
Chapter 2

On Tightly κ-Filtered Boolean

Algebras

Again, in this chapter I assume that κ is regular and infinite.

2.1 The number of tightly σ-filtered Boolean algebras

By a result by Koppelberg ([29]), there are only 2<λ pairwise non-isomorphic

projective Boolean algebras of size λ for every regular uncountable cardinal

λ and there are 2λ pairwise non-isomorphic projective Boolean algebras of

size λ for every singular infinite cardinal λ. However, a similar statement

does not hold for tightly σ-filtered Boolean algebras.

2.1.1. Theorem. For every infinite cardinal λ there are 2λ pairwise non-

isomorphic tightly σ-filtered Boolean algebras of size λ satisfying the c.c.c.

The proof of the theorem uses the following lemma, which says that sta-

tionary sets consisting of ordinals of countable cofinality can be coded by

tightly σ-filtered Boolean algebras.

2.1.2. Lemma. Let λ be an uncountable regular cardinal and let S be a

subset of λ consisting of ordinals of cofinality ℵ0. Then there are a Boolean

algebra A of size λ and a tight σ-filtration (Aα)α<λ of A such that the follow-

ing hold:

a) Aα 6≤rc A for all α ∈ S
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26 2. On Tightly κ-Filtered Boolean Algebras

b) Aα ≤rc A for all α ∈ λ \ S.

Proof. For every α ∈ S let (δα
n)n∈ω be a strictly increasing sequence of ordi-

nals with least upper bound α and S ∩ {δα
n : n ∈ ω} = ∅. I will construct

(Aα)α<λ together with a sequence (xα)α<λ such that

(i) A0 = 2,

(ii) Aα+1 = Aα(xα) for all α < λ,

(iii) xα is independent over Aα whenever α 6∈ S,

(iv) Aα � xα is generated by {xδα
n

: n ∈ ω} and Aα � −xα = {0} whenever

α ∈ S,

(v) Aβ =
⋃

α<β Aα holds for all limit ordinals β < λ.

Clearly, the construction can be done and is uniquely determined. I have to

show that a) and b) of the lemma hold for (Aα)α<λ.

For a) let α ∈ S. Then Aα � xα is non-principal. For suppose a ∈ Aα

is such that a ≤ xα. Since (δα
n)n∈ω is cofinal in α, there is n ∈ ω such that

a ∈ Aδα
n
. Since δα

n 6∈ S, xδα
n

is independent over Aδα
n

by construction. Hence

a + xδα
n

is strictly larger than a, but still smaller than xα. So a does not

generate Aα � xα.

For b) let α 6∈ S. By induction on γ < λ, I show that Aα ≤rc Aγ holds

for every γ ≥ α. Aα ≤rc Aα holds trivially. Suppose γ is a limit ordinal and

Aα ≥rc Aβ holds for all β < γ such that α ≤ β. Then Aα ≤rc Aγ follows from

Lemma 1.1.3. Now suppose γ = β + 1 for some β ≥ α. There are two cases:

I. β 6∈ S. In this case Aβ ≤rc Aγ by construction. By hypothesis, Aα ≤rc

Aβ. By Lemma 1.1.3, this implies Aα ≤rc Aγ.

II. β ∈ S. This is the non-trivial case. I claim that Aδ ≤rc Aδ(xβ) holds

for every δ < β. This can be seen as follows: By Lemma 1.1.2, it is

sufficient to show that both Aδ � xβ and Aδ � −xβ are principal. But

Aδ � −xβ ⊆ Aβ � −xβ = {0} by construction. Let a ∈ Aδ be such that
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a ≤ xβ. Let m := {n ∈ ω : xδβ
n
∈ Aδ}. Clearly m ∈ ω. Let T ∈ [ω]<ω

be such that a ≤
∑

{xδβ
n

: n ∈ T}. Then

a ≤
∑

{xδβ
n

: n ∈ T ∩ m} +
∑

{xδβ
n

: n ∈ T \ m}.

Since
∑

{xδβ
n

: n ∈ T \ m} is independent over Aδ by construction,

a ≤
∑

{xδβ
n

: n ∈ T ∩ m} ≤
∑

{xδβ
n

: n < m} ≤ xβ .

This shows that Aδ � xβ is generated by
∑

{xδβ
n

: n < m} and the claim

holds. Now Aγ = Aβ(xβ) =
⋃

α≤δ<β Aδ(xβ). Hence Aα ≤rc Aγ follows

from the claim together with Lemma 1.1.3.

This shows b).

In order to show that the Boolean algebra A constructed in the lemma

above satisfies the c.c.c., I use an argument which was used by Soukup ([15])

to prove that, modulo the consistency of the existence of a supercompact car-

dinal, it is consistent with ZFC+GCH that there is a complete c.c.c. Boolean

algebra without the WFN.

2.1.3. Lemma. The Boolean algebra A constructed in the proof of Lemma

2.1.2 satisfies the c.c.c.

Proof. Assume A does not satisfy the c.c.c. Let C ⊂ A be an uncountable

antichain. Let X := {xα : α < λ}. For x ∈ X let x0 := x and x1 := −x.

I may assume that each a ∈ C is an elementary product of elements of X,

i.e. there is Xa ∈ [X]<ℵ0 and fa : Xa → 2 such that a =
∏

x∈Xa
xfa(x). After

thinning out C if necessary, I may assume that {Xa : a ∈ C} is a ∆-system

with root R, there is f : R → 2 such that fa � R = f for all a ∈ C, and all

Xa are of the same size, say n.

Claim. Let Y ∈ [X]<ω and g : Y → 2 be such that
∏

x∈Y xg(x) = 0.

Then there are α ∈ S and i ∈ ω with xα, xδα
i
∈ Y such that g(xα) = 1 and

g(xδα
i
) = 0.

First note that for y, z ∈ X, yg(y) · zg(z) = 0 holds iff there are α ∈ S and

i ∈ ω with {y, z} = {xα, xδα
i
} such that g(xα) = 1 and g(xδα

i
) = 0. Now I



28 2. On Tightly κ-Filtered Boolean Algebras

show the claim by in induction on max{α < λ : xα ∈ Y }. The case |Y |< 3 is

trivial.

Assume the claim has been proved for max{α < λ : xα ∈ Y } < β.

Suppose max{α < λ : xα ∈ Y } = β and for no two elements y, z ∈ Y ,

yg(y) · zg(z) = 0. For β 6∈ S the argument is easy. By assumption, b :=∏
x∈Y \{xβ} xg(x) 6= 0. By construction, xβ and b are independent. Thus∏
x∈Y xg(x) 6= 0.

Now suppose β ∈ S and
∏

x∈Y xg(x) = 0. By construction, Aβ � −xβ =

{0}. Thus b :=
∏

x∈Y \{xβ} xg(x) 6≤ −xβ . Therefore g(xβ) = 1 and b ≤ xβ. By

construction, there is m ∈ ω such that b ≤
∑

i<m xδβ
i
. It follows from the

inductive hypothesis that b ·
∏

i<m −xδβ
i
6= 0. This contradicts the choice of

m and the claim is proved.

For each a ∈ C let Xa = {xa,i : i < n}. Clearly, I may assume that C has

size ℵ1. Let ≤ be a wellorder on C of ordertype ω1. For each {a, b} ∈ [C]2

choose a color c({a, b}) ∈ n2 such that

∀(i, j) ∈ n2(c({a, b}) = (i, j) ∧ a ≤ b ⇒ x
fa(xa,i)
a,i · xfb(xb,j)

b,j = 0).

It follows from the claim that c can be defined. Clearly, for all {a, b} ∈
[C]2, if c({a, b}) = (i, j) and a ≤ b, then xa,i, xb,j 6∈ R. Baumgartner and

Hajnal ([3]) established the following partition result:

∀m ∈ ω∀α < ω1(ω1 → (α)2
m).

In particular, ω1 → (ω + 2)2
n2 holds. That is, there are (i, j) ∈ n2 and a

subset C ′ of C of ordertype ω + 2 such that for all {a, b} ∈ [C ′]2, c({a, b}) =

(i, j). Let a and b be the last two elements of C ′. Assume xa,j = xα for

some α ∈ S. By construction of A, for all c ∈ C ′ \ {a, b}, xc,i = xδα
k

for some

k ∈ ω. By the ∆-system assumption, all the xc,i’s are different. This implies

xa,j = xb,j , contradicting the ∆-system assumption.

Now assume that for all α ∈ S, xa,j 6= xα. In this case, for all c ∈
C ′ \ {a, b}, xc,i = xα for some α ∈ S. Let d and e be the first two elements of

C ′. Now for all c ∈ C ′ \ {d, e}, xc,j = xδα
k

for some k ∈ ω. By the ∆-system

assumption, all the xc,j’s are different. This implies xd,i = xe,i, contradicting
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the ∆-system assumption. This finishes the proof of the lemma.

Proof of the theorem. Let λ be an infinite cardinal. If λ = ℵ0, then there

are 2λ pairwise non-isomorphic Boolean algebras of size λ and all of them

are projective, hence tightly σ-filtered. Also, if λ is singular, then there

are 2λ pairwise non-isomorphic projective Boolean algebras by the result of

Koppelberg mentioned before. Projective Boolean algebras satisfy the c.c.c.

For regular uncountable λ let P be a disjoint family of stationary subsets

of {α < λ : cf(α) = ℵ0} of size λ. Such a family exists by the wellknown

results of Ulam and Solovay. For every subset T of P let AT be the Boolean

algebra which is constructed in the lemma from the set S :=
⋃

T and let

(AT
α )α<λ be its associated tight σ-filtration. Then for T , T ′ ⊆ P with T 6= T ′

the Boolean algebras AT and AT ′
are non-isomorphic.

For suppose h : AT −→ AT ′
is an isomorphism. W.l.o.g. I may assume

that T \ T ′ is nonempty. The set {α < λ : h[AT
α ] = AT ′

α } is club in λ. Since⋃
(T \ T ′) is stationary, there is α ∈

⋃
(T \ T ′) such that h[AT

α ] = AT ′
α . But

AT
α 6≤rc AT and AT ′

α ≤rc AT ′
, a contradiction.

By Lemma 2.1.3, the Boolean algebras AT satisfy the c.c.c.

The two lemmas above give even more:

2.1.4. Theorem. Let λ be an uncountable and regular cardinal. Then there

is a family of size 2λ of tightly σ-filtered c.c.c. Boolean algebras of size λ

such that no member of this family is embeddable into another one as an

rc-subalgebra.

Proof. Suppose T and T ′ are subsets of P, where P is as in the proof of

the theorem above. Assume there is an embedding e : AT → AT ′
such

that e[AT ] ≤rc AT ′
. Let C ⊆ λ be a club such that e[AT

α ] = AT ′
α ∩ e[AT ]

and lprAT ′

e[AT ][A
T ′
α ] ⊆ AT ′

α hold for every α ∈ C. Let α ∈ C ∩
⋃

T . Then

e[AT
α ] 6≤rc e[AT ] and hence e[AT

α ] 6≤rc AT ′
. Since AT ′

α is closed under lprAT ′

e[AT ],

e[AT
α ] ≤rc AT ′

α . Hence AT ′
α 6≤rc AT ′

. Therefore C ∩
⋃

T ⊆ C ∩
⋃

T ′. Thus,

since P consists of stationary sets, T ⊆ T ′. Now let I be an independent

family of subsets of P of size 2λ. In particular, the elements of I are pairwise
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⊆-incomparable. Thus the family {AT : T ∈ I} consists of pairwise non-rc-

embeddable tightly σ-filtered c.c.c. Boolean algebras of size λ.

2.2 Characterizations of Tightly κ-Filtered Boolean Al-

gebras

In this section I give characterizations of tightly κ-filtered Boolean algebras

which are similar to the characterizations known for projective Boolean alge-

bras. For these characterizations I have to assume that κ is uncountable, sim-

ply because some of the proofs given below do not work for κ = ℵ0. However,

some of the characterizations given below are parallel to those of projective

Boolean algebras. The main difference to the projective case is that projec-

tive Boolean algebras are exactly the retracts of free Boolean algebras. A

similar characterization of tightly κ-filtered Boolean algebras does not seem

to be available. For the characterization of tightly κ-filtered Boolean algebras

I will use the concept of commuting subalgebras of a Boolean algebra.

2.2.1. Definition. Let A and B be subalgebras of the Boolean algebra C.

Then A and B commute iff for every a ∈ A and every b ∈ B such that a·b = 0

there is c ∈ A ∩ B such that a ≤ c and b ≤ −c.

A family F of subsets of a Boolean algebra A is called commutative iff it

consists of pairwise commuting subalgebras.

The connection between κ-subalgebras and commutative families is given

by

2.2.2. Lemma. Let F be a commutative family of subalgebras of A such

that every a ∈ A is contained in some B ∈ F of size < κ. Then F consists

of κ-subalgebras of F .

Proof. Let C ∈ F and a ∈ A. Then there is B ∈ F such that a ∈ B. I claim

that B contains a cofinal subset of C � a. Let c ∈ C � a. Now −a · c = 0.

Since B and C commute, there is b ∈ B ∩ C such that c ≤ b and −a ≤ −b.

But now c ≤ b ≤ a.



2.2. Characterizations of tight κ-filteredness 31

This lemma is implicitly contained in the book by Heindorf and Shapiro

([23]) for the case κ = ℵ1.

It turns out that additivity of skeletons is what separates tight κ-filter-

edness from κ-filteredness.

2.2.3. Definition. A < κ-skeleton (respectively κ-skeleton) S of a Boolean

algebra A is called additive iff for every subset T ⊆ S the Boolean algebra

〈
⋃

T 〉 generated in A by
⋃

T is a member of S.

In order to make the similarities between projective Boolean algebras

and tightly κ-filtered Boolean algebras apparent, I quote the following from

Heindorf and Shapiro ([23]):

2.2.4. Theorem. The following are equivalent for a Boolean algebra A:

(i) A is projective.

(ii) For some ordinal δ, A is the union of a continuous chain (Aα)α<δ

consisting of rc-subalgebras such that Aα+1 is countably generated over

Aα for every α < δ and A0 is countable.

(iii) A has a tight rc-filtration.

(iv) A has an additive commutative skeleton.

(v) A has an additive skeleton consisting of rc-embedded subalgebras.

(vi) A is the union of a family C of countable subsets of A such that 〈
⋃

S〉 ≤rc

A for every S ⊆ C.

The characterization of tightly κ-filtered Boolean algebras is the following:

2.2.5. Theorem. Let κ be an uncountable regular cardinal. The following

are equivalent for a Boolean algebra A:

(i) For some ordinal δ, A is the union of a chain (Aα)α<δ of κ-subalgebras

which is continous at limit ordinals of cofinality ≥ κ such that Aα+1 is

≤ κ-generated over Aα for every α < δ and A0 has size ≤ κ.
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(ii) A has a tight κ-filtration.

(iii) A has an additive commutative < κ-skeleton.

(iv) A has an additive < κ-skeleton consisting of κ-embedded subalgebras.

(v) A has an additive κ-skeleton consisting of κ-embedded subalgebras.

(vi) A is the union of a family C of subsets of size < κ of A such that for

all S, T ⊆ C the algebras 〈
⋃

S〉 and 〈
⋃

T 〉 commute.

(vii) A is the union of a family C of subsets of size < κ of A such that for

every S ⊆ C, 〈
⋃

S〉 ≤κ A.

(viii) A is the union of a family C of subsets of size ≤ κ of A such that for

every S ⊆ C, 〈
⋃

S〉 ≤κ A.

Proof. (i)⇒(ii) was proved by Koppelberg ([28]) for κ = ℵ1. The proof for

arbitrary regular κ is exactly the same. Let (Aα)α<δ be a filtration of A

as in (i). First make the sequence continuous by inserting the appropriate

unions at those limit stages which lack continuity. Since this only happens

at limits of cofinality < κ, the filtration remains a κ-filtration by part d) of

Lemma 1.1.3. For α ≤ λ let X ∈ [Aα+1]
≤κ be such that Aα(X) = Aα+1.

Let X = {xδ : δ < κ}. Now insert (Aα({xγ : γ < β}))β<κ between Aα and

Aα+1. Similarly, insert a continuous tight filtration of A0 below A0. The

new filtration is a κ-filtration by part c) of Lemma 1.1.3 and it is tight by

construction.

(iii)⇒(iv) follows from Lemma 2.2.2.

(iv)⇒(v) is trivial.

(iii)⇒(vi), (iv)⇒(vii), and (v)⇒(viii) can be seen using the same argu-

ment: Let the C consist of the elements of the < κ-skeleton (κ-skeleton) of

size < κ (of size ≤ κ). Then additivity of the < κ-skeleton (κ-skeleton) yields

the desired property of C.

(vi)⇒(vii) follows from Lemma 2.2.2 applied to the family F of all sub-

algebras of A generated by a union of elements of C.
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(vii)⇒(i) and (viii)⇒(i) are easily seen using the following argument: Let

A = {aα : α <|A|}. For every α <|A| choose Bα ∈ C such that aα ∈ Bα. Let

Aα := 〈
⋃

β<α Bβ〉 for every α <|A|. (Aα)α<|A| works for (i).

(ii)⇒(iii) is the only part that requires some work. Let (xα)α<δ ∈ δA

be such that (〈{xβ : β < α}〉)α<δ is a tight κ-filtration of A. For every

S ⊆ δ let AS := 〈{xβ : β ∈ S}〉. With this notation the filtration is simply

(Aα)α<δ. Choose f : δ −→ [δ]<κ such that for every α < δ the ideals Aα � xα

and Aα � −xα are generated by (Aα � xα) ∩ Af(α) and (Aα � −xα) ∩ Af(α)

respectively and such that f(α) ⊆ α. Let S := {AT : T ⊆ δ ∧
⋃

f [T ] ⊆ T}.
S is an additive < κ-skeleton:

Clearly, every subset of A of size at least κ is included in a member of

S of the same size. Moreover, any subset of A of size < κ is included in

an element of S of size < κ. Suppose T ⊆ S. Let U ⊆ P(δ) be such that

T = {AT : T ∈ U}. Then 〈
⋃
T 〉 = ASU ∈ S since

⋃
U is closed under f . In

particular, S is closed under unions of subchains.

It remains to show that S is commutative.

Suppose S, T ⊂ κ are closed under f . It is sufficient to show that AS∩α

and AT∩α commute for every α < δ. I will do so by induction on α. The limit

stages of the induction are trivial. Suppose α = β+1. W.l.o.g. I may assume

β ∈ S. Let u ∈ AS∩α and v ∈ AT∩α be such that u · v = 0. W.l.o.g. I may

assume that u is of the form a · xβ for some a ∈ AS∩β. The case u = a − xβ

is completely analogous. Only the following cases are interesting:

I. v = b − xβ for some b ∈ AT∩β and β ∈ T . Then xβ ∈ AS ∩ AT , u ≤ xβ

and v ≤ −xβ .

II. v = b · xβ for some b ∈ AT∩β and β ∈ T . Then a · b · xβ = 0. Hence

a · b ≤ −xβ . Take c ∈ Af(β) such that a · b ≤ c ≤ −xβ . Then

(a− c) · (b− c) = 0, a · xβ ≤ a− c and b · xβ ≤ b− c. Now a− c ∈ AS∩β

and b − c ∈ AT∩β. By hypothesis, there is r ∈ AT∩β ∩ AS∩β such that

a − c ≤ r and b − c ≤ −r. r is as required.

III. v ∈ AT∩β. Then a · v ≤ −xβ . Choose c ∈ Af(β) such that a · v ≤ c ≤
−xβ . Then a · v − c = 0 and u = a · xβ ≤ a − c. Since a − c ∈ AS∩β,

there is r ∈ AS∩β ∩ AT∩β such that a − c ≤ r and v ≤ −r.
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This completes the induction and (ii)⇒(iii) of the theorem follows.

2.2.6. Remark. It follows from the proof of this theorem that A is tightly

κ-filtered iff it has a tight κ-filtration indexed by |A|.

The assumption κ > ℵ0 was only needed for this theorem. From now

on I only assume κ to be regular and infinite. The following corollary is

very useful when one wants to show that some Boolean algebra is not tightly

κ-filtered.

2.2.7. Corollary. Let κ be an infinite regular cardinal. If a Boolean algebra

A is tightly κ-filtered, then there is a function f : A → [A]<κ such that for

any two sets X, Y ⊆ A which are closed under f , 〈X ∪ Y 〉 ≤κ A.

Proof. By Theorem 2.2.5 respectively Theorem 2.2.4, there is a subset C of

[A]<κ such that A =
⋃

C and for each S ⊆ C, 〈
⋃

S〉 ≤κ A. For each a ∈ A

choose f(a) ∈ C such that a ∈ f(a). f works for the corollary.

The characterization of tight κ-filteredness also gives

2.2.8. Corollary. a) Every Boolean algebra A of size κ is tightly κ-filtered.

b) Every Boolean algebra of size κ+ which has the κ-FN is tightly κ-

filtered.

c) Every tightly κ-filtered Boolean algebra has the κ-FN.

d) If a Boolean algebra A is a retract of a tightly κ-filtered Boolean algebra

B, then A is tightly κ-filtered, too.

Proof. a) follows immediately from (i) in Theorem 2.2.5 respectively from

(ii) in Theorem 2.2.4.

For b) let A be a Boolean algebra of size κ+ which has the κ-FN. By

Lemma 1.4.4, A is κ-filtered. Let S be a κ-skeleton of A consisting of κ-

subalgebras. In S choose a strictly increasing sequence (Aα)α<κ+ such that

A =
⋃

α<κ+ Aα and for all α < κ+, |Aα |= κ. By (i) of Theorem 2.2.5

respectively (ii) of Theorem 2.2.4, A is tightly κ-filtered.

c) follows easily from (v) of Theorem 2.2.5 respectively (v) of Theorem

2.2.4.
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For d) let p : B → A and e : A → B be homomorphisms such that

p◦ e = idA. By Theorem 2.2.5 respectively Theorem 2.2.4, B has an additive

κ-skeleton T consisting of κ-subalgebras. Let T ′ be the set of those elements

of T which are closed under e ◦ p. It is easy to see that T ′ is an additive

κ-skeleton for B as well. Now let

S := {p[C] : C ∈ T ′}.

Again, it is easy to see that S is an additive κ-skeleton for A. I claim that

S consists of κ-subalgebras of A.

Let C ∈ T ′ and a ∈ A. Let Y be a cofinal subset of C � e(a) of size < κ.

Then p[Y ] is a cofinal subset of p[C] � a of size < κ. This proves the claim.

By Theorem 2.2.5 respectively Theorem 2.2.4, A is tightly κ-filtered.

2.3 Stone spaces of tightly κ-filtered Boolean algebras

The implication (i)⇒(viii) and the proof of (viii)⇒(i) of Theorem 2.2.5 show

that for a tightly κ-filtered Boolean algebra there is a lot of freedom in the

choice of a tight κ-filtration of A. This fact allows it to generalize certain

results by Koppelberg ([29]) on Stone spaces of projective Boolean algebras

to Stone spaces of tightly κ-filtered Boolean algebras. Let A be a tightly κ-

filtered Boolean algebra of size λ and X be its Stone space. I am interested

in the subspace of X of points of small character.

2.3.1. Definition. Let Mλ be the subspace of X that consists of the ul-

trafilters of A which have character < λ. For Boolean algebras B ≤ C an

ultrafilter p of B splits in C iff there are distinct ultrafilters q and r of C

both extending p.

Note that p splits in C iff there is c ∈ C such that p ∪ {c} and p ∪ {−c}
both have the finite intersection property.

2.3.2. Theorem. Let A be a tightly κ-filtered Boolean algebra of size λ,

where κ < λ, λ is regular, and |δ|<κ< λ holds for every δ < λ. Let X and

Mλ be as above. Then Mλ is an intersection of subsets of X which are unions
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of less than κ clopen sets and is determined by a subalgebra B of A of size

< λ, i.e. there is B ≤ A such that |B|< λ and p ∩ B does not split in A for

any p ∈ Mλ.

Proof. For the first assertion it is enough to show that for every point p in

the complement of Mλ, there is a set ap ⊆ X \ Mλ such that p ∈ ap and ap

is the intersection of less than κ clopen subsets of X.

Let p ∈ X \ Mλ. Then there is a κ-filtration (A′
α)α<λ pf A such that the

following hold for all α < λ:

a) p ∩ A′
α splits in A′

α+1

b) A′
α+1 is κ-generated, but not < κ-generated over A′

α.

This filtration can be constructed as in the proof of (viii)⇒(i) of Theorem

2.2.5 using the fact χ(p) = λ to get a) together with some extra care to get

b). Now this filtration can easily be refined to a tight κ-filtration (Aα)α<λ

such that p ∩ Aα splits in Aα+1 for every ordinal α < λ of cofinality ≥ κ.

A moment’s reflection shows that for all α < λ the set aα of ultrafilters of

Aα which split in Aα+1 is an intersection of less than κ clopen sets in the Stone

space of Aα. More exactly: Let x ∈ Aα+1 be such that Aα(x) = Aα+1. An

ultrafilter q of Aα splits in Aα+1 iff q∪{x} and q∪{−x} both are centered. Let

Ix and I−x be cofinal subsets of size < κ of Aα � x and Aα � −x respectively.

Now q ∪ {x} and q ∪ {−x} both are centered iff q is disjoint from Ix ∪ I−x.

But this holds iff the point q in the Stone space of Aα is contained in the

intersection of the clopen sets corresponding to complements of elements of

Ix ∪ I−x.

For every α < λ let Iα be a subset of Aα of size < κ which generates the

filter corresponding to aα.

W.l.o.g. I may assume that the underlying set of A is λ. Let

S := {α < λ : α is a limit ordinal of cofinality ≥ κ

and the underlying set of Aα is α}.

Since λ is a regular cardinal larger than κ, S is a stationary subset of λ. Let

f : λ −→ λ be the mapping which assigns to each α < λ the least upper
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bound of Iα. Then f is regressive on S. Hence there is a stationary subset

T of S such that f is constant on T . Let δ be the value of f on T . Since

δ has less than λ subsets of size < κ, there is a stationary subset U of T

such that the mapping F : α 7−→ Iα is constant on U . Let I be the value

of F on U and let ap be the corresponding closed subset of X which is an

intersection of less than κ clopen sets. For every ultrafilter q ∈ ap and every

α ∈ U , q ∩ Aα splits in Aα+1. Therefore each q ∈ ap has character λ. Hence

ap ⊆ X \Mλ. Finally, p ∈ ap by construction. This proves the first assertion

of the theorem.

For the second assertion suppose that Mλ is not determined by a subal-

gebra of A of size less than λ. By a similar argument as above, get a tight

κ-filtration (Aα)α<λ such that for every ordinal α < λ of cofinality ≥ κ there

is an ultrafilter p ∈ Mλ such that p∩Aα splits in Aα+1. As above, there is a

stationary subset U of λ consisting of ordinals of cofinality ≥ κ and a subset

I of A of size < κ such that for every α ∈ U the filter generated by I in Aα

corresponds to the closed subset of the Stone space of Aα of those ultrafilters

which split in Aα+1. Let a be the closed subset of X corresponding to I.

a is an intersection of less than κ clopen sets. By construction, a ∩ Mλ is

non-empty. But all points in Mλ have character less than λ and all points in

a have character λ because λ is regular. Thus Mλ and a are disjoint. This

contradicts the choice of the filtration.

2.4 Boolean algebras that are rc-filtered, but not tightly

κ-filtered

In this section the arguments will be mainly topological. Let me collect some

topological characterizations of the Stonean duals of κ-embeddings.

2.4.1. Lemma. Let A be a subalgebra of the Boolean algebra B. Let X and

Y be the Stone spaces of A and B respectively. Let φ : Y → X be the Stonean

dual of the inclusion of A into B. The following statements are equivalent:

(i) A ≤κ B
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(ii) For each clopen set b ⊆ Y , χ(φ[b], X) < κ.

(iii) For each closed set b ⊆ Y such that χ(b, Y ) < κ, χ(φ[b], X) < κ.

Proof. Stone duality.

Recall that for a closed subset a of topological space X the pseudo-

character of a is the minimal size of an open family F in X such that⋂
F = a. For a Boolean space it sufficient to consider clopen families F .

The pseudo-character of a equals the character of a if X is compact.

The concept of a symmetric power of a topological space was used by

Ščepin in order to get an openly generated space that is not Dugundji or, in

terms of Boolean algebras, to get a Boolean algebra that is rc-filtered but

not projective. I will give a slight generalizion of his result.

2.4.2. Definition. Let X be a topological space. Let ∼X be the equiva-

lence relation on X2 that identifies (x, y) and (y, x) for all x, y ∈ X. Let

SP2(X) := X2/ ∼. If X is the Stone space of the Boolean algebra A, then

SP2(X) is also a Boolean space and the algebra of clopen subsets of SP2(X)

corresponds to the subalgebra SP2(A) of A ⊕A consisting of those elements

which are fixed by the automorphism of A ⊕ A that interchanges the two

copies of A.

2.4.3. Lemma. (Ščepin, see [23]) SP2 is a covariant functor from the cate-

gory of Boolean algebras into itself where the definition of SP2 on homomor-

phisms is the natural one. Let A be a Boolean algebra. Then the embedding

SP2(A) → A⊕A is relatively complete. SP2 is continuous, i.e. if (Aα)α<λ is

an ascending chain of subalgebras of A, then

SP2(
⋃
α<λ

Aα) =
⋃
α<λ

SP2(Aα).

SP2 preserves cardinalities, i.e. if A is infinite, then |A|=|SP2(A)|. SP2(A)

is rc-filtered provided that A is.

It turns out that SP2(Fr(λ)) is not tightly κ-filtered if λ is large enough.

This will follow easily from
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2.4.4. Lemma. Let A, B, and C be infinite Boolean algebras such that the

Stone space of A has character ≥ κ.

Then

〈SP2(A ⊕ B) ∪ SP2(A ⊕ C)〉 6≤κ SP2(A ⊕ B ⊕ C).

Proof. I prove the topological dual. Let X, Y , and Z be the Stone spaces

of A, B, and C respectively. To commence I introduce names for several

mappings. Let π2
XY and π2

XZ denote the projections of (X × Y × Z)2 onto

(X × Y )2 and (X × Z)2 respectively. Let π denote the quotient map from

(X × Y × Z)2 onto SP2(X × Y × Z). It follows from Lemma 2.4.3 that π is

open. Let πXY and πXZ denote the projections of X × Y × Z onto X × Y

and X × Z respectively. Now SP2(πXY ) and SP2(πXZ) are also defined. Let

φ : SP2(X × Y × Z) → SP2(X × Y ) × SP2(X × Z);

p 7→ (SP2(πXY )(p), SP2(πXZ)(p))

and P := Im φ. Note that φ is the Stonean dual of the inclusion from

〈SP2(A ⊕ B) ∪ SP2(A ⊕ C)〉

into SP2(A ⊕ B ⊕ C). The picture looks like this:

(X × Y × Z)2

π2
XY

π

π2
XZ

(X × Y )2 (X × Z)2

SP2(X × Y × Z)
SP2(π2

XY )
φ

SP2(π2
XZ)

SP2(X × Y ) P

⊆

SP2(X × Z)

SP2(X × Y ) × SP2(X × Z)
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Here the mappings that are not labeled are the natural ones.

Now let U1, U2 ⊆ Y and V1, V2 ⊆ Z be non-empty, clopen, and disjoint.

Claim 1: π[X ×U1 × V1 ×X ×U2 × V2] is clopen in SP2(X × Y ×Z) but

(φ ◦ π)[X × U1 × V1 × X × U2 × V2] has character ≥ κ in P .

This claim together with Lemma 2.4.1 proves the lemma. For its proof I

need

Claim 2:

W := (φ−1 ◦ φ ◦ π)[X × U1 × V1 × X × U2 × V2]

= π[X × U1 × V1 ×X × U2 × V2] ∪
⋃
x∈X

π[{x} × U1 × V2 × {x} × U2 × V1].

Proof of Claim 2: Let (a1, b1, c1, a2, b2, c2) be such that π(a1, b1, c1, a2, b2, c2)

is contained in W but not in π[X × U1 × V1 × X × U2 × V2]. Then there is

(a′
1, b

′
1, c

′
1, a

′
2, b

′
2, c

′
2) ∈ X × U1 × V1 × X × U2 × V2 s.t.

(φ ◦ π)(a1, b1, c1, a2, b2, c2) = (φ ◦ π)(a′
1, b

′
1, c

′
1, a

′
2, b

′
2, c

′
2).

I may assume a1 = a′
1 and a2 = a′

2. Now the following holds: {b1, b2} =

{b′1, b′2}, {c1, c2} = {c′1, c′2}, b′1 6= b′2, c′1 6= c′2, and hence c1 6= c2 and b1 6= b2.

Suppose a1 6= a2. In this case

((a1, b1), (a2, b2)) ∼X×Y ((a′
1, b

′
1), (a

′
2, b

′
2))

and

((a1, c1), (a2, c2)) ∼X×Z ((a′
1, c

′
1), (a

′
2, c

′
2)).

Moreover, bi = b′i and ci = c′i for i = 1, 2, and hence

π(a1, b1, c1, a2, b2, c2) ∈ π[X × U1 × V1 × X × U2 × V2],

a contradiction. Thus, a1 = a2. Since {b1, b2} = {b′1, b′2} and {c1, c2} =

{c′1, c′2},
(a1, b1, c1, a2, b2, c2) ∼X×Y ×Z (a′

1, b
′
1, c

′
2, a

′
2, b

′
2, c

′
1).
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Therefore

(a1, b1, c1, a2, b2, c2) ∈
⋃
x∈X

π[{x} × U1 × V2 × {x} × U2 × V1].

Conversely, let a ∈ X, bi ∈ Ui, and ci ∈ Vi for i = 1, 2. Now

(φ ◦ π)(a, b1, c2, a, b2, c1) = (φ ◦ π)(a, b1, c1, a, b2, c2)

∈ (φ ◦ π)[X × U1 × V1 × X × U2 × V2].

This finishes the proof of Claim 2.

Proof of Claim 1: π[X×U1×V1×X×U2×V2] is clopen in SP2(X×Y ×Z)

since

(π−1 ◦ π)[X × U1 × V1 × X × U2 × V2]

= (X × U1 × V1 × X × U2 × V2) ∪ (X × U2 × V2 × X × U1 × V1)

is clopen in (X × Y × Z)2.

For the character part of Claim 1 let ∆2[X] be the diagonal {(x, x) : x ∈
X} of X2. Now

χ((φ ◦ π)[X × U1 × V1 × X × U2 × V2], P )

≥ χ

(⋃
x∈X

π[{x} × U1 × V2 × {x} × U2 × V1], SP2(X × Y × Z)

)

≥ χ

( ⋃
x∈X

({x} × U1 × V2 × {x} × U2 × V1)

∪
⋃
x∈X

({x} × U2 × V1 × {x} × U1 × V2), (X × Y × Z)2

)

≥ χ(∆2[X], X2) ≥ χ(X).

Here the last inequality can be seen as follows. Let µ := χ(∆2[X], X2) and

let {Uα : α < µ} be a local base at ∆2[X]. For each x ∈ X and each

α < µ pick an open set Uα
x ⊆ X containing x such that (Uα

x )2 ⊆ Uα. Now
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(
⋂

α<µ Uα
x )2 =

⋂
α<µ(U

α
x )2 ⊆ ∆2[X]. Hence

⋂
α<µ Uα

x = {x}. Thus x has

pseudo-character ≤ µ. Since X is compact, x has character ≤ µ.

Now I am ready to prove a theorem which yields the promised examples

of rc-filtered Boolean algebras which are not tightly κ-filtered.

2.4.5. Theorem. Let κ and λ be regular. SP2(Frλ) is tightly κ-filtered iff

λ ≤ κ+.

Proof. A := SP2(Frλ) is rc-filtered by Lemma 2.4.3. In particular, A is κ-

filtered for every regular cardinal κ. For λ ≤ κ+, |A|≤ κ+. Hence, by the

characterization of tightly κ-filtered Boolean algebras, A is tightly κ-filtered.

This proves the easy implication of the theorem.

Now let λ > κ+. Suppose A is tightly κ-filtered. Then there is a function

f : A → [A]<κ as in Corollary 2.2.7. For S ⊆ λ let SP(S) := SP2(FrS) and

consider this algebra as a subalgebra of A in the obvious way. Since SP2 is

continuous and cardinal preserving, there are disjoint sets S, T ∈ [λ]κ
+

such

that SP(S) and SP(S ∪ T ) are closed under f . Choose S ′ ⊆ S ∪ T such that

SP(S ′) is closed under f and |S ′ ∩ S |=|S ′ ∩ T |= κ. Let S0 := S ′ ∩ S and

T0 := S ′∩T . Finally, choose S1 ∈ [S]κ disjoint from S0 such that SP(S0∪S1)

is closed under f . Since SP(S0 ∪S1) and SP(S0 ∪T0) are closed under f and

by the choice of f ,

〈SP(S0 ∪ S1) ∪ SP(S0 ∪ T0)〉 ≤κ A.

This contradicts Lemma 2.4.4.

Clearly, this theorem implies

2.4.6. Corollary. For each regular cardinal κ there is a Boolean algebra A

such that A is rc-filtered but not tightly κ-filtered.

2.5 Complete Boolean algebras and tight σ-filtrations

Fuchino and Soukup ([19]) have shown that there may be arbitrarily large

complete Boolean algebras which are σ-filtered. More exactly, if CH holds
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and 0] does not exist, then all complete c.c.c. Boolean algebras are σ-filtered.

In this section, I look at the stronger property of having a tight σ-filtration.

It turns out that no infinite complete Boolean algebra of size larger than

(2ℵ0)+ is tightly σ-filtered. It is sufficient to prove that the completion of the

free Boolean algebra over (2ℵ0)++ generators has no tight σ-filtration, since

the Balcar-Franěk Theorem implies that this algebra is a retract of every

complete Boolean algebra of size larger than (2ℵ0)+. A similar argument will

show that adding ℵ3 Cohen reals to a model of CH yields a model where

P(ω) is not tightly σ-filtered but still has the WFN.

2.5.1. Definition. For a set X let the Cohen algebra C (X) over X be the

completion of the free Boolean algebra Fr(X) over X. For X ⊆ Y , C (X) will

be regarded as a complete subalgebra of C (Y ) in the obvious way.

A technical lemma

Both results mentioned above depend heavily on the next lemma or rather

on its more convenient second version, but neither one uses the full strength

of the lemma. However, this seems to be approximately the weakest lemma

that works for both proofs. It roughly says that the left-hand-side of the

inequality (∗) only badly approximates the right-hand-side.

2.5.2. Lemma. Let A, B, and C be Boolean algebras, n ∈ ω, and (ai)i≤n ∈
An+1 and (bi)i≤n ∈ Bn+1 antichains with ai, bi 6= 0 for all i ∈ n+1. For each

k < n and each i < n + 1 let uk
i , v

k
i ∈ C be such that

(∗)
∑
k<n

( ∑
i,j<n+1

aiu
k
i v

k
j bj

)
≤
∑

i<n+1

aibi

holds in A ⊕ B ⊕ C. Then for each c ∈ C+ there are d ∈ (C � c)+ and

i < n + 1 such that

aibid ·
∑
k<n

( ∑
i,j<n+1

aiu
k
i v

k
j bj

)
= 0.
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Proof. Since (ai)i<n+1 and (bi)i<n+1 are antichains without zero elements, by

(∗), uk
i v

k
j = 0 whenever i 6= j. Hence

∑
k<n

( ∑
i,j<n+1

aiu
k
i v

k
j bj

)
=
∑
k<n

∑
i<n+1

aiu
k
i v

k
i bi

=
∑

i<n+1

aibi

(∑
k<n

uk
i v

k
i

)
.

Let c ∈ C. Let P ⊆ C be the set of all atoms of the subalgebra of C that

is generated by c together with the elements uk
i v

k
i for k < n and i < n + 1.

Choose d ∈ P such that d ≤ c. Define the 2-valued matrix (dik)i<n+1,k<n

by letting dik := 0 iff duk
i v

k
i = 0 and dik := 1 iff d ≤ uk

i v
k
i . This matrix is

well defined since d was taken from P . For each k ≤ n, (uk
i v

k
i )i<n+1 is an

antichain. Therefore each column of (dik)i<n+1,k<n contains at most one 1.

Hence there is i < n + 1 such that the i’th row contains no 1. i and d work

for the lemma.

The following version of this lemma will be more convenient for the in-

tended application. For a Boolean algebra A let A := ro(A) and consider A

as a subalgebra of A in the usual way.

2.5.3. Lemma. Let A, B, and C be Boolean algebras, n ∈ ω, and (ai)i≤n ∈
An+1 and (bi)i≤n ∈ Bn+1 antichains with ai, bi 6= 0 for all i ∈ n + 1. Suppose

{xk : k < n} ⊆ A ⊕ C and {yk : k < n} ⊆ B ⊕ C are s.t.

∑
k<n

xkyk ≤
∑

i<n+1

aibi

in A ⊕ B ⊕ C. Then for each c ∈ C+ there are d ∈ (C � c)+ and i < n + 1

such that aibid ·
∑

k<n xkyk = 0.

Proof. Let (Sk)k<n and (T k)k<n be disjoint families of sets and for every

n < k, s ∈ Sk, and t ∈ T k let as ∈ A+, vs, wt ∈ C+, and bt ∈ B+ such

that xk =
∑

s∈Sk asvs and yk =
∑

t∈T k btwt. For i < n + 1 and k < n let

Sk
i := {s ∈ Sk : as ≤ ai} and T k

i := {t ∈ T k : bt ≤ bi}. Then (Sk
i )i<n+1 and
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(T k
i )i<n+1 are partitions of Sk and T k respectively. Moreover, if i 6= j, then

for all k < n and for all s ∈ Sk
i and t ∈ T k

j , s · t = 0. Now

∑
k<n

xkyk =
∑
k<n

((∑
s∈Sk

asvs

)(∑
s∈T k

btwt

))

=
∑
k<n

∑
s∈Sk,t∈T k

asvswtbt =
∑
k<n

∑
i<n+1

∑
s∈Sk

i ,t∈T k
i

asvswtbt

≤
∑
k<n

∑
i<n+1

∑
s∈Sk

i ,t∈T k
i

aivswtbi =
∑
k<n

∑
i<n+1


aibi


 ∑

s∈Sk
i ,t∈T k

i

vswt






≤
∑

i<n+1

aibi.

For each k < n and i < n + 1 let vk
i :=

∑
s∈Sk

i
vs and wk

i :=
∑

t∈T k
i

wt. Then∑
s∈Sk

i ,t∈T k
i

vswt = vk
i w

k
i and thus

∑
k<n

xkyk ≤
∑
k<n

∑
i<n+1

aiv
k
i wk

i bi ≤
∑

i<n+1

aibi.

Now for each c ∈ C+ suitable d and i exist by Lemma 2.5.2.

Complete Boolean algebras of size ≥ (2ℵ0)++ have no tight σ-

filtration

The essential observation in order to get the theorem for C ((2ℵ0 )++) is

2.5.4. Lemma. Let X, Y , and Z be disjoint infinite sets. Let C0 := C (X ∪
Z), C1 := C (Y ∪ Z), and C := C (X ∪ Y ∪ Z). Then 〈C0 ∪ C1〉 6≤σ C.

Proof. Let X0 ⊂ X and Y0 ⊂ X be countably infinite. Let g : ω → Fr(X0 ∪
Y0) be a surjection, f : ω × ω → ω a bijection, and f0, f1 : ω → ω such

that f−1 = (f0(·), f1(·)). Let (ci)i∈ω be an antichain in Fr(Z) without zero

elements and put x :=
∑

i∈ω ci(g ◦ f0)(i). I claim that 〈C0 ∪ C1〉 � x is not

countably generated.

Proof of the claim: Let {xn : n ∈ ω} ⊆ 〈C0 ∪ C1〉 � x be closed under

finite joins. Let n ∈ ω. Then there is k ∈ ω such that for each i ∈ ω there
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are pi
j ∈ C0 and qi

j ∈ C1, j < k, s.t.

ci · xn = pi
0q

i
0 + · · · + pi

k−1q
i
k−1.

Now there is m ∈ ω such that (g◦f0)f(m, n) =
∑

l<k+1 albl for two antichains

(al)l<k+1 and (bl)l<k+1 without zero elements in Fr(X0) and Fr(Y0) respec-

tively. Since cf(m,n) · xn ≤
∑

l<k+1 albl, one can use Lemma 2.5.3 to get l < k

and d ∈ Fr(Z)+ such that d ≤ cf(m,n) and albldxf(m,n) = 0. Let yf(m,n) :=

albld and let yf(m′,n) := 0 for m′ 6= m. Finally let y :=
∑

i∈ω yi. Note that

for suitable (a′
i)i∈ω ∈ ωC0 and (b′i)i∈ω ∈ ωC1, y =

(∑
i∈ω a′

ici

)
·
(∑

i∈ω b′ici

)
.

Therefore y ∈ 〈C0 ∪ C1〉 � x. However, y 6≤ xn for any n ∈ ω. This proves

the claim and hence finishes the proof of the lemma.

Now I am ready to prove

2.5.5. Theorem. C ((2ℵ0 )++) is not tightly σ-filtered.

But before embarking the proof of this theorem, let me deduce from it

2.5.6. Corollary. No complete Boolean algebra of size strictly larger than

(2ℵ0)+ has a tight σ-filtration.

Proof. Suppose A is a complete Boolean algebra of size ≥ (2ℵ0)++. By the

well-known Balcar-Franěk Theorem, Fr((2ℵ0)++) embeds into A. By com-

pleteness of A, this embedding extends to C ((2ℵ0 )++). Since the free algebra

is dense in the Cohen algebra, this extension is an embedding as well. By

completeness of C ((2ℵ0 )++), C ((2ℵ0 )++) is a retract of A. Since being tightly

σ-filtered is hereditary with respect to retracts (Corollary 2.2.8) and by the

theorem above, A is not tightly σ-filtered.

Proof of the theorem. Suppose A := C ((2ℵ0 )++) has a tight σ-filtration. Let

f : A → [A]<κ be a function as in Corollary 2.2.7. Since A satisfies c.c.c.,

every subalgebra of A of size 2ℵ0 or (2ℵ0)+ is contained in a complete subal-

gebra of the same size. Hence, using the argument in the proof of Theorem

2.4.5, I can find non-empty disjoint sets S0, S1, T0 ⊆ λ of size 2ℵ0 such that
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C (S0 ∪ S1) and C (S0 ∪ T0) are closed under f . By the preceding lemma,

〈C (S0 ∪ S1) ∪ C (S0 ∪ T0)〉 6≤σ C (S0 ∪ S1 ∪ T0).

A contradiction.

After adding many Cohen reals, P(ω) is not tightly σ-filtered

The proof of this theorem is very similar to the proof of Theorem 2.5.5. The

parallel of Lemma 2.5.4 is

2.5.7. Lemma. Let A and B be complete Boolean algebras both adding Co-

hen reals such that any countable set of ordinals in a generic extension by

A ⊕ B of the ground model M is contained in a countable set in M . Let G

be (A ⊕ B)-generic over M . Let P0 := P(ω)M [G∩A] and P1 := P(ω)M [G∩B].

Then 〈P0 ∪ P1〉 6≤σ P := P(ω)M [G].

Proof. Since A and B both add Cohen reals, there are countable atomless

regular subalgebras A0 and B0 of A and B respectively. Let g : ω → A0 ⊕B0

be onto, f : ω × ω → ω a bijection, and f0, f1 : ω → ω such that f−1 =

(f0(·), f1(·)), like in the proof of Lemma 2.5.4. Let σ := g ◦ f0. Consider

σ as an A ⊕ B-name for a subset of ω. I will show that 〈P0 ∪ P1〉 � σG

is not countably generated. Suppose S ∈ M [G] is a countable subset of

this ideal which is closed under finite joins. For every a ∈ S there is a

name τa : ω → A ⊕ B such that a = τa
G. Let T := {τa : a ∈ S}. Since

S ⊆ 〈P0 ∪ P1〉, I may assume that

(∗) for each τ ∈ T there is kτ ∈ ω such that for all m ∈ ω there are

pm
0 , . . . , pm

kτ−1 ∈ A and qm
0 , . . . , qm

kτ−1 ∈ B such that τ(m) =
∑

i<kτ
pm

i qm
i .

Here the exact reasoning is like this: Each a in S is some Boolean combination

of elements from P0 and P1. Hence, if τ is a name for a, i.e. if τG = a, then

there are a condition r in G and kτ ∈ ω such that

r 
 ∃p0, . . . , pkτ−1 ∈ P0∃q0, . . . , qkτ−1 ∈ P1

(
τ =

∑
i<kτ

piqi

)
.
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By the maximal principle, there are names {(m, pm
i ) : m ∈ ω} and {(m, qm

i ) :

m ∈ ω} for the pi and qi respectively. From these names I can construct a

name τ for a which works for (∗).
Now for each τ ∈ T choose pτ ∈ G such that pτ 
 τ ⊆ σ. Note that

p 
 τ ⊆ σ iff τ(m) ≤ −p + σ(m) for all m ∈ ω. This is equivalent to

τ(m) · p ≤ σ(m) for all m ∈ ω. Let τ ∈ T . From pτ ∈ G it follows that

a = τa
G = (τa · pτa)G, where τ · p is the function that maps every m ∈ ω

to τ(m) · p. Since {p · q : p ∈ A, q ∈ B} is dense in A ⊕ B, I may assume

pτ = pτ · qτ for some pτ ∈ A and qτ ∈ B for each τ ∈ T . This is handy, since

replacing each τ ∈ T by τ · pτ · qτ preserves property (∗).
Therefore I may assume that (∗) holds and for every τ ∈ T , τ ≤ σ, i.e. for

all m ∈ ω the inequality τ(m) ≤ σ(m) holds. By assumption, T is contained

in a countable set T ′ of names in the ground model. Since only those names

τ ∈ T ′ that do not spoil (∗) and for which τ ≤ σ holds are relevant and since

these properties are definable in the ground model, I may assume that (∗)
holds for T ′ and τ ≤ σ holds for every τ ∈ T ′. Moreover, I may assume that

T ′ is closed under finite joins, in the sense that for all τ, τ ′ ∈ T ′ the name

{(m, τ(m) + τ ′(m)) : m ∈ ω} is also an element of T ′. Let (τn)n∈ω ∈ M be

an enumeration of T ′. Since A0 ⊕B0 is a regular subalgebra of A ⊕ B, I will

be done if I can prove the following

Claim. There is a name ρ : ω → A ⊕ B for an element of 〈P0 ∪ P1〉 such

that for every n ∈ ω and every r ∈ A0 ⊕ B0 there is s ≤ r, s ∈ A0 ⊕B0, such

that s 
 ρ 6≤ τn.

Proof of the claim: Construct ρ as follows: For each n ∈ ω choose kn ∈ ω

and sequences (pm
i,n)i<kn,m∈ω in A and (qm

i,n)i<kn,m∈ω in B as promised in (∗)
for τn. For m, n ∈ ω such that σ(f(m, n)) =

∑
i<kn+1 aibi for some antichains

(ai)i<kn and (bi)i<kn in A+
0 and B+

0 respectively let i < kn + 1 be such that

aibiτn(f(m, n)) = 0. This is possible by Lemma 2.5.3. Note that in this case

the algebra C mentioned in the lemma is trivial. Let ρ(f(m, n)) := aibi. Now

aibi 
 ρ 6⊆ τn. In any other case let ρ(f(m, n)) := 0. Clearly, ρ is a name for

an element of 〈P0 ∪ P1〉.
ρ works for the claim: Let n ∈ ω and r ∈ A0 ⊕ B0. W.l.o.g. I may

assume r = a · b for some a ∈ A0 and b ∈ B0. Let m ∈ ω such that
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σ(f(m, n)) =
∑

i<kn+1 aibi ≤ a·b for some antichains (ai)i≤kn+1 and (bi)i≤kn+1

in A+
0 and B+

0 respectively. Note that the ai and bi are uniquely determined

by σ(f(m, n)), up to permutation of the common index set. This is not

really important here, but it makes the argument somewhat shorter. Now

ρ(f(m, n)) = aibi for some i < kn + 1 and τn(f(m, n)) · aibi = 0. Hence

s := aibi 
 ρ 6⊆ τn and s ≤ r. This finishes the proof of the claim and hence

the proof of the lemma.

With this lemma at hand, I can prove the announced result on Cohen

forcing. In fact, I will prove a slightly more general theorem.

2.5.8. Theorem. Let λ be a cardinal such that λℵ0 = λ in the ground model

M . Let (Aα)α<λ++ be a sequence Boolean algebras in the ground model, each

adding at most λ new reals, such that

A :=
⊕

α<λ++

Aα

satisfies c.c.c. Let G be A-generic over M . Then

M [G] |= P(ω) has no tight σ-filtration.

In particular, adding ℵ3 Cohen reals to a model of CH gives a model in which

P(ω) fails to be tightly σ-filtered, though WFN(P(ω)) still holds.

Proof. For S ⊆ λ++ let AS :=
⊕

α∈S Aα, GS := G ∩ AS, and PS :=

P(ω)M [GS ]. Suppose P(ω) has a tight σ-filtration in M [G]. I may assume

that this is already forced by 1A. In M [G] let f : P(ω) → [P(ω)]ℵ0 be a

function as in Corollary 2.2.7. Let φ ∈ M be an Aλ++-name for such a func-

tion. Using c.c.c., one can construct a function g : ωAλ++ → [λ++]ℵ0 such

that for every name τ : ω → Aλ++ , 
 φ(τ) ⊆ Pg(τ). Call a subset S of λ++

good iff
⋃

g[ωAS] ⊆ S. Let S and T be disjoint subsets of λ++ of size λ+

such that S and S ∪ T are good. This is possible since (λ+)ℵ0 = λ+. Now

let S0, S1 ⊆ S and T0 ⊆ T be disjoint sets of size λ such that S0 ∪ S1 and

S0 ∪T0 are good. Applying the last lemma to the algebras AS1 and AT0 with

M [GS0 ] as the ground model, it follows that 〈PS0∪S1 ∪ PS0∪T0〉 6≤σ PS0∪S1∪T0
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in M [GS0 ][GS1∪T1 ]. By c.c.c., 〈PS0∪S1 ∪PS0∪T0〉 6≤σ Pλ++ holds in M [G]. This

is a contradiction since by the choice of g, the algebras PS0∪S1 and PS0∪T0 are

closed under φG.

The pseudo product of Cohen forcings

While so far the only known way to obtain a model of ¬CH + WFN(P(ω))

is to add Cohen reals to a model of CH, there is some freedom in the choice

of the iteration used for adding the Cohen reals. In [18] Fuchino, Shelah, and

Soukup introduced a new kind of side-by-side product of partial orders.

2.5.9. Definition. Let (Pi)i∈X be a family of partial orders where each Pi

has a largest element 1Pi
. As usual, for p ∈

∏
i∈X Pi let supp(p) := {i ∈ X :

p(i) 6= 1Pi
} be the support of p. Let

∏∗
i∈X Pi := {p ∈

∏
i∈X Pi :|supp(p)|≤ ℵ0}

be ordered such that for all p, q ∈
∏∗

i∈X Pi,

p ≤ q ⇔ ∀i ∈ X(p(i) ≤ q(i))∧ |{i ∈ X : p(i) 6= q(i) 6= 1Pi
}|< ℵ0.

Among other things, Fuchino, Shelah, and Soukup proved the following

about this product:

2.5.10. Lemma. Let (Pi)i∈X be as in the definition above.

a) For every Y ⊆ X,
∏∗

i∈X
∼=
∏∗

i∈Y ×
∏∗

i∈X\Y .

b) Under CH,
∏∗

i∈X Fn(ω, 2) satisfies the ℵ2-c.c. and is proper.

I will show that P(ω) has the WFN after forcing with
∏∗

i∈X Fn(ω, 2) over

a model of CH, provided |X| is smaller than ℵω. I will use the well-known

2.5.11. Lemma. Suppose the partial order P is a union of an increasing

chain (Pα)α<λ of completely embedded suborders. Let G be P -generic over the

ground model M and for each α < λ let Gα := Pα ∩G. If λ has uncountable

cofinality, then for every real x ∈ M [G] there is α < λ such that x ∈ M [Gα].

Proof. Let x be a real in M [G]. I may assume that x is a function from ω

to 2. Let ẋ be a P -name for x. For each α < λ let ẋα be a Pα-name for a
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function from ω to 2 such that

∀n ∈ ω∃p ∈ Pα∃i ∈ 2((p 
P ẋ(n) = i) ⇒ (p 
Pα ẋα(n) = i)).

For each n ∈ ω let αn < λ be such that there is p ∈ Gα deciding ẋ(n). Let

α := supn∈ω αn. Now α < λ since λ has uncountable cofinality. Clearly,

(ẋα)Gα = ẋG. Thus x ∈ M [Gα].

2.5.12. Theorem. Let λ < ℵω be an uncountable cardinal and suppose CH

holds. Let P :=
∏∗

α<λ Fn(ω, 2). Then


P WFN(P(ω)) and 2ℵ0 = λ.

Proof. Let M be the ground model satisfying CH and let G be P -generic

over M . It follows from Lemma 2.5.10 that P is cardinal preserving and that

the continuum is λ in M [G]. Throughout this proof I will use Lemma 2.5.10

without referring to it anymore. For each X ⊆ λ with X ∈ M consider

PX :=
∏∗

α∈X Fn(ω, 2) as a suborder of P in the obvious way and let GX :=

PX ∩ G and PX := (P(ω))M [GX ]. (Pα)α≤λ is continuous at limit ordinals of

uncountable cofinality by Lemma 2.5.11.

Claim. In M [G]: For each α < λ, Pα ≤σ P(ω).

Proof of the claim: I argue in M [G]. Let α < λ. Let x ∈ P(ω). By

ℵ2-c.c. of P , in M there is a subset X of λ of size < ℵ2 such that x ∈ PX .

By Lemma 2.5.11, in M there is a countable subset Y of X \ α such that

x ∈ M [Gα][GY ]. The set D := {p ∈ PY : supp(p) = Y } is dense in PY . Thus

there is p ∈ GY ∩ D. It is easy to see that PY ↓ p is isomorphic to Fn(ω, 2).

Thus there is a Cohen real r over M [Gα] in M [G] such that x ∈ M [Gα][r].

It was shown in [16] that

M [Gα][r] |= (P(ω) ∩ M [Gα]) � x has countable cofinality.

(This also follows from Theorem 3.1.4 in the next chapter.) By properness

of P , Pα � x really has countable cofinality. This finishes the proof of the

claim.

Now it follows by induction on the size of λ that WFN(P(ω)) holds in
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M [G]. The induction uses Lemma 1.4.3 and the fact that WFN(P(ω)) holds

under CH.

Using the same argument as in the the proof of theorem 2.5.8, one can

show that P(ω) is not tightly σ-filtered after forcing with
∏∗

α<ω3
Fn(ω, 2)

over a model of CH.

2.5.13. Theorem. Assume CH and let λ ≥ ℵ3. Let P :=
∏∗

α<λ Fn(ω, 2).

Then


P P(ω) is not tightly σ-filtered.

Proof. Again, in this proof I will use Lemma 2.5.10 without referring to it

explicitly. Let G be P -generic over the ground model M . I argue in M [G].

Suppose that P(ω) is tightly σ-filtered. Let f be a function as in Corollary

2.2.7. For X ⊆ λ with X ∈ M let PX , GX , and PX be defined as in the

proof of Theorem 2.5.12. Let S ⊆ T ⊆ λ with S, T ∈ M be such that

|S|=|T|=|T \ S|= ℵ2 and PS and PT are closed under f . This is possible by

Lemma 2.5.11. In M choose disjoint sets S0, S1 ⊆ S and a set T0 ⊆ T \ S

such that PS0∪S1 and PS0∪T1 are closed under f . By Lemma 2.5.7,

M [GS0∪S1∪T0 ] |= 〈P(ω) ∩ (M [GS0∪S1 ] ∪ M [GS0∪T0 ])〉 6≤σ P(ω).

Since Pλ\(S0∪S1∪T0) is proper and M [G] = M [GS0∪S1∪T0][Gλ\(S0∪S1∪T0)],

〈PS0∪S1 ∪PS0∪T0〉 6≤σ P(ω).

This contradicts the choice of f .


