Chapter 0

Introduction

Freese and Nation ([13]) used a property of partial orders which is now called
Freese-Nation property (FN) in order to characterize projective lattices. Pro-
jective Boolean algebras have this property. Heindorf ([23]) characterized the
Boolean algebras with the FN as the rc-filtered Boolean algebras. These al-
gebras are sometimes called openly generated. In the book by Heindorf and
Shapiro ([23]) a generalization of the FN is considered, the weak Freese-
Nation property (WEFN). Heindorf ([23]) characterized the Boolean algebras
with the WEN as being o-filtered. Fuchino, Koppelberg, and Shelah ([16])
introduced a further generalization of the FN, the x-Freese-Nation property
(k-FN), for any regular cardinal . Their approach is more set-theoretic than
Heindorf’s, but implicitly they proved that for all partial orders the x-FN
is equivalent to what would be called k-filteredness. rc-filteredness is Ng-
filteredness and o-filteredness is N;-filteredness. Roughly speaking, a partial
order is k-filtered iff it has many nicely embedded suborders. How nice these
embeddings are, depends on . The smaller x, the nicer the embeddings. A
partial order (P, <) has the r-Freese-Nation property iff there is a function
f: P — [P]<" such that for all a,b € P with a < b there is ¢ € f(a) N f(b)
with a < ¢ < b. Every partial order of size < k has the k-FN. FN is Xy-FN
and WFN is X;-FN. For a partial order P let WEN(P) denote the state-
ment ‘P has the WFN’. The study of the x-FN, especially for k = Xy, was
continued by Fuchino, Koppelberg, Shelah, and Soukup in [17] and [19].
Koppelberg ([28]) introduced and studied the notion of tight o-filteredness

of a Boolean algebra, which generalizes projectivity. Using this notion, she
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gave uniform proofs of several mostly known results about the existence of
certain homorphisms into countably complete Boolean algebras. Tight o-
filteredness is a strengthening of the WFN, in the same way as projectivity
strengthens the FN. Every Boolean algebra of size < N; which has the FN is
projective. Similarly, every Boolean algebra of size < Ny which has the WFN
is tighly o-filtered.

My research concerning tight o-filtrations was initiated by a list of ques-
tions addressed by Fuchino. The first task was to give a usable charac-
terization of tight o-filteredness. The relation between tight o-filteredness
and o-filteredness is very similar to the relation between projectivity and rc-
filteredness. However, while projective Boolean algebras are precisely the re-
tracts of free Boolean algebras, a similar characterization of tightly o-filtered
Boolean algebras does not seem to be available. But as it turns out, tightly
o-filtered Boolean algebras can be characterized in a similar way as projective
Boolean algebras have been characterized by Séepin, Haydon, and Koppel-
berg. (See [23] or [29].) This characterization of tight o-filteredness can be
used to get some results on the Stone spaces of tightly o-filtered Boolean
algebras. The parallel results for projective Boolean algebras were used by
Koppelberg ([29]) to show that for every uncountable regular cardinal A there
are only 2<% isomorphism types of projective Boolean algebras of size . This
does not hold for tightly o-filtered Boolean algebras. For every infinite cardi-
nal \ there are 2* pairwise non-isomorphic tightly o-filtered Boolean algebras

of size A.

One of the main reasons why the WFN and tight o-filteredness are inter-
esting is that in some models of set theory infinite complete Boolean algebras
can have these properties. This is not the case with projectivity or FN. It
was shown by Fuchino, Koppelberg, and Shelah ([16]) that adding a small
number of Cohen reals to a model of CH results in a model of WEN(P(w)).
Fuchino and Soukup ([19]) later extended this result showing that adding any
number of Cohen reals to a model of CH+-0* yields a model of WEN(B(w)).
PB(w) plays an important role considering questions about the WEN of com-
plete Boolean algebras since it is a retract of every infinite complete Boolean

algebra and the WFEN is hereditary with respect to retracts. In short, if



any infinite Boolean algebra has the WFN, then so does P(w). Using the
characterization mentioned above, it turns out that the same is true for
tight o-filteredness. Fuchino, Koppelberg, and Shelah ([16]) observed that
WEFN(B(w)) implies that the unboundness number b is ®;. It follows that
the question whether there are any infinite complete Boolean algebras with
the WFN cannot be answered in ZFC alone.

One of Fuchino’s questions about tight o-filteredness was whether it is
consistent that P(w) is tightly o-filtered while the continuum is > N3. The
only reason for P(w) being tightly o-filtered known so far is WEN(P(w))
together with 2% < W,. Investigating whether B(w) is tightly o-filtered in
certain models of set theory, I noticed that it is even difficult to get models of
- CH+ WFEN(B(w)), apart from starting with a model of CH and extending
the continuum by adding Cohen reals. This led to a systematic study of
WFN(B(w)) in various models of set theory. Together with Fuchino and
Soukup, I found that if WFN(P(w)) holds, then, as far as the reals are
concerned, the universe behaves very similar to a model of set theory that

was obtained by adding Cohen reals to a model of CH.

While it is quite easy to see that WEN(PB(w)) implies WEN(P(w)/ fin)
and WFN(C(w)), where C(w) is the Cohen algebra, i.e. the completion of
the countably generated free Boolean algebra, it is not so clear whether
WEFEN(B(w)) also implies WFN(R(w)), where R(w) is the measure algebra of
the Cantor space. It does, however. If the universe is not too bad, that is, if 0%
does not exist, then WEN(3(w)) even implies that all measure algebras have
the WEN and the class of complete Boolean algebras with the WFN has nice
closure properties. The argument used here is similar to an argument used
by Fuchino and Soukup ([19]) in order to get their result about WEN(B(w))
in Cohen extensions and to obtain a nice characterization of partial orders
with the WEFN. It was shown in [16] that all complete Boolean algebras A
with WFN(A) satisfy the c.c.c. In [19] it was proved that if 0* does not
exist and CH holds, then WEFN(A) holds for all complete c.c.c. Boolean
algebras A. Moreover, under CH, for all complete c.c.c. Boolean algebras A
of size < R,,, WFN(A) holds. This together with the fact that under —0* the

class of complete Boolean algebras with the WFN has nice closure properties
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contrasts with some recent results of Soukup. He proved that if the existence
of a supercompact cardinal is consistent with ZFC, then it is also consistent
that GCH holds, but there is a complete c.c.c. Boolean algebra without the
WFN. Using a similar argument, he also proved that it is consistent with
ZFC that WEN(B(w)) holds, but there is a complete c.c.c. Boolean algebra
of size Ny not having the WFN.

0.1 Overview

In the first chapter I introduce the basic notions for this thesis such as tight
r-filteredness and k-FN and recall the known results. At some places I give
straightforward generalizations of known results. Tight s-filteredness is a
generalization of Koppelberg’s tight o-filteredness. Tight o-filteredness is
tight N;-filteredness.

The second chapter deals with tightly s-filtered Boolean algebras. x-FN
and tight s-filteredness are equivalent for Boolean algebras of size < x*. Any
tightly s-filtered Boolean algebra has the x-FN.

I give a characterization of tightly s-filtered Boolean algebras which is
similar to the characterization of projective Boolean algebras developed by
to Haydon, Koppelberg, and Scepin. (See [23] or [29].) I show that for every
infinite cardinal x the number of tightly o-filtered Boolean algebras of size
K is precisely 2%, contrasting the result of Koppelberg ([29]) that there are
only 2<" projective Boolean algebras of size x for every regular k > ;.

For every infinite regular cardinal x, I construct (in ZFC) a Boolean
algebra which has the FN but is not tightly x-filtered. This construction is
a generalization of one of S¢epin’s constructions of a Boolean algebra which
is re-filtered but not projective. (See [23].)

I show that adding w3 Cohen reals to a model of CH yields a model of ZFC
where PB(w) is not tightly o-filtered, even though WFN(PB(w)) holds. A very
similar proof shows (in ZFC) that the Cohen algebra over (2%)** generators,
i.e. the completion of the free Boolean algebra over (2%0)™* generators, is
not tightly o-filtered. It follows that no complete Boolean algebra of size
> (2%0)*F is tightly o-filtered.
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The third chapter deals with the WFN, mostly for complete Boolean
algebras. I characterize those proper notions of forcing P for which B(w) of
the ground model M is o-embedded in P(w) in M][G] for every P-generic
G. 1 observe that many forcing notions fail to have this property. (In fact,
all forcing notions I have considered that are generated by a name for a real
and do not collapse cardinals, except for Cohen forcing.) It follows that in
many iterated forcing extensions WEN(P(w)) fails. For example, adding wo
random reals to a model of CH yields a model of = WFN(B(w)). I show
that adding a Hechler real over wy Cohen reals to a model of CH also gives
a model of = WFN(PB(w)). This shows that even adding one real by some
o-centered forcing can destroy WEN(PB(w)).

It turns out that WEN(P(w)) implies that the covering number of the
ideal of meager subsets of “2 is large, by a joint result with Soukup. I prove
that the groupwise density number g is 8; under WEN(B(w)). I show that
under the assumption =0*, WFN(B(w)) implies the WFN of many complete
c.c.c. Boolean algebras, among them all measure algebras. Without —0%, my
argument only works for algebras which are completely generated by less

than N, elements.

0.2 Sources

The first chapter mainly surveys the known results about xk-embeddings, x-
FN, and tight o-filteredness from [23], [28], [29], [19], [16] and [17]. The
second chapter is quite algebraic, although set-theoretic methods are used
in several places. The methods and notions used in this chapter are mainly
taken from the books by Heindorf and Shapiro ([23]) and Eklof and Mekler
([11]) and from Koppelberg’s articles ([28], [29]). The set theory that is
used here can be found in the books by Kunen ([32]) and Jech ([24]) and
the reference for Boolean algebras is the first volume of the Handbook of
Boolean Algebras ([30]). Everything that is needed about general topology is
contained in Engelking’s book ([12]). The third chapter heavily uses forcing.
I basically rely on the books by Kunen ([32]) and Jech ([24]), but I also use

several facts from more modern texts ([1], [21]). For cardinal invariants of
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the continuum, everything necessary is provided by Blass’ article ([4]).
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