
 A review on false discovery rates

. Introduction and outline

e arrival of the microarray technology brought new challenges to the statisti-
cal community. A microarray measures the expression of thousands of genes at
the same time. With these micro devices it is now possible to compare the gene
expression of different tissue samples in a comprehensive way. For each gene we
might ask: is there a difference between the tissues? And: for a single gene, do we
have evidence of observing a reliable difference?

e first question is answered by computing the difference in mean gene expres-
sion between the different tissue samples. e significance of the observed differ-
ence is expressed by computing an empirical p-value as in Equation (.). e
smaller the p-value, the more evidence we have that we really observed a signifi-
cant difference and not just random noise. Surely, biological data suffers from all
kinds of noise contaminations and it is questionable whether even a small p-value
provides reliable evidence. us we need to employ a filter mechanism that safe-
guards against random noise. e classical approach in multiple testing theory
is to define an adjustment procedure, which we term a p-value filter, that leaves
only genes with p-values lower than a certain threshold. e final list of differ-
entially expressed genes contains only those genes with low p-values. If we draw
the histogram of p-values as shown in Figure ., the p-value filter corresponds to
a vertical line dividing the p-value range into two parts: the le part supporting
differential expression, the right part not supporting differential expression.

e p-value filter works well for a small number of genes. With present microar-
rays researchers measure the expression of several tens of thousands of genes si-
multaneously. e large number of genes brings along a second problem that is
more severe than random noise: oen a large percentage of the genes behaves
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Figure.: Exemplary distributionof p-values in amicroarray experiment. The two solid lines correspond
to two opposite approaches. The vertical line is linked to classical p-value filters, which divide the range
of p-values into one part supporting differential expression and into another part not supporting it. The
horizontal line corresponds to the estimation of the local false discovery rate: the p-value distribution is
divided into a uniform block of consistent genes and a rest indicating differential expression. Local false
discovery rates provide a global view on differential gene expression over the whole range of p-values
while filters concentrate only on genes on the left-hand side of the vertical line.

consistently among the tissue samples. We call those genes consistent that are not
differentially expressed. Due to random fluctuation in the data a consistent gene
might get a low p-value simply by chance. eory suggests that if we only ob-
served data of consistent genes, their p-values would be uniformly distributed in
the resulting histogram. is uniform distribution is indicated by the horizontal
line in Figure .. Whenever we observe a uniform block of p-values in the his-
togram, the gene set contains a certain percentage of consistent genes. e height
of the uniform block corresponds to this percentage. e histogram parts above
the horizontal line provide the number and distribution of the differentially ex-
pressed genes. If we now return to the set of genes on the le side of the histogram,
which passed the p-value filter, we observe that we included a reasonable percent-
age of consistent genes. Even if we restrict the filter to smaller p-values, we cannot
omit the inclusion of a uniform part. However, in this example it is more likely
that a genewith a small p-value is differentially expressed than a genewith a higher
p-value. Even genes with p-values exceeding . seem not to correspond to con-
sistent genes only. Yet they have a higher probability of not being differentially
expressed than genes with p-values passing the filter. Assigning such a probability
to every gene answers the second question above.

e probability of not being differentially expressed is measured by the local false
discovery rate. Estimating the local false discovery ratemeans to draw a horizontal
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line in the p-value distribution instead of a vertical line as a p-value filter does.
us the idea of the local false discovery rate is totally opposite to the idea of p-
value filters. Local false discovery rates are perfectly suited for large microarray
experiments: the larger the number of genes is, the more accurately the rate can
be estimated. When analyzing microarray data, the estimation of the local false
discovery rate is the natural procedure to explore differential gene expression.

In the following, we review the concepts and ideas behind the false discovery rate
in Section .. Global false discovery rates define special kinds of p-value filters
and we show in Section . why such a p-value filter may not be the best choice
for the analysis of microarray data. In Section . we introduce the local variant
of the false discovery rate and close with a comprehensive overview on various
estimators of the local false discovery rate.

. e false discovery rate

In the previous section, we introduced the concept of p-value filters. With p-
value filters, significance is based on the size of a p-value: the smaller the p-value,
the higher the evidence for a significant difference in gene expression. e con-
cept of p-value filters was developed to safeguard against random noise, which
oen cannot be avoided in biological data. e filter divides the distribution of
p-values vertically into two parts: the le part corresponds to differential expres-
sion, the right part corresponds to non-differential expression, see Figures . and
.. ere exist various classical concepts for the definition of p-value filters. For
details on these concepts, we refer to the paper series of Dudoit et al. () and
van der Laan et al. ().

A novel concept of p-value filters was introduced in the seminal work of Ben-
jamini and Hochberg (): the false discovery rate. e authors intended to
draw the vertical line such that the resulting list of differentially expressed genes
does only contain a certain rate of genes that are truly not differentially expressed.
As p-values of non-induced genes take by chance any value in the interval [0, 1],
they are uniformly distributed. Hence the fraction of non-induced genes for a
given vertical separation at value p relates to the rectangular area that is marked
with V(p) in Figure .. ese genes are called false positives because they appear
in the list of induced genes, thus being positive, but they are there just by chance





 A review on false discovery rates

P−value

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0 FDR(p)

π0

V(p)

p

Figure .: Exemplary distribution of p-values in a microarray experiment. As depicted in Figure .,
the analysis methods for microarray data divide into two opposite classes: the false discovery rate of
Benjamini and Hochberg () is a p-value filter and thus corresponds to the vertical separation drawn
at a value of p. The gene set thus includes a certain amount V(p) of genes being non-induced. The
method of Storey () incorporates the estimation of the fraction π0 of non-induced genes and thus
relates to the horizontal separation line.

and not because of true induction. Benjamini and Hochberg defined the false
discovery rate as the “expected rate of false positives among all positive genes”.

Let Pi be the random variable of the ith p-value. e number of all positives R(p),
that is the size of the list of induced genes, and the number of false positivesV(p)
are defined as

R(p) =
m

∑
i=1

I{Pi ≤ p} and V(p) =
m

∑
i=1

I{Pi ≤ p,H = 0}, (.)

where p is the value at which the vertical line is drawn. en the false discovery
rate is defined as the expected rate of false positives among all positives, that is

FDR(p) = E
[
V(p)
R(p)

I{R(p) > 0}
]
. (.)

e false discovery rate of Benjamini and Hochberg () is the expectation of
the ratio of V(p) and R(p) with the natural restriction that the list of induced
genes is not empty, that is R(p) > 0. Equation (.) can be rewritten as a condi-
tioned expectation

FDR(p) = E
[
V(p)
R(p)

∣∣ R(p) > 0

]
Pr[R(p) > 0], (.)
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with Pr[R(p) > 0] being the probability that at least one positive gene occurs.
e authors developed a procedure to estimate the false discovery rate for every
choice of p. Let p1, . . . , pm be the set of observed p-values. Let p(1), . . . , p(m) be
the set of ordered p-values such that p(1) ≤ p(2) ≤ · · · ≤ p(m). If i⋆ is the largest
index i for which

p(i) ≤
i

m
α, (.)

then the set of geneswith ordered p-values p(1), . . . , p(i⋆) defines the set of induced
genes with a false discovery rate equal or below α · 100%. With this procedure, a
certain choice of FDR ≤ α leads to a certain value p = p(i⋆) and thus to a list of
induced genes with p-values equal or below p.

A substantial change of viewpoint. e procedure defined in Equation (.)
also works in reversed mode: for every value of p it leads to an estimated value of
α. As the number of possible values p depends on the number of unique observed
p-values, it is convenient to associate the resulting α to every single p-value. e
estimated level α is called FDR-adjusted p-value. For each ordered p-value p(i),
the FDR-adjusted p-value �p(i) is given as

�p(i) = mink=i,...,m

{
min

(m
k
p(k), 1

)}
. (.)

e term m
k p(k) is the upper bound for α and is derived from inverting p(k) ≤ k

mα

in Equation (.). e inner minimum in Equation (.) prevents from FDR-ad-
justed p-values greater than one. e outerminimum causes the values to increase
monotonically. Now each gene is associated with an estimated false discovery
rate, which is reached if all genes with lower or equal FDR-adjusted p-values pass
the filter. With these adjustments one can conveniently explore how the inclu-
sion or exclusion of a certain gene changes the estimated false discovery rate. e
switch from a fixed false discovery rate threshold to an estimated false discovery
rate for each genes is an important step that is directly connected to the q-value
concept of Storey (), which we introduce in the following. FDR-adjusted p-
values shi the emphasis from hypothesis-based inference to an inference based
on the observed set of p-values. is results in shiing the line of separation in
Figure ..

Switching fromvertical to horizontal separation. Storey () claimed that
the false discovery rate as defined above is “the rate that false discoveries occur”.
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Storey argued that one is more interested in “the rate that discoveries are false”,
which relates to shiing the emphasis from the vertical line drawn by a p-value
filter to the horizontal line estimating the overall amount of non-induced genes.
Storey proposed the use of the positive false discovery rate, which relates to one
definition of the “rate of false positives” in Benjamini and Hochberg (). e
positive false discovery rate is defined as

pFDR(p) = E
[
V(p)
R(p)

∣∣ R(p) > 0

]
. (.)

e definition of the positive false discovery rate equals the definition of the false
discovery rate in Equation (.) except for lacking the factor Pr[R(p) > 0], which
is the probability of observing at least one differentially expressed gene. In a usual
experiment we might assume Pr[R(p) > 0] = 1 such that FDR = pFDR and we
can examine the rate that discoveries are false. However, Storey argues that there
are experiments where Pr[R(p) > 0] = 1 does not hold because of weak signals
or weak induction. Say Pr[R(p) > 0] = 0.5 and we are interested in a (positive)
false discovery rate of %. If we adjust the p-values according to Benjamini and
Hochberg () as given above, we actually control the positive false discovery
rate at % because Pr[R(p) > 0] · pFDR = 0.5 · 10% = 5%.

Further, Storey () showed that the positive false discovery rate is equivalent
to the conditional false discovery rate also suggested in Benjamini and Hochberg
():

cFDR(p) = E
[
V(p)
R(p)

∣∣ R(p) = r(p)
]

(.)

=
E

[
V(p)

∣∣ R(p) = r(p)
]

r(p)
, (.)

where r(p) > 0 denotes the actually observed number of positives at value p. We
refer toTsai et al. () for a comparative review on the three false discovery rate
variants.

Storey also introduced the term q-value. Similar to FDR-adjusted p-values, the
q-value is assigned to each gene and denotes the estimated positive false discovery
rate thatwe can reach ifwe include this gene into the list of differentially expressed
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genes. Storey showed that the positive false discovery rate can be rewritten in
terms of conditional probabilities such that

pFDR(p) = Pr
[
H = 0

∣∣ P ≤ p
]

(.)

= Pr [H = 0]
Pr

[
P ≤ p

∣∣ H = 0
]

Pr [P ≤ p]
. (.)

e probability Pr[H = 0] in Equation (.) is the probability of not being dif-
ferentially expressed, which affects the probability of being non-induced condi-
tioned on a p-value filter P ≤ p in Equation (.). Storey argues that a q-value is
not a pFDR-adjusted p-value, which is due to the probability Pr[H = 0]. How
does one interpret Pr[H = 0]? It is the overall probability of being non-induced
in an observed microarray experiment. us it relates to the size of the uniform
distribution of p-values from non-induced genes, that is the height of the hori-
zontal line in Figure ., which is denoted by

π0 = Pr[H = 0]. (.)

e height π0 has to be estimated from the set of p-values, whereas FDR-adjusted
p-values are derived by direct conversion of the p-values. Q-values are estimated
positive false discovery rates. e computation of q-values given in Storey and
Tibshirani () equals the procedure of Benjamini and Hochberg () in
Equation (.) except for the inclusion of the estimated prior probability. e
estimator will be introduced in Section ., Equation (.). For the time being,
assume we have an estimate ̂Pr[H = 0] = π̂0. For a set of ordered p-values p(1) ≤
· · · ≤ p(m) the q-value of the ith ordered p-value is given as

q(i) = mink=i,...,m

{
min

(
π̂0

m

k
p(k), 1

)}
. (.)

FDR-adjusted p-values are a p-value filter method and thus relate to the vertical
line in Figure .. e same applies for q-values. ey filter p-values with respect
to the positive false discovery rate. Both false discovery rate variants result in one
estimated value for a set of genes and do not provide single-gene information. We
will discuss in the following section how this might give misleading results.
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. Pitfalls of global false discovery rates

efalse discovery rate variants introduced in Section .work globally: for a ver-
tical separation of the p-value distribution, the estimated positive false discovery
rate of the resulting list of induced genes is the largest q-value of the genes in the
list. e q-value is not a feature of a single gene but of the entire gene list. Finner
and Roters () criticize that onemight easily include a non-induced gene into
the list without changing the estimated false discovery rate too much. Consider
the following example: assume we found  genes with p-values such that the
estimated false discovery rate is below % if we draw a vertical line at value p. Say,
 genes have p-values well below p whereas gene i’s p-value is just slightly below
p. By definition of the false discovery rate, we expect one false positive among the
list of  genes. Intuitively we assume that gene i is the most likely candidate for
being the false positive. However, as the estimated value is a property of the entire
list we must not imply that gene i is non-induced. is first ambiguity calls for a
local probability of being a false positive for each gene in the list—or better for all
genes under study.

Along the same lines comes a second pitfall of global false discovery rates: q-
values do not react immediately to the inclusion of false positives when we ob-
serve many highly induced genes. Assume we have a set of highly induced genes
with low estimated positive false discovery rate. We might enlarge the list with
some less induced genes before the positive false discovery rate reaches an unde-
sirable value. Since the positive false discovery rate estimates are not fit to react
instantly to a contamination with false positives, we need a probability measure
that accounts for local changes in significance. We illustrate this second disad-
vantage of global false discovery rate estimates with a simulation. We randomly
drew  values from a standard normal distributionN (0, 1) serving as scores
of non-induced genes. From these, we chose  values and induced them by
adding a constant value µ. e parameter µ accounts for the strength of induc-
tion. We set µ ∈ {2, 3, 4}. us the induced genes were distributed according
to N (µ, 1). All scores were transformed to p-values with respect to the true null
distribution N (0, 1). We computed q-values using package qvalue by A. Dabney
and J. D. Storey. For each choice of positive false discovery rate, that is for each
observed q-value, we stored the number of false positives within the resulting list.
e resulting curves of false positives up to a number of  against the respective
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Figure .: Reaction of global false discovery rate estimates to the inclusion of false positives. Shown
are the results of a simulation study with  induced genes among . Parameter µ reflects the
strength of induction. In experiments with high induction (µ = 4), the q-values increase slowly such that
the list of induced genes contains more false positives than in studies with less induction (µ < 4). The
choice of pFDR = 5% leads to ,  and  false positives, respectively.

q-values are shown in Figure .. Note that we kept the two sets of  induced
and  non-induced genes fixed, which implies that the order of the false pos-
itives within the lists is independent of µ. For example, we included always the
same set of  false positives into the list if we selected the positive false discovery
rate with respect to this number. Figure . illustrates that one can include more
false positives into the list if the data set contains highly induced genes. With the
same choice of pFDR = 5%, we received  false positives for a slight induction
with µ = 2 whereas µ = 4 lead to  false rejections.

. A local measure of significance

To overcome the problems discussed in the previous section, Efron et al. ()
introduced the local false discovery rate. Similar to the definition of the positive
false discovery rate in Equations (.) and (.), the local false discovery rate is
defined as

fdr(p) = Pr
[
H = 0

∣∣ P = p
]

(.)

= Pr [H = 0]
Pr

[
P = p

∣∣ H = 0
]

Pr [P = p]
. (.)
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In contrast to the positive false discovery rate, the local false discovery rate is con-
ditioned on P = p instead of P ≤ p. e definition above has to be interpreted
with care since a point probability Pr [P = p] equals zero. Here the term “P = p”
refers to “in the vicinity of p”, meaning that we are interested in a local probabil-
ity measure closely around the p-value level p. e local false discovery rate is the
probability that a gene is not differentially expressed given its p-value pi = p and
conditional on the set of all observed p-values.

We return to the simulationunderlyingFigure ., whereweobserved scores drawn
from amixture of two normal distributions with different location parameters for
the induced part. In Figure ., the local false discovery rates of the three mixture
models are plotted over the range of p-values. For enhanced interpretation, we
propose to plot the posterior probability of differential expression as in the right
panel of Figure ., that is Pr

[
H = 1

∣∣ P = p
]

= 1− fdr(p) for all p ∈ [0, 1]. We
use the term “local false discovery rate” for both posterior probabilities in parallel
although 1− fdr(p) rather relates to a local true discovery rate. In the simulation
with less induction given by µ = 2, the overlap of the two score distributions
caused the local false discovery rate to spread over the whole range of p-values.
Even a p-value close to one has a slight chance to belong to an induced gene. Here
the experiment exhibits a broad twilight zone of p-values supporting both differ-
ential and non-differential expression. We further observe a substantial difference
to the q-value curves in Figure .: now it is the local false discovery rate curve
with highest induction that has the largest slope, see le panel of Figure .. In
contrast to q-values, the local false discovery rate estimates react immediately to
the inclusion of highly induced genes.

e effect becomes more prominent in Figure .. Displayed are the estimated
positive and local false discovery rates with the corresponding numbers of genes
with smaller or equal values. e le panel equals in principle Figure . with re-
verted axes but with the number of all positives shown instead of false positives.
Again, the same pFDR-based p-value filter will lead to a higher number of differ-
entially expressed genes in case of high induction (µ = 4) than in case ofmoderate
induction (µ < 4). In contrast to this, the local false discovery rate does not suffer
from high induction. In our artificial example, we observe that for fdr = 0.5 the
three curves coincide in  differentially expressed genes, perfectly resembling
the simulation setting of  induced and  non-induced genes. In this ideal
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Figure .: Local false discovery rates over the range of p-values. Shown are the rates corresponding to
the simulation in Figure .. Left panel: Posterior probability of non-differential expression. Right panel:
Posterior probability of differential expression. In an experiment with moderate induction µ = 2, the
curve declines slowly and spreads over a twilight zone of both induction and non-induction.
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Figure .: Positive and local false discovery rates with the corresponding number of genes with smaller
or equal rates, same data as shown in Figures . and .. With increasing induction µ, the local false dis-
covery rate separates clearer between the  induced and the  non-induced genes (right panel),
which is not the case for the positive false discovery rate (left panel).

setting, a fiy-fiy chance of being differentially expressed is naturally assigned to
the genes on the border between induction and non-induction.

Modeling the p-value distribution. e estimation of the local false discov-
ery rate is based on the distribution of the p-values. e p-value distribution is
commonly modeled using a mixture with at least two components

f (p) = π0 f0(p) + π1 f1(p), (.)

where f is the probability density function of the observed p-values. e over-
all density is decomposed into the density component f0 referring to the p-value
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density of non-induced genes, and into f1, the p-value density of induced genes.
e factor π0 denotes the global proportion of non-induced genes in the experi-
ment. It corresponds to the prior probability of being non-induced in Equations
(.) and (.), and to the height of the horizontal line in Figure .:

π0 = Pr [H = 0] . (.)

e second mixture parameter is simply π1 = 1− π0, which we interpret as the
prior probability of being differentially expressed: π1 = Pr [H = 1]. In terms
of the mixture model (.), the local false discovery rate definition in Equation
(.) can be translated into

fdr(p) = π0

f0(p)
f (p)

. (.)

e estimation of the local false discovery rate amounts to estimating the single
components of the right-hand side of Equation (.). e overall density f is es-
timated from the set of observed p-values for example by applying kernel density
estimation or similar smoothing techniques. e estimation of the null density
f0 needs the selection of a data-generating model. We might either choose a fully
parameterized model for the expected null distribution or we estimate f0 from
the given data by using permutation techniques. In the empirical Bayes approach
of Efron () the two variants are combined by estimating the parameters of
a normal mixture from scores observed under class-label permutation. e same
options apply to the estimation of the prior probability π0. e prior can be de-
termined by an expert or estimated from the observed data. We will review es-
timators of π0 in more detail in Section . and turn now to existing estimation
procedures for the local false discovery rate, which differ with respect to the cho-
sen models.

First, we can further simplify the mixture model in Equation (.): by proba-
bility theory, p-values are uniformly distributed if they were derived under the
null hypothesis. With f0(p) = 1 for all p ∈ [0, 1], the local false discovery rate
estimation amounts to the estimation of the two unknown terms π0 and f1 in

fdr(p) =
π0

f (p)
with f (p) = π0 + (1− π0) f1(p). (.)


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emixturemodel depends on the choice of themixture parameter π0 andondis-
tributional parameters of the density f1. Several configurations of the parameter
set might be chosen, which all explain the mixture density equally well. Hence,
themixturemodel is not uniquely defined and the parameters are not identifiable
unless we apply additional assumptions on π0 or on f1. e identification prob-
lem gives rise to two different approaches. First, a fully parameterized representa-
tion of the alternative part f1 is chosen ensuring that the prior π0 is identifiable.
Second, density f1 is modeled using non-parametric techniques. Here additional
assumptions on both f1 and π0 must be set to ensure identification. In the follow-
ing, we briefly review estimation approaches that use the uniformity assumption
above. Other approaches that do not exploit the p-value but the original score
distribution can be adopted to p-values and we review them here as well. Most of
the methods will be explained in technical detail in Section ..

Fully parameterized mixture models. Pounds and Morris () selected a
beta-distribution for f1. e first parameter of the beta-distribution is set to one.
e unknown second parameter and prior π0 are determined using maximum
likelihood estimation. is simple beta-uniform model was generalized by Al-
lison et al. () who modeled the alternative density f1 as a finite mixture of
beta-distributions, now allowing both parameters to vary. Model selection with
respect to the number of beta components was done using a bootstrap approach.
Liao et al. () described a local version of the beta-uniform mixture model.
e authors split the p-value range into bins and fit separate models similar to
that of Pounds and Morris () for each bin. For model fitting, a full Bayesian
model with conjugate prior distributions was used to derive the joint posterior
distribution of all model parameters including π0.

Non-parametric mixture models. e parameterized models are restricted to
the choice of distribution. e justification of such a choice might be question-
able and a non-parametric approach is preferable in that case. However, non-par-
ametric models for f1 need additional assumptions. Efron et al. () assumed
that there exists an upper bound on prior π0. ey defined the upper bound in
terms of the observed scores t as

π0 ≤ mint

{
f (t)
f0(t)

}
. (.)
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e interpretation of the upper bound becomes clearer if we base the approach
on the corresponding p-values such that Equation (.) simplifies to

π0 ≤ minp { f (p)} , (.)

since f0(p) = 1 for all p ∈ [0, 1]. eupper bound for π0 is given as theminimum
of the p-value density. Since we assume the p-values to be uniformly distributed
under the null hypothesis, the upper bound estimate π0 = minp { f (p)} is equiv-
alent to the assumption that the null density f0 consists of the largest possible
uniform fraction given f . In other words, the alternative density f1 does not con-
tain any uniformparts. If π0 < minp { f (p)}, we allow f1 to include an additional
uniform part.

Efron et al. () suggested estimating f by smoothed logistic regression and
then using the upper bound minp{ �f (p)} as an estimator for π0. Pounds and
Cheng () applied assumption (.) in the context of a mixture model with
a uniform component for the non-induced genes using a histogram estimator for
deriving the mixture density f . Since the prior π0 is estimated using the data, the
procedures of Efron et al. () and Pounds and Cheng () are empirical
Bayes methods. Assumption (.) is equivalent to assuming that f1 has no uni-
form component. If it has, the method of Efron et al. () overestimates π0.
Do et al. () criticized the biased estimation of π0 and developed a full non-
parametric Bayesian mixture model using Dirichlet processes. Instead of a data
driven plug-in estimate of π0, they imposed a uniform prior distribution on it.

In the context of the global false discovery rate,Genovese andWassermann ()
assumed in addition to the upper bound derived from Equation (.) that f is
monotonously decreasing, implying

π0 = minp { f (p)} = f (1). (.)

Equation (.) implies that π0 can be determined by estimating f (1). e same
strategywas suggestedbyStorey andTibshirani (), whodescribed a smoothed
extrapolation based estimator for f (1). e original paper of Tusher et al. ()
contains a simplified version of the extrapolation based estimator, which is im-
plemented in their SAM soware.
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In Chapter , we introduce a novel estimator of the local false discovery rate,
termed the successive exclusion procedure (SEP). In an extensive simulation study
we compared our SEP estimates to various other estimation procedures including
someof thepreviously reviewedmethods. Anoverviewof the competitors is given
in the following section.

. Estimating the proportion of non-induced genes

euniformity assumption for the null density f0 reduces the local false discovery
rate estimation problem to an estimation of two components: prior π0 and mix-
ture density f . e latter can be done efficiently by applying density estimators to
the observed p-value distribution. e crucial point is the estimation of prior π0.
Simply setting π̂0 = 1 is the most conservative choice and will lead in many cases
to an overestimated local false discovery rate. e goal is to estimate π0 from the
datawithout underestimating it severely, as an underestimated π0 results in overly
optimistic conclusions on the percentage of induced genes π1 = 1− π0.

In the following, we introduce a selection of π0 estimators, which we evaluated
in a comprehensive simulation study. e simulation covers different settings re-
garding the true percentage π0, strength of induction and number of genes. Re-
sults are shown in Section .. e estimation of the mixture parameter π0 is the
first step in the estimation of the local false discovery rate. Such a parameter is
needed not only in the context of microarray experiments. Similar problems with
many hypotheses and probably sparse signals are for example the analysis of allele
frequencies (Mosig et al., ) but also the detection of novel stars as discussed
in Meinshausen and Rice ().

In Section., we reviewedmain representatives of estimation concepts for the lo-
cal false discovery rate. emethods split into two groups depending on whether
a parametric or non-parametric model was used. Now we divide the methods
differently. Most methods need transformations of the data such as certain mix-
ture models, which have to be fitted to the data using direct parameter estima-
tion, smoothing techniques or an iterative design. Other estimators are defined
in closed form. We call the first set of estimators iterative and the second ones
analytic. In the following, we review  estimators for π0. If no other name was
given, the methods are called by their first author’s name. Some methods have
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Figure .: Overview on estimation procedures under evaluation. Method SEP denotes our novel ap-
proach introduced in Chapter .

been published recently, others have performed well in earlier comparisons (Fer-
kingstad et al., ; Broberg, ). In Figure . we display how the methods
split into analytic and iterative estimators.

S eprocedure introduced in thework onpositive false discovery rates
by Storey () may be the most prominent and commonly used π0 estimator.
e underlying algorithm is given explicitly in Storey and Tibshirani (). As-
suming uniformity for p-values of non-induced genes, the ratio of the observed
and the expected number of p-values is computed for a range of threshold values
p ∈ {0, 0.01, . . . , 0.95} as

π̂0(p) = ∑m
i=1 I{pi > p}
m(1− p)

, (.)

where again m is the number of genes. is estimator was first introduced in
Schweder and Spjøtvoll (). Equation (.) is a natural estimator for the p-
value density f . At p = 1, that is at the rightmost end of the p-value histogram, we
assume to observe only p-values stemming from non-induced genes. us with �f

being a smoothed version of π̂0(p), the final estimator is derived by extrapolation
such that

π̂0 = �f (1), (.)

which relates to the upper bound definition in Equation (.). e extrapola-
tion uses a natural cubic spline with three degrees of freedom. A cubic spline is
a smoothing technique oen used to fit non-linear data. It consists of piecewise
fitted cubic polynomials with continuity at the border between two pieces. e
natural cubic spline requires a linear instead of cubic fit at the boundaries of the
data range. e π0 estimator is implemented in Storey’s package qvalue.
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B Pounds and Morris () chose a beta-uniform mixture model (BUM)
to express the observed p-value distribution. emixture density f is modeled by
the sum of a uniform component and a beta-distributed component:

f (p|a, λ) = λ + (1− λ)axa−1, (.)

with λ being the mixture parameter of the uniform part and a being the first par-
ameter of the beta distribution. Note that the second parameter is set to one
(b = 1). emodel parameters λ and a are fitted bymaximum likelihood estima-
tion. To this end, a logit transformation is applied to the two model parameters
such that the density is expressed in terms of two new parameters ψ = logit(a) =
ln

(
a

1−a

)
and ϕ = logit(λ) = ln

(
λ

1−λ

)
. e log-likelihood of f is given as

l(ψ, ϕ|p) =
m

∑
i=1

log( f (pi|ψ, ϕ)). (.)

Values of ψ and ϕ have to be found that maximize the log-likelihood. As a closed
form solution does not exist, the authors applied numerical optimization to find
the optimal values. e maximum likelihood estimates of the initial parameters
then follow as �a = exp( �ψ)

1+exp( �ψ) and �λ = exp( �ϕ)
1+exp( �ϕ) . An upper bound estimator of π0 is

then given as
π̂0 = �λ + (1− �λ) �a. (.)

eoriginal code is available at http://www.stjuderesearch.org/statistics. e func-
tion was written for the soware S-plus® by Insightful Corporation, Seattle, WA,
USA. Both R and S-Plus® are implementations based on the programming lan-
guage S, and are thus closely related. As some functions differ between the two
environments, the optimization step in the B code had to be translated into R.
We exchanged the S-Plus® optimizer nlminb with the R function optim.

S Pounds and Cheng () estimated the mixture density by applying
a spacing LOESS histogram (SPLOSH) estimator. e “spacings” are intervals of
the p-value range. To estimate the mixture density f the p-value range is divided
into k intervals and a local polynomial regressionmodel (LOESS) is applied to the
interval frequencies. In LOESS regression a weighted polynomial model is fitted
to each data point. e fit is based on a subset of the data in the neighborhood of
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the target point. e weights are assigned such that they decrease with increasing
distance from the target point. Weights are defined by a kernel function, here the
Epachnechnikov kernel that yields weights w proportional to

w(x) =

{
(1− |x|3)3 if |x| ≤ 1 and
0 otherwise,

(.)

where x is the distance of any neighboring point to the target point divided by
a smoothing parameter that determines the width of the neighborhood. Prior to
LOESS regression, the S approach ensures via certain data transformations
such as logarithmic transformation that the resulting density function is strictly
positive and that boundary effects near p = 0 or p = 1 do not occur.

Once the density f has been estimated, the prior probability is determined at the
rightmost end of the density yielding the upper bound estimate π̂0 = �f (1). As in
Pounds and Morris (), the π0 estimate is only a by-product of the false dis-
covery rate estimation. e authors showed that S yields better estimates
than the earlier method B of the same first author. e approach is available
as an S-Plus® function at http://www.stjuderesearch.org/statistics. To work un-
der R, we exchanged one predict.loess statement with predict.

G e approach of Liao et al. () is an extension of the beta-uni-
form mixture model of Pounds and Morris (), who used a single beta distri-
bution as alternative density f1. Liao et al. did not apply a global beta distribution
but fitted local beta distributions to small intervals of the p-value range. To this
end, the authors applied a proportional hazard model. e p-value range is di-
vided into k intervals with cut points 0 = t0 < t1 < · · · < tk = 1. Let λi > 1

be the hazard ratio of the alternative density f1 over the null density f0 on the
interval [ti−1, ti), that is

λi =
f1(p)

1− F1(p)
1− F0(p)

f0(p)
=

f1(p)
1− F1(p)

(1− p), (.)

with p ∈ [ti−1, ti). We further define

θ(p) =
k

∑
i=1

λi I{[ti−1, ti)}. (.)
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With these ingredients the piecewise proportional hazard model is given as

f1(p)
1− F1(p)

=
θ(p)
1− p

. (.)

It follows that the alternative density f1 can be written as a piecewise function.
Let l be the index for which p ∈ [tl−1, tl) and λ the set of hazard ratios, λ =
(λ1, . . . , λk). e authors show that the alternative density is then given as

f1(p|λ) = λl(1− p)λl−1
l−1

∏
i=1

(1− ti)λi−λi+1 . (.)

e model parameters are estimated by Bayesian inference as follows. e hazard
ratios are transformed to τi = log(λi − 1) and a normal distribution is assumed
for

τi+1 − τi ∼ N (0, σ2). (.)

Variance σ2 determines the strength of smoothing. e variance is further con-
trolled by a hyper prior ν, which serves as the final tuning parameter for smooth-
ness. In addition, a beta(,) prior distribution is imposed on the mixture par-
ameter π0. For a given number k of cut points, the iteration starts with smoothing
parameter ν = 1. Parameter ν increases while evaluating the posterior distribu-
tions of π0 and λ1, . . . , λk. e algorithm stops aer a specified number of itera-
tion or earlier if density f1 reached a certain level of smoothness. Finally, estimate
π̂0 is taken as the mean of the posterior distribution of π0.

e authors’ implementation in function gene.mixture is available at http://www.
geocities.com/jg_liao/soware/. We set the number of iterations to  to re-
duce computation time and used k = 60 cut points as given in an example. e
smoothing parameter is set to ν = 1. Instead of being incremented as described
in the original paper, the smoothing parameter appears to be kept at a fixed value
in the function code.

L Another upper bound estimator is based on the model of
Efron (). e procedure works on observed scores, which are assumed to
follow a standard normal distribution under the null hypothesis. We used the im-
plementation in package locfdr by B. Efron and B. Narasimhan. emixture den-
sity is estimated by smoothing techniques, here a natural splinewith seven degrees
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of freedom. Similar to method S, the p-value range is divided into k inter-
vals and the smoothing spline is applied on the interval frequencies. e function
was used with default values, that is k = 120 intervals. In addition, ‰ of the tail
proportions were omitted when fitting themixture density f . In the soware, the
null density can either be estimated empirically or set to standard normal. As the
simulated null distribution introduced in Section . was standard normal, we
used the latter setting with default values otherwise. e model differs from the
seminal publication of the empirical Bayes approach in Efron et al. (), where
logistic regression was applied to estimate the local false discovery rate. Since no
original implementation of this procedure was available, we used the most recent
method of the first author.

P Broberg () adapted the L approach to work on p-values in-
stead of scores. As above, the p-value range is divided into intervals and the in-
terval counts are fitted by Poisson regression (PRE), the classical model for count
data. Here, a polynomial functionwas fitted to the data. Let tk be themidpoint of
the kth interval and µ0

k the observed frequency therein. e expected frequency
is then modeled as

µk(β) = µ0
k exp(β0 + β1tk + β2t

2
k + β3t

3
k + β4t

4
k), (.)

with β = (β0, β1, β2, β3, β4) being the set of model parameters. e Poisson
model is fitted via maximum likelihood estimation. e final estimate of the mix-
ture density �f is derived from a smoothing spline with four degrees of freedom on
the expected relative frequencies. epercentage of non-induced genes is taken as
the minimum density: π̂0 = minp

�f (p). According to Equation (.), the mini-
mumdensity estimator is an upper bound estimator for π0. e estimation proce-
dure is implemented in the author’s package SAGx in function p.mom. e loca-
tion and number of intervals k is determined internally depending on the number
of genes m.

M Besides P, Broberg () proposed a second estimator, which is based
on the moment generating function (MGF) of a mixture density. e moment
generating function M of any random variable Pwith density f (p) can be written
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as the expectation
M(s) =

∫
exp(sp) f (p)dp, (.)

integrated over the support of f . e moment generating function of a mixture
distribution is again a mixture of moment generating functions. For the mixture
in Equation (.) thus follows

M(s) = π0 M0(s) + (1− π0)
∫

exp(sp) f1(p)dp, (.)

with
M0(s) =

exp(s) − 1

s
(.)

being the moment generating function of the uniform distribution. Let

M1(s) =
∫

exp(sp) f1(p)dp (.)

denote the unknown transform of the alternative density, e mixture parameter
π0 is then given as

π0 =
M(s) − M1(s)
M0(s) − M1(s)

. (.)

e author derived a recursive formula to derive M1 from M, M0 and M1 for in-
creasing values of s and with

M̂(s) =
1

m

m

∑
i=1

exp(spi) (.)

being the estimatedmoment generating function of themixture distribution. e
ratio in Equation (.) is computed for increasing values s ∈ [0, 1]. e iteration
stops if a certain choice of M1 and s provides a stable estimate of π0. Like P,
the M estimator is available from function p.mom in package SAGx.

C Langaas et al. () assumed that the p-value density f is a convex
and decreasing function. e authors decomposed the mixture density f into a
mixture of triangular densities fθ:

fθ(p) =
2(θ − p)+

θ2
, (.)





 A review on false discovery rates

with parameter θ ∈ (0, 1]. e density parameters are estimated by iterative max-
imum likelihood approximation starting with a single uniform density �f (p) = 1

for all p ∈ [0, 1]. In each iteration j = 0, 1, 2 . . . the current estimate �f j replaces �f

and parameter θ is determined by evaluating

�θ = argminθ∈(0,1]

{
∑

i: f (pi)>0

�f (pi) − fθ(pi)
�f (pi)

}
. (.)

Within each step, the density is a mixture of the current iterate and the new op-
timal density:

�f j+1 = (1− �ε) �f j + �ε f �θ, (.)

where

�ε = argminε∈[0,1)

{
− ∑

i: f (pi)>0

log((1− ε) �f j(pi) + ε f �θ(pi))

}
. (.)

is procedure ensures to find the newmixture density with the highest improve-
ment of accuracy, which relates to a “steepest-descent” down-hill search algo-
rithm. e iteration stops when a specified accuracy is meet. In practice, the op-
timal value for parameter θ is found over a grid on the interval (0, 1).

e final mixture estimate �f leads to the upper bound estimate π̂0 = �f (1). e
procedure was introduced in a work by the same authors providing a comparison
of earlier π0 estimators, in which the C method outperforms its com-
petitors (Ferkingstad et al., ). e convex density estimator is implemented
in the limma package by G. Smyth, which is designed for linear model fitting of
microarray data, and was applied with default number of iterations set to .

L Dalmasso et al. () introduced a π0 estimator that is not derived by
an iterative procedure but given in closed form. e method is termed location
based estimator (LBE), where “location” refers to expectation. e authors did
not follow the density estimation approach but took expected values such that
the mixture in Equation (.) transforms to

E(P)
E0(P)

= π0 + (1− π0)
E1(P)
E0(P)

, (.)
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where E0 and E1 are the expectations under the null and under the alternative
hypothesis and P is the p-value random variable. An upper bound of π0 is simply
the le-hand side of the equation above, that is

E(P)
E0(P)

≥ π0. (.)

Dalmasso et al. showed that any transformation ϕ(P) of P leads to tighter bounds
since

E1(ϕ(P))
E0(ϕ(P))

≤ E1(P)
E0(P)

. (.)

With ϕ(p) = −log(1− p), the upper bound might be further reduced with re-
spect to the increasing power k in

E1(ϕ(P)k+1)
E0(ϕ(P)k+1)

≤ E1(ϕ(P)k)
E0(ϕ(P)k)

. (.)

e final estimator is then derived as

π̂0(k) =
E(ϕ(P)k)
E0(ϕ(P)k)

=

1
m

m

∑
i=1

ϕ(pi)k

E0(ϕ(P)k)
. (.)

e authors showed that E0(ϕ(P)k) = k! for ϕ(p) = −log(1− p), such that the
estimator is finally given in closed form as

π̂0(k) =

1
m

m

∑
i=1

(−log(1− pi))
k

k!
. (.)

Parameter k is an integer value that increases with the number of genesm. e au-
thors suggest to set k = 1 for  genes and k = 3 for  genes. We applied
the original implementation of L available at http://ifr.vjf.inserm.fr/lbe,
which also provides false discovery rate estimates.
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L In Benjamini andHochberg (), the authors refined their original pro-
cedure to estimate the false discovery rate as given in Equation (.). In particu-
lar, they exchanged the number of genes m with the estimated number of non-
induced genes m̂0 = π̂0m, which equals the definition of q-values in Equation
(.). e number m0 is estimated from the slope of the line when drawing p-
values over their respective ranks. at is, the ordered p-values p(1), . . . , p(m) are
plotted versus their expectations 1, . . . ,m under the null hypothesis of no induc-
tion. If not a single gene is induced, p-values are assumed to be uniformly dis-
tributed and the curve of all points (i, p(i)) is a straight line passing through the
origin and the point (m + 1, 1) with slope β = 1/(m + 1). e more induced
genes there are in the experiment, the more small p-values we observe and the
curve of (i, p(i)) will depart from the straight line when approaching zero. e
slope of the line fitted through the larger p-values is a natural estimator for m0

since β = 1/(m0 + 1). With an appropriate slope estimate �β, the authors esti-
mate π̂0m = m̂0 = �β−1.

e estimation of the slope β depends on how many large p-values are taken into
account for the linear fit. e authors propose a Lowest Slope estimator (LSL)
that works as follows. For all i = 1 . . . ,m, we compute the slopes

βi =
1− p(i)

m + 1− i
. (.)

We loop once through the set of p-values starting with the smallest p-value p(1)

and search for the smallest i⋆ with decreasing slope, that is with βi⋆ < βi⋆−1. e
final estimator is then given as

m̂0 = min
{

1

βi⋆
+ 1,m

}
. (.)

Adding  to β−1
i⋆ before taking the minimum ensures that the estimator is conser-

vative and tends to overestimatem0.

e L estimator is implemented in packageGeneTS by K. Fokianos, J. Schäfer,
and K. Strimmer. e package is designed for time-series analysis of gene expres-
sion data. e L method is available via function fdr.estimate.eta with argu-
mentmethod=“adaptive” .
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H Meinshausen and Rice () discussed the problem of identify-
ing unknownobjects in outer space bymonitoring light fluxes of known stars. e
number of p-values exceeds that of a typical microarray experiment by far. e
authors proposed an estimate of the lower bound of π1, which in our case serves
as an upper bound to π0. e method is motivated by the theory of bounding
functions and bounding sequences.

Let U be the uniform distribution on [,] and Um(p) the empirical cdf of m
observations of a random variable P with probability distributionU. en

Vm,δ = supp∈(0,1)
Um(p) − p

δ(p)
(.)

defines the supremum of an empirical distribution weighted by a bounding func-
tion δ(p). We require the bounding function to be real-valued on [,] and strictly
positive on (,). e series βm,α is called a bounding sequence for δ(p) if mβm,α is
monotonically increasing withm and

Pr[Vm,δ > βm,α] < α (.)

for all m and constant level α. Inserting (.) into (.) leads to

Pr[supp∈(0,1)Um(p) > p + βm,α δ(p)] < α. (.)

Let Fm(p) be the empirical cdf of m observed p-values. Assuming that a certain
proportion of these p-values is uniformly distributed and given the bounding
statement above, a natural lower bound for the percentage of induced genes π1

is π̂1 = supp∈(0,1) {Fm(p) − p− βm,α δ(p)}. e authors showed that an addi-
tional factor 1/(1− p) can be gained such that the final lower bound estimate is
given as

π̂1 = supp∈(0,1)
Fm(p) − p− βm,α δ(p)

1− p
. (.)

For a given bounding function δ(p) and accompanying bounding sequence βm,α

the theory of bounding functions then guarantees that π̂1 is a lower bound for π1

at confidence level α, that is

Pr[π̂1 ≤ π1] ≥ 1− α. (.)
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Meinshausen and Rice () chose the bounding function δ(p) =
√

p(1− p)
and showed that this choice is optimal. e associated bounding sequence follows
as

βm,α =
−log(−log(1− α)) + 2 log(log(m)) + 0.5 log(log(log(m))) − 0.5 log(4 π)√

2m log(log(m))
. (.)

e lower bound estimator above is implemented in package howmany by N.
Meinshausen. We kept the default value of the confidence level at α = 0.05.
e package also includes a second estimator, introduced in Meinshausen and
Bühlmann (). Here the approach takes the correlation structure between
genes into account and the usual permutation regime is applied to evaluate the
data under randomness. e random positives count as false positives and are
natural estimates of the measure V(p) in Equation (.). us they are the ba-
sis of the lower bound estimator. We did not include this second estimator into
our study for two reasons. First, we stick to the naive but fundamental setting of
independent genes. Second, the approach requires the whole expression matrix
as input whereas we condensed the simulated data to the level of observed scores
and p-values.

G Another lower bound estimator for π1 was introduced by Gen-
ovese and Wassermann (). Meinshausen and Rice () translated the es-
timator into bounding theory. Due to a constant boundary function δ(p) = 1,
the bounding sequence of Genovese and Wassermann () is given as

βm,α =
√

(2m)−1 log(2/α). (.)

e constant bounding function is suboptimal compared to the bounding func-
tion ofmethodH, that is it only results in consistent estimateswhen the
true amount π1 is large. However, we keptGenovese andWassermann’s estimator
for its appealing simplicity. As no original code of the method was available, we
implemented it in R and set α = 0.05 in accordance to method H.

N In a genomic study, Mosig et al. () presented a π0 estima-
tor that was based on an iterative comparison of frequencies observed in intervals
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of the p-value range. Nettleton and Hwang () derived an exact formulation
of the algorithm to reproduce the results of the original paper. In addition, they
proved that the algorithm always converges to a certain value. An analytic so-
lution can be given such that the iteration of Mosig et al. () is not needed.
To estimate π0, the range of p-values [,] is divided into k equidistant intervals.
Letmi denote the observed p-value frequency in the ith interval. e average fre-
quency of the intervals on the right-hand side of interval i including interval i is
given as

mi:k =
k

∑
j=i

mj

k− i + 1
. (.)

Now the procedure works as follows. Going from le to right through the inter-
vals, each frequency count is compared to the average of the interval count and the
counts of the intervals following at the right-hand side of this interval. Starting
with the le-most sum of frequencies

M0 =
k

∑
j=1

mj = k m1:k , (.)

the authors derived a recursive formula to compute the successive sums of fre-
quencies Mi = ∑k

j=i+1 mj for i ≥ 1. Now one determines the first interval i⋆ for
which

i⋆ = min1≤i≤k

{
mi ≤

Mi−1

k
= mi:k

}
. (.)

e estimated number of non-induced genes is then obtained from the count sum
of the first interval i⋆ with a count not exceeding the average, that is

Mi⋆ = k mi⋆ :k = π̂0 m, (.)

leading to the final estimate π̂0 = Mi⋆/m. is method is not iterative but loops
only once through the intervals. e search stops when the le-most interval is
found satisfying the inequality in Equation (.). e original implementation
is available at http://www.public.iastate.edu/∼dnett/ and was applied with the
default value of k = 50 intervals.
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In Chapter , we introduce a novel algorithm to estimate the local false discovery
rate and evaluate its performance in a comprehensive simulation study including
the π0 estimators above. Prior to that, we introduce six expression data sets in
the following chapter, on which some of the previously introducedmethods were
applied for illustration.
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