
 

 
 

 

 

Antimicrobial peptides: 

pharmacodynamics, combinatorial effects and 

resistance evolution 

 

 

A Dissertation 

Submitted in Partial Fulfilment of the Requirements for the Degree of  

Doctor rerum naturalium (Dr. rer. nat.) to the  

Department of Biology, Chemistry and Pharmacy of  

Freie Universität Berlin 

 

 

by 

GUOZHI YU (余国志) 

Berlin 2017 

 

 

  



 

 

 

 

 

 

 

 

 

 

 

 

The work in this thesis was carried out in Evolutionary Biology group led by Prof. Dr. 

Jens Rolff in the Institute of Biology at Freie Universität Berlin.  

 

 

 

 

1
st
 Reviewer: Prof. Dr. Jens Rolff 

 

2
nd

 Reviewer: Prof. Dr. Peter Hammerstein  

 

 

Date of Disputation: 20.12.2017  

  



 

 
 

Table of contents 

Chapter 1 Summary ...................................................................................................... 1 

Chapter 2 General introduction .................................................................................... 7 

  Antimicrobial peptides: a distinct class of antimicrobials ......................................... 9 

  Combination effect of AMPs ................................................................................... 11 

  Resistance evolution ................................................................................................ 15 

  The mutant-selection-widow theory of resistance evolution ................................... 17 

  The work in this thesis ............................................................................................. 18 

Chapter 3 Combination effects of antimicrobial peptides .......................................... 31 

Chapter 4 Antimicrobial combinations: Bliss independence and Loewe additivity 

derived from mechanistic multi-hit models ................................................................. 44 

Chapter 5 Predicting drug resistance evolution: insights from antimicrobial peptides 

and antibiotics .............................................................................................................. 69 

Chapter 6 The evolution of antimicrobial resistance in a model combining a 

multiple-step mutations and pharmacodynamics ....................................................... 101 

Chapter 7 Concluding remarks and outlook ............................................................. 127 

Acknowledgment ...................................................................................................... 134 

Author contributions ............................................................................................... 136 

Curriculum Vitae ..................................................................................................... 137 

  



 

  



Chapter 1 Summary 

1 

 

 

 

 

Chapter 1 

 

Summary 



Chapter 1 Summary 

2 

Antimicrobial peptides (AMPs) are ancient and conserved across the tree of life. They 

are the most important components in immune system due to their distinct 

mechanisms of killing bacteria. In this thesis, a pharmacodynamic approach was taken 

to investigate why bacteria are less likely to develop resistance to the nature immune 

system, especially to one of its components AMPs.  

 

In this thesis, the combination effects of AMPs were firstly investigated. Six different 

AMPs from different organisms were selected to test their individual and combined 

effects in vitro. With an approach based on pharmacodynamics and Loewe additivity, 

the interactions of AMPs were found mostly synergistic. Three-AMP combinations 

displayed stronger synergism than two-AMP combinations. Additionally, AMPs 

displayed a sharp increase in killing within a narrow dose range contrasting with those 

of antibiotics. 

 

Followed by a theoretical study, the combination effect between AMPs was explored 

using mathematical model that captures the dynamics of attachment and detachment 

between AMPs and cell membrane. In this multi-hit model, bacteria are killed when a 

certain number of targets are hit by antimicrobials. This bottom-up approach revealed 

that Bliss independence should be the model of choice if no interaction between 

antimicrobial molecules is expected; Loewe additivity, on the other hand, describes 

scenarios in which antimicrobials affect the same components of the cell, i.e. are not 

acting independently. The choice of the additivity term is essential to determine 

synergy or antagonism of antimicrobials. 

 

The AMPs were found fundamentally different from antibiotics in their 

pharmacodynamic characteristics. This difference was further implemented within a 

theoretical framework to predict the evolution of resistance. The comparative analysis 

of resistance evolution demonstrated that pharmacodynamic differences all combine 

to produce a much lower probability that resistance will evolve against antimicrobial 

peptides. The finding can be generalized to all drugs with pharmacodynamics similar 
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to AMPs. Pharmacodynamic concepts are familiar to most practitioners of medical 

microbiology, and data can be easily obtained for any drug or drug combination. The 

theoretical and conceptual framework is therefore widely applicable and can help 

avoid resistance evolution if implemented in antibiotic stewardship schemes or the 

rational choice of new drug candidates. 

Next, A model multiple-step mutations which can describe more complicated situation 

was used to simulate the resistance evolution in the treatment of antimicrobials. In this 

model, each mutant was captured by a set of pharmacodynamics. By monitoring the 

time of resistance emergence, simulations showed that mutants with medium 

increment of MIC will emerge earlier. Mutation with fitness cost will slow down the 

resistance evolution. The fitness cost in resistant mutants is likely to be compensated 

as lately as possible, otherwise will hinder the emergence of later fitter mutant and 

thus slows down the resistance evolution. For a given mutants, the shape of 

dose-response and maximal killing rate that can be achieved by antimicrobials nearly 

have no influence on the time of their emergence. Because of the emergence and 

selection of fitter mutant always happens in the subMIC of this mutant. It also showed 

that treatment strategy and pharmacokinetics do not affect the rage of concentration 

that select resistance.  

 

Taken together, the thesis highlights that pharmacodynamic parameters of 

antimicrobials plays a decisive role in resistance selection. This can be applied in 

screening for resistance-proof drugs. In addition, it also explains the evolution of 

innate immune system which usually produces a mixture of AMPs to fight against 

infections. For example, mixtures of AMPs show strong synergism and steeper dose 

response curves in their pharmacodynamics.  

 

Zusammenfassung  

Antimikrobielle Peptide (AMPs) sind ein ursprüngliches Merkmal, welches im 

Stammbaum des Lebens konserviert ist. Aufgrund ihrer besonderen Mechanismen, 
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mit denen sie Bakterien abtöten, sind sie die wichtigsten Komponenten im 

Immunsystem. In dieser Arbeit wurde mit einem pharmakodynamischen Ansatz 

untersucht, warum Bakterien mit geringerer Wahrscheinlichkeit Resistenzen gegen 

das angeborene Immunsystem, insbesondere gegen AMPs, entwickeln. 

 

Zuerst wurde der Effekt der Kombination von AMPs getestet. Sechs verschiedene 

AMPs von verschiedenen Organismen wurden auserwählt um ihre individuellen und 

kombinatorischen Auswirkungen in vitro zu ermitteln. Mit einem Ansatz, welcher auf 

Pharmakodynamik und der Loewe Additivität basiert, zeigten sich größtenteils 

synergistische Interaktionen der AMPs. Kombinationen von drei AMPs zeigten 

stärkere Synergien als solche mit nur zwei Komponenten. Weiterhin wurde, im 

Gegensatz zu Antibiotika, ein deutlicher Anstieg im Abtöten von Bakterien innerhalb 

eines engen Dosierungsbereichs beobachtet. 

 

Im Folgenden wurde theoretisch der kombinatorische Effekt von AMPs mit einem 

mathematischen Modell untersucht, welches die Dynamiken von Bindung und 

Ablösen zwischen AMPs und Zellmembran berücksichtigt. In diesem Modell werden 

Bakterien als getötet betrachtet, wenn eine bestimmte Anzahl von Zielen von 

antimikrobiellen Peptiden angegriffen wurde. Dieser Bottom-up Ansatz zeigte, dass 

die Unabhängigkeit nach Bliss als Modell verwendet werden sollte, wenn keine 

Interaktion zwischen den antimikrobiellen Molekülen zu erwarten ist. Die Loewe 

Additivität hingegen beschreibt Szenarien in denen die AMPs dieselben 

Komponenten der Zelle angreifen und demnach nicht unabhängig voneinander 

agieren. Die Auswahl der additiven Bedingungen im Modell ist essentiell um 

Synergien oder Antagonismen von antimikrobiellen Peptiden zu bestimmen.  

 

Die phamakodynamischen Merkmale der AMPs erwiesen sich als fundamental 

unterschiedlich gegenüber denen von Antibiotika. Dieser Unterschied wurde 

weiterhin in einem theoretischen Rahmen zur Vorhersage der Evolution von 

Resistenzen angewendet. Die vergleichende Analyse der Resistenzevolution machte 
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deutlich, dass die kombinierten pharmakodynamische Eigenschaften für eine 

geringere Wahrscheinlichkeit der Entwicklung von Resistenzen gegenüber AMPs 

sorgen. 

 

Das Ergebnis kann hinsichtlich aller Wirkstoffe mit ähnlichen Pharmakodynamiken 

wie AMPs verallgemeinert werden. Pharmakodynamische Konzepte sind den meisten 

Fachleuten in der medizinischen Mikrobiologie bekannt und Daten können einfach 

sowohl für beliebige einzelne, als auch für Kombinationen von Wirkstoffen ermittelt 

werden. Das theoretische Konzept ist demnach im breiten Rahmen anwendbar und 

kann helfen, Evolution von Resistenzen zu vermeiden, wenn es in Verwaltung von 

Antibiotika oder der Auswahl neuer potentieller Wirkstoffe berücksichtigt wird.  

Darüber hinaus wurde ein Modell mit mehrstufigen Mutationen verwendet, welches 

kompliziertere Situationen hinsichtlich der Resistenzevolution bei der Behandlung mit 

antimikrobiellen Peptiden simulieren kann. In diesem Modell wurde jeder Mutant mit 

einer Auswahl von Pharmakodynamiken erfasst. Indem der Zeitraum in dem sich 

Resistenzen entwickelt hatten, ermittelt wurde zeigten Simulationen dass Mutanten 

mit einem mittleren Zuwachs in der MIC früher hervortraten. Mutationen mit 

Fitnesskosten verlangsamen die Resistenzevolution.  

Die Fitnesskosten in resistenten Mutanten werden höchstwahrscheinlich so spät wie 

möglich kompensiert, da sie ansonsten das Auftreten der späteren, fitteren Mutanten 

verhindern und die Evolution von Resistenzen verlangsamen würden. Für gegebene 

Mutanten haben die Reaktionen auf die Dosierung und die maximale Tötungsrate, 

welche mit antimikrobiellen Peptiden erreicht werden können, fast keinen Einfluss 

auf den Zeitpunkt ihres Auftretens. Dies kann dadurch erklärt werden, dass das 

Auftreten und die Selektion von fitteren Mutanten immer in im subMIC-Bereich des 

jeweiligen Mutanten passiert. Auch wurde verdeutlicht, dass Behandlungsstrategie 

und Pharmakokinetik keinen Einfluss auf das Konzentrationsspektrum, in dem auf 

Resistenzen selektiert wird, haben. 
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Zusammengenommen betont die vorliegende Arbeit, dass pharmakodynamische 

Parameter von antimikrobiellen Peptiden eine entschiedene Rolle in der Selektion von 

Resistenzen spielen. Die Ergebnisse können in der Auswahl von resistenzsicheren 

Wirkstoffen Anwendung finden. Weiterhin liefern sie Erklärungen für die Evolution 

von angeborenen Immunsystemen, welche normalerweise einen Mix an AMPs im 

Kampf gegen Infektionen produzieren. Beispielsweise zeigen Mixe von AMPs starke 

Synergien und steilere Dosis-Reaktions-Kurven in ihrer Pharmakodynamik. 

 



Chapter 2 General introduction 

7 

 

 

 

 

Chapter 2 

 

General introduction 

  



Chapter 2 General introduction 
 

8 

Resistant bacteria are rapidly selected under intensive antibiotic treatment. On 

average it takes two years for a given pathogenic bacterium to cause resistance 

problems for the newly introduced drug [1]. To overcome this pressing resistance 

problem, two main strategies could be deployed: exploring new treatment regimens 

with existing antibiotics and developing new drugs.  

 

One of the frequently proposed treatment strategies is combination therapy. 

Combination of synergistic drugs is commonly applied to maximize the antimicrobial 

effect and minimize the resistance evolution [2, 3]. These drugs are used either as a 

combination or in a fashion of ―antibiotic cycling‖ [4]. Synergistic drug pairs can 

substantially enhance the effect of treatment. This practice has been widely adopted in 

treating various diseases including cancer, infectious disease caused by bacteria, fungi 

and virus, and many other diseases [5-10]. Such combination effects are largely 

determined by specific cellular metabolic networks on which the drugs can target. 

However, recent quantitative studies allow one to determine the combination effects 

of multiple drugs without knowing those mechanistic details [11-14]. Moreover, 

predicting resistance under multiple drug treatment is context–dependent and 

sometimes rather difficult. Although synergistic pairs are more effect on eliminate 

bacteria, it also more likely to select resistance [15]. Recent quantitative study showed 

that the speed of evolution is depended on the ratios of drugs in the pairs [16].  

 

Besides, One need to develop new drugs to relive the rapid evolution of antibiotic 

resistance. These new drugs could be screened from the natural products or synthetic 

compounds. Recently, several new antimicrobial agents were identified from 

uncultured bacteria and resident bacteria on human body [17, 18]. They showed 

potential antimicrobial effects ether on gram-negative or gram-positive bacteria with 

varied mechanism. According to the authors‘ selection experiments, these compounds 

do not select bacterial resistance within a period constant selection [17]. However, 

systematical evaluation of a screened drug requires long time with many steps 

involved. Predictive method could lower the risks and advance the process of drug 
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evaluation. Most of preclinical antibiotic evaluations rely on some oversimplified 

indicators, such as minimal inhibitory concentration (MIC) [19]. Experimental 

evolution is also a widely used approach in determining the ability of resistance 

selection. But range of antibiotic concentration and variation in bacterial density 

might get inconsistent or even controversial results. For example, in the case of 

evolution of resistance to antimicrobial peptides (AMPs), some of the studies 

demonstrate that bacteria are less likely to develop resistance to AMPs [17, 18]. But 

some evolution experiments showed different bacterial species can develop 

considerable resistance to different AMPs [20-22].  

 

Therefore, I will review recent development on determination of combination effects 

with a focus on AMPs. Then I will discuss the possibility that whether some key 

parameters can be used to both determine the combination effect and predict the 

evolution of antibiotic resistance. Based those information, a pipeline that is able to 

accomplish multiple tasks at the same time could be developed. It can determine the 

antibiotic effect, characterize combination and predict the resistance of evolution.  

 

Antimicrobial peptides: a distinct class of antimicrobials 

AMPs are evolutionarily conserved across the tree of life [23]. For example, bacteria 

secret AMPs to eradicate close residing individuals in resource-depleted environment 

[24]. In the multicellular organism, however, AMPs act as the most important 

components of innate immune system [25]. Insects which have no adaptive immune 

system, synthesize several AMPs when their immune system was challenged by 

bacteria [26]. Amphibians constantly release a layer of AMP-cocktails on their skin to 

prevent infectious bacteria and fungi [27, 28]. Moreover, antimicrobial peptides are 

also important antibacterial and antifungal substance on the human skin and in the 

mucosal secretions. Additionally, plants also use AMPs to fight against infectious 

disease [29, 30].  
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Active AMPs are usually consisting of 10-60 amino acid, they are usually cleavage of 

larger protein molecules. Mature AMPs have particular secondary structure like 

alpha-helix and beta-sheet. Some of their structures are underpinned by specific 

di-sulfate bridges [31, 32]. Some peptide chains contain large percentage of specific 

amino acids, such as proline, tryptophan and arginine. Such diversity in structure 

further relates other physical properties which depends on the spatial organization of 

amino acids residuals. AMPs therefore can be classified into hydrophilic, hydrophobic 

and cationic, but all these AMPs can form amphiphilic structures [33].  

 

Distinct structures and physical properties make AMPs excellent scavenger of 

microbes, fungi and virus. For example, classical mechanistic models predict that 

positively charged cationic AMPs can be attracted to negatively charged bacterial 

membrane. Secondary structures of these peptides further allow them to form 

polymers on the membrane and finally lyse the bacterial cell. Moreover, recent report 

shows short peptides with new functioning patterns do not lyse bacterial cell, they 

instead translocate the proteins on the membranes and interrupt energy production 

[34]. Some AMPs, like Apidaecin, reveal complex pattern of antimicrobial effect. 

When the concentration is low, it can be transported into plasma and attached on 

ribosomes to inhibit synthesis of protein [35]. While in higher concentrations, it 

functions like typical cationic peptides and kill bacteria by lysing the membrane.  

 

AMPs are able to eliminate bacteria efficiently with above distinct properties. With 

sufficient high concentration, AMPs are able to kill bacteria within one minute [36]. 

As cationic antimicrobial peptides kills bacteria by forming pores on the membrane, 

the subsequent leakage of cytoplasm will change the morphology of the surface of 

bacteria. Cellular scanning using Atomic Force Microscope (AFM) showed that the 

change of surface happens 50-200 seconds after incubation with AMPs [36]. Similar 

study using staining method also showed similar results of fast killing [37, 38]. The 

killing speed of AMPs is rather quicker than those of antibiotics, which usually varies 
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from minutes to hours [39, 40]. 

Combination effect of AMPs 

An evolutionary origin of combination 

Organisms living in a complex environment are at high risk of being infected with 

multiple pathogens. Expressing multiple anti-pathogen agents as a long-time fashion 

of combination is an advantage to overcome the potential danger from different 

aspects. This is, however, also the consequence of co-evolution between host and 

pathogen. Genes encoding several different AMPs have been identified in 

evolutionarily ancient insect [41]. Drosophila secrets cocktails of AMPs to fight 

against pathogens [42]. Among these AMPs, cecropins mainly target on the 

gram-negative bacteria, while defensins only target on gram-positive bacteria. And 

thanatin are able to kill both. Fungal infection could be eliminated by drosomycin, a 

special class of AMP in Drosophila.  

 

Combinations of AMPs which target the same pathogen have advantage in 

maintaining the immune system as well. Organisms have evolved a sophisticated 

regulatory system to manage the cost of immune response. The system manifests 

itself as using specific pattern recognition models to identify pathogens, and then 

initiating corresponding response. However, the immune system also constantly 

maintains instant antimicrobial activity to cope with those rapid-propagating 

pathogens. Such functions are commonly supported by a combination of synergistic 

AMPs, which can substantially reduce the total cost of immune response of the host. 

Co-expressing AMPs targeting gram-negative bacteria in bumblebees showed strong 

synergistic effect [43]. When managing to achieve the same effect, combination could 

reduce several times of total cost of AMPs in terms of absolute quantity. In addition, 

The reduction in absolute quantity could significantly reduce the side effects in the 

immune reaction, such as the cytotoxicity and self-immunity.  
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Combination of AMPs in vitro experiments and preclinical tests 

Since we are facing more serious problems of drug resistance, AMPs are also joining 

the campaign of fighting super bugs, while usually combined with other drugs. Most 

of the studies revealed combinations of/with AMPs are synergistic regardless of 

physical and chemical properties of AMPs [44-55]. Additionally, the synergistic effect 

is not restricted on specific targeting organisms [46, 56, 57]. Early study showed 

mammal AMPs demonstrated broad synergistic effects on several important 

pathogenic bacteria [55]. Besides, similar synergism was also found between AMPs 

and conventional antibiotics [52, 53]. Meanwhile, antagonistic effects between AMPs 

are less frequently reported. Like their evolutionary significance in the immune 

systems, synergistic combination of AMPs could be explored to reduce the toxicity 

and the cost of treatment.  

 

Quantification of combinations 

Due to the anticipated synergism between drugs, quantitative methods are needed to 

characterize the combination effects. Several classic methods, such as Loewe 

additivity [58, 59], Bliss independence [60] and mass-action models [61], have been 

widely used to determine the combination effects in pharmacology and clinical 

treatments. These methods usually require effects of both drug combinations and 

single drugs to calculate the combination index, which is mainly relied on to 

determine the combination effects, such as synergistic and antagonistic. Those are 

non-predictive methods. Recently, some predictive methods are developed to predict 

the combination effects. Such methods can directly obtain the effect of drug 

combinations based on the effect of individual drugs or their pairwise interactions 

[11-13, 62].  

 

Non-predictive methods for quantifying combinations 

For the non-predictive quantitative methods, it is necessary to collect the information 

of dosage and corresponding effects of single drugs and combinations. Non-predictive 

methods have two categories: the effects-based and dose-effect based [58]. Bliss 
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independence is one of the effect-based methods. It is built on the assumption that 

drugs in the combination do not interact with each others, and the combination effect 

is purely the probabilistic outcome of each drugs‘ effects. The effect of Bliss 

independence describing two-drug combination could be captured by following 

equation: 

1 2 1 2blissE E E E E     

The above equation describe that the combination effect in the framework of bliss 

independence is the difference sum of individual drug‘s effect and the sum of 

combination effect of any drug. The bliss independence has its limits when the drugs 

do not have an exponential dose-response curve [10]. Besides, unknown interaction 

between drugs also constraints it‘s wide application [10].  

 

Meanwhile, Loewe additivity is another wildly applied framework which is based on 

the dose-effect relation. The method looks into the concentration rather than the effect 

achieved by the concentration. In other word, it requires one to find out the equivalent 

concentration of drugs which can reach the same effect when determining the 

combination effect. This can be formulized as, 

1 2

1 2

1 ,iso ,isoC C

C C
   

Where, C1, C2 are the concentration of a given drug applied alone, C1,iso, C2,iso are the 

concentration of a given drug in the combination.  

 

The criteria of combination effects is defined by the combination index. The 

combination index of Bliss independence is between 0 and 1. The significance of a 

combination effect is decided by the statistical difference between the effect of 

combination and the effects of single drugs. The combination index of Loewe 

additivity is above 0. However, it is usually considered as synergistic when CI < 1, 

additive when CI =1, and antagonistic when CI > 1. Similar as Bliss independence, 

the difference of combination effected is also determined by the statistics.  
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Inspired by the concept of Bliss independence and Loewe additivity, similar method 

was invented to test the combination effect, for example the graph based isobologram 

effect [5, 10]. Due to the limited range of concentrations, the pharmacodynamic 

curves combined with the framework Loewe or Bliss were also introduced to 

determine the combination effect [58, 63]. However, most of these methods can only 

determine the combination effect of two drugs. High-order drug combinations are 

constrained by the intensity of laboratory work and unpredictable variations, thus new 

methods are urgently needed.  

 

Predictive methods for quantifying combinations 

Recently, new methods have been developed to predict combination effect of drugs 

with higher orders [11-14, 62, 64]. These methods are able to predict the combination 

effect based on single drug effect or drug-pair interaction, and sometimes do not 

necessarily rely on the Bliss or Loewe frame work. Only using growth data of bacteria, 

Wood and colleagues showed that high order of drug interaction obeys the statistical 

laws rather chemical law. Their striking method is implemented with a maximum 

entropy method and Isserlis theorem, in which the three- and four-drug interaction can 

be predicted by the pairwise interaction. Its power of prediction is completely 

independent of any specific mechanisms. Similar methods using fixed concentrations 

combined with the frame work of Bliss independence determined antagonism-biased 

combination effect in higher order of drug combinations [14]. Zimmer et al. extended 

the Bliss formula which embedded in the Mechaelis-Menton-like and Hill-like dose 

response curve. This method accurately predicted high order of interactions based on 

pairwise interaction [13]. Moreover, The methods are able to predict full-dose-range 

of high order interaction based on limited number of dosages [13, 65]. When 

compared with other previous models, their model showed significantly improved 

accuracy in different drug combinations. Collectively, recent advance in methods of 

determining the combination effect of drug interaction especially in high order drug 

combination could largely reduce the labor intensity in identifying the effective drug 
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combinations and also advance the clinical treatment strategies.  

Resistance evolution  

Bacteria inevitably gain resistance to any antimicrobials through selection and 

evolution. The resistance evolution and it‘s rate are determined by factors from 

various aspects. Genomic mutation, horizontal gene transfer and phenotypic changes 

all together confer the resistance to antimicrobials. However, the dynamics of 

resistance evolution is closely related to viable population size and the concentration 

of antimicrobials.  

 

General cause of resistance by mutation 

Genetic mutation plays an utterly important role in evolution of resistance. Most if not 

all of antimicrobials kill bacteria through targeting specific position of molecule and 

thus interrupting the whole metabolism of the bacterial cells. Most of these positions 

are consist of residuals of amino acids. Resistance can arise from any replacement and 

loss of these residuals. Short life cycle and relatively small genome makes bacteria 

more likely to mutate to gain resistance to any antimicrobials. Many genetic 

mutations are deleterious or neutral mutations, which either drastically reduce the 

bacterial fitness or confer no resistance at all. Those mutations confer to general 

resistance could largely increase the fitness of bacteria under drug pressure. Mutants 

modify the target on which the drug attaches are also high likely to confer resistance. 

For example, the rRNA mutation C2534U in presence of mutations of L3 and L4 

results rather high resistance to linezolid in Staphylococcus aureus [66]. Moreover, 

mutation modifying membrane will also result resistance to certain drugs. 

Over-expression and under-expression of a group of transporter will generally lead to 

multi-drug resistance, these mutations either make the cell pumps drug out stop the 

drugs entering bacterial cells [67, 68]. Over-expression of drug target or target 

protection by other proteins will also lead to resistance [69, 70]. Notably, Mutation 

under stress of antimicrobials is depended on other conditions, such as the categories 
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of antimicrobials and their gradients of concentrations. Experiments show that 

antibiotics induce higher mutation rate than antimicrobial peptides [71]. While 

exposed in long term sub-lethal concentration of norfloxacin, the genome-wide 

mutation rate of E. coli significantly increase with concentration [72].  

 

Horizontal gene transfer 

Horizontal gene transfer (HGT) is another important factor that causes resistance to 

different drugs. Antimicrobial resistant genes are highly conserved in the phylogeny 

tree of bacteria [73]. Antimicrobials are ancient weapons used bay bacteria to conquer 

the enemies in the resource competition, therefore bacteria has already evolved 

counter strategy [74, 75]. These genes are not only heritable but also transferrable 

from one population to another of the same species, even from one species to another 

[76, 77]. These genes can be transferred on the different site of genome by transposon, 

moved on plasmids then transferred to other individuals or species. Resistance to the 

last resort polymyxin antimicrobials are largely caused by plasmids-carried resistant 

genes, for example the mcr-1 [78]. 

 

Phenotypic resistance 

Phenotypic resistance contributes to the drug resistance in a condition-dependent way. 

Many antimicrobials exert their functions relying on the fast growth of bacterial cells 

which constantly provide the candidate binding target for drugs. Bacterium is able to 

instantly shut down the metabolism and turn into a dominate cell at the presence of 

drug while restore the metabolism at the absence of the drug. This phenomenon is 

called bet-hedging [79]. This is the typical strategy adapted by bacteria when facing 

pressure of beat-lactam antimicrobials [80, 81]. The switch to the dominate state can 

be enhanced by the gene hip7A in E. coli [80]. This phenomenon is not quite clear in 

other class of antimicrobial. But a recent study showed that a toggle-switch network 

in bacterial could also contribute to the phenotypic resistance by slowing down the 

growth in the presence of a ribosomal targeting antibiotic [82].  
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The mutant-selection-widow theory of resistance evolution 

Once the bacteria acquired resistance trough mutation, they will have higher fitness 

and be selected under antibiotic treatment, thus the resistance strain will soon take 

over the population. However, this dynamics is largely depended on the concentration 

and the corresponding effects of a given drug. A theoretical framework, which is 

termed as mutant selection window (MSW), incorporated with pharmacokinetics and 

pharmacodynamics has been used to determine the range of concentration (window) 

in which resistance can be selected [83-85]. Originally, the MSW is defined as the 

range of concentration which is higher than that can kill sensitive strains and lower 

than that can kill resistant strains. Latter, the lower bounder of MSW is extended to 

the intersection of pharmacodynamic curve of sensitive strain and resistant strain, as 

the experiment showed concentration below MIC of sensitive strain still select 

resistance [86]. This theoretical framework requires clear definition of the 

pharmacodynamics of both sensitive and resistant strains.  

 

A modified Hill equation has been developed to characterize the pharmacodynamics 

of antimicrobials [87]. This model includes four parameters that could be easily 

determined experimentally in the lab. The parameters include maximal growth rate of 

bacterial without drug, MIC, maximal killing rate of the drug and a shape parameter. 

This method allows one to obtain the pharmacodynamics of any drug targeting any 

bacteria species. Due to the difference in parameters of the pharmacodynamics, a 

more clearly framework is defined to characterize the evolution of resistance [88]. 

Fitness cost of different mutants and concentrations antimicrobial interact to generate 

a complex picture of mutant selection. If mutant suffers fitness cost, it is less likely 

been selected in low concentration of antimicrobials. As drug concentration increase, 

the total bacterial population will decrease, but the population of resistant strain 

remains or increase at the same time, both increase the resistance-sensitive ratio [88]. 

 

MSW also can be determined using pharmacokinetics [83, 89]. Once a drug is 
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injected into the body, it is quickly absorbed and reaches the maximal concentration. 

Then the concentration slowly drops down. Like the pharmacodynamics, the MSW 

also between the concentration that kills sensitive strain and concentration kills 

resistant strain. The pharmacokinetics of an injected drug can be easily monitored 

through sampling on different time points. However, the pharmacokinetics of 

naturally occurred antimicrobials, such as antimicrobial peptides, have rarely been 

determined since it requires determining of the quantity in real time which is possibly 

limited by techniques. Studies in beetles quantified the transcriptions in real time. 

Quantification of the expression of AMP genes in real time when the host is 

challenged by pathogens showed the change of gene expressions resembles the typical 

pharmacokinetics of antibiotics in body. The level of expression is also associated 

with types of pathogens [90, 91]. However, the mutant selection window of AMPs is 

even more difficult to determine in vivo [92].  

 

The work in this thesis 

Combination effect of antimicrobial peptides 

In the first manuscript, the combination effects of AMPs from different organism are 

studied with a pharmacodynamic method built on the frame work of Loewe Additivity. 

The results showed there is broad synergism between two-AMPs and three-AMPs 

combinations. The synergism is more pronounced in 3-AMPs combinations as 

showed high percentage of synergistic combinations and higher degree of synergism. 

This reveals the synergistic combinations do not only exist between AMPs in the 

same organisms as previously explored but also exist between AMPs in different 

organisms. In addition, the combination effects of AMPs are also reflected in the 

parameters of the pharmacodynamics. For example, the three-AMPs combinations 

with more synergism generally have lower MICs and higher kappa values, an 

indicator of dose-response sensitivity, than those of two-drug combinations. When 

compared with those of antibiotics, AMPs have steeper dose-response curves.   
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Mechanistic model explaining combination effect of antimicrobial peptides 

In the second manuscript, a mechanistic model was built to explain the synergism 

between different AMPs. As most of cationic AMPs function through attaching on the 

bacterial membrane, a mechanistic multi-hit model illustrates that AMPs randomly 

attaching and detaching membrane. When the critical amount of AMPs on the 

membrane is reached, bacterial membrane will lose its integrity which ultimately 

leads to cellular death. In particular, the model predicts a ―zombie‖ stage in which 

bacterial cell membrane was occupied by critical number of AMPs. In this stage, cells 

are doomed to die but are still temporarily alive and not able to grow any more. 

Incorporated into the frameworks of Bilss independence and Loewe additivity, the 

multi-hit model explains the synergism between AMPs from a perspective of 

molecular interaction.  

 

Predicting antimicrobial resistance 

In the third manuscripts, a model was built to predict the evolution of antibiotic 

resistance. In the first manuscript, we found a significant different in a 

pharmacodynamic parameter, kappa, between antibiotics and antimicrobial peptides. 

These information was incorporated into a simple population model based on 

pharmacodynamics, and predicted that any antimicrobials with its phamacodynamic 

properties analogous to AMPs will less likely to select resistance. These properties are 

indicated by higher kappa value, higher killing rate and lower mutation rate in 

pharmacodynamics. The model is also consistent with the previous conceptual 

framework of mutant selection window.  

 

The path leading to resistance under different treatment regime.  

In the fourth manuscript, the previous model was extended to a model with multi-step 

mutations which allows us to investigate more details in the process of resistance 

evolution. In this model, each mutant was described with a set of pharmacodynamics 

parameters. With this model, several important questions were studied, which 
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includes how MIC will increase during the evolution, how fitness cost influences the 

emergence of resistance. In addition, pharmacokinetics and treatment strategy are also 

taken into consideration in this model. The results showed that these two factors do 

not influence the range of drug concentration that select resistance.  
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Antimicrobial peptides (AMPs) are ancient and conserved across the tree of life. Their efficacy over evolutionary time has been
largely attributed to their mechanisms of killing. Yet, the understanding of their pharmacodynamics both in vivo and in vitro is
very limited. This is, however, crucial for applications of AMPs as drugs and also informs the understanding of the action of
AMPs in natural immune systems. Here, we selected six different AMPs from different organisms to test their individual and
combined effects in vitro. We analyzed their pharmacodynamics based on the Hill function and evaluated the interaction of
combinations of two and three AMPs. Interactions of AMPs in our study were mostly synergistic, and three-AMP combinations
displayed stronger synergism than two-AMP combinations. This suggests synergism to be a common phenomenon in AMP in-
teraction. Additionally, AMPs displayed a sharp increase in killing within a narrow dose range, contrasting with those of antibi-
otics. We suggest that our results could lead a way toward better evaluation of AMP application in practice and shed some light
on the evolutionary consequences of antimicrobial peptide interactions within the immune system of organisms.

Combinations of drugs can result in three different forms of
interactions: synergism, additivity, and antagonism (1–4);

i.e., the effect of two drugs combined is stronger, equal, and
weaker than that of the individual drug in the equivalent dose,
respectively. Combination treatment is supposed to potentially
eliminate resistant strains, delay the evolution of drug resistance,
reduce the dosage of individual drugs, and hence, diminish side
effects (3, 5, 6). A few recent studies, however, report that the
success of combination therapy is context dependent, particularly
when targeting both sensitive and resistant strains with a combi-
nation of drugs of unknown interaction (7–9). These results dem-
onstrated that synergistic drug pairs can efficiently eradicate bac-
teria but exacerbate selection of resistance, while antagonistic
drug pairs showed the reverse trends.

Various methods have been developed to address the efficacy
of mostly two-way drug combinations (1, 2). One of the most
commonly used approaches in both theoretical and applied re-
search is Loewe additivity (2, 9–11). Here, the effect of two drugs
in combination is determined by the sum of ratios of concentra-
tions of drugs in combination divided by concentration of drugs
used individually. Note that both the individual drug concentra-
tions and the combined concentrations have the same effect on
bacterial growth; we call these concentrations isoeffective concen-
trations. Theoretically, if the isoeffective concentrations of equiv-
alent effect level achieved in a matrix of gradients of concentra-
tions were connected by line, a concave line represents synergism,
while a convex line represents antagonism (2, 12, 13). Recently, a
mechanism-free approach was used successfully to predict the
outcome of three antibiotics on the interaction between all three
possible two-way combinations (14, 15), but the results do not
particularly address the question about the nature of interaction
(synergism, additivity, or antagonism). How these approaches can
be used for a new class of antimicrobials, antimicrobial peptides
(AMPs), is basically unknown. Studies on combinatorial effects of
antimicrobial peptides, especially within a pharmacodynamics
framework, are scarce (16, 17).

Antimicrobial peptides (AMPs), which form an important
component of immune defenses in multicellular organisms (18,
19), have been proposed and are being used as new antibiotic

drugs. Some AMPs are already commercially available and ready
to be applied in clinical practice to replace or accompany conven-
tional antibiotics (20). Additionally, they are supposed to be less
likely to induce resistance and mutagenesis in the natural environ-
ment, although resistant strains can be obtained under intensive
selection in the laboratory (21–23). When AMPs are used in med-
ical applications, they necessarily interact with the patient’s own
AMPs. Some experimental studies have addressed the effect of
individual pairs of AMPs within the context of innate immunity.
Coexpressed AMPs on frog skin, PGLa and magainin-2, are syn-
ergistic when applied to both Escherichia coli and tumor cells (16).
Moreover, AMPs from mammals (17) and insects (24, 25) were
shown to synergize. Hence, understanding general principles of
AMP interaction will also contribute to our understanding of in-
teractions of AMPs as immune effectors.

Here, we take a pharmacodynamic approach to study the com-
bination effects of AMPs and with combinations of two and three
AMPs. Pharmacodynamics capture the functional relationship
between drug dosage and bacterial growth or death. We use a
modeling approach based on the Hill function (26–28). This
model estimates four parameters: MIC, �, �min, and �max (Fig.
1A). The minimal concentration at which antibiotic substances
can inhibit growth of bacteria is MIC; � depicts the steepness of
the curve relating bacterial growth to drug concentration (Fig.
1B); �min and �max represent the minimum and maximum growth
rates of bacteria, respectively. We studied the pairwise and three-
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way interactions of AMPs using this pharmacodynamic approach
embedded in a Loewe additivity framework. According to the
work of Loewe, this was achieved by using either one-half (pair-
wise) or one-third (three-way) of the concentration of each indi-
vidual drug (see Materials and Methods) (10). We examined the
nature of the interactions, synergism or antagonism, and the con-
centration dependency of the killing. Using a derivative of the
human AMP LL-37 enabled us to study interactions between
AMPs expressed by patients’ innate immunity and AMPs em-
ployed as drugs.

MATERIALS AND METHODS
Bacteria and media. Escherichia coli MG1655 was grown in Luria-Bertani
(LB) broth at 37°C with aeration at 220 rpm in 50-ml tubes. Two hundred
microliters of overnight culture was resuspended into 15 ml fresh LB
broth, cultured under the same conditions for an additional 2 h, and then
used for subsequent assays. Mueller-Hinton (MH) broth was used for the
assay of MICs and time-killing curves.

AMPs and antibiotics. We used six different AMPs from different
classes of organisms that are commercially available (AnaSpec): cecropin
A (Cec) (insect), LL 19-27 (LL) (mammal), melittin (Mel) (insect), pexi-
ganan (Pex) (synthesized AMP, an analog of magainin II; a kind gift of
Michael Zasloff), indolicidin (Ind) (mammal), and apidaecin (Api) (in-
sect) (see Table S1 in the supplemental material). These AMPs are effec-
tive on either Gram-positive or Gram-negative bacteria (see reviews in
references 29 and 30). However, some of these AMPs, e.g., melittin and
pexiganan, have anticancer effects (16, 31, 32), which means that they are
potentially toxic to human cells, such as erythrocytes. Recently, some
low-cell-toxic and serum-stable AMPs have also been under development
(33, 34). All these AMPs were dissolved in distilled water with an initial
concentration of 1 mg/ml, 5 mg/ml, 10 mg/ml, 1 mg/ml, 1 mg/ml, and 25
mg/ml, respectively, as stock solutions. All antibiotics—ampicillin, cipro-
floxacin, gentamicin, kanamycin, neomycin, rifabutin, spectinomycin,
and tetracycline—were also dissolved in distilled water and made into
10-mg/ml stock solutions. All the solutions of AMPs and antibiotics were
stored at �20°C in a dark environment.

MIC determination. According to a standard protocol (35), stock
solutions of AMPs were diluted in MH broth and then diluted in 96-well
plates with a 2-fold gradient, that is, from 0.25 �g/ml to 128 �g/ml. All the

gradients of antibiotics were from 0.02 �g/ml to 50 �g/ml, except that the
gradient of ciprofloxacin was from 0.002 �g/ml to 1 �g/ml. Approxi-
mately 5 � 105 log-phase bacteria were added to each well. A positive
control containing MH broth and bacteria and a negative control contain-
ing only MH broth were included in each plate, and plates were incubated
at 37°C overnight.

Measuring killing curves. To estimate killing curves of each AMP and
all possible combinations of AMPs, 100� MICs of AMPs were combined
as a volume ratio of 1:1 and 1:1:1 in two-AMP combinations and three-
AMP combinations; hence, the concentrations of individual drugs are
halved or reduced by two-thirds. Thus, Loewe additivity would result in a
MIC of any one combination equal to the MIC of the individual drugs (see
equations 5 and 6). Thus, 21 two-AMP combinations and 20 three-AMP
combinations were generated. An AMP(s) was diluted, starting with 100�
MIC, in a 96-well plate to form a 2-fold gradient of concentrations, and
2 � 106 log-phase bacteria were added to a total volume of 100 �l. The
plates were incubated at 37°C. Killing was assessed within 1 h, as killing by
AMPs is very fast (36, 37). Ten microliters of a mixture of AMPs and
bacteria was taken out every 20 min and then immediately diluted in
saline solution and plated on the solid agar plates. These solid agar plates
were transferred into a 37°C incubator and cultured overnight for CFU
determination. The limit of detection in our system is 100 CFUs.

Modeling killing curves. To model the killing curve, the relationship
between the concentration of AMP(s) and the killing and/or growth rate
of exposed bacteria, we used a Hill function (26):

�(a) � Emax
�a ⁄ EC50��

1 � �a ⁄ EC50�� (1)

Here, �(a) is the killing rate at a given concentration of AMP(s); a is a
given concentration; Emax is the maximal killing rate of the given AMP(s).
� is the Hill coefficient. We then defined growth rate �(a) as follows:

�(a) � �max � �(a) (2)

Here, �max is the maximal growth rate of bacteria without AMP(s). The
maximum effect of AMP(s) is defined by

Emax � �max � �min (3)

Thus, the effect of AMP(s) in a given concentration, �(a), can be
rewritten as

FIG 1 Schematic illustration of four parameters, MIC, �max, �min, and �, predicted by the Hill function. The MIC is estimated by the lowest concentration that
inhibits the growth of the whole treated bacterium population. �max and �min represent the maximal and minimal growth rates of bacteria under gradients of
drug treatment, respectively. � predicts the shape and slope of the pharmacodynamic curve; the higher the � value, the steeper the pharmacodynamic curve.

Yu et al.

1718 aac.asm.org March 2016 Volume 60 Number 3Antimicrobial Agents and Chemotherapy

 on January 5, 2018 by F
U

 B
erlin, U

niv.-K
linikum

 B
enjam

in F
ranklin

http://aac.asm
.org/

D
ow

nloaded from
 



�(a) �
��max � �min ��a ⁄ zMIC��

�a ⁄ zMIC�� � �min ⁄ �max
(4)

zMIC is the estimated MIC. Growth rate and killing rate of bacteria are
estimated from the time-kill curves as the change of CFU over time by
using generalized linear regression. The data for CFU were all log trans-
formed. The start point of linear regression was the first measurement. We
then fitted the growth rate and killing rate with equation 4 based on the
Markov chain Monte Carlo (MCMC) method using rjags (38) in R (39)
and generated the pharmacodynamic curves.

Determining the effect of combination. Based on the Hill function
and isobologram analysis, we obtained the isoeffective concentrations of
single drugs and of combinations which achieved a given percentage of
their maximal effects or fraction level. The Loewe additivity model defines
the additive effect of isoeffective combinations of drugs that result in a
certain effect. For example, the combination of drug A and drug B in the
isoeffective concentrations, which are CisoA and CisoB, can achieve a level
of effect which can also be achieved individually by drug A or drug B with
a concentration of CA or CB, respectively. Mathematically, the combina-
tion effect of drug A and drug B is defined as follows:

CI �
CisoA

CA
�

CisoB

CB
(5)

For three-drug combinations

CI �
CisoA

CA
�

CisoB

CB
�

CisoC

CC
(6)

Additive combination effects were then defined by a combination index
(CI) equal to 1, antagonism was defined as a CI greater than 1, and syn-
ergism was defined as a CI lower than 1.

RESULTS
Killing and pharmacodynamic curves. We tested the in vitro ef-
fects of single AMPs, two-AMP combinations, and three-AMP
combinations on E. coli. All killing curves were obtained by count-
ing viable CFU after treatment (see Fig. S1 in the supplemental
material). In most cases, the number of surviving bacteria drasti-
cally decreased as a function of time at higher concentrations
while slightly increasing at lower concentrations. Killing occurred
very quickly at higher concentrations in our system (i.e., bacterial
densities below the limit of detection).

The four pharmacodynamic parameters, MIC, �, �max, and
�min, were estimated by the MCMC method using the generalized
linear regression fitted killing rate as a function of concentrations
of AMP(s) (Fig. 2 and 3; also see Table S2 in the supplemental
material). Notably, all the single AMPs and two- and three-AMP
combinations had almost the same �min (analysis of variance
[ANOVA], �min, F1,39 � 1.855, P � 0.181) (Fig. 3; see also Table S2
in the supplemental material). �max values were also identical in
different treatments as the growth rate of bacteria in low concen-
trations of AMP(s) was presumably close to the natural growth
rate. Two pharmacodynamic parameters, MIC and �, varied
among different treatments, with three-AMP combinations
having the lowest MICs and the highest � values (ANOVA, MIC,
F1,39 � 6.647, P � 0.0138; �, F1,39 � 7.447, P � 0.00935) (Fig. 3;
see also Table S2 in the supplemental material). All the treatments
showed nearly the same pharmacodynamic trend: a sharp de-
crease of net bacterial growth with an increasing concentration of
AMP(s) as depicted by �.

Most AMP combinations are synergistic, but synergy is
stronger in three-AMP combinations. To determine the interac-
tion of AMPs, we used Loewe additivity (see equations 5 and 6).
The combination index was calculated for concentrations be-

tween 5% and 95% of the maximal effect (equation 3). For two-
AMP combinations, we found that most of the two-AMP combi-
nations (67%) were completely synergistic (combination indexes
were lower than 1) within the effect range, except for the combi-
nation of apidaecin and LL 19-27 (ApiLL), which was antagonistic
across the whole range; the combinations PexApi and IndApi were
antagonistic in low-concentration combinations but synergistic in
high-concentration combinations (Fig. 4; also see Fig. S2 in the
supplemental material). However, the combinations CecApi and
MelApi had a reverse trend, as they were synergistic in lower-
concentration combinations and antagonistic in higher-concen-
tration combinations (Fig. 4; see also Fig. S2 in the supplemental
material). Eighty-five percent of three-AMP combinations were
completely synergistic within the effect range while the combina-
tion LLPexApi was completely antagonistic; LLIndApi showed
synergistic effects in lower-concentration combinations and an-
tagonistic effects in higher-concentration combinations, but Me-
lIndApi had the reverse trend (Fig. 4; see also Fig. S2 in the sup-
plemental material).

Another interesting finding is that three-AMP combinations
generally have stronger effects than do two-AMP combinations at
a given fraction level within the effect range. The average combi-
nation indexes of three-AMP combinations were 30% lower than
those of two-AMP combinations (Student’s t test, t � 8.2016, df �
606.57, P � 1.42e�15) (Fig. 5). We observed no differences be-
tween effects of different fractions for the three-way interactions
(ANOVA, F1,661 � 1.332, P � 0.2488) (Fig. 5).

Relationship between � values and selection. We compared
the � values of different combinations of AMPs and between
AMPs and antibiotics. � values are higher the more AMPs that are
combined. We also found that � values of AMPs are significantly
higher (ANOVA, F1,77 � 150.5, P � 0.001) (Fig. 6) than those of
antibiotics, for data obtained in both our laboratory and other
laboratories (ANOVA, F1,36 � 1.591, P � 0.215) (Fig. 6).

DISCUSSION

Pharmacodynamic approaches have been frequently applied to
conventional antibiotics (2, 11, 26, 40). A good understanding of
how antimicrobial peptides eradicate bacteria in complex systems
not only relies on the molecular mechanisms of killing but, im-
portantly, necessitates investigation of pharmacodynamics in
vitro, as done here and in vivo (C. Zanchi, P. R. Johnston, and J.
Rolff, unpublished data). Generally, the maximal killing values
were almost identical in treatments with all the AMPs and their
two- and three-way combinations, which means that high con-
centrations of an AMP(s) may eradicate bacteria with similar ef-
ficiencies. Due to fast killing of AMPs and the limit of detection in
our system, the real maximal killing rate might be masked at
higher concentrations, e.g., concentrations in which the limit of
detection is reached within 20 min. However, the MIC and � sig-
nificantly varied among single AMPs and two- and three-AMP
combinations. As numbers of AMPs increased in combination,
the MIC of that combination decreased, with the lowest value seen
in three-AMP combinations, and � was much higher in three-
AMP combinations (Fig. 3). More AMPs combined with lower
MICs demonstrate that the absolute quantity of AMP needs to be
decreased to achieve the same killing. Higher � values in com-
bined AMPs result in a drastic decrease in bacterial killing rate
within a narrow range of concentrations of the AMP(s). The com-
bination of AMPs might improve the efficiency of bacterial killing.

Synergistic Effects of Antimicrobial Peptides
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Taken together, the decreasing MIC and increasing � values in
combinations with increasing numbers of AMPs suggest that syn-
ergism is common in AMP combinations (17, 24, 41).

We observed broad synergistic effects in almost all the two- and
three-way combinations. Although some AMPs, like apidaecin,
had a relatively weak effect with a high MIC, the killing could still
be enhanced by adding one or more AMPs with stronger individ-
ual effects. Synergism, albeit not within a pharmacodynamics

framework, has been reported for 2-way combinations of antibi-
otics (8, 42), AMPs (16, 17, 24), antimicrobial peptoids (43), an-
tibiotics and AMPs (44, 45), and AMPs and antimicrobial pep-
toids (43). The AMPs, originating from different species in our
experiment, showed robust synergism, which suggests a general
effect.

The molecular mechanisms of interaction, especially antago-
nisms, of AMPs are largely unknown. As most AMPs target the

FIG 2 Pharmacodynamic curves of AMPs. The pharmacodynamic curves of AMPs were obtained by fitting killing curves to the Hill function (see equation 4).
Combinations of two or three AMPs were differentiated. The curves illustrate the effects (reflected as net bacterial growth rate) of increasing the concentrations
of AMP(s). The ribbon represents the 95% confidence interval.

Yu et al.

1720 aac.asm.org March 2016 Volume 60 Number 3Antimicrobial Agents and Chemotherapy

 on January 5, 2018 by F
U

 B
erlin, U

niv.-K
linikum

 B
enjam

in F
ranklin

http://aac.asm
.org/

D
ow

nloaded from
 



membrane of pathogens, their interactions are unlikely to directly
disrupt the metabolic network in the cell like certain antibiotics. A
recent study suggested that synergism was caused by the conjuga-
tion of coapplied AMPs, which form a supermolecule and better-
stabilized pores (41). This is also confirmed by chemically con-
joined synthesized peptides (46). Furthermore, pore-forming
peptides can also assist other coapplied transmembrane AMPs to
quickly invade bacterial cells and substantially interrupt the me-
tabolism (47).

In our pharmacodynamic model, the important parameter �
depicts the steepness of the pharmacodynamic curve and is a mea-
sure of the sensitivity of the response of the bacteria to changes in
the concentrations of the antimicrobial substances. A steeper

pharmacodynamic curve with higher � values illustrates that bac-
teria are very sensitive to the change of concentrations of AMPs
and antibiotics, which means that the given antibiotic substance
(e.g., combinations of AMPs) has a narrower range of concentra-
tions exerting selection on bacteria.

Additionally, � value could be an important indicator of resis-
tance selection of given antibiotic agents. Traditionally, the pres-
ence of antimicrobial substances above the MIC is thought to
favor resistant strains. The mutant selection window (MSW) is
defined as the difference in the MICs of a resistant and a suscep-
tible strain (48, 49). Thus, the MSW can be specifically defined as
the range between the concentration killing all the sensitive strains
and the concentration killing all the resistant strains. Additionally,
MSW also can be defined as a range of concentrations which can
de novo select mutant strains from a completely sensitive popula-
tion (50–52). Higher � values in combinations of AMPs denote
a steeper pharmacodynamic curve, which means that the range
of concentrations selecting resistance—the MSW— can be nar-
rowed. Especially, the sub-MIC part of the MSW is predicted to be
very small for high � values. A previous theoretical study also
demonstrated that the synergistic contribution of the immune
system can potentially narrow the mutant selection window of
antibiotics (53). We observed a synergistic interaction in combi-
nations of AMPs that mirrors, in the case of LL 19-27, interactions
between the immune system and drugs. Higher � values of AMPs
than of antibiotics might partially explain the fact that bacteria are
unlikely to develop resistance to AMPs in nature, although resis-
tant strains can emerge under intensive selection in the laboratory
(21, 54).

Conclusion. Our study suggests that the synergistic effect be-
tween AMPs may be a common phenomenon, as we observed
strong synergistic interactions in two-AMP and three-AMP com-
binations. Interestingly, these three-AMP combinations are even
more synergistic than two-AMP combinations. If synergistic in-
teractions of AMPs are ubiquitous, than two practical implica-
tions arise: (i) AMPs that strongly synergize with host AMPs
should be utilized and (ii) combinations provide the opportunity
to reduce side effects, as they lead to an overall reduction in dos-

FIG 3 Variations of MIC, �, and �min in the Hill function predicted by the MCMC method. Results showed that these parameters vary among combinations with
different numbers of AMPs. MICs declined with increasing numbers of AMPs in combination (ANOVA, F1,39 � 6.647, P � 0.0138); combinations with three
AMPs had the highest � values (ANOVA, F1,39 � 7.447, P � 0.00935). �min (Psimin) did not show significant differences among single AMPs and two- and
three-AMP combinations (ANOVA, F1,39 � 1.855, P � 0.181).

FIG 4 Combination index of AMPs applied at concentrations which can
achieve 50% of their maximal effect (E50). At E50, all the combinations with Api
(except the combination of Api and Mel) showed antagonistic effects in two-
AMP combinations, but only two combinations, ApiIndMel and ApiLLPex,
showed antagonistic effects in three-AMP combinations. The gradient of col-
ors represents different levels of each interaction.
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age. In the context of innate immunity, selection should favor
organisms producing AMP cocktails. This can be considered a
cost-efficient way of reducing bacterial loads in a host (19, 55).

Long-lasting coexpression of combinations of AMPs has been
recorded in Xenopus laevis (56) and Tenebrio molitor (19), where it
is correlated with metabolic suppression. Thus, evolving a more
efficient killing system based on a relatively energy-constrained
system, which expresses only a limited number of AMPs, is nec-
essary and practical. A function of synergism among AMPs is one
of the possible ways to mitigate the costs.

Our results have some implications for the applied use of
AMPs as drugs. The production of AMPs is currently expensive
(20). The broad synergism observed in our experiment means that
combined applications of AMPs could also reduce the consump-
tion of total AMPs just as in the immune system, which could

eventually save costs of treatment and reduce toxicity. As humans
express AMPs such as LL-37 in their innate immune system, syn-
ergisms between these AMPs and AMPs applied as drugs should
be taken into account. In our study, the human AMP derivative LL
17-29 synergized with almost all combinations of AMPs. Though
resistance to single AMPs evolves readily in vitro, it is might be less
likely under combinations (54). It is possible that in some situa-
tions combinations delay the development of resistance in medi-
cal practice, as pathogens could pay a higher cost to evolve resis-
tance to multidrug treatment (57–60).
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Appendix 

Figure S1 

The killing curve of E.coli under treatment of different AMPs and their combinations 

in different concentrations. The AMPs and their combinations are marked on each 

panel. Numbers behind represent different biological replicates. 
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Figure S2 

Combination Index of different fraction level within the range of effect (see Figure 1). 

Values above, below and on one represent synergism, antagonism and additivity in a 

given combination, respectively. 
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Table S1. 

The details of AMPs used in current study.  

Name Abbreviations Sequence Molecular 

Weight 

Source MIC 

(μg/ml) 

Cecropin A Cec KWKLFKKIEKVGQNIRDGIIKAGPAVAVVGQATQI

AK-NH2 

4004.8 AnaSpec 1 

LL 17-29 LL FKRIVQRIKDFLR 1719.1 AnaSpec 16 

Melttin Mel GIGAVLKVLTTGLPALISWIKRKRQQ-NH2 2846.5 AnaSpec 4 

Pexiganan  Pex GIGKFLKKAKKFGKAFVKILKK-NH2 2477.2 Michael 

Zasloff 

2 

Indolicidin Ind ILPWKWPWWPWRR-NH2 1906.3 AnaSpec 4 

Apidaecin IB Api GNNRPVYIPQPRPPHPRL 2108.4 AnaSpec 4 
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Table S2. The four parameters zMIC, κ, ψmax and ψmin which are extracted from the 

fitting to the Hill function. Numbers in brackets represent lower and upper of 95% 

confidence intervals.   

AMP(s) zMIC
a
 (lower,upper)  κ (lower,upper) ψmax (lower,upper) ψmin (lower,upper) 

Api 46.40(39.1,52.94) 4.82(3.00,7.90) 0.18(0.13,0.23) -3.29(-5.04,-1.91) 

ApiCec 0.59(0.49,0.70) 3.97(3.29,4.80) 0.25(0.10,0.38) -5.86(-5.97,-5.74) 

ApiLL 13.73(11.63,16) 2.42(2.06,2.82) 0.25(0.18,0.31) -7.29(-8.05,-6.55) 

ApiMel 8.94(7.19,10.59) 2.98(2.47,3.53) 0.20(0.11,0.29) -5.90(-6.23,-5.60) 

ApiPex 11.00(10.58,11.44) 7.37(6.39,8.46) 0.32(0.26,0.36) -5.82(-5.92,-5.73) 

Cec 0.32(0.28,0.37) 6.02(5.17,6.84) 0.12(0.03,0.22) -5.83(-5.89,-5.77) 

CecInd 0.27(0.24,0.31) 4.65(4.19,5.15) 0.19(0.09,0.30) -5.83(-5.90,-5.77) 

CecLL 0.25(0.20,0.30) 6.09(5.07,7.27) 0.13(0.01,0.24) -5.83(-5.91,-5.75) 

CecMel 0.37(0.27,0.46) 5.12(3.69,7.06) 0.23(0.03,0.38) -5.84(-5.95,-5.73) 

CecPex 0.39(0.17,0.50) 5.84(4.06,7.79) 0.13(0.00,0.25) -5.84(-5.94,-5.75) 

Ind 5.20(4.14,6.28) 3.73(2.85,4.79) 0.30(0.17,0.42) -5.78(-6.01,-5.56) 

IndApi 11.44(9.56,13.34) 4.45(3.47,5.60) 0.28(0.18,0.37) -5.79(-6.00,-5.58) 

IndLL 5.11(4.68,5.56) 3.58(3.24,3.94) 0.27(0.22,0.32) -5.93(-6.03,-5.84) 

IndPex 1.94(1.67,2.12) 7.39(5.39,8.93) 0.24(0.18,0.30) -5.83(-5.89,-5.77) 

LL 10.23(8.70,11.82) 3.42(2.84,4.05) 0.23(0.14,0.31) -6.08(-6.32,-5.86) 

Mel 7.22(6.57,7.85) 4.13(3.79,4.51) 0.17(0.12,0.22) -5.64(-5.74,-5.52) 

MelInd 3.32(2.78,3.86) 2.69(2.30,3.05) 0.32(0.22,0.43) -5.90(-6.08,-5.71) 

MelLL 3.46(3.04,3.92) 3.34(2.91,3.81) 0.31(0.21,0.40) -5.81(-5.96,-5.65) 

MelPex 1.34(1.09,1.73) 3.23(2.67,3.75) 0.20(0.09,0.35) -5.85(-6.01,-5.69) 

Pex 4.19(3.86,4.54) 4.84(4.23,5.51) 0.27(0.20,0.35) -5.83(-5.94,-5.71) 

PexLL 4.03(3.38,4.68) 3.69(3.11,4.36) 0.27(0.14,0.38) -5.83(-6.02,-5.64) 

CecIndApi 0.74(0.70,0.78) 7.42(6.74,8.09) 0.21(0.15,0.26) -5.82(-5.87,-5.78) 

CecLLApi 0.35(0.32,0.38) 5.24(4.55,5.79) 0.17(0.10,0.23) -5.82(-5.87,-5.78) 

CecLLInd 0.25(0.06,0.28) 5.88(5.55,6.40) 0.06(0.00,0.11) -5.83(-5.87,-5.79) 

CecLLMel 0.14(0.07,0.30) 7.05(6.44,7.71) 0.00(0.00,0.10) -5.83(-5.87,-5.78) 

CecLLPex 0.28(0.12,0.31) 7.50(6.75,8.27) 0.07(0.00,0.12) -5.83(-5.87,-5.79) 

CecMelApi 0.65(0.61,0.68) 6.63(6.06,7.20) 0.22(0.16,0.28) -5.83(-5.87,-5.78) 

CecMelInd 0.51(0.45,0.57) 7.15(5.19,8.60) 0.20(0.14,0.27) -5.84(-5.89,-5.79) 

CecMelPex 0.49(0.46,0.52) 5.21(4.65,5.79) 0.30(0.24,0.36) -5.83(-5.87,-5.78) 

CecPexApi 0.69(0.63,0.77) 5.79(5.06,6.67) 0.16(0.10,0.23) -5.82(-5.87,-5.76) 

CecPexInd 0.27(0.25,0.29) 7.97(6.80,8.89) 0.32(0.20,0.43) -5.97(-6.07,-5.88) 

LLIndApi 5.99(5.59,6.44) 2.32(2.16,2.49) 0.42(0.38,0.47) -5.91(-6.05,-5.77) 

LLMelApi 3.18(2.94,3.50) 4.67(4.08,5.42) 0.24(0.19,0.29) -5.80(-5.87,-5.73) 

LLMelInd 2.00(1.83,2.17) 5.65(5.22,6.03) 0.09(0.06,0.14) -5.79(-5.85,-5.74) 

LLMelPex 1.58(1.42,1.80) 7.19(6.13,8.99) 0.15(0.10,0.20) -5.77(-5.82,-5.72) 

LLPexApi 14.94(13.89,16.15) 4.90(4.22,5.68) 0.34(0.30,0.38) -5.89(-5.99,-5.78) 

LLPexInd 3.61(3.35,3.87) 3.65(3.36,3.96) 0.29(0.23,0.34) -5.86(-5.95,-5.77) 

MelIndApi 8.62(7.41,9.98) 4.47(3.89,5.15) 0.15(0.06,0.22) -5.87(-6.03,-5.70) 

MelPexApi 2.71(2.18,3.18) 5.21(4.02,6.60) 0.13(0.05,0.21) -5.78(-5.89,-5.68) 

MelPexInd 1.58(1.46,1.69) 8.05(7.01,8.92) 0.19(0.14,0.24) -5.83(-5.87,-5.78) 

PexIndApi 3.82(3.42,4.15) 6.30(4.97,7.39) 0.28(0.24,0.32) -5.83(-5.89,-5.77) 

a, The unit of zMIC is not μg/ml in this table, but the times of original MIC of each AMP(s). We set 

the initial concentration of AMP(s) to 100 times of original MIC when we were doing the experiment.  
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Abstract  

 

Antibiotic resistance constitutes one of the most pressing public health concerns. 

Antimicrobial peptides of multicellular organisms are considered part of a solution to 

this problem, and AMPs produced by bacteria such as colistin are last resort drugs. 

Importantly, antimicrobial peptides differ from many antibiotics in their 

pharmacodynamic characteristics. Here we implement these differences within a 

theoretical framework to predict the evolution of resistance against antimicrobial 

peptides and compare it to antibiotic resistance. Our analysis of resistance evolution 

finds that pharmacodynamic differences all combine to produce a much lower 

probability that resistance will evolve against antimicrobial peptides. The finding can 

be generalized to all drugs with pharmacodynamics similar to AMPs. 

Pharmacodynamic concepts are familiar to most practitioners of medical 

microbiology, and data can be easily obtained for any drug or drug combination. Our 

theoretical and conceptual framework is therefore widely applicable and can help 

avoid resistance evolution if implemented in antibiotic stewardship schemes or the 

rational choice of new drug candidates.   
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Introduction 

 

Antibiotic resistance is prevalent (1) and evolves quickly. It takes only a few years 

from the introduction of a new antibiotic to the clinic until resistant strains emerge(2). 

Prudent use and the introduction and development of novel antibiotics are currently 

considered to be the most effective ways to tackle resistance evolution(3). The 

prediction of when and how antibiotic resistance evolves and spreads is notoriously 

difficult, but would be extremely informative for antibiotic stewardship and the 

development of new drugs. 

 

Amongst the new drugs under development are antimicrobial peptides (AMPs)(4). 

AMPs are peptides that have spatially explicit hydrophobic and cationic residues(5). 

Note that for example polymixins (including colistin) are usually subsumed under 

antibiotics, also fall into this category as they are AMPs of bacterial origin(6),(7). One 

of the alleged advantages of AMPs is that bacterial resistance would evolve much 

more slowly than against antibiotics(5, 8), a highly desirable property(9).  

 

We have recently demonstrated that AMPs from multicellular organisms affect 

growing bacterial populations differently from antibiotics, i.e. they differ in their 

pharmacodynamics (or dose-response relationship)(10). A similar observation has 

been reported for colisitin a last resort drug to treat Pseudomonas 

infections(11) .Pharmacodynamic characteristics of susceptible and resistant bacterial 

strains can be used to illustrate the selection of resistance under treatment with range 

of dosage(12).Such application is based on the concept of the ‗mutant selection 

window‘ (MSW, Fig 1)(13, 14). The MSW has been successfully applied in animal 

models, demonstrating its value to understand resistance emergence in vivo(15). The 

width of the mutant selection window is partly determined by the steepness of the 

pharmacodynamic curve (see Fig 1). Importantly the concentration range between no 

killing and maximal killing is much narrower for AMPs than antibiotics, resulting in a 

much steeper curve. The maximum killing rate of AMPs is much higher than of 
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antibiotics, as reflected in quicker killing time(16). Another difference relevant to the 

evolution of resistance is the finding that many antibiotics increase mutation rates of 

bacteria(17, 18),(19), but the AMPs tested so far do not show such an effect as they do 

not elicit bacterial DNA damage responses (17, 18). 

 

Here we use a pharmacodynamics approach that has been widely used to describe 

sigmoid dose-response relationships (20-23) to study the evolution of resistance of a 

homogeneous population. Our work uses the formulation of pharmacodynamic 

function from Regoes et al(20). We particularly explored how the steepness of the 

pharmacodynamic curve (described by the the Hill coefficient κ), together with other 

pharmacodynamic parameters determine the probability of resistance evolution(20). 

The potential importance of the Hill coefficient κ is often overlooked  in many 

pharmacodynamic models, where it simply set to 1 for all drugs(24). Recent work 

includes the Hill coefficient (25, 26), indicating the importance of this 

pharmacodynamic parameter. 

 

We use this approach with different parameter values for κ, derived from empirical 

data, as this allows us to calculate the size of the mutant selection window that 

generalizes over all possible resistant strains. Gullberg et al. demonstrated(14) that 

resistant mutants are already under positive selection below the MIC (minimum 

inhibitory concentration) of the susceptible strain. We therefore use the mutant 

selection concentration (MSC, Fig 1A) as the lower boundary, not the MIC of the 

sensitive strain that was used previously(12, 13). Using empirical parameter estimates 

for AMPs and antibiotics, we show that the probability of resistance evolution against 

AMPs (or any drug with similar pharmacodynamics properties) is much lower than 

for antibiotics. We therefore provide a robust and generalizable predictive framework 

for studying the evolution of drug resistance. This is particularly useful to apply when 

new drugs are introduced, i.e. before resistance has evolved. 
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Results 

 

The mutant selection window (Fig 1) shows the concentration of an antimicrobial 

under which susceptible strains are suppressed, but resistant strains can still grow(13). 

We show that the lower bound of the mutant selection window (MSC) can be 

calculated based solely on the pharmacodynamics of the susceptible strains and the 

costs of resistance (Fig 1A, Fig 2A, equation 3). The cost is defined here as the 

reduction of growth rate in a drug free environment.   

 

The pharmacodynamics of AMPs and antibiotics differ significantly(10): the 

pharmacodynamic curves of AMPs are much steeper as captured by a higher Hill 

coefficient κ (see Fig 2A); the step from a concentration with no effect to a killing 

concentration is therefore much smaller. This feature is likely due to a higher number 

of ―hits‖ that AMPs need to deliver to bacteria to kill them and perhaps cooperative 

binding of AMPs molecules to the cell membrane(27). This results in a narrower 

MSW for AMPs than antibiotics The MSW opens at lower concentrations when the 

costs of resistance are low. Our re-analysis of data on antibiotic resistance against a 

variety of antibiotics in a number of different bacterial species (data from(28)) shows 

that the upper bound of the MSW correlates with the cost of resistance (Fig 2B). 

Taken together we are now in a position to estimate the size of the MSW for any drug, 

if estimates of pharmacodynamic parameters based on the sensitive strains, including 

the MIC, the maximum effect and the steepness of the pharmacodynamics curve are 

available (Fig 1A, Fig 2C).   

 

Next we wanted to explore if the differences between AMPs and antibiotics in the 

width of the MSW correlated with different probabilities of drug resistance evolution 

within a host. A further difference between AMPs and antibiotics is that some 

antibiotics increase mutagenesis but AMPs do not(17, 18). We incorporated this 

difference in addition to the difference in the steepness of the pharmacodynamics 

relationship into a stochastic model describing bacterial replication and evolution 



Chapter 5 Predicting resistance 
 

74 

under selection pressure from AMPs. We consider two cases here: (a) do resistant 

mutants emerge (answering this question requires a stochastic model) and (b) do 

resistant mutants drive the susceptible strains to extinction?  

 

We find that resistance emerges with a much higher probability for the parameter 

settings of antibiotics (top row Fig 3B) than for AMPs in our simulations (bottom row 

Fig 3B, Fig 3A). All intermediate cases, where we simulated changes in one or two of 

the parameters κ mutation rate and maximum effect, also reduce the probability of 

resistance emergence compared to ‗pure‘ antibiotics.  

 

We also find that resistant mutants are much more likely to drive the susceptible 

bacterial populations to extinction under antibiotic than under AMP treatment (Fig 3 

B). Again, this result also holds when we study intermediate cases. In summary, our 

results show that the application of drugs with low κ, mutation elevation and low 

maximum effect, i.e. characteristics found in most common antibiotics, inherently 

bears a high risk of causing the evolution of resistance.We have shown before(10) that 

combinations of AMPs have higher κ and lower MICs than individual AMPs. This 

also results in differences in resistance selection and the extinction of susceptible 

strains, consistent with the results above.  

 

Day et al (29) provided an approach to calculate a resistance hazard: a measure that 

combines the time of resistance emergence and its selection within a host. We 

calculated similar resistance hazard for AMPs in comparison to antibiotics. The 

simulation results show (Fig 3C) that the hazard is much higher and the concentration 

range much wider under antibiotic treatment than under AMP treatment. Also, when 

resistance evolves, it emerges earlier in the antibiotic scenario than in the AMP 

scenario at low concentrations (Fig 3D). In certain concentrations (for example, 

around MIC in our simulation), resistance emerges earlier in AMP than in antibiotics 

(Fig 3D). Time of emergence is mostly affected by κ and mutation rate:  higher κ and 

lower mutation rate, the latter more important when population sizes are smaller, 
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confer delayed resistance emergency (Fig S4).  

 

Discussion 

 

Our predictions suggest that AMPs, or in fact any antimicrobial drug with similar 

pharmacodynamics, are much less likely to select drug-resistant mutants than 

antimicrobials with antibiotic-like characteristics. Our theory is blind to the molecular 

mechanism of action but captures the dynamically relevant aspects of action. We 

assume that pharmacodynamics and mutagenic properties of AMPs are significantly 

different from antibiotics. This assumption is based on limited data of AMPs in the 

literature(10, 17). More experiments with a variety of antimicrobial peptides are 

needed to determine if AMP like characteristics can be indeed generalized and if these 

characteristics are significant different from antibiotics. 

 

In the light of our results, increasing κ and/or the maximum effect are desirable for 

any drug as well as advantageous to hosts managing their microbiota using AMPs. 

Our model therefore provides useful information for the development of new 

antimicrobial drugs: higher κ and maximum effect will impose much weaker selection 

on the bacteria to evolve resistance in lower concentrations, and clear the bacterial 

population more quickly in higher concentration which will, in turn, reduce the 

probability of resistance emergence. Currently mostly AMPs display these properties, 

but it is likely that new antibiotics that target the cell membrane or wall display 

similar pharmacodynamics.  

 

The smaller MSW under AMPs is a direct consequence of the steeper 

pharmacodynamic functions(10). It is important to note that this relationship hinges 

on the realization that the window opens at the concentration at which the resistant 

strains have a higher growth rate than the sensitive strain, well below the MIC of the 

sensitive strain(14). Thus, a high Hill coefficient (κ) would constitute a promising 

characteristic of new antimicrobials. The other characteristics in which AMPs differ 
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from antibiotics – mutagenesis and maximum effect – affect mostly the time until 

resistance emerges, but not the size of the MSW. Because this time becomes shorter 

with higher population sizes, these characteristics may have less significance for 

clinical infections (30). 

 

We find that time to resistance emergence in AMPs is longer than in antibiotics when 

the concentration is low (subMIC). Around MIC resistance against AMPs seems to 

emerge quicker than against antibiotics (FIG D). This counterintuitive result is 

explained by the fast removal of the sensitive strains caused by the combination of 

high κ and low psimin and is not related to the mutation rate per se. Overall the 

probability of resistance emergence is lower for AMPs as higher concentrations 

quickly remove the sensitive population. Chevereau et al.(31) reached a different 

conclusion using a different modeling approach. They modeled the 

pharmacodynamics only for positive growth and continuously adjusted the drug 

concentration to maintain the overall growth rate at half of the maximal in the 

simulation. In this scenario, drugs with sensitive dose-response would facilitate 

evolution due to the wide distribution of fitness, a scenario that seems unlikely in real 

antimicrobial treatment. 

 

One recommendation derived from our modeling approach is that drugs that show 

pharmacodynamics resembling AMPs should be good candidates for slowing the 

evolution of resistance. Interestingly, combinations of AMPs result in increased κ, 

which our model predicts to bear lower risks of evolution of resistance(10). It is often 

argued that combination therapy reduces resistance evolution (but also see (32)), as it 

is supposedly more difficult to evolve resistance against more than one mechanism at 

a time. Our approach indicates that combination therapy might even prove effective if 

there are mutations that confer complete cross-resistance to the drugs in the 

combination.  

 

It has been proposed that bacterial resistance evolution against AMPs is highly 



Chapter 5 Predicting resistance 

77 

unlikely (5, 8). Yet, in vitro experimental evolution has demonstrated that resistance to 

AMPs can arise (33–35) and AMP-resistance mechanisms have been characterized 

(36). Against antibiotics, resistance can increase the MIC by 2-3 orders of magnitude 

in a relatively small bacterial population(37), a range that has not been observed for 

AMPs. Though AMPs provide promising leads for drug development (4), their 

conserved killing mechanisms also argue for caution. In their paper ‗arming the 

enemy‘, Bell et al.(38) discussed the high likelihood of cross-resistance against, for 

example, human AMPs. This problem has hardly been studied. Our analysis suggests 

how one could reap the benefits of AMPs without arming the enemy: we should rely 

on agents with AMP-like pharmacodynamics. This in principle can be adopted 

without using AMPs themselves. 

 

Pharmacodynamic estimates can be easily and routinely obtained from time-kill 

curves. This can also be achieved for drug combinations(10). A report by the 

Leopoldina, the German National Academy of Sciences, recently recommended to use 

new drugs only in combination to avoid fast resistance evolution(39). The scientific 

support for this notion is limited and controversial(32, 40, 41). In clinical situations 

pharmacodynamic approaches can provide a first informed guess. Also, the risk of 

resistance evolution based on the pharmacodynamics of drug candidates will be a 

useful additional criterion to develop new drugs.  We would also like to note that the 

concept of the mutant selection window has been applied to understand antiviral 

resistance evolution(42), and hence our approach has the potential to inform antiviral 

resistance research and ultimately treatment as well.  

 

In order to generate predictions on resistance evolution based on pharmacodynamics, 

one of our main goals of the project, we made a number of simplifying assumptions.  

The pharmacodynamics is based on data of initial killing only. Moreover, we assume 

homogeneous populations over time and space.  Expanding the framework to 

integrate tolerance and resistance is possible but would require pharmacodynamic 

estimates and additional functions. Another possible extension of our work would be 
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to include pharmacodynamic estimates of resistant strains that change over time due 

to compensatory mutations and to cross resistance or collateral sensitivity when 

exposed to combinations of antimicrobials. Finally, we assumed the same 

pharmacokinetics for all cases in our study. As AMPs are currently rarely used 

(Colistin being the notable exception), future empirical work will inform realistic 

parameter estimates for pharmacokinetics. In all cases however, the basis of any 

analysis concerning resistance evolution is the influence of individual 

pharmacodynamic parameters, for which we provide a framework.   
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Materials and Methods  

For the parameterization of the predictive models, we used two main sources. The 

pharmacodynamic parameters are taken from one of our own studies that determines 

pharmacodynamics for AMPs and antibiotics under standardized conditions(10). In 

short, time kill experiments with different AMP concentrations were conducted and 

the slopes of the linear regressions were used to calculate the parameters of the 

pharmacodynamic function. Here, we only took into account the intial kill rates and 

assumed a homogeneous population structure. The estimates of mutation rates again 

are from our own comparative study on mutagenesis under AMP and AB 

treatment(17) . 

 

Calculation of the size of the mutant selection window 

The size of the mutant selection window (MSW) depends on the lower and upper 

bound of the MSW and is calculated as  

  (1) 

The lower bound of the MSW is the concentration for which the net growth rate of the 

resistant strain is equal to the net growth rate sensitive strain and is called the minimal 

selective concentration (MSC). The upper bound of the MSW is the MIC of the 

resistant strain (MICR) (Fig 1 A). To analytically describe the MSW, we use the 

pharmacodynamic (PD) function 𝜓(𝑎), which mathematical describes the net growth 

rate with a Hill function:  

  (2) 

 

((10, 20, 21)). Here, a is the antimicrobial drug concentration, ψ(a = 0) = ψmax, d(a) is 

the effect of the antimicrobial with the dose a,  and ψ(a → ∞) = ψmin 
. Therefore, the 

maximal effect Emax is Emax = ψmax − ψmin. The parameter 𝑀𝐼𝐶  denotes the 
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concentration that results in zero net growth (this definition differs from the "official" 

MIC definition by Mouton et al (43)). The Hill coefficient κ describes the steepness of 

the curve; functions with higher κ describe steeper curves (Fig 2A). For illustration of 

the pharamcodynamic parameters see  Fig S3).  Cost of resistance 𝑐 is included as 

a reduction of the maximum growth rate of the resistant strain in absence of 

antimicrobials with c = 1-ψmax,R /ψmax,S  (Fig 1A, 2A).  The pharamcodynamic 

function can be described for both a drug susceptible strain S and a drug-resistant 

strain R, with ψS(a) and ψR(a) , respectively. The MSC is calculated as ψS(a) = ψR(a). 

We assume that the net growth rate of the resistant strain below the MSC is, for any 

given concentration a, with 0 < a < MSC, approximately at the same level as without 

antimicrobials and therefore we set ψR(a) ≈ ψR,approx (illustrated in Fig 2A).   With 

ψR,approx. = ψmax,R =  ψmax,S (1−c) , we are able to describe the net growth rate of the 

resistant strain with the net growth rate of the sensitive strain ψmax,S and the costs of 

resistance c: ψR(a) ≈ ψR,approx=  ψmax,S (1−c). This is valid because  

and assuming 𝜅𝑅 >≈ 𝜅𝑆. The analytic solution of the MSC is 

  (3) 

  

Analysis of the relationship between cost of resistance c and MICR 

Data(44) determining relationship between fitness of resistant strains and MICR/MICS 

was re-analyzed. The dataset contained information about increase of MIC due to 

resistance and fitness of the resistant strain. The dataset summarizes cases of bacterial 

resistance to antibiotics. Similar data for AMPs have been compiled recently(30) but 

are yet too scarce to include in the following analysis. We therefore assumed similar 

relationships for both antibiotics and AMPs. 

We calculated cost of resistance c as c = 1 – fitness, using n= 128 observations 

compiled in the mentioned dataset.  Fitting a log10 transformed linear regression to 

the data resulted in the parameterized function log10(MICR/MICS) = 2,59 * c + 1,65, 

(R
2
 = 0.22). The data was then resampled with using bootstrapping to (i) determine 
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the 95% confidence interval of log-linear regression of the data as interval, where 95 % 

of the regression fall into (see fig. 2B) and (ii) to include the variance of the data 

when determining the size of the mutant selection window (MSW)(see fig. 2C). For 

the latter, the given dataset was fitted to the mentioned log-linear regression 200 times, 

resulting in 200 parameter sets for the regression. Each parameter set was then used to 

calculate the size of the MSW depending on the cost of resistance. The 95% 

confidence interval was then calculated as the interval, in which 95% of the calculated 

size of the MSW are in for a given cost. 

 

Model of evolution and prediction of resistance 

To study resistance evolution we used a mathematical model that incorporates 

pharmacodynamics (PD) and pharmacokinetics (PK) and captures population 

dynamics of bacterial populations under treatment with antimicrobial drugs(20). We 

ran stochastic simulations to calculate the probability of resistance emergence, the 

probability of the resistant strain, the time to resistance emergence and the risk of 

resistance (the resistance hazard(29)).  

 

To simulate treatment, we consider a patient harboring 10
6
 susceptible bacteria. 

Bacterial mutation rates are assumed to depend on the antimicrobial used for 

treatment (antibiotics or AMPs). When a resistant strain arises it is assumed to have 

an MIC ten-fold that of susceptible wild-type strain. For simplicity, we only consider 

one type of mutant. Antimicrobials are administered every day (see Supplement for 

pharmacokinetics), and treatment lasts one week.  

The population dynamics of the susceptible and resistant strains is captured in the 

following system of differential equations:  
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 (4) 

 

Where S represents the wild-type strain and R represents the resistant strain. The 

maximum net growth rate ψmax is the difference between the replication rate r and the 

intrinsic death rate dn: ψmax = r-dn. μ is the mutation rate.  

 

To include the change of antimicrobial concentrations over time (pharmacokinetics) 

into our mode, we define the death rate to be dependent on the time-dependent 

antimicrobial concentration a(t):  
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                               (5) 

 

We assume a time-dependent pharmacokinetic function a(t) of the following form (see 

also Fig S2): 

  

 (6) 

 

Here, ka is the absorption rate, and ke is the decay rate. D is the dose given each time, 

n is the number of doses, τ is the dosing frequency. We define the treatment dose as  

the average concentration in the course of treatment:  

  (7) 

 

We implemented the model in Equation 4 stochastically using the Gillespie 

algorithm(45), which allowed us to monitor how frequently mutants arise. Parameters 

were selected based on empirical data as stated above. The net growth rate of 

wild-type in the absence of antimicrobials was set as 1. Mutants suffer fixed or 

resistant-level related costs (see Fig 2). κ of AMPs and antibiotics were set as  5 and 
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1.5, respectively (10). ψmin for AMPs is fixed as -50 hour
-1

; and for antibiotics is fixed 

as -5 hour
-1

. Mutation rates in AMPs are assumed to be three times lower than in 

antibiotics, in accordance with our empirical estimates (17). All the parameters and 

their values are listed in Table S1. All the pharmacokinetic parameters are the same in 

different simulations (see Fig S2). For each set of parameters, cohorts of five hundred 

infected individuals were simulated. Successful treatment is defined as complete 

clearance of both sensitive and resistant strains at the end of the one-week treatment. 

For each cohort, we calculate the probability of treatment success as the proportion of 

individuals in whom treatment was successful. In each individual, we score the time 

of emergence of resistance strains, and estimate the resistance hazard based on the 

average probability of treatment success and the population size of bacteria over time. 

The hazard function can be written as,  

  (8) 

Where K is the capacity, S denotes population size of sensitive strain and pS→R is 

probability of a treatment developing resistance, which is calculated from the results 

of simulations, ψR is the growth rate of resistant strain. Our hazard function calculates 

the average proportion of resistant population under certain treatment dose and 

duration.  

 

Implementation 

The analysis was performed in R (v. 3.1.3&v. 3.2.2) (46) using RSTUDIO (v. 

0.98.1103&0.99.903) 
35

. The code is available upon request.  
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Figures 

 

 

Fig 1. The revised mutant selection window and pharmacodynamic parameters. 

(a) The mutant selection window (MSW) is defined as the antimicrobial concentration 

range in which resistant mutants are selected (13). Following (14), we determine the 

MSW using net growth curves of a susceptible strain S and a resistant strain R. 

Mathematically, net growth is described with the pharmacodynamic function 𝜓(𝑎) 

((20), see Materials and Methods and Fig S3 for details). In short, the function 

consists of the four pharamcodynamic parameters: net growth in absence of 

antibicrobials 𝜓𝑚𝑎𝑥, net growth in the presence of a dose of antimicrobials, which 

effects the growth maximal, 𝜓𝑚𝑖𝑛, the MIC and the parameter κ, which describes the 

steepness of the pharamcodynamic curve. Here, the two pharmacodynamics functions 

𝜓𝑆(𝑎)  (continuous pink line) and 𝜓𝑅(𝑎) (dotted black line)  describe the net 

growth of the S and R, respectively, in relation to the drug concentration a. Cost of 

resistance 𝑐 is included as a reduction of the maximum growth rate of the resistant 

strain 𝜓𝑚𝑎𝑥,𝑅, with 𝑐 = 1 − 𝜓𝑚𝑎𝑥,𝑅/𝜓𝑚𝑎𝑥,𝑆. Note that with this definition, cost of 

resistance is expressed as reduction in net growth rate in absence of antimicrobials (a 

= 0). The lower bound of the MSW is the concentration for which the net growth rate 

of the resistant strain is equal to the net growth rate of the sensitive strain and is called 

the minimal selective concentration (MSC) (see Materials and Methods for analytic 

solution, see Fig S1 for how the MSC is influenced by pharamcodynamic parameters 

os the sensitive strain). The upper bound is given by the MIC of the resistant strain 
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MICR. We calculate the size of the MSW as: 𝑠𝑖𝑧𝑒(𝑀𝑆𝑊) =
𝑀𝐼𝐶𝑅

𝑀𝑆𝐶
.  (b) The 

boundaries of the MSW applied to the pharmacokinetics of the system. 
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Fig 2. The mutant selection window for arbitrary mutant strains. The two 

boundaries of the MSW, MSC  and MICR , are influenced differently by the 

pharmacodynamic parameters of the sensitive strain S and the resistant strain R. (a) 

The lower boundary of the MSW (MSC) depends primarily on the pharmacodynamic 

parameters of the sensitive strain, assuming that the net growth rate of the resistant 

strain below the MSC is approximately at the same level as without antimicrobials: 

𝜓𝑅(𝑎) ≈ 𝜓𝑚𝑎𝑥,𝑆(1 − 𝑐) = 𝜓𝑅,𝑎𝑝𝑝𝑟𝑜𝑥 , for 0 < 𝑎 < 𝑀𝑆𝐶  (𝜓𝑅 : dotted black line; 

𝜓𝑅,𝑎𝑝𝑝𝑟𝑜𝑥:continuous black line) (see Materials and Methods for details). The effect 

of each of the four pharamcodynamic parameters and of the cost of resistance on the 

MSC is depicted in Fig S1. We plotted the pharmacodynamic function 𝜓𝑆(𝑎) of two 

sensitive strains with varying 𝜅 values: 𝜓𝑆,1(𝑎) representative for ABs with a small  

𝜅  (κ = 1.5, pink) and 𝜓𝑆,2(𝑎) representative for AMPs with a large 𝜅  (𝜅 = 5, 
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blue). Increasing the 𝜅  value results in increasing the MSC  ( MSC1  (pink) 

<MSC2(blue)).  (b) The upper boundary of the MSW is per definition the 𝑀𝐼𝐶𝑅, 

which is linked to its fitness cost, i.e. the upper boundary 𝑀𝐼𝐶𝑅 increases with costs 

𝑐 (data from(44)). Here, the log-linear regression and the 95% confidence interval are 

plotted. See materials and methods for details of the statistics. (c) The relationship 

between cost of resistance, other pharmacodynamic parameters, and the size of the 

MSW is complex. We show that because both boundaries of the MSW – the MSC 

and the MICR – are influenced by costs of resistance c, the lowest MSW window size 

is achieved at intermediate cost of resistance c.  We plotted the size of the MSW 

(line) and the 95% confidence intervals for both AMP-like and AB-like 

pharmacodynamics, with 𝜓𝑚𝑎𝑥,𝑆 = 1 , 𝑀𝐼𝐶𝑆 = 1 , 𝜓𝑚𝑖𝑛,𝑆,𝐴𝐵 = −5 , 𝜓𝑚𝑖𝑛,𝑆,𝐴𝑀𝑃 =

−50,  𝜅𝑆,𝐴𝐵 = 1.5 and 𝜅𝑆,𝐴𝑀𝑃 = 5 . 𝜓𝑚𝑎𝑥,𝑅  was calculated using the relationship 

log10(MICR/MICS) = 2,59 * c + 1,65 . 
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Fig 3. Evolution of drug resistance determined by pharmacodynamics.  

(a) At high dose antimicrobials achieve maximal effects and rapidly kill most of the 

population, preventing resistance evolution (left). At medium dose, the sensitive strain 

will not be eliminated immediately, and resistant mutants emerge (central). At low 

dose, the sensitive strain will not be removed, the mutants emerge as well, but will not 

quickly reach equilibrium due to substantial fitness costs (right, resistant: pink, 
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susceptible: blue),  (b) Simulations comparing the range from ‗pure‘ antimicrobials 

peptides (AMP) to  ‗pure‘ antibiotics (AB) by altering μ, ψmin and κ. We find that the 

probabilities of treatment failure (left), of failure caused by resistant strains (middle) 

and of resistance emergence are always higher under the AB-scenario than the 

AMP-scenario. A successful treatment requires less AMP than AB. (c) Following (29) 

we calculate the resistance hazard as the time-averaged proportion of mutants in a 

patient under a particular treatment dose. We find that AMPs are much less likely to 

select for resistance across concentrations than antibiotics (inset graph: a log-scale 

view). (d) Time to resistance is much longer under AMP than AB treatment when the  

average concentration is below MIC, but shorter around MIC and equal in higher 

concentrations (inset graph). The parameters are: 𝜓𝑚𝑎𝑥,𝑆 = 1 , 𝜓𝑚𝑎𝑥,𝑅 = 0.9 , 

𝜅𝐴𝐵 = 1.5 , 𝜅𝐴𝑀𝑃 = 5 ,  𝜓𝑚𝑖𝑛,𝐴𝐵 = −5 , 𝜓𝑚𝑖𝑛,𝐴𝑀𝑃 = −50 , 𝑀𝐼𝐶𝑆 = 10 , 𝑀𝐼𝐶𝑅 =

𝑀𝐼𝐶𝑠 ∗ 10[2.59 ∗(𝜓𝑚𝑎𝑥,𝑆−𝜓𝑚𝑎𝑥,𝑅) + 1.65] .  𝜇𝐴𝐵 = 10−6 , 𝜇𝐴𝑀𝑃 = 3 ∗ 10−7 , 𝑘𝑎 =

0.5 , 𝑘𝑒 = 0.2, 𝑑𝑛 = 0.01, 𝜏 = 1/24.  
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Appendix 

 

Figure S1: The MSC is dependent on the pharmacodynamic variables of the 

susceptible strain S and the cost of resistance c. For parameter values, see fig 1a in 

main text. 
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Fig. S2. Pharmacokinetics of a given antimicrobial. The curve can be captured by 

equation (6). This pharmacokinetics depicts that drug concentration reaches maximum 

shortly after dosing, then declines gradually before next dosing. The parameters are: 

𝑘𝑎 = 0.5 , 𝑘𝑒 = 0.2, 𝜏 = 1/24, D = 50.  
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Fig S3. Concept figure of the pharmacodynamic function and the 

pharmacological parameters. The pharmacodynamic function 𝜓(𝑎) describes the 

net growth rate of a pathogen population in the presence of an antimicrobial with the 

dose a: 

𝜓(𝑎) = 𝜓𝑚𝑎𝑥 − 𝑑(𝑎) 

 

Here, 𝜓𝑚𝑎𝑥  is the maximal net growth rate, i.e.  𝜓𝑚𝑎𝑥 = 𝜓(𝑎 = 0) , and 𝑑(𝑎) 

represents the impact of the antimicrobial on the growth of the pathogen. In Regoes et 

al. (2004), two options are given to mathematically describe the term d(𝑎) with 

pharmacodynamic parameters:  

 

𝑑(𝑎) =
(𝜓𝑚𝑎𝑥 − 𝜓𝑚𝑖𝑛) (

𝑎
𝑀𝐼𝐶)

𝜅

(
𝑎

𝑀𝐼𝐶)
𝜅

−
𝜓𝑚𝑖𝑛

𝜓𝑚𝑎𝑥

 

=  
𝐸𝑚𝑎𝑥 (

𝑎
𝐸𝐶50

)
𝜅

1 + (
𝑎

𝐸𝐶50
)

𝜅  

𝜓𝑚𝑖𝑛  is the minimal net growth rate with  𝜓𝑚𝑖𝑛 = 𝜓(𝑎 → ∞) ,  𝐸𝑚𝑎𝑥  is the 

maximum effect of the antimicrobial, with 𝐸𝑚𝑎𝑥 =  𝜓𝑚𝑎𝑥 − 𝜓𝑚𝑖𝑛, MIC is the dose at 
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which the net growth equals 0 (𝜓(𝑎 = 𝑀𝐼𝐶) = 0), 𝜅 is the slope parameter that 

describes the steepness of the curve, and 𝐸𝐶50 is the dose of the antimicrobial at 

which half of the maximum effect is achieved (𝜓(𝑎 = 𝐸𝐶50) = 𝜓𝑚𝑎𝑥 −
𝐸𝑚𝑎𝑥

2
).  Note 

that 𝐸𝐶50 = 𝑀𝐼𝐶 (−
𝜓𝑚𝑖𝑛

𝜓𝑚𝑎𝑥
)

1

𝜅
. All pharmacodynamic parameters are indicated in the 

figure. 
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Fig. S4. Average time of emergence of mutants. Kappa and mutation rate determine 

the time of emergence of mutants. Higher kappa and lower mutation rate will result 

latter emergence of mutants. However, MIC of mutants, cost of mutants and maximal 

effect of antimicrobials do not significantly effect the time of emergence of mutants. 
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Table S1. Parameters and their values used in this study.  

 

  

Parameters Value  Unit Description 

a 0~1000 ×MIC The concentration of drugs 

ψ -50~1 h
-1

 The growth rate of bacterial population 

MIC 1~10 - Minimal inhibitory concentration 

κ 1.5, 5 - Shape parameter of pharmacodynamic curve 

d - h
-1

 Death rate of bacterial population 

c 0~1 - Cost of resistance 

S 0~10
6
 CFU Population size of sensitive strain 

R 0~10
6
 CFU Population size of resistant strain 

K 10
6
 CFU Capacity of system 

μ 10
-6

, 10
-7

 - Mutation rate 

ka 0.5 h
-1

 Rate of drug absorption 

ke 0.2 h
-1

 Rate of drug decay 

D - ×MIC Dosage of a given drug 

τ 1/24 h
-1

 The dose frequency  

pS→R 0~1 - Probability of a treatment developing 

resistance 
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Psimax Psimin Kappa MIC Antibiotics 

0.368 -5.959 0.740 0.426 Ampicilin 

0.052 -5.927 1.242 0.848 Ciprofloxacin 

0.045 -5.866 1.853 0.067 Gentamicin 

0.205 -5.918 1.621 0.527 Kanamycin 

0.159 -5.876 1.808 0.480 Neomycin 

0.218 -4.171 0.445 1.371 Rifabutin 

0.280 -0.783 0.904 1.627 Spectinomycin 

0.008 -6.407 1.866 2.993 Tetracycline 

Table S2. The measured pharmacodynamic parameters of different antibiotics for 

reference in this study. 
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Abstract 

The evolution of antimicrobial resistance is a major health threat. Various factors 

contribute to the evolution of antimicrobial resistance. Here, we develop a 

mathematical model with multi-step mutations to predict resistance evolution from a 

perspective of antimicrobials. We describe each mutant with a set of 

pharmacodynamics parameters and monitored the time of its emergence. The results 

show that the mutants emerge sequentially with medium increment of MIC will 

emerge earlier than those with higher or lower increment of MIC. Mutation with 

fitness cost slow down resistance evolution in terms of late emergence. The fitness 

cost in resistant mutants is likely to be compensated as lately as possible, otherwise 

will hinder the emergence of later fitter mutant and thus slows down the resistance 

evolution. For a given mutant, the shape of dose-response and maximal killing rate 

that can be achieved by antimicrobials nearly have no influence on the time of their 

emergence. We further find that high dosing frequency and low drug clearing rate 

facilitate resistance emergence and render treatment in low concentration into failure. 

However, the rage of concentration that allows resistance emerging and fixation is not 

affected by the dosing frequency and drug clearing rate. Taken together, our results 

suggested the resistance evolution from a perspective of antimicrobials, which 

suggests that the pharmacodynamics of antimicrobials plays an important role in the 

evolution of antimicrobial resistance. 
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Introduction 

 

Infectious pathogens, such as bacteria, continuously evolve resistance to newly 

developed drugs in clinical treatment as well as the environment. The evolution of 

antimicrobial resistance could be very well captured by the mutation and selection 

dynamics. Bacteria evolve high level of resistance to antimicrobials through 

horizontal gene transfer, gene recombination, standing genetic mutation and 

phenotypic adaptation [1-3]. Rare mutants which are beneficial under unfavorable 

conditions, such as antimicrobial concentrations above MIC (Minimum Inhibitory 

Concentration), can be selected quickly through so-called purifying selection [3, 4]. 

The rate of evolution is determined by the specific genetic mutation, the fitness cost 

related to mutation and the selecting pressure imposed by antimicrobials.  

 

Predictive outcomes from a given treatment are highly desirable, especially if the 

probability of resistance emergence could be predicted [4, 5]. Many of the clinical 

treatment failed due to the emergence and/or presence of resistant strains in the course 

of treatment. However, predicting evolution of antimicrobial resistance is notoriously 

difficult as it involves many variables from both, antimicrobials and bacteria [5]. On 

the antimicrobial side, treatment strategies were widely explored regarding dosing 

quantity, dosing frequency and drug combination [6, 7]. They have significant and 

predictable impact on the emergence and evolution of resistance. For example, it is 

highly recommended to apply aggressive treatment to minimize the probability of 

resistance emerging. When there is still active immune response and no resistant 

strain before treatment, this strategy applies as high concentration of drug could 

remove bacteria rapidly which in turn reduce the probability of resistance emerging [6, 

8]. In the presence of resistant strains, aggressive treatment strategies may fail [9], as 

high concentrations of antimicrobials result in competitive release of resistant strains 

[9, 10]. Thus, a more carefully designed strategy based on the principle of maximal 

tolerance in the host is developed to adjust the dosage of treatment [11]. In addition, 

patients‘ low adherence and ways of administration will also largely facilitate the 
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evolution of drug resistance [12-14]. 

 

On the bacterial side, the prediction of resistance evolution relies on mutation, 

mutation related fitness, interaction between resistant and sensitive strain and specific 

selection pressure imposed by antimicrobials [5]. Although genetic mutations which 

cause resistance to various antimicrobials have largely been identified in different 

bacterial species [15], it is difficult to predict and identify these them in real time. 

Second, the fitness related to a given mutation is not available either. However, 

beneficial mutants under strong antimicrobial selection are usually very rare [16]. For 

example, only five mutants are able to resist high level of β-lactamase across the 

whole genome; these mutants form only a few accessible mutational pathways on the 

fitness landscapes [16]. Chevereau et al. measured the fitness of ~4000 E. coli 

mutants under different antibiotic treatments. They found that the distribution of 

fitness of these mutants is related to the dose-response property of antibiotic [17]. In 

particular, wider distribution of fitness is observed in antibiotics with a steeper 

dose-response curve, which will select faster resistance if this distribution is 

constantly maintained by adjusting drug concentration during treatment [17]. The 

degree of resistance could also be predicted by specific mutations and its profile of 

gene expression. Suzuki et al. evolved the bacteria under different antimicrobial 

treatment and showed that the observed phenotypic resistance in a mutant was linearly 

correlated with the level of gene expression [18].  

 

An overlooked perspective in the evolution of antimicrobial resistance lies in the 

interaction between bacteria and antibiotics, especially the dose-response relation. 

Classic theory of mutation selection window (MSW) predicts resistance evolution 

relying on the assumption in which a particular mutant is present [19-22]. It predicts 

that the concentration below the mutants prevention concentration (MPC) and 

minimal inhibitory concentration (MIC) will select the resistance [23]. However, a 

necessary step before mutant selection is mutant emergence. The emergence of certain 

mutants is not captured by the predictive frame work of the classic MSW theory. We 



Chapter 6 Predicting with multiple-step mutation model 

105 

think this could be determined by the dynamics of antimicrobial killing, which can be 

very well described by the Michaelis–Menten kinetics, which is an important base of 

pharmacodynamic Emax models [24, 25]. A modified version of this model with more 

detailed parameter setting can be easily tested in the lab [25]. This allows us directly 

compare the pharmacodynamic properties of different antimicrobials [25, 26]. 

Recently, we combined this model with simple population model to investigated the 

resistance evolution of bacteria under in-silico treatment of different antimicrobials 

with distinct pharmacodynamics properties. Our results showed that the resistance 

evolution is largely determined by the hill coefficients which controls the shape of 

dose-response curve. In particular, larger hill coefficients (κ in our model) together 

with higher maximal effects and lower mutation rate determine narrower range of 

mutation-selecting concentration in terms of de novo resistance emergence. Previous 

work with antivirus drug showed the dose-response slope is correlated with drug 

resistance [27, 28].  

 

Here, we extend our previous model which is based on the single mutation to a 

multiple mutation model. Mutations with high resistance usually result from 

accumulative multiple-step mutations, each of which increase certain level of 

resistance [16]. The process is well captured by the theory of fitness landscape 

[29-32]. Under strong antimicrobial selection, few beneficial mutants would emerge 

and form few mutational trajectories. By tracking the fittest mutation in each mutation 

step, we follow a chain of mutations which represent the peaks of fitness landscapes. 

We define mutations based on the pharmacodynamic parameters. A unique set of 

pharmacodynamic parameters could capture each of these mutants. Mutations not 

only alter the MIC, but also change other pharmacodynamics parameters, such as κ in 

our previous model. In doing so, we investigate the de novo emergence of each step of 

mutation under certain treatment. We then explore a wide range of parameters which 

will influence the emergence of resistance with a focus on the difference between 

AMPs and antibiotics [26]. We further investigated how the treatment strategy affects 

the emergence and evolution of resistance. 
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Materials and Methods  

 

The model 

We consider a homogeneous environment (for example an organ in human) that has a 

maximum carrying capacity. Bacterial populations grow with a rate r, and suffer death 

with rate d. In the presence of antimicrobials in the environment, the rate of bacterial 

death is mainly controlled by the concentration of bacteria. Beneficial mutants (R) 

that are resistant to antimicrobials emerge from the wild-type (WT) or strains with 

lower resistance with rate μ. The discrete dynamic process can be described as 

follows,  

 

WT WT

i

R R

j

r d

i

r d

i i i

i j

WT WT WT , WT ,

WT R ,

R R R , WT ,

R R , i j.





  



  

 

  (1) 

High-level resistance to antimicrobials is achieved through accumulative multiple 

mutational steps. Under low selective pressure, a number of mutations with similar 

fitness will emerge and fluctuate in the population, evolution in such conditions is 

generally considered as neutral. These mutations likely contribute to a fitter 

―quasi-species‖ through more steps of mutations. The system is balanced by the 

mutation and selection with fitness peaks fluctuating with selection pressure. The 

system can be described by the reaction-diffusion model in the limit of an infinite 

population [33].  

 

Antimicrobials exert strong selection that allows beneficial mutations to emerge and 

survive. Thus accessible mutation pathways could be built upon these mutations (see 

Fig. 1). The mean-field approximation of above discrete dynamics of mutation and 

selection process could be written as 

 1 1 1 2 3i
j i i i i j i i

j i

tot
j j

dN N
r N r N d N

dt K
,i j, i, j , ,  

  
       

  
    (2) 

In the limit of strong selection, few mutational pathways are accessible. One fitter 
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mutants will emerge from previous one, take over the whole population and further 

contribute to the next fitter mutation. Continuing such iteration forms the dynamics of 

resistance mutation. This dynamics can be simplified into 

  1 1 1 1 1 2 3toti
i i i ii i

dN N
r N r N d N

dt K
,i , ,  

 
    





  (3) 

In equation 2 and 3, 𝑁𝑖 represents the population size of different bacterial strains, 

which include both wild-type and resistant strains. We have 𝑁𝑡𝑜𝑡 = ∑ 𝑁𝑖. The new 

mutants comes from the older ones with a fixed mutation rate 𝜇. The doubling rate 

rates 𝑟 of all the individuals in the population are constrained by the carrying 

capacity 𝐾 . The death rate 𝑑𝑖 is mainly determined by the pharmacodynamic 

properties of the drug. The death rate is mutation- and antimicrobial-dependent. It 

follows the form, 

  
  

 
1 2 3

i

i

i i ,min i

i

i i ,min i

r a / MIC
d , i , , ,

a / MIC /
a

r










 


  (4) 

Where 𝜓𝑚𝑖𝑛 is the minimal growth rate, which should be negative with the presence 

of antimicrobials. 𝑎 is the concentration of antimicrobials. 𝑀𝐼𝐶  is the minimal 

inhibitory concentration of a particular strain. The Hill coefficient 𝜅, is a shape 

parameter of pharmacodynamics.  

For drug dosing, it follows a multiple dosing regime in which the drug is given every 

certain period of time. Assume the dosing going through two stages: absorbing and 

clearing, the concentration-time relation of a given drug with multiple dosing can be 

described by the solved one compartment model:  

     ( 1) ( 1)
( ) , 1, 2, 3 ,e ak t n k t na

n a e

Dk
a t e e n

k k

      
  


   (5) 

where ka is the absorption rate, and ke is the decay rate. D is the dose given each time, 

n is the number of doses, τ is the dose frequency. We use the average concentration in 

the course of treatment to represent the dose level of treatments. Then we can 

calculate the average concentration over the course of treatment,  
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    
1

t t
a t a t dt

t
 

 

 

  (6) 

The definition of mutations 

The sequence of mutations is defined according to the pharmacodynamic properties. 

We assume that every mutation has a unique set of pharmacodynamic parameters 

which is captured by equation (4), and emerge sequentially by changing the 

phramcodynamic parameters in each step [25]. We also assume that the highest fitness 

of mutations could be reached by three accumulative mutational steps by change of 

one or more of these parameters in each step. Using this model, several cases can be 

investigated. 

 

1) How much MIC likely increase in each mutational step? Previously work assumes 

beneficial mutations increase MIC but suffer fitness cost. In this study, we assume 

sequential beneficial mutants to display increased MICs. In order to determine how 

much increase in MIC in the sequence of mutations could be most likely selected and 

evolved, we set different increment of MICs between two adjacent mutations in 

sequential mutants. At the same time, we keep all the other pharmacodynamic 

parameters constant (Fig. 2A). 

 

2) When are fitness costs most likely to evolve and to be compensated? In our model, 

the fitness and fitness cost is defined as the growth and growth reduction in the drug 

free environment, respectively. The fitness of wild-type is set to 1, which is 

represented by 𝑟 in equation (2). In this scenario, we fix the increase of MIC in 

sequential mutations and other parameters as the same in all the mutations, then 

change 𝑟 values in the sequential mutations. 

 

3) How likely the mutation will change the dose-response sensitivity of bacteria or κ 

in the pharmacodynamics. Like in point 2), we would also like to see what the 

potential trend could be, for example, decreasing or increasing in dose-response curve, 

which is the parameter 𝜅 in equation (3). Keeping other parameters as constants, we 
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set different κ values in the sequence of mutations.  

 

4) Whether the mutation could change the ψmin of the drug. In this case, the MIC of a 

given mutants might not change but the tolerance of bacteria to antimicrobials 

increases.  

 

The treatment strategy for different drugs with different pharmacokinetics 

The treatment strategies, which include categories of antimicrobials, quantity of 

dosing and frequency of dosing, play important roles in resistance development. 

Antimicrobials with different pharmacokinetic and pharmacodynamic properties 

select resistance differently. For example, drugs absorbed quickly and excluded 

slowly could quickly reach effective concentrations in body. This will result a quicker 

elimination of bacteria and slower resistance development. Drugs which possess a 

steeper dose-response relation also slow resistance development as it suppress the de 

novo resistance emergence. In this study, we mainly choose two in-silico drugs with 

resemblance to antibiotics and AMPs, as these two classes of drugs have proven 

distinct pharmacodynamics. In addition, rational dosing, as another important 

treatment strategy, is also very critical for resistance evolution. Rational choice of 

dose could also minimize the development of resistance either with presence or 

absence of resistant [9, 10]. With our model (equation (1-5)), we examine resistance 

development in a multiple mutation situation with combined input of above 

mentioned strategies to investigate the time of emergence and resistance evolution.  

 

Simulations 

All pharmacodynamic parameters are taken from experimental measurements (Table 

(1)). Bacterial growth in drug-free environment is set to 1. Costs are defined as 

growth reduction in drug-free environments. Bacteria in infection sites are constantly 

removed with a fixed rate of 0.01. Additionally, antimicrobials play an important role 

in removing bacteria, the rate is largely depended on their pharmacodynamics and 

pharmacokinetics. We determined the in-vitro killing rate of different antimicrobials, 
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such as antibiotics and antimicrobial peptides. Their pharmacodynamic properties 

could be very well captured by above equation (4). With the stress on these two 

antimicrobials, we set κ of AMPs and antibiotics are 5 and 1.5, respectively. ψmin for 

AMPs is fixed as -50 hour
-1

; and for antibiotics is fixed as -5 hour
-1

. We assume 

mutation rate in AMPs is 3 times lower than in antibiotics and is set to 10
-5

 and 3x10
-6

, 

respectively [34].   

 

In order to test the resistance evolution during a treatment process, we model a 

disease progression that the infection develops observable symptoms when bacterial 

population reaches a maximal capacity. Then the drug is immediately administered to 

treat the infection. We assume that the symptom could emerge when the bacterial load 

reaches 10
6
, which is set as the initial population size as well as the capacity of 

infection site. During the simulation, we do not consider the spatial distribution of 

drug concentration or spatial sensitivity of bacteria on the infection site. Bacteria 

grow with constraint of the capacity while being removed and killed by antimicrobials. 

The mutation emerges with a fixed probability which is independent of the 

antimicrobials. We particularly collected the time of emergence of each steps if 

beneficial mutations to exam how likely a mutant could emerge in particular 

situations. We implemented the model (Equation 1-5) in R. For deterministic 

numerical analysis we used the package deSolve; for stochastic simulation we used 

the package adaptivetau implemented with Gillespie algorithm [35].  
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Results 

 

The change of parmacodynamic parameters in mutants  

We investigated how the parameters that determine pharmacodynamics influence the 

emergency of sequential mutants. We first investigated the increment of MIC. During 

the treatment, mutations will result in strains with different degrees of resistance. Our 

results show that mutants with small increment (less than 10 times of MIC of 

wild-type) and significant increment (100 times of MIC in each increment) in each 

mutational step will take much longer time to be fixed in the population. Strains with 

an intermediate increase in MIC (around 10-100 times of MIC to those of wild-type 

strains) will be fixed in much shorter time (Fig. 2B). When mutants develop high 

degree of resistance, it is likely to suffer fitness cost, which we refer as a decreased 

growth in drug free environment. Thus resistant strain with fitness cost will be 

outcompeted by the sensitive strain in drug-free environment. Compensatory 

mutations will emerge to finally restore the normal growth. It is interesting that when 

the compensatory mutation will most likely emerge in the sequential mutations. Our 

results show that the pattern of compensatory evolution is rather complicated. If the 

mutants suffer a fitness cost in early mutational steps, it would hinder its emergence. 

But fitness in latter mutational steps will not influence the time of emergence (Fig. 

2C). Fig. 2C shows that fitness compensation will rise as lately as possible, while 

earlier compensation will hinder the subsequent beneficial mutations. Gradual 

compensating the fitness cost is also less likely as it will take much longer to arise. 

We simulated the changes of κ accompanied by increased MIC. The results should 

that either decreasing κ or increasing κ will not affect the time of resistance 

emergence (Fig. 2D). Additionally, we also found that changes of ψmin, either 

increasing or decreasing, in the mutations will not affect their rising in population (Fig. 

2E).  

 

The dose-frequency and pharmacokinetics 

We then studied how dosing frequency and pharmacokinetics affects resistance 
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evolution and treatment success in the background of multiple mutations. We 

evaluated the treatment success and development of MIC of whole populations 

factored by the dose, dosing frequency and pharmacokinetics. We found that higher 

dosing frequency of antimicrobials will facilitate treatment success (in terms of higher 

treatment success) in a lower treatment dose (Fig. 3). But once the treatment is not 

successful, the resistance will emerge quickly and develop faster than treatment in 

terms MIC increasing in lower treatment dose frequency (Fig. 3). The rate of drug 

clearance influence on above process in a similar way (Fig. 4). Lower rate of 

clearance will result successful treatment in lower dose, while also accelerate 

resistance evolution.  

 

More importantly, our results showed that the mutant selection window (the range of 

concentration in which treatment failure is caused by the resistant strain) is 

independent of the treatment strategy and pharmacokinetics of drugs (Fig. 3&4). This 

implies that the capacity of resistance selection of antimicrobials is likely determined 

by the intrinsic factors of the drugs.  

 

The AB vs AMP 

With a particular focus on difference in pharmacodynamics (dose-response relations), 

we compare the resistance emergence in the treatment of AMPs and antibiotics in the 

multiple-step mutation model. The result showed that it takes much longer for 

mutants emerging from AMP treatment, in which the time of emergence is nearly two 

orders of magnitudes higher that in antibiotics (Fig 2F). Taken together, this indicates 

the time of resistance emergence is highly correlated to the pharmacodynamic 

properties of antimicrobials, especially the shape of dose-response curve (κ). This also 

result a narrow range of concentration in antibiotics with higher κ, which will select 

resistant as a main cause of treatment failure (Fig. 3&4). 
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Discussion 

 

In this study, We extended our previous model to a stepwise mutational model, which 

allows us to define the resistant mutants with different set of pharmacodynamic 

parameters rather than only changes in MIC [10, 19]. Dynamics of evolution under 

strong selection demonstrated that the degree of resistance in a population usually 

increases in a stepwise fashion [16, 36]. This indicates beneficial mutants emerging 

through mutation which takes time to emerge and establish. This can be confirmed by 

the genotype-phenotype analysis [37]. For example, bacterial resistance to 

beta-lactam is only provided by a few mutations, out of a 120 accessible pathways 

[16]. We not only define the mutants by changes in fitness under a particular 

environment or concentration, but also map the mutants into changes of the 

pharmacodynamics that covers the range of concentrations.  

 

In our simulation, we assumed relative low concentrations (around MIC of sensitive 

strain) to ―treat‖ the infection and monitor the emergence of subsequent resistant 

strains. The growth rate of bacteria in the continuum of concentration is controlled by 

the pharmacodynamics. When the concentration is below the MIC, bacterial 

populations show positive growth; when the concentration is above MIC the 

population suffers declining as the growth rate is negative. We project this framework 

into the evolution framework of mutation-selection in which resistance evolution in 

concentrations below MIC fits into framework of mutation-selection regime. 

Assuming a resistant strain would gain more fitness, the selection coefficient for 

beneficial mutants lies between the maximal growth rate and the growth rate 

controlled by the pharmacodynamics. However, when the concentration is above MIC, 

the situation of evolutionary rescue applies. As the population will decline, mutations 

with absolute increase in MIC will be immediately selected and take over the 

population. The probability of fixation of beneficial mutants is a function of total 

population and the time [38]. In the range of concentration the population is 

controlled by the killing rate of antimicrobial peptides, the other pharmacodynamics 
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properties except MIC in resistant strains become not important. Instead, the κ value 

and ψmin in our model are critical for the fixation of beneficial mutants. Increasing 

both parameters will leading the decreasing of the probability of fixation. 

 

Using our frame work we investigated the increase of MIC in sequential mutants. We 

found that intermediate increase of MIC in the mutants will most likely to be selected 

as it takes much shorter time to emerge in our results. Experimental evolution on the 

spatial gradient of antibiotics also revealed fastest rate of resistance evolution in 

medium-increase concentrations [39]. In our stepwise mutation model, the 

concentration around MIC used in our simulation will also kill the mutants with small 

increase in MIC. Although mutant with large increase in MIC will maintain, if 

without fitness cost, the maximum growth, it leaves little marginal fitness increase for 

the emergence of future mutations unless the fitness excessing those of their ancestors. 

Thus, the mutants with medium increase in MIC will be most likely selected.  

 

Increasing in MIC is usually accompanied by reduction of fitness of mutants [40-42]. 

We tested how the change of fitness in mutants would influence the emergence of 

future resistant. We simulated evolution with increasing in resistance with variation in 

fitness. Our results showed that fitness cost would increase the time of emergence for 

future strains, as reduced in growth rate leading to slow growing of population and 

longer waiting time to accumulate beneficial mutants. Thus, we propose that the 

fitness cost would most likely to appear lately. In reference [18] and [43], their results 

collectively showed that in most cases the fitness cost will appear lately in the mutants 

with relative higher resistance. Similar experimental evolution in malaria parasites 

demonstrated that accumulative increase in resistance by stepwise mutation will result 

fitness cost in later time [36].  

 

Compensatory mutations of the fitness costs in resistant mutations are of great 

importance to the evolution of resistance [44, 45]. An unresolved question is when 

fitness costs will be compensated. Our model assumes that the fitness cost can be 
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maintained in further mutation and be compensated without loss of resistance. For 

example, MICs-increase associated fitness costs can be maintained in first two 

mutations and then compensated in third mutation. In addition, as the evolution of 

compensatory mutation is influenced by environment and genetic structure [46, 47], 

we particularly investigated its evolution under constant drug pressure. In that 

condition, our results showed that the fitness cost is likely to be compensated by latest 

mutations. Because the early compensation will hinder the emergence of future 

mutations, the gradual compensation is also less likely to happen.  

 

Our results also showed that the κ value which controls the shape of dose-response 

curve and the ψmin which depicts the maximum killing rate have no significant 

influence on the emergence of resistance strains. This is due to the concentration used 

in the simulation is around the MIC of sensitive strain. In this range of concentrations, 

resistant strains almost maintain the growth rate round ψmax.  

 

We also found that the treatment strategy and pharmacokinetic properties are 

important for the resistance emergence. Higher treatment frequency and lower 

clearing rate will result earlier resistance emergency. But the range of concentration 

that fails the treatment due to resistance emergence is nearly the same and 

independent of treatment strategy and pharmacokinetic properties. As we previously 

found, the mutant selection window might be only dependent on the 

pharmacodynamics, which describes how the antimicrobials interact with bacteria. 

Also, the MIC increase during selection also shares the same patterns. With a stress on 

the difference between antibiotics and antimicrobial peptides, we found the same 

trend as before, which implies AMPs are less likely to select resistance. When the 

concentration is high enough, AMP will rapidly kill bacteria and leave no resistance 

emergence.  

 

Our model also allows us to investigate the evolution of antimicrobial resistance in a 

variable range of antimicrobial concentration with multiple steps of mutations. The 
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patterns of mutation and selection differ significantly in different concentrations. As 

what proposed before [10], we connected the fitness of any mutants across the range 

of concentration by the pharmacodynamics [25, 26].  

 

The treatment strategy and pharmacokinetics play critical role in emergence and 

evolution of resistance. It is not surprising that high treatment frequency and lower 

drug-clearing rate will facilitate the evolution of resistance as they maintain drug 

concentration with a relative high level. However, the range of concentration that will 

select the resistance differs in antibiotics and AMPs. As noted widely, bacteria rapidly 

develop resistance to antibiotic than AMPs. This might be due to the narrower 

mutation selection window in AMPs.  
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Figures 

 

 

Figure 1. (A) The schematic view of evolutionary model with multiple step of 

mutation. Here, we only consider the most beneficial mutation which will take the 

whole population, thus we assume that higher resistance are evolved through steps of 

mutations. Each mutation increases certain level of resistance. (B) We assume the 

population dynamics of each mutation is controlled by a unique pharmacodynamics 

(equation 1) which describes the rate of self-replication, rate of death killed by 

antimicrobials and constant mutation rate that generates more resistant strain. (C) A 

deterministically and stochastically numerical realization of above model showed the 

dynamics of strains of mutations. Stochastic realization allows us to estimate the time 

of resistance emergence of each mutation.  
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Figure 2. The time of resistance emergence in different parameters setting. (A) The 

definition of mutants is characterized by the changing of different pharmacodynamics 

parameters. (B) Medium increase in MIC between two consecutive mutations would 

take the shortest time to emerge. Mutants with both small increase in MIC and large 

increase in MIC will emerge lately. (C) Early fitness cost slightly delays the future 

resistance emergence. Fitness cost is likely to be compensated  in late mutants as 

early compensation significantly delay the resistance emergence.(D, E) Mutants with 

alternated Κ and ψmin do not affect the emergence of future mutations. (F) When 

incorporating the changes in mutants, we showed that resistance emerging in AMPs 

treatment is more than 10 times lower than antimicrobial treatment.  
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Figure 3. Dosing-frequency has a significant influence on treatment success. When 

compared with low-frequency treatments, high frequency of treatment will result 

resistance-induced treatment failure in lower concentrations and reach treatment 

success in a lower concentration. But the range of concentration that results 

resistance-caused treatments is independent of the treatment frequency. Instead, it is 

depended on the pharmacodynamics, where AMPs has narrower range of 

concentration. The increase of resistance shares the same patterns as treatment success 

with stress that bacteria are not likely to evolve to higher resistance.  
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Figure 4. The influence of pharmacokinetics on the success of treatment and 

resistance evolution. 
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Appendix 

 

Table S1. Parameters and their description in this study.  

 

 

 

Parameters  Unit Description 

A ×MIC The concentration of drugs 

Ψ h
-1

 The growth rate of bacterial population 

R h
-1 

Growth rate of bacteria without drug stress 

MIC - Minimal inhibitory concentration 

Κ - Shape parameter of pharmacodynamic curve 

D h
-1

 Death rate of bacterial population 

C - Cost of resistance 

N CFU Population size of a particular strain 

Ntot CFU Population size of all strains 

K CFU Capacity of system 

Μ - Mutation rate 

ka h
-1

 Rate of drug absorption 

ke h
-1

 Rate of drug decay 

D - Dosage of a given drug 

τ h
-1

 The dose frequency  
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General conclusion  

This thesis mainly focuses on the interaction of antimicrobial peptides (AMPs) and 

the predictive factors that influence resistance evolution in antimicrobials. 

 

The research reported in chapter 2 has investigated the interaction between different 

AMPs. Testing with six AMPs from different organisms in two-way and three-way 

combination, A broad and strong synergism was observed between these 

combinations, which are measured in the framework of Loewe Additivity combined 

with pharmacodynamics. The results demonstrated a general effect of combination in 

in natural immune systems. They imply that innate immune systems might evolve 

different anti-infective components, e.g. different AMPs, not only to attack different 

pathogens but also to reduce the total cost of immune response through synergism 

between these components [1]. The reduction of immune cost can be achieved by the 

synergism between different anti-infective components. This also suggests cutting 

down the expense and efficacy of treatment by using drug combinations with 

synergism. Recent results verified the synergism between AMPs in nature immune 

systems [2, 3]. In Bumblebee, Abaecin and Hymenoptaecin function synergistically 

leading to reduction in total cost for immune reaction [2]. Additionally, It is also very 

interesting to note that AMPs and antibiotics have distinct pharmacodynamics. In 

particular, AMPs or some peptides antibiotics have very steep dose-response curve 

which is captured by the Hill coefficient κ in the pharmacodynamics. This is partially 

due to their rapidly killing rate in high concentrations [4, 5].  

 

Followed by a theoretical investigation in chapter 3, a multi-hit model was proposed 

to explain the synergism between AMPs. AMPs target on the cell membrane and 

change its integrity by forming pores [6]. The balance of attaching rate and detaching 

is critically important in determining the killing efficacy. The attaching rate is higher 

that detaching rate due to the absolute positive charge on AMPs. The model assume 

that bacteria membrane only bears limited numbers of AMP molecules before 
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decomposed by AMPs. Once the number of molecules reaches the limit (which we 

call ―zombie stage‖), bacteria will go into a lysis process and eventually die. The 

model is reasonably explained by the experimental data which shows that bacteria 

grow normally blow certain AMP concentration. Once the concentration is higher that 

the critical limit, bacteria will be killed in a fast rate [7]. This multi-hit model also can 

project to the mean-field model with Hill function. Combined with the framework of 

Loewe additivity and Bliss independence, the multi-hit model successfully predicted 

the combination effect of two different AMPs [8]. In addition, with details in 

molecular interaction, this model also illustrates the rational choices of frameworks 

when determining the combination effects of drugs [8]. For example, Bliss 

independence are more suitable for drugs with different targets and Loewe additivity 

are more suitable for drugs with the same targets.  

 

The different pharmacodynamics between AMPs and antibiotics are found in chapter 

2, such as the difference in maximal killing rate and shape of dose response curve. We 

propose that the difference in pharmacodynamics determining emergence and 

evolution of resistance. In chapter 4, the mutant selection window (MSW), including 

subMSW and traditionally defined MSW, was calculated based on the 

pharmacodynamics of antimicrobials. The traditional MSW was calculated based on 

the relation of fitness cost and degree of resistance. A theoretical model combining 

pharmacodynamics and population dynamics with mutation showed that the 

emergence of resistance is associated with κ, the dose-response relation, and ψmin 

maximal killing rate of a given drug. In particular, steeper dose-response and higher 

maximal killing rate delay emergence of resistance. This is consistent with results of 

experimental evolution by parallel evolve bacteria in AMPs and antibiotics. And it 

indicates that the pharmacodynamics is important in determining the effect of 

antimicrobials and characterizing the resistance selection and evolution. 

 

The definition traditional MSW theory is also based on the pharmacodynamics, but 

requires a clearly defined ―mutant‖ [9]. Once the pharmacodynamic parameters of the 
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―mutant‖ and wild-type are measured, the MSW is then defined accordingly. However, 

the theory paid little attention to the difference in the pharmacodynamics of different 

antimicrobials. The model proposed in chapter 4 hopefully can fill this gap. As the 

resistant strain needs to emerge before taking over the population, the model thus only 

inspects the resistance emergence, which is considered the very first step of resistance 

development. From this point, it is important to compare how likely a given 

antimicrobial will allow resistance emerging across the range of concentration and to 

connect this relation to pharmacodynamics.  

 

In chapter 4, only one mutational step is considered. High level of resistance to 

antimicrobials in bacteria is usually reached by multi-step mutation. Unlike the 

traditional definition, the mutants in the model are defined according to the changes of 

pharmacodynamic parameters. With the multi-step model, several evolutionary 

dynamics are discussed in chapter 5. An intermediate increment of MIC in each 

mutational step is favored in the resistance evolution as shown with shortest emerging 

time. This is consistent with experimental evolution with gradients of antibiotics [10]. 

In addition, fitness cost will delay emergence of resistance and likely be compensated 

lately. Mutants having alternated κ and ψmin will not change the time of emergence in 

the condition of multi-step mutation. The κ and ψmin only influence the emergence of 

future mutants, and not vice versa. Incorporated with treatment strategy 

pharmacokinetics, the results of multi-step model showed that dose frequency and rate 

of drug-clearing will change the pattern of resistance emergence at particular dose, but 

do not change the range of dosage that select resistance. The results suggest that 

selection and evolution of drug resistance are largely associated with 

pharmacodynamics of antimicrobials.  

 

Outlook 

The simple mathematical model combined easy accessible experimental data allows 
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us to obtain a general picture of antibiotic resistance evolution especially in the 

treatment of antimicrobials with different antimicrobials and treatment strategy. The 

beneficial mutants are rare when bacteria are under strong selection in antimicrobial 

treatment. It is important to characterize the fitness and the related pharmacodynamics 

parameters of those mutants, especially those with high degree of resistance. 

Furthermore, for some important antimicrobials, the most frequent mutational 

pathways that lead to highest resistance should be also characterized. This is 

important to develop a more predictable method which correlated degree of resistance 

to the time and certain treatment strategies.  

 

Our models predict that resistance evolution under treatment is highly correlated to 

the important pharmacodynamic parameters, such as κ, the slope of dose-response 

curve. Previous experimental evolution using antimicrobials with distinct 

pharmacodynamics showed different patterns of evolution, for example, evolution in 

AMPs are particularly slow [11, 12]. More experiments need to be carried out to 

enhance the conclusion. The comparison should be done not only between AMPs and 

antibiotics but among antibiotics or AMPs with different pharmacodynamics. Thus, 

we would obtain a more general and predictive model that can be used in practice of 

drug development and treatment of infectious disease. 

 

The results in this thesis probe some most important features of innate immune 

systems, in particular synergism among co-expressed antimicrobial peptides [1, 13]. 

Our in-vitro experiments suggest synergism can reduce the total cost of immune 

response, such as the absolute quantity of AMPs. However, this waits to be further 

tested in vivo. Moreover, it is also intriguing to investigate how synergism in immune 

system influence the other life-history traits of organism [14, 15] and host-pathogen 

coevolution.  

  



Chapter 7 Concluding remarks and outlook 
 

132 

References 

 

[1] Zanchi, C, Johnston, PR & Rolff, J. 2017 Evolution of defence cocktails: 

Antimicrobial peptide combinations reduce mortality and persistent infection. Mol 

Ecol 26, 5334-5343. (doi:10.1111/mec.14267). 

[2] Rahnamaeian, M, Cytrynska, M, Zdybicka-Barabas, A, Dobslaff, K, Wiesner, J, 

Twyman, RM, Zuchner, T, Sadd, BM, Regoes, RR, Schmid-Hempel, P, et al. 2015 

Insect antimicrobial peptides show potentiating functional interactions against 

Gram-negative bacteria. Proc R. Soc B 282, 20150293. (doi:10.1098/rspb.2015.0293). 

[3] Yan, H & Hancock, RE. 2001 Synergistic interactions between mammalian 

antimicrobial defense peptides. Antimicrob Agents Chemother 45, 1558-1560. 

(doi:10.1128/AAC.45.5.1558-1560.2001). 

[4] Choi, H, Yang, Z & Weisshaar, JC. 2015 Single-cell, real-time detection of 

oxidative stress induced in Escherichia coli by the antimicrobial peptide CM15. Proc 

Natl Acad Sci U S A 112, E303-310. (doi:10.1073/pnas.1417703112). 

[5] Barns, KJ & Weisshaar, JC. 2016 Single-cell, time-resolved study of the effects of 

the antimicrobial peptide alamethicin on Bacillus subtilis. Biochimica et biophysica 

acta 1858, 725-732. (doi:10.1016/j.bbamem.2016.01.003). 

[6] Zasloff, M. 2002 Antimicrobial peptides of multicellular organisms. Nature 415, 

389-395. (doi:10.1038/415389a). 

[7] Yu, G, Baeder, DY, Regoes, RR & Rolff, J. 2016 Combination Effects of 

Antimicrobial Peptides. Antimicrob Agents Chemother 60, 1717-1724. 

(doi:10.1128/AAC.02434-15). 

[8] Baeder, DY, Yu, G, Hoze, N, Rolff, J & Regoes, RR. 2016 Antimicrobial 

combinations: bliss independence and loewe additivity derived from mechanistic 

multi-hit models. Philos Trans R Soc B 371. (doi:10.1098/rstb.2015.0294). 

[9] Drlica, K & Zhao, X. 2007 Mutant selection window hypothesis updated. Clin 

Infect Dis 44, 681-688. (doi:10.1086/511642). 

[10] Baym, M, Stone, LK & Kishony, R. 2016 Multidrug evolutionary strategies to 

reverse antibiotic resistance. Science 351, aad3292. (doi:10.1126/science.aad3292). 



Chapter 7 Concluding remarks and outlook 

133 

[11] Dobson, AJ, Purves, J, Kamysz, W & Rolff, J. 2013 Comparing selection on S. 

aureus between antimicrobial peptides and common antibiotics. Plos One 8, e76521. 

(doi:10.1371/journal.pone.0076521). 

[12] Suzuki, S, Horinouchi, T & Furusawa, C. 2014 Prediction of antibiotic resistance 

by gene expression profiles. Nat Commun 5, 5792. (doi:10.1038/ncomms6792). 

[13] Johnston, PR, Makarova, O & Rolff, J. 2013 Inducible defenses stay up late: 

temporal patterns of immune gene expression in Tenebrio molitor. G3 4, 947-955. 

(doi:10.1534/g3.113.008516). 

[14] Lazzaro, BP & Rolff, J. 2011 Immunology. Danger, microbes, and homeostasis. 

Science 332, 43-44. (doi:10.1126/science.1200486). 

[15] Rolff, J & Siva-Jothy, MT. 2002 Copulation corrupts immunity: a mechanism for 

a cost of mating in insects. Proc Natl Acad Sci U S A 99, 9916-9918. 

(doi:10.1073/pnas.152271999). 

 



Acknowledgment 
 

134 

Acknowledgment 

Another important conclusion could be drawn from the thesis is: it would have not 

been finished without help from many of my colleagues, family and friends. At this 

moment, I would like to use this short page to write down a few names and give them 

great thanks from the bottom of my heart.  

 

I would like to thank Jens for his patient and inspiring mentoring. His natural 

enthusiasm and optimism encourages me all the way during my PhD studying. His 

support allows my career taking nutrients from a slightly different ridge. I would like 

to thank Roland for introducing me the techniques of mathematical modeling. Thanks 

to Desi for debugging my code and a lot interesting discussion in different research 

topics. 

 

Many of my colleagues made my work and personal life a lot easier. They helped me 

in tedious translation and making phone calls; They gave me suggestions about living 

in Berlin; They maintained the lab running smoothly; They provided me precise 

information of the whereabouts of chemicals and consumables; They helped me to 

build my lab skills; They initiated inspiring discussions; They give me direct feedback 

for my experimental results and manuscripts; They helped me debugging my code in 

the earlier time; They created an atmosphere of humor; They taught me how to 

efficiently communicate with people in a large international group. They are Alex, 

Anto, Baydaa, Caroline, Christin, Christine, Cora, Dino, Greta, Janne, Katrin, Lena, 

Maria, Miko, Olga, Pauline, Paul, Regina, Renate, Sabine, Shulin, Stefania, Susi, 

Thorben, Uta, Veronique, Waltraud and they know what they have done. 

 

此外，我还要感谢在柏林的中国朋友们，很高兴认识你们能和你们一起和咖啡，

一起吃饭，一起聚会，一起讨论时事新闻，一起讨论学术问题。你们知道你们是

谁。 



Acknowledgment 

135 

 

最后，我要衷心感谢我的家人。感谢老婆这么些年来辛苦付出，有你的支持我才

能坚持到现在完成这篇论文。感谢父母，你们的支持是我不竭的动力。感谢妹妹

一家人的支持，感谢你们不停关注我的学业进展。 

 

I would also like to thank China Scholarship Council for supporting my study in 

Germany.  

 



Author contributions 
 

136 

Author contributions 

Manuscript 1: Guozhi Yu, Desiree Y. Baeder, Roland R. Regoes and Jens Rolff, 

Combination effects of antimicrobial peptides. Antimicrob. Agents Chemother. (2016), 

60: 1717-1724. doi:10.1128/AAC.02434-15. 

G.Y., D.Y.B., R.R.R., and J.R. conceived and designed the experiments. G.Y. performed 

the experiments. G.Y. and D.Y.B. analyzed the data. G.Y. and J.R. wrote the 

manuscript. 

Manuscript 2: Desiree Y. Baeder
, 
Guozhi Yu

, 
Nathanaël Hozé, Jens Rolff, and Roland 

R. Regoes. Antimicrobial combinations: Bliss independence and Loewe additivity 

derived from mechanistic multi-hit models. Phil. Trans. R. Soc. B (2016), 371: 

20150294. DOI: 10.1098/rstb.2015.0294 

R.R.R. initiated this project. D.Y.B., G.Y., J.R. and R.R.R. conceived the model. D.Y.B. 

wrote the R script. All authors took part in the analysis of the results. D.Y.B., R.R.R., 

J.R. and N.H. drafted the manuscript. 

Manuscript 3: Guozhi Yu, Desiree Y. Baeder, Roland R. Regoes and Jens Rolff, 

Predicting drug resistance evolution: insights from antimicrobial peptides and 

antibiotics. Submitted. 

All authors participated in the design and interpretation of the results. G.Y. was 

primarily responsible for the predictive modeling, D.Y.B. for the PD work. All authors 

contributed to the writing of the paper. J.R. wrote the first draft, R.R.R. led the 

mathematical work. 

Manuscript 4: Guozhi Yu, Desiree Y. Baeder, Roland R. Regoes and Jens Rolff,  

The evolution of antimicrobial resistance in a model combining a multiple-step 

mutations and pharmacodynamics. In preparation  

All authors participated in the design and interpretation of the results. G.Y.,D.Y.B., 

R.R.R and J.R. conceived the model. G.Y. wrote the R script and performed analysis of 

the results. G.Y. and J.R. drafted the manuscript. R.R.R. led the mathematical work. 

 

  

http://aac.asm.org/search?author1=Guozhi+Yu&sortspec=date&submit=Submit
http://aac.asm.org/search?author1=Desiree+Y.+Baeder&sortspec=date&submit=Submit
http://aac.asm.org/search?author1=Roland+R.+Regoes&sortspec=date&submit=Submit
http://aac.asm.org/search?author1=Jens+Rolff&sortspec=date&submit=Submit
http://aac.asm.org/search?author1=Guozhi+Yu&sortspec=date&submit=Submit
http://aac.asm.org/search?author1=Desiree+Y.+Baeder&sortspec=date&submit=Submit
http://aac.asm.org/search?author1=Roland+R.+Regoes&sortspec=date&submit=Submit
http://aac.asm.org/search?author1=Jens+Rolff&sortspec=date&submit=Submit
http://aac.asm.org/search?author1=Guozhi+Yu&sortspec=date&submit=Submit
http://aac.asm.org/search?author1=Desiree+Y.+Baeder&sortspec=date&submit=Submit
http://aac.asm.org/search?author1=Roland+R.+Regoes&sortspec=date&submit=Submit
http://aac.asm.org/search?author1=Jens+Rolff&sortspec=date&submit=Submit


    

137 

 Curriculum Vitae 

Education 

PhD Student  Freie Universität Berlin, Berlin, Germany 2013-present 

M.S. Entomology Jiangxi Agricultural University, Nanchang, China  2013 

B.S. Biology Neijiang Normal University, Sichuan, China  2010 

Publications (* donates equal contribution) 

Guozhi Yu*, Desiree Y. Baeder*, Roland R. Regoes, Jens Rolff. Resistance 

evolution: AMPs vs. antibiotics. bioRxiv, doi: https://doi.org/10.1101/138107 

2017 

Desiree Y. Baeder, Guozhi Yu, Nathanaël Hozé, Jens Rolff, Roland R. 

Regoes. Antimicrobial combinations: Bliss independence and Loewe additivity 

derived from mechanistic multi-hit models. Phil. Trans. R. Soc. B 371, 

20150294; doi: 10.1098/rstb.2015.0294. 

2016 

Guozhi Yu, Desiree Y. Baeder, Roland R. Regoes, Jens Rolff. Combination 

effects of antimicrobial peptides. Antimicrob. Agents Chemother. 60:1717–

1724. doi:10.1128/AAC.02434-15. 

2016 

Conferences and presentations 

Anti-effective PK/PD: integrating knowledge and innovating therapies, April 

21, Vienna, Austria. (oral presentation: Predicting drug resistance evolution: 

antimicrobial peptides vs. antibiotics) 

2017 

PhD student Meeting: Conflict and cooperation–bridging evolution, ecology 

and immunology, March 16-18, Bautzen, Germany. (oral presentation: 

Predicting drug resistance evolution: antimicrobial peptides vs. antibiotics) 

2017 

AMP international symposium on antimicrobial peptides June 6-8, Montpellier, 

France. (poster presentation: Combination Effects of Antimicrobial Peptides) 

2016 

 

http://aac.asm.org/search?author1=Desiree+Y.+Baeder&sortspec=date&submit=Submit
http://aac.asm.org/search?author1=Roland+R.+Regoes&sortspec=date&submit=Submit
http://aac.asm.org/search?author1=Jens+Rolff&sortspec=date&submit=Submit
http://dx.doi.org/10.1128/AAC.02434-15

