7 Summary and discussion

The arrival of high-dimensional microarray data sets brought alonga need for new
approaches and methods for both significance analysis and classification tasks. We
focus on the significance analysis, for which we have to deal with an extensive mul-
tiple testing problem. The expression of thousands of genes is measured simulta-
neously. Each gene is tested for expression changes between two or more groups
of samples and thus constitutes one hypothesis. Classical approaches to multi-
ple testing like the family-wise error rate are considered to be too strict, such that
only a few genes are called significantly induced. The family-wise error rate equals
the probability that we include at least one false positive into our set of rejected
hypotheses. In the light of tens of thousands of hypotheses, a less conservative
error rate is needed. In their seminal work, Benjamini and Hochberg (1995) re-
discovered the false discovery rate as an error measure suitable for microarray or
other large-scale data. The false discovery rate is defined as the expected rate of
false positives among all rejected hypotheses, such that we might allow a certain
level of false positives in our test procedure. For both error rate models rich re-
search exists and various procedures were suggested to provide control of these
rates. Control means that a procedure retains the desired level of significance un-
der certain definitions of the null model. Control of error rates is important for
drawing conclusions on the significance of a set of genes. This feature brings along
a problematic aspect of error rate control: the false discovery rate is a global error
rate that assigns a certain level of significance to sets of genes, not to individual
genes. By including more highly significant genes into this set, we might allow
the inclusion of less significant genes while maintaining the same level of signif-
icance. This “problem of cheating” (Finner and Roters, 2001) was discussed and
illustrated in Section 3.3.

The local false discovery rate (Efron er al., 2001) appears to be a variant of the
global false discovery rate, yet it is what we were looking for: an error probability
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assigned to individual genes. It is defined as the probability that a gene is not dif-
ferentially expressed given we observed a certain p-value for this gene and given
the set of observed p-values of all genes in the experiment. Regarding the multiple
testing issue, we might compute local false discovery rates for each gene, define a
threshold and call the respective genes significantly induced. However it is not
clear if we can assure control of the local false discovery rate. With the local vari-
ant of the false discovery rate we indeed leave the field of error rate control and
focus on error rate estimation instead. The estimation involves the complete set
of observed p-values and provides a global view on amount and mixture of differ-
ential and non-differential expression in the data set. We are aware of the problem
that experimenters might want to return to control or at least to conclusion on
certain gene sets. Efron ez al. (2001) suggests to base inference on individual local
false discovery rate values and to call genes with values not exceeding a certain
threshold significant. We do not regard local false discovery rate estimation in
this sense but use it as a sensible tool to explore the overall amount of evidence
in the data set. When starting with the project, the primary idea was to discover
p-value levels where an accumulation of p-values occurs. We observed that the p-
value density does not always decrease monotonically. Instead, hubs of p-values
appear in zones where evidence for differential expression is not supported by
the observed p-value level. Using global false discovery rates, these twilight zones
would lie far beyond our significance thresholds and we would not consider exam-
ining them. P-value hubs in twilight zones contradict the assumption of concave
p-value density in Genovese and Wassermann (2004). However, only a few ap-
plications reveal twilight zones. One example included in this thesis is the Breast-
cancer 1 comparison. In Figure 5.3 we observed a plateau of local false discov-
ery rate around the p-value level of 0.2. We might classify the Breast-cancer 1
comparison as an experiment exhibiting only weak but wide-spread evidence for
differential expression.

With appropriate local false discovery rate estimators we can track twilight zones.
However, for every-day’s analysis of microarray data sets where inference on in-
dividual genes is wanted, it is challenging to provide an accurate estimate of the
percentage of non-induced genes 77y. The improved estimate can then be used for
example in the positive false discovery rate adjustment procedure of Storey and
Tibshirani (2003). Our first contribution to improve the significance analysis of
microarray data includes both: accurate estimates of the local false discovery rate
and of prior 7rp. In Chapter 5 we proposed a regularized stochastic search algo-
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rithm. The approach is termed SEP for successive exclusion procedure and works
by dividing the set of p-values into two parts. One part represents p-values of in-
duced genes, the other one represents p-values of non-induced genes. Following
probability theory, we assume the second part to be uniformly distributed. To
force a unique separation into the two subsets, we further assume that the uni-
form part consists of as many p-values as possible. That is, we do not allow that
the alternative subset contains any uniformly distributed remainders. These two
assumptions—uniformity of the non-induced part and exclusion of any uniform
fraction in the induced part—are sufficient to identify the mixture parameter 7o,
that is the proportion of non-induced genes in the experiment. The separation
into two sets of p-values only provides distributional information. We must not
conclude that p-values in one set represent genes that are truly differentially ex-
pressed. We can only estimate the proportion of differentially expressed genes at a
certain p-value level. Again, the vertical separation into genes called significantly
induced or non-induced leads us back to the issue of control of multiple testing
procedures, which we do not pursue in this thesis.

We presented the main SEP algorithm along with a calibration and a fine-tuning
step. The former calibrates a penalty term that safeguards against excluding more
p-values than necessary from the uniform part. The more weight we give to the
penalty term, the more difficult it is to remove p-values. A removal is only allowed
if this leads to an increased goodness-of-fit to the uniform distribution. Since the
weight on the penalty term depends on the number of values already removed,
there exists a point where the exclusion of a value is more expensive than the gain
of the resulting fit. Here the algorithm quits. We might think of cases where
it is necessary to remove many values. If the size of the uniform part is small,
a strict regularization is counterproductive. Therefore we divided the algorithm
into two layers. To get a burn-in set of excluded p-values, we apply SEP without
regularization until the goodness-of-fit reaches a certain threshold. Then, we fine-
tune the estimates by continuing the process with regularization.

The implementation of SEP is used in-house for routine analysis of data sets. An
carlier version was evaluated in a simulation study where the estimates appeared to
be “stable and reliable” (Broberg, 2005). On the other hand, the study revealed
shortcomings of SEP that were due to the final density estimates. Both, the in-
house use and the results of the study, lead to improvements of the original ver-
sion of SEP. The most visible improvement may be the fine-tuning step, other
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changes are more subtle. The changes brought along the need for a proper evalua-
tion including comparison to existing methods. Since the estimation of the local
false discovery rate in principle boils down to the estimation of the prior proba-
bility 7to, we compared SEP even to approaches developed for different settings
than microarray data. While our initial goal was to analyze the performance of
SEP in comparison to eventual competitors, we observed that many of these ap-
proaches had difficulties to estimate 7o well. Some methods exhibited under-es-
timation of the true parameter consistently for all simulation settings. However,
under-estimation of 77y equals over-estimation of 717 = 1 — 71, the percentage
of induced genes in the experiment. With an over-estimated 711, we might draw
overly optimistic but incorrect conclusions on the amount of differential expres-
sion. The set of observed p-values appears to carry more evidence for differential
expression than there actually is. Thus, we might want to be conservative, which
relates to over-estimating 77p. From the set of fourteen estimation procedures we
removed three in the first step of the simulation analysis since they severely un-
der-estimated 779. For another four procedures including the prominent method
of Storey and Tibshirani (2003) we observed increased variability of the esti-
mates as the number of p-values increased. Since we expected a method to pro-
vide more precise estimates for higher sample sizes, we excluded these procedures
from further consideration. Finally we were left with six approaches—including
SEP—that performed consistently well in our simulation study. While some of
these methods provided conservative upper bound estimates, other methods like
SEP returned estimates of high accuracy and high precision. The current imple-
mentation of SEP still appears to be stable and reliable and performs well over the
whole range of evaluated parameter combinations. The method of Nettleton and
Hwang (2003) also performed well and might be used as a conservative but quick
pre-estimator of 7.

Our second contribution to an improved significance analysis targets a special ar-
tifact of gene expression data: random permutations of the class labels, which are
used to model the score distribution under the null hypothesis, do not always lead
to a valid null distribution. A single permutation might be correlated with an un-
known covariate that triggers differential expression. Unknown confounders are
for example genetic background of patients or undetected experimental artifacts.
The influence of a hidden confounder is identifiable if a large number of genes
is affected. By transforming the respective permutation scores into p-values, we
observe an accumulation of small p-values such that the overall p-value distribu-
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tion deviates substantially from a uniform distribution. Since we do not want to
base inference on skewed null distributions, we propose a simple but efhcient al-
gorithm to filter for admissible permutations. To our knowledge, it is the first
approach that considers the removal of whole permutations instead of removing
single genes as was done for example in Xie ez a/. (2005) or down-weighing genes
as was done for example in Guo and Pan (2005). We showed how the signifi-
cance analysis benefits from permutation filtering: the results are longer lists of
significant genes and improved accuracy when estimating the global or local false
discovery rate. Along with the benefits of filtering come three problematic aspects
of significance analysis of microarray data, which we will discuss in the following.
In particular, we consider inclusion of known covariates, computation of p-values
and dependence between genes.

There are experiments where we have to adjust for known covariates. This can be
accomplished by balancing the permutations for the given covariate. For exam-
ple, if patient gender is an observed covariate, which does not correlate with the
variable of interest, we have to consider only those permutations balanced for gen-
der, that is where gender does not correlate with the random assignment of the
variable of interest. Including this information reduces the number of possible
permutations but leaves the general procedure applicable. To date, the inclusion
of known covariates into our software implementation is not possible. An excep-
tion are paired data where we observed two microarray measurements per patient,
for example before and after treatment. Here the assignment to pairs is regarded
as a block variable and we consider only within-block permutations. Thus we ran-
domly assign “before” and “after” labels within each pair, which limits the num-
ber of possible permutations compared to the unpaired case. So far, our software
package handles two sample paired or unpaired data sets. One can test for differ-
ences in mean expression or correlation to some variable of interest and account
for paired or unpaired samples when drawing random permutations within the
filtering algorithm.

In the end of Section 3.2 and in Section 4.4 we investigated the influence of the
p-value computation method. Using the permutation approach, we either com-
pute the p-value of the ith gene on the permutation scores of gene i alone or we
pool across genes and use the permutation scores of all genes. The first method is
termed gene-wise approach, the second one is termed pooled approach. The choice
of gene-wise or pooled p-values hinges on the assumption whether the scores fol-
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low the same null distribution for each gene. When using the common t-test
score, the scores ideally follow a t-distribution with equal degrees of freedom for
each gene. However, the t-score suffers from variability of the variance estimates
in its denominator. Almost constant genes with small variances lead to variable
gene rankings and a consistent gene might be among the top-scorers by chance.
To safeguard against variable rankings, several regularized t-scores (z-scores) were
proposed, which put less weight on the variances and more weight on the actual
effect sizes (Efron ez al., 2001; Tusher ez al., 2001; Wu, 2005; Smyth, 2004; Cui
et al.,2005). These scores however might not follow the same null distribution for
cach gene. Xie ez al. (2005) derived analytical results for the influence of differen-
tial and non-differential genes on the observed score distribution. They compared
one-sample equivalents of log ratio, z- and t-scores introduced in Section 2.4 re-
garding variance and tail strength of score distributions under induction or non-
induction and found that the influence of the z-score lies between those of log
ratio and t-score.

In Section 4.4 we explored differences between gene-wise and pooled p-values
when using the z-score of Efron e al. (2001), as we did throughout the thesis.
Assuming gene-wise or pooled null distributions leads to substantial differences
between the resulting p-values. We further examined the genes with largest dif-
ferences between the two types of p-values and found in principle two subsets.
One subset consisted of almost constant genes. Although the variance estimate is
of less importance using z-scores, the resulting distribution of permutation scores
is narrower than the pooled null distribution and the gene-wise p-value will be
much smaller than the pooled p-value. Pooling might prevent from misleading
results by assigning larger p-values to constant genes. The second explanation for
differences between gene-wise and pooled p-values are outliers in the expression
values. If one or two large expression values are present, the resulting distribution
of permutation scores will have heavier tails than the pooled null distribution.
The respective genes typically receive large gene-wise p-values, which might not
support evidence for differential expression. However, the choice of gene-wise or
pooled null distributions does not effect the results presented in this thesis. The
differences lead to different rankings of the genes, which is important if one wants
to conclude on individual genes. We observed little differences between the over-
all p-value distributions, which are the basis of our methods. Application of the
local false discovery rate estimator remains valid but single-gene conclusions are
certainly different if we use gene-wise p-values.
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The assumption and use of gene-wise null distributions does not safeguard from
the artifacts caused by hidden confounders (Section 6.2). In our first publication
on permutation filtering (Scheid and Spang, 2006), we considered only pooled
p-values. In an extended version we received preliminary results for gene-wise p-
values (Scheid and Spang, 2007). Indeed we observed a variety of p-value density
shapes very similar to the pooled cases shown in Figures 6.2 to 6.7. If a hidden vari-
able affects a sufliciently large number of genes, the signal will distort the p-value
distributions of correlated permutations. Whether the p-values were derived by
gene-wise or pooled computation does not seem crucial to us. We argue that if
a permutation strongly correlates with a hidden confounder and affects a large
number of genes, the hidden signal is identifiable by permutation filtering. Re-
moval of this permutation will lead to the same results as observed with pooling.
To us, the key value is the number of confounded genes. Indeed, a second result
of our preliminary research in Scheid and Spang (2007) is that the number of af-
fected genes has to be large to reveal hidden signal. We repeated the simulation
of Section 6.4 but confounded only 100 genes instead of 1000. Still, permuta-
tion filtering improved the sensitivity but the differences were not significant any
more.

The third problematic aspect in the significance analysis of microarray data con-
cerns the general assumption that genes are independent of each other. In fact
genes are coregulated, such that two genes are expressed in parallel because they
are triggered by the same regulation factor. Also, genes are connected in path-
ways and thus expression of one gene triggers expression of another gene further
down the signal cascade. Both molecular observations—coregulation and path-
way dependence—lead to the assumption that gene expression is correlated and
that we might discover groups of genes, which are correlated among each other
but not with genes in other groups. The covariance matrix of all genes in the ex-
periment will then be block-structured. Storey termed this situation “local de-
pendence” and showed that his gq-value procedure provides asymptotic control
of the positive false discovery rate under weak dependence assumptions (Storey,
2002,2003). Recent publications suggest that genes are not correlated in clumps.
Klebanov ez 4. (2006) assumed long-range correlation and proposed a new type
of dependence. The authors investigated whether one gene is stochastically pro-
portional to another gene, that is the first one modulates the second one such
that their expression values are proportional. Indeed, they analyzed pairs of genes
within several comparisons of the ALL study (Yeoh ez 4/., 2002) and found genes
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being stochastically proportional to the majority of genes in the experiment. In
a different comparison, the same genes show common correlation to most of the
other genes. The authors concluded that the clumpy dependence assumption of
Storey (2003) does not hold and that along-range correlation assumption is more
appropriate. Depending on the strength of correlation, Gao (2006) suggests to
use pooled p-values in case of weak correlations and gene-wise p-values in case of
long-range correlations.

Questioning common multiple testing practice, Klebanov, Yakovlev and coau-
thors published an interesting paper series on the effects of “pooling” (Klebanov
and Yakovlev, 2006; Qiu ez 4l., 2005, 2006). Here pooling does not refer to p-
value computation but to the general permutation test approach. The authors
discuss whether one should pool across scores to estimate the mixture distribu-
tion and derive global or local false discovery rate values. Reasons against pooling
are again non-equal null distributions and long-range correlation. The authors
argue that even if we can estimate the mixture distribution with high accuracy,
the implications drawn from this estimate do not provide reasonable single-gene
information. Qiu ez 4/ (2005) showed in simulations how strong correlation af-
fects the local false discovery rate procedure of Efron ez 4. (2001). Likewise, Qiu
et al. (2006) observed that the number of genes selected with multiple testing
procedures is highly variable in presence of correlation. The authors propose a re-
sampling-based strategy to explore whether the analysis of the data set at hand is
influenced by gene correlations. Long-range correlations are indeed a source of
confounding signals. Together with the assumption of non-equal null distribu-
tions, we have to be aware of biased implications.

Throughout the thesis, we assumed independence between genes. We were well
aware that this assumption is too naive in case of biological data sets. In particular,
we believe that the permutation artifacts shown in Figures 6.2 to 6.7 are not only
caused by hidden confounders but also by highly correlated expression values. The
border between both phenomena is fluent. If clumps of genes are correlated, they
might receive similar p-values, which constitutes deviation from uniformity. Per-
mutation filtering compensates for confounding variables but is less effective un-
der strong correlation. To examine the performance of our method under cor-
relation, we repeated the simulation experiment without a confounding variable
but with certain correlation structures. First, we simulated clumpy dependence
as in Storey et al. (2004). The values for 2500 genes were drawn from a multi-
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variate normal distribution with mean 0 and a block-diagonal covariance matrix,
such that blocks of 100 genes had a correlation of £0.4. The first 500 genes were
induced by adding a value of 2. Second, we simulated data with global correla-
tion as in Qiu ez 4/ (2005), such that the correlation between all 2500 genes was
0.4. The first 500 genes were induced as above. Details of these preliminary sim-
ulations can be found in Scheid and Spang (2007). The introduction of clumpy
or global correlation increased the variability of sensitivity and specificity of the
positive false discovery rate estimates. In case of global correlation the FDR pro-
cedure failed, which was in accordance to the results in Qiu ez 2/. (2005). In addi-
tion, filtering did not lead to substantial improvements—or, in other words—the
performance based on random permutations did not decrease as much as with a
single confounding variable being present, as we observed in Section 6.4.

Inclusion of correlated genes into the simulation model shows the limitation of
our filtering approach. We might compensate for hidden covariates but not for
correlation. Also, the number of confounded genes has to be large enough to be
detected by our method. If only a few genes are influenced by a hidden signal, the
deviation from uniformity is not strong enough and filtering does not substan-
tially improve the significance analysis. Another shortcoming of our method so
far is that it is a purely heuristic approach. We believe that the problem of con-
founding signal is present in most microarray comparisons and that it manifests
itself in permutation p-value distributions. Permutation filtering can be consid-
ered as a first step towards a novel concept in multiple testing, yet theoretical re-
search is necessary to further understand its implications on microarray data.

Throughout the thesis, we illustrated the proposed methods on simulated data
and on several biological data sets. The examples were limited to comparisons of
two clinical classes. Our current software implementation can only handle two-
sample tests on equality of means and tests on correlation to a clinical variable. In
principle, our methods are not restricted to two-sample cases but apply to avariety
of statistical hypothesis tests. If we have more than two classes at hand we might
compute F-statistics to test whether one class shows differential expression. More
sophisticated settings might require the use of regression models to explore a con-
trast of interest. In any case it is possible to run a permutation test on the chosen
score and derive a set of empirical p-values. From here on, we apply our methods
to estimate the mixture parameter 77 and the local false discovery rate. To include
the permutation filtering, we would have to return to the level of expression values
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and class labels. The estimation approach and the filtering are independent of the
chosen score and are applicable whenever large-scale permutation is possible.

The algorithmic approaches presented in this thesis have another feature in com-
mon: both are not limited to gene expression data. The estimation of the local
false discovery rate and the amount of true null hypotheses 77y make sense for any
kind of large-scale multiple hypothesis testing. Filtering for admissible permuta-
tions is an elegant way of reverse engineering when the true null distribution is
unknown or covered by signals of hidden covariates. We believe that the bene-
fits brought by our methods are not limited to the significance analysis of gene
expression data but may support the analysis in many fields of large-scale applica-
tions.
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