
 Permutation filtering

. Introduction and outline

ecomputational step from scores to p-values as summarized in Equation (.)
triggered our attention: to our knowledge, the transformation of scores to p-
values in the special case of microarray data has not been studied in detail so
far. In Section . we formally introduced the permutation approach to com-
pute empirical p-values from observed scores. As a valid description of the null
distribution is needed for the analysis of significance and this is difficult in case
of microarray data, it is common practice to use simulated distributions obtained
from randomizations of the original data (Dudoit et al., ). Randomization
is not only necessary because of the unknown distribution of intensity values but
also due to special features of gene expression data: neither are genes indepen-
dent from each other, nor do we know the underlying correlation structure. By
randomly assigning class labels to patients and recomputing scores, we circum-
vent most ambiguities and generate a set of scores under the null hypothesis. e
set of random scores serves as the null distribution, based on which we compute
empirical p-values for the observed scores. Under the assumption that not a single
gene is differentially expressed, one expects that this set of p-values is uniformly
distributed.

Amotivating example. To borrow information across genes, p-values are oen
computed using a pooled set of scores from all genes on the array (Storey andTib-
shirani, ). e combined use of class label permutations and score pooling
leads to a conceptual problem. In real applications, wewill typically have both dif-
ferentially and non-differentially expressed genes. While the permutations pro-
duce a justifiable null distribution for the non-differentially expressed genes, they
produce a wider null distribution of scores for the differentially expressed genes.
We show this with a simple simulation: for a set of  genes and  patients
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Figure .: Effects of class label permutation and score pooling in simulated data set with  induced
and  non-induced genes. Left plot: Shown are averages of score densities of  non-induced
(dashed line) and  induced genes (solid line). Although derived from all possible permutations of
class labels, the densities of the inducedgenes have largermargins than the densities of the non-induced
genes. Right plot: Histogramof p-values of the  non-inducedgenes derived from score pooling. Low
p-values are under-represented.

split into two equally sized groups, we generate random data drawn from a stan-
dard normal distribution. We slightly induce  genes by adding values drawn
from a normal distribution with mean  for patients belonging to the first class.
Next, we compute the log ratio score, that is the difference of classmeans, for each
gene and each possible permutation of class labels. From the  patients, we yield
14!
7! 7!

= 3432 possible permutations including the original one.

e le plot in Figure . shows averages of kernel density estimates of score dis-
tributions. e dashed line denotes the score density averaged over  non-
induced genes while the solid line denotes the score density averaged over the
 induced genes. Although both lines are based on all possible permutation
scores and should therefore mirror the complete null distribution, the solid line
has heavier tails than the dashed line. We conclude from this example that the
permutation of class labels does not necessarily lead to an admissible null distri-
bution for the differentially expressed genes.

When calculating p-values frompooled scores, the p-value distribution of non-in-
duced genes is not uniform anymore. We return to our simulation example above
and compute p-values from the pooled set of all possible permutation scores of all
genes. e right plot of Figure . shows the histogram of the resulting pooled p-
values of the  non-differentially expressed genes. Although we induced only
one fihof the gene set, the effect of thewidened score distributions is visible: e
p-value distribution of the non-induced genes is not uniform but lacks a certain
amount of low p-values. e under-representation of small p-values is due to the
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. Introduction and outline

fact that we include too many large (absolute) scores derived from induced genes
into the calculation. Hence differentially expressed genes leave trace not only in
the scores obtained from the original class labels, but also in pooled p-values ob-
tained from comparisons with permuted class labels.

e problem discussed in literature. To our knowledge, the validity of single
permutations has not been discussed in literature so far although the problem of
choosing an appropriate null distribution has been studied extensively. ere ex-
ist several approaches to improve permutation tests but none of them questions
a single random permutation. Pollard and van der Laan () evaluated combi-
nations of re-sampling concepts and scores. e former divide into the common
permutation approach and a bootstrap based re-sampling. e authors concluded
that the choice of re-samplingmethod and score depends on the experimental de-
sign and further assumptions on the correlation structure. In a later simulation
study, Pollard et al. () introduced various bootstrap approaches to simulate
a valid null distribution. Within each re-sampling concept however, bootstraps
were randomly drawn and not restricted with regard to patients or genes.

Efron () followed a different approach: given the set of observed scores, the
author estimated the null density f0 from the central peak of the mixture density
f using smoothing splines and the normality assumption. Here genes in the cen-
ter of the distribution have more influence on the estimated location and scale
parameters than genes in the tails. Still, the approach depends on the normality
assumption and on test settings with unimodal and symmetrical score distribu-
tions. Guo and Pan () assignedweights to genes according to their estimated
false discovery rate. Genes that appear to be significantly induced contribute less
to the null score distribution than those genes that seem to be truly null. e au-
thors suggested to iterate between the false discovery rate estimation and the as-
signment of weights. ey showed that the weighted permutation scores improve
the power to detect differentially expressed genes. Xie et al. () examined the
influence of differential and non-differential genes on the estimated null distri-
bution using log ratio, t- or z-scores and suggested to exclude genes identified as
differentially expressed from the estimation process.

In contrast to these approaches, we suggest to keep the whole set of genes but to
not rely on an arbitrary set of random permutations. We motivate our proposal
in the following section with a display of artifacts, which we commonly observe
in microarray data. We derive a natural decision rule for valid permutations and
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 Permutation filtering

introduce a simple filter algorithm in Section ., which leads to a set of admissi-
ble permutations. e filtering effects the estimation of the global and local false
discovery rate, and we explore the estimates’ benefits in Section ..

. Artifacts in real data

Notation. We shortly review the notation of permutation methods from Sec-
tion .. Let matrix X be an m × n gene-expression matrix with genes in rows
and patients in columns. Entry xij is the value of the ith gene observed for the jth
patient with genes i = 1, . . . ,m and patients j = 1, . . . , n. In addition, we have
a vector c0 = (c1, . . . , cn) with cj being the class label of the jth patient. Let s0
denote the vector of scores with entries (si0)i=1,...,m and let c be a random permu-
tation of the entries of vector c0. For each permutation of class labels c, we recom-
pute scores and derive a set of random scores s. With B permutations and thus B
permuted label sets c1, . . . , cB, this yields B random score vectors s1, . . . , sB. Let S
be the m× (B + 1) score matrix of the joint score vectors including the original
one:

S := (s0 s1 · · · sB) = (sib) with i = 1, . . . ,m and b = 0, . . . , B. (.)

e empirical p-value for score si0 is then given as:

pi0 =
1

m(B + 1)

m

∑
k=1

B

∑
l=0

I{|skl| ≥ |si0|}. (.)

Note that compared to Equation (.) the p-value got a second subscript “”.
e second subscript refers to the class label vector from which it was derived.
Here we computed the set of p-values p

0
= (pi0)i=1,...,m belonging to the original

classification c0. Otherwise the definition equals Equation (.). We summarize
the computational steps from class labels c0 via scores s0 to p-values p

0
into one

functionUC defined as:
UC(c0) = p

0
, (.)

where C = {c0, c1, . . . , cB} is the set of permutations.
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. Artifacts in real data

Random permutations applied to data sets. We return to our six exemplary
data sets and follow the same analysis scheme that lead to Figure .: for each data
set, wedrew B = 1000 randompermutations of the original labeling c0, computed
the matrix S of z-scores and empirical p-values p

0
= UC(c0). Note that the data

underlying Figures . and . were derived from this very set of  random
permutations.

Randompermutations are assumed to guard against biological signals in the data.
Hencewe assume that the scorematrixS derived from randompermutations con-
sists of random scores only. e more the observed scores deviate from the ran-
dom scores, the more evidence for differential expression there is. is rationale
forms the basis of all permutation approaches. However, it is only valid if we can
surely rely on the set of random scores to be drawn from a valid null distribution.
We apply a simple technique to uncover biological signals still contained in the
random scores: we loop over the set of permutations C = {c0, c1, . . . , cB} regard-
ing each single permutation cb in turn as the originally observed classification and
compute p-values pb = UC(cb) of the bth permutation. Hence, we use the func-
tionUC not only for assigning a vector of p-values to the original class labels, but
also to each permuted vector of class labels. us we map the score matrix S onto
a p-value matrix P:

pib =
1

m(B + 1)

m

∑
k=1

B

∑
l=0

I{|skl| ≥ |sib|}, (.)

for all genes i = 1, . . . ,m and permutations b = 0, . . . , B. For any random per-
mutation b 6= 0we require its p-value distribution to be uniform, hence giving no
evidence for biological signal associated to cb. Our observations are different: in
Panels A of Figures . to . we display the results of the mapping above applied
to the B = 1000 permutations. e top le plot shows a multi-dimensional scal-
ing (MDS) representation of the p-value distributions obtained by fixing single
permutations. We derived the mapping into two dimensions from the Euclidean
distances between the empirical cumulative distribution functions of the asso-
ciated sets of p-values. Close points represent permutations cb, which produce
similarly distributed p-values pb = UC(cb).

In addition, we annotated up to four exemplary permutations by numbers includ-
ing the original labels as no. , whose p-value distributions are shown in the top
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A: Random permutations
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B: Filtered permutations
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Figure.:Effect of permutationfilteringonALL  data set. A:Randompermutationdoesnotonlypro-
duce valid null distributions. The multi-dimensional scaling plot on the left-hand side shows distribu-
tional distances between  sets of p-values resulting from randompermutations. Euclidean distances
between the cdf of the p-value sets were used. The four numbered examples show that permutations on
the right side in the MDS plot have increasing densities, permutations on the left side have decreasing
densities, andonly permutations close to the origin produceuniformdensities. No.  denotes the original
class labels c0. The scatterplot on the right-hand side shows a secondMDSmapping of the permutations,
nowdirectly based on the Hamming distances of permuted class labels. The permutations do not cluster
but scatter randomly around the origin. B: Filtering of permutations leaves uniform p-value distri-
butions. The filtering algorithm returns  permutations that produce uniform p-value distributions,
which cluster around the origin in the MDS plot on the left-hand side. Again, no.  represents the origi-
nal labeling c0 while the other three permutations were chosen from the extremes of the filtered set to
show that these are still admissible. The MDS plot based on Hamming distances between permutations
is similar to the one in A. Filtered permutations still spread evenly in the permutation space.
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B: Filtered permutations
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Figure .: Effect of permutation filtering on ALL  data set. See Figure . for details.
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Figure .: Effect of permutation filtering on Breast-cancer  data set. See Figure . for details.
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Figure .: Effect of permutation filtering on Breast-cancer  data set. See Figure . for details.
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Figure .: Effect of permutation filtering on Lung-cancer data set. See Figure . for details.
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. A stochastic filtering approach
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Figure .: Effect of permutation filtering on Prostate-cancer data set. See Figure . for details.

middle plot. Only permutations close to the MDS origin produce uniform p-
value distributions. emajority of permutations, however, deviates substantially
from uniformity. In some experiments we find many permutations with p-value
distributions deviating as much or even stronger from uniformity than the distri-
bution of the original class labels, see example no.  in Panels A of Figures ., .
and .. e banana-like shape of the MDS scatterplot can be observed in many
data sets when random permutations are drawn. Usually one is le with a set of
permutations with all kinds of increasing, uniform or decreasing p-value distribu-
tions, or—alternatively—with too narrow, null or too wide score distributions.
In summary, a random draw of permutations does not guarantee that we base our
final p-values p

0
on a set of scores that comply with a global null distribution.

. A stochastic filtering approach

We propose a simple and well-performing search heuristic that returns a set of
compliant permutations. e central idea is to transform not only the observed
scores s0 to p-values but the whole score matrix S. In particular, we apply func-
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 Permutation filtering

tion UC to each vector c ∈ C of permuted class labels, as was done in the previ-
ous section. We define C0 to be the set of valid permutations, which is a subset
C0 ⊂ C of all permutations. For each permuted vector c ∈ C0 we require the re-
sulting p-values p = UC0(c) to be uniformly distributed. is requirement must
hold for all members of C0. If one permutation c⋆ ∈ C0 has a p-value distribu-
tion that deviates substantially from uniformity, either c⋆ or large parts of the
remaining permutations in C0 correlate with some non-random structure in the
data. We propose the following filtering procedure to derive a set of permutations
C0, which consistently produces uniform p-value distributions when calculating
p-values for a fixed permutation using the remaining permutations in C0. e al-
gorithm works iteratively to reduce computational time and to save memory. In
each iteration, we draw a random set of permutations, compute scores and trans-
form these to p-values. e p-value distribution of an individual permutation is
tested for uniformity by applying the Kolmogoroff-Smirnoff score. We keep the
permutations with best-fitting p-value distributions, that is with the smallest Kol-
mogoroff-Smirnoff scores. Note that these distributions are not necessarily well-
fitting. However, if the number of possible permutations is large, there is a good
chance of drawing permutations that follow the uniform distribution. e best
permutations are kept in C0 and a new set of random permutations is drawn in
the next iteration. en, both sets are joined. Note that we do not have to recom-
pute the scores of the kept permutations. We only have to recompute the p-values
when we join C0 with the new set as the calculation is based on an altered set of
permutations. In each iterative step, the number of permutations in C0 increases.
Table . summarizes the algorithm.

Combinatorial remarks. As we keep increasing numbers of permutations in
each round, the algorithmwill always result in a set C0. Asmentioned above, these
permutations will in general comply with the global null hypothesis. If the pa-
tient numbers are small, it may happen that there do not exist enough unique and
valid permutations such that C0 might contain non-compliant permutations. In
the worst case, the number of wanted permutations exceeds the number of pos-
sible permutations. en, our implemented version of the algorithm quits earlier
and outputs the complete set of possible permutations accompanied by a warn-
ing message. Here the permutations are not filtered at all. However, they will be
ordered according to their Kolmogoroff-Smirnoff score and one might either use
a subset or reduce the number of wanted permutations. e filtering algorithm is
implemented in our soware package twilight from version .. on.
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Table .: The filtering algorithm in detail.

. Let C = {c1, . . . , cB} be a set of unique random permutations of the original
class labels c0. Apply functionUC to all cb ∈ C , which yields thep-value vectors
p1, . . . , pB. Choose a step size k and set v = 1.

. Let Fb be the empirical cdf of the p-values in pb. Test each permutation for
uniformity of its p-value cdf by computing theKolmogoroff-Smirnoff statistic

KSb = maxi=1,...,m|Fb(pib) − pib|.

Keep the v · k permutationswith the smallest KS statistic in the set C0. Increase
v = v + 1.

. Generate a new set of unique randompermutationsC , join itwith C0 and apply
UC0∪C to all cb ∈ C0 ∪ C .

. Iterate steps  and  until |C0| reaches a predefined number of permutations.

. Compute the final vector of empirical p-values p0 = UC0∪c0
(c0) for the origi-

nal class labels.

. Benefits of filtering

We apply the filtering algorithm as given in Table . to the exemplary data sets.
In each case, we set the step size to k = 50, the number of new random permu-
tations per iteration to  and the stopping criterion to |C0| ≥ 1000 unique
permutations. With these default values, we need at least  iterations until the
algorithm stops.

Permutationfilteringproduces validnull distributions. eeffect of permu-
tation filtering is shown in Panels B of Figures . to .. e axes of the MDS
plots equal those in Panels A. As expected, the filtered permutations lie closer to
the origin. Again, we annotated the original labeling and three exemplary permu-
tations. e latter were chosen from the margins of the cloud to show that even
those produce acceptable uniform p-value distributions. We removed identical
permutations within the iterative filtering. One might suspect that filtering in-
troduces a selection bias in that the filtered permutations cluster strongly and do
not spread over the entire permutation space. To show that this is not the case,
we display a two-dimensional MDS mapping of the permutations. e mapping
was derived from theHamming distances between the binary vectors of permuted
class labels before (Panel A) and aer (Panel B) filtering. Filtered permutations
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do not form clusters but spread evenly over the permutation space in the MDS
representation.

Permutation filtering leads to more significant genes. Permutations are the
basis of any analysis of significance. Frompermutations, we compute p-values and
from these q-values or estimates of the local false discovery rate. e filtering en-
hances the finding of significant outcomes. To show this, we compute p-values
of the original labeling c0 based on the random as well as on the filtered set of
permutations. Note that these p-value sets correspond to the p-value histograms
no.  in Figures . to . as well as in Figure .. For all p-value sets, we estimated
the positive false discovery rate as defined in Storey andTibshirani () but ex-
changed the prior π̂0 with our SEP estimate. In the le-hand side plots of Figures
. and ., we display positive false discovery rate thresholds against the resulting
size of gene lists. Filtering generally increases the number of significant genes in
all cases. e increased number of significant genes is due to the removal of per-
mutations with p-value distributions similar to that of the original labeling, that is
with more small p-values than expected. ese distributions correspond to score
distributions with heavy tails. eir removal increases the empirical p-values of
genes with high scores. e dashed lines in Figure . and . mark an exemplary
threshold of pFDR ≤ 0.05. e sizes of the resulting gene lists are shown in the
first column of Table .. e last two columns again contain bootstrap estimates
for the percentage of induced genes π0 and % bootstrap confidence intervals
as also shown in Table .. Now, estimates are given for both random and filtered
permutations.

Filtering intensifies the local false discovery rate on both sides of the twilight
zone. We estimated the local false discovery rate based on the set of p-values
from filtered and random permutations, and examined how the estimates differ
with respect to filtering. We have already seen the non-filtered estimates in Fig-
ure .. When plotting the curve of one minus local false discovery rate over the
range of p-values we observe that filtering leads to a clearer representation of dif-
ferential expression. Low p-values have higher posterior probabilities whereas the
curve declines faster for increasing p-values than before. Possible twilight zones in
the middle between clear differential and non-differential areas remain with de-
creased evidence. e right-hand side plots in Figures . and . show the poste-
rior probability of differential expression over gene ranks. Filtering enhances the
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Figure .: Permutation filtering leads to increased significance. On the left-hand side are positive false
discovery rate thresholds plotted against the resulting size of gene list. The same pFDR threshold leads
to more findings with filtering (red line) than without (black line). The vertical lines denote the arbitrary
threshold of %, see Table .. Right-hand side: The posterior probability of differential expression over
gene ranks, again based on filtered (red line) or randompermutations (black line). Filtering enhances the
posterior probability for top genes, which levels off when the twilight zone is reached.

posterior probabilities of the top-most gene ranks but decreases it when the curve
reaches the twilight zone.

Permutation filtering leads to a higher accuracy of the screening. So far, we
examined the effect of filtering only on biological data. We observed an increase
in significance and thus enhanced sensitivity but we do not know whether a sig-
nificant gene is truly induced or not. If the increase in sensitivity brings along
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Figure .: Permutation filtering leads to increased significance. See Figure . for details.

a highly decreased specificity and thus more false negatives, we do not gain any-
thing. To show that this is not the case we used a simulation experiment where
the true positives genes are known by design of the simulation. Of course, it is not
possible to increase sensitivity and specificity simultaneously but we hope to keep
a reasonable specificity while gaining sensitivity. To this end, we generated ran-
dom data for  genes and  patients per condition. First, we drew a vector
of  random values from a log normal distribution with location parameter
 and scale parameter ., and, taking these as mean values, generated  ran-
dom samples from a normal distribution with variance . To induce the first 
genes, we added a value of  to the samples of one condition. We introduced hid-
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Table .: Overview on exemplary data sets analyzed with or without permutation filtering. Shown are
thenumbersof geneswithq-valuesbelow thedesired levels, thebootstrapestimates for prior probability
π0, and the % bootstrap confidence intervals (CI) for π0. The estimates are based on  bootstrap
samples within each comparison.

Comparison Size of gene list Bootstrap Bootstrap
with pFDR ≤ 0.05 π̂0 95% CI

ALL 1, random 937 0.8560 [0.8374, 0.8712]
ALL 1, filtered 1117 0.8574 [0.8411, 0.8699]
ALL 2, random 0 0.7803 [0.7476, 0.8045]
ALL 2, filtered 0 0.7832 [0.7546, 0.8072]
Breast-cancer 1, random 3 0.8818 [0.8538, 0.9080]
Breast-cancer 1, filtered 5 0.8962 [0.8694, 0.9200]
Breast-cancer 2, random 1816 0.4981 [0.4677, 0.5265]
Breast-cancer 2, filtered 2997 0.5045 [0.4779, 0.5300]
Lung-cancer, random 5992 0.3863 [0.3617, 0.4097]
Lung-cancer, filtered 6060 0.3937 [0.3678, 0.4189]
Prostate-cancer, random 2321 0.5360 [0.5046, 0.5613]
Prostate-cancer, filtered 3619 0.5562 [0.5307, 0.5772]

den non-random structure to the following  genes by adding a value of  to
five samples of each condition. Here the hidden variable simulated moderate in-
duction. In a second setting, we added a value of  instead of  to simulate strong
induction. Note that in either setting only the first  genes are differentially
expressed between populations. We proceeded with the analysis as before and
computed p-values based on  filtered and  unfiltered permutations. We
ranked the genes by p-values and estimated the positive false discovery rate for
every rank. We repeated the data generating procedure  times, each time cal-
culating the number of truly induced genes within the list of genes with estimated
pFDR ≤ 0.05.

Filtering increased the number of correctly identified genes for both moderate
and strong hidden induction. Without filtering, the list of significant genes in-
cluded an average of  true positive findings out of  truly induced genes
in the strong setting. e filtering improved this number to  correctly iden-
tified genes on average. is difference was highly significant in a paired t-test
(p < 0.0001). Speaking in relative values, the filtering increased the sensitivity,
that is percentage of correctly identified induced genes, from . to ..
e specificity, that is percentage of correctly not-identified non-induced genes,
decreased only slightly from . to .. For the moderate setting, the val-
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Figure .: Permutation filtering leads tomore accurate positive false discovery rate estimates. Ranks of
high-scoring genes versus the true and estimated pFDR. The pFDR based on filtered permutations (thin
red line) estimates the true pFDR (thick black line) with high accuracy for the first  ranks. The pFDR
computed without filtering (thin black line) leads to conservative but inaccurate estimates.

ues were closer to each other but we still observed significant differences between
the number of true positives, whichwere on average without and with fil-
tering. e sensitivity improved from. to .while the specificity stayed
virtually constant (. without and . with filtering).

Permutation filtering produces more accurate estimates of the global false
discovery rate. We used the simulation setting with strong induction to exam-
ine the accuracy of the estimates. In Figure . we display the ranks of the top-
scoring genes with corresponding true and estimated positive false discovery rate.
Again, the estimates are based on either a randomor a filtered set of permutations.
e thin black line depicts the non-filtered setting, which results in conservative
estimates. e conservative behavior comes at the price of substantial overestima-
tion of the true values. e estimates based on filtered permutations (red line)
show less bias and match the true positive false discovery rate for the top-ranking
genes well. For higher ranks beyond  they become conservative, too, which
fits to our simulation setting of  truly induced genes.

In summary, we observe many benefits when basing the significance analysis on
filtered permutations. e approach of excluding whole permutations instead of
excluding or down-weighing genes or patients is novel. While keeping all genes
and patients, it is an appealing way of building a valid null distribution for further
analysis.
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