upper thresholding

The impact of the response threshold positions on the analysis skill varies strongly be-

tween different growth rate function, as shown in figure 5.6. A common feature is the

existence of high error areas for strong lower thresholding conditions, corresponding to

small values of RA. On the other hand, strong upper thresholding, corresponding to small

values of RB, has a much milder impact on the filter performance with the only exception

of GMIN which behaves in very special way for the fast component, presenting its minimum

error levels for TL values around 1.4. This markedly asymmetric effect of lower and upper

response thresholds on the assimilation skill, can be explained by the fact that the upper

parts of gT and gM time series are considerably suppressed by the action of the fuzzy

intersection operators and become scarcely imprinted in the growth rate time series.

An interesting aspect of the RMS error surfaces for GYAG and GLUK is the presence of a

zone of large errors in the left upper corners of the plots. This behavior can be attributed

to the additional dormancy area characteristic of these two t-norms, which becomes par-

ticularly sizable for large values of RB (see section 4.3) .

In summary, among the four growth rate functions studied, the TA ensemble Kalman

filter presented the most consistent performance for GPROD. Representing the fuzzy inter-

section by means of the product t-norm increases the smoothness of the growth rate time

series with regard to the minimum t-norm, without exhibiting the added lower response

thresholding present for Yager and Lukasiewicz t-norms. Additionally, its low sensitivity to

input data uncertainty (see section 4.3) appears to make the t-norm particularly robust to

the response thresholding phenomenon.

5.3 Discussion

Our numerical experiments with the L96 model suggest that VSL’s nonlinear, time inte-

gral formulation of TRW chronologies is compatible in general terms with the TA EnKF

technique.
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FIGURE 5.6: Dependency of the TA analysis RMSE on the growth response thresholds
(see equation 5.2) for the different growth rate functions considered (τ = 2.0).

5.3.1 Switching recording

We found that the switching recording of two variables, implied by the PLF, does not nec-

essarily deteriorate the filter performance in a dramatic way. However, when the transition

between growth-limited modes occurs abruptly, as in the case of the original growth rate

function, the lack of smoothness of the growth rate time series may significantly increase

the optimality loss in the estimation of TA model state. Adopting the interpretation of

growth response as membership functions and the minimum function as a t-norm rep-

resenting the fuzzy intersection operation, it is pertinent to consider other examples of

t-norms leading to alternative growth rate functions. Following this train of thought, we

found that the smoothness of the particular t-norm employed plays an important role for

the operation of the TA EnKF approach. This outcome is consistent with the smooth

character of the trajectories of the deterministic model considered. Smooth t-norms al-

low a progressive switching of the recorded variables that decreases the roughness of

the growth rate time series and, ultimately, benefits the filter operation. Among the alter-

native growth rate functions studied, the one based on the product t-norm provided the
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best overall performance. We attribute this primacy of the product t-norm to its smooth-

ness and its improved stability to input variable errors and membership function selection,

which makes the product t-norm particularly appealing for the observation operator appli-

cation investigated here.

5.3.2 Response thresholding

We found that the response thresholding phenomenon, arising from the bounded growth

response windows, influences the assimilation skill in a strongly asymmetric fashion, be-

ing the lower thresholding significantly more detrimental than the upper one. This finding

is rather fortunate in the view of more realistic DA experiments involving actual TRW

chronologies, given the strong insensitivity of VSL to the lower moisture response thresh-

old ML, observed in Tolwinski-Ward et al. [2013]. With that, there exist a relative freedom

to set the value of ML, which could in principle be used to reduce the adverse effects

of the lower moisture response thresholding, without compromising the TRW simulation

competence of VSL.





CHAPTER 6

Assimilation of Pseudo-Tree-Ring-Width Observations into an

Atmospheric General Circulation Model

In this chapter the problem of assimilating Tree-Ring-Width (TRW) chronologies is re-

visited, this time within the more realistic setting of an Atmospheric General Circulation

Model (A-GCM). Following the rationale used in the experiments of chapter 5, pseudo-

TRW observations are generated using Vaganov-Shashkin-Lite (VSL) as observation op-

erator. Afterwards, the Time-Averaged (TA) state of the atmosphere is estimated via

Ensemble Kalman Filter (EnKF) and the Time-Averaged Update (TA-Up) approach. The

impact of the representation of the Principle of Limiting Factors (PLF) on the filter perfor-

mance is studied using as reference the assimilation of TA linear observations.

75
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6.1 Experimental setting

6.1.1 SPEEDY model

SPEEDY’s logo

The Simplified Parametrizations, primitivE-Equation Dynamics

(SPEEDY) model [Molteni, 2003] is an intermediate complex-

ity Atmospheric General Circulation Model (A-GCM) compris-

ing a spectral dynamical core and a set of simplified physical

parametrizations, based on the same principles as state-of-the-

art A-GCM but tailored to work with just a few vertical levels.

SPEEDY’s dynamical core solves the hydrostatic primitive equations by means of

the spectral transform developed by Bourke [1974], which uses absolute temperature,

logarithm of the surface pressure, specific humidity, divergence and vorticity as basic

prognostic variables. The time stepping is performed via a leapfrog scheme with an stan-

dard Robert–Asselin filter [Robert, 1966]. The sub-grid scale processes parametrized in

SPEEDY are convection, large-scale condensation, clouds, short- and long-wave radia-

tion, surface fluxes, and vertical diffusion.

In this dissertation we employ the version 32 of SPEEDY, featuring seven levels in

the vertical (L7) and standard Gaussian grid of 96 by 48 points in the horizontal, which

correspond to a triangular spectral truncation at total wave number 30 (T30). The top

and bottom layers are meant to represent the stratosphere and the planetary boundary

layer, respectively. Despite of its low resolution and the relative low complexity of its

parametrizations, SPEEDY still captures many observed global climate features in a re-

alistic way, while its computational cost is at least one order of magnitude lower than the

one of sophisticated state-of-the-art A-GCMs at the same horizontal resolution [Molteni,

2003]. This latter virtue, makes SPEEDY specially suitable for studies involving long

ensemble runs, like the ones presented in this chapter.
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6.1.2 Filter implementation

Miyoshi [2005] adapted SPEEDY’s code for Data Assimilation (DA) purposes and embed-

ded it into the ensemble DA framework called SPEEDY-LETKF, which provides a parallel

FORTRAN 90 implementation of the Local Ensemble Transform Kalman Filter (LETKF)

[Hunt et al., 2007]. This particular flavor of EnKF is specially promising for high resolution

model given that the calculation of the analysis for a particular grid point requires only the

information of the neighboring grid points. With that, LETKF offers outstanding scalability

properties.

SPEEDY-LETKF is an open-source software which have already been used for several

DA studies: [Li et al., 2009; Miyoshi, 2010; Lien et al., 2013; Ruiz et al., 2013; Amezcua

et al., 2014]. For the present study, it was extended for the assimilation of TA linear

observations and pseudo-TRW observations. This task involved (i) the modification of

the model time cycling, (ii) the addition of the TA-Up updating approach and (iii) the

development of the VSL-like observation operator.

For the experiments presented in this section, we employed ensembles of 24 mem-

bers and constant multiplicative inflation of 1% after the ensemble update. R-localization

is achieved using the following formula:

Rloc = R ∗ exp
(
(rh/2λh)2 + (rv/2λv)

2
)

(6.1)

where rh and rv stand for the horizontal and vertical distances, respectively. Their cor-

responding scaling parameters where set to the values λh = 500 Km and λv = 0.4 ln p.

Additionally, in order to avoid catastrophic filter divergence, observations differing too

much from their corresponding predicted values are not taken into account. This sort

of observation quality control is achieved within SPEEDY-LETKF via the following strat-

egy: observations whose corresponding innovation vector norm (absolute mismatch re-

garding the forecast observation) is bigger that 10 times its error standard deviation, are

discarded.
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FIGURE 6.1: Schematic of the runs performed with SPEEDY model

6.1.3 Runs’ characteristics

In this chapter, our modified version of SPEEDY-LETKF is utilized to carry out a set of

standard “perfect model” Observation System Simulation Experiments (OSSEs)1 com-

pletely analogous to the one performed with the two-scale Lorenz [1996] model (L96)

in chapter 5. Nonetheless, in this chapter for the sake of simplicity and computational

affordability, only two representations of the PLF are considered: the minimum and the

product Triangular Norms (t-norms). This selection is based on the results of our experi-

ments with the L96 model. An schematic representation of the OSSE set performed can

be found in figure 6.1.

SPEEDY model is forced with the boundary conditions included in the version 32

of the code, which comprises the EOF-reconstructed Sea Surface Temperature (SST)

dataset produced by Smith et al. [1996], as well as climatological maps derived from

input data of the ECMWF’s reanalysis [Gibson et al., 1997]. The latter consist of soil

wetness, land temperature, snow depth, ice cover, vegetation cover and albedo monthly

maps. Initially, a one-year long spin-up run is performed, starting from January 1st, 1950.

The final state of this model trajectory is subsequently used as initial condition for a 30

years long nature run. Ensemble runs with and without DA are identically initialized from

a set of states gathered daily from the last month of the spin-up run. Notice that the

nature run and the different ensemble runs are generated driving SPEEDY with the same

time varying forcing fields.
1see section 2.1.3 for a description of OSSEs



79

FIGURE 6.2: Station set resembling real TRW network from Breitenmoser et al. [2014]

6.1.4 Observation generation

Similarly to the OSSEs of the previous chapter, pseudo-TRW observations are produced

following VSL’s formulation (see section 4.1), plus a final white noise addition step, where

random draws from a Gaussian distribution are added to the clean TA observations, so

as to obtain a Signal-To-Noise ratio (SNR) equal to 10.0. Surface temperature data was

extracted from the lowest level of the state vector, while soil moisture was taken from

the surface boundary conditions. Notice that temperature is a prognostic variable of the

model, whereas soil moisture is a prescribed variable with yearly periodicity. It is worth-

while to mention that although soil moisture is not a prognostic variable of SPEEDY, it

does affect prognostic variables, such us humidity, through the parametrizations.

Regarding the geographical distribution of observations, we place a station at every

grid box where at least one actual TRW chronology from the database of Breitenmoser

et al. [2014] is present. This strategy yields an observational network comprising 257

stations (see figure 6.2). Concerning the configuration of the observation operator, for

our OSSEs involving SPEEDY we focus on the effect of the first VSL’s nonlinearity, i.e.,

the shifting of recorded variable. Consequently, we configure VSL so that no thresholding

takes place. This we achieve by setting the upper and lower response thresholds to the
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maximum and minimum values during the nature run, respectively, so that the response

functions reduce to linear rescaling operators.

6.1.5 Diagnostic statistics

Given the annual resolution of TRW chronologies, we study the filter performance for

a fixed averaging period length of one year. Similarly to the OSSEs conducted with

the L96 model, we monitor the behavior of our ensemble runs by way of the ensemble

mean, ensemble spread, Root Mean Square Error (RMSE), error decrease regarding the

free run, εFREE
REDUCTION, and error increase regarding the ensemble run constrained with TA

linear observations, εNONLINOBS
INCREASE . Nonetheless, in this chapter we redefine the latter two

diagnostics so as to consider their absolute values:

εFREE
REDUCTION(X

DA
) = RMSE(XFREE)− RMSE(X

DA
), (6.2)

εNONLINOBS
INCREASE (X

DA
VSL) = RMSE(X

DA
VSL)− RMSE(X

DA
TA-Linear). (6.3)

This reformulation of εFREE
REDUCTION and εNONLINOBS

INCREASE is motivated by fact that –opposed to the

models previously used in this manuscript, i.e., PK2004 and L96 models– SPEEDY

presents spatially heterogeneous internal variability. Due to this feature, for a particu-

lar time averaging length, there will typically be regions with very low internal variability

for which RMSE(XFREE), RMSE(XDA
TA-Linear) and RMSE(XDA

VSL) concurrently present very low

values. In these conditions, the letter three quantities are strongly dominated by statis-

tical errors and consequently the relative error increase/decrease become overly noisy

over low internal variability areas.

Diagnostic statistics are calculated for three SPEEDY variables: temperature, humid-

ity and Zonal Wind (u-wind). In order to reduce the dimensionality of these 4-dimensional

fields, we study their zonal means as well as a selected sigma level for each variable:

0.925 (≈ 925 hPa) for temperature, 0.850 (≈ 850 hPa) for humidity and 0.300 (≈ 300 hPa)

for u-wind.
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6.2 Results

6.2.1 Free ensemble run

An A-GCM is an example of non-autonomous systems and accordingly the evolution of

its state is determined by both the atmospheric dynamics and the external forcings. The

influences of these two distinct factors can be disentangle to a good extend by considering

the atmospheric variability as a linear superposition of an internal component, caused by

the intrinsic dynamics, and an external one, resulting from the variations of the boundary

conditions [Deza et al., 2014]. Under this assumption, internal and external variability can

be separated by way of a free ensemble run, using the ensemble mean as an estimate

of the forced component. The magnitude of the internal variability can then be estimated

from the ensemble spread. Notice that using an ensemble DA method is only profitable in

the presence of internal variability, given that the forced variability can be well described

by an unconstrained ensemble run.

Ensemble mean Figure 6.3 shows how the forced component of SPEEDY’s variability

at yearly time scales clearly exhibits important large scale patterns. Surface temperature

shows a roughly latitudinal global distribution, disrupted by the irregular land distribution

and zones of particularly high altitude, e.g. the Himalaya, or high albedo, e.g. Greenland

and Antarctica. Humidity appears strongly localized near the surface around the equator,

in the so-called Inter-Tropical Convergence Zone (ITCZ). Finally, u-wind is maximal near

the tropopause at latitudes around ±40◦. These two bands correspond to the subtropical

jet streams [Holton, 1992].

Ensemble spread The time averaging operator acts as a low pass filter that reduces

the amplitude of fluctuations with time scales shorter than the averaging period. Sub-

sequently, geographical areas dominated by fast processes, compared to τaver, tend to

present constant average values, or equivalently no internal time averaged variability. In
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FIGURE 6.3: Ensemble mean for the yearly quantities of the free ensemble run.

the case of TRW chronologies, the characteristic one-year averaging period is consider-

ably long for atmospheric phenomena, and as consequence several areas present very

low yearly internal variability for particular variables. A clear example of this is tempera-

ture around the equator (see figure 6.4). In this zone temperature variability is dominated
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FIGURE 6.4: Ensemble spread for the yearly quantities of the free ensemble run.

by the daily cycle and accordingly it gets strongly attenuated by the a yearly averaging.

On the other hand, planetary scale patterns are not completely stationary but present

fluctuations over long time scales. These slow processes introduce internal variability

in the yearly means, as can be seen in figure 6.4. Maximum temperature spread takes
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FIGURE 6.5: Forecast RMSE for the yearly quantities of the free ensemble run.

place near the surface at high latitudes around ±70◦. Humidity and u-wind spreads are

maximal in the edges of the ITCZ and the subtropical jet stream, respectively. These

yearly internal variability maxima can be related to leading variability modes of the global

circulation, such as the “annular modes” [Thompson and Wallace, 2000], migrations of
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the ITCZ [Schneider et al., 2014], as well as jet stream displacements [Woollings et al.,

2011].

An important consequence of the spatially heterogeneous yearly internal variability of

SPEEDY, is that the nature run variables at geographical areas with low internal variability

can be well predicted by the ensemble mean of the free ensemble run, as it can be

readily seen in figure 6.5 for the tropical surface temperature. On the other hand, RMSE

extremes take place in areas of maximal internal variability (compare figures 6.5 and 6.4).

Generally speaking, the error of the free ensemble run, used as a predictor of the nature

run, is essentially the projection of the nature run trajectory on the internal variability

component.

6.2.2 Observationally constrained ensemble runs

6.2.2.1 Assimilating TA linear observations

The assimilation of TA linear observations leads to low temperature RMSE levels in all

geographical areas adjacent to the observation network (see figure 6.6). The situation for

moisture is very similar, however in this case there exist few areas with considerable error

despite the presence of a nearby observational station, e.g., south-west China and Texas.

On the other hand, u-wind and v-wind (not shown) analysis fields present no noticeable

bettering in any part of the globe.

For our DA runs a low RMSE value for the yearly mean of a particular variable might

be due to observational constraint or/and to lack of internal variability a that time scale. In

these conditions, the error reduction with reference to the free run, εFREE
REDUCTION, appears as

a very convenient quantity to assess the real benefit of performing DA. Figure 6.7 shows

the existence of considerable error reduction for temperature and moisture in some geo-

graphical areas, whereas for u-wind εFREE
REDUCTION exhibits negligible values as it is expected

from the analysis of figure 6.6. This absence of observational constraint on the wind vari-

ables was common to all our simulations and accordingly wind-related quantities will not

be analyzed hereafter.
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FIGURE 6.6: Analysis RMSE for the yearly quantities of the ensemble run constrained
with TA linear observations.

An important aspect of our results concerning the DA skill when yearly averaged linear

observations are assimilated, is that the error reduction regarding the free ensemble run

appears modulated by the magnitude of the yearly internal variability of the particular
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FIGURE 6.7: Analysis error reduction regarding the free ensemble run,εFREE

REDUCTION, for the
yearly of the ensemble run constrained with TA linear observations.

variable at a specific site(compare figures 6.4 and 6.7). As a consequence, stations

located in areas of strong yearly internal variability are more efficient than the others at

reducing the error of the TA state estimate. An example of this are the stations located
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in Alaska which constrain temperature considerably more strongly than the ones laying

on south-east USA, south America or south Africa. This finding can then be utilized as

guidance for the design of optimal TRW chronology networks, in particular, and proxy

networks in general (see the discussion at the end of this chapter).

An additional relevant feature of figure 6.7 is that both for temperature and humidity

the error reduction is strongly localized around data-rich areas. This behavior can be

explained by the negligible error reduction obtained for the all the forecast variables (not

shown). This complete absence of observational constraint on the forecast implies that

our DA experiments are performed in an offline regime. As discussed in section 5.2.1,

under this conditions the observational information is neither accumulated in time nor

propagated by the model dynamics flow. Accordingly, the TA analysis skill is localized

around the observational stations.

6.2.3 Assimilating pseudo-TRW observations

6.2.3.1 Original PLF representation

The use of VSL-Min as observation operator appears compatible with the EnKF-based

DA technique utilized, as it is evidenced by the low RMSE levels observed in figure 6.8

around the observational network. Nonetheless, due to the strong nonlinear features of

VSL-Min, the performance of filter is expected to be degraded with respect to the ensem-

ble runs constrained with TA linear observations, as previously observed in the OSSEs

performed with the L96 model. This behavior can be readily seen in figure 6.9, which

show considerable error increases due to observation nonlinearities. Regarding temper-

ature, εNONLINOBS
INCREASE presents particularly high values over the Labrador peninsula, central

Europe and Siberia. As for humidity, there are three spots of high error increase on the

northwest USA, the band extending from the gulf of Mexico to the great lakes, and the

stripe connecting the Baltic with the black sea.

An interesting feature of figure 6.9 is the presence of unobserved zones with negative

εNONLINOBS
INCREASE values, e.g., Antarctica for temperature and the Arabian peninsula for humidity,
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FIGURE 6.8: Analysis RMSE for the yearly quantities of the ensemble run constrained
with VSL-Min pseudo-TRW observations.

which implies that the estimation of the TA state is not optimal over these regions. This

phenomenon might be attributed to significant non-Gaussianity for these variables in this

geographical areas.

6.2.3.2 Product PLF representation

The use of VSL-Prod, instead of VSL-Min, as TRW observation operator appears ben-

eficial to the filter performance as it can be seen in figure 6.9, where the error increase

becomes in general lower and more homogeneous. Notice that for humidity there remains

a spot of considerably positive εNONLINOBS
INCREASE values in southeastern USA.
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FIGURE 6.9: Analysis error increase due to observation nonlinearities,εNONLINOBS

INCREASE , for the
yearly quantities of the ensemble run constrained with VSL-Min pseudo-TRW observa-

tions.

An interesting behavior regarding humidity is the appearance of negative εNONLINOBS
INCREASE

values over the relatively well observed area of central Siberia. This phenomenon makes

again manifest the existence of non-negligible non-gausian features for certain variables

at particular geographical regions, which implies lack of optimality for the TA state esti-

mation even when TA linear observations are assimilated.
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FIGURE 6.10: Analysis RMSE for the yearly quantities of the ensemble run constrained
with VSL-Prod pseudo-TRW observations.

6.3 Discussion and Outlook

6.3.1 Error reduction efficacy of TRW chronologies

For the OSSEs studied in this chapter, it was found that the ability of a particular pseudo-

TRW chronology to reduce the error of the EnKF-based estimate of the TA state appears

modulated by the strength of the yearly internal variability of the model at the chronology

site. This finding can in principle be employed to help the dendrochronology community

to increase the effectivity of their sampling efforts by focusing on the sites with more po-

tential to decrease reconstruction uncertainty. Furthermore, this approach can be directly

applied to any proxy type with sufficiently stable time resolution.
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FIGURE 6.11: Analysis error increase due to observation nonlinearities, εNONLINOBS

INCREASE , for
the yearly quantities of the ensemble run constrained with VSL-Prod pseudo-TRW ob-

servations.

An evident caveat of the above mentioned rationale is that every model-based esti-

mate of the climate internal variability strength for a particular time scale will necessarily

exhibit the biases of the particular climate model used. We consider that this modeling

subjectivity/imperfection issue can be ameliorated by means of multi-model and multi-

physics approaches, which in principle should increase the robustness of the results and

provide uncertainty estimates. In any case, we believe that provided the results are ana-

lyzed cautiously taking into account the weaknesses of current climate models, the huge

amount of climate dynamics knowledge condensed into a earth system model can cer-

tainly be used profitably to reduce the cost of a undiscriminated proxy sampling strategy.
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6.3.2 Filter operation sensitivity to the PLF representation

The results of the DA experiments conducted with SPEEDY model support in general

the ones obtained for the L96 model regarding the influence of the PLF representation

on the filter performance. The efficacy of the EnKF-based TA state estimation strategy

appeared to be significantly sensitive to the selection of the t-norm used to calculate the

growth rate, with the product t-norm clearly outperforming the minimum t-norm used in

the original formulation of VSL forward model.

Tolwinski-Ward et al. [2014] described trees as fundamentally lossy2 recorders of cli-

mate, due to the integrated nature of the information in them contained and the standard-

ization process used to minimize the non-climatic effects on growth. In the same vein, we

argue that the abrupt shifting of recorded variable –implied by the minimum function used

in VSL’s original formulation– might constitute an additional source of lossyness (at least

within a EnKF-based DA setting used), which can be substantially reduced by resorting

to alternative Fuzzy Logic (FL)-based representations of the PLF.

6.3.3 Off-line Data Assimilation

Within our simplified perfect model OSSEs, the observed situation of simultaneously hav-

ing significant DA skill for analysis quantities and none for forecast quantities, currently

referred to as off-line DA regime, can arise either from the dynamical model or from the

DA scheme.

Regarding the dynamical model, the most obvious reason to enter into the off-line

regime is that the period between consecutive observations exceeds the predictability

horizon of the model. In this conditions, as already discussed in section 5.2.1, the ensem-

ble spread reaches climatological levels before new observations are assimilated and the

accumulation of observational information is essentially lost. For SPEEDY model, due to

its purely atmospheric nature, it is not surprising tho enter the off-line regime for a 1-year
2This adjective is currently used in the information technology area to designate data encoding methods

that lead to information loss from the original version for the sake of reducing the amount of data needed to
store the content.
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inter-observation period. This might be also the case for current operational (coupled) cli-

mate prediction systems, given their lack of useful lead times longer than one year. In this

state of affairs it looks unlike to achieve effective observational constraint on the forecast

using proxy records with yearly time resolution. However, there exist already evidence

for the existence of potential sources of climate internal variability with time scales longer

than 1 year [Smith et al., 2012]. Accordingly, it is expected to obtain actual inter-annual

predictability skills in the foreseeable future.

Regarding the DA scheme, a possible culprit for the onset of the off-line regime is

the Time-Averaged Update (TA-Up) strategy. It is not clear if for SPEEDY model this

technique is able to properly estimate instantaneous quantities out of TA observations.

Accordingly, it appears relevant to investigate the performance of the other updating

techniques considered in chapter 3. Here our newly proposed Time-Averaged + In-

stantaneous Update (TAI-Up) technique appears particularly attractive, given that the

relatively high dimensionality of SPEEDY model can easily make the Time-Augmented

Update (TAug-Up) technique unaffordable.

In any case, despite its lack of accumulation of observational information over time,

off-line DA has already been shown to be more robust than traditional climate field re-

construction techniques based on orthogonal empirical functions [Steiger et al., 2014].

Moreover, the implementation and running of offline DA schemes is remarkably cheaper

than on-line approaches.

6.3.4 Challenges to be addressed

As a cautionary remark, we want to highlight the several important limitations of the ex-

periments described in this chapter. The generated pseudo-TRW observations lack re-

sponse saturation and their contamination with noise was performed assuming optimisti-

cally high SNR levels. Furthermore, the response thresholds were set in a completely ho-

mogeneous fashion for all the observational stations, whereas actual TRW networks are

strongly heterogeneous in that sense, comprising chronologies generated under highly

dissimilar growth limitation regimes. Additionally, the efficiency of EnKF technique used
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relies on the Gaussianity of all the variables of the model. Nevertheless, in a climate

model some variables can present strongly non-Gaussian properties –specially definite

positive quantities such as humidity– and then their estimation should in principle be

performed with more sophisticated strategies such a Gaussian anamorphosis [Bocquet

et al., 2010; Lien et al., 2013]. Finally, it is worth mentioning the necessity of explicitly

addressing model errors by conducting imperfect model OSSEs.





CHAPTER 7

Conclusions and Prospect

7.1 Filtering of Time-Averaged Observations

Our numerical results presented in chapter 3 indicate that the different Ensemble Kalman

Filter (EnKF) algorithms for Time-Averaged (TA) state estimation might exhibit signifi-

cantly different efficiencies in a multi-scale, strongly coupled setting. Our findings com-

plement previous studies, which had observed equivalent performances in milder non-

linear dynamical conditions, and call for caution at the moment of selecting the filtering

approach to assimilate TA observations into a multi-component climate model.

Roughly speaking, the Time-Augmented Update (TAug-Up) presents better forecast-

ing properties given that it estimates individual instantaneous states. Accordingly, TAug-Up

prevails for short averaging periods where the the fast scales are still predictable. On the

other hand, the Time-Averaged Update (TA-Up) focuses on the estimate of TA state and

consequently it dominates for long averaging periods where the TA observations are sig-

nificantly decorrelated from the instantaneous state of the system. In this scheme of
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things, TAug-Up and TA-Up appear complementary rather than redundant. Additionally,

given the the wealth of time scales present in the climate system and the broad range of

time resolutions offered by proxy records, favorable conditions for both updating strate-

gies will probably appear in more realistic paleo-Data Assimilation (DA) applications.

Component-wise covariance localization appeared in general to be beneficial for the

filter operation. In the weak coupling regime, the inter-scale correlations observed by the

EnKF are mostly spurious and accordingly the inter-scale contamination becomes strong.

In these conditions the performance of filter can be greatly improved by component lo-

calization. On the other hand, under strong coupling conditions, inter-scale correlations

are no longer dominantly artificial and then the profit of component localization is less

evident. Still, it appears very effective at preventing catastrophic filter divergence for the

TAug-Up and Time-Averaged + Instantaneous Update (TAI-Up) updating approaches.

Finally, our experiments show that a newly proposed hybrid algorithm (TAI-Up) ex-

hibits a remarkably similar performance as the TAug-Up methodology, but with notably

superior scaling properties, given that the size of the control vector does not increase

with the averaging length. Furthermore, the computational cost of our hybrid update is

comparable to the one of the TA update. Accordingly, it appears as an efficient alter-

native option for the above mentioned conditions where the TA-Up algorithm becomes

inadequate.

7.2 Fuzzy Logic approach to TRW forward modeling

From the point of view of Fuzzy Logic (FL) theory, the process-based Tree-Ring-Width

(TRW) model Vaganov-Shashkin-Lite (VSL) can be understood as a rather simple fuzzy

inference system, where the core of the model, i.e., the Principle of Limiting Factors

(PLF), plays the role of a fuzzy AND operation that allows tree growth only if both limiting

factors are simultaneously favorable to it. This new perspective on the PLF calls for a

relaxation of the growth limitation policy. The exclusive single-factor limitation –implied
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by the original formulation via a minimum function– is no longer necessary and multiple-

factor limitation become perfectly admissible. This growth regime, currently known as

co-limitation, has been widely acknowledged in ecological sciences but has been so far

disregarded in the modeling community

The impact of using several PLF incarnations on VSL’s forward modeling performance

was assessed for a global network of TRW chronologies. VSL’s skill appeared remark-

ably insensitive to these changes, which supports our FL reinterpretation and indicates

that the skill of the model resides on its general structure and not in the particular rep-

resentation of the fuzzy AND operation. Additionally, it gives freedom to select the PLF

representation that best suit the application at hand.

Finally, it is worth to mention that besides shading light on the mathematical modeling

strategies for tree growth limitation processes, the translation of VSL into the FL language

also suggest other avenues for future research that can contribute to the further improve-

ment of tree growth models, as well as to the development of new forward models for

other proxy types. FL provides a very flexible model structure able to naturally accom-

modate unknown processes and expert knowledge. This outstanding feature becomes

crucial for the simulation of proxies systems given the great difficulty, or even impossibility,

of pursuing first-principle approaches in this highly multidisciplinary research area.

7.3 Towards the assimilation of TRW chronologies

Pseudo-TRW observations were assimilated into the two-scale nonlinear dynamical sys-

tem of Lorenz [1996] and the simplified Atmospheric General Circulation Model (A-GCM)

called SPEEDY. The results of these DA experiments, indicate that VSL’s approach to

the forward modeling of TRW chronologies appears compatible, in general terms, with

EnKF-based techniques for TA state estimation.

The competitive recording of two variables, implied by the PLF, does not necessar-

ily deteriorate the filter performance in a dramatic way. However, when the transition
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between growth-limited modes occurs abruptly, as in the case of the PLF representa-

tion via the minimum t-norm, the lack of smoothness of the growth rate time series may

significantly increase the optimality loss in the estimation of TA model state. This disad-

vantage of the original formulation of VSL can be significantly ameliorated by resorting

to alternative FL-based representations of the PLF, which allow co-limitation and con-

sequently smoother shifting between different growth limitation regimes. A particularly

promising representation of the PLF was provided by the product t-norm, which increases

the smoothness of the growth rate time series, with regard to the minimum t-norm, with-

out exhibiting the additional lower response thresholding observed for other co-limitation-

permitting Triangular Norms (t-norms).

Finally, a promising result of our DA experiments with SPEEDY model is that the ca-

pacity a TRW chronology to decrease the error of the EnKF-based estimate of the TA

state appears controlled by the strength of the yearly internal variability at the chronol-

ogy site. Based on this finding we consider that, provided climate model imperfections

are properly taken into account, model-based estimates of the climate internal variabil-

ity might provide guidelines for the optimization of future sampling campaigns for TRW

chronologies, in particular, and proxy records in general.

7.4 Off-line Data Assimilation

The complete lack of error reduction for forecast quantities in our DA experiments with

the Atmospheric General Circulation Model SPEEDY suggest at first sight that the assim-

ilation of TRW chronologies is predestined to be performed in off-line conditions, given

that the one-year time-integration period is considerably longer than the useful lead times

of existent climate prediction systems. However, the very strong activity in the fields of

seasonal and decadal forecasting has made evident the existence of abundant potential

sources of climate internal variability with time scales longer than one year [Smith et al.,

2012].
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7.5 Further paleo-reanalysis challenges

Concerning the initial motivation of generating retrospective paleo-climate analyses, we

deem our results promising for TRW chronologies in the sense that EnKF techniques

appear robust in the face of two strong nonlinearities typically found in process-based

tree-ring growth forward models, i.e., switching recording and thresholded response.

Nonetheless, it is important to highlight that the Observation System Simulation Experi-

ments (OSSEs) presented in this manuscript represent only the first steps of the long hi-

erarchy of DA experiments needed to eventually achieve a effective assimilation of proxy

records into climate models using forward proxy models. Among the many interrogations

that remain to be addressed regarding the creation of a realistic paleo-reanalysis, we

want to draw attention to the following:

• The use of comprehensive earth system models will certainly introduce longer time

scale processes, which might bring proxy DA to the on-line regime. This would

be highly beneficial given that the observational information would be accumulated

and transmitted from observed areas to unobserved ones. On the other hand, the

assimilation of proxy data into multi-component models would imply several com-

plications, in particular (i) the simultaneous use of several proxy forward models to

assimilate the different proxies needed to constrain the model components, and (ii)

the risk of facing inter-component DA pollution, which becomes especially relevant

for proxies sensing several climate components at the same time, e.g., tree rings.

• Some climate proxies are sensitive to extremely small-scale and local phenomena,

e.g., the response of tree rings to soil hydrological processes and of speleothems

to precipitation. This fact constitute a difficult problem given the course resolution

of current climate models and their very poor representation of sub-grid scale pro-

cesses. Moreover, it is common to have with the same model grid box very different,

or even contradicting, proxy records. This situation evinces the need of developing

spatially aggregated proxy indices able represent global scale climate quantities,

such as the one proposed by Breitenmoser et al. [2014]

This multitude of stumbling blocks certainly calls for further research.





APPENDIX A

Ensemble Kalman Filter algorithms for Time-Averaged state

estimation

A.1 Time-Augmented Update (TAug-Up) Algorithm

1. The instantaneous forecast ensemble states belonging to the period [tn − τaver, tn]

are arranged into a higher dimensional vector so as to create the Time-Augmented

(TAUG) forecast ensemble:

Xf (tn, τaver) = [Xf (ti)], tn − τaver > ti > tn (A.1)

2. The Ensemble Kalman Filter (EnKF) update equations are applied over Xf (tn) so

as to find the TAUG analysis ensemble Xa(tn).

3. The Time-Averaged (TA) quantities at tn are calculated from the TAUG ensembles

Xf (tn) and Xa(tn).

4. The instantaneous analysis ensemble Xa(tn) is extracted from Xa(tn).
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5. Xa(tn) is propagated in time until t = tn + τobs using the model dynamics.

6. Step 1 is performed for t = tn + τobs.

A.2 Time-Averaged Update (TA-Up) Algorithm

1. The instantaneous forecast ensemble Xf at t = tn is decomposed according to the

expression:

Xf (tn) = Xf (tn)
τaver

+ X̃f (tn) (A.2)

where Xf (tn)
τaver is the Time-Averaged Time-Augmented forecast ensemble:

Xf (tn)
τaver

=
1

τaver

∫ tn

tn− τaver

Xf (t′) dt′ (A.3)

and X̃f denotes the anomalies around it.

2. The EnKF update equations are applied solely to Xf (tn) in order to obtain the TA

analysis ensemble Xa(tn).

3. The instantaneous analysis ensemble is obtained by adding the TA analysis to the

unchanged forecast TA anomalies:

Xa(tn) = Xa(tn)
τaver

+ X̃f (tn) (A.4)

4. Xa(tn) is propagated in time using the model, so as to obtain Xf (tn + τobs).

5. Perform step 1 for t = tn + τobs.

Notice that the update step only involves only the TA state and the last instantaneous

one. Consequently, it is not necessary to store the whole Time-Augmented ensemble

given that the TA state can be calculated by accumulating the instantaneous state at

every time step of the dynamical model.
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A.3 Relation between TA-Up and TAug-Up strategies

Let us introduce the Time-Averaging operator T̂A and the TA anomaly operator T̂P, given

by the following expressions:

T̂AX =
1

τaver

∫ tn

tn− τaver

X(t′)) dt′, T̂P = Î− T̂A, (A.5)

where Î denotes the identity operator. Using this notation the TA decomposition can be

written as:

X = Xτaver + X̃ = T̂AX + T̂PX (A.6)

Now, assuming an standard stochastic EnKF formulation [Burgers et al., 1998], the

TAUG analysis takes the form:

Xa = Xb + K (y − ye + ε) . (A.7)

Here K denotes the TAUG Kalman gain matrix:

K = BĤ†T̂A

† [
T̂AĤBĤ†T̂A

†
+ R

]−1
, (A.8)

where B represents the TAUG ensemble covariance, B = cov(X,X), and ye stands for the

ensemble observations, ye = T̂AĤXb.

It is worth mentioning that the assumption of using a stochastic filter is made here

for the sake of simplicity and the following expressions of this section can be extended

to more sophisticated EnKF flavors [Huntley and Hakim, 2010]. Using equation A.6, the

TAUG analysis can be written as Xa = T̂AXa + T̂PXa, where

T̂AXa = T̂AXb + T̂AK(y − ye), (A.9)

T̂PXa = T̂PXb + T̂PK(y − ye). (A.10)
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Assuming a linear relationship between the state and the observations, the observation

operator and the time-averaging operator commute, ĤT̂A = T̂AĤ, and then

T̂AK = T̂ABĤT T̂A

T
[
T̂AĤBĤ†T̂A

†
+ R

]−1
(A.11)

= T̂ABT̂A

†
Ĥ†
[
ĤT̂ABT̂A

†
Ĥ† + R

]−1
(A.12)

= cov(X,ye)
[
Ĥcov(X,X)Ĥ† + R

]−1
(A.13)

T̂PK = T̂PBĤ†T̂A

† [
T̂AĤBĤ†T̂A

†
+ R

]−1
(A.14)

= cov(X̃,ye)
[
Ĥcov(X,X)Ĥ† + R

]−1
(A.15)

Finally, assuming negligible covariance between observations and the time-averaged

deviations, cov(X̃,ye) = 0, the TAug-Up strategy reduces to the TA-Up approach [Huntley

and Hakim, 2010]:

Xa = Xb + cov(X,ye)
[
Ĥcov(X,X)Ĥ† + R

]−1
(A.16)

X̃a = X̃b. (A.17)

Notice that i these conditions the TA anomalies need not be updated and the TA analysis

depends only on TA quantities.



APPENDIX B

Peer reviews for paper on the assimilation of

pseudo-Tree-Ring-Width (TRW) chronologies

The Fuzzy Logic (FL) reinterpretation of Vaganov-Shashkin-Lite (VSL) model as well as

the results on the assimilation of pseudo-TRW observations into the two-scale Lorenz

[1996] model (L96) were used as material for a paper submitted to Climate Dynamics

[Acevedo et al., 2015]. The decision letter from the editor Sussana Corti is to be found

below (in italics).

Ref.: Ms. No. CLDY-D-14-00387 Towards the assimilation of tree-ring-width records

using Ensemble Kalman Filtering techniques Climate Dynamics

Dear Mr Acevedo,

The reviewers have now commented on your manuscript. You will see that they are

advising that you revise your manuscript. Therefore, the manuscript is returned for minor

revision.

107



108

The reviewers’ comments can be found at the end of this email or can be accessed

by following the provided link.

If you are prepared to undertake the work required, I would be pleased to continue

with the review process.

If you decide to revise the manuscript, please submit a revised version taking the

reviewers’ comments into account. Please also submit a point-by-point listing of your

response/action for each of the reviewers’ comments/suggestions.

Your revision is due by 31/10/2014 (dd-mm-yyyy).

Please note: When uploading your revised files, please make sure only to submit your

editable source files (i. E. Word, tex).

To submit a revision, go to http://cldy.edmgr.com/ and log in as an Author. You will

see a menu item call Submission Needing Revision. You will find your submission record

there.

Yours sincerely,

Susanna Corti Executive Editor Climate Dynamics

Reviewers’ comments:

Reviewer 1: Review of the manuscript “Towards the Assimilation of Tree-Ring-Width

Records using Ensemble Kalman Filtering Techniques” by Walter Acevedo, Sebastian

Reich, and Ulrich Cubasch

This paper explores the possibility to assimilate tree-ring width (TRW) information into

climate models to achieve a ”paleo-reanalysis” in the near future. A major challenge in

this assimilation process is that proxies record climate information in complex and not

linear ways. Thus, a model is required to translate the proxy units (here TRW) to simu-

lated variables of the climate system such as a mix of growth limiting temperatures and

precipitation. This translation can be achieved with so-called forward models. Acevedo et

al. explore the potential and error risks of a model which could be used for assimilation of

TRW into a climate model. They find increasing errors which arise in case a tree-growth
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limiting factor is changing, e.g. from temperature to moisture. To resolve this, the authors

develop a new fuzzy logic based version of the most commonly used tree-ring model

which is better suited for data assimilation with Kalman-filtering techniques.

This work will move the very new field of paleo-data assimilation a little but important

step ahead. Hence the title ”Towards the assimilation . . . ” is well chosen. The idea of

translating the forward model to fuzzy logic is a very innovative idea and may help if

forward models for other proxies will be developed in the future.

Furthermore, the paper is mostly well written, clearly structured and has an appropri-

ate amount of figures. Thus, I recommend publication after minor revisions.

General comments: After reading the paper, I understand the abstract very well but

reading it the first time, I found it extremely complicated. Thus I suggest to rewrite the

abstract in shorter sentences and using easier words. Most readers will for instance

not know the meaning of expressions like ”coupled toy model”, ”switching recording”,

”optimality loss” or ”fuzzy logic reincarnations of . . . limiting factors”.

A special focus is put on ”improvements concerning the abrupt shifting of recorded

variables in the forward model as it is found that this introduces problems in Kalman

based assimilation”? In how many

Can you add a little explanation why you analyze the slow and fast components sep-

arately?

I would suggest to add some more information about the applied Kalman Filtering

technique and Kalman filtering in general, as not all readers be comfortable with this

method (line 267ff).

A clearer structure would help the reader in the discussion . One option would be

3 subsections for the three features: (i) time averaging, (ii) ”switching recording” and

(iii) bounded response windows leading to ”threshold response”. Another option would

be stating in places like line 431 something along the lines: Concerning factor iii) the ”re-

sponse threshold”. Bye the way, the order of these 3 features in not consistent throughout

the paper.
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Detailed comments:

Sect. 1 Line 18: Optimality loss needs an explanation. Line 54: I would say ”The

formation of proxy records CAN/MIGHT . . . ” as not all all mechanisms have to be involved

in all proxies. Line 60: Maybe explain the term ”forward model” in a few words; e.g. ”...

forward model, which translates time integrated temperature and precipitation information

into tree-ring width”. Line 66: I would use a simple comma instead of brackets. That

makes it easier to read. Line 68: What do you mean with ”stable”? Line 74: skilLfully

Line 81: I would add an examples like ”. . . abrupt shifting of recorded variable, e.g. from

temperature to precipitation” and ”threshold response, e.g. no growth below 5oC” (at least

for me that would be clearer than ”finite size response span”) and ”time averaging , e.g.

integrating climate conditions over the entire growth season” Line 86: Make rather shorter

sentences. ”. . . VS-Lite model. THIS can be improved . . . ” Line 89ff: Maybe explain the

idea behind fuzzy logic in a sentence like ”similar to Boolean logic (0=false, 1=true) but

fuzzy logic allows for values in between 0 and 1 if something is partially true” Line 101:

assesS

Section 2.2 I would suggest to rewriting the first paragraph in a more easy and clear

way for people who are not familiar with the concept of fuzzy logic at all

Section 2.5 Line 213: Maybe change title to ”Crude climate model” Line 213: ”Apply-

ing the dynamical system described above we perform . . . ” Line 237: ”an ensemble run”

How many members, how many grid cells/resolution, . . . Please give more detail about

the simulations you conducted. Line 239ff: Maybe better say that you use VS-Lite to gen-

erate pseudo proxies using T and M simulated with your dynamical system / crude model.

Line 246: Signal to noise ratio of 10? Why don’t you use a ratio that is closer to ratios

found in real proxy data? Line 247: explained symbols are not in equation above. Some

latex formatting error? Line 271: What is ”B-localization”? Add citation for Gaspari-Cohn

function. What is your grid spacing?

Sect. 3.1 Line 297ff: you present the forecasting skill tau=1 as a result and compare

it with other studies. This is a circular argument as you yes in Sect. 2.4 that your model

is tuned to reach these values
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Sect. 3.2.3 Line 354: ”in which” -¿ ”how”

Sect. 4 Line 425 to 430: I would only mention that this is a question of future research.

Line 438: Should it be ML instead of TU? Line 463: scales scales

Reviewer 2: Summary:

A simple, well known, model having fast and slow variability is used to test revisions

to the logic of the VS-Lite tree-ring-width forward model. The ultimate goal, beyond the

scope of this paper, is to use VS-Lite as the forward model for data assimilation experi-

ments with real proxy data. Three challenges are addressed concerning the assimilation

of tree-ring width with VS-Lite: time averaging, a response that depends nonlinearly on

two variables (temperature and soil moisture), and threshold responses due to cutoffs in

the VS-Lite model. The general problem of forward models for proxy data has emerged

as a key barrier to using data assimilation on proxy data and comparing GCM simulations

to proxy data, so the paper is both timely and important.

The main novelty here is the framing of aspects of VS-Lite’s logic in fuzzy logic terms,

which are then modified to accomodate tests of several fuzzy logic functions. I am not

an expert on fuzzy logic, but I trust that the authors have presented and tested main-

stream concepts for the logic they introduce to VS-Lite. Results show that smoothness of

response depends sensitively on the logic function, and that for the model considered a

product function performs best.

The paper is well presented, although if I made one major comment it would be that

the model chosen is a bit simplistic for the identified challenges, and it is unclear if the

product function will remain the best option for more complete models. Therefore, a

model hierarchy would be a better approach. However, I view such revision as outside

the scope of the present manuscript, and presumably something the authors will take up

in future work. I recommend minor revision.

Comments:

line 15-16: I do not know what this means
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l 54: I suggest spending some time here explaining what a proxy system model is (i.e.,

describe the ”forward” mapping from traditional climate variables to proxy measurement)

l 68: What does ”most stable” mean?

l 81: Please provide more information for the reader on what this means

l 113: In what sense is it ”intermediate” (between VS and simple linear regression on

a set of parameters?)

l 271: You should say a bit more about what this means

l 276: I may have missed it, but if not, the reader needs more details on how observa-

tions are defined
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