Nupdate	Res. [Å]	Anzahl der Schritte						
1	0.1	50	100	150	200	250	300	
2	0.4	50	100	150	200	250	300	
3	0.8	51	99	150	201	249	300	
4	1.2	52	100	152	200	252	300	
5	1.7	50	100	150	200	250	300	
6	2.2	48	102	150	198	252	300	
7	2.8	49	98	147	196	252	301	
8	3.5	48	104	152	200	248	304	
9	4.2	54	99	153	198	252	297	
10	5.0	50	100	150	200	250	300	
11	6.0	55	99	154	198	253	297	
12	7.0	48	96	156	204	252	300	
13	8.0	52	104	156	195	247	299	

Anhang C: Tabellen

Tab. 1: Es sind die verwandten Anzahlen der Dynamikschritte für die verschiedenen Erneuerungsintervalle und die benötigten Reservoire in Å bei einem Integrationszeitschritt von 2 fs und einer mittleren Temperatur von 300 K angegeben.

Die Tabelle 1 gibt einen Überblick über die im Effizienzvergleich des Teils 3 benutzten Anzahlen der Dynamikschritte für die unterschiedlichen Auffrischungsintervalle und über die benötigten Reservoire in Å bei einem Integrationszeitschritt von 2 fs und einer mittleren Temperatur von 300 K. Die unterschiedlichen Schrittzahlen sind nötig, weil die Kontrollmechanismen von CHARMM keine ganzzahligen Vielfachen von N_{Update} berücksichtigen, wie in Kapitel 3.1 ausgeführt ist.

Die Tabellen 2 bis 4 geben eine Zusammenfassung der Ergebnisse des kleinen Systems in Ergänzung zu den Kapiteln 5.2 bis 5.4 für Torsionswinkel-, Bindungswinkel- und Bindungslängenverteilungen.

In Tabelle 2 sind die Mittelwerte und jeweils darunter die häufigsten Werte der aus den MD-Simulationen des kleinen Systems bestimmten Torsionswinkel φ und ψ zusammengefaßt. Die Bedeutung der Zeilen stimmt dabei mit der in Tabelle 5.2 überein. Die Varianzen zu den berechneten Mittelwerten für die verschiedenen MD-Simulationen schwanken zwischen 3.0° (φ_{1-2} bei 100 % Feuchte) und 39° (ψ_{6-7} bei 42 % Feuchte; hier existieren zusätzlich zu dem Hauptmaximum im Bereich der Meßwerte zwei gut ausgeprägte Nebenmaxima im negativen Winkelbereich, die zu der ungewöhnlich hohen Varianz führen; ein Grund dafür kann in der Anmerkung im Unterkapitel 4.2 auf Seite 64 gesehen werden).

Feuchte	Φ 1-2	φ ₂₋₃	\$ _3_4	\$ 4_5	φ 5–6	φ 6–7	φ ₇₋₁
	Ψ1-2	Ψ2-3	Ψ3 - 4	Ψ4-5	Ψ5-6	ψ_{6-7}	ψ_{7-1}
100 %	73	119	84	166	141	114	40
	73	127	<i>83</i>	173	153	99	-11
	160	146	122	171	41	108	-60
	153	129	121	169	21	133	-91
78~%	74	112	53	139	141	117	30
	71	117	67	173	155	91	19
	152	167	154	175	36	83	-110
	151	133	103	181	101*	101	-109
58 %	70	110	63	158	141	110	(-20)
	71	123	83	171	155	<i>99</i>	-23
	157	164	144	184	42	109	-85
	155	165	113	171	19	125	-83
42 %	83	111	76	135	106	45	96
	79	125	111	153	111	77	121
	143	166	133	131	68	146	144
	143	153	97	155	73	121	123
15 %	89	111	104	132	103	42	132
	83	101	113	131	101	89	125
	135	146	119	147	109	140	109
	121	131	139	131	121	163	125
Mittel-	78	113	76	145	126	86	75
werte	149	158	134	158	59	117	218
exper.	109	116	104	118	111	107	102
Mittelw.	135	141	114	130	129	128	119

Tab. 2: Aus den MD-Simulationen des kleinen Systems bestimmte Torsionswinkel φ und ψ benachbarter Glucosen in Winkelgrad für verschiedene Feuchten und Mittelwerte über alle Feuchten (zu jeder Feuchte erste und zweite Zeile φ_{i-j} – Mittelwert bzw. wahrscheinlichster Wert (kursiv) –, dritte und vierte Zeile ψ_{i-j} – wie bei φ_{i-j} – für i = 1, ..., 7 und j = i(mod7) + 1, also j = 1 für i = 7; bei der Mittelwertbildung über alle Feuchten unberücksichtigte Ausreißer sind in Klammern gesetzt; ein gesternter Wert bedeutet eine Ersetzung durch ein dem Hauptmaximum nahezu ebenbürtiges Nebenmaximum). In den letzten Zeilen sind zum Vergleich die aus den Experimenten bestimmten Mittelwerte eingetragen.

Im Gesamtvergleich von kleinem zu großem System sind die Maxima der Verläufe mit 100 % Feuchte beim kleinen System deutlicher als bei der Abbildung 5.7 zur MD-Simulation des großen Systems, die Lage stimmt bei beiden MD-Simulationen nahezu überein. Für die MD-Simulationen mit 78 %, 58 % bzw. 42 % Feuchte haben die Verteilungsdichten der Torsionswinkel von φ_{1-2} bei 72° und ψ_{1-2} bei 151° jeweils ein markantes Maximum. Im Gegensatz zu den MD-Simulationen des großen Systems gibt es für die des kleinen Systems bei der Verteilungsdichte der Torsionswinkel φ_{7-1} und ψ_{7-1} bei 78 % Feuchte klare Maxima und kein Verschmieren über einen breiten Bereich. Auch die restlichen Verteilungsdichten weisen deutliche, schmale und relativ hohe Maxima auf, die Verteilungsdichten der Torsionswinkel φ_{1-2} und ψ_{1-2} bilden auch beim kleinen System etwa doppelt so hohe Maxima, wie die Verläufe der anderen sechs Winkel φ bzw. ψ .

Wie sich schon bei der MD-Simulation mit 78 % Feuchte andeutete, verteilen sich die Maxima der Verteilungsdichten der Torsionswinkel der MD-Simulation des kleinen Systems mit 58 % Feuchte vor allem im ψ -Bereich über den gesamten möglichen Bereich von -180° bis 180° . Insgesamt verteilen sich die Maxima der Torsionswinkel φ mit einer leichten Häufung im Bereich zwischen 45° und 180° , lediglich das Maximum von φ_{7-1} liegt bei -23° , wo gleichzeitig ein Nebenmaximum von φ_{4-5} liegt. Die Hauptmaxima liegen für die Verteilungsdichten der Torsionswinkel der MD-Simulation mit 42 % Feuchte bei allen Verläufen der Verteilungsdichte zwischen 45° und 180° . Bei den Torsionswinkeln φ gibt es im restlichen Bereich bei vier Graphen Nebenmaxima. Die Graphen der Verteilungsdichten der Torsionswinkel ψ zeigen alle bis auf ψ_{1-2} mindestens ein Nebenmaximum im Restbereich. Die Hauptmaxima liegen bei 42 % Feuchte wieder – wie schon beim großen System – enger zusammen, was schon den Übergang zum trockeneren System von 15 % Feuchte andeutet.

Die Hauptmaxima beim Torsionswinkel φ sind für die Verteilungsdichten der Torsionswinkel der MD-Simulation des kleinen Systems mit 15 % Feuchte auf einen Bereich von 80° bis 130° zusammengerückt und nur der Graph des Torsionswinkels φ_{6-7} zeigt ein größeres Nebenmaximum außerhalb dieses Bereichs (s. Tabelle 2). Die Hauptmaxima beim Torsionswinkel ψ liegen im Bereich von 110° bis 160°, alle Nebenmaxima – bis auf zwei von ψ_{6-7} – liegen ebenfalls in der Nähe dieses Bereichs.

Feuchte	ω_{1-2}	ω_{2-3}	ω_{3-4}	ω_{4-5}	ω_{5-6}	ω_{6-7}	ω_{7-1}
100 %	116	124	153	144	134	136	167
	115	115	151	141	137	127	167
78 %	119	129	148	145	134	140	150
	115	130	145	144	136	139	150
58 %	117	132	150	150	132	137	166
	116	136	148	152	136	129	166
42 %	119	129	150	152	136	134	133
	116	127	152	150	138	122	131
15 %	122	127	147	149	127	136	124
	120	119	139	159	118	142	121
Mittel-							
werte	119	128	150	148	133	137	148
exper.							
Mittelw.	117.5	117.0	118.0	118.3	117.6	118.1	116.4

Tab. 3: Aus den MD-Simulationen des kleinen Systems bestimmte Bindungswinkel ω_{i-j} benachbarter Glucosen in Winkelgrad für verschiedene Feuchten (für i = 1, ..., 7 und j = i(mod7) + 1, also j = 1 für i = 7); erste Zeile Mittelwerte, zweite häufigste Werte (kursiv); unten Mittelwerte über alle Feuchten. In der letzten Zeile sind zum Vergleich die aus den Experimenten bestimmten Mittelwerte eingetragen.

In Tabelle 3 sind die aus den in den MD-Simulationen mit dem kleinen System gewonnenen Bindungswinkel ω benachbarter Glucosen für die verschiedenen Feuchten von 100 %, 78 %, ... 15 % eingetragen. Die Varianzen zu den berechneten Mittelwerten für die verschiedenen MD-Simulationen liegen bei 10°. Die Lage der Maxima bleibt in etwa gleich zu denen der MD-Simulation des großen Systems bei gleicher Feuchte; durch die geringere Zahl an β -Cyclodextrinen, über die die Verteilungsdichte gemittelt wird, sind die Maxima höher und schmaler. Es gibt nur wenige Konformationen mit Bindungswinkeln oberhalb von 165°. Die MD-Simulation mit 58 % Feuchte des kleinen Systems zeigt Maxima der Bindungswinkel ω_{6-7} und ω_{7-1} , die von den experimentellen Werten weg verschoben sind. Der Graph der Verteilungsdichte des Bindungswinkels ω_{2-3} hat jetzt zwei lokale Maxima ausgebildet, dessen breiteres und leicht höheres bei 135° liegt und sich damit auch vom Wert des Experiments weg bewegt hat. Die Graphen der Verteilungsdichten der Bindungswinkel ω der MD-Simulation mit 42 % Feuchte weisen Maxima auf, die zum Teil näher am im Experiment bestimmten Wert als bei der MD-Simulation des großen Systems mit 42 % Feuchte liegen. Die Verteilungsdichten der Bindungswinkel ω der MD-Simulation des kleinen Systems mit 15 % Feuchte haben Maxima bei den Bindungswinkeln ω_{1-2} , ω_{2-3} , ω_{5-6} und ω_{7-1} in Übereinstimmung mit den im Experiment bestimmten Werten, so wie auch für das eine der beiden lokalen Maxima des Graphen des Bindungswinkels ω_{6-7} . Der Verlauf der Verteilungsdichten von ω_{7-1} führt beim kleinen System den gleichen Wechsel in der Lage des Maximums von 160° bei 100 % Feuchte zu 120° bei 15 % Feuchte wie beim großen System aus.

Feuchte	d_{1-2}	d_{2-3}	d_{3-4}	d_{4-5}	d_{5-6}	d_{6-7}	d_{7-1}
100 %	5.07	4.53	4.77	4.67	4.35	4.53	5.30
	5.00	4.75	4.80	4.70	4.40	4.50	5.35
78~%	4.81	4.80	4.89	4.72	4.38	4.44	5.37
	5.00	4.55	4.80	4.65	4.40	4.45	5.40
58 %	5.08	4.71	4.84	4.77	4.46	4.53	5.31
	4.90	4.40	4.75	4.65	4.40	4.30	5.40
42 %	4.64	4.69	4.91	4.88	4.51	4.88	4.80
	4.90	4.45	4.75	4.60	4.40	4.45	5.40
15 %	4.45	4.60	4.62	4.94	4.39	5.01	4.60
	4.75	4.50	4.75	4.65	4.50	4.55	5.40
Mittel-							
werte	4.81	4.67	4.81	4.80	4.42	4.68	5.08
exper.							
Mittelw.	4.38	4.48	4.32	4.23	4.46	4.42	4.28

Tab. 4: Aus den MD-Simulationen des kleinen Systems bestimmte Abstände der Sauerstoffatome O(4) benachbarter Glucosen d_{i-j} in Å für verschiedene Feuchten (für i = 1,...7 und j = i(mod7) + 1, also j = 1 für i = 7); erste Zeile Mittelwerte, zweite häufigste Werte (kursiv); unten Mittelwerte über alle Feuchten. In der letzten Zeile sind zum Vergleich die aus den Experimenten bestimmten Mittelwerte eingetragen.

In Tabelle 4 sind die aus den in den MD-Simulationen mit dem kleinen System gewonnenen Koordinaten der O(4)-Atome benachbarter Glucosen berechneten Distanzen in Å für die verschiedenen Feuchten von 100 %, 78 %, ... 15 % eingetragen. Die Varianzen zu den berechneten Mittelwerten für die verschiedenen MD-Simulationen schwanken zwischen 2.0 Å (d_{1-2} bei 100 % Feuchte) und 8.4 Å (d_{7-1} bei 15 % Feuchte).

Auffällig sind für das kleine System höhere Maxima als bei den Simulationsdaten des großen Systems. Speziell ist bei 100 % Feuchte das breite Maximum des großen Systems von d_{2-3} deutlich in zwei Maxima aufgespalten. Die Verläufe bei den MD-Simulationen für 78 % und für 15 % Feuchte weisen die markantesten Abweichungen zu den Graphen beim großen System auf, während die Daten der Simulationen bei 58 % und 42 % Feuchte denen des großen Systems ähnlich sind. Die größten Änderungen von feucht zu trocken zeigt wieder - wie beim großen System - die Verteilungsfunktion von d_{7-1} . Erneut fällt die monotone Zunahme der Distanz d_{5-6} - für die Lage des Hauptmaximums - mit abnehmender Feuchte auf in Übereinstimmung mit dem experimentell gefundenen Trend.