
 Anovel estimator of the local false
discovery rate

. Outline

In Sections . and . we introduced the local false discovery rate and reviewed
various estimation procedures. In the following Section . we introduce a novel
estimator of the local false discovery rate, termed the successive exclusion procedure.
We explicitly specify the estimation algorithm in Sections . to .. In Section
. we show the results of the local false discovery rate estimation for the exem-
plary data sets introduced in the previous chapter. We close this chapter with a
comprehensive comparison of our approach to the estimators reviewed in Sec-
tion ..

. A stochastic downhill search approach

e local false discovery rate is defined in terms of a mixture model that splits
the observed p-value density f into a uniform part with rate π0 and into a non-
uniform part f1 with rate 1− π0. Recall from Section . that the mixture model
is given as:

f (p) = π0 + (1− π0) f1(p). (.)

In terms of the mixture model above, the local false discovery rate is then defined
as:

fdr(p) =
π0

f (p)
, (.)
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Figure .: A p-value histogram derived from simulated scores with mixture parameter π0 = 0.8. The
amount of p-values belonging to non-induced genes is represented by the uniform block beneath the
horizontal line. Given an estimate of π0 and a density estimate of the mixture, it is easy to compute the
local false discovery rate.

which is interpreted as the probability that a gene is not differentially expressed
when observing its p-value p and conditioned on all observed p-values in themix-
ture f . In the following, we introduce a non-parametric estimator of the local false
discovery rate based on appealingly simple foundations: to estimate the local false
discovery rate, we have to know the percentage of non-induced genes π0. Using
the uniformity assumption for p-value distributions, prior π0 fully specifies a uni-
form distribution andwe are le with a density estimation of themixture f . Plug-
ging both estimates into Equation (.) yields the estimated local false discovery
rate.

To estimate π0, we split the set of observed p-values by dividing the p-value dis-
tribution horizontally into two parts, see Figure . for illustration. e two sets
above andbelow the line represent p-values from induced andnon-induced genes,
respectively. Starting from the full set of p-values, we successively exclude some
p-values until the remaining set looks like a typical draw from a uniform distri-
bution. Of course, we cannot conclude that the individual genes corresponding
to the p-values in the first set are the induced genes and those in the second set
are the non-induced genes. However, the size of the uniform subset is a natural
estimator for π0. By computing a smoothed estimate of the mixture density, we
yield the final estimates f̂dr(p) for all p-values p. e identification problem for
π0 is addressed by searching the largest set of genes such that the distribution of p-
values can still pass as a sample from a uniformdistribution. We call the algorithm
“SEP” for successive exclusion procedure.
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. A stochastic downhill search approach

Formal description of the algorithm. We divide the set of observed p-values
(pi)i=1,...,m into two subsets. Let J denote the set of indices representing p-values
that are assigned to the uniform subset. Let FJ be the empirical cumulative dis-
tribution function of the set of p-values (pi)i∈J . Our goal is to find the largest set
J such that FJ is sufficiently close to a uniform distribution. For a given set J we
measure the goodness-of-fit of the empirical to the uniformdistribution using the
Kolmogoroff-Smirnoff score defined as:

S(J) = maxi∈J|FJ(pi) − pi|. (.)

In addition, we need to include a size-dependent component that guarantees a
high Kolmogoroff-Smirnoff score without removing more p-values than neces-
sary from the uniform part. e result is a regularized fitting approach using an
objective function composed of fit component S(J) and a size component Rλ:

g(J, λ) = S(J) + Rλ(|J|) (.)

with Rλ(|J|) = λ
m− |J|

m
log(m− |J|), |J| < m, (.)

where Rλ(|J|) is strictly monotone in the size of the set J. Other choices of the
penalty term Rλ are possible. e one above has proven to work well in applica-
tions.

e parameter λ ≥ 0 determines the penalty on the regularization term. For
λ = 0, we have Rλ(|J|) = 0 and hence the objective function only depends on
the fit of the empirical distribution of the set (pi)i∈J to the uniform distribution.
Assume that no gene on the chip is induced. Here |J| ≈ m and the empirical
distribution FJ resembles the uniform distribution but the fit is g(J, 0) 6= 0 due
to the sample variance of FJ . One can still find p-values to exclude such that FJ
gets closer to identity, hence building distributions that are even more “uniform”
in terms of goodness-of-fit than a typical draw from a uniform. is overfitting
effect leads to a systematic underestimation of π0. Note that in the overfitting
phase we will only marginally improve the fit to the uniform, while |J| and hence
the resulting estimate π̂0 can still change significantly. When choosing λ > 0,
improving the fit by exclusion comes at a price in the size component Rλ(|J|).
Hence, the estimation of π0 can be tuned by λ. We propose a calibration algo-
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 A novel estimator of the local false discovery rate

Table .: The successive exclusion procedure in detail: Stochastic downhill search with fixed regulariza-
tion parameter λ.

Let J be the index set of p-values representing the uniform part in the total set of
p-values (pi)i=1,...,m.

. Start with the full set J = {1, . . . ,m}. Randomly select an index i ∈
{1, . . . ,m} and set J = J\{i}.

. Let FJ be the empirical cumulative distribution function of (pi)i∈J . Calculate
the objective function

g(J, λ) = maxi∈J |FJ(pi) − pi| + λ
m− |J|

m
log(m− |J|).

. Randomly select an index i ∈ {1, . . . ,m}. If i ∈ J, set J′ = J\{i}. Else, set
J′ = J ∪ {i}. Compute g(J′, λ).
If g(J′, λ) < g(J, λ), set J = J′. Else, keep J unchanged.

. Iterate steps  and  until the objective function was not reduced in 2m itera-
tions.

. Output final configuration J.

rithm for λ in the following section. For the time being, we assume the parameter
λ to be fixed.

For a fixed λ, we need to minimize g(J, λ) over all subsets J of the observed p-
values, which is not feasible by exhaustive search. For heuristic optimization, we
use a stochastic downhill approach. Assume, we have a candidate set J containing
a subset of p-values. From the total set of p-values, we randomly draw a single p-
value pi. If the corresponding index i is already contained in J, we exclude i from
J, which defines a new subset J′ = J\{i}. If i is not in J, we include it again:
J′ = J ∪ {i}. For both subset configurations J and J′, we compute the objective
functions g(J, λ) and g(J′, λ) according to Equation (.). If g(J′, λ) < g(J, λ),
we substitute J with J′, otherwise J remains unchanged. Starting with the full set
of p-values, this procedure is iterated until the number of unsuccessful trials for a
new configuration exceeds twice the total number of p-values m. Given the final
configuration J, we yield an estimator for π0 from the percentage of p-values in
the uniform subset:

π̂0 =
|J|
m

. (.)
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. Calibration of the regularization parameter

Table .: The successive exclusion procedure in detail: Estimation of the local false discovery rate.

Let J be the optimal subset of p-value indices found by the algorithm defined in
Table ..

. Estimate the proportion of non-induced genes as π̂0 = |J| ·m−1.

. Divide the interval [0, 1] into  bins derived from the %-quantiles of
(pi)i=1,...,m. Compute histogram estimators (h(l))l=1,...,100 for the density of
(pi)i=1,...,m. For all l, set q(l) = h(l)−1.

. Apply a smoothing spline with seven degrees of freedom and decreasing
weights 1/c(l) to q(l)l=1,...,100, where c(l) denotes the center of bin l. Com-
pute the smoothed spline output in each (pi)i=1,...,m and multiply with π̂0.
Truncate at  or  if values exceed the interval [0, 1].

We divide the interval [0, 1] into  bins derived from the %-quantiles of the
total set of p-values. For each bin, we yield histogram estimators (h(l))l=1,...,100

for the mixture density f . For all l, we compute the inverse q(l) = h(l)−1. A pre-
estimate of the local false discovery rate is derived by interpolating (q(l))l=1,...,100

using a smoothing spline with seven degrees of freedom and decreasing weights
1/c(l), where c(l) denotes the center of bin l. In our experience, this choice
of smoothing parameters satisfyingly corrects for increasing variance of the his-
togram estimates. Finally, we multiply with the estimated prior π̂0. A concise
description of the SEP algorithm is given in Tables . and ..

. Calibration of the regularization parameter

e choice of the regularization parameter λ in Equation (.) is a trade-off be-
tween the exclusion of the smallest possible subset of p-values and the restriction
to a p-value distribution that fits well to a uniform. Less regularization leads to an
overly well fitting subsample but presumably excludes p-values that belong to the
uniform part. On the other hand, a large penalty prohibits from excluding more
values than necessary but results in an under-fitting subsample that is far from
uniform. Hence, our strategy is to adaptively choose λ at the transition of over-
and under-fitting such that only significant improvements of the fit component
are accepted and overfitting is avoided. To this end, we select candidate values for
λ and draw bootstrap samples of the set of p-values. To reduce computational
time, the bootstrap samples have a smaller sample size than the observed set. For
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Figure .: Effect of the regularization parameter λ. Shown are the differences of the fit components S
computed with regularization to the fit computed without regularization. Each boxplot contains values
from  bootstrap samples of size  from a simulation with moderate induction (µ = 2). The verti-
cal line indicates the border between over- and under-fitting found by SEP. Here the largest admissible
regularization parameter is λ = 0.015.

each candidate value, we run the SEP algorithm with the given penalty and re-
port not the whole objective function but only the fit component S in Equation
(.). Note that this is the fit computed with regularization. Hence, the higher
the candidate value for λ is, the higher are the fit components indicating devia-
tion from uniformity. Since we desire a good fit, we take the values of S found
without regularization (λ = 0) as baseline. For each positive candidate value the
baseline values are subtracted from the fit components of the bootstrap samples.
Figure . shows exemplary boxplots of the resulting differences.

Now, we have to find an admissible value of λ such that the fit is not significantly
worse than without regularization. To this end, we test whether the differences
shown in Figure . deviate substantially from zero. Each set of bootstrap values
is tested using the standard Wilcoxon ranksum test and the largest λ leading to
non-significant differences is chosen as the final value. In the example above, the
algorithm returns λ = 0.015. For larger values we observe that the differences
generally increase such that the medians deviate from zero. e vertical line in
Figure . denotes the transition between the over- and the under-fitting area.
e boxplot belonging to λ = 0.015 is the last one on the le-hand side before
the variance increases and outliers appear.

e calibration of λ is summarized in Table .. Note that its description differs
slightly from the first version published in Scheid and Spang (). We changed
the algorithm since we observed problemswhen choosing λ from a set of p-values





. Fine-tuning

Table .: The successive exclusion procedure in detail: Calibration of the regularization parameter λ.

. Draw 50 bootstrap samples (pB
i )i=1,...,min(1000,m) from the given set of p-values.

Set λ0 = 0, λ1 = 0.005, . . . , λ10 = 0.05.

. For λk, k = 0, . . . , 10, run SEP as defined in Table . with λ = λk on each
bootstrap sample and keep the final configuration JB. For each sample, output
the fit component

S(JB) = maxi∈JB |FJB(pB
i ) − pB

i |.

. For k = 1, . . . , 10: Compute p-value pk from a Wilcoxon ranksum test on the
difference between fit values computed with λ = λk and fit values computed
with λ = λ0 = 0.

. Find first k such that pk ≤ 0.05 and set the regularization parameter to λ =
λk−1.

where the uniform part is extremely small. In that case, many p-values have to be
excluded to derive the uniform subset and hence λ has to be small enough to allow
for this usually unwanted behavior. e updated version of the calibration algo-
rithm performs well in simulations and also when applied to somewhat skewed
clinical data sets. e problem of small uniform subsets also lead to the improve-
ments described in the following section.

. Fine-tuning

e regularization term is used to prevent from excluding more p-values than
necessary from the uniform part. A strict penalization might lead to unwanted
effects. We observed severe overestimation of π0 when the true prior is close to
zero. Here the mixture consists of a small percentage of uniformly distributed
p-values and a huge over-representation of low p-values. Wemust exclude many
genes, and those are probably more than the regularization term permits. Run-
ning SEP as defined in the previous sections leads to a conceptual al problem: if
π0 is too small, the algorithm stops too early because the penalty term increases
quickly. us we exclude too few p-values such that the final estimate π̂0 is mis-
leadingly high. To prevent from SEP’s misperformance on data sets with huge
amount of differential expression, we propose the following two-step design.
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 A novel estimator of the local false discovery rate

Table .: The successive exclusion procedure in detail: Fine-tuning of the π0 estimate.

Let J be the index set of p-values representing the uniform part in the total set of
p-values (pi)i=1,...,m.

. Run the calibration as defined in Table . to yield the regularization par-
ameter λ = λ⋆.

. Start with the full set J = {1, . . . ,m}.

. Let FJ be the empirical cumulative distribution function of (pi)i∈J . Calculate
the Kolmogoroff-Smirnoff score

S(J) = maxi∈J |FJ(pi) − pi|.

. If S(J) ≤ 0.25, go to step .

If S(J) > 0.25, run SEP as defined in Table . with λ = 0. Keep the final
configuration as the initial set J and go to step .

. Run SEP as defined in Table . with λ = λ⋆ and output the final configura-
tion.

We start with finding a suitable regularization parameter as given Table .. en
we evaluate howwell the overall p-value distribution already fits to a uniform dis-
tribution. If it fits well, we run SEP with regularization. If the distribution is far
from uniform, we split SEP into two separate rounds. First, we run it without
regularization until the fit is well enough. enwe go on applying SEPwith regu-
larization. Hence, a small π0 invokes two rounds of SEP,whereaswe only perform
one run when π0 is assumed to be large or the p-value distribution is otherwise
close to uniform. efine-tuned algorithmas summarized inTable . has proven
to work well in applications.

. Features and applications

We proceed with discussing main features of the SEP algorithm and applying it
to the six exemplary data sets introduced in Chapter . e general performance
of our algorithm is evaluated in the following section where we compare the ap-
proach to its competitors introduced in Section ..
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. Features and applications

Stability of solution. e core of SEP is the downhill search routine, which
evaluates the benefit of inclusion or removal of a single p-value in each step. is
regime leads us to a local minimum of the objective function where the price paid
for the penalty term exceeds the improvement gained in the fit component. Run-
ning the algorithm with different starting values results in stable estimates. A sin-
gle runof SEPmight still fail simply by chance. Wepropose to apply SEP ten times
with different starting points and to report averaged estimates. To assess the vari-
ability of the estimates, we run the algorithm on bootstrap samples of the p-value
set and produce bootstrap averages as point estimators and bootstrap confidence
intervals as measures of uncertainty.

Performance for non-induced genes only. To assess the performance under
the complete null hypothesis, we run the algorithm on random p-values drawn
from the uniform distribution representing experiments on non-induced genes
only. Here we want to exclude as few p-values as possible to estimate the prior
probability π0 close to the target value . is setting evaluates the performance
of the penalty term or rather the procedure that calibrates the parameter λ. We
randomly draw  values from a uniform distribution, apply SEP and repeat
this procedure  times. e percentage π0 is estimated to be . on average
with a standard deviation of ..

Applicationof SEP. We start with applying the calibration algorithm to derive
optimal penalty parameters λ. We then run SEP on the complete sets of p-values
with  bootstrap samples each. In Table . we summarize some SEP results
for the six data sets. Shown are the optimal values for λ and the estimated percent-
ages π0 of genes being non-induced. e estimates are similar to the estimated
percentages derived previously with the method of Storey (), see Table ..
e % bootstrap confidence intervals are tight, deviating from the mean per-
centage π̂0 at most ±3%.

In Figure . we display the resulting curves of estimated posterior probabilities
of differential expression with % bootstrap confidence intervals. As observed
above, the amount of differential expression deviates substantially between com-
parisons. In case of the ALL  data set, the posterior probability of differential
expression decreases rapidly. Genes corresponding to low p-values have a high
probability of being induced. e situation changes for genes with low p-values
in the ALL  and the Breast-cancer  data set. Here the highest estimated proba-
bilities are around . for ALL  and . for Breast-cancer  indicating that even
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 A novel estimator of the local false discovery rate

Table .: Application of the SEP algorithm. Shown are the optimal values for the regularization par-
ameter λ, the bootstrap estimates for prior probability π0, and the % bootstrap confidence intervals
(CI) for π0. The estimates are based on  bootstrap samples within each comparison.

Comparison Optimal Bootstrap Bootstrap
λ π̂0 95% CI

ALL 1 0.005 0.8560 [0.8374, 0.8712]
ALL 2 0.005 0.7803 [0.7476, 0.8045]
Breast-cancer 1 0.010 0.8818 [0.8538, 0.9080]
Breast-cancer 2 0.010 0.4981 [0.4677, 0.5265]
Lung-cancer 0.025 0.3863 [0.3617, 0.4097]
Prostate-cancer 0.015 0.5360 [0.5046, 0.5613]

apparently highly significant genes have to be explored with care. For ALL ,
we observe a slight increase in probability at the beginning. For Breast-cancer
, a plateau around the p-value level of . is visible. e curves of the remain-
ing comparisonsBreast-cancer , Lung-cancer andProstate-cancermoderately de-
crease from one to zero. In contrast to the ALL  data, these three comparisons
exhibit broad twilight zones where the posterior probabilities decline slowly to-
wards zero.

. Simulation and results

e performance of our novel algorithm was evaluated in a comprehensive sim-
ulation. We compared SEP to the set of π0 estimators given in Section .. To
reduce computation time, the final SEP estimate of π0 is not an average of ten
runs with different starting points but derived from a single run. In addition we
applied SEP without regularization (λ = 0), which provides further information
on the effect of the penalty term in Equation (.). We refer to SEP with regular-
ization as S and to SEP without regularization as S. For both settings, we
used core functions of our implementation in package twilight introduced in the
following section.

Simulation settings. e performance of the estimation procedures was eval-
uated with respect to three parameters: the number of genes m, the strength of
induction µ, and the percentage of non-induced genes π0. e number of genes
was set tom = 1000 andm = 10000. e scores were drawn independently from
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Figure .: Estimates of the local false discovery rate for the exemplary data sets. Accuracy of the esti-
mates was evaluated on  bootstrap samples. The solid lines are bootstrap means, the dashed lines
are % bootstrap confidence intervals. Bottom ticks represent %-quantiles of observed p-values.

a standard normal distribution N (0, 1) at rate π0, and from a normal distribu-
tion N (µ, 1) at rate π1 = 1− π0. e location parameter µ models the strength
of induction and varied from  to  by steps of .. e percentage of non-in-
duced genes π0 varied from . to . by steps of .. We included π0 = 0.99

as well to evaluate the performance when the p-values resemble almost a uniform
distribution.

For each combination (π0, µ,m), we drew normal scores as described above and
converted these to p-values under the null distribution N (0, 1). e set of p-
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 A novel estimator of the local false discovery rate

values was passed on to the estimators yielding either π̂0 directly or π̂1, which was
then changed to π̂0 = 1− π̂1. e estimates were truncated if they exceeded the
interval [0, 1]. e p-value conversion was not done for method L, where
we passed on the normal scores. For each parameter combination and procedure,
we did  repetitions with randomly drawn scores. We observed a substantial
increase in computation time for method G although the recommended
number of iterations had been reduced. A complete run was not feasible form =
10000 genes. us we shortened the simulation for G to the parameter
combinations shown in Figure ..

e final output of each single run was the ratio π̂0/π0 of the estimated to the
true percentage. An unbiased estimator should yield ratios close to one. Ratios
above one correspond to overestimation of π0, which is less critical than under-
estimation (ratios smaller than one). For evaluation, we first depict boxplots of
the estimates with µ and m fixed and π0 varying. A reasonable estimator pro-
duces ratios close to one with small variance and, if not exactly returning target ,
with a tendency of overestimation. In general one expects the estimators to per-
form better at higher levels of induction as the separation between induced and
non-induced genes becomes clearer. Second, the ratios should converge towards
one with increasing percentage π0 since the estimation bias is of less importance.
ird, the variance of the estimates should decrease with an increasing number of
genes. For enhanced comparison, we truncated the plotting region of the follow-
ing boxplots to the ratio interval [0.75, 1.25].

epoor performers. We start the result section with removing those estima-
tors from further consideration that are biased downwards. e poor performers
are P, B, and S yielding ratios smaller than one. S starts well
but underestimates π0 with increasing true π0. In Figure . we display the corre-
sponding values over the range of π0 with µ = 3 fixed. With π0 fixed, the three
estimators show similar behavior: they are biased upwards for small µ but run into
underestimation problems for large µ (data not shown).

e moderate performers. Some methods show artifacts or perform visibly
worse than the good estimators. We decided to narrow down our set of good
candidates by excluding the moderate performers as well. Figure . displays the
ratios of methods L, G, L, and S. Method L re-
turns upper bounds on π0, which overestimate π0 severely when the true π0 is
small. An estimated bound of π̂0 = 1 does not provide any information when we
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. Simulation and results
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Figure .: Distribution of ratio π̂0/π0 for µ = 3 and varying π0. Shown are the simulation results for
the poor performers PRE, BUM, and SPLOSH. All methods suffer from underestimation of π0.
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Figure .:Distribution of ratio π̂0/π0 for µ = 3 and varying π0. Shown are the simulation results for the
moderate performers LOCFDR, GENEMIX, LBE and STOREY. The upper bound estimates of LOCFDR are
by far too large when π0 is small. GENEMIX behaves well for large sets of p-values but not for small sets.
The variance of the LBE estimates slightly increases for larger sets. STOREY’s estimates are unbiased but
too variable for small sets.
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truly observe π0 = 0.5. e G approach tends to underestimation if the
set of genes is small (m = 1000). Surprisingly, it estimates π0 with high accuracy
with the larger sample size of m = 10000. A reliable estimator should however
yield comparable results under most settings with its major behavior being stable.
Additional to the long runtime of G, the algorithm did not always con-
verge to a numeric solution. e widths of the boxplots are proportional to the
number of observations. A closer look at the G plots in Figure . reveals
that the number of successful runs was oen smaller than .

In contrast to G, the variance of the estimates of method L increases
for higher sample sizes. Method L has the highest variance of all compared
methods if m = 10000. Finally, the approach of S delivers unbiased es-
timates but shows increased variances. Like S and G, S’s
estimates are too variable if the sample size is small.

e good performers. Finally, we are le with seven methods that perform
considerablywell: L,G,H,N,M,C,
and S. In Figure . we display the results of the clear upper bound estimators
L, G, and H. Methods H and G per-
form equally well with H showing less variation than G. Yet
both methods are biased upwards and approach the equality line only for almost
uniform p-value samples. e estimates of method L are more conservative
than those of G and H. We even observe increasing bias with
larger sample size. Form = 10000, the twobounding theory basedmethodsG-
 and H clearly outperform the lowest slope estimator L.

In the following, we keep the upper bound estimate of H as upper base-
line and concentrate on the less conservative methods N, M, C-
, and S shown in Figure .. Methods N and M are slightly
biasedupwards thusproviding estimates that are less conservative than those shown
in Figure .. C and S performwell with accurate estimates but higher
variation. ese four approaches do not provide upper bounds for all parameter
combinations and therefore carry the risk of underestimating π0.

Figures . and . provide a comprehensive overview on the competing meth-
ods. Shown are the ratios of π̂0/π0 averaged over hundred runs of each parameter
combination (π0, µ) with m = 10000. e colors correspond to the ratio inter-
vals depicted in the bottom right panel of Figure .. e brightest non-white
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Figure .: Distribution of ratio π̂0/π0 for µ = 3 and varying π0. Shown are the simulation results for
the good upper bound estimators LSL, GENOVESE, and HOWMANY. The methods provide conservative
estimates with low variances. However, LSL tends to substantial overestimation with evenmore conser-
vative estimates for larger sample size.
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Figure .: Distribution of ratio π̂0/π0 for µ = 3 and varying π0. Shown are the simulation results for
the good performers NETTLETON, MGF, CONVEST, and SEP. MGF and NETTLETON yield similar upper
bounds. CONVEST and SEP are less biased but show higher variances than MGF and NETTLETON.
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color relates to estimated values close to the target π0. e equality is marked by
thick contour lines. Deeper colors relate to overestimated values. Regions where
underestimation occurs are shown in white, starting from ratios π̂0/π0 below ..
us, a reliable method should not include white regions. e more of the par-
ameter space is covered by the brightest color, the better. Deep colors are only
expected in the lower le corners of the plots where the strength of induction µ

approaches zero and the mixture distribution appears to be uniform.

e poorly and moderately performing estimators shown in Figure . do not
entirely comply with these requirements. e contour plots resemble the obser-
vations above, that is methods P, B, S, and G suffer from
underestimationwhilemethod L on the other hand substantially overesti-
mates π0 even in regions of clear induction signal. e plots of methods L and
S are comparable to those of the good performers in Figure .. Yet the
zigzag line denoting the region of equality between π0 and its estimates resem-
bles the somewhat enlarged variances of L and S, which we observed in
Figure ..

e plots change substantially for the well performing methods in Figure ..
Within the parameter space, there are no regions of underestimation and the
equality contour lines appear as clear bands. e good performers differ with re-
spect to the size of the bright area covering ratios between . and .. e small-
est bright area was observed for method L, which was the most conservative
of the good performers, followed by the two upper bound estimators G
andH. For the remainingmethods we observe more or less continuous
contour lines of very accurate estimates with π̂0/π0 ∈ (0.9, 1.1].

To provide a final and direct comparison of the good performers, we displaymean
ratios π̂0/π0 with double standards errors of the different methods in one plot.
For better visibility, we connected themean ratios with lines. e resulting curves
are shown in Figure .. e values are drawn over the range of π0, and the eight
subplots differwith respect to µ increasing from. to  in steps of .. From these
plots, one can examine both accuracy and variability of the estimates. If µ is high,
the two score distributions belonging to induced and non-induced genes separate
well. us the mixture parameter π0 is easier to estimate from the resulting p-
value distribution for large µ than for small µ. e estimates improve substantially
with increasing µ as well as with high percentage π0. For small µ and small π0,
we observe severe overestimation. With the given simulation setting, the upper
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bound for overestimated ratios is : when µ is small, the two score distributions
are not separable any more and every method will return π̂0 close to one. In the
worst case of µ = 0 and π0 = 0.5, this results in the ratio π̂0/π0 = 2.

e baseline upper bounds of H stay well above the equality line while
the estimated ratios of the remainingmethods approach to one with increasing µ,
that is the clearer the two score distributions separate. For low values of µ, M
(purple line) is the onlymethod that yields estimates above the upper bound if π0

is small. With increasing µ however, the effect levels off and the estimates drop
down to the equality line. e estimates of M improve quickly and even out-
perform N (green line) in the end. For µ = 4, M tends to slight
underestimation. N outperforms M for low values of µ and stays
above the equality line over the whole range. Even for µ = 4, it slightly overesti-
mates π0 thus being a conservative and reliable approach.

As mentioned above, we included S without regularization (S) into the
comparison. Surprisingly, although it is prone to underestimate π0, S (orange
line) is hardly distinguishable from C (blue line). Both sets of ratios are
more variable than those of the previous methods but closer to the equality line.
From µ = 3 on, both approaches tend to underestimation. We expected this
behavior of S since it was run without regularization, which otherwise safe-
guards against too many exclusions from the uniform part. S with regulariza-
tion (red line) performs close to S and M but stays on average above the
two estimators. For high µ, it also drops below the equality line.

Summing up the results. It is hard to decide for a single winner. Conditioned
on the setting, one would favor one or the other method. For low µ and π0,
method M might be least favorable since it yields large upper bound estimates.
Yet it improves substantially for higher parameter choices. Method N
provides conservative estimates. It has the additional advantage of being an ana-
lytic estimator and can be used for reliable and quick pre-estimates. Our proposed
method S performswell with slight underestimation for high µ only. However,
neither the strength of induction nor the true π0 are known in real data. In our
opinion, the underestimation is not critical here. For large µ, S yields ratios
above . on average which corresponds to estimates ranging from π̂0 ≥ 0.4950

for π0 = 0.5 to π̂0 ≥ 0.9801 for π0 = 0.99. ese differences are negligible. Also,
the runtime of S is not of crucial importance: we refer to the following section
for details on the implementation of S in package twilight and an evaluation on
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Figure .: Average ratios of π̂0/π0 with standard errors plotted for different strengths of induction
µ. The estimates are based on m = 10000 genes. Note the different scales of the y-axes. The colors
correspond to the following methods: HOWMANY (black), MGF (purple), NETTLETON (green), CONVEST
(blue), SEP0 (orange), and SEP (red).





. Implementation and runtime evaluation

runtime. Our final favorites are S for providing reliable estimates consistently
for all parameter settings, and N for providing fast and conservative
estimates.

. Implementation and runtime evaluation

We close with a soware chapter introducing our package twilight, in which we
implemented the algorithms as defined above. e package is called twilight as its
key function outputs SEP estimates of the local false discovery rate: following the
local false discovery rate curve over the range of p-values reveals possible twilight
zones where evidence for differential expression levels off into non-differential
expression. e implementation supports the following analysis layout: the user
chooses a scoring method and possible parameters like number of permutations
for computing empirical p-values and number of bootstrap samples for estimating
the local false discovery rate. In the following, we introduce the key functions of
twilight and discuss findings of a runtime evaluation. In addition, the package
provides plotting functions to explore the results.

Implementation. e package is written in the statistical soware language R
(R Development Core Team, ) and is distributed through the Bioconduc-
tor Project, a collection of soware for genomic data analysis (Gentleman et al.,
). epackage itself divides into twomajor parts. First, it offers fastmeans of
computing scores for large microarray data sets. e scoring methods are limited
to paired and unpaired data with patients belonging to two clinical classes, and to
scores assessing the correlation to a clinical variable. We implemented three two-
class scores: the difference of class averages or log ratio score defined in Equation
(.), the t-score defined in Equation (.) and the z-score defined in Equation
(.). e fudge factor for the z-score might be chosen by the user. Otherwise,
it is set to the median of the pooled standard deviations across genes as defined
in Equation (.). Linear correlation is measured with the common Pearson’s or
Spearman’s coefficients of correlation.

e scores are computed for each gene and transformed to p-values by applying
the permutation scheme of Equation (.). e user might choose to input an
individual set of permuted class labels, otherwise permutations are drawn ran-
domly. If the sample size and hence the number of possible permutations are
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 A novel estimator of the local false discovery rate

small, the soware proceeds with a complete enumeration of all possible permu-
tations. From the p-values we estimate the percentage of non-induced genes π0

and the positive false discovery rate by computing q-values as given in Remark B
of Storey and Tibshirani (). Finally, we apply the SEP procedure as given in
Tables . to . to estimate the local false discovery rate from the set of p-values,
possibly accompanied by bootstrap estimates and confidence intervals. A valu-
able by-product are bootstrap estimates and confidence intervals for prior π0. So
far, the q-values were calculated with the π0 estimator of Storey and Tibshirani
(). Aer estimation of the local false discovery rate, the q-values get updated
with the SEP estimate π̂0. e user might explore the final output using a sum-
mary function and several implemented plots. For example, we can plot the local
false discovery rate estimates together with bootstrap confidence intervals over
the entire range of p-values as was done in Figure .. Another possibility is the
choice of an adequate positive false discovery rate threshold by exploring the size
of the resulting gene lists similar to Figure ..

Computational remarks. e expensive parts of twilight are written in C and
called internally from R. us the computation of permutation-based scores and
p-values and the estimation of the local false discovery rate are fast. To keep the
runtime for the bootstrapping part low, the use of a Linux cluster at hand is pos-
sible. e bootstrap operations will be distributed on the cluster using the func-
tionality of package snow by L. Tierney, A.J. Rossini, N. Li, and H. Sevcikova.

Runtime evaluation. We proceed with a runtime evaluation of the core SEP
implementation. e algorithm starts with the full set of input p-values and suc-
cessively removes and adds some until the remaining set is close enough to a uni-
form sample. In each step, one p-value is selected for removal or inclusion, and
the objective function is evaluated regarding the new configuration. One might
expect that the required time for one run of SEP increases the more the origi-
nal p-value sample deviates from uniformity. To test this behavior, we return to
our common simulation setting as introduced in Section .. For m = 1000,
 and  genes, we draw random test scores from twonormal distributions,
namelyN (0, 1) andN (µ, 1) for non-induced and induced genes respectively, and
transform the scores to p-values under the null distributionN (0, 1). e strength
of induction is set to µ = 3. e amount of non-induced genes π0 varies over the
whole interval (0, 1). Note that in the previous simulation in Section ., we only
examined π0 ≥ 0.5.
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Figure .: Runtime evaluation of SEP for varying numbers of genes m and increasing percentages π0

of non-induced genes. Top: CPU time used per run, and estimated ratio π̂0/π0. Bottom: Total number of
internal iterations scaled by the minimum number 2m, and scaled numbers of internal subroutines, that
is initial iteration without regularization (dashed lines) and successive iteration with regularization (solid
lines). Values are averaged over  runs of SEP. Annotation “” corresponds tom = 1000, “” tom = 2000

and “” tom = 3000.

For each combination (π0,m) we run  repeats of SEP. For an unbiased com-
parison, we broke SEP down to the source code written in C. e function per-
forms one runof SEPwithout regularization andoutputs a binary vector of length
m indicating the two p-value sets aer separation into an induced and a non-in-
duced part. We extended this function to count and output the number of it-
erations the algorithm needed internally. e time was measured for each single
run of theC function called fromR. Additional computation, like calculating the
final ratios π̂0/π0, were done subsequently and did not contribute to the time
measurement. e simulation was carried out on a Linux machine with AMD
Athlon™ + CPU.

In Figure ., we show the results conditioned on π0. Wemeasured three param-
eters: the CPU time used for the core SEP, the number of iterations within SEP,
and the accuracy of the final estimate. e top right plot in Figure . is equiv-
alent to those in Section ., displaying the ratio π̂0/π0 condensed to means in-
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stead of boxplots. e SEP algorithm estimates the true values well. For lower
π0, we observe overestimation reflected in high ratios due to low values π0. For
higher π0, SEP underestimates the true values slightly since we applied it without
the safe-guard of regularization.

ebottom le plot shows the number of iterations scaled by theminimumnum-
ber of needed iterations. Since the SEP algorithm stops aer twice the number of
genes of unsuccessful trials, the minimum number of iterations is 2m. In the top
le plot of Figure .we depict theCPU timemeasured in seconds. Surprisingly,
the needed time does not increase with decreasing amount π0 of non-induced
genes, that is uniformly distributed p-values, but decreases aer a maxima around
π0 = 0.7. In contrast to this, the number of iterations increases with decreas-
ing percentage of uniform p-values. is behavior is consistent to our expecta-
tions since the number of values to be removed increases with decreasing amount
of uniformly distributed values. It is not consistent to the parabola shape of the
CPU time above since we expect many iterations to last longer than a few.

e discrepancy is easy to explain: it is triggered by the algorithm fine-tuning in-
troduced in Section .. e SEP algorithm is divided into two parts: depending
on the Kolmogoroff-Smirnoff (KS) test statistic, we either run SEP once with
regularization if the distribution is already close to uniform, or once without and
once with regularization if we have to remove many genes before the regularized
fine-tuning can begin. e critical point is a KS value of ., see Table .. We
evaluated the simulation data and observed that π0 ≥ 0.7 yields p-value distribu-
tions with KS ≤ 0.25. Hence, up to π0 < 0.7, SEP runs twice, and only once if
π0 ≥ 0.7. For further evaluation, we measured the iterations needed within the
two subroutines separately. e result is shown in the bottom right plot of Figure
.. e dashed lines are the scaled numbers of iterations of the first run without
regularization. From π0 = 0.7 on, the first round is skipped due theKS value, and
the number of iterations equals zero. e solid lines correspond to the second run
with regularization. We observe that the number of iterations stays almost con-
stant up to π0 = 0.7. Since we actually run SEP without any regularization the
second round is not regularized and does not break too early although we have
already removed more values than allowed.

However, the numbers of subroutine iterations do not explain the parabola curve
of the CPU time. e effect source is more subtle: in each iteration we have to
evaluate the goodness-of-fit to the uniform distribution using the KS test. e
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time needed to compute the KS statistic depends on the number of observations
under test. Hence, due to the removal of p-values in the first round, the KS eval-
uations in the second round are faster for smaller values of π0 than for larger. e
effect levels off with increasing π0 and becomes compensated because few itera-
tions are still faster than many. For high values of π0, the initial distribution is
close to uniform, and the run iterations hardly exceed the number of unsuccess-
ful trials 2m, which leads to scaled iteration numbers approaching one and to the
drop in CPU time.

e core SEP algorithm is fast and thus of marginal contribution to the total run-
time of package twilight. e wrapping function performs data checks and stores
the output data in a comprehensible format. e total runtime depends on the
number of genes and the strength of regularization. A regularized run without
bootstraps on the complete exemplary data sets is donewithin a fewminutes each.
We argue, that—apart from its functionality—package twilight offers fast means
of computation and is suitable for every-day’s data analysis.
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