1 Motivation and outline

A main field of computational molecular biology covers the exploration of ge-
nomic data. One of the basic data sources are gene expression experiments. Here
the goal is to target the instantaneous gene activity in a specific cell of a living
organism. From the amount of gene activity we can draw a picture of the cell’s
current state that helps to understand the fundamentals of gene regulation, signal
transduction through pathways, and to further explain diseases like cancer. Mi-
croarrays provide this snapshot of cell state: a microarray is a device to measure
gene expression on a large-scale basis, that is for thousands of genes at the same
time. In Chapter 2 we explain how microarray technology works and what pre-
processing steps we have to apply to the raw gene expression data to get a sound
basis for further analysis. In Chapter 4 we introduce a collection of six microar-
ray data sets from different cancer studies. We illustrate the reviewed methods by
applying them on these real-world data sets as well as on simulated data.

Throughout this thesis, we are concerned about the first step in the statistical anal-
ysis of gene expression data: the search for differentially expressed genes. With
cach array, we can examine one sample of cells, possibly taken from a single can-
cer patient. If we then measure the gene expression of a panel of diseased and not-
diseased patients, we might observe differences in the expression levels of certain
genes between the two groups of patients. The questions to raise are: which genes
show differences in gene expression? And, are these differences significant? Hence
we want to know for each single gene whether it shows significant differences
in expression. In statistical terms, each gene i is connected to a null hypothesis,
stating that gene i is not differentially expressed between the two patient groups.
With tens of thousands of genes measured simultaneously in a microarray exper-
iment, we have to infer on tens of thousands of null hypotheses simultaneously.
This situation is known as the multiple testing problem. For each hypothesis and
gene we get a p-value expressing the significance of the observed difference. A low
p-value supports the evidence of the observation. Since biological data is subject
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to random fluctuations, a p-value can be small simply by chance. Now the goal is
to search for those of the tens of thousands of p-values that provide enough evi-
dence for a significant change in gene expression. We call the resulting set of genes
the differentially expressed genes. In multiple testing theory, the search for differ-
entially expressed genes is accomplished by defininga global error rate. A classical
and popular error rate is the family-wise error rate, defined as the probability that
our set includes at least one gene that is truly not differentially expressed—a false
positive finding. Thus we might successively include small p-values into our set as
long as the estimated family-wise error rate does not exceed a certain threshold.
This probability concept works well with only a few hypotheses under test. With
thousands of hypotheses under test, control of the family-wise error rate might be
too conservative in the sense that only a few genes pass the search and are called
differentially expressed.

A second popular multiple testing concept is termed the false discovery rate. It
was recently re-discovered in the light of large-scale inference on microarray data.
The false discovery rate is defined as the expected proportion of false positive find-
ings among all positive findings. Similar to the family-wise error rate concept, we
search for a set of genes such that the estimated false discovery rate does not ex-
ceed a pre-specified threshold. The false discovery rate concept is less conservative
that the family-wise error rate concept and thus provides us with a larger set of sig-
nificant genes. Note that these two gene sets differ with respect to the error rate
that was used during the search. In multiple testing theory, we speak of control
of an error rate if we can guarantee that the estimated value does not exceed the
true value. For both concepts rich research exists, which lead to many search pro-
cedures providing certain control of the respective error rate. Control of an error
rate is important to provide a hard decision rule for dividing the set of genes into
those that are significantly differentially expressed and into those that are not.

In this thesis we focus on the estimation of error rate values and not on control.
We believe that significance analysis of microarray data benefits from improved
probability estimates. Thus our major interest is in the individual estimates of sin-
gle genes and not whether these estimates provide control. We do not present our
results in the light of multiple testing theory. For comprehensive reviews on mul-
tiple testing issues in presence of microarray data we refer to the paper series of
Dudoit ez al. (2004) and van der Laan ez 4l. (2004). To distinguish between the
concepts of control and estimation, we use the term p-value filter instead of multi-



ple testing procedure. A p-value filter is any procedure that narrows down our set
of genes to those providing evidence for differential expression. Our first contri-
bution to an improved significance analysis has its foundations in false discovery
rate theory. We provide a review on false discovery rates in Chapter 3, starting
with an introduction on p-value filters in Section 3.1 and the definition of the
false discovery rate in Section 3.2. A p-value filter based on the false discovery
rate has advantages over other filters but has also certain disadvantages. We illus-
trate the drawbacks with examples in Section 3.3. A variant of the false discovery
rate, termed the local false discovery rate, is not affected by this disadvantages. Al-
though the two rates share almost the same name, their underlying concepts are
quite opposite to each other. A p-value filter leaves only those genes with p-values
below a certain threshold. The local false discovery rate does not draw this hard
line of separation. Instead, an estimated local false discovery rate value is assigned
to each gene expressing the probability of not being differentially expressed. We
motivate these opposite ideas in Section 3.1.

The focus of this thesis is on the estimation of the local false discovery rate. Two
chapters, that is Chapters 5 and 6, contain two different concepts to improve the
estimation. The first contribution is to improve the estimator itself. There exist
several approaches to it, yet we aim for a robust and reliable estimator. In Chapter
5 we propose our iteration-based estimator of the local false discovery rate. The
procedure works by dividing the set of p-values into two parts. One part repre-
sents differentially expressed genes and the other part represents not-differentially
expressed genes, that is the background model. From the p-value distributions of
these two parts, we derive estimates for the local false discovery rate. The proce-
dure is introduced in detail in Sections 5.2 to 5.4. We investigate the performance
of our procedure on exemplary microarray data sets (Section 5.5) as well as on
simulated data (Section 5.6). The procedure shows excellent performance in a
comprehensive comparison study with thirteen competing methods.

The second contribution to improved estimates of the local false discovery rate is
based on a subtle oddity commonly observed in the significance analysis of mi-
croarray data: due to highly correlated data, the computation of p-values is of-
ten based on an inadequate background model. We motivate the problem in the
introduction section of Chapter 6 and show in Section 6.2 that this disadvan-
tageous behavior is common to many biological data sets. We propose a simple
but efficient algorithm to extract a valid representation of the background model.
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The procedure is explained in Section 6.3. When basing the significance analy-
sis on the valid background, we observe substantial benefits from the improved
local false discovery rate estimates (Section 6.4). Both contributions are novel
concepts that help to improve every-day’s significance analysis of large-scale mi-
croarray data.

In summary, the principle outline of this thesis is the introduction to microar-
ray technology and its significance analysis (Chapter 2), theory and estimators of
false discovery rate variants (Chapter 3), introduction and exploration of six ex-
emplary data sets (Chapter 4), our proposed estimator of the local false discovery
rate (Chapter 5) and our proposed permutation filtering approach (Chapter 6).

We conclude with a discussion of the results in Chapter 7.



