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Zusammenfassung

In der vorliegenden Dissertation wird die Regulation des zellulären Stoffwechsels durch Ge-
ne mit mathematischen Modellen beschrieben. Veränderungen in der Expression von Genen,
die für die Produktion von Enzymen verantwortlich sind, bewirken längerfristige Umstellun-
gen im Stoffwechsel. Auf diese Weise wird auf der Transkriptionsebene z.B. die Anpassung
des Stoffwechsels an äußere Bedingungen oder sich ändernde Bedürfnisse der Zelle gesteuert.
Ein Modell der Verteilung von Ressourcen für die Produktion von Enzymen wird in Kap. 3
entwickelt und in ein constraintbasiertes Stoffwechselmodell integriert. Die Flussraten der ein-
zelnen Reaktionen werden dabei von der Menge an verfügbaren Enzymen beschränkt, welche
wiederum von der Verteilung der Ressourcen auf das ganze Stoffwechselnetzwerk abhängt.
In Kap. 4 wird dieses Modell dann verwendet, um der Hypothese nachzugehen, dass Umstel-
lungen des Stoffwechsels der Zelle dazu dienen könnten, verschiedene benötigte Metaboliten
mit höchstmöglicher Effizienz zu produzieren. Zuerst analysieren wir die Effizienz an einem
Spielmodell, bevor dann ein Netzwerk des zentralen Kohlenstoffwechsels untersucht wird. In
diesem Modell betrachten wir die Produktion von einigen Bausteinen der Biomasse. Zusätzlich
wird die permanente Bereitstellung von genügend Energie und Antioxidantien gefordert. Das
Ziel ist dabei, die geforderte Produktion von Metaboliten in möglichst kurzer Zeit zu erfüllen.
Das mathematische Modell ist ein Optimierungsproblem mit gemischt-ganzzahligen Variablen,
linearen und wenigen quadratischen Nebenbedingungen sowie einer quadratischen Zielfunkti-
on. Eine Lösung entspricht einer Abfolge von Flussverteilungen und deren Dauer. Die Berech-
nungen in Kap. 4 zeigen, dass das Umschalten zwischen verschiedenen Flussverteilungen des
Stoffwechsels es ermöglicht, die Biomasse in einer signifikant kürzeren Zeit zu produzieren als
es eine einzelne Flussverteilung erlauben würde. Die Robustheit dieser Ergebnisse bezgl. der
Parameterwahl wurde empirisch bestätigt. Die mathematischen Eigenschaften des Ressourcen-
verteilungsmodells werden in Kap. 3 analysiert. Unser Modell geht von einer groben Steuerung
der Enzymkonzentrationen auf der Transkriptionsebene aus, was durch binäre Genexpression
modelliert wird, die nur festlegt, welche Stoffwechselpfade aktiviert sind und welche nicht.
Weiterhin gibt Kap. 3 eine Charakterisierung von bestimmten besonders effizienten Flussver-
teilungen. Aus dieser endlichen Menge kann immer eine Abfolge zusammengestellt werden
kann, die optimal die gegebenen Anforderungen erfüllt, d.h. eine optimale Lösung unseres Op-
timierungsproblems ist. Für große Netzwerke sind die Optimierungsprobleme, die das Ressour-
cenverteilungsmodell formuliert, numerisch nicht lösbar. Daher werden in Kap. 6 verschiedene
alternative Berechnungsmethoden vorgestellt. In Kap. 5 werden stochastische Störungen der
Nebenbedingungen, die den Flussraum beschränken, untersucht. Es zeigt sich, dass hier ein
unerwarteter Effekt auftritt. Er wird durch die im mathematischen Sinne nicht eindeutige Dar-
stellung des Stoffwechselmodells durch lineare Nebenbedingungen bestimmt.

Zur Modellierung und Untersuchung der Dynamik von genregulatorischen Netzwerken wird
oft der Formalismus der sogenannten logischen Netzwerke verwendet. In Kap. 7 wird ein Al-
gorithmus vorgeschlagen, der eine kurze und gut lesbare Darstellung der benötigten logischen
Funktionen liefert. Eine Erweiterung von logischen Netzwerken zu einem Markov-Prozess wird
in Kap. 8 vorgeschlagen, um stochastische und quantitative Aspekte darzustellen. Exempla-
risch wird gezeigt, wie sich dieser Formalismus direkt mit einer Mastergleichung für bestimm-
te Reaktionen oder regulatorische Interaktionen kombinieren lässt. In einem Ausblick wird in
Kap. 9 das Problem der Feedback-Regulation des genregulatorischen Netzwerkes durch den
Stoffwechsel behandelt.



Abstract

Two cellular subsystems are the metabolic network and the gene regulatory network. In sys-
tems biology they have mostly been modelled in isolation with ordinary differential equations
(ODEs) or with tailored formalisms as e.g. constraint-based methods for metabolism or logical
networks for gene regulation. In reality the two systems are strongly interdependent. For math-
ematical modelling the integration is a challenge and a variety of different approaches has been
proposed.

Long term alterations in metabolism result from changes in gene expression, which deter-
mines the production of enzymes. This transcriptional control can adjust the metabolic network
to changes in the environment or the requirements of the cell. In fact, the cell cycle is connected
to cyclic changes in metabolism, so-called metabolic cycling, but alterations are also observed
in non-proliferating cells in a constant environment. A mathematical model to describe and
explain alterations in metabolism will be proposed here. At first, a resource allocation model
for the enzymes in a metabolic network is developed and integrated into a constraint-based
model of metabolism in Chap. 3. The reaction rates are bounded depending on the availability
of enzymes, which in turn is determined by the overall distribution of the limited resources. In
Chap. 4, this model is used to test the hypothesis that metabolic alterations are a means of the
cell to achieve the required production of metabolic output most efficiently. First a toy model
is analysed and then the method is applied to a core metabolic network of the central carbon
metabolism. The tasks of this metabolic network are the production of biomass precursors as
well as constantly providing a minimum of energy and anti-oxidants.

The mathematical model gives a mixed integer linear optimisation problem with a few
quadratic constraints and a quadratic objective function. Instead of searching for a single flux
distribution, a feasible solution corresponds here to a sequence of several flux distributions
together with the time that is spent in each of them. The consecutive usage of these flux distri-
butions during the associated time spans yields the required output. The objective is the minimi-
sation of the total time needed. The computations demonstrate that switching between several
flux distributions allows producing the output in a significantly shorter time span, compared to
an optimal single flux distribution.

In a toy model we could identify the relationship between the model parameters and the
results concerning the efficiency of static versus sequential flux distributions. Such a com-
prehensive analysis is not possible for the large number of parameters in our core metabolic
network. To make sure that the confirmation of the hypothesis is not restricted to a minor
region in the parameter space of the resource allocation model, we perturbed the parameters
randomly and repeated all computations. This empirical analysis showed that the significant
gain in performance is a robust feature of the model.

From the mathematical point of view the proposed resource allocation model defines for
each gene expression state a flux space from which a flux distribution can be chosen. This flux
space is in general not linear and not convex, which turns out to depend on the space of all
possible gene expression states. In our model the genes regulate the enzyme concentrations in
an on-off manner, only determining the active and inactive parts of metabolism. Furthermore,
certain groups of genes are regulated together as functional units. As a consequence, the en-
zyme concentrations cannot be perfectly adjusted to a given flux distribution in this model and
it is for this reason that switching can increase the efficiency. A simpler model of resource
allocation, which is solely based on molecular crowding, has been proposed before in the lit-



erature. It allows distributing the resources to perfectly match any given flux distribution and
switching is then not necessary to obtain the minimal production time. In contrast to such a re-
source allocation model, our modelling assumptions and computational results suggest a design
principle, where the optimal adjustment to given conditions and requirements is not achieved
by fine-tuning of enzyme concentrations, but by switching between different flux distributions,
which are only roughly determined by transcriptional control and which do not perfectly match
one certain condition or requirement. In terms of geometry, the difference lies in the convexity
of the flux space. If it is convex, minimal production time can always be achieved with a single
flux distribution.

To characterise a set of flux distributions sufficient to constitute an optimal sequence, the
flux space of the network without the resource allocation model is considered in Chap. 3. The
corresponding polytope allows characterising a finite subset of the flux space in terms of decom-
posability, a notion which is closely related to elementary modes. For any output requirements,
an optimal sequence can be constituted from this finite set of flux distributions.

In practice, solving the optimisation problem that was derived from the modelling approach
as well as computing the sufficient finite subset, is not tractable for large networks. Also divide
and conquer strategies are not promising to obtain optimal solutions in general, a counterexam-
ple is given in Chap. 6. Alternative computational methods to obtain optimal or approximative
optimal solutions are then presented. The gene regulatory network behind the metabolic genes
is not fully considered in the resource allocation model of Chap. 3. Only some constraints are
added in the application to the core metabolic network in order to exclude unrealistic patterns
of gene expression. Incorporating more information about the gene regulation into the com-
putational model is in fact improving the tractability, because the search space is reduced. A
sufficiently small search space of gene expression sequences gives the possibility to perform a
more precise and extensive analysis using an alternative computational approach.

In Chap. 5, the perturbations of model parameters, as applied to the core metabolic network
to verify the robustness, are considered in general. From the mathematical point of view, the
linear constraints that bound the flux space are perturbed. The consequences on the geometry
of the flux space and on the objective value of an optimisation problem over this flux space
are analysed and an effect is discovered, which is surprising at first sight. If the bounds on the
reaction rates are perturbed individually, without a bias for increase or decrease, the expected
objective value of a given linear optimisation problem is decreased in expectation. This effect
emerges from the representation of the flux space. In particular redundancy of the constraints
plays a crucial role.

The modelling and the analysis of the dynamics of gene regulatory networks with so-called
logical networks is a common discrete approach. Logical networks are often represented by
logical functions, which have the advantage of being mathematical objects that can be given in
a natural and easily understandable format, namely Boolean expressions. In Chap. 7, a method
is presented to obtain a short and well readable representation of a given logical function. It
is based on the minimisation of Boolean expressions, but is designed for multi-valued logical
functions in particular.

All possible dynamics of a logical network can be represented in the so-called state transition
graph. Simply by assigning rates to all edges, which represent the transitions between different
states, this directed graph becomes a continuous time Markov chain (CTMC) which we call a
stochastic logical network. This modelling approach opens new possibilities for the analysis
of quantitative dynamical properties as shown in Chap. 8. In contrast to this abstract model,



detailed mechanistic and stochastic models of biochemical reaction systems can be formulated
with the chemical master equation, which also defines a CTMC. In fact, these two formalisms
can be combined, so that distinct components of the biological system are modelled in much
detail by the master equation and other parts on a higher abstraction level as a stochastic logical
network. The combined model can focus on certain aspects, capturing related quantitative and
stochastic effects, while keeping the overall complexity to a minimum.

Finally, Chap. 9 discusses the feedback regulation from metabolism to gene regulation. In
an integrated dynamic model of gene regulation and metabolism, this aspect should not be
missing. Since constraint-based models neglect the concentrations of metabolites, it is difficult
to determine the regulatory feedback to the genes. This problem can be circumvented by only
inferring metabolic mediated interactions between genes, in the sense that a switch in gene
expression leads to an alteration in the metabolic network, which in turn gives a new regulatory
input to the gene network. To this end, a constraint-based approach is proposed and compared
to a method from the literature, which is based on metabolic sensitivity analysis. Furthermore,
a strategy to derive concentration changes from changes in flux rates and enzyme activities is
shortly presented.
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Mathematical preliminaries

Basics

The natural numbers are denoted by N and 0 is not considered as an element of N, but N0 ∶=
N ∪ {0}. The integers are denoted by Z and R is the set of real numbers. Intervals in R are
denoted by [a, b] ∶= {x ∈ R ∶ a ≤ x ≤ b} and (a, b) ∶= {x ∈ R ∶ a < x < b}. By Rm×n we
denote the space of matrices with m rows and n columns and real-valued entries. Vectors are
given by lower case letters a ∈ Rn and matrices by upper case letters A ∈ Rm×n. The transpose
of a matrix or a vector is denoted by A⊺ resp. a⊺. For non-negative integers k, upper indices
ak, Ak are usually not an exponent but an index. Exponentiation of a ∈ R or A ∈ Rn×n is
written as (a)k, (A)k, while the multiplicative inverse elements are denoted by a−1, A−1. If I =
{i(1), i(2), . . . , i(k)} ⊂ {1, . . . , n} is a set of indices, then vI is the vector (vi(1), . . . , vi(k))⊺ ∈
Rk and A ⋅ I is the matrix that is obtained from A by deleting all columns of indices that are
not in I . Similarly, for an index set I = {i(1), i(2), . . . , i(k)} ⊂ {1, . . . ,m}, AI ⋅ is defined by
deleting rows of A. In particular A ⋅ j denotes the j-th column and Ai ⋅ the i-th row of A. The
support of a vector x ∈ Rn is the set of indices of those entries that are not zero, it is denoted
by supp(x) ∶= {i ∶ xi ≠ 0}.

Similarly, the support of a function f ∶D → R is the subset of the domain, where f evaluates
not to zero, i.e., supp(f) ∶= {x ∈D ∶ f(x) ≠ 0}. The image of a function f ∶D → Rn is defined
as im(f) ∶= {y ∈ Rn ∶ exists x ∈ D s.t. f(x) = y}. Let D ⊂ R and fn∶D → R, n ∈ N be
an infinite sequence of functions, then fn is said to approximate the function g∶D → R, or
to converge to g, if for every x ∈ D and for every ε > 0 there exists an nx,ε ∈ N, such that
∣fn(x) − g(x)∣ < ε for all n ≥ nx,ε.

The term scaling denotes multiplication of numbers, vectors or real-valued functions with a
strictly positive scalar α ∈ R>0.

Linear algebra

Given vectors x1, . . . , xk ∈ Rn, a linear combination of these vectors is a vector z = ∑k
i=1 λix

i,
with λi ∈ R, i = 1, . . . , k. If z = 0 implies λi = 0, i = 1, . . . , k, then the vectors x1, . . . , xk are
linearly independent. The rank of a matrix is the maximal number of linearly independent
columns. A linear subspace V ⊂ Rn is a subset that is closed under linear combinations, which
means that every linear combination of elements from V is again an element of V . Given a
matrix A ∈ Rm×n, the nullspace or kernel of A is null(A) ∶= {x ∈ Rn ∶ Ax = 0}. The nullspace
is a subspace of Rn.

A mapping f ∶Rn → R is linear if for any λ,µ ∈ R and x, y ∈ Rn we have f(λx + µy) =
λf(x) + µf(y). The standard scalar product in Rn is a mapping ⟨⋅, ⋅⟩∶Rn × Rn → R given
by ⟨x, y⟩ ∶= ∑n

j=1 xjyj . Alternatively it can be expressed by matrix multiplication of the two
vectors, i.e., ⟨x, y⟩ = x⊺y. This is bilinear, which means that for fixed x or y the mapping
⟨x, ⋅⟩∶R→ R resp. ⟨⋅, y⟩∶R→ R is linear.

Convexity and polyhedra

A linear combination z = ∑k
i=1 λix

i of vectors x1, . . . , xk ∈ Rn is called a conic combination if
λi ≥ 0, i = 1, . . . , k, and a convex combination, if additionally ∑k

i=1 λi = 1. Given a finite set of
vectors x1, . . . , xk ∈ Rn, the set of all linear combinations defines a linear subspace denoted as
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lin(x1, . . . , xk) ∶= {z ∈ Rn ∶ z = ∑k
j=1 λjx

j, λj ∈ R}. We say that this subspace is generated by
the vectors x1, . . . , xk. Similarly, we define the conic hull as cone(x1, . . . , xk) ∶= {z ∈ Rn ∶ z =
∑k
j=1 λjx

j, λj ∈ R≥0} and the convex hull as conv(x1, . . . , xk) ∶= {z ∈ Rn ∶ z = ∑k
j=1 λjx

j, λj ∈
R≥0, ∑k

j=1 λj = 1}.
If A ∈ Rm×n and b ∈ Rm, then Ax ≤ b, x ∈ Rn is a system of linear inequalities. The

solution set of a system of linear inequalities is called a polyhedron, P ∶= {x ∈ Rn ∶ Ax ≤ b}. If
b = 0 the system of linear inequalities is called homogeneous and the corresponding polyhedron
P is called a polyhedral cone. More generally, a cone is a subset of Rn that is closed under
conic combinations and a polyhedral cone is a cone that is also a polyhedron. A polytope is a
bounded polyhedron.

Each of the inequalities Ai,⋅ x ≤ bi defines the so-called halfspace Hi ∶= {x ∈ Rn ∶ Ai,⋅ x ≤
bi} and the hyperplane H i ∶= {x ∈ Rn ∶ Ai,⋅x = bi}. The polyhedron P ∶= {x ∈ Rn ∶ Ax ≤ b} can
be expressed as the intersection of the corresponding halfspaces, i.e., P = ⋂mi=1Hi.

Topology

In Rn we denote by ∥ ⋅ ∥ the 1-norm, i.e., ∥x∥ ∶= ∑n
j=1 ∣xj ∣. For v ∈ U ⊂ Rn and ε > 0 the ε-ball in

U around v is the set {x ∈ U ∶ ∥v − x∥ ≤ ε}. The set V ⊂ U is an open subset of U , if for every
x ∈ V there is an ε > 0, such that the ε-ball around x in U is contained in V . A neighbourhood
of x is a subset of U that contains an ε-ball around x. A subset B ⊂ U is a closed subset of U if
U ∖B is open. For example, the interval [a, b] ∶= {x ∈ R ∶ a ≤ x ≤ b} is closed and the interval
(a, b) ∶= {x ∈ R ∶ a < x < b} is open in R. An arbitrary union of open sets is open and finite
intersections of open sets are also open. The empty set is always open and closed by definition.
A point x ∈ U ⊂ Rn is an interior point of U if an ε-ball around x in Rn is contained in U . The
subset R ⊂ U of all points that are not interior points of U is called the boundary of U ⊂ Rn.

Linear programming and other optimisation problems

A linear programming problem (also called linear optimisation problem or just LP or linear
problem) can be stated as follows:

• Given A ∈ Rm×n, b ∈ Rm and c ∈ Rn, find a vector x∗ ∈ P ∶= {x ∈ Rn ∶ Ax ≤ b} maximising
the linear function c⊺x over P .

The linear function c⊺x is called the objective function. Every y that fulfils the constraints
Ay ≤ b is called a feasible solution. If it is also maximal, i.e., c⊺y ≥ c⊺x for all feasible vectors
x, then y is called an optimal solution. An LP can be seen as a special instance from the
general class of optimisation problems, where a search space U ⊂ Rn and an objective function
f ∶Rn → R are defined and the goal is to find an element x∗ ∈ U , such that f(x∗) ≥ f(y) for all
y ∈ U . The space U is usually defined by constraints of the form g(x) ≤ b where g∶Rn → R and
b ∈ R. In the case of an LP, the constraints as well as the objective function are linear, but we
will also consider more general optimisation problems here.

Generalisations If all variables in an LP are constrained to the range of integers, i.e., x ∈ Zn,
the problem is called an integer linear program. If there are variables with integer ranges as
well as variables with continuous ranges, we call it a mixed-integer linear program (MILP).
In case the objective function is quadratic, i.e., f(x) = x⊺Qx + c⊺x, with a positive semidefi-
nite matrix Q ∈ Rn×n and c ∈ Rn and linear constraints, we have a quadratic program (QP).
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With integer variables this becomes an MIQP. If we have furthermore quadratic constraints
x⊺Q′x + a⊺x ≤ b, where Q′ ∈ Rn×n is positive semidefinite, a ∈ Rn and b ∈ R, this is called
a quadratically constrained program (MIQCP). The condition that the matrices in the con-
straints and the objective function are positive semidefinite makes sure that these optimisation
problems belong to the class of so-called convex optimisation problems [Boyd and Vanden-
berghe, 2004, Sec. 4.4, p. 152].

Propositional calculus, Boolean expressions and logical functions

In propositional calculus the logical operators ”and”, ”or”, ”not”, (denoted by ∧, ∨, ¬, respec-
tively, or ⋅ , + , c ) are used to compose expressions from so-called atomic expressions x1, . . . , xn.
If x, y are expressions, then the negations x and y as well as the conjunction x ⋅ y and the dis-
junction x+y are also expressions. The set of all expressions that can be derived this way is de-
noted by E , the elements of E will be called Boolean expression. The atomic expressions will be
called (Boolean) variables. An assignment of the variables is a function A∶ {x1, . . . , xn} → B,
where B ∶= {0,1} denotes the range of the Boolean values 0 for false and 1 for true. The assign-
ment A extends to a function Â∶ E → B by a recursive definition as follows. Let f ∈ E . If f is a
variable, Â(f) = A(f). If f = g ⋅ h, then Â(f) = 1 in case Â(g) = 1 and Â(h) = 1, otherwise
Â(f) = 0. If f = g + h, then Â(f) = 1, in case Â(g) = 1 or Â(h) = 1, otherwise Â(f) = 0.
If f = 1, then the negation f of f is mapped to Â (f) = 0, otherwise, if f = 0 it is mapped to
Â (f) = 1. This formal construction is taken from [Schöning, 1992, p. 14,15].

The space of all assignments of n Boolean variables is Bn and an expression f ∈ E defines a
function f ∶Bn → B by f(A) ∶= Â(f) for an assignment A ∈ Bn. Two expressions f, g are called
equivalent, if they define the same function, i.e., f(A) = g(A) for every assignment A ∈ Bn.

Probability and random processes

Random variables are functions which are defined on a probability space. This is a triple
(Ω,F , P ) [Georgii, 2007, p. 13], where Ω is the sample space, F is a σ-algebra and P ∶F →
[0,1] is the probability measure, characterised by P (Ω) = 1 and σ-additivity. For the definition
of the σ-algebra and σ-additivity see [Georgii, 2007, Sec. 1]. All subsets of Ω that are consid-
ered here are implicitly assumed to be elements of F . A real-valued random variable is a map-
ping X ∶Ω → Rn which is F -measurable, if Rn is equipped with the Borel-σ-algebra [Georgii,
2007, p. 11 and 21]. We assume that for a random variable X ∶Ω → R, the technical conditions
are given [Øksendal, 2007, Sec. 2.1] to define the cumulative distribution function (CDF)
FX ∶R → [0,1] of X as FX(x) = P (X ≤ x) (abbreviating P ({ω ∈ Ω ∶ X(ω) ≤ x})) and the
probability density function (PDF) fX ∶R → R≥0 as the derivative of FX , i.e., fX = F ′

X . The
expectation value of X is defined if ∫R ∣x∣f(x)dx < ∞ and it is E(X) ∶= ∫R xf(x)dx [Georgii,
2007, Korollar 4.13, let the f there be the identity and the ρ the PDF f of X]. Alternatively it
can be given by E(X) = ∫ΩX(ω)dP (ω) [Øksendal, 2007, Sec. 2.1]. The median of X is the
value y ∈ R, where strictly increasing CDF takes the value 0.5, i.e., F (y) = P (X ≤ y) = 0.5. If
we have a finite family of real-valued random variablesXi, i = 1, . . . , n, on the same probability
space (Ω,F , P ), then this family is called independent (w.r.t. P ), if for arbitrary xi ∈ R it
holds that P (X1 ≤ x1, . . . ,Xn ≤ xn) = ∏n

i=1P (Xi ≤ xi) [Georgii, 2007, Korollar 3.21]. Ran-
dom variables can also be discrete valued, i.e., X ∶Ω → N. In this case, the expectation value
can be given as E(X) = ∑x∈N f(x) ⋅ x, where f is the PDF of X .
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Stochastic processes and Markov chains A stochastic process is a family {Xt ∶ t ∈ T} of random
variables Xt∶Ω → U to the state space U ⊂ Rn or U ⊂ Nn and indexed by some set T , which
represents time [Grimmett and Stirzaker, 1992, p. 332]. Assuming that time has a fixed starting
point t = 0, we set T = {0,1,2, . . .}, if discrete time is considered, or T = R≥0, if continuous
time is considered. The idea is that the random variables describe the evolution of a probability
density over time. Markov chains (MCs) are discrete time processes that take values in a
countable set U and which have the so-called Markov property that P (Xt = u ∣ X0 = x0,X1 =
x1, . . . ,Xn−1 = xn−1) = P (Xt = u ∣ Xn−1 = xn−1) for all t = 1,2, . . . and u ∈ U (the notation
P (A ∣ B) is for conditional probability, i.e., the probability of A given B). It states that the
process is memoryless, i.e., its future depends not on its history, but only on its current state.
We will always assume implicitly that MCs are homogeneous, which means that P (Xt+1 = v ∣
Xt = u) = P (X1 = v ∣ X0 = u), for all t = 0,1,2, . . . and all u, v ∈ U . In this case the MC is
completely defined by the transition probabilities pu,v ∶= P (X1 = v ∣X0 = u).

Similarly, continuous time Markov chains (CTMCs) are defined as memoryless stochas-
tic processes in continuous time. The formal construction is however technically more involved
and will be omitted here [Grimmett and Stirzaker, 1992, p. 240f]. Under mild conditions, which
are always assumed to be satisfied, the CTMC is completely defined by the generator matrix
G, analogously to the transition probabilities pu,v for the MC. The off diagonal entries gu,v of the
generator matrix give a rate for the transition from state u to state v. If gu,v = 0, this transition
cannot occur and otherwise, the transition will occur after a waiting time that is exponentially
distributed with parameter gu,v. The CTMC will rest in a given state until one of the outgo-
ing transitions occurs. The waiting time (or exit time) in state u is exponentially distributed
with parameter ∑v∈U∖{u} gu,v [Grimmett and Stirzaker, 1992, p. 243,(13)*]. By definition, the
diagonal entries of the generator matrix are gu,u = −∑v∈U∖{u} gu,v [Grimmett and Stirzaker,
1992, p. 241,(6)*].

Stationary distribution Given a CTMC or MC on a finite state space U , we might think of the
stochastic process as starting in a distinct initial state u ∈ U , which means that P (X0 = u) = 1.
The random dynamics lead to a probability density on the state space at all time points t > 0.
Under certain conditions, the distribution will converge in the long run to a so-called stationary
distribution π ∈ [0,1]∣U ∣, with∑u∈U πu = 1 and π ≥ 0. If a stationary distribution exists, it can be
characterised in the case of MCs by the property π = πP , where P is the matrix of the transition
probabilities, and in the case of CTMCs by πG = 0 [Grimmett and Stirzaker, 1992, p. 207 resp.
p. 244].
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1 Introduction

Overview This thesis will be mainly about metabolic networks and the way they are regulated
on a transcriptional level. The aim is the integration of metabolism and gene regulation in one
model. However, a fully integrated modelling approach which represents the genetic regulation
of metabolism as well as the regulatory feedback from metabolism to the gene regulatory net-
work will not be given. At first, the regulation of the metabolic network by genes is described by
a new modelling approach. The mathematical description and analysis of this model and its im-
plications is done in Chapters 3,4,6 and partly also in 5. The remainder is then concerned with
modelling the dynamics of the gene regulatory networks. The feedback from the metabolic net-
work to gene regulation, which is necessary to give a completely integrated model, is discussed
in an outlook in Chap. 9.

Transcriptional regulation of metabolism Models based on differential equations or the chemi-
cal master equation give a mechanistic description of the metabolic network. As a consequence,
these models require many kinetic parameters that measure different properties of the enzymes.
In contrast, this text deals mainly with constraint-based models, a phenomenologically moti-
vated approach which requires much less biological information. It is based on the steady-state
assumption which states that all metabolites in the metabolic network are consumed and pro-
duced with equal rates. Usually, optimisation is used to find a single flux distribution that fulfils
the steady-state assumption as well as further requirements and that optimises a given objective.
Reaction fluxes would only alter in this model if a change in the objective or in the environment
occurs, so that the current flux is not optimal anymore. Therefore, most constraint-based mod-
els describe either one static metabolic phase or changes in metabolism that are caused by the
environment.

Here we propose a constraint-based method that represents alterations in metabolism as se-
quences of different steady-state flux distributions. The motivation is to investigate the interplay
between alterations in the flux distribution and the efficiency of metabolic output production.
For this purpose, a model of resource allocation in metabolism is introduced, based on the lim-
ited total amount of amino acids available for enzyme synthesis. This total amount is distributed
to produce enzymes for all reactions of the network. The distribution is controlled by the ex-
pression levels of the coding genes. The amount of enzyme for a given reaction determines
the maximal flux rate of that reaction. One distinct pattern of expression levels of all metabolic
genes defines thus a space of possible flux distributions. This is the usual scenario of constraint-
based modelling. One particularity of our resource allocation model is that it leads to non-linear
flux spaces. The other particularity is that we consider sequences of different flux distributions
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Chapter 1. Introduction

from different flux spaces.
As the gene expression pattern changes, the space of possible flux distributions changes ac-

cordingly. This gives a model where a discrete dynamics on the transcriptional level controls
possible dynamics in the metabolic network. The main part of this text deals with this model,
where the underlying gene regulatory network that drives the dynamics is not considered explic-
itly. In particular, the feedback regulation from the metabolic network into the gene regulatory
network is neglected.

The examination of this new model begins with a theoretical analysis to find out how the
mathematical structure determines the behaviour and how it compares to related modelling
approaches. In constraint-based models the mathematical structure is given by the flux space
and the theoretical analysis hence deals with these geometric objects. A central aim in the
field of metabolic pathway analysis is to identify finite subsets of the flux space which give a
representation of the capacity of the metabolic network. Also in our modelling approach such
finite subsets of steady-state flux distributions play an important role.

The proposed resource allocation model describes precisely how the gene expression pat-
terns are translated to a flux space defining the capacity of metabolism. Although the resource
allocation model is stated in a general form where any state of possible gene expression patterns
can be used, we subsequently focus on binary gene expression. This choice is meant to reflect
the role that transcriptional regulation plays in the control of reactions rates. On the transcrip-
tional level, only the activation or deactivation of the different pathways of the metabolic net-
work is decided. Homeostasis of metabolites is then achieved by mechanisms of the metabolic
network itself, as e.g. product inhibition. As a consequence, only few reactions are rate limiting,
while for a large part of reactions more enzymes than needed are available. In the mathematical
model, the metabolic genes are therefore represented by binary variables which only determine
if the associated reaction is activated or not. The limited total amount of available amino acids
is then distributed between all activated reactions.

Regulation of gene expression The resource allocation model describes how a gene expression
pattern is translated into bounds on the flux rates and thus into a flux space of possible steady-
state flux distributions. Other questions are which kind of gene expression patterns and which
sequences of different gene expression patterns are possible. The dynamics of the gene reg-
ulatory network comes into play here. Ideally we would have a complete model of the gene
regulatory network which would allow inferring possible dynamics of the metabolic genes. If
such a complete model is not available, it is also possible to incorporate only some aspects of
gene regulation. This can be done by restricting the space of possible gene expression patterns
or the possible sequences of different gene expression patterns. In the application of our ap-
proach in Chap. 4 for example, we identify functional groups of reactions which we assume
to be regulated as a unit, i.e., all genes in one group must always have the same expression
level. Furthermore, we consider the restriction that only additional genes can be activated in the
transition from one phase to the next. This reflects in particular a situation of rapidly dividing
cells. In general, more information about the gene regulation will lead to more restrictions on
the possible patterns of gene expression.

Modelling gene regulation with logical networks Since we consider binary gene expression and
are interested in restricting the possible dynamics rather than predicting one specific evolution
of the gene regulatory network, the modelling framework of logical networks is well suited.
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Similar to constraint-based models of metabolism, logical networks are highly abstract models
and can be built with a minimum of information. In particular, no kinetic parameters of the
interactions are required. Instead, interactions are described by logical rules. As a consequence
of this limited information incorporated in the model, logical networks are usually not suited
to predict a precise dynamical behaviour, but they are useful to restrict the space of possible
dynamics and to infer specific properties of the dynamics and to exclude certain behaviours.

Some aspects of this logical modelling approach will be discussed later in this text. Chap. 7
deals with the representation of logical functions and Chap. 8 discusses a probabilistic extension
of logical networks. All biochemical reactions or interactions are subject to stochasticity as
e.g. fluctuations in the concentration of species and also fluctuations in the precise value of a
kinetic parameter. In metabolism, stochasticity can be neglected, due to the large amount of
molecules that react on a very fast time-scale. However, in gene regulation, stochasticity can
play an important role in the constitution of a phenotype. In the here proposed stochastic logical
framework, the gene regulatory network jumps between the discrete gene expression patterns
with a certain resting time in each state. This kind of representation of a dynamic behaviour is
similar to our method for alterations in the flux distribution of metabolism, where a sequence
is computed that jumps between phases of specified duration with different steady-state flux
distributions.

Regulatory feedback to the gene regulatory network The information about possible dynamics
in the gene regulatory network that we obtain from a logical network model, is well suited to be
used directly in our constraint-based model of the metabolic network. In the other direction, it
is very difficult to incorporate the regulatory feedback from the metabolism to the genes. This
feedback is caused by metabolites that interact with certain genes and hence control their ex-
pression. The feedback thus depends on the concentration of these metabolites. However, the
simplicity of the constraint-based approach is based on replacing reaction kinetics, including
metabolite concentrations, with the steady-state assumption. The concentration levels of the
metabolites are then completely neglected. Retrieving metabolite concentrations from a flux
distribution can only be done under some strong assumptions and is therefore bound to give
false predictions in some cases. However, such approaches have been applied and in Chap. 9
this strategy is discussed. Also other existing and own approaches to identify the regulatory
feedback from a metabolic network that is regulated by the gene regulatory network are dis-
cussed. To complete the integrated model of metabolism and gene regulation, such a method is
indeed necessary. As the metabolism is altered by transcriptional control, also the feedback can
change. The dynamics of the whole integrated model can thus only be fully understood if the
feedback regulation is incorporated.
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2 Mathematical modelling of metabolic
networks

Some methods and concepts from constraint-based modelling [Price et al., 2004a] will be in-
troduced in this chapter. To explain the motivation and justification of the constraint-based
approach, we first introduce the deterministic kinetic model of a biochemical reaction system,
see e.g. [Heinrich and Schuster, 1996, Sec. 2.2] or [Murray, 1989, Sec. 5].

2.1 Basic elements of constraint-based modelling

In its simplest form, constraint-based models just include the stoichiometry of
the metabolic reactions and their type, reversible or irreversible. This leads to
a simple geometric object, the flux cone, representing states of the metabolic
network, where all metabolites are consumed and produced in equal rates. Gen-
erating elements of this flux space will be discussed as well as redundancy in
the mathematical representation of the bounds on reaction rates and also the
problem of futile cycles.

The basic components of a model of a biochemical reaction system are a set of m species
and a set of n reactions. These sets are indexed by the natural numbers and we will refer to a dis-
tinct metabolite by its index i ∈ {1, . . . ,m} and similarly to a distinct reaction by j ∈ {1, . . . , n}.
Based on the postulates that the reaction kinetics depends only on the metabolite concentrations
and that no other processes beside the reactions change the concentrations [Heinrich and Schus-
ter, 1996, p. 13], the concentrations and reactions constitute a dynamical system. The state of
the system at a given time point t is described by

• the concentrations, c(t) ∈ Rm, where ci(t) is the concentration of species i at time t and

• the current change in concentration, i.e., the derivative of the concentrations, dc(t)dt .

Reaction stoichiometry and kinetics The second part, the change in concentration, is by as-
sumption only caused by the reactions. A reaction is formally described by the stoichiometry
and the reaction kinetics. The stoichiometry gives the proportions in which the concentrations
are changed [Heinrich and Schuster, 1996, p. 13]. A reaction j has stoichiometric coefficients
Si,j < 0 if the concentration of species i is decreased and Si′,j > 0 if the concentration of i′ is
increased. We say that reaction j consumes i and produces i′. In enzymatic reactions the same
amount of enzyme e that enters the reaction is also emitted by the reaction and the stoichiometric
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2.1. Basic elements of constraint-based modelling

coefficient is hence Se,j = 0. For the whole reaction system the stoichiometry is comprehended
in the stoichiometric matrix (Si,j)i=1,...m, j=1,...n = S ∈ Rm×n. Most reactions have integer stoi-
chiometric coefficients Si,j . However, there are also metabolic processes which cannot be given
by integer stoichiometry, as e.g. oxidative phosphorylation. The reactions are represented by
the columns of S, while the rows correspond to the species. The dynamics of the system depend
on how fast each reaction occurs, that is, how fast the changes in the composition of the species,
given by the stoichiometry, are happening. This velocity is called reaction rate (or just ”rate”
or ”flux rate”) and with the assumption that the rate depends only on the current composition
of the species, we can express the reaction kinetics as a function vj ∶Rm → R of the concentra-
tions, such that vj(t) = vj(c(t)) is the rate of reaction j at time t. All flux rates together give
a so-called flux distribution (or flux vector) v(t) ∈ Rn. The meaning of the flux distribution is
that the concentrations of the species changes at time point t by

dc(t)
dt

= Sv(t). (2.1)

The rates v(t) may be given by mass action kinetics, see [Heinrich and Schuster, 1996, Sec.
2.2.1] or [Beard and Qian, 2008, p. 45f]. Equation (2.1) is then a system of ordinary differential
equations (ODEs). Note that most reactions are reversible. The stoichiometric matrix defines
one direction of each reaction as positive. If the reaction occurs in the opposite direction, this is
reflected by a negative flux rate.

Enzymes In metabolic networks almost all reactions are enzymatic, but the enzymes them-
selves are often neglected in the model. In the stoichiometric matrix S they do not appear,
because their concentration is not affected by the reactions and the stoichiometric coefficients
are thus 0. In fact, the concentration of enzymes is controlled from outside of the metabolic net-
work by transcriptional regulation. This offers a starting point to integrate gene regulation into
a metabolic network model [Covert et al., 2001, Oyarzún et al., 2009, Bartl et al., 2013]. While
enzyme kinetics can have a complex non-linear form, the dependence on the enzyme concen-
tration is always linear, see [Beard and Qian, 2008, Sec. 4] and [King and Altman, 1956], so
that integration of this aspect can be done without explicitly modelling the reaction kinetics, as
we will see in the second chapter.

Steady-state assumption The essential step from the kinetic ODE model of metabolism to a
constraint-based model is the so-called steady-state assumption. Metabolic reactions take
place on a very fast time scale, compared to growth, environmental changes and also transcrip-
tional regulation or signalling [Varma and Palsson, 1994a]. The dynamics of the kinetic ODE
model often leads to a steady state. We can then assume that the system subsists in this state,
waiting for changes in the environment or inputs from the regulatory and the signalling net-
work, see [Heinrich and Schuster, 1996, p. 38f] or [Fell et al., 1986]. As a result, the metabolic
network would be in different steady states for longer time periods which are interrupted by
short dynamic events. The transition from one steady state to another is caused by regulatory
processes and environmental changes. The postulation of such a dynamical behaviour justifies
focusing the study of metabolic networks on the phases of steady state and to neglect the short
phases of dynamic transitions. From the mathematical point of view (2.1) becomes then

Sv = 0. (C1)
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The steady state flux distribution v describes the metabolism during a phase with unspecified
duration between events which affect the metabolic network from outside.

Input and output of the network From the thermodynamical point of view, the biochemical
reaction system satisfying (C1) with v ≠ 0 must be in a non-equilibrium state [Beard and Qian,
2008, p. 44]. This means that constantly some molecules are entering the system and some
are leaving the system, see also Sec. 2.1.3. For a metabolic network these molecules are for
example substrates as glucose, other carbon sources and oxygen. The metabolism is taking up
the substrates and turns them into biomass components and by-products which leave the system.
The computational analysis of metabolic networks is often focused on this conversion [Durot
et al., 2009, Reed et al., 2003, Soh and Inoue, 2010, Genrich et al., 2001], in particular in the
field of metabolic engineering [Bailey, 1999, Burgard et al., 2003]. These substrate metabolites
as well as the biomass and by-products are not species of the formally defined reaction system,
in particular they are not represented in the stoichiometric matrix and not subject to the steady-
state assumption. However, they are an important part of the model and we will call them
external metabolites. There are some distinguished reactions in the system, which are taking
up the substrates or produce the biomass (-components) or by-products. These reactions will be
called exchange reactions. All metabolites represented in the stoichiometric matrix are called
internal metabolites. The exchange reactions connect external with internal metabolites.

A metabolic network model might intentionally miss some parts of the metabolism. This
means that some metabolites are in reality connected to reactions which are not represented in
the model. Such metabolites will also be considered as external, because their concentration
is determined by processes which are not part of the model (missing reactions) and hence the
steady-state assumption does not apply to them.

To represent the input and the output formally, we will use a stoichiometric uptake matrix,
denoted by S# and a stoichiometric output matrix, denoted by S∗. These matrices represent
all external metabolites. In particular, S#v tells us the consumption of the external substrates
and S∗v the production of biomass components and by-products. If an exchange reaction is
reversible, the corresponding external metabolite can be substrate as well as product of the
metabolic network and it is represented in S∗ as well as in S#.

2.1.1 Flux cones and flux spaces

Constraint-based modelling of metabolism can be seen as a top-down approach where a set of
possible flux distributions is identified by expressing global properties in the form of constraints
[Smallbone et al., 2007, Price et al., 2004a]. One such property is the steady-state assumption
giving the linear constraints (C1). More constraints are given by the irreversibility of certain
reactions. An irreversible reaction is one that can only proceed in the positive direction given by
the stoichiometric matrix. In other words, the irreversible reactions can only have non-negative
flux rates. Let J Irr ⊂ {1, . . . , n} be the index set of all reactions that are irreversible, then we
have the linear inequalities

vj ≥ 0 for j ∈ J Irr. (C2a)

So far, two different biologically motivated constraints on steady state flux distributions were
introduced, namely (C1) and (C2a). They can be seen as a system of linear inequalities for the
flux vector v ∈ Rn (the equalities Sv = 0 can be represented by the inequalities Sv ≤ 0 and
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−Sv ≤ 0). The solution set of this homogeneous system of linear inequalities is a polyhedral
cone (cf. p .14). It will be called the flux cone, denoted by

C ∶= {v ∈ Rn ∶ Sv = 0, vj ≥ 0, j ∈ J Irr}.

If bounds on the flux rates of the individual reactions are given by lb ∈ Rn
≤0 for the lower bounds

and ub ∈ Rn
≥0 for the upper bounds, we get the constraints

lb ≤ v ≤ ub. (C2b)

The irreversibility constraints can be included here by setting lbj = 0 for j ∈ J Irr, so that (C2a)
follows from (C2b). The constraints (C1) and (C2b) define the polytope

F = {v ∈ Rn ∶ Sv = 0, lb ≤ v ≤ ub}.

This polytope is the set of flux distributions which are biologically feasible according to the
model. In general, any set of constraints on flux distributions defines a subset of Rn. This set
contains all flux distributions which are biologically feasible according to the model and will
be called the flux space. The elements of the flux space will be called flux modes. By F we
will denote flux spaces of different kinds, while C is exclusively used for the flux cone given by
(C1) and (C2a).

Optimising a biological objective Constraint-based modelling is often used in concert with op-
timisation. The constraints define a subset F ⊂ Rn of flux distributions which are feasible
in terms of the biological model. For optimisation we have to derive an objective function
f ∶Rn → R from the biological model. If F is given by the linear constraints (C1), (C2b) and we
have a linear objective function f(v) = c⊺v with c ∈ Rn, this gives the following LP (cf. p. 15)

maximise c⊺v, such that
Sv = 0

lb ≤ v ≤ ub,
with variables v ∈ Rn

(2.2)

which is known as flux balance analysis (FBA) [Varma and Palsson, 1994b,Fell et al., 1986,
Edwards et al., 2002a]. The objective function refers to a biological objective of the modelled
organism. Compared to the constraints, which are theoretically based on physical limitations,
the objective is a rather hypothetical concept. Evolutionary pressure is often seen as a possible
origin of biological objectives [Feist and Palsson, 2010, Fell et al., 1986]. Once a biological
objective is identified, it has to be formulated in terms of flux rates. A typical objective is the
maximisation of the flux rate through a biomass reaction. Usually, this is a reaction which has
been inserted artificially into the network in order to represent the consumption of metabolites
for biomass composition [Reed et al., 2003].

Since LPs can be solved very efficiently, FBA can be applied to genome-scale networks.
Apart from the classical FBA given by (2.2), many more or less similar methods were presented,
which can be seen as extensions or variations of FBA [Covert et al., 2008,Lee et al., 2008,Jensen
et al., 2011, Mahadevan et al., 2002, Covert et al., 2001, Beg et al., 2007, Navid and Almaas,
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2012]. Most of the variations include other biological aspects by additional constraints or a
different objective function. The steady-state assumption (C1) and the irreversibility constraints
(C2a) are the basic constraints which most of the variations of FBA have in common and which
are also used in metabolic pathway analysis [Schilling et al., 2000, Schuster et al., 2000]. In
general, we can say that the flux cone C corresponding to these two constraints constitutes the
basis for constraint-based modelling. In metabolic pathway analysis the cone itself is the object
of analysis, while approaches that use optimisation, as e.g. FBA and its variations, require a
bounded flux space. This bounded flux space can be obtained from the flux cone by intersecting
it with a bounded set B ⊂ Rn. In the case of FBA, B is the box {v ∈ Rn ∶ lb ≤ v ≤ ub} =
∏n
j=1[lbj, ubj]. The solution set of the system of the linear inequalities (C1) and (C2a) is a

polyhedral cone, while the linear inequalities (C1) and (C2b) define a polytope (or a polyhedra
in case some reactions are unbounded, i.e. ubj = ∞ or lbj = −∞). Such a representation of
polyhedra is called outer description and is well suited for optimisation. The results of FBA and
of optimisation problems in general are single elements of the flux space. To get a global view
of the flux space, the approach of metabolic pathway analysis [Schilling et al., 2000, Schuster
et al., 2000] is providing a comprehensive description of the whole flux space by ’generating’
elements. This is also called an ’inner’ (or ’parametric’) description and will be discussed in
the following section. An alternative strategy to grasp the geometry of a bounded flux space is
the sampling of flux modes, see Sec. 9.2.1.

2.1.2 Generating elements and elementary modes of the flux cone

The outer description of a polyhedron as the solution set of a system of linear inequalities, i.e.,
P ∶= {x ∈ Rn ∶ Ax ≤ b} with A ∈ Rm×n, b ∈ Rm allows testing easily if y ∈ P for some
y ∈ Rn. On the other hand, an inner description of the polyhedron can be useful to understand
the structure of the polyhedron and is necessary if we want to generate arbitrary elements y ∈ P .
Every polyhedral cone C has an inner description based on a finite set of elements x1, . . . , xk ∈
C. We say that x1, . . . , xk ∈ C generate the cone C, if C = cone(x1, . . . , xk). Similarly,
every polytope P is generated by a finite number of elements x1, . . . , xk ∈ P in the sense that
P = conv(x1, . . . , xk) [Grötschel et al., 1993, p. 10]. These subsets of generating elements
{x1, . . . , xk} are called generating subsets. In the other direction, given a finite number of
points in Rn, the convex hull is always a polytope, while the conic hull is always a polyhedral
cone [Schrijver, 1998, Corrolary 7.1a,c]. A polyhedral cone C has thus the outer representation
C = {x ∈ Rn ∶ Ax ≤ 0} and furthermore the inner representation by generating elements
x1, . . . , xk namely C = {y ∈ Rn ∶ y = Xλ, λ ∈ Rk

≥0}, where X is the matrix whose columns are
the generating elements, i.e., X is defined by X⋅,i ∶= xi, i = 1, . . . , k. Similarly, if a polytope is
given by P = {x ∈ Rn ∶ Ax ≤ b} the inner description is given by P = {y ∈ Rn ∶ y = Xλ, λ ∈
Rk
≥0 and ∑k

i=1 λi = 1}. If b = 0, the pair (A,X) of the two matrices of the two representations is
called a double description pair [Fukuda and Prodon, 1996]. The size of one description (size
of the matrix A or X) can be exponential in the size of the other.

Elementary modes and decomposability The unbounded flux cone is studied in the field of
metabolic pathway analysis, where the goal is to identify possible pathways through the metabolic
network. An important concept is to define finite sets of flux modes that give a comprehensive
representation of all possible pathways. In a mathematical sense, this is achieved as soon as
these flux modes generate the flux cone. Most prominent are the extreme rays [Price et al.,
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2002] and the elementary flux modes [Schuster and Hilgetag, 1994], [Klamt and Stelling, 2003].
The latter will be introduced below. Also other related concepts were introduced [Wagner and
Urbanczik, 2005, Larhlimi and Bockmayr, 2009].

Definition 2.1. An element v ∈ C ∖ {0} is an elementary mode (EM) if there exists no x ∈
C ∖ {0} with supp(x) ⫋ supp(v).

By definition, an EM is a flux mode v, such that there is no other flux mode using a proper
subset of the reactions which v is using. It turns out that the flux distribution of an EM v is
already defined by its support supp(v), because there is (up to scaling) no other flux mode
except v or −v with the same support [Schuster et al., 2002a], i.e., supp(x) = supp(v) ⇒
x = λv, λ ∈ R ∖ {0}, if v is an EM. The elementary modes (EMs) of a flux cone C are
a generating subset [Klamt and Stelling, 2003]. Algorithms for the enumeration of all EMs
of a flux cone C = {x ∈ Rn ∶ Sx = 0, xj ≥ 0 for j ∈ J Irr} were presented together with
implementations as METATOOL [Pfeiffer et al., 1999] and based on the double description
method [Fukuda and Prodon, 1996] as efmtool [Terzer and Stelling, 2008, efmtool]. These
algorithms compute all EMs simultaneously. This is a drawback, because the number of EMs
(and the number of intermediate flux vectors that have to be stored during computation) is often
so large that it causes the computation to fail and in this case not a single EM is obtained.
An interesting alternative is therefore the approach to compute EMs individually by solving
MILPs [De Figueiredo et al., 2009]. In this method an MILP is formulated which iteratively
searches for a flux mode v minimising the number of used reactions (min∑i bi, where bi = 1 if
vi ≠ 0 and bi = 0 if vi = 0).

Definition 2.2. A non-zero element v ∈ C (or v ∈ F ⊂ C) is called decomposable, if there
exist x, y ∈ C ∖ {0} (resp. x, y ∈ F ∖ {0}) and scalars λ, µ > 0 such that λx + µy = v and
supp(x), supp(y) ⫋ supp(v).

Proposition 2.3. Let C be a flux cone and x ∈ C, then x is non-decomposable if and only if it is
an elementary mode.

This is a basic result from pathway analysis [Schuster et al., 2002a]. It is not true in general
for x ∈ F ⊂ C, instead non-decomposable elements of F can be a proper superset of the elemen-
tary modes, see e.g. [Goldstein and Bockmayr, 2013]. In Sec. 2.2.4 we will give a sufficient
condition on F , such that Prop. 2.3 still holds. Decomposability in F will play an important
role in Chap. 3.

2.1.3 Futile cycles

An aspect which is totally ignored in the models of metabolism based on (C1) and (C2a),(C2b)
is the second law of thermodynamics [Beard et al., 2002] which is telling us that ”a reaction can
only occur in the direction of decreasing Gibbs free energy”. Gibbs free energy depends among
other factors on the metabolite concentrations, which are completely undetermined in FBA.
However, even without knowing the concentrations, certain flux modes can still be excluded.
Since Gibbs free energy must be descending in the direction of the fluxes, a direct consequence
is that the flux distribution cannot contain cycles [Beard and Qian, 2008, p. 44] which are called
futile cycles in this context.

To include these thermodynamic constraints in a constraint-based model, additional inte-
ger variables indicating the signs of the flux rates are needed and the resulting MILP is of
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much higher complexity (cf. Sec. 6.2) than the usual LP of FBA. A method of the COBRA
toolbox [Schellenberger et al., 2011a, Schellenberger et al., 2011b] implements these thermo-
dynamic constraints and is thus excluding futile cycles. Incorporating thermodynamic laws into
FBA gives a more realistic model of metabolism and often improves the obtained results, as
e.g. in [Hoppe et al., 2007] where ranges for realistic enzyme concentrations were retrieved
from literature and used to include thermodynamic constraints in an FBA model. Since the
thermodynamic properties of a reaction determine how the interplay of enzyme concentration
and metabolite concentration establishes the flux rate (cf. Sec. 9.4), constraint-based thermo-
dynamic models can also be used to identify reactions that are subject to allosteric rather than
transcriptional regulation [Kümmel et al., 2006].

Similar to the general FBA, also the related method of flux variability analysis (FVA), which
will be introduced on p. 29, can be further refined if thermodynamic constraints are considered.
Technically, this is done by extending the LP to an MILP. An algorithm that can handle such
thermodynamic constraints efficiently and performs FBA and FVA on genome-scale models is
given in [Müller and Bockmayr, 2013].

2.2 The bounded flux space

After some remarks about the biological interpretation of bounds we go back
to the classical FBA problem (2.2) and discuss the role of redundant constraints
in (C2b). Redundancy has to be understood as a mathematical property of the
flux space and it is important to keep in mind that for the definition of the bio-
logical model, all 2n bounds lb, ub are essential. The representation of the flux
space can be simplified by discarding redundant bounds from the system of lin-
ear inequalities, but then the biological features of the network are not correctly
represented anymore. This will be illustrated in Chap. 5, where the effect of
perturbations of the bounds is examined. Finally, more general bounds than in
FBA are considered in this section in order to be prepared for the discussion in
the following chapter.

2.2.1 Biological meaning of bounds on the flux space

Different biological aspects can be implemented by individual bounds on the flux rates or, more
generally, by a bounded set B ⊂ Rn, such that F = C ∩ B. To apply FBA, it is necessary to
introduce bounds on the flux cone, otherwise the problem can be unbounded and it is impossible
to obtain optimal solutions in this case. The problem of insufficient biological data is sometimes
circumvented by fixing all bounds to an arbitrary value [Reed et al., 2003], i.e., ubj = α, for
α > 0, j = 1, . . . , n and lbj = 0 if j ∈ J Irr, otherwise lbj = −α. In other cases a bounded flux
space can be obtained by bounding the uptake of substrates [Edwards et al., 2002b]. From the
biological point of view, the flux rates of the enzymatic reactions are among other factors limited
by the turnover number of the corresponding enzyme. The turnover number gives the maximal
number of molecules of substrate that one enzyme molecule can convert to the product(s) per
second [Alberts et al., 1998, p. 159]. This maximal turnover is attained if the substrates are
saturated. Multiplied with the amount of enzymes, the turnover number gives the maximal

27



2.2. The bounded flux space

velocity of a reaction. It can therefore be used to set bounds on the individual reaction rates.
Taking into account the limited total amount of enzymes, it is also reasonable to introduce a
global bound on the sum of all flux rates [Beg et al., 2007]. This approach will be further
discussed in Chap. 3.

The units for metabolites and flux rates Metabolic pathway analysis [Schilling et al., 2000,
Schuster et al., 2000] is based on the flux cone, where the absolute magnitude of the flux rates
is left unspecified. On the other side, FBA and similar optimisation-based approaches are intro-
ducing an absolute measure of the flux rates by the bounds and this allows using chemical units
in the model. Metabolite concentrations are usually given in [mol/gDW] (mol per gram dry
weight) and flux rates in [(mol/gDW)/h] (mol per hour and gram dry weight). Biological data
can give a maximal uptake rate of a certain substrate in [(mol/gDW)/h], which can serve as an
upper bound on the reaction rate. The consumption of substrates in the steady state v is given by
S#v and the production by S∗v in [(mol/gDW)/h] (S#, S∗ being the stoichiometric matrices
for consumption resp. production, introduced above). If a duration τ [h] of the phase of this
steady state is given, the amount of substrate taken up in this phase is exactly τS#v [mol/gDW]
and the amount of produced biomass components and by-products is τS∗v, [mol/gDW].

Maintenance constraints Yet another aspect that can be expressed by bounds on the flux rates
are vital functions of the cell which are fulfilled by specific reactions in the metabolic network.
These indispensable functions must be permanently fulfilled and it is hence not reasonable to
assume that they can have zero flux in a steady state. In other words, a certain minimum flux
through such a reaction j is a vital requirement. This can be implemented by adding a positive
lower bound (or a negative upper bound, in case the vital function requires the reaction to have
a permanent flux in negative direction). Such a constraint, which forces the flux through a
reaction to be non-zero, will be called maintenance constraint and will always be considered
separately from the bounds lb, ub. In particular, all lower bounds are non-positive and all upper
bounds non-negative, lb ≤ 0 ≤ ub. In contrast to ub, lb, maintenance constraints are rather
defining a biological objective than limitations of the metabolic network.

2.2.2 Redundant bounds

Consider the bounded flux space F = {v ∈ Rn ∶ Sv = 0, lb ≤ v ≤ ub}. Every reaction is bounded
individually, but due to the steady-state assumption Sv = 0, bounding one reaction is also
limiting the flux rate through other reactions. As a consequence, some constraints lbj ≤ vj ≤ ubj
can be redundant as illustrated in Fig. 2.1. Sometimes, bounding a single uptake reaction already
leads to a bounded flux space, see e.g. Fig. 2.2.

Formal definition of redundant constraints For the mathematical treatment of the model, re-
dundant constraints can be discarded. The concept of redundancy applies to any polyhedron
P = {v ∈ Rn ∶ Av ≤ b}, where A ∈ Rm×n and b ∈ Rm. To define redundancy formally, we will
use the geometric interpretation of P as an intersection of halfspaces, i.e., P = ⋂mi=1Hi, where
Hi ∶= {v ∈ Rn ∶ Ai⋅v ≤ bi}. If one halfspaceHi′ is missing in this intersection, we get the polyhe-
dron P ¬i′ ∶= {v ∈ Rn ∶ Ai⋅v ≤ bi for all i ≠ i′}. This polyhedron is either larger and contains P , or
it coincides with P . In the latter case, the constraint Ai′⋅v ≤ bi′ can be discarded from the repre-
sentation of P . Such constraints are called redundant [Schrijver, 1998, p. 100]. Geometrically,
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Figure 2.1: Projection of a flux cone onto two reactions i, j. a) The unbounded cone tells us that both
reactions are irreversible vi, vj ≥ 0 and the ratio is limited to vi ≤ vj ≤ 3vi. b) Introducing an upper
bound ubj on j implies also a bound on the flux vi. c) Adding an upper bound ubi ≥ ubj does not restrict
the flux space further, ubi is a redundant bound in this case. d) Only if ubi < ubj , the flux space will be
further reduced.

redundancy of the constraintAi′⋅v ≤ bi′ means that the halfspaceHi′ contains P ¬i′ . Now we want
to distinguish two cases of redundancy. Consider the hyperplane H i′ ∶= {v ∈ Rn ∶ Ai′ ⋅v = bi}.
In case H i′ ∩ P ¬i′ = ∅, the constraint Ai′ ⋅v ≤ bi is called strongly redundant and otherwise
weakly redundant. This distinction will play an important role in Chap. 5. In the case of
metabolic networks, where the flux space is bounded by the constraints lb ≤ v ≤ ub, usually
many of the corresponding 2n bounds are redundant. Bounding constraints that are generic
are either non-redundant or strongly redundant (this property is called generic [Griffiths and
Harris, 2011, p. 20], because a randomly chosen bound would have it almost surely, in other
words, it can only be avoided by a deliberate and exact choice of the bound). Weakly redundant
constraints only occur if the values of some bounds are chosen deliberately to be in a certain
relation (e.g. ubi = ubj in Fig. 2.1). This is e.g. the case if the bounds are obtained by flux
variability analysis, see below. As follows directly from the definition, discarding one redun-
dant constraint does not change the flux space. Hence, the representation of a polyhedral flux
space as a set of inequalities is equivalently given by a subset of these inequalities obtained by
discarding one redundant inequality. It should be noted that only one redundant constraint may
be discarded at one time, because weakly redundant constraints can become non-redundant as
soon as another redundant constraint is discarded, see Fig. 2.2 for an example.

v1 v2 v3

v5

v4

v6

Figure 2.2: In this small example all reactions are irreversible, i.e., lb = 0. There are three pairs of
fully coupled (Def. 2.5) reactions: {v1, v2}, {v3, v4} and {v5, v6}. From each of these pairs at least
one reaction has a redundant upper bound, so that altogether at least three upper bounds are redundant.
In case ub1 = ub2 = ub3 = ub4 = ub5 = ub6, we have the situation that all upper bounds are weakly
redundant, but of course we cannot discard all of them. It would be admissible to discard the bounds on
reactions 1,2 for example. If additionally ub3 is discarded, the bound ub4 becomes non-redundant. At
maximum we can delete all bounds except ub1 or ub2, because for i = 1 or i = 2 the constraint vi ≤ ubi
suffices to bound the whole flux space with the bounds ub1 = ub2 = ub3 = ub4 = ub5 = ub6.
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Flux variability analysis Different possibilities to compute all redundant constraints of an LP
are reviewed in [Paulraj and Sumathi, 2010]. One of the simplest methods is flux variability
analysis (FVA), originally introduced to explore the space of optimal solutions in FBA [Ma-
hadevan and Schilling, 2003]. It amounts to testing one after the other for each reaction i′ the
two bounding constraints vi′ ≤ ubi′ and vi′ ≥ lbi′ for redundancy. Formally, the procedure can
be described as follows:

• Solve the optimisation problems to find v+i′ ∶= max vi′ and v−i′ = min vi′ subject to Sv = 0
and lbi ≤ vi ≤ ubi for all i ≠ i′.

• Compare the objective value v+i′ with ubi′ and v−i′ with lbi′ . If v+i′ ≤ ubi′ or v−i′ ≥ lbi′ , the
respective constraint is redundant. If v+i′ = ubi′ resp. v−i′ = lbi′ the constraint is weakly
redundant, otherwise strongly redundant.

If we discard one redundant constraint in each step and proceed with the reduced set of con-
straints, we end up with a subset of constraints which are all non-redundant and this subset
represents the same polytope as the complete set of inequalities. Since only one constraint is
deleted at one time and the next constraint is tested without all previously deleted constraints,
we are sure that the represented polytope stays the same. This would not be the case if first all
constraints are checked and afterwards all redundant constraints are discarded, see for example
Fig. 2.2. If for some reaction i′ the bound ubi′ turns out to be redundant, i.e. v+i′ ≤ ubi′ , then
we know that the flux rate vi′ is in fact bounded by v+i′ , which is a weakly redundant constraint.
This gives new bounds, which will be called stoichiometric bounds and denoted as

subi ∶= min(v+i , ubi), slbi ∶= max(v−i , lbi).
Independent of this construction by FVA, we give the following characterisation.

Definition 2.4. Bounds on flux rates are called stoichiometric and denoted as slb, sub if for
each reaction j there exist v+, v− ∈ F with v+j = subj and v−j = slbj .

The stoichiometric bounds are tighter, sub ≤ ub and slb ≥ lb, but the flux space does not
change if we substitute lb, ub with slb, sub, respectively. From a computational point of view
the representation of the flux space by slb, sub contains the information of the flux variability,
i.e., subj , slbj give exactly the maximal resp. minimal flux rate that reaction j can have in this
network. A stoichiometric bound is either non-redundant or weakly redundant. Stoichiomet-
ric bounds represent mathematical properties of the constraint-based model and can be useful
for computational purposes, but they do not represent flux rate limitations based on biological
parameters as the turnover numbers or other properties of the corresponding enzymes.

Redundancy and flux coupling In the context of redundancy, the concept of flux coupling [Bur-
gard et al., 2004, Larhlimi and Bockmayr, 2006] should be shortly mentioned. Flux coupling
and redundancy are two different concepts, but are also connected to each other. While flux cou-
pling is a relation between two reactions and refers to the unbounded flux cone, redundancy is
a global property of the FBA flux space and depends on the bounds as well as the stoichiometry
of the whole network.

Definition 2.5. Let C be a flux cone. Two reactions i and j are fully coupled, if vi = λvj for
fixed λ ≠ 0 and all flux modes v ∈ C, partially coupled if vi ≠ 0⇔ vj ≠ 0 for all v ∈ C, and i is
directionally coupled to j if vi ≠ 0 ⇒ vj ≠ 0 for all v ∈ C. If none of these relations hold (in
any of the two directions) then i, j are called uncoupled.
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A coupling relation that is valid in the flux cone C holds evidently also in any subset of C, in
particular in a bounded flux space F = C∩B. In the FBA case, where B = {v ∈ Rn ∶ lb ≤ v ≤ ub},
coupling relations can imply some obvious redundancies: If the reactions i1, . . . , ik are fully
coupled, an arbitrary subset of k−1 of the bounds lbi1 , . . . , lbik can be discarded as well as k−1
of the bounds lbi1 , . . . , lbik without changing the flux space. In the other direction, we can have
redundancies in a network without any flux coupling. The reason is that the flux coupling only
considers pairwise relations, while redundancies can emerge from interdependencies between
more than two reactions.

2.2.3 Bounding the whole network by constraints on substrate uptake

The bounds are strongly determining the flux space and hence also the outcome of optimisation
over this flux space. However, setting the precise values lb, ub for the bounds requires detailed
biological knowledge and quantitative data. While the stoichiometry and irreversibility is often
available for large, even genome-scale networks, it is rarely possible to acquire enough reliable
data to equip the model with bounds as well. Therefore, it can be an interesting alternative
to focus on exchange reactions that take up substrates. This is only a small subset of reactions
and data about substrate uptake is often available. In many cases bounds on the uptake reactions
already suffice to bound the whole network [Edwards et al., 2002b]. Since a thermodynamically
feasible steady state flux distribution is only possible if the system has input and output [Beard
and Qian, 2008, p. 44], the bound on the uptake is bounding every thermodynamically feasible
flux distribution. If only the uptake reactions are bounded, this means that the availability of
substrates is the only limiting factor in the metabolic network model, i.e., no reaction except
for the uptake is ever rate limiting. In the case that only one uptake reaction u is given as well
as in the case that only the sum of the uptake by different reactions u ∈ U is bounded, the
mathematical structure of such a model is very simple. The resulting flux space is then the cone
C = {v ∈ Rn ∶ Sv = 0, vj ≥ 0 for all j ∈ J Irr} intersected with just one halfspace Hu, defining
the bound on the single uptake flux, i.e., Hu ∶= {v ∈ Rn ∶ vu ≤ ubu} or the bound on the sum of
the uptake fluxes HU ∶= {v ∈ Rn ∶ ∑u∈U vu ≤ ubU}, respectively.

2.2.4 Non-linear and non-convex bounds on the flux space

The biological limitations on flux distributions are in reality more complex and cannot be ex-
pressed by independent bounds lbj ≤ vj ≤ ubj on the individual reactions j = 1, . . . , n alone.
Formally, this means that we have to consider different bounds on the flux space and we will
therefore introduce the general notion of a bounding set B ⊂ Rn and define the flux space as

F = C ∩ B.

The bounding set B can be a polytope (for example if the sum of reaction rates is bounded),
but also non-linear and non-convex. In the case of FBA it is B = ∏n

j=1[lbj, ubj]. In general,
some conditions should always be satisfied by B in order to represent the intended biological
meaning. Since the bounds B are supposed to represent limitations on the flux rates, we do not
expect them to enforce flux. Formally, if v ∈ F = C ∩ B then for any λ ∈ [0,1] we should also
have λv ∈ F . In particular this means that maintenance constraints (p. 28) are not expressed
as part of the bounding set B. To fulfil this condition, the bounding set B is required to be
star shaped with center 0. Star shaped sets are a generalisation of convex sets, the following
definition is taken from [Königsberger, 1997, p. 193].
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2.2. The bounded flux space

Definition 2.6. A region B ⊂ Rn is called star shaped with center z ∈ B, if for every x ∈ B and
λ ∈ [0,1] the point λz + (1 − λ)x is element of B.

Furthermore, if we interpret the bounding set as a quantitative specification of the flux cone
that preserves its information about possible pathways, it is desirable that for some fixed λ > 0,
every flux distribution v ∈ C has a contracted counterpart λv ∈ F .

Definition 2.7. Let C ⊂ Rn be a flux cone, then F ⊂ C is a called a conic sprout of C if it can
be expressed as the intersection of C and a set B which is star shaped with center 0 and if there
exists an ε > 0, such that all x ∈ C with ∥x∥ ≤ ε are also element of B.

b)a) c)

+
+

Figure 2.3: An illustrative example of a 2-dimensional unbounded cone indicated by the shaded area and
the boundary of the bounding set B drawn in black. In a) the bounding set is star shaped with zero as
center. b) This bounding set is also star shaped with the center marked by a cross. However, apparently
it is not a star shaped set with zero as center and therefore the intersection with the cone is not a conic
sprout by Def. 2.7. c) The bounding set is the same as in a), but the sketch indicates that contrary to a)
the intersection of this cone with the bounding set is not a conic sprout.

In a conic sprout the information about possible pathways and flux coupling is exclusively
determined by the flux cone, while the bounding set is only quantifying the possible fluxes
through the pathways. This property eases the theoretical treatment of the flux space which
then inherits the generators from the cone. Let {x1, . . . , xk} be a generating subset of C. If F
is a conic sprout of C, then there is an ε > 0, such that ε ⋅ {x1, . . . , xk} ⊂ F . In particular, every
y ∈ F can be written as y = ∑k

i=1 λix
i = ∑k

i=1(ε−1λi)(εxi) with λi ≥ 0, i = 1 . . . , l. We conclude,
that if the elements x1, . . . , xk ∈ C are a generating subset of C, then they can be scaled to a
generating subset of any given conic sprout of C.

Decomposability and EMs The definitions of decomposability and EMs refer to the flux cone
C, but can be equally given for a bounded flux space by replacing C with F in the definitions.
For any flux space F = C ∩B we have the following implications which follow directly from the
inclusion F ⊂ C.

x ∈ F is {an EM of C
non-decomposable in C

Ô⇒ x is also {an EM of F
non-decomposable in F .

Let F be a conic sprout of C and x, y ∈ C ∖ {0} with supp(y) ⫋ supp(x), i.e., x is not an EM of
C. These elements can be scaled down to εx, ε y ∈ F which still fulfil the strict inclusion of the
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supports. Similarly, a decomposition v = λx + µy ∈ C as in Def. 2.2 can also be scaled down to
a decomposition ε v = (ελ)x + (εµ) y with ε v, (ελ)x, (εµ) y ∈ F and preserving the strict
inclusion of the supports. Therefore the above implications become equivalences as soon as F
is a conic sprout, i.e.,

x ∈ C is {an EM of C
non-decomposable in C

⇐⇒ ∃ε > 0 ∶ εx ∈ F is {an EM of F
non-decomposable in F .

From these equivalences it follows directly that Prop. 2.3 holds also for conic sprouts, i.e., the
EMs and the non-decomposable elements of a conic sprout coincide. In the case that we have
at least one maintenance constraint, i.e., vj ≥ mbj > 0, it is easy to see that the equivalence
does not hold. Just assume that y is an EM in C, yj = 0 and there is an x ∈ F , with support
supp(x) = supp(y) ∪ {j}. Then x is not an EM in C, but due to the maintenance constraint it
has minimal support in F and is thus an EM in F .

2.3 The objective function

To perform mathematical optimisation over the flux space, an objective function
has to be defined which represents biological objectives of the cell. Translating
a biological objective into a mathematical objective is not at all straightforward
and different ways have been proposed in the literature. In particular the min-
imisation of time needed to produce certain minimum amounts of biomass is
discussed here, since this objective will be used in the following chapters.

2.3.1 Choice of an objective function and sensitivity of the optimisation

The formulation of an objective function is a difficult task, because first of all it is not evident
what the metabolic objectives of the organism under consideration are and second, once a bio-
logical objective has been designated it has to be translated into precise numeric values that
determine the objective function. The problem of finding an appropriate objective function
appears similarly in constraint-based modelling and in dynamic optimisation, see e.g. [Oyarzún
et al., 2009]. The choice of an objective function is often justified a posteriori by results which
are in good agreement with experimental data. A systematic comparison of different objective
functions for FBA and related optimisation problems is given in [Schuetz et al., 2007]. In linear
programming the optimal solutions can be sensitive to small changes in the numeric values of
the linear objective function, as is illustrated in Fig. 2.4.
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⋯

⋯

u
k

j

Figure 2.4: Example network with two separated pathways that produce output by reactions k and j from
one input that is taken up by reaction u. Assume that ubu is the only non-redundant upper bound. Let
max c⊺v be the objective with ci = 0 except for cj , ck > 0. In the case cj = ck, an optimal solution is
given by using only the top pathway with reaction k. The objective value is then ubu ⋅ ck. An arbitrarily
small change in c can result in ck < cj and in this case the only optimal solution would be the bottom
pathway to j. Such a situation is not generic (cf. p. 29) in the sense that it only occurs, if the ratio of the
entries takes a precise value, here cj/ck = 1. A randomly chosen c ∈ Rn would not satisfy this condition
almost surely. However, bounds that were derived artificially, e.g. with FVA or by setting them all to an
equal number, are likely to result in such a non-generic situation. In general, the optimal solutions only
change if c is perturbed with sufficient amplitude.

2.3.2 Different types of objectives in dynamic and constraint-based modelling

Biological objectives are often stated in terms of metabolites that are demanded to be produced
or consumed. In constraint-based models the production of metabolites is given per time unit
by the flux rates v. Let S∗ be the stoichiometric output matrix (p. 23) and I∗ the index-set of the
output metabolites. By definition, all i ∈ I∗ denote external metabolites which are not subject
to the steady-state assumption. The amounts of produced output per time unit is then given by
S∗v. A biological objective specifying the relative requirements of the output metabolites can
be given by Γ ∈ RI∗ and the optimisation max Γ⊺S∗v.

In other situations the biological objective might be directly formulated in terms of flux rates.
Consider for example the objective to maximise energy production, represented by reaction j′.
In this case the model would be max c⊺v, with cj′ = 1 and cj = 0 for j ≠ j′. Formally, there
is no difference between objectives that refer to metabolites or to flux rates. In both cases, the
objective function can be given by c ∈ Rn, max c⊺v.

The objective of time minimisation Objectives of the kind max c⊺v, as in FBA, are not always
appropriate. Their shortcoming is that the target reactions j with cj ≠ 0 cannot be distinguished.
If we have ci = λcj , then a flux rate vj through reaction j, contributes the same to the objective
value as a flux of vi = λvj through reaction i. Consider a realistic biological objective that
requires the production of minimum amounts of certain metabolites. In this case, the objective
would be to minimise the time τ needed to achieve these requirements. Instead of max Γ⊺S∗v
we would then get the constraint S∗τv ≥ Γ and the objective function min τ . In general,
objectives of time minimisation can be given by the constraints C(τv) ≥ Γ with a matrix C ∈
Rl×n and a demand vector Γ ∈ Rl. It can be assumed that Γ > 0, i.e., every component of Γ
is strictly positive. The non-negativity is not a restriction, since it can always be achieved by
multiplying the corresponding rows of C with −1. If Γi = 0, then Ci,⋅(τv) = 0 implies that either
Ci,⋅v = 0 or τ = 0. The case τ = 0 can be excluded as a feasible solution in this modelling context
and we conclude that the objective with Γi = 0 would result in a constraint that is independent
of the time τ and is therefore not part of the objective function.
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To show the similarity to dynamic optimisation (see e.g. [Klipp et al., 2002, Oyarzún et al.,
2009]), we will formulate the optimisation of this objective first as a dynamic optimisation
problem. The flux distribution is in this case a function of time (e.g. a solution of a system of
ODEs). The objectives discussed above can then be formulated as follows:

max ∫
τ

0
c⊺v(t)dt (O1)

which is the maximisation of the weighted sum of the turnover ∫
τ

0 vj(t)dt, j = 1, . . . , n, over a
given time interval [0, τ]. Alternatively, we can minimise the time needed to achieve a given
requirement with

min τ, s.t. ∫
τ

0
Cv(t)dt ≥ Γ. (O2)

In the case of constraint-based modelling we replace v(t) by the constant steady state flux
distribution v and the constraints are given by v ∈ F . The objective function (O1) is then
independent of the duration τ , we just maximise c⊺v. In (O2) the integral is replaced by the
factor τ and the duration τ is minimised. In fact, (O2) is then a generalisation of the FBA
objective (O1), because for the one dimensional C = c⊺ and Γ = 1, (O2) becomes c⊺v ≥ τ−1 and
as a consequence, minimising τ is equivalent to maximising c⊺v. The production of minimum
amounts of different target metabolites in minimal time cannot be appropriately expressed in
(O1), see Fig. 2.6. Therefore, we will deal with the general form (O2) in the following chapters.
The limitations of FBA that were discussed above can be circumvented by an artificial extension
of the metabolic network, which turns out to be equivalent to the generalisation (O2). One part
of this extension is the inclusion of an artificial biomass reaction, a construction which is often
used in the application of FBA. The extensions of the network and the relation to different
objectives are illustrated in Figs. 2.5 and 2.6.
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a)
iA

iB

⋯

⋯

k

j

Objective (O2)

min τ s.t.
v ∈ F

S∗(τv) ≥ Γ

Objective (O1), FBA:

max ΓAvk + ΓBvj s.t.
v ∈ F

b)
iA

iB
biomass

⋯

⋯

b
k

j

(O1) with biomass
reaction

max vb s.t.
v ∈ F

vk − ΓAvb = 0

vj − ΓBvb = 0

equivalent
vb ↔ τ−1

c)
iA

iB
biomass

⋯

⋯

b
k

j

(O1) with biomass reaction
plus iA, iB outflux

max vb s.t.
v ∈ F

vk − ΓAvb ≥ 0

vj − ΓBvb ≥ 0

Figure 2.5: a) An example network, where only the output of external metabolites iA and iB by the
exchange reactions k resp. j is specified. The biological objective is to produce in minimal time at
least the amount ΓA of metabolite iA and ΓB of iB . This can be expressed in the form (O2) as min τ
s.t. S∗(τv) ≥ Γ ∶= (ΓA,ΓB)⊺ and v ∈ F , where S∗ is the stoichiometric 2 × n matrix of the two
external metabolites iA, iB . Assume that the production of iA, iB corresponds exactly to the flux rate
of reactions k resp. j. This means that S∗1,k = S

∗
2,j = 1 are the only non-zero entries of S∗ and we have

the equivalence S∗(τv) ≥ Γ⇔ τvk ≥ ΓA, τvj ≥ ΓB . The FBA model with the objective Γ would be to
maximise ΓAvk+ΓBvj , but this does not distinguish the two target reactions and will not give the desired
optimal solution, see Fig. 2.6. b) If we extend the network by an artificial biomass reaction, the target
metabolites iA and iB become internal metabolites and the steady-state assumption applies, forcing them
to the ratio vk/vj = ΓA/ΓB . c) By further adding individual output fluxes for iA and iB , flux rates of
k, j are not fixed to the ratio of the corresponding demand ΓA,ΓB anymore. This FBA model is in fact
equivalent to the time minimisation (O2) in the original network a). To see this, substitute vb with τ−1 to
get the constraints (O2) and note that τ−1 is maximal if and only if τ is minimal.
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c

∣
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−ΓA
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p(x)

p(y)

p(z)

Figure 2.6: A hypothetical flux space for the unspecified example in Fig. 2.5 a), projected onto the
reactions k and j. The objective (O2) can be depicted by the blue shaded region {x ∈ R2 ∶ x1 ≥ ΓA, x2 ≥

ΓB}. The optimisation searches for a v ∈ F , such that the projection p(v) comes close to this region,
in the sense that τp(v) ≥ Γ for minimal τ . The unique projection of an optimal solution would be p(x)
in this example. The red hyperplane with the normal vector c represents the objective function of FBA,
where ck = ΓA and cj = ΓB and ci = 0 for i ≠ k, j. In this case p(y) would be the projection of an optimal
solution, although it is not optimal for satisfying τyk ≥ ΓA and τyj ≥ ΓB with minimal τ . The reason
is that in this optimisation the two target reactions are not distinguished and only the total flux rate c⊺v
is measured. The extension by an artificial biomass reaction b and without individual output reactions,
corresponding to Fig. 2.5 b), would fix the flux rates zk, zj to the ratio of the demands ΓA, ΓB . If we
maximise the biomass production zb, the projection of an optimal solution would be p(z).

2.3.3 Conventions for notation and formulation of the optimisation problems

In the example of Fig. 2.5, each row of S∗ had only one non-zero entry, because the external
target metabolites iA, iB were produced by individual exchange reactions, as it is usually the
case. In general, we will always assume here that in the time minimisation (O2) each row of C
contains only one non-zero entry. The constraintC(τv) ≥ Γ can then be written componentwise
Ch,ihτvih ≥ Γh for every row h ofC, such that ih gives index of the unique non-zero entry in row
h. The positive direction of the reactions can be chosen freely (by multiplying the corresponding
column of the stoichiometric matrix with −1). Therefore we can assume that Ch,ih > 0. By
replacing Γh with C−1

h,ih
Γh we can then assume that Ch,ih = 1, for all rows h. The corresponding

reactions ih will be called target reactions t ∈ T , where T is the set of all target reactions. The
constraint of (O2) is thus expressed in the inequalities

vt ≥ Γt for target reactions t ∈ T.

Equivalent formulations of the optimisation problem With this convention the computation of
an optimal steady state flux distribution subject to (O2) gives the following optimisation prob-
lem.

min τ , subject to:
v ∈ F (⇔ Sv = 0 and v ∈ B)
τvt ≥ Γt for t ∈ T
with variables:
τ ∈ R≥0, v ∈ Rn

(OP1)
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In the simplest case we would have v ∈ B ∶⇔ lb ≤ v ≤ ub and the quadratic term τvt, where two
variables are multiplied, can be easily avoided by substituting the variables wj ∶= τvj and solve
the LP

min τ , subject to:
Sw = 0 and τ lb ≤ w ≤ τ ub
wt ≥ Γt for t ∈ T
with variables:
τ ∈ R≥0, w ∈ Rn

(OP1a)

Alternatively, it is also possible to shift the duration variable τ into the demand vector Γ by
using the equivalences τvt ≥ Γt ⇔ vt − τ−1Γt ≥ 0, t ∈ T . Denoting the inverse by δ ∶= τ−1, we
get the LP

max δ, subject to:
Sv = 0 and lb ≤ v ≤ ub
vt − δΓt ≥ 0 for t ∈ T
with variables:
δ ∈ R≥0, v ∈ Rn

(OP1b)

If δ∗ is an optimal solution of (OP1b), then τ∗ ∶= (δ∗)−1 is an optimal solution of (OP1). In case
δ∗ = 0 this means that no v ∈ F was found with vt > 0 for all t ∈ T (since Γt > 0 for all t ∈ T ). As
a consequence the requirement τv ≥ Γ cannot be fulfilled for any τ , i.e., (OP1) is not feasible.
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3 Modelling enzymatic resource
allocation and alterations in metabolism

3.1 Overview

Most reactions in a metabolic network are enzymatic, which means that the maximal flux rates
are among other factors determined by the amount of active enzymes for the specific reactions.
Constraint-based models, as e.g. FBA, often neglect this aspect and assume high abundance of
all enzymes. This is an unrealistic assumption, since the required resources for enzymes are
limited, which holds for the building blocks, the amino acids, as well as for the ribosomes,
which assemble the enzymes. The production of enzymes and therewith the distribution of the
limited resources is controlled by the gene regulatory network. A metabolic network model can
be enriched by taking into account the enzyme concentrations and the control by gene regula-
tion. Some approaches are reviewed in the next section. The remainder of this chapter is then
dedicated to the derivation and theoretical analysis of a specific model of resource allocation in
enzyme production, which will then be used to investigate how alterations in metabolism can
enhance the efficiency of metabolic output production. This modelling approach was developed
in cooperation with Hermann-Georg Holzhütter and Sascha Bulik [Palinkas et al., 2015]. Gene
expression is modelled in an on-off manner by binary variables. All available amino acids are
distributed among the activated reactions which are competing for this resource. This coarse
regulation of metabolism by binary gene expression is intended to reflect the relationship be-
tween gene expression and flux rates as e.g. reported in [Chubukov et al., 2013]. Based on
our model, an optimisation problem is formulated to find a sequence of flux modes, such that
given amounts of required metabolic output are produced in minimal time. Each flux mode
in the sequence comes from the same flux space, which is in general not convex due to the
binary implementation of gene expression. It turns out that with a non-convex flux space a
sequence of different flux modes can perform better than a single flux mode. The flux space
is then investigated w.r.t. those elements that can constitute such an optimal sequence. Under
some conditions, which exclude maintenance constraints, finite subsets of the flux space can be
identified, such that an optimal solution can always be composed from those elements. They
are closely related to and can be obtained by enumeration of non-decomposable elements of a
related flux space.
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3.2 Enzymes in constraint-based models of metabolism

Including the enzymes into a model of metabolism is often done with focus on
the limited amount of amino acids. A consequence is that the sum of the max-
imal flux rates of all reactions is limited, which can easily be included into a
constraint-based model. The production of enzymes controlled by genes is also
a means of the cell to decide on the transcriptional level which pathways are
used and to change the flux distribution. In constraint-based models, the con-
centration of active enzymes for a reaction is implicitly included in the bounds
on the reactions, since the maximal flux rate depends linearly on the enzyme
concentration. Integration of regulatory aspects into the model can hence be im-
plemented with these bounds. Various existing approaches are discussed here
before a new modelling approach is further developed in the next section.

The bounds on the flux rates in constraint-based models are usually given by lb ≤ v ≤ ub. If we
take a look at the kinetics of a metabolic reaction, we see that the flux rate is determined by the
concentrations of all reactants and also by the concentration of the enzyme that catalyses that
specific reaction.

Role of enzyme concentration in reaction kinetics The mathematical description of the kinetics
depends on the number of reactants and differs for reversible and irreversible reactions. Further-
more, the kinetics of the reaction system is different, depending on whether it operates close
to thermodynamic equilibrium or not [Qian and Beard, 2005]. In a well-mixed biochemical

system, a reversible reaction A
kaÐ⇀↽Ð
kb

B, can be described by mass action kinetics [Heinrich and

Schuster, 1996, Sec. 2.2.1]. The change in concentration is then given by dA
dt = ka[A] − kb[B],

where [A], [B] denotes the concentration of A, B, respectively, and ka, kb are constants. An
enzymatic reaction A

kÐ→ B, catalysed by enzyme E, is in fact a sequence of two reactions
A + E ⇀ C ⇀ B + E, where C denotes the enzyme complex. If we write this as A

kÐ→ B, the
rate k is not constant and hence cannot be described by mass action kinetics. But the explicit
reaction scheme A +E ⇀ C ⇀ B +E can be modelled by mass action and this gives a system
of ordinary differential equations (ODEs). According to these ODEs, the concentration of the
enzyme complex will be approximately in a steady state if the enzyme is saturated, i.e., the
substrate concentration [A] is high compared to the enzyme concentration [E]. For this case,
the kinetics of the overall flux v from A via C to B can be described by the Michaelis-Menten
equation

v = kc+[E] [A]
K + [A]

, (3.1)

where kc+ is the turnover number andK a constant parameter [Beard and Qian, 2008, p. 73]. As
the substrate concentration [A] increases, v is approaching the maximum rate vmax = kc+[E]. In
the constraint-based approach the concentrations of metabolites are not specified at all. Instead
there are given upper bounds on the reaction rates. Since almost all reactions in a metabolic net-
work are enzymatic, the vmax values would be a natural choice for the bounds. While (3.1) only
refers to the simplest kind of an irreversible reaction A⇀ B, reactions with several reactants or
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reversible reactions have more complex rate laws, see e.g. [King and Altman, 1956] or [Beard
and Qian, 2008, Sec. 4]. However, these rate laws have in common that a non-linear term
contains the concentrations of all reactants and this term is multiplied with the enzyme concen-
tration [E]. In other words, the flux rate depends linearly on the enzyme concentration. In fact,
the maximal flux rate of an enzymatic reaction is also in general given by vmax = kc+[E]. The
notation kc+ indicates that the turnover number refers to the positive direction of the reaction
as given by the stoichiometric matrix. In case of a reversible reaction, kc− denotes the turnover
number of the opposite direction. In the following, the enzyme concentration for reaction j is
denoted Ej [mol/gDW] (mol per gram dry weight). Under a constant concentration Ej and the
assumption of saturated enzyme, the bounds on reaction j can thus be given by lbj = −kc−jEj
and ubj = kc+jEj . Here we will always assume that kc+j > 0 for all reactions j = 1, . . . , n. This
excludes the case kc+j = kc−j = 0 and assumes that all irreversible reactions are oriented in the
positive direction.

Enzyme concentration in constraint-based models Based on these enzyme concentrations, the
bounding constraint (C2b) from Chap. 2 is then given by

− kc−jEj = lbj ≤ v ≤ ubj = kc+jEj j = 1, . . . , n. (3.2)

A direct consequence is that the limited capacity of the cell to build enzymes translates to a
linear constraint on the flux rates. The amount of resources needed for the synthesis depends
on the individual enzyme. The limited availability of resources can be represented by the linear
constraint ∑n

j=1 qjEj ≤ 1, where the weights qj specify the amount of resources needed for the
production of enzyme j. Let kcj ∶= max(kc+j , kc−j ) > 0, so that (3.2) implies the weaker bounds
∣vj ∣ ≤ kcjEj . The constraint ∑n

j=1 qjEj ≤ 1 for limited resources then implies the following
weaker constraint which is piecewise linear.

n

∑
j=1

qj(kcj)−1∣vj ∣ ≤ 1 (3.3)

This kind of constraint, known as molecular crowding, was shown to improve the standard FBA,
in the sense that the computed flux distributions are in better concordance with experimental re-
sults. For example, in [Beg et al., 2007] the model was able to capture adaptation to a changing
environment. In [Shlomi et al., 2011a], FBA with a constraint similar to (3.3) was applied to
explain phenotypes of fast proliferating cancer cells. Also for the theoretical analysis of the
relationship between maximal yield (output per uptake) pathways and maximal output path-
ways, an enzyme capacity constraint was used [Schuster et al., 2011]. A dynamic optimisation
approach was used in [Klipp et al., 2002, Oyarzún et al., 2009] to model optimal time courses
of enzyme concentrations Ej(t) during the activation of a pathway. These two approaches are
based on the limited total amount of enzymes, similar to (3.3), and the flux rates depend linearly
on the current amount of specific enzymes. In [Goelzer et al., 2011], the synthesis of enzymes
was included in a kinetic model, which implies in particular a limited total enzyme amount,
but is a much more detailed description of enzyme synthesis in a metabolic network. What all
these approaches have in common, is the linear dependency of the flux rates on the enzyme con-
centration combined with the limited capacity for enzyme synthesis. Furthermore, all methods
optimise over a convex solution space to find an optimal steady state flux distribution or an op-
timal time course of enzyme concentrations. Optimal means in [Beg et al., 2007, Shlomi et al.,
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2011a,Schuster et al., 2011] the maximisation of output or yield. In [Klipp et al., 2002,Oyarzún
et al., 2009] the time needed for pathway activation is minimised as well as the amount of en-
zymes that are used during this process. In [Goelzer et al., 2011] optimality refers to the growth
rate. The computation of constant flux distributions can be used to model a dynamic behaviour
of the network by computing a sequence of consecutive flux distributions [Covert et al., 2001].
This means that the time is discretised in intervals and the flux distribution is constant on each
interval. Such an approach will be developed in this chapter. The synthesis of the enzymes is
not incorporated in our method.

Enzyme concentration and gene expression On a coarse scale, the enzyme concentration is con-
trolled by the expression level of the corresponding genes. However, the activity of enzymes
is also controlled internally by the metabolic network. Enzymes are controlled by allosteric
regulation and can be inactivated by phosphorylation or in the case of product inhibition by
metabolites [Alberts et al., 1998, p. 170-175]. Genes are not directly involved in these mecha-
nisms. For this reason, gene expression can only be seen as a coarse control of the concentration
of active enzymes. On the gene regulatory level, decisions for activation or shut down of dis-
tinct parts of the metabolic network are made. This transcriptional control determines which
enzymes will be available and which not, while the precise concentration level of the different
active enzymes is further adjusted within the metabolic network. Based on this relationship,
major changes in the flux distribution can be expected to depend on the dynamics in the expres-
sion of the genes, while small changes in the magnitude of some fluxes are more likely to be
controlled by other means. It was shown [Chubukov et al., 2013] that the expression levels of
the metabolic genes do not correlate to the flux rates of the corresponding reactions in a ma-
jority of cases. Only large fold changes in flux were found to be regulated on a transcriptional
levels in an on-off manner. However, the precise adjustment of flux rates to achieve metabolite
homeostasis could not be explained by transcriptional regulation.

Optimal resource allocation by a sequence of flux distributions An attempt to incorporate this
coarse on-off regulation on the transcriptional level into a constraint-based modelling approach
will be presented now. Starting with a general formulation, some properties of the correspond-
ing flux spaces and optimal solutions will be derived. We will then focus on a specific model
of resource allocation controlled by binary gene expression. This specific model is applied to
a core metabolic network in Chap. 4. The approach is based on the computation of flux modes
by optimisation. The objective is the minimisation of production time, (O2). The regulation of
the metabolism on the transcriptional level enters in the flux bounds. The available proteins for
enzyme synthesis are not freely distributed, but controlled by gene expression. The aim of the
modelling approach is to reproduce possible alterations in metabolism. Therefore, sequences
of flux distributions are computed. The use of different flux modes consecutively can lead to a
reduction in production time, which means a gain in efficiency. These predicted alterations are
not triggered by an external or an internal event, but emerge merely from the optimisation of
the resource allocation to achieve the output production in minimal time.
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3.3 A model of resource allocation for the catalysation of reactions

All enzymes in the metabolic network are produced by ribosomes from amino
acids. Both are limited resources in the cell. The total amount of amino acids
in particular gives hard bounds on the total enzyme amount in the cell. The
presented model will be based on this limitation and translate it into bounds
on the reaction rates. All expressed metabolic genes compete for amino acids
to produce their enzyme. The concentration of a specific enzyme depends on
parameters, i.e., the molecular mass and the rate of synthesis and degradation.

We assume that each reaction j ∈ {1, . . . , n} is catalysed by exactly one enzyme and the con-
centration of that enzyme is regulated by one distinct gene. Formally we have (3.2), where
Ej = Ej(g) depends on g ∈ [0,1]n and gj is the expression level of the gene corresponding
to reaction j. If the gene is fully expressed we have gj = 1 and gj = 0 if no enzyme at all is
produced. Of course, this one-to-one relationship between genes and reactions is not likely to
be valid in the whole metabolic network. Some exceptions can still be included into this model.
For example, if a reaction is not considered to be regulated in the model, then gj can be fixed
to a certain value that gives the desired constant bounds for the reaction. In case that two reac-
tions i, j are catalysed by the same enzyme, this can be included with the constraint gi = gj . In
general, we can define a set G ⊂ [0,1]n of gene expression states, where such restrictions are
manifested.

ribogene enzyme reaction

gene expression:
gj ∈ [0,1]

enzyme
concentration : Ej

catalysation:
vj ≤ ubj = kcjEj

Figure 3.1: Scheme of the model, where gene expression leads to production of enzymes that catalyse a
reaction. The maximal flux rate increases linearly with the enzyme concentration.

Dependence of enzyme concentration on gene expression A constitutive feature of our approach
is the competition between all expressed genes for amino acids necessary to synthesize the
enzymes. The expressed genes also compete for the ribosomes that are needed to produce the
enzymes and the availability of ribosomes can even be the limiting factor in transcription [Chu
et al., 2011]. Both limitations, for the amino acids and for the ribosomes, result in a limited
total amount of amino acids that can be synthesised to enzymes. We assume that in the process
of synthesis and degradation of proteins, the mass fraction A [mol/gDW] of free amino acids is
constant. It serves for synthesis of new enzymes. The total mass of enzymes in the cell is then
Atot−AγA [g/gDW], where Atot is the total mass of available amino acids and A ⋅γA is the mass
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3.3. A model of resource allocation for the catalysation of reactions

of free amino acids which is estimated with help of the average molecular weight γA = 126 [Da]
(= 126 [g/mol]) of one amino acid.

The time-dependent variation of the enzyme amount Ej [mol/gDW] can be expressed in a
simplified manner as the resultant of synthesis and degradation:

dEj
dt

= gj ksj A − kdj Ej.

The resulting steady-state concentration of the j-th enzyme is

Ej =
gj A ksj
kdj

(3.4)

with ksi representing an overall rate of protein synthesis (including all regulatory steps between
transcription and ribosomal translation) and the first-order rate constant kdi for the degradation
of the enzyme. Taking into account the free amino acids pool A, the total mass of amino acids
can be given in terms of the concentrations Ej [mol/gDW] and the weights γj [Da] of the
enzymes:

Atot = AγA +∑
i

Eiγi (3.5)

Using the relations (3.4) and (3.5), it follows that the amount of the j-th enzyme at steady-state
is given by

Ej = gj Atot
ηj

γA +∑i giγiηi
≈ gj Atot

ηj

∑i giγiηi
, (3.6)

where the parameter ηj ∶= ksj
kdj

controls the amount of protein if the coding gene gj is active and
will be referred to as expression efficiency. With equation (3.6), the upper bounds on the flux
rates depending on enzyme Ej are given for j = 1, . . . , n by

vj ≤ ubj(g) ∶= Atotkc+j gj
ηj

γA +∑i giγiηi
≈ Atotkc+j gj

ηj

∑i giγiηi
. (3.7)

Since the molecular weights γj of the enzymes are usually many orders of magnitude larger than
γA, the approximation in (3.7) can be expected not to affect practical results of this modelling
approach. In the application of the resource allocation model in the next chapter, the computa-
tions are done with and without the approximation. The numerical results exhibit no significant
difference, thus confirming the eligibility of the approximation. Nevertheless we will consider
both versions in the theoretical analysis of this chapter. Analogously to (3.7), the lower bounds
are defined as

vj ≥ lb(g) ∶= −Atotkc−j gj
ηj

γA +∑i giγiηi
≈ −Atotkc−j gj

ηj

∑i giγiηi
.

The turnover numbers are kc−j , kc
+
j ≥ 0 for the negative and the positive direction, respectively.

For irreversible reactions we set kc−j = 0 and hence lbj(g) = 0. As already mentioned we assume
kc+j > 0 for j = 1, . . . , n. The turnover numbers are given in [1/h] and the flux rates are given in
[(mol/gDW)/h].

Note that the molar amount A of free amino acids depends on the absolute magnitude of the
gene expression, i.e., from (3.5), abbreviating W ∶= ∑i giγiηi, we get

Atot = AγA +Atot
W

γA +W
⇒ A = Atotγ−1

A

γA
γA +W

.
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The magnitude of the gene expression determines the size of W . As W increases, the molar
amount A decreases. In contrast, the approximated resource allocation model is not depen-
dent on the absolute gene expression, but only on the relation between the expression levels of
different genes, since Atot is always completely distributed between the reactions.

3.3.1 Formal conventions for the theoretical analysis of the resource allocation model

The parameters of the model The theoretical analysis aims at understanding the flux space
defined by the resource allocation and the optimisation problems defined on this flux space.
The model has 4n+2 parameters, namely the turnover numbers kc−j , kc

+
j , the molecular weights

γj and the expression efficiencies ηj for j = 1, . . . , n as well as the total amino acid mass Atot
and the average weight of one amino acid γA. These parameters are representing the essential
biological attributes of the metabolic network.

From the mathematical point of view, the parameter space of the model given by (3.7) has
only 3n + 1 dimensions. It is given by γA and the composed parameters xj ∶= (Atotkc−j ηj),
yj ∶= (Atotkc+j ηj) and zj ∶= (γjηj), so that (3.7) is

−xj
gj

γA +∑i gizi
≤ vj ≤ yj

gj
γA +∑i gizi

for j = 1, . . . , n without the approximation (and if the approximation is made without γA).
In particular, the expression efficiencies do not add more dimensions to the model, because

they can be incorporated in kc±j and γj . Therefore, we will neglect them in the following theo-
retical analysis by setting ηj = 1, j = 1, . . . , n. The resource allocation model (3.7) is then given
by

−Atotkc−j
gj

∑i giγi
≤ vj ≤ Atotkc

+
j

gj

∑i giγi
, j = 1, . . . , n. (3.8)

Only in the application of the resource allocation model in Chap. 4 the expression efficiencies
will play a role again.

Special reactions In a given metabolic network there are most likely some reactions which
will not be subject to the resource allocation described by (3.8). This is the case for reactions
which are not catalysed by enzymes, as for example passive transport of O2 and CO2 (transport
processes are not distinguished from actual reactions in the metabolic network model). Also
artificial reactions for biomass production, energy consumption or other processes might be
excluded. The bounds lbj, ubj of an excluded reaction j are constant, i.e., they do not depend
on the gene expression pattern g. To exclude a reaction completely from the resource allocation
model, we also have to set the corresponding enzyme weight to γj = 0. In the theoretical
analysis we will neglect these excluded reactions and assume that all reactions are subject to
resource allocation. In particular γj > 0 for all j = 1, . . . , n. With this convention we can avoid
many cumbersome and uninteresting case distinctions. All results would hold equally if some
reactions were excluded from resource allocation, except for Sec. 3.4.3, where we additionally
have to assume that the excluded reactions are not rate limiting.

Short notation for resource allocation To further simplify the notation and also to give a more
general perspective on the resource allocation, we introduce a resource function p ∶G→ [0,1]n
giving the share that each enzyme gets from the amino acids pool under the gene expression

45



3.4. The flux space of the resource allocation model

pattern g. For reaction j this share is pj(g). The general resource allocation model is then given
by

−Atotkc−j pj(g) ≤ vj ≤ Atotkc+j pj(g), j = 1 . . . , n, (3.9)

which is exactly (3.8), if the above presented resource allocation model is used, i.e.,

pj(g) =
gj

γA +∑i giγi
≈

gj

∑i giγi
. (3.10)

To fulfil the formal condition that pj(g) ∈ [0,1], it suffices to require γj ≥ 1 for j = 1 . . . , n. This
is surely fulfilled if γj is given in [Da]. In general, the resource function can also have another
form, however some basic properties will be required for the theoretical analysis and will be
indicated then.

3.4 The flux space of the resource allocation model

This section elucidates the essential properties of the flux space of the resource
allocation model. The results in the following sections will mainly be based on
these observations. Since the flux spaces that we consider here are star shaped
with center zero, they can be completely described in terms of rays starting at
zero. This perspective leads to a bijection from the non-linear flux space to the
polytope that is obtained if the resource allocation model is neglected and only
an FBA model remains. As we will see in the next section, the performance
of optimal sequences of different flux modes compared to a single flux mode
depends on the non-convexity of the flux space. It turns out here that this is
directly dependent on the non-convexity of the gene expression space. Further-
more we will see that in case the gene expressions are completely unrestricted,
the resource allocation constraints reduce to one piecewise linear constraint.

For the gene expression pattern g ∈ G, (3.9) defines the box

Bg ∶=
n

∏
j=1

[−Atotkc−j pj(g),Atotkc+j pj(g)].

The union of these boxes over all g ∈ G is the bounding set of the resource allocation model
which we denote by

B∗ ∶= ⋃
g∈G

Bg.

The flux space under a distinct gene expression state g is given by the intersection

Fg = Bg ∩ C,

where C = {v ∈ Rn ∶ Sv = 0, vj ≥ 0, j ∈ J Irr} is the flux cone. Since G denotes the space of all
gene expression patterns that are feasible in the model, the flux space for the model is given by
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the union of these flux spaces or, equivalently, as the intersection of the cone with the bounding
set of the resource allocation model.

F∗ ∶= {v ∈ Rn ∶ Sv = 0, ∃ g ∈ G s.t. −Atotkc−j pj(g) ≤ vj ≤ Atotkc+j pj(g), j = 1 . . . , n}
= ⋃
g∈G

Fg

= C ∩ B∗.
(3.11)

For the theoretical analysis in this chapter we have to assume that B∗ is closed (cf. p. 15),
which implies that also F∗ is closed. Furthermore we have to require that for each reaction
j ∈ {1, . . . , n} there exists a g ∈ G, such that pj(g) > 0. This just means that every reaction in
the model must be enabled by at least one of the feasible gene expression states of the model.
This condition can always be fulfilled by deleting reactions from the network which cannot be
enabled by any gene expression state.

3.4.1 Representation of the flux space with ray segments

To grasp the geometry of F∗ we will relate it to the flux space of the network without consider-
ing resource allocation, i.e., the polytope

F = {v ∈ Rn ∶ Sv = 0, −Atotkc−j ≤ vj ≤ Atotkc
+
j for j = 1, . . . , n}

with −Atotkc−j ≤ 0 and Atotkc+j > 0 (since kc+j > 0 is always assumed) for all j = 1, . . . , n. Both
flux spaces, F∗ and F , are based on the cone C. To obtain F we intersect C with

B =
n

∏
j=1

[−Atotkc−j ,Atotkc+j ].

Note that the above defined bounding sets Bg, B∗ and B all contain 0. This follows directly from
the definitions and the non-negativity of Atot, kc−j , kc

+
j and pj(g) for j = 1, . . . , n. Furthermore,

they are star shaped with center 0 as follows from

Lemma 3.1. Let Uk, Vh ⊂ Rn, with k ∈ K, h ∈ H for arbitrary index sets K,H , be convex sets
containing z ∈ Rn. Then (⋃k∈K Uk) ∩ (⋂h∈H Vh) is star shaped with center z.

This lemma is directly verified by applying the definitions of star shaped (Def. 2.6) and
convex sets (p. 14). Also the flux spaces F∗ and F are hence star shaped with center 0. This
allows representing them in terms of the rays starting in 0. Let the subset F ⊂ Rn be closed,
bounded and star shaped with center 0 (we are interested in the cases F = F∗ and F = F , they
are both closed by assumption and bounded by definition). For any v ∈ Rn ∖ {0} let v̄ = λv
for λ ≥ 0, such that λv ∈ F and λ′v ∉ F for any λ′ > λ. Such λ always exists because on the
one hand we have λv = 0 ∈ F for λ = 0 and on the other hand the set v ⋅R≥0 ∩ F is closed and
bounded, since F is closed and bounded, and thus such a maximal element v̄ = λv ∈ F exists.

Definition 3.2. Let F be a closed and bounded flux space. An element v̄ ∈ F is called maximal
if λv̄ is not element of F for any λ > 1. The set of all maximal elements of F is denoted by M .

If zero is an interior point of F , thenM is in fact the boundary of F . In general the boundary
is a superset of M , see e.g. Fig. 3.2.
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For v ∈ Rn ∖ {0} and F as above, we define the ray-segment of v in F to be the half open
interval

(0, v̄] ∶= {v ∈ Rn ∶ v = λv̄, 0 < λ ≤ 1}.

Since F is star shaped with center 0, the ray segments are always contained in F . In case that
v̄ = 0, the ray segment is defined to be the empty set ∅ ⊂ F . By definition, every v ∈ F ∖ {0}
belongs to a ray segment. It is also clear that no v is contained in two ray segments. Concluding,
F can be partitioned into {0} and all ray segments.

Lemma 3.3. Let F ⊂ Rn be closed, bounded and star shaped with center 0 and let M be the
set of maximal elements, then we have the partition

F = {0} ∪ ⋃
v̄∈M

(0, v̄].

A bijection between the two flux spaces Note that every Bg, as defined above, is obtained from
B = ∏n

j=1[−Atotkc−j ,Atotkc+j ] by contracting along the j-th coordinate by pj(g) ∈ [0,1]. Conse-
quently, we have the inclusion

F∗ = C ∩ B∗ = C ∩ ⋃
g∈G

Bg ⊂ C ∩ B = F . (3.12)

For a given v ∈ F ∖ {0}, let (0, v∗] be the ray segment of v in F∗. The inclusion (3.12) implies
that (0, v∗] ⊂ (0, v̄], where (0, v̄] ≠ ∅ is the ray segment of v in F , i.e., v∗ = λ∗v̄ with 0 ≤ λ∗ ≤ 1.
Since v̄ is not zero, λ∗ is uniquely defined by v∗ = λ∗v̄ (if no element of F∗ is in (0, v̄], we have
v∗ = 0 and hence λ∗ = 0 by definition). Therefore, we can define a mapping

p′∶ F → [0,1], by p′(v) = λ∗, for v ∈ F ∖ {0}, and p′(0) = 0. (3.13)

Since p and p′ are both describing the resource allocation model, they will both be called re-
source function. With the help of p′ we define then a mapping

φ∶ F → F∗, by φ(v) = p′(v) ⋅ v, (3.14)

which contracts F to F∗. Note that the resource function p′ is constant on a fixed ray segment,
i.e., if α > 0 and v, αv ∈ F , then p′(v) = p′(αv). An element v ∈ F fulfils Sv = 0 and
−Atotkc−j ≤ vj ≤ Atotkc+j , j = 1, . . . , n. The contracted element w ∶= φ(v) = p′(v)⋅v = p′(w)⋅v
still fulfils Sw = p′(v)Sv = 0 and is bounded by −p′(w)Atotkc−j ≤ wj ≤ p′(w)Atotkc+j ,
j = 1, . . . , n. It is hence clear that φ maps F to the set

F ● ∶= {v ∈ Rn ∶ Sv = 0, −Atotkc−j p′(v) ≤ vj ≤ Atotkc
+
j p

′(v), j = 1, . . . , n} ⊂ F .

Since 0 ≤ p′(v) ≤ 1 for all v ∈ F the bounds of F ● are tighter than those of F and therefore we
have the inclusion of F ● in F .

Lemma 3.4. If p′(v) > 0 holds for every v ∈ F ∖ {0}, then F∗ = F ●.

Proof. The elements of F ● are by construction contained in F∗. It thus suffices to show that
F∗ ⊂ F ●. Since 0 is clearly contained in both sets, it can be omitted. Let v ∈ F∗ ∖ {0}.
The maximal element in the ray segment of v in F is v̄ = λv for some λ ≥ 1. Writing this

48



Chapter 3. Modelling enzymatic resource allocation and alterations in metabolism

as λ−1v̄ = v ∈ F∗ shows that λ−1 ≤ λ∗ = p′(v). This gives the following implications (the
analogous lower bounds are omitted)

λv = v̄ ∈ F
⇒ λvj ≤ Atotkc+j , j = 1, . . . , n

⇒ vj ≤ Atotkc+j λ−1 ≤ Atotkc+j p′(v), j = 1, . . . , n

⇒ v ∈ F ●

As soon as the condition p′(v) > 0 for all v ∈ F ∖ {0} is given, it is then also clear that we
can define the inverse mapping φ−1∶ F∗ → F by φ−1(0) = 0 and φ−1(w) = w ⋅ (p′(w))−1 for
w ∈ F∗ ∖ {0} ⊂ F ∖ {0}. The mapping φ is then a bijection.

Corollary 3.5. If the resource function p′ fulfils p′(v) > 0 for v ∈ F ∖ {0}, the mapping φ is a
bijection between F and F∗.

Note that the condition p′(v) > 0 for all v ∈ F ∖ {0} is surely satisfied if the flux space F∗

is a conic sprout of C (Def. 2.7), because then an ε-neighbourhood of 0 ∈ F is also contained
in F∗ and hence (ε ∥v∥−1) ⋅ v ∈ F∗ for every v ∈ F and in particular λ∗ ≥ ε ∥v̄∥−1 > 0. With
the resource allocation model given by (3.10) the flux space F∗ is always a conic sprout. The
minimum value of p is then given by (γA + ∑n

j=1 γj)−1 (or by (∑n
j=1 γj)−1 in the approximated

version) and the ε-ball in C around 0 with ε = Atot ⋅ minj=1,...,n(kc+j , kc−j ) ⋅ (γA + ∑
n
j=1 γj)−1 is

hence contained in every Fg, g ∈ {0,1}n and thus also in F∗.

Perspectives of the two resource functions p and p′ On a single ray segment we have either
p′(v) = λ∗ = 0 and the whole ray segment is mapped to zero, or p′(v) > 0 and φ is a bijection
between (0, v̄] ⊂ F and (0, v∗] ⊂ F∗. The latter is the case if and only if there is a g such that
pj(g) > 0 for all j with vj ≠ 0. This condition is clearly necessary. To see that it is sufficient, take
λ = minj, vj≠0 p′j(v) > 0 which gives 0 ≠ λv̄ ∈ F∗ (cf. (3.11)). This gives an equivalent condition
for Corollary 3.5 in terms of p, namely that there exists such a g ∈ G for every v ∈ F ∖ {0}. If
this is given, φ is a bijection on all ray segments and by Lemma 3.3 thus also between the whole
flux spaces F and F∗.

The resource function p′ tells us how much the resource allocation is restricting the flux of a
given flux distribution v ∈ F , where all possible g ∈ G are considered. Therefore, p′ represents
not only the resource allocation model, but also the space G of possible gene expressions. On
the other hand, p defines the resource allocation under a given fixed gene expression pattern g.
The theory developed in this chapter aims at the resource allocation model given by (3.10) and
binary gene expression G ⊂ {0,1}n. However, most of the mathematics will only require more
general conditions as will be indicated.
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v̄

v∗

●

●

Figure 3.2: A flux cone partly displayed by the shaded area. The dashed line is a linear bound on the flux
space and also the set of maximal elements M ⊂ F . The red line comes from a non-convex bounding
set and is also the set of maximal elements M∗ ⊂ F∗. A ray is indicated by the arrow starting in 0. The
ray segment (0, v̄] is given by a full line, while the ray outside of F is dotted. The vector v̄ is a maximal
element of F . The maximal element in F∗ from this ray segment is v∗ = φ(v̄)v̄, i.e., the point where the
ray crosses M∗ ⊂ F∗.

3.4.2 Convexity of the flux space and the gene expression space

In the following discussion, we will say that the gene expression state g ∈ [0,1]n enables the
flux mode v ∈ F∗ if v ∈ Fg (cf. (3.11)).

If a flux mode v′ is enabled by g′ ∈ G and v′′ by g′′ ∈ G, then a natural candidate for
a gene expression state that enables the convex combination v ∶= λv′ + (1 − λ)v′′ would be
g ∶= λg′ + (1 − λ)g′′. Since v ∈ C, g enables v if and only if the componentwise inequalities

−Atotkc−p(g) ≤ v ≤ Atotkc+p(g) (3.15)

hold. If the resource function p is concave, i.e., p(λg′ + (1 − λ)g′′) ≥ λp(g′) + (1 − λ)p(g′′)
for all g′, g′′ ∈ G and λ ∈ (0,1), then (3.15) follows immediately for g = λg′ + (1 − λ)g′′. Our
resource allocation model (3.9) can be written as p(g) = g ⋅ (γA + ⟨g, γ⟩)−1 using the scalar
product notation ⟨g, γ⟩ ∶= ∑n

i=1 giγi. This resource function is not concave in general and g =
λg′ + (1 − λ)g′′ need not enable v. However, it is possible to construct a convex combination
of g′, g′′, which enables v. This result will be proven for the approximative model where
p(g) = g ⋅ (⟨g, γ⟩)−1, but the following lemma shows that it is then also implied for p(g) =
g ⋅ (γA + ⟨g, γ⟩)−1, the resource allocation model without the approximation.

Consider the resource allocation model for a given metabolic network. Let F∗ be the flux
space if p(g) = g ⋅ (⟨g, γ⟩)−1 and F̃ the flux space if p(g) = g ⋅ (γA + ⟨g, γ⟩)−1. According to
(3.11), both flux spaces are given as the intersection of the flux cone with a bounding set. On
the one hand F∗ = C ∩ B∗, where B∗ = ⋃g∈GBg and

Bg ∶= {v ∈ Rn ∶ −Atotkc−j
gj

⟨g, γ⟩
≤ vj ≤ Atotkc+j

gj
⟨g, γ⟩

, j = 1, . . . , n}
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and on the other hand F̃ = C ∩ B̃, where B̃ = ⋃g∈G B̃g and

B̃g ∶= {v ∈ Rn ∶ −Atotkc−j
gj

γA + ⟨g, γ⟩
≤ vj ≤ Atotkc+j

gj
γA + ⟨g, γ⟩

, j = 1, . . . , n}.

Since the flux cone is always a convex set, the convexity of the flux space depends only on the
convexity of the bounding set.

Lemma 3.6. If B∗ is convex, then B̃ is also convex. In particular, if F∗ is convex, then F̃ is also
convex.

Proof. The statement for the bounding sets B∗ and B̃ implies the same statement for the flux
spaces F∗ and F̃ as a direct consequence of the convexity of the flux cone C and Lemma 3.1.
Now we will prove the statement for the bounding sets. The elements v given by

vj = σjAtotkc
σj
j

gj
⟨g, γ⟩

, for some σ ∈ {−,+}n, j = 1, . . . , n, (3.16)

are the vertices (Def. 3.12) of Bg. The vertices of Bg and B̃g are in one-to-one correspondence.
The vertex ṽ ∈ B̃g corresponding to v is given by ṽj = σjAtotkc

σj
j

gj
γA+⟨g,γ⟩

, for the same σ ∈
{−,+}n and j = 1, . . . , n.

Let B∗ be convex. For arbitrary g, g′ ∈ G and vertices v ∈ Bg, v′ ∈ Bg′ , the convex combina-
tion λv + (1 − λ)v′ is then element of Bg′′ for some g′′ ∈ G. This means that for j = 1, . . . n we
have

−Atotkc−j
g′′j

⟨g′′, γ⟩
≤ λσjAtotkc

σj
j

gj
⟨g, γ⟩

+ (1 − λ)σ′jAtotkc
σ′j
j

g′j
⟨g′, γ⟩

≤ Atotkc
+
j

g′′j
⟨g′′, γ⟩

. (3.17)

The resource allocation model with the approximation is invariant to scaling of the gene expres-
sion state, i.e., the term g

⟨g,γ⟩ ∈ Rn
≥0 is not changed if g is scaled. Therefore, we can adjust the

scaling of g, g′, g′′ such that
⟨g, γ⟩ = ⟨g′, γ⟩ = ⟨g′′, γ⟩.

Now we just have to multiply the inequalities (3.17) with ⟨g, γ⟩ (γA + ⟨g, γ⟩)−1 to obtain the
corresponding inequalities without the approximation, i.e., with γA in the denominator. These
inequalities tell us that the convex combination of the corresponding vertices ṽ ∈ B̃g and ṽ′ ∈ B̃g′

lies in B̃g′′ . Due to the one-to-one correspondence between the vertices of B̃g and Bg, we have
thus shown that an arbitrary convex combination of two vertices of B̃g resp. B̃g′ is again in B̃.
To see that this already proves the convexity of B̃, let v, v′ be two arbitrary elements of B∗. We
want to show that λv + (1 − λ)v′ ∈ B∗ for any λ ∈ [0,1].

From (3.16) it is clear that we can obtain vertices v̄, v̄′ which have in all components the
same sign as v resp. v′ by componentwise scaling, i.e., v̄j = αjvj with αj ≥ 1 and v̄′j = α′jv′j with
α′j ≥ 1, j = 1, . . . , n. We showed above that for these vertices and any λ ∈ [0,1] there is some
g′′ ∈ G such that

v̄′′ ∶= λv̄ + (1 − λ)v̄′ ∈ B̃g′′ .

This means that for j = 1, . . . , n the inequalities

−Atotkc−j
g′′j

γA + ⟨g′′, γ⟩
≤ v̄′′j ≤ Atotkc+j

g′′j
γA + ⟨g′′, γ⟩
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are satisfied. If this holds for v̄′′j , then it also holds for v′′j ∶= λ(αj)−1v̄j + (1 − λ)(α′j)−1v̄′j since
(αj)−1, (α′j)−1 ≤ 1. We thus defined a vector v′′ ∈ B̃g′′ ⊂ B̃. In fact v′′ = λv + (1 − λ)v′ and thus
convexity of B̃ is shown.

Proposition 3.7. Let B∗ = ⋃g∈GBg, with Bg ∶= {v ∈ Rn ∶ −Atotkc−j
g

⟨g,γ⟩ ≤ v ≤ Atotkc+j
g

⟨g,γ⟩ , j =
1, . . . , n}. If G ⊂ [0,1]n is convex, then so is B∗.

Proof. Each Bg, g ∈ G is defined by the bounds lbj(g) ∶= −Atotkc−j
gj

⟨g,γ⟩ , ubj(g) ∶= Atotkc+j
gj

⟨g,γ⟩ .
All calculations will only be done for the upper bounds, but hold similarly for the lower bounds.
Let v′, v′′ ∈ B∗ ∖ {0}, then we have to show that any convex combination v ∶= λv′ + (1 − λ)v′′
with λ ∈ (0,1) is in B∗. There are g′, g′′ ∈ G∖{0} with v′ ≤ ub(g′) and v′′ ≤ ub(g′′), so we have
v ≤ λub(g′) + (1 − λ)ub(g′′). Hence it would suffice to find a g ∈ G, such that

λubj(g′) + (1 − λ)ubj(g′′) ≤ ubj(g), j = 1, . . . , n. (3.18)

It will be shown now that for some µ ∈ (0,1) the convex combination g = µg′ + (1 − µ)g′′
satisfies (3.18). Since G is convex, it follows that g ∈ G and this proves the proposition. For
g′ = 0 or g′′ = 0, (3.18) holds immediately. Therefore, we can assume that g′, g′′ ≠ 0. Since we
always assume γj > 0, j = 1, . . . , n, in this chapter (see p. 45), it follows that ⟨g′, γ⟩ > 0 and
⟨g′′, γ⟩ > 0. The calculations will now be done componentwise. Substituting g = µg′+(1−µ)g′′
in the r.h.s. of (3.18) gives

kc+j
µg′j + (1 − µ)g′′j

µ⟨g′, γ⟩ + (1 − µ)⟨g′′, γ⟩
The l.h.s., augmented by the factors µ

µ and (1−µ)
(1−µ) , becomes:

kc+j (λ
µg′j

µ⟨g′, γ⟩
+ (1 − λ)

(1 − µ)g′′j
(1 − µ)⟨g, γ⟩

) .

With the abbreviations a ∶= µg′j, b ∶= (1−µ)g′′j , x ∶= µ⟨g′, γ⟩, y ∶= (1−µ)⟨g′′, γ⟩, where x and y
are strictly positive numbers, and by cancelling out the turnover number kc+j , we write (3.18) as

λ
a

x
+ (1 − λ) b

y
≤ a + b
x + y

⇔ λa + (1 − λ)bx
y
+ λay

x
+ (1 − λ)b ≤ a + b

⇔ λ(1 + y
x
)a + (1 − λ) (1 + x

y
) b ≤ a + b.

By the choice of µwe will enforce x
y =

λ
1−λ which implies λ(1+ y

x) = 1 as well as (1−λ)(1+ x
y ) =

1, so that (3.18) will be satisfied with equality. Since

x

y
= µ

1 − µ
⟨g′, γ⟩
⟨g′′, γ⟩

we want to have
µ

1 − µ
= λ

1 − λ
⟨g′′, γ⟩
⟨g′, γ⟩

=∶ α

and this is achieved with µ = α
1+α < 1. Note that this calculation, although carried out for a

distinct j, leads to an α that is independent of gj , g′j , but depends only on the scalar products
⟨g, γ⟩, ⟨g′, γ⟩. Therefore, the corresponding µ = α

1+α satisfies (3.18) for all j = 1, . . . , n and we
thus have a convex combination g = µg′ + (1 − µ)g′′, such that v ≤ ub(g).
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This proposition shows that convexity of B∗ follows from convexity of G. Convexity of the
bounding set B∗ implies directly convexity of the flux space F∗, see Lemma 3.1. Although
Prop. 3.7 was only shown for the approximated resource allocation model, it also holds without
the approximation, due to Lemma 3.6 which showed that convexity of the bounding set (and the
flux space) with the approximation implies convexity of the bounding set (and the flux space)
without the approximation.

3.4.3 Free gene expressions

If the gene expression space does not restrict the gene expression patterns at all, i.e.,G = [0,1]n,
we are able to represent the corresponding flux space F∗ independently of g. In fact, a maximal
v̄ ∈ M ⊂ F∗ turns out to be enabled by a g ∈ [0,1]n which is unique up to scaling and can
be given in terms of v. Remember that we assume that all reactions are subject to resource
allocation. The following results are in fact only valid if we consider only those reactions that
are subject to resource allocation in the calculations. In case the excluded reactions are not rate
limiting, they do not contribute to the definition of the flux space and therefore they would not
affect the following results.

Lemma 3.8. If G = [0,1]n, a maximal flux mode v̄ ∈M ⊂ F∗ reaches the lower or upper bound
in each reaction, i.e., in (3.8) we have vj = lbj(g) or vj = ubj(g) for j = 1, . . . , n.

Proof. Assume the contrary, then there is i, such that w.l.o.g. v̄i > 0 but the upper bound of
reaction i is not reached, i.e., v̄i = εkc+i Atot

gi
γA+⟨g,γ⟩

for some 0 < ε < 1. Let ĝ ∈ G be equal
to g in all components j ≠ i and ĝi = εgi ∈ [0,1]. Then we have v̄i = Atotkc+i

ĝi
γA+⟨g,γ⟩

and
⟨ĝ, γ⟩ < ⟨g, γ⟩. We conclude that

−Atotkc−j
ĝj

γA + ⟨ĝ, γ⟩
< v̄j < Atotkc+j

ĝj
γA + ⟨ĝ, γ⟩

for j = 1, . . . , n.

Therefore, there is some λ > 1 such that λv̄ is still in the bounds given by ĝ. This is a contradic-
tion because v̄ was assumed to be maximal.

It is now straightforward to see that there is a g ∈ [0,1]n which is unique up to scaling and
enables the maximal flux mode v̄. For convenience we assume w.l.o.g. that v̄ ≥ 0. Then we have
v̄ = ub(g) = Atotkc+ g (γA + ⟨g, γ⟩)−1. If there is g′ with v̄ = ub(g′), we have

g

γA + ⟨g, γ⟩
= g′

γA + ⟨g′, γ⟩
⇔ g = g′ ⋅ γA + ⟨g, γ⟩

γA + ⟨g′, γ⟩
.

To determine a g that enables the flux mode v in terms of v, we will introduce the notation

κj(v) ∶= {kc
+
j , vj ≥ 0

kc−j , vj < 0
, (3.19)

which allows writing (3.8) equivalently as

∣vj ∣ ≤ Atotκj(v)
gj

γA + ⟨g, γ⟩
for j = 1, . . . , n. (3.20)
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3.4. The flux space of the resource allocation model

For a maximal flux mode v̄ ∈M ⊂ F∗ we know from Lemma 3.8 that all these inequalities are
satisfied with equality and for gj this gives

gj =
∣v̄j ∣
κj(v)

⋅ γA + ⟨g, γ⟩
Atot

,

where we define 0
0 ∶= 0 for the case vj = 0, κj(v) = 0 (note that κj(v) = 0 implies vj = 0 by

definition). The resource allocation model with the approximation, i.e., with p(g) = g ⋅ ⟨g, γ⟩−1,
is invariant to scaling g. Therefore, the term γA+⟨g,γ⟩

Atot
, which is scaling the whole vector g, is

irrelevant. This holds similarly for the scaling of v̄, which can be substituted by any v ∈ (0, v̄].
The gene expression state for the best adjustment of the metabolic network to a flux distribution
v ∈ (0, v̄] is hence given by gj = ∣vj ∣

κj(v)
. Best adjustment means here that the flux distribution can

be maximally increased to v̄ under this gene expression state.

Corollary 3.9. If G = [0,1]n, the constraints (3.8) can be reduced to a single constraint. If the
approximation is used this is (where 0

0 ∶= 0)

n

∑
j=1

∣vj ∣
κj(v)

γj ≤ Atot and without the approximation
n

∑
j=1

∣vj ∣
κj(v)

γj ≤ Atot −AγA.

Proof. This is well defined, because κj(v) = 0 implies vj = 0. Multiplying the inequalities
(3.20), which are equivalent to the bounds (3.8) of the resource allocation model, with γj

κj(v)
and

summing them up gives
n

∑
j=1

∣vj ∣
κj(v)

γj ≤ Atot
⟨g, γ⟩

γA + ⟨g, γ⟩
.

If we use the approximated version of (3.20), the amino acid weight γA is neglected and we get
just Atot as bound. Otherwise we use (3.5) and (3.6) which gives Atot = AγA +Atot ⟨g,γ⟩

γA+⟨g,γ⟩
and

hence Atot
⟨g,γ⟩

γA+⟨g,γ⟩
= Atot −AγA, which is exactly the amount of amino acids that are used for

enzyme synthesis, cf. p. 43.

This corollary tells us that an enzyme constraint of the form (3.3), as applied in [Beg et al.,
2007, Shlomi et al., 2011a, Schuster et al., 2011], corresponds to the case G = [0,1]n in our
resource allocation model with the approximation in (3.8).

The constraint (3.3) is linear on every subset of Rn where the signs of the flux rates are not
changing, because then, κ(v)j is constant and ∣v∣ is linear as a function of v. These subsets
are the orthants of Rn. The whole set defined by (3.3) is a ball around zero in the 1-norm that
is scaled componentwise by kc+j /γj and kc−j /γj in positive and negative direction, respectively.
The constraint given by Corollary 3.9 is not linear without the approximation, because the
bound depends on the amount A of free amino acids, which depends on ⟨g, γ⟩, i.e., the amount
of amino acids used for enzyme production.
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Chapter 3. Modelling enzymatic resource allocation and alterations in metabolism

3.5 Optimal sequences of flux modes from the flux space

The goal is now to choose from the flux space of the resource allocation model
several flux modes which produce the required output in minimal time when op-
erating consecutively. This can be formulated as an optimisation problem. The
question is whether the different flux modes can achieve a shorter production
time than a single flux mode. It turns out that this depends on the convexity of
the flux space, which was shown above to be determined by the space of possi-
ble gene expressions.

The question whether the efficiency can be improved by decomposing the output production
into different flux modes, will now be formulated as an optimisation problem. In the previous
chapter (p. 37) we introduced (OP1), an optimisation problem that minimises the time needed
to produce certain required amounts of metabolites. This notion of efficiency will stay the same
and we will just extend (OP1) by allowing the use of l different flux modes v1, . . . , vl, where
l ∈ N is a fixed parameter. The requirement of metabolite production is assumed to be expressed
by flux through certain target reactions T ⊂ {1, . . . , n}. For every target reaction t ∈ T the
requirement is given by Γt > 0 (cf. Sec. 2.3).

min∑l

k=1
τk, subject to:

vk ∈ F∗, k = 1, . . . , l

∑l

k=1
τkv

k
t ≥ Γt ∀t ∈ T

with variables:

τk ∈ R≥0, v
k ∈ Rn, k = 1, . . . , l

(OP2a)

Note that the constraint vk ∈ F∗ is a short notation for Svk = 0 and −Atotkc−j pj(g) ≤ vkj ≤
Atotkc+j pj(g), j = 1 . . . , n, for some g ∈ G. In fact, g ∈ [0,1]n are also variables in this opti-
misation problem which are constraint by g ∈ G. A solution of (OP2a) consists of flux vectors
v1, . . . , vl and corresponding durations τ1, . . . , τl, which in combination produce all required
amounts Γt for target reactions t ∈ T . The total time ∑l

k=1 τk is minimised. The discussion here
is restricted to the case where the target reactions produce some output, see Sec. 2.3. Therefore,
all target reactions t ∈ T are assumed to be irreversible. If for example an exchange reaction
t ∈ T was reversible, this would imply that in the summation ∑l

k=1 τkv
k
t the corresponding ex-

ternal metabolite can be both, produced and consumed. The net change is then constrained by
Γt. This means that the external metabolite can be produced in one phase, be stored and also
consumed in another phase. Such a scenario is realistic, sugar for example can be stored in
the form of glycogen by many organisms. However, this aspect is neglected here. It would
lead to different biological considerations and computational problems and should therefore be
treated separately. Here we focus on the output of target metabolites and exclude reversible
target reactions.

Equivalent formulation The bijection φ between the resource allocation flux space F∗ and the
polytope F (see Corollary 3.5) leads to an equivalent formulation of the optimisation problem.
If the condition of Corollary 3.5 is fulfilled, i.e., if p′(v) > 0 for v ∈ F ∖ {0}, we can substitute
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3.5. Optimal sequences of flux modes from the flux space

wk ∶= φ−1(vk). This gives φ−1(vk) = (p′(vk))−1 ⋅vk for vk ≠ 0 and φ−1(vk) = 0 otherwise. Since
φ is a bijection, we have vk ∈ F∗ ⇔ wk ∈ F . Substituting furthermore τ ′k ∶= τkp′(wk) into
(OP2a) gives the equivalent optimisation problem:

min ∑l

k=1
τ ′k(p′(wk))−1, subject to:

wk ∈ F , k = 1, . . . , l

∑l

k=1
τ ′kw

k
t ≥ Γt for t ∈ T

with variables:

τ ′k ∈ R≥0, w
k ∈ Rn, k = 1, . . . , l

(OP2b)

The products τ ′kw
k
j in the constraints of output production can be eliminated by using an equiva-

lent formulation similar to (OP1b), p. 38. For readability we will mostly stick to the formulation
(OP2a).

The number of flux modes in the optimal solution is bounded In the above optimisation problem
(OP2a), p. 55, the number of flux vectors in the solution is fixed to l. In fact, l is just an upper
bound, since some of the vi might not be used, which is the case if the corresponding duration is
τi = 0. This bound seems to restrict the search space for an optimal solution, because the number
l of different flux modes in (OP2a) is a priori not known. However, the following proposition
shows that if the bound is fixed correctly there are always optimal solutions in the restricted
search space.

Proposition 3.10. If (OP2a) is feasible for some l ∈ N, there also exists an optimal solution
using at most as many flux modes v1, . . . , v∣T ∣ as there are target reactions in T .

Proof. Assume there is an optimal solution consisting of flux modes v1, . . . , vl and associated
durations τ∗1 , . . . , τ

∗
l with l > ∣T ∣. Consider the following linear optimisation problem where the

flux modes v1, . . . , vl are parameters and the only variables are the durations τk:

min{
l

∑
k=1

τk ∶ ∑
l

k=1
τkv

k
t ≥ Γt, t ∈ T, τ ≥ 0}.

By definition, τ∗ = (τ∗1 , . . . , τ∗l )⊺ is an optimal solution. From the theory of linear programming
(see e.g. [Griva et al., 2009, Thm. 4.7, p. 121]), we know that the corresponding problem in
standard form min{∑l

k=1 τk ∶ ∑l
k=1 τkv

k
t − τ ′ = Γt, t ∈ T, τ, τ ′ ≥ 0} has a so-called basic optimal

solution τ̄ , τ̄ ′ ≥ 0, for which the number of non-zero components τ̄k > 0 is at most ∣T ∣. Such a
solution τ̄ describes how to produce the demanded output in minimal time, using at most ∣T ∣ of
the flux modes v1, . . . , vl.

It is hence enough to solve (OP2a) for the fixed value l = ∣T ∣ to find a solution which
is optimal for all l ≥ ∣T ∣. To obtain globally optimal solutions of the optimisation problem, we
will therefore always solve the optimisation problem with fixed l = ∣T ∣. Unless stated otherwise,
this result also holds for variations and extensions of (OP2a) which will be introduced.
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Optimising over a convex flux space The optimisation of output production with a single flux
mode given by (OP1) is an instance of (OP2a) with l = 1. Let τ(l) denote the objective value
of (OP2a), i.e., the time needed for output production with l consecutive flux modes. This
generalisation of (OP1) to (OP2a) with l > 1 is motivated by the hypothesis that the required
time can be reduced by optimal resource allocation in different consecutive flux modes. Surely
τ(1) ≤ τ(l), since every solution with one flux mode can be extended to a solution with l flux
modes by setting τi = 0 and vi = 0, i = 2, . . . , l. A reduction of production time is achieved if
τ(l) < τ(1). However, this is not always possible.

Proposition 3.11. The objective value τ(l) of (OP2a) cannot be strictly smaller than τ(1) if the
flux space F∗ is convex.

Proof. Assume that F∗ is convex and v1, . . . , vl, τ1, . . . , τ l is an optimal solution of (OP2a) with
objective value τ(l) ∶= ∑l

k=1 τk. The convex combination v ∶= ∑l
k=1

τk
τ(l)v

k is then an element
of F∗ and τ(l) ⋅ vt ≥ Γt for the target reactions t ∈ T . This means that v, τ(l) is a solution to
(OP2a) with only one flux mode and thus τ(1) = τ(l).

In particular, the linear enzyme capacity constraint (3.3) cannot explain a benefit of alter-
ations in the flux distribution, since the resulting flux space is a convex polytope. Neither can
any linear constraint provide such an explanation, because it preserves the convexity of the flux
space. Also in our resource allocation model with convex G the flux space is convex. The
geometry of F∗ = ⋃g∈GFg depends on the one hand on G and on the other hand on the resource
function. We will now consider the case G ⊂ {0,1}n which gives a non convex flux space
and can lead to an increase in efficiency if a sequence of different flux modes is used for the
production of target metabolites

3.6 Binary gene expression

The model of resource allocation will be considered with binary gene expres-
sion. This choice is based on biological observations concerning the control of
flux rates by gene expression. To obtain a biologically meaningful model, fur-
ther restrictions on gene expression patterns should be imposed. The formula-
tion of the corresponding optimisation problems is presented and we take a look
at the geometry of the flux space.

3.6.1 Biological justification of the binary gene expression model

Modelling the gene expression by binary variables means that in the dynamic sequence the
genes can be switched on or off and hence a distinct reaction is either blocked or maximally
activated. If a gene is active, the precise bound on the corresponding reaction only depends on
the turnover rates kc±j and the distribution of resources among all activated reactions given by
the resource allocation function. The level of gene expression cannot be perfectly adjusted to
the flux rates of v ∈ F∗ in this model. As a result, v does usually not use all available capacity,
which means that only few bounds are rate limiting while most are strongly redundant (see
Sec. 2.2.2). In contrast, imposing only the piecewise linear enzyme capacity constraint (3.3),
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allows for perfect adjustment of the gene expression and resource allocation to a given flux
mode such that all reactions are rate limiting. As shown by Corollary 3.9, the here discussed
resource allocation model reduces to (3.3) if G = [0,1]n.

From the biological point of view, the binary model of gene expression and the resulting
coarse adjustment to the flux distribution is in concordance with the results of [Chubukov et al.,
2013], which indicate that the gene expression only determines which parts of the metabolic
network are activated and which are shut down. The precise level of gene expression was ob-
served to be rarely in correlation with the flux rate of the corresponding reaction. Furthermore,
it is known that usually only few reactions in a metabolic pathway are rate limiting. The impli-
cations and the eligibility of our model will be further discussed in Sec. 4.5.1.

3.6.2 Formalisation of binary gene expression

The restriction of the gene expression states to G ⊂ {0,1}n is simplifying the association of
a suiting gene expression state with a given flux mode. If vj ≠ 0 then gj = 1 is necessary,
but the activation of further genes gj with vj = 0 would be a waste of resources. In the case
G = {0,1}n, the gene expression which enables the maximal flux through a flux mode v would
hence be given by gj = 1 ⇔ vj ≠ 0. If we consider a proper subset G ⫋ {0,1}n, it might be
unavoidable to activate genes gj = 1, while vj = 0. It is then preferable to activate genes which
correspond to enzymes with small molecular weight γj , formally, the sum ⟨g, γ⟩ = ∑j ∶ gj=1 γj
should be minimal.

In the resource allocation constraints (3.8) we set the value of the gene expression to gj = 1.
The fact that the reaction is blocked if gj = 0 is then implemented by the additional constraint
gj = 0 ⇒ vj = 0. The optimisation problem (OP2a), p. 55, is stated as follows (where γA = 0
if we use the approximated version of the resource allocation model and otherwise γA is the
average weight of one amino acid).

min
l

∑
k=1

τk such that

Svk = 0, k = 1, . . . , l

−Atotkc−j (γA + ⟨gk, γ⟩)−1 ≤ vkj ≤ Atotkc+j (γA + ⟨gk, γ⟩)−1,

j = 1, . . . , n, k = 1, . . . , l

gkj = 0⇒ vkj = 0, j = 1, . . . , n, k = 1, . . . , l

gk ∈ G, k = 1, . . . , l
l

∑
k=1

τkv
k
t ≥ Γt, for t ∈ T, k = 1, . . . , l

with variables τk ∈ R≥0, v
k ∈ Rn, gk ∈ {0,1}n , k = 1, . . . , l.

(OP3)

The constraint g ∈ G is only relevant if G ⫋ {0,1}n of course. In this case it is enforcing
the activation of genes gj while vj = 0. In realistic models of transcriptional regulation of
metabolism, such restrictions of the gene expression space to G ⫋ {0,1}n emerge naturally.

58



Chapter 3. Modelling enzymatic resource allocation and alterations in metabolism

3.6.3 Realistic gene expression patterns

The individual metabolic genes in a cell cannot be arbitrarily activated or inactivated, because
certain groups of genes are typically transcribed together. In order to determine biologically
meaningful solutions, the space of gene expression patterns G thus has to be restricted to a
proper subset of {0,1}n. For the application to the core metabolic network (Chap. 4), the
concept of minimal flux modes [Hoffmann and Holzhütter, 2009, Hoffmann et al., 2006] was
adopted.

Minimal flux modes to define functional groups of genes Minimal flux modes (MFMs) repre-
sent minimal functional capabilities of the metabolic network. These flux modes fulfil a given
function while using a minimal amount of resources. For example, we can consider a MFM v̄
maximising the flux rate through one distinct target reaction t ∈ T , while consuming one of the
available substrates (taken up by reaction u). If we use the resource allocation model given by
(3.9), then v̄ is an optimal solution of

max vt s.t.
v ∈ F∗, vi = 0 for all uptake reactions i ≠ u
g ∈ {0,1}n

with variables v ∈ Rn, g ∈ {0,1}n.

(3.21)

The objective of using a minimal amount of resources is in this case formulated by max vt which
also depends on minimising the value p′(v) of the resource allocation function (cf. (OP2b),
p. 56). With the resource allocation model given by (3.8), the bounds of F∗ on the target
function t can be written as −kc−tAtot ≤ v̄t (γA+⟨g, γ⟩) ≤ kc+tAtot, and hence maximising vt is
equivalent to minimising the resource allocation term (γA + ⟨g, γ⟩). The supports of the MFMs
v̄1, . . . , v̄r will be denoted minimal gene sets (MGS) χ1, . . . , χr, i.e., χi ∶= supp(v̄i) ∶= {j ∶
v̄j ≠ 0}. The gene expression space G is defined by the assumption that these functional groups
are regulated together. This means that G is the set of all g where all genes of one distinct MGS
are concertedly activated or inactivated. Note also that one gene can be a member of several
MGSs.

Formulation with linear constraints In order to include this additional constraint into the opti-
misation problem, we introduce binary variables bs, s = 1, . . . , r, where r is the total number of
MFMs, to indicate whether the gene group χs is active or inactive. It follows that gj = 1 if and
only if there exists s ∈ {1, . . . , r} with j ∈ χs and bs = 1. To formulate this as a linear constraint,
let σj = {s ∣ v̄sj ≠ 0} be the set of MFMs using reaction j. Then we have to require that

gj ≤ ∑
s∈σj

bs, for all j = 1, . . . , n, and

bs ≤ gj, for all s = 1, . . . , r, and j ∈ χs.
(3.22)

which is equivalent to
gj ≤ ∑

s∈σj

bs ≤ ∣σj ∣ gj, for all j = 1, . . . , n.
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3.6. Binary gene expression

Constraints on the sequence of gene expression states In the general optimisation problem (OP2a)
the ordering of the different gene expression states g1, . . . gl is arbitrary. From the biologi-
cal point of view, it is however desirable to include also constraints on the ordered sequence
g⃗ ∶= (g1, . . . , gl) of gene expression states. This way, the possible dynamics of the gene regu-
latory network can be represented. The space of all admissible gene expression sequences of
length l will be denoted Dynl ⊆ Gl and (OP2a) is then generalised to

min∑l

k=1
τk, subject to:

vk ∈ Fgk , k = 1, . . . , l

(g1, . . . , gl)⊺ ∈Dynl
∑l

k=1
τkv

k
t ≥ Γt ∀t ∈ T

with variables:

τk ∈ R≥0, v
k ∈ Rn, gk ∈ {0,1}n, k = 1, . . . , l

(3.23)

The constraint g ∈ G in (OP2a) is just replaced with (g1, . . . , gl)⊺ ∈ Dynl to get the generalised
form (3.23). Individual durations τi can take the value τi = 0, which means that the correspond-
ing state gi is omitted. As a consequence, the set of admissible sequences Dynl is practically
extended with all sub-sequences of all g⃗ ∈ Dynl. Note that Prop. 3.10 is still valid, since it
is independent of the order in the sequence of flux modes (and hence also in the sequence of
corresponding gene expression patterns).

Once a space Dynl of admissible sequences is defined, a possible next step in the biological
specification of the model could be to associate minimal delays δ(g, g′) for switches between
the states g and g′ and enforce them by the constraints τi ≥ δ(gi, gi+1), i = 1 . . . , l − 1. If the
optimisation problem (OP2a) is extended by such constraints, Prop. 3.10 need not be valid in
general.

The space of monotone sequences A rather simple restriction of the space of sequences is given
by the constraints that will be used in the application in Chap. 4, namely that genes can only be
switched on, formally, gi ≤ gi+1, i = 1, . . . , l − 1.

3.6.4 Geometry of the flux space

The flux space represented as a union of polytopes In Sec. 3.3, the flux space defined by a
general resource function p was introduced as F∗ ∶= {v ∈ Rn ∶ Sv = 0, ∃g ∈ G s.t. −
Atotkc−j pj(g) ≤ vj ≤ Atotkc+j pj(g), j = 1 . . . , n} which can also be given as F∗ = ⋃g∈GFg. The
Fg are all closed and bounded polytopes by definition and in Sec. 3.4 we assumed that also F∗

is closed. In the case of binary gene expression this assumption is surely satisfied, since we have
a finite space G and F∗ is hence a finite union of closed and bounded polytopes. The properties
bounded and closed are preserved under finite unions, but F∗ need not be convex, see Figs. 3.4
and 3.3.

If v ∈ F∗ is an EM and g ∈ {0,1}n is the support of v then, by definition of EMs, v is up
to scaling the only flux mode on the sub-network of all reactions j with gj = 1. The polytope
Fg is hence just a ray-segment including zero, i.e., Fg = {λ v̄ ∶ 0 ≤ λ ≤ 1} for a maximal
v̄ ∈ M ⊂ F∗. In particular, it follows that Fg ⊈ Fg′ for any two EMs g′ ≠ g. In general we
can have the situation that the polytope Fg is contained in Fg′ for some g′ ≠ g. For example,
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assume the reactions i and k are partially coupled (Def. 2.5). Let g, g′ be identical except on i,
say gi = 1, g′i = 0, and assume gk = 0, g′k = 0. Reaction k is blocked in g as well as in g′ and due
to the coupling reaction i cannot carry flux neither. Since the resource allocation terms differ,
i.e., ⟨g, γ⟩ > ⟨g′, γ⟩, this construction results in flux spaces where the bounds in Fg are strictly
smaller by a factor ⟨g′, γ⟩ ⋅ ⟨g, γ⟩−1 < 1 than those of Fg′ for all reactions except i, where the
bounds are zero in Fg′ , but not in Fg. However, reaction i cannot carry flux in neither flux space
due to the coupling to the blocked reaction k and thus we have the strict inclusion Fg ⫋ Fg′ .

Example of an EM that is not a vertex Due to their minimal support, EMs are ”sticking out” in
the flux space, see Fig. 3.4 or Fig. 3.3. While the EMs in Fig. 3.4 are also vertices (Def. 3.12)
of F , Fig. 3.3 gives an example of an EM (namely e1) that is a local vertex (Def. 3.13) v∗ ∈ F∗

but φ−1(v∗) is not a vertex in F . Lets look at the following flux vectors of the network given in
Fig. 3.3 a):

e1 = (1,0,1,1,1,0)
e2 = (2,1,1,2,0,−1)
e3 = (0,−1,1,0,2,1)

These are all the EMs of the network, as can be verified by hand. However, e1 is also a convex
combination of e2 and e3 and therefore it is not a vertex. The situation can be depicted in the
projection onto the reactions 2 and 3, see Fig. 3.3 b).

3.7 Candidates for optimal solutions

As shown in Sec.3.4, the flux space maps bijectively to a linear flux space
which is obtained by neglecting the limited resource allocation. This corre-
spondence is used now to identify finite sets of elements which are sufficient
to obtain optimal sequences. The analysis aims at binary gene expression, but
is done in a more general setting. The key in the theoretical analysis is the sup-
port of the flux modes. The characterisation of the sufficient elements will be
given in terms of modified variants of decomposability. The result that there is
always an optimal sequence consisting only of flux modes from such a finite
set depends crucially on the condition that the flux space contains zero, which
excludes models with maintenance constraints.

For an LP over a polytope we know that if an optimal solution exists, there is also a vertex
(Def. 3.12) that is an optimal solution. Similarly, we can characterise elements of F∗, such
that there is an optimal solution of (OP2a), p. 55, which consists only of such flux modes. In
fact, the characterisation will be done in the associated polytope F and mapped to F∗ with φ
given by (3.14). The construction aims at the resource allocation model based on (3.10) and
binary gene expression G ⊂ {0,1}n as in (OP3), p. 58, but the mathematics just requires that the
resource function p′ given by (3.13) fulfils p′(v) > 0 for v ∈ F ∖ {0}, so that φ is a bijection by
Corollary 3.5 and furthermore that the gene expression state G is finite and that p′ is monotone
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Figure 3.3: a) A network with six reactions. The four external metabolites outside the box are not
constraint to be in steady state. Reaction 3 has the stoichiometry A → 2 ⋅B, but all other stoichiometric
coefficients are ±1. We define the positive direction of reaction 2 to be the consumption of A. Only
reaction 3 is bounded, namely by Atotkc+3 in the polytope F . This implies bounds on all other reactions
of the network. The pathway using the reactions {1,3,4,5} gives an EM e1 = (1,0,1,1,1,0). This
EM is not a vertex, as is apparent in b) where the projection of F on the reactions 2 and 3 is shown.
The bounds are not specified but the projection assumes that ub3 = Atotkc

+
3 ≤ 2ub2 = 2Atotkc

+
2

and ub3 ≤ −2 lb2. For the resource allocation (approximated version of (3.8)), the molecular weights
are set to γi = 1

4 , i = 1, . . . ,6. The resulting flux space F∗ gives the projection shown in c). While
the EMs e1, e2, e3 are using 5,4,5 reactions, respectively, all other flux modes are necessarily convex
combinations of the EMs e1, e2, e3 and it is straightforward to see that they must use all 6 reactions. The
resulting bounds on reaction 3, given by the resource allocation model in case 4,5 or 6 reactions are
activated, are indicated by the dotted lines.

in the support, i.e., supp(v′) ⊆ supp(v) ⇒ p′(v′) ≥ p′(v). By assumption we have 0 ∈ F∗,F
due to the non-negativity of Atot, kc±j and the resource functions p and p′.

Definition 3.12. Let F ⊂ Rn be a polytope or, more general, a polyhedron. An element v ∈ F
is called a vertex of F if it is not a convex combination of other elements of F , i.e., there exist
no x, y ∈ F ∖ {v}, such that v = λx + (1 − λ)y, λ ∈ [0,1].
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This definition is adopted from [Bertsimas and Tsitsiklis, 1997], where a vertex is defined
as v ∈ F such that there exists a c ∈ Rn with c⊺x > c⊺v for all x ∈ F ∖ {v} and the equivalence
to the characterisation in Def. 3.12 is proven. The non-convex flux space of (OP2a) is a finite
union of polytopes, F∗ ∶= ⋃g∈GFg, as long as G is a finite set. Let v be a vertex of Fg and not
be contained in any other Fg′ , g′ ≠ g. Since v is not contained in the finitely many Fg′ there
is some ε > 0, such that the ε-neighbourhood {x ∈ F∗ ∶ ∥x − v∥ ≤ ε} of v in F∗ contains only
elements of Fg and v is thus not a convex combination of elements of this ε-neighbourhood.

Definition 3.13. A flux mode v ∈ F∗ ∖ {0} is called a local vertex, if there is an ε > 0 such that
for all x1, x2 ∈ F∗ ∖{v} and ∥xi − v∥ ≤ ε, i = 1,2, there is no λ ∈ [0,1] with v = λx1 +(1−λ)x2.

Definition 3.14. A flux mode v from the polytope F = {v ∈ Rn ∶ Sv = 0, −Atotkc− ≤ v ≤
Atotkc+} is called convexly decomposable, if it is a convex combination v = λx1 + (1 − λ)x2

with xi ∈ F ∖ {v}, such that supp(xi) ⊆ supp(v), i = 1,2. By Ω we denote the set of all
elements which are not convexly decomposable and not zero.

◯

0

1 2

ub2

ub1

ub0 ≥ v1 + v2

v2

v1

●

●

Figure 3.4: The projection of a flux spaceF∗, corresponding to the network on the left, onto the reactions
1 and 2. The dotted lines show the upper bounds ub0, ub1, ub2 in case all reactions are used. If only
v0, v1 or only v0, v2 are used, the bounds are bigger and the maximal flux modes that only use one of the
reactions 1, 2 can increase their flux. This leads to the disconnected set M∗ ⊂ F∗ of maximal elements
(Def. 3.2) indicated in red. The two thick arrows correspond to the EMs of the network, namely (1,1,0)
and (1,0,1), which are sticking out in F∗ due to their smaller support. The dashed line indicates the
projection of M ⊂ F , the set of maximal elements of the polytope F . It contains the projection of F∗

(since p′(v) ∈ [0,1]). All other vertices of F are mapped to local vertices of F∗. The two vertices where
both reactions 1 and 2 are used are at the same time convex combinations of the EMs in F∗, as indicated
with the blue line. However, locally they cannot be given as a convex combination.

Note that local vertices as well as not convexly decomposable elements are necessarily max-
imal elements (Def. 3.2) in their respective flux space. Since a local vertex v or a maximal
element v is not 0 by definition, we can assume that v is contained in a ray segment (0, v∗].
In case v ≠ v∗, it would be a convex combination of (1 − ε)v and (1 + ε)v which are both in
(0, v∗] for small enough ε. This is a contradiction and therefore we must have v = v∗. The same
argument shows that also in the ray segment (0, v̄] ⊂ F all elements v ≠ v̄ must be convexly
decomposable. This shows that Ω, the set of all elements that are not convexly decomposable
is contained in M .

The mapping φ is a bijection under the conditions given here by Lemma 3.5 and it will be
used now to characterise elements in F and in F∗.
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Lemma 3.15. If φ(v) ∈ F∗ is a local vertex then v ∈ F is not convexly decomposable.

Proof. The contraposition will be shown. Assume v ∈ F is convexly decomposable, so there
exist x1, x2 ∈ F as in Def. 3.14, in particular v = λx1 + (1 − λ)x2. We can assume that xi are
arbitrarily close to v, i.e., for ε > 0 and i = 1,2, ∥xi − v∥ < ε. This can always be achieved by
replacing

x1 with y1 ∶= (λ + δ)x1 + (1 − λ − δ)x2

x2 with y2 ∶= (λ − δ)x1 + (1 − λ + δ)x2

and choosing δ < ε(∥x1 − x2∥)−1. Then for i = 1,2 we have ∥yi − v∥ = ∥δ(x1 − x2)∥ < ε and
1
2y

1 + 1
2y

2 = λx1 + (1 − λ)x2 = v.
If we choose ε < minj,vj≠0(∣vj ∣), then supp(xi) ⊇ supp(v) as soon as ∥xi − v∥ < ε, i = 1,2.

In the other direction we have by assumption supp(xi) ⊆ supp(v), so that in fact supp(xi) =
supp(v), i = 1,2. A direct consequence is p′(v) = p′(xi), i = 1,2, due to the monotonicity of p′
w.r.t. the support. From v = λx1 + (1 − λ)x2 we can therefore conclude

φ(v) ∶= p′(v)v =λp′(v)x1 + (1 − λ)p′(v)x2

=λp′(x1)x1 + (1 − λ)p′(x2)x2 = λφ(x1) + (1 − λ)φ(x2).

We saw that xi can be arbitrarily close to v. But in fact we want to show that φ(xi) is arbitrarily
close to φ(v), which would imply that φ(v) is not a local vertex. This follows immediately,
because ∥φ(xi) − φ(v)∥ = ∥p′(xi)xi − p′(v)v∥ = p′(v)∥xi − v∥, i = 1,2. As we can choose xi
such that ∥xi − v∥ < ε ⋅ (p′(v))−1, we get ∥φ(xi) − φ(v)∥ < ε for arbitrary ε > 0 and i = 1,2.

An essential ingredient in this proof was the equality p′(v) = p′(xi) which was deduced
from the inclusion of the supports. We will introduce a notion of decomposability which refers
directly to the resource allocation function p′. This will allow establishing a one-to-one corre-
spondence between certain elements of F and the local vertices of F∗.

Definition 3.16. A flux mode v ∈M ⊂ F is called p′-decomposable if it is a convex combina-
tion v = λx1 + (1 − λ)x2 of xi ∈ F ∖ {v}, such that p′(xi) ≥ p′(v), i = 1,2.

Analogously to Ω (Def. 3.14), we define Ωp′ as the set of those elements of F ∖ {0} which
are not p′-decomposable. Due to the monotonicity of p′ w.r.t. the support, every convexly de-
composable element is also p′-decomposable. A vertex of F is neither convexly decomposable
nor p′-decomposable for any p′. Altogether we have the inclusions

{vertices ≠ 0 of F} ⊂ Ωp′ ⊂ Ω ⊂M (3.24)

Also the non-decomposable elements (Def. 2.2) and the EMs (Def. 2.1) of the flux space F
are elements of Ω as follows directly from the definitions. The elements of Ωp′ are now in a
one-to-one correspondence to the local vertices given by φ, i.e., Lemma 3.15 can be generalised
to

Proposition 3.17. Let p′ be monotone in the support, i.e., supp(v′) ⊆ supp(v) ⇒ p(v′) ≥
p(v). Then v ∈ Ωp′ if and only if φ(v) ∈ F∗ is a local vertex.

Proof. To proof ’⇐’ we can adopt the argument of Lemma 3.15. Just replace the condition
supp(xi) ⊂ supp(v) for convexly decomposability with p′(xi) ≥ p′(v) for p′-decomposability.
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Using the monotonicity of p′ w.r.t. the support, gives p′(xi) ≤ p′(v) in the ε-neighborhood of v
and hence the equalities p′(xi) = p′(v), i = 1,2.

To verify the other direction, assume v ∈ Ωp′ , i.e., v ∈ F ∖ {0} is maximal and not p′-
decomposable. To see that v∗ ∶= φ(v) = p′(v)v is then a local vertex of F∗, suppose that for
x∗, y∗ ∈ F∗ we have

λx∗ + (1 − λ)y∗ = v∗ ⇔ λp′(x)x + (1 − λ)p′(y)y = p′(v)v

⇔ λ
p′(x)
p′(v)

p′(v)x + (1 − λ)p
′(y)
p′(v)

p′(v)y = p′(v)v

⇔ λ̂x + µ̂y = v

with λ̂ = λp
′(x)
p′(v) and µ̂ = (1 − λ)p

′(y)
p′(v) . Since x, y ∈ F and λ̂x + µ̂y = v ∈ F is maximal, we

must have λ̂ + µ̂ ≥ 1 (otherwise αv ∈ F for an α > 1). The case λ̂ + µ̂ > 1 is only possible
if w.l.o.g. p′(v) < p′(y). In the complementary case λ̂ + µ̂ = 1 we must have p′(v) > p′(x)
w.l.o.g., because v is not p′-decomposable by assumption. As a consequence, λ̂ = λp

′(x)
p′(v) < λ

and thus µ̂ = (1 − λ̂) > (1 − λ) which is equivalent to p′(v) < p′(y). Concluding, we have
w.l.o.g. p′(v) < p′(y) in any case and this implies, by the contrapositive of the monotonicity
of p′, that supp(v) ⊈ supp(y). The support is clearly an invariant of the bijection φ (that is,
supp(φ(v)) = supp(v)) and we thus get supp(v∗) ⊈ supp(y∗). As we saw in the proof of
Lemma 3.15, the support of y∗ is a superset of v∗ as soon as ∥y∗ − v∗∥ < minj ∈ supp(v∗)(∣v∗j ∣).
Therefore, a convex combination λx∗ + (1 − λ)y∗ = v∗ with x∗, y∗ ∈ F∗ must fulfil ∥x∗ − v∗∥ ≥
ε ∶= minj ∈ supp(v∗)(∣v∗j ∣) and this shows that v∗ is a local vertex.

Due to the inclusion of the vertices ≠ 0 in Ωp′ , (3.24), an immediate consequence is that
every vertex v ∈ F ∖ {0} maps to a local vertex φ(v) ∶= p′(v)v of F∗, see Fig. 3.4. Also
EMs are contained in Ω and Fig. 3.3 gives an example of an EM that is not a vertex in F .
Furthermore, Ω contains elements that are neither vertices nor EMs. This is the case for a flux
mode v ∈ F , if either it cannot be written as a convex combination of x, y ∈ F ∖ {v} or it has
minimal support in the set {z ∈ Rn ∶ z = x + α(v − x), α ∈ R}. This situation is illustrated in
Fig. 3.5.
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Figure 3.5: An example of an element w ∈ Ω that is neither an EM nor a vertex. The network is obtained
from the example of Fig. 3.4 by adding the two reactions 3 and 4. The positive direction of 3 is going
out of the network. Assuming that ub4 ≥ ub0 + ub3 and −lb3 ≤ min(ub1, ub2) the flux v3 can vary freely
between lb3 and ub3 as long as one of the bounds ub0, ub1 or ub2 is attained, i.e., the set of maximal
elements M in the shown projection to the reactions 1, 2 and 3 can be given as M = M ′ × [lb3, ub3],
where M ′ is the set of maximal elements in the projection to reactions 1 and 2. The flux mode w,
indicated by a red dot, has minimal support along the dimension of v3, but it can only be written as a
convex combination along this dimension.

3.7.1 Implications for optimal solutions

The set Ω of all not convexly decomposable elements gives the subset φ(Ω) of F∗. An optimal
solution of (OP2a) can always be composed from elements of this subset. This means that in
the optimisation the search space for the flux modes can be restricted a priori to φ(Ω) instead
of F∗. The same result can be obtained for the potentially smaller set Ωp′ , under an additional
technical condition on p′. In the next section we will see that the set Ω can be generated by
enumeration of EMs, which offers an alternative possibility to solve (OP2a).

Lemma 3.18. Every element v ∈ F can be decomposed into v = ∑k
i=1 λiw

i such that λi ≥ 0,
∑k
i=1 λi = 1, supp(wi) ⊆ supp(v) and wi ∈ Ω, for i = 1, . . . , k.

Proof. Let supp(v) be the set of indices j where vj = 0. The intersection of the polytope F
and the subspace {x ∈ Rn ∶ xi = 0, i ∈ supp(v)} is again a polytope and will be denoted
Fv=0. Clearly v ∈ Fv=0. Since a polytope is the convex hull of its vertices [Bockmayr et al.,
2001, p. 736], we can decompose v = ∑k

i=1 λiw
i, where wi, i = 1, . . . , k, are vertices of Fv=0

and ∑k
i=1 λi = 1. If there are x, y ∈ F ∖ {v} and λ ∈ [0,1] such that wi = λx + (1 − λ)y, then x

and y cannot be both elements of Fv=0, because wi is a vertex of Fv=0. From the definition, it is
evident that Fv=0 = {x ∈ F ∶ supp(x) ⊆ supp(v)}. The fact that x or y is not element of Fv=0

implies therefore that this is not a convex decomposition by Def. 3.14. We conclude that wi is
not convexly decomposable.

Proposition 3.19. If (OP2a) has an optimal solution, then it has also an optimal solution that
consists only of flux modes φ(wi) ∈ F∗, with wi ∈ Ω.
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Proof. Let v∗ ∈ F∗ be part of an optimal solution with the associated duration τ∗. We can as-
sume w.l.o.g. that τ∗ > 0 and this implies for an optimal solution that v∗ ≠ 0. The flux mode can
be mapped by the bijection φ−1 to v ∶= φ−1(v∗) ∈ F . Decomposing v as in Lemma 3.18 into v =
∑k
i=1 λiw

i and mapping the decomposition back to F∗ gives the elements φ(w1), . . . , φ(wk) ∈
F∗. Since we have supp(wi) ⊆ supp(v) and the resource function p′ is monotone in the support,
we get p′(wi) ≥ p′(v). Multiplying the convex combination v with p′(v) gives

v∗ = φ(v) = p′(v) v =
k

∑
i=1

λi p
′(v) ⋅wi =

k

∑
i=1

λi
p′(v)
p′(w)

p′(w) ⋅wi =
k

∑
i=1

λi
p′(v)
p′(w)

⋅ φ(wi).

Since p′(wi) ≥ p′(v), i = 1, . . . , k we have ∑k
i=1(λi

p′(v)
p′(w)

) ≤ 1, replacing τ∗v∗ by φ(wi) with

durations τ∗ ⋅ (λi p
′(v)
p′(w)

) achieves exactly the same production of metabolites, while the total
duration is not increased. This means that the new solution is not inferior and is thus optimal as
well.

Replacing the individual flux modes of an optimal solutions by decompositions into local
vertices φ(w1), . . . , φ(wk) is blowing up the optimal sequence of flux modes. However, this
new sequence can always be reduced to a subset of at most ∣T ∣ of these local vertices of F∗ as
follows from Prop. 3.10.

Under an extra condition on p′, Lemma 3.18 holds also with p′-decomposability, i.e., every
element v ∈ F can be decomposed into v = ∑k

i=1 λiw
i, ∑k

i=1 λi = 1, such that p′(wi) ≤ p′(v)
and wi ∈ Ωp′ , for i = 1, . . . , k. The proof can be given similarly. We define F≤p′(v) ∶= {x ∈ F ∶
p′(x) ≤ p′(v)}, which need not be convex. Now we have to assume the extra condition that
F≤p′(v) is closed. Let V ∶= conv(F≤p′(v)). Since F≤p′(v) is closed by assumption and bounded by
definition, also V is closed and bounded. LetX ⊂ V be the set of elements of V which cannot be
written as convex combination of other elements of V . In general convex sets V these elements
are called extreme points [Rockafellar, 1997, p. 162] and a closed and bounded V is the convex
hull of its extreme points [Rockafellar, 1997, Corollary 18.5.1,p. 167], i.e., conv(X) = V . In
particular, v ∈ F≤p′(v) is a convex combination v = ∑k

i=1 λiw
i, where wi ∈ X , i = 1, . . . , k. By

definition of X and V we must have X ⊂ F≤p′(v). Therefore, wi ∈ F≤p′(v) and by construction
wi is not p′-decomposable analogously to Lemma 3.18. Since Ωp′ ⊂ Ω this is a slightly stronger
result, given that p′ fulfils the condition that F≤p′(v) is closed.

3.7.2 Maintenance constraints

The so-called maintenance reactions (introduced on p. 28) in the metabolic network model
represent vital cellular functions as e.g. energy production or protection from toxic substances,
which have to be fulfilled permanently. In any flux mode a certain minimum flux rate mbj > 0
through the maintenance reaction j is therefore required, giving the additional maintenance
constraints

vkj ≥mbj,

for each flux mode vk, k = 1 . . . , l in a solution of the optimisation problem. To allow for a
convenient vector notation, we set mbj = −∞ for all j which are not maintenance reactions.
This defines a vector mb ∈ (R ∪ {−∞})n and we can write the maintenance constraints as

vk ≥mb. (3.25)
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3.8. Finding solutions from pre-selected flux vectors

These constraints exclude a neighbourhood of 0 from the flux space in Rn. Lemma 3.15 and
all following results are based on the bijective mapping φ, which is only a bijection if 0 ∈ F and
p′(v) > 0 for v ∈ F ∖ {0}. If 0 ∉ F , the results in this section are not valid anymore, see Fig. 3.6
for an illustration.

j

mbj
v̄

v∗ w̄
● ●

w

Figure 3.6: An illustration of the maintenance constraints. The flux space F is given by the shaded area
bounded by the dashed line which indicates the maximal set M . The red full line gives M∗, the set of
maximal elements of F∗. The arrow indicates the ray segment (0, v̄] ⊂ F including the ray segment
(0, v∗] of F∗ . The maintenance constraint vj ≥ mbj reduces the flux space to the darker shaded area
above the dotted line which indicates the flux modes with vj = mbj . On the one hand, the maintenance
constraint cuts away the vertex v∗ = φ(v̄). On the other hand, new vertices w ∈ F∗ and w̄ ∈ F emerge.
The mapping φ is not a bijection and all results based on φ are not valid anymore, in particular the
identification of local vertices with Ωp′ by Prop. 3.17. Also the construction of optimal solutions from
elements of the image of Ω or Ωp′ under φ given in Prop. 3.19 is not possible anymore.

Another consequence of maintenance constraints is that the EMs of the flux cone need not
coincide with the non-decomposable elements and the approach presented in the following sec-
tion, where the set Ω is determined by enumeration of EMs, is hence not applicable in metabolic
networks with maintenance constraints.

3.8 Finding solutions from pre-selected flux vectors

In the previous sections we identified the subsets Ω and Ωp′ of the flux space,
such that an optimal sequence of flux modes can always be composed of flux
modes from one of these subsets. The condition that zero is contained in the
flux space was essential. For the case that the flux space is even a conic sprout,
we will now show how enumeration of elementary modes can be used to gen-
erate Ω. A construction will be given which allows obtaining all not convexly
decomposable elements from an enumeration of non-decomposable flux vectors
of a modified network. Once the set Ω is given, an optimal sequence can be
found by solving an LP.
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3.8.1 Reducing the search space to a finite pre-selection

If we reduce the search space in the optimisation problem (OP2a), p. 55, to a finite subset,
the problem is in fact reduced to an LP. The finite subset will be called a pre-selection A ∶=
{x1, x2, . . . , xq} ⊆ F∗. We consider the optimisation problem (OP2a) on the search space A
instead of F∗. Since A is a finite set, this can be equivalently written as the LP

min
q

∑
i=1

τi, such that

q

∑
i=1

τix
i
t ≥ Γt for t ∈ T

0 ≤ τ
with variables τ ∈ Rq.

(LPps)

Theoretically, any number of entries τi might be non-zero. However, LP solvers usually fin-
ish the computation with simplex iterations and therefore they return a basic optimal solution
τ containing at most ∣T ∣ non-zero entries (cf. Prop. 3.10). To compute an optimal solution
allowing less than ∣T ∣ flux modes, i.e., l < ∣T ∣ in (OP2a), additional non-convex constraints
would be required. A straightforward implementation would be to introduce binary variables
si = 1 ⇔ τi > 0 and the constraint ∑q

i=1 si ≤ l. The resulting MILP with q binary variables is
unlikely to be computationally tractable (cf. Sec. 6.2) and therefore, the pre-selection approach
is not suited to compute optimal solutions of (OP2a) with l < ∣T ∣. Since the optimisation is
performed over a subset A ⊆ F∗, the objective value of (LPps) is less or equal to the objective
value of (OP2a). The goal is to construct a pre-selection such that the difference is as small as
possible. In the best case the objective values are equal.

Definition 3.20. A pre-selection x1, . . . , xq ∈ F is called perfect, if an optimal solution of
(LPps) constitutes also an optimal solution of the optimisation problem (OP2a), p. 55.

3.8.2 Relationship to elementary modes

A direct consequence of Prop. 3.19 is that the set Ω ⊂ F of not convexly decomposable elements
gives a perfect pre-selection if we map it to F∗ with the bijection φ. In this section we show
how Ω can be computed by using EM enumeration. We are only dealing with the linear flux
space F = {v ∈ Rn ∶ Sv = 0, −Atotkc−j ≤ vj ≤ Atotkc+j , j = 1, . . . , n} and will just write
lbj = −Atotkc−j and ubj = Atotkc+j , j = 1, . . . , n. Every flux mode that is not decomposable in
the usual sense (Def. 2.2) is in particular also not convexly decomposable. If the flux space F
is a conic sprout, the non-decomposable elements and the EMs coincide in F , see Prop. 2.3
and the equivalences on page 32. Using EM enumeration, we can then get the set of all non-
decomposable elements. In general this is just a subset of Ω, but it turns out that for certain flux
spaces the two sets coincide. For our resource allocation model given by (3.10), the flux space
is surely a conic sprout, as noted after Corollary 3.5, and the here presented results can thus be
applied.

Proposition 3.21. If all except one single reaction i have redundant bounds (see Sec. 2.2.2),
then the not convexly decomposable elements coincide with the non-decomposable elements.
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Proposition 3.22. If the flux space F is only bounded by the molecular crowding constraint
(3.3), then the not convexly decomposable elements coincide with the non-decomposable ele-
ments.

For both propositions we only have to show that v ∈ F being not convexly decomposable
implies that v is also non-decomposable, because the implication in the other direction always
holds.

Lemma 3.23. Let F ∶= C ∩ {v ∈ Rn ∶ ∑n
j=1 bj ∣vj ∣ ≤ 1} and F ′ ∶= C ∩ {v ∈ Rn ∶ ∑n

j=1 ajvj ≤ 1} for
some a, b ∈ Rn. Every decomposable element in F or F ′ is also convexly decomposable.

As a consequence, the non-decomposable and the not convexly decomposable elements
coincide in F and in F ′. For Prop. 3.21 we apply the lemma for F ′ with ai = (ubi)−1, aj = 0
for j ≠ i and for Prop. 3.22 we use F with bj = qj(kcj)−1, j = 1, . . . , n, to express (3.3) (where
kcj ∶= max(kc+j , kc−j )).

Proof. If v ∈ F is decomposable, there are x, y ∈ F and λ, µ > 0 such that v = λx + µy and
supp(x), supp(y) ⫋ supp(v). For the case of F we need to replace x, y with x′ resp. y′, such
that sign(x′j) = sign(y′j) ∈ {0,+,−} for all j = 1, . . . , n. Therefore, consider for some δ > 0 the
elements x′ ∶= δx + (1 − δ)v and y′ ∶= δy + (1 − δ)v. With λ′ ∶= λ (δ + (1 − δ)(λ + µ))−1 and
µ′ ∶= µ (δ + (1 − δ)(λ + µ))−1 we have λ′x′+µ′y′ = v and we can choose δ such that x′ and y′ lie
in an ε-ball around v. For small enough ε, i.e., ε < minj∈supp(v)(∣vj ∣), every w with ∥w − v∥ ≤ ε
fulfils supp(w) ⊃ supp(v) and we can hence assume that supp(x′), supp(y′) = supp(v) which
is equivalent to x′j = 0 ⇔ vj = 0 ⇔ y′j = 0 for all j = 1, . . . , n. As a consequence, x′ and y′
also have no opposing signs x′j = −y′j ≠ 0, because this would imply that on the one hand vj ≠ 0
and on the other hand that a convex combination w = αx′ + (1 − α)y′ with wj = 0 exists, which
is a contradiction, since w is contained in the convex ε-ball around v.

The following calculation is given for the case of F , but holds similarly for F ′ with a ∈ Rn

instead of b and without application of the absolute value. Assume that v ∈M , i.e., v is maximal
according to Def. 3.2, otherwise it would already be convexly decomposable, see (3.24). By
scaling x′, y′ and adjusting the scalars λ′, µ′ ≥ 0 accordingly, we can also assume that x′, y′ ∈M .
For z = x′, y′, v we thus have∑n

j=1 bj ∣zj ∣ = 1. Due to the identical signs of x′j, y
′
j we can conclude

that
λ′ + µ′ = λ′

n

∑
j=1

bj ∣x′j ∣ + µ′
n

∑
j=1

bj ∣y′j ∣

=
n

∑
j=1

bj ∣λ′x′j + µ′y′∣

=
n

∑
j=1

bj ∣vj ∣ = 1.

(3.26)

We conclude that λ′x′ + µ′y′ = v is a convex decomposition of v.

Optimal solutions with molecular crowding If the flux space is a conic sprout, the non-decom-
posable elements coincide with the EMs of the network. In this case, the EMs give a pre-
selection according to Prop. 3.22. In other words, (OP2a) has an optimal solution that consists
only of EMs. In fact one single EM suffices, because the flux space of molecular crowding
is convex (see Prop. 3.11). The molecular crowding constraint (3.3) can be directly derived
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from the limited enzyme amount, ∑n
j=1 qjEj ≤ 1, and the bounds (3.2), which depend linearly

on the enzyme amounts for the individual reactions, see page 41. Furthermore, we saw in
Corollary 3.9 that the resource allocation model reduces to (3.3) in case G = [0,1]n. In fact,
bounding the total enzyme amount and implementing a linear relationship between individual
enzyme amounts and the bounds on the flux rates was shown to always result in EMs as optimal
solutions for maximisation of distinct fluxes, independently of the precise form of the reaction
kinetics [Müller et al., 2014, Wortel et al., 2014].

3.8.3 Extending the set of elementary modes yields a pre-selection

If the flux space is not of the kind of F or F ′ in Lemma 3.23, we will see that this can be
enforced by extending the metabolic network. Projecting the non-decomposable elements of the
extended network onto the original one yields exactly those elements which are not convexly
decomposable there, that is, we get exactly Ω. If the flux space of the original network is a conic
sprout, then this also holds for the extended network and hence its EMs coincide with its non-
decomposable elements. Therefore, based on this construction we can apply EM enumeration
in the extended network to obtain Ω in the original network.

Construction of the extended network As usual, the reactions of the original network are in-
dexed by J = {1, . . . , n}. Let J+ = {j+(1), . . . , j+(k)} be the subset of reactions whose upper
bound is not redundant and J− = {j−(1), . . . , j−(h)} those, whose lower bound is not redundant
and not 0 (lower bounds lbj = 0 can be omitted here, because they will be represented in the irre-
versibility constraints vj ≥ 0 for j ∈ J irr). A reaction j can have non-redundant upper and lower
bounds and in this case j ∈ J+∩J−. The unique non-redundant reaction in the extended network
will be a new artificial reaction called unibound. It has the bounds lbuni = 0 and ubuni = 1 and
will substitute the bounds for all other reactions, because they will be directionally coupled to
the unibound reaction. This coupling is established by the constraints

vj ≤ ubj ⋅ ṽuni , for j ∈ J+

vj ≥ lbj ⋅ ṽuni , for j ∈ J−
(3.27)

where ṽuni is the flux rate through the unibound reaction. To implement these constraints in the
metabolic network, some more artificial metabolites and reactions will be added.

To define the extension formally, the stoichiometric matrix S̃ of the extended network must
be defined. Let S be the stoichiometric matrix of the original network. The stoichiometric
coefficients of the unibound reaction and the artificial metabolites are given by a vector b ∈ Rk+h

with all non-redundant bounds as entries, i.e.,

bi ∶= {ubj
+(i), i ≤ k

−lbj−(i−k), i > k

The consumption and production of the artificial metabolites by the reactions J+ and J− is given

by the (k + h) × n-matrix A, with Ai,j ∶=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−1, i ≤ k and j = j+(i)
1, if i > k and j = j−(i)
0, otherwise

. The stoichiometry
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unibound

⋮ ⋮

Figure 3.7: The extension of the network. The new metabolites are the filled circles and the new reactions
are dotted as well as the modifications of original reactions. The original reactions which have non-
redundant bounds are modified to additionally consume an artificial metabolite which is exclusively
produced by the unibound reaction. In case the lower as well as the upper bound of a reversible reaction
are non-redundant, one artificial metabolite is added for each direction. Depending on the direction, the
one or the other metabolite will be consumed. The bounds on the unibound reaction are lbuni = 0 and
ubuni = 1 and its stoichiometry implements the original bounds of the non-redundant reactions. A flux
of ṽuni = 1 produces the artificial metabolite(s) for the positive (and negative) direction of reaction j
with stoichiometric coefficient ubj (resp. −lbj). All bounds except ubuni are hence redundant. The new
artificial metabolites are also subject to the steady-state assumption. To allow that the non-redundant
reactions have fluxes below the bounds given by the flux rate of the unibound reaction, so-called leak
reactions are added to let the artificial metabolites drain off. The leak reactions as well as the unibound
reaction are irreversible.

of the extended network is then given by the (m + k + l) × (n + k + l + 1) stoichiometric matrix

S̃ ∶= (S 0 0
A b −Id) ,

where Id is the identity matrix in k+h dimensions. The last l columns define the leak reactions
which consume the artificial metabolites. The flux space of the extended network is given by

F̃ = {ṽ ∈ Rn+k+l+1 ∶ S̃ṽ = 0, ṽj ≥ 0 for j ∈ J irr or j > n, ṽuni ≤ 1}.

An element ṽ ∈ F̃ can be written as

ṽ =
⎛
⎜
⎝

v
ṽuni
ṽL

⎞
⎟
⎠
, (3.28)

where v ∈ Rn, ṽuni is the flux rate of unibound and ṽL are the flux rates of the leak-fluxes, i.e.,
L is the index set of the leak reactions, L = {n + 2, n + 3, . . . , n + 1 + k + l}.

Consider the flux cone defined by S̃ṽ = 0 and ṽj ≥ 0 for the irreversible reactions in the
original network and the artificial reactions which are all irreversible, i.e.,

C̃ ∶= {v ∈ Rn+k+l+1 ∶ S̃ṽ = 0, ṽj ≥ 0 for j ∈ J irr or j > n}.
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The flux space F̃ is obtained from C̃ by adding the single bounding constraint ṽuni ≤ 1. The
corresponding halfspace (cf. p. 15) Huni = {v ∈ Rn+k+l+1 ∶ vuni ≤ 1} clearly contains an ε-ball
around 0 in C̃. This means that F̃ is a conic sprout of C̃ (Def. 2.7).

3.8.4 Projecting the extended flux space onto the original flux space

The constraints S̃ṽ = 0 are equivalent to Sv = 0 and

Av + b ṽuni = ṽL ⇔ {−vj + ubj ṽuni = ṽL(j), j ∈ J+
vj − lbj ṽuni = ṽL(j), j ∈ J−.

Since ṽL ≥ 0 and 0 ≤ ṽu ≤ 1, this implies the original bounds for all non-redundant reactions, i.e.,
vj ≤ ubj for j ∈ J+ and vj ≥ lbj for j ∈ J−. This gives the implication ṽ ∈ F̃ ⇒ v ∈ F for v, ṽ as
in (3.28). Therefore, we can define the projection π∶ F̃ → F by projecting ṽ ∈ F̃ ⊂ R(n+k+h+1)

onto the first n coordinates, that is, onto v. To see that π is surjective, a lifting ψ∶ F → F̃ will

be given, such that π(ψ(v)) = v. Let v ∈ F , then the lifted element is ṽ = ψ(v) ∶=
⎛
⎜
⎝

v
1

b +Av

⎞
⎟
⎠
.

By construction, ṽ is an element of F̃ . Note that an element ṽ ∈ F̃ is maximal if and only if
ṽuni = 1. As a consequence, the image of the lifting is exactly the set M̃ of maximal elements
in F̃ (Def. 3.2). On the other hand, if v is maximal in F then ṽuni = 1 must hold. The projection
of an element that is not maximal in F̃ is therefore not maximal in F .

Since unibound is the only reaction with non-redundant bounds in the extended network,
the non-decomposable elements are exactly the not convexly decomposable elements Ω̃ ⊂ F̃
according to Prop. 3.21. The projection π turns out to establish a one-to-one correspondence
between Ω̃ ⊂ F̃ and Ω ⊂ F . In case the flux space is a conic sprout (Def. 2.7), this allows
generating Ω by enumerating the EMs in the extended network and projecting them.

Proposition 3.24. The not convexly decomposable elements in the extended network project
onto the not convexly decomposable elements in the original network, i.e., π(Ω̃) = Ω.

Proof. The notation in this proof is according to (3.28). To get the inclusion Ω ⊆ π(Ω̃), we show
that every element that is convexly decomposable in F̃ is projected to a convexly decomposable
element in F . If ṽ ∈ F̃ is not maximal then the projection v = π(ṽ) is also not maximal
and hence convexly decomposable as noted before, p. 63. Therefore it just remains to check
maximal elements. Let ṽ = λx̃ + (1 − λ)ỹ be a convex decomposition of a maximal element,
i.e., supp(x̃), supp(ỹ) ⊂ supp(ṽ). Then the elements x̃ and ỹ are also maximal due to Lemma
3.25 below. As a consequence, there are elements x, y ∈ F , such that x̃ = ψ(x) and ỹ = ψ(y),
because the range of ψ are the maximal elements in F̃ . Since ψ is by construction injective, it
follows that x ≠ y. Since the projection is linear, we have

λx + (1 − λ)y = λπ(ψ(x)) + (1 − λ)π(ψ(y)) = π(λx̃ + (1 − λ)ỹ) = π(ṽ) = v.

The projection clearly preserves the inclusions of the supports, so we have supp(x), supp(y) ⊂
supp(v) and v is thus convexly decomposable.

In the other direction we will show that convexly decomposable elements are lifted to con-
vexly decomposable elements. This implies that a not convexly decomposable element in F̃
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must be projected onto a not convexly decomposable element in F and hence π(Ω̃) ⊆ Ω. Let
v = λx + (1 − λ)y be a convex decomposition in F , i.e., supp(x), supp(y) ⊂ supp(v). It is
straightforward to verify that we have the corresponding convex combination ṽ = λx̃+ (1−λ)ỹ
of the lifted elements. Clearly, x̃ ≠ ỹ is implied by x ≠ y. It just remains to show that
supp(x̃), supp(ỹ) ⊆ supp(ṽ). Since x̃u = ỹu = ṽu = 1 and supp(x), supp(y) ⊂ supp(v) by
assumption, it holds for the first n + 1 reactions. For the last reactions, i.e., the leak reactions
l ∈ L, it suffices to verify that the leak fluxes satisfy the implications ṽl = 0 ⇒ x̃l = 0, ỹl = 0.
If ṽl = 0 is given, just note that the leak-fluxes are positive, i.e., x̃l, ỹl ≥ 0. Together with
ṽl = λx̃l + (1 − λ)ỹl, 0 < λ < 1, this implies x̃l, ỹl = 0.

Lemma 3.25. If v is a maximal element of the polytope F , then a convex combination v =
∑k
i=1 λiw

i, λi ≥ 0, ∑k
i=1 λi = 1 implies that w1, . . . ,wk are also maximal elements.

Proof. Assume that the conditions of the lemma are given but not all wi are maximal. Then,
w.l.o.g. w1 is not maximal and αw1 ∈ F with α > 1. Let v′ ∶= λ1(αw1) + ∑k

i=2 λiw
i. This is

a convex combination of elements of F and thus v′ ∈ F . An alternative representation of v is
given by

α−1v′ + (1 − α−1)
k

∑
i=2

λiw
i = λ1w

1 + α−1
k

∑
i=2

λiw
i + (1 − α−1)

k

∑
i=2

λiw
i = v.

The sum of the coefficients is

α−1 + (1 − α−1)
k

∑
i=2

λi = α−1 + (1 − α−1) ⋅ (1 − λ1) = 1 − λ1 + α−1λ1,

but this is strictly smaller than 1, since α−1 < 1. We conclude that v is not maximal contrary to
the assumption.

3.9 Discussion

Summary. In this chapter we presented a mathematical model of resource allocation and an op-
timisation problem to find sequences of flux modes for most efficient production of metabolic
output. The optimisation problem was considered in a very general form as well as in the spe-
cial case of binary gene expression. All flux modes of the sequence are chosen from the same
flux space, which is determined by the resource function representing the resource allocation
model and by the gene expression state. With our derived resource allocation model and com-
pletely free gene expression g ∈ [0,1]n, the resource allocation constraints reduce to one single
constraint which coincides with the molecular crowding approach. If G ⊂ [0,1]n is convex, the
problem is still rather simple, because we know then that also the flux space is convex and as a
consequence, a sequence cannot be more efficient in output production than an optimal single
flux mode. However, with binary gene expression the flux space is in general not convex as is
illustrated by examples. The theoretical analysis is then focused on this binary gene expression
model. Only few aspects concerning the biological meaning and justification of our modelling
approach are mentioned, but these questions will be thoroughly discussed in Chap. 4. Since the
number of binary gene expressions is finite, the flux space is the union of finitely many poly-
topes. The comparison of this flux space with the polytope that is obtained by neglecting the
limited enzyme resources leads to a characterisation of so-called perfect pre-selections. These
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are finite subsets of the flux space which are sufficient to constitute an optimal sequence for any
demand Γ of output production. Due to the assumption that the resource function is monotone
in the support of the flux modes, the decompositions play an important role and it turns out
that a perfect pre-selection is given by the set of not convexly decomposable elements. This
is a notion that was is introduced here and includes non-decomposable elements and elemen-
tary modes (EMs). We construct then an extended flux space whose EMs project to exactly
the not convexly decomposable elements in the original flux space. This allows for using EM
enumeration to generate a perfect pre-selection.

The detailed analysis of the flux space and optimal sequences was concentrated on finite
gene expression spaces G. For infinite but non-convex G, the properties of the flux space and
the question if a perfect pre-selection for optimal sequences can be found are not investigated.
Also the possible differences between Ω and Ωp′ are not further examined. Since we require p′
in Sec. 3.7 to be monotone in the support of the flux modes, it must be constant on all flux modes
with a fixed support vector. Under this condition, the resource allocation model is therefore very
close to the special case of binary gene expression, even if G is infinite. The monotonicity of p′
in the support is thus implementing the assumed insensitivity of the metabolic reactions to the
precise levels of gene expression.

The essential results of this chapter are based on a class of resource allocation models which
give a flux space that is a conic sprout, i.e., it resembles locally at 0 the underlying flux cone.
In particular the existence and the construction of the perfect pre-selection depends on this
property. However, further biologically motivated constraints can destroy this property as is
e.g. the case for maintenance constraints.

Practical implications. The approach to reduce the search space to a perfect pre-selection is
interesting in general, because the MIQCP optimisation problem (p. 15) is reduced to an LP.
In Chap. 6 the possibility to construct pre-selections for more general optimisation problems
is investigated, which might not always give optimal solutions but only approximations. The
theoretical analysis in this chapter yielded a construction of a perfect pre-selection, which means
that an optimal solution is always obtained. This construction can be realised with help of EM
enumeration as long as the extended network (which is enlarged by a factor of at most three but
usually much smaller) is not too large. Once the set of not convexly decomposable elements
has been determined, optimal solutions of (OP2a) can be computed for different objectives
Γ and different model parameters kc±j , γj by solving a rather simple LP. This procedure of
constructing the extended network, enumerating EMs, projecting into the original network and
solving (LPps) with this pre-selection was applied to the core metabolic network presented in
Chap. 4 without the maintenance constraints. An important requirement for this method is
that the flux space is a conic sprout. If this is not the case, for example because the model
contains maintenance constraints, one can try to restore this property by approximating the
maintenance constraintmbj ≤ vj by a constraint a⊺v ≥ 0 which couples the maintenance reaction
to some uptake or output reactions that carry flux in every relevant flux mode. For example this
constraint could be∑t∈T vt ≤ cvj enforcing a flux through j as soon as any of the target reactions
carries flux. Since we optimise for fast output production, only those flux modes are relevant
where this sum is rather big. Such a work around can unfortunately not be developed into a
sound method for implementing approximated maintenance constraints in general, since the
dependence on some reference reactions is a strong restriction, but it might be helpful in certain
cases where the maintenance constraints can be well approximated.
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Concluding, we can say that in basic models the question of optimal sequences can be
answered by finite subsets of the flux space and practically solved by EM enumeration. A
model is basic if it consists only of the steady-state assumption, irreversibilities of reactions
and bounds on the flux rates which might be given by complex resource allocation models,
but do not affect the flux space at 0. For a more general class of models, which need not to
satisfy the requirements for the results in this chapter, some useful approaches for the practical
computation of pre-selections are presented in Chap. 6.
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4 Switching metabolic pathways as a
means to optimise output production

4.1 Overview

The model of resource allocation that was proposed and analysed in the previous chapter will
now be applied. This whole chapter is based on a project that was carried out in collabora-
tion with Hermann-Georg Holzhütter and Sascha Bulik [Palinkas et al., 2015], who provided
also the core metabolic network model given by Fig. 4.3 and Tab. 4.1. The motivation for the
development of the resource allocation model and the computational method was to elucidate
the control and impact of metabolic alterations, and to test whether switching between different
metabolic phases can lead to a more efficient production of the required output than a single
flux mode. The optimisation problem (OP2a), p. 55, based on the resource allocation model
given by (3.7) will be solved for l = 1,2, . . . , ∣T ∣ with additional maintenance constraints and
restrictions on the gene expression states. At first, only a single flux mode is allowed to fulfil
the requirements, then the number of different flux modes that can be used consecutively is
increased. Comparing the objective values gives us the gain in time achieved by operating in
different metabolic phases. Also a reference case where all genes are activated is considered
in order to determine the parameter Atot of total amino acid amount. A minimal example will
serve for analysis of the dependence of the gain on parameters in the resource allocation model
and output requirements. Depending on the parameters, switching between different flux modes
is mostly beneficial, but in certain cases the performance of a single flux mode is superior. The
method is then applied to a core metabolic network of the central carbon metabolism, where a
significant gain in time is achieved by switching. Repeating the computations with perturbed
parameters of the resource allocation model shows that this gain is a robust feature of the model.
We also analyse the trade-off between the capacity for output production against energy pro-
duction and protection from reactive oxygen species. The energy that is required for switching
the flux modes is taken into account a posteriori. The benefit achieved by switching turns out
not to be significantly affected by these additional requirements.
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4.2 Illustration with a minimal example

The presented minimal example will serve to illustrate how a sequence of differ-
ent flux modes can increase the efficiency of output production in our resource
allocation model. It allows describing analytically how the different parameters,
i.e., the bounds and the output demand, determine the performance of a single
flux mode and of a sequence of flux modes.

The minimal example is a simplistic metabolic network comprising three irreversible reactions
(see Fig. 4.1). The network has one internal metabolite X , one uptake flux v0, and two tar-
get fluxes v1 and v2, yielding the target metabolites P1 and P2. The corresponding required
fluxes through the target reactions T = {1,2} are Γ1 resp. Γ2. We presuppose two MGSs (see
Sec. 3.6.3), χ1 ∶= {g0, g1} and χ2 ∶= {g0, g2}. The two associated MFMs arew1 = (v0, v1,0) with
v0, v1 > 0 and w2 = (v0,0, v2) with v0, v2 > 0. As the maximal number of different flux modes
required to minimise the production time of the demanded output cannot be larger than the
number of different target metabolites (Prop. 3.10), the maximal number of different metabolic
phases for this example is two and we thus have to compare four possible strategies, shown in
Fig. 4.1. Strategy A defines the reference case, where all genes are constantly active. The other
strategies assume that during production of the metabolic output the network switches between
two phases. Strategy B consists in producing the two relevant products successively: First, the
demanded amount of product P1 is produced while the pathway for the production of P2 is
switched off. Then, the demanded amount of product P2 is produced while the pathway for the
production of P1 is switched off. The switch between these two metabolic phases requires the
complete degradation of the enzymes constituting the P1-synthesizing pathway. Since rapidly
proliferating cells (without S0-phase of the cell cycle) continuously accumulate biomass dur-
ing growth without any significant degradation of proteins [Roostalu et al., 2008]. Strategy
B should realistically apply to non-proliferating cells. In strategies C and D, during the first
metabolic phase only one product is produced, and in the second metabolic phase both products
are produced simultaneously. Also here switching between the two metabolic phases requires a
partial degradation of enzymes of the initially active pathway in order to allocate protein to the
second pathway. For this simple system an analytical solution of the optimization problem can
be given.

4.2.1 Analysis of the minimal example

Strategy A: Single flux mode For strategy A, the reference case, the demanded output Γ > 0
is produced by a single flux mode v. We assume w.l.o.g. that τv1 = Γ1, τv2 = Γ2 and set
r ∶= Γ2/Γ1 = v2/v1. Using the steady-state assumption v0 = v1 + v2, we obtain v = (v0, v1, v2)⊺ =
v1 ⋅ (1 + r,1, r)⊺. Thus, there is only the unknown v1, which has to be maximised in order to
minimise τ(1) = Γ1/v1. For v > 0, we get the gene expression state g = (1,1,1)⊺. Setting the
expression efficiencies to ηj = 1, j = 1,2,3, the upper bounds on the fluxes according to the
resource allocation model (3.7) are given by

ubj ∶= Atot kc+j
1

γA + ⟨g, γ⟩
= Atot kc+j

1

γA + γ0 + γ1 + γ2

, for j = 0,1,2.
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Figure 4.1: Simplistic metabolic network with two target fluxes. (Drawing provided by Hermann-
Georg Holzhütter) Strategy A: All genes are constantly active, the demanded metabolic output is gener-
ated during the time interval τ0 by a single flux mode composed of the two MFMs (see Sec. 3.6.3) w1

andw2. Strategy B: The two minimal gene sets are separately active, during the first time interval τ1 only
the demanded amount of product P1 and in the second time interval τ2 only the demanded amount of P2

is produced. Strategy C: During the initial time interval τ1 only the minimal gene set χ1 is active and
only a certain fraction α < 1 of the demand for P1 is produced. Thereafter, the second minimal gene set
is additionally activated so that the products P1 and P2 are produced simultaneously. Strategy D: During
the initial time interval τ1 only the minimal gene set χ2 is active, thereafter the second minimal gene set
is additionally activated so that the products P1 and P2 are produced simultaneously. The grey-shaded
panels illustrate the proportions in which the demanded amounts Γ1 and Γ2 of the two output metabolites
are produced in strategies A-D.

Maximizing v1 under the constraint v ≤ ub, we obtain v1 = min(ub0/(1 + r), ub1, ub2/r) or
equivalently

τ(1) = Γ1

v1

= max(Γ1 + Γ2

ub0

,
Γ1

ub1

,
Γ2

ub2

) . (4.1)

Strategy B: Switching between two MinModes Next we consider the case where the two min-
imal gene sets χ1, χ2 are separately activated in two time intervals with flux modes w1,w2.
Here w1 is only producing the target metabolite P1 and w2 only P2. Applying the steady state
condition, we get w1 = (w1

0,w
1
0,0)⊺,w2 = (w2

0,0,w
2
0)⊺. For w1, we have the upper bounds

ub1
0 ∶= Atot kc+0

1

γA + γ0 + γ1

, ub1
1 ∶= Atot kc+1

1

γA + γ0 + γ1

, ub1
2 = 0,
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whereas as for w2 we get

ub2
0 ∶= Atot kc+0

1

γA + γ0 + γ2

, ub2
1 = 0, ub2

2 ∶= Atot kc+2
1

γA + γ0 + γ2

.

Maximizing w1
0 resp. w2

0 under the constraint w1 ≤ ub1 resp. w2 ≤ ub2 yields

w1 = min(ub1
0, ub

1
1)

⎛
⎜
⎝

1
1
0

⎞
⎟
⎠

and w2 = min(ub2
0, ub

2
2)

⎛
⎜
⎝

1
0
1

⎞
⎟
⎠
.

For the durations, we get

τ1 =
Γ1

min(ub1
0, ub

1
1)

= max( Γ1

ub1
0

,
Γ1

ub1
1

) and τ2 =
Γ2

min(ub2
0, ub

2
2)

= max( Γ2

ub2
0

,
Γ2

ub2
2

) . (4.2)

Whether or not the solution using w1 and w2 outperforms the single flux vector v, i.e., whether
or not τ1 + τ2 < τ(1) depends on the demand Γ and the upper bounds ub, ub1, ub2. We discuss
two cases in more detail. First suppose ub0 is small, such that τ(1) = (Γ1 + Γ2)/ub0 and
ub0 < ub1

1, ub
2
2. It follows that τ1 < Γ1/ub0, τ2 < Γ2/ub0 and hence τ1 + τ2 < τ(1). In other

words, switching from w1 to w2 is more efficient than the single flux mode v. Second, assume
ub0 is large, such that w.l.o.g. τ(1) = Γ1/ub1 ≥ Γ2/ub2. In particular, by (4.1) we have (Γ1 +
Γ2)/ub0 ≤ Γi/ubi, which implies Γi/ub0 ≤ Γi/ubi, for i = 1,2. Since ub0 ≥ ubi ⇔ ubi0 ≥ ubii
and using (4.2), we get τi = Γi/ubii, for i = 1,2. The switching solution thus has the duration
τ1 + τ2 = Γ1/ub1

1 + Γ2/ub2
2. As long as Γ2/ub2

2 is not extremely small, this will be larger than
τ(1) = Γ1/ub1, the duration of the single mode solution. Taking a closer look at the ratio Γ1/Γ2,
we observe that a smaller value of Γ1 and a larger value of Γ2 are favourable for the single
mode solution. On the one hand, increasing Γ1 by a factor c > 1 increases also τ(1) by c,
whereas τ1 + τ2 increases by a strictly smaller factor (as long as Γ2 > 0). On the other hand,
decreasing Γ2 has no effect on τ(1), while the duration of the switching solution is decreased.
We conclude that the single mode solution performs best compared to the switching solution,
i.e., τ(1)/(τ1 + τ2) is minimal, if we have equality in our assumption, i.e., Γ1/ub1 = Γ2/ub2, or
equivalently Γ1/Γ2 = ub1/ub2.

Example With Atot = 1.8 ⋅ 106, equal expression efficiencies (ηj = 1, j = 0,1,2) and molecular
weights (γj = 60,000, j = 0,1,2) and catalytic constants kc+0 = 10h−1, kc+1 = kc+2 = 1 [h−1], using
the approximation in (3.7), i.e., neglecting γA = 126 in the denominator, the upper boundaries
of strategies A and B read:

(A) ub0 = 100, ub1 = 10, ub2 = 10 for v1 = (v1
0, v

1
1, v

1
2)⊺ (reference case)

(B) ub1
0 = 150, ub1

1 = 15, ub1
2 = 0 for w1 = (w1

0,w
1
1,0)⊺

ub2
0 = 150, ub2

1 = 0, ub2
2 = 15 for w2 = (w2

0,0,w
2
2)⊺

For the production of Γ1 = 10 units of P1 and Γ2 = 50 units of P2 a production time of τ = 10 [h]
is needed in case (A) and only τ = 6.67 [h] in case (B). Note that for this concrete example, the
concept of perfect gene regulation [Beg et al., 2007] would allow an even shorter production
time of τ = 2.2 [h] to be achievable with a single optimal flux mode v. As we just saw above, this
v is fixed up to scaling by some λ > 0, in this case v = (v0, v1, v2)⊺ = λ⋅(6,1,5)⊺ [(mol/gDW)/h].
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Perfect gene regulation would mean that all enzymes work at their maximal capacity, i.e., ub =
λ ⋅ (6,1,5)⊺ [(mol/gDW)/h]. With the given values for the molecular weights and the catalytic
constants this is achieved by choosing the gene expressions g ∈ [0,1]3 to be g0 = 0.12, g1 = 0.2
and g2 = 1. The resulting upper bounds are then ub = (ub0, ub1, ub2)⊺ = 4.545 ⋅ (6,1,5)⊺ = v.

We will now have a look at the effect that the parameters Γ and kc+ have on the performance
of the strategies A and B. For Γ1 + Γ2 = 100 units, the optimal solution with strategy B always
needs τ1 + τ2 = 6.67 h, whereas the time needed with a single flux mode (strategy A) varies
between τ(1) = 5 [h] in the case Γ1 = Γ2 = 50 units to τ(1) = 9 [h] for Γ1 = 90, Γ2 = 10
units. When we fix Γ1 = Γ2 = 50 units and vary instead the catalytic constants kc+1 , kc+2 , strategy
B becomes preferable if the constants are sufficiently different. For example, with kc+1 = 0.5
h−1 and kc+2 = 5 h−1 we get for strategy A ub1 = 5 and ub2 = 50 [(mol/gDW)/h] and therefore
τ(1) = 10 [h]. For strategy B the bounds are increased by the factor 3/2 or set to zero and they
allow production of Γ in a time of τ1 + τ2 = 6.67 [h] + 0.67 [h] = 7.33 [h] only.

Strategies C or D

Between these two extreme strategies to produce all demanded output on the one hand in a
single flux mode and on the other hand with two flux modes, of which each produces only one
output, there are the strategies C and D. Strategy A can be seen as the limit case of strategy C
or D, when τ2 goes to zero. On the other side strategy B is then the limit case of C or D, when
v2

1 resp. v2
2 vanishes. In general, these mixed strategies can significantly increase the efficiency

compared to Strategy B, as is illustrated in Fig. 4.2.

4.3 A core metabolic network of the central carbon metabolism

As a biologically meaningful application of our approach, a core metabolic net-
work model is introduced. Based on parameters from the literature, we estimate
the minimum total protein amount required to fulfil maintenance and biomass
production and compute minimal functional flux modes and gene sets. We also
take a look at the balance between the costs for biomass production and main-
tenance constraints. After this, the performance of sequences and single flux
modes can be compared in the next section.

A core metabolic network of the cellular carbon metabolism is given by the reaction scheme
Fig. 4.3. It comprises as main metabolic pathways glycogenesis, glycolysis and gluconeoge-
nesis, the pentose phosphate cycle composed of the oxidative and non-oxidative branch, the
synthesis of triglycerides and the oxidative energy metabolism. The citric acid cycle, the res-
piratory chain and the synthesis of free fatty acids and triglycerides are only represented by
lumped overall reactions. The considered final output of the network is the production of four
macromolecules which are central for maintaining the integrity of the cell and which in dividing
cells have additionally to accumulate in the growth phase (G1 of the cell cycle) before cell di-
vision: Synthesis of glycogen (an important carbohydrate store), nucleic acids (RNA + DNA),
triglycerides (an important energy store), and proteins. The cellular network can exchange oxy-
gen, carbon dioxide and the metabolites glucose and lactate with the environment. The rate
of the membrane transporters for glucose and lactate is subject to the same resource allocation
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w2
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ub22

ub2

ub1 ub11

ub0 ≥ v1 + v2

v2

v1

τ2w
2

τ1w
1

w2

w1

v1 ≥ Γ1

v2 ≥ Γ2

v2

v1

τ ′1v
′

τ ′2w
2

v

Figure 4.2: Projection of the flux space of the minimal example on the reactions 1 and 2. The grey
region defines the demand. We consider the network with Atot = 40, γ0 = 2, γ1 = γ2 = 1 and use the
approximated version of (3.7) without γA. The turnover numbers of the reactions are kc+ = (5,3,4)⊺

and kc− = (0,0,0)⊺. The bounds are then ub = Atotkc
+ 1

4 = (50,30,40)⊺ if all three reactions are
used. For the case that only two reactions (reactions 0 and 1 or reactions 0 and 2) are used, we have
ub1 = ub2 = 4

3ub =
1
3 (200,120,160)⊺. The demand is Γ1 = 20, Γ2 = 60. The optimal single flux mode

to satisfy the demand is v = (50,12.5,37.5)⊺, with the duration τ = 1.6 (dashed arrow). Using strategy
B, we get the two MFMs w1 = 40 ⋅ (1,1,0)⊺, w2 = 160

3 ⋅ (1,0,1)⊺ and a solution with durations τ1 = 0.5
and τ2 =

9
8 = 1.125, summing up to 1.625 (red dotted arrows). An optimal solution is the combination of

v′ = (5,3,2)⊺ with τ ′1 =
2
3 and the MFM w2 = 160

3 ⋅ (1,0,1)⊺ with τ ′2 =
7
8 = 0.875, summing up to a total

time of 1.542 (black dotted arrows).

constraints as all other enzymatic reactions. Only the exchange of oxygen and carbon dioxide
as well as the artificial reactions ATPase and GSHox which represent energy consumption and
glutathione reduction, respectively, are excluded from the resource allocation model.

Some of the metabolic objectives of a network have to be permanently fulfilled during the
whole life cycle of a cell, and thus cannot be temporarily switched off. These requirements are
implemented by maintenance constraints, see Sec. 3.7.2. For the metabolic network of Fig. 4.3,
the maintenance reactions are ATPase and GSHox, producing the metabolites ATP and GSH,
respectively. The anti-oxidant GSH protects the cell from reactive radicals and has to be contin-
uously replenished from GSSG. Furthermore, besides the ATP consuming processes utilised by
reactions that explicitly occur in the network, a certain fraction of ATP is continuously utilised
(termed +ATP utilisation in Table 4.1) to maintain essential cellular processes as, for example,
active membrane transport or cell motion. Table 4.1 quantifies for an average human cell type
the demanded output and the brutto reactions relating the metabolites produced in the network
to the output of macromolecules. The prescribed fluxes through the target reactions GSSG re-
duction and surplus ATP production convert into the quantities of ATP and GSH that have to be
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obligatorily produced in any time interval, implemented by (3.25), page 67.

Formulating the optimisation problem The optimisation problem to minimise the production
time for the four target metabolites glycogen, protein, nucleic acids and lipids (triglycerides)
thus has to be solved by taking into account the possible consumption of the two alternative
substrates glucose and lactate and the two indispensable maintenance reactions ATP consump-
tion and GSSG reduction (see Table 4.1). We used here the basic optimisation problem (OP3),
p. 58, with the resource allocation function p defined by (3.10) and extended it with two main-
tenance constraints, namely vkj ≥ mbj for j ∈ {ATPase, GSHox} and k = 1, . . . , l. The space
of available gene expression states G ⫋ {0,1}n is constituted by combinations of minimal gene
sets (MGS) which are based on minimal flux modes (MFM) computed for the production of
the output under different conditions as described in Sec. 4.3.1 below. This restriction of the
gene expression space is implemented by linear integer constraints as explained in Sec. 3.6.3.
The resulting optimisation problem will further on just be called (P0). In Sec. 4.4.1 the se-
quence of gene expression states will be additionally constrained to be monotone, which is also
implemented by linear integer constraints, see Sec. 3.6.3. The optimisation problem with this
additional restriction will be called (P1) in this chapter. For all computations these optimisa-
tion problems are solved with the Gurobi Optimizer 5.6 (http://www.gurobi.com) via
Matlab. All computations were carried out with and without the approximation in the resource
allocation model (3.10). The numerical results were identical in all cases. The eligibility of the
approximation is hence confirmed and we do not have to distinguish between the original and
the approximated version in this chapter.
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Figure 4.3: Scheme of the network of the central carbon metabolism, with glucose or lactate as
substrates. (Drawing provided by Hermann-Georg Holzhütter.) The metabolic output, i.e., produc-
tion of triglycerides, nucleic acids, proteins and glycogen are shown in red as well as the perma-
nent energy consumption (ATPase) and oxidative stress (GSHox). The metabolites are Lactate (Lac),
Glucose (Glc), Glucose-6-P (Glc6P), Fructose-6-P (Fru6P), Fructose-1,6-bisphosphate (Fru1,6P2),
Glucose-1-P (Glc1P), UDP-Glucose (UDP-Glc), Dihydroxyacetone phosphate (DHAP), Glyceraldehyde
phosphate (GraP), 1,3-Bisphosphoglycerate (1,3P2G), 3-Phosphoglycerate (3PG), 2-Phosphoglycerate
(2PG), Phosphoenolpyruvate (PEP), Pyruvate (Pyr), Oxalacetate (OA), Acetyl-Coenzym-A (ACoA),
Gluconate-6-P (6PG), Ribulose-5-P (Ru5P), Xylulose-5-P (X5P), Ribose-5-P (R5P), Sedoheptulose-7-P
(S7P), Erythrose-4-P (E4P) and Phosphoribosyl pyrophosphate (PRPP).
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Metabolic output of the reaction network
Target metabo-
lite

biomass reaction for producing 1
unit of target molecule

demanded units flux
units Γt

Glycogen 50,000 UDP-Glc → 1 glycogen
+ 50,000 UDP

5.6 ⋅ 10−6 mmol/gDW 1) 0.28

Triglycerides 3 palmitate + 1 glycerol-3-P + 3
ATP → 1 triglyceride + 3 AMP

0.2 mmol/gDW 2) 0.2

Proteins 400 OA + 1600 ATP→ 1 protein
+ 400 AMP + 1200 ADP

0.016 mmol/gDW 3) 6.4

Nucleic acids RNA: 3000 PRPP + 21.000 ATP
→ 1 RNA + 21.000 ADP

4.48⋅10−5 mmol/gDW 4) 0.13

DNA: 6⋅109 PRPP + 42⋅109 ATP
→ 1 DNA +42 ⋅ 109 ADP

5.3 ⋅10−13 mmol/gDW 4) + 0.032
= 0.162

GSSG reduction 1GSSG + NADPH → 2 GSH +
NADP

0.002 (mmol/gDW)/h 5)

+ATP utilisation ATP → ADP 5 (mmol/gDW)/h 6)

1. Average number of glucose moieties in a glycogen molecule = 50,000. Average MW of
glycogen = 70 [µg/mg] protein [Rousset et al., 1981].

2. 0.167 [g/gDW] lipid [Shlomi et al., 2011b]. Average MW per triglyceride = 176+42n [Da]
with n = length of fatty acids. With n = 16 (palamitate) MW = 848 [Da].

3. 0.78 [g/gDW] protein [Shlomi et al., 2011b]. Average size of protein = 400 amino acids.
Average MW per amino acid = 126 [Da]. As amino acids are not included into the network
model the metabolite oxaloacetate (OA) involved in the transamination of many amino acids
is used here as a place holder, i.e., the consumption of amino acids for protein synthesis
equals the consumption of OA.

4. DNA: 0.0103 [g/gDW] [Shlomi et al., 2011b]. Length DNA (double strand) = 6 ⋅ 109 nu-
cleotides. Average MW of single nucleotide = 325 [Da]. RNA: 0.0437 [g/gDW] [Shlomi
et al., 2011b]. Average length RNA = 3000 nucleotides.

5. GSSG reduction rate in erythrocytes representing a cell type with a high oxidative load
[Schuster and Holzhütter, 1995].

6. Value chosen such that 40 % of total ATP utilisation is spent on active membrane e processes
(predominantly Na-K-ATPase).

Table 4.1: Demand of output metabolites and associated energy consumption. The amounts in the third
column are based on literature. In the fourth column, the corresponding flux units through the target
reactions are given, they define the demand vector Γ for the computations. These values are obtained by
scaling the demanded units according to the stoichiometry of the network model. For example, the target
reaction for glycogen synthesis consumes 1 UDP-Glc which gives a factor of 50,000 for the demanded
units and we get 50,000 ⋅ 5.6 ⋅ 10−6 = 0.28 [mmol/gDW]. Since the nucleic acid synthesis is subsumed in
one reaction in our model, the sum of RNA and DNA demand gives the value of Γ. For the maintenance
reactions ATPase and GSHox, minimal flux rates are given which need to be attained permanently.
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In Tab. 4.1 the values of Γt are given in the rightmost column for the four target reactions
t ∈ T representing synthesis of glycogen, triglycerides, proteins and nucleic acids. The overall
reactions GSHox and ATPase are defined as maintenance reactions, the minimum maintenance
flux rates are 0.002 [(mmol/gDW)/h] for GSHox and 5 [(mmol/gDW)/h] for ATPase.

4.3.1 Determination of minimal gene sets

For each of the two substrates glucose or lactate, we computed 6 minimal gene sets (MSGs),
each corresponding to a minimal flux mode (MFM) producing the maximal amount of one of
the 4 target metabolites or maximising one of the two maintenance fluxes (see Sec. 3.6.3). The
maintenance constraints are not imposed in these computations. The MFMs were obtained by
(3.21), that is, maximising the flux through one of the target reactions or maintenance reactions
over the flux space given by the steady-state assumption and the bounds (3.7) of the resource
allocation model. The single uptake reaction u refers either to glucose or to lactate uptake.
To these 12 MGSs we added another group corresponding to 8 MFMs which maximise the
flux through the four target reactions yielding glycogen, protein, nucleic acids and triglycerides
while maintaining the indispensable target fluxes. This means that the maintenance constraints
vj ≥ mbj for j ∈ {GSHox, ATPase} were added to the optimisation (3.21) which was then car-
ried out as before for the four target reactions and one of the substrates. The resulting 20 MGSs
were used to constrain the gene expression states, i.e., the simultaneous activation and inactiva-
tion of genes when solving the optimisation problem. These constraints were implemented by
linear constraints as described in Sec. 3.6.3.

4.3.2 Specification of turnover rates and molecular masses

Numerical values for the turnover rates kc±j and molecular weights γj were taken from the
BRENDA data base [Schomburg et al., 2002, http://www.brenda-enzymes.org/].

Molecular weights The diffusion transport of O2 and CO2 as well as the maintenance reactions
GSHox and ATPase and the synthesis reactions of the target metabolites are excluded from
the resource allocation model by setting the molecular weights to γj = 0 (cf. p. 45). These
reactions were furthermore assumed not to be rate limiting and the corresponding turnover
numbers therefore set to ∞. The upper bounds of these reactions are then ∞, independently of
the gene expression state. For the reversible reactions O2 and CO2 the lower bounds are −∞, but
for the irreversible synthesis reactions as well as for GSHox and ATPase the lower bounds are 0.
All other reactions of the network are subject to the resource allocation model. Their molecular
weights could be obtained from BRENDA. The molecular masses assigned to lumped reactions
were taken as the sum of the molecular masses of the involved individual enzymes.

Turnover numbers Transport rates for glucose and lactate were taken from [Goodyear et al.,
1991, Hertz and Dienel, 2005], respectively. For the overall reaction ’citric acid cycle’ (TCA),
we took the turnover number of the rate limiting enzyme isocitrate dehydrogenase. The fatty
acid synthesis, FS, was assigned a turnover number of 43 s−1, according to [Cox and Hammes,
1983] and oxidative phosphorylation was assigned a turnover rate of 80 s−1, which is the min-
imum of the values for the individual reactions, as retrieved from BRENDA. For Glucose-6-P-
dehydrogenase we assigned a turnover rate of 14 s−1 according to [Topham et al., 1986]. The
few reactions where no turnover number was found were assumed not to be rate limiting for
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the network, the respective fluxes are hence unbounded. Formally, kc+j is set to ∞ for these
reactions j and if j is reversible kc−j = −∞, otherwise kc−j = 0.

4.3.3 Specification of the reference case

To define the reference case where the network operates with a single stationary flux mode,
in which all genes are constantly active and thus all enzymes are constantly expressed, the
value of the total mass of amino acids, Atot, was chosen such that the minimal time for the
production of the demanded metabolic output given in Table 4.2 was 8 hours. The times needed
for biomass production decrease monotonously with increasing Atot. A value of 8 [h] for the
biomass duplication time lies between doubling times reported for yeast cells (1.25-2 hours) and
cancer cells in culture derived from metastatic tumors (∼ 24 hours). Slightly different values
of Atot were obtained depending on the availability of the substrates glucose and lactate (see
Table 4.2). The critical amount of amino acids Acrittot which is just sufficient to produce the flux
through the two maintenance reactions (GSHox and ATPase) without required production of the
four biomass components is about Acrittot = 0.023 [mg/gDW]. This means that 20% to 27% of the
total available amino acids pool has to be spent on pathways enabling these two permanently
active maintenance reactions (see Table 4.2). Under challenging conditions, the flux through
the maintenance reactions may even increase, e.g. if the cell is exposed to a higher osmotic
pressure that necessitates the activation of membranous ATP-depending ion pumps to preserve
the osmotic equilibrium, or at a higher load of reactive oxygen species (peroxides) enhancing
the utilisation of GSH. In such situations, at a fixed value ofAtot, an increase of the flux through
the maintenance reactions can result in a slower production of the biomass components. The
increase in production time under higher maintenance requirements revealed a weak and linear
sensitivity to an increase of GSH oxidation minimum flux, increasing the production time only
marginally. Higher permanent ATP demand has no effect as long it does not cross a value of
circa 11 [(mmol/gDW)/h]. However, as this threshold is surpassed the production time increases
drastically (see Fig. 4.4).

Computation of protein amounts Formally, Acrittot is defined as the minimal protein amount α
that enables a flux mode v ∈ F∗ with maintenance constraints vj ≥mbj for j ∈ {GSHox, ATPase}.
All genes are assumed to be activated, hence the resource allocation term is fixed to a constant,
pj(v) = r ∶= (∑n

j=1 γj)
−1

. Therefore, v ∈ F∗ is equivalent to Sv = 0 and α ⋅ kc−j r ≤ v ≤ α ⋅ kc+j r.
By substituting w ∶= α−1v, these constraints are equivalent to Sw = 0, kc−j r ≤ w ≤ kc+j r and
α ⋅ w ≥ mb. This gives the following optimisation problem, whose objective value is Acrittot by
definition:

minα, subject to:
Sw = 0

kc−r ≤ w ≤ kc+r
α ⋅w ≥mb
with variables: α ∈ R≥0, w ∈ Rn

(4.3)

In fact, a close look at (OP3), i.e., (P0) without maintenance constraints, reveals that the
durations τk depend linearly on Atot. Let the optimal solution v1, . . . vl, τ1, . . . , τl of (OP3),
p. 58, be given with any Atot > 0. For a different A′

tot > 0, we get an optimal solution by scaling
the durations with Atot/A′

tot, as follows directly by substituting in the optimisation problem. To
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Figure 4.4: Dependence of the minimal biomass production time in the reference case (all genes
active) on the magnitude of the flux through the maintenance reactions. The fluxes through the
maintenance reactions were increased. GSHox flux was increased up to 50-fold and ATPase flux 4-fold
of their normal values. The surface starts at the bottom with the minimal production time of 8 [h] with
all genes active and maintenance demand of 0.002, 5 [(mmol/gDW)/h], see Table 4.1. Only if ATP
consumption by the maintenance reaction is increased by a factor ≥ 2.5, the minimal production time
is prolonged. This is due to the fact that fulfilment of the metabolic objectives requires ATP production
in all metabolic phases. As long as the responsible reactions are not rate limiting, i.e., their catalysing
enzymes do not operate at the upper flux bound, the rate of ATP synthesis can be increased to balance
the additional ATP demand of the maintenance reactions up to an increase to the 2.5-fold of the nor-
mal. Below this threshold, only GSSG reduction acts as a bottleneck for biomass production. With 15
[(mmol/gDW)/h] of ATP consumption the time for production becomes 13.1 [h] and if the consumption
rate tends towards 18.7 [(mmol/gDW)/h], the total available amount of amino acids has to be allocated
to the ATP-producing flux mode and de novo production of biomass is not possible anymore. In contrast,
variations of the flux through the GSH oxidase reaction have only little impact on the minimal production
time. An even 5-fold higher rate of GSH oxidation prolongs the minimal production time by only 0.06
h.

compute Atot, we also have to minimise a protein amount. The requirements are in this case
not only the fulfilment of the maintenance v ≥mb, but also that the production of the demanded
output is achieved in a given time, namely τ = 8 [h]. Formally, τ ⋅ vt = 8vt ≥ Γt, for t ∈ T .
The substitution of w as above gives w ≥ τ−1Γ. So Atot is the objective value of the following
optimisation problem, where τ−1 = 1

8 .

minα, subject to:
Sw = 0

kc−r ≤ w ≤ kc+r
α ⋅w ≥mb
α ⋅wt ≥ τ−1Γt for t ∈ T
with variables: α ∈ R≥0, w ∈ Rn

(4.4)
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Note that the products of the variables α ⋅ wt in (4.3) and (4.4) can be eliminated as explained
on page 38.

To compute the required time if the protein amount is fixed to Atot and the maintenance
bounds are increased, see Fig. 4.4, the roles of τ and α are interchanged in (4.4): The duration
τ is the variable and is minimised (or, equivalently, τ−1 is the variable and is maximised), while
α is a fixed parameter.

substrate Acrittot in mg/gDW Atot in mg/gDW
glc and lac 0.023 0.087
glc 0.023 0.115
lac 0.024 0.087

Table 4.2: Minimal total molecular mass of amino acids Atot required to produce the metabolic output
within 8 [h] at different conditions of substrate supply. Acrittot represents the minimal total molecular
mass of amino acids required for only fulfilling the maintenance constraints. The computations were
done under the reference conditions where all genes are activated.

4.4 Performance of optimal sequences compared to single flux modes

Applying the resource allocation model and the optimisation problems devel-
oped in the previous chapter with the parameters presented and derived in the
previous section, we will now analyse the performance of sequences of differ-
ent flux modes in producing metabolic output. The results show that switching
yields a significant gain in production time under all substrate conditions. To
make sure that this is not the result of opportune parameters, the robustness of
these results is confirmed by repeating the computations with sampled parame-
ters. Furthermore, we estimate the energy cost for switching in order to verify
that this cost is not cancelling the achieved gain in efficiency.

After the computation of the total amount of amino acids Atot and the MGS, we investigated
whether switching between different sets of active genes may significantly reduce the minimal
production time of the metabolic output. This was done by solving the optimisation problem
(P0), that is, (OP3), p. 58, with additional maintenance constraints and the gene expression
space G generated by the MGS. Furthermore, all computations were also carried out for (P1)
which is obtained by adding the constraint that genes can only be switched on from one phase to
the next. The numerical values of the expression efficiencies were put to ηj = 1 for all enzymes,
j = 1, . . . n. Hence, the abundance of enzymes according to expression (3.7) is only controlled
by the number and molecular masses of active genes in the model. According to Prop. 3.10,
an optimal solution of the minimisation problem does not require more phases than there are
different target reactions, i.e., l ≤ ∣T ∣ can be assumed. Thus we fixed the maximal number of
phases where different sets of genes are active to l = 4 and solved the optimisation problem
for an increasing number of phases, l = 1,2,3,4. Note that the case l = 1 is not identical with
the reference case. Solving the optimisation problem with l = 1 allows inactivating parts of the
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network, whereas all genes are active in the reference case. By τ(l) we denote the total time
needed with an optimal solution using at most l phases. As before, τk denotes the duration in
the k-th phase of a solution. The times τ(1) are notably below 8 [h], see Tables 4.3 and 4.4. The
minimal production times obtained when the number of possible phases was increased stepwise
from l = 1 to l = 4 are depicted in Table 4.3. The flux distributions of the optimal solutions with
l = 4 are shown in Figs. 4.6 to 4.8 for the three different substrate conditions. In Tab. 4.3 we see
that the most significant drop of the minimal production time was already obtained by allowing
two phases, i.e., switching the network once between two different steady states. A larger
number of phases resulted only in a marginal further improvement. The precise dependence of
the gain on the number of switched genes can be determined by another computational approach
which is presented in Sec. 6.7, see Fig. 6.4 therein. If both substrates are available, the best
solution with a minimal production time τ = 4.78 [h] was obtained with three switches between
l = 4 phases. The relative proportions of the biomass components produced within the four
phases are shown in in Fig. 4.5 and the corresponding flux modes are visualised in Fig. 4.6.

The sequence of phases is arbitrary. However, since the degradation of proteins and the
de novo synthesis of mRNA and proteins consumes energy and other metabolic resources, we
ordered them such that the cost for newly synthesised protein in the transitions between the
different activity states in consecutive time intervals becomes minimal (the cost for synthesis
was computed according to (4.5) in Sec. 4.4.2 below).

The results of the computations, i.e., the optimal solutions of (P0) show that the rate of
synthesis of the four biomass components should vary in different phases. In particular, the
synthesis of glycogen and nucleic acids (dominated by the de novo synthesis of DNA) is pre-
dicted to occur only in short phases, whereas the production of the more abundant components
(lipids and proteins) occurs in more than one phase. The optimal solutions depend critically on
the availability of substrates. If, for example, only glucose is available, the total time interval
during which the genes related to protein synthesis are active is longer than in a situation where
both glucose and lactate can be used (see Fig. 4.5 A,B). Interestingly, if the two substrates glu-
cose and lactate are both available, they are used differently within the four phases. During
the synthesis of nucleic acids and glycogen, both substrates are used in parallel, but in the last
phase, where the majority of protein is synthesised, lactate serves as the only substrate.

4.4.1 Minimising biomass production time by successive activation of genes

The optimal solutions in the preceding section were obtained by allowing genes and the related
enzymes to be switched on and off in different metabolic phases. This is an unlikely situation
in rapidly dividing cells, which run quickly through the G1-phase of the cell cycle without a
notable degradation of proteins [Roostalu et al., 2008]. To account for this situation, all calcu-
lations were repeated with the additional constraint that genes can only be progressively turned
on. Nevertheless, a partial degradation of enzymes of the preceding phase is still required. This
is because the resource allocation model distributes in every phase all available proteins among
the active reactions and degradation is hence necessary to make amino acids available for the
synthesis of the additionally activated enzymes. The constraints gi ≤ gi+1 for i = 1, . . . , l − 1
are added to (P0) and we obtain the optimisation problem (P1). In fact, it would make no
difference if the monotonicity was imposed on the MGS activation instead of the gene activa-
tion. The constraints gi ≤ gi+1, i = 1, . . . , l − 1 are equivalent to the similar constraints bi ≤ bi+1,
i = 1, . . . , l − 1, where bi ∈ {0,1}s are the indicator variables of the MGS χ1, . . . , χs which are
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Switching MGS On and Off
sub-
strates

l τ(l) [h] τ1 [h] τ2 [h] τ3 [h] τ4 [h] # gene
switches

# active
genes

glc, lac 1 7.344 0 41 (i)
2 5.394 2.815 2.580 10 33, 43 (ii)
3 4.788 2.434 0.177 2.177 28 (14+14) 31, 41, 35 (iii)
4 4.774 2.451 2.090 0.099 0.134 31 (12+10+9) 31, 35, 37, 40 (iv)

glc 1 7.513 0 41 (v)
2 5.330 2.113 3.217 15 38, 33 (vi)
3 4.812 3.217 1.439 0.157 15 (9+6) 33, 32, 38 (vii)
4 4.794 0.095 0.057 1.425 3.217 17 (6+2+9) 36, 34, 32, 33 (viii)

lac 1 7.344 0 41 (ix)
2 5.929 0.706 5.222 6 41, 35 (x)
3 5.857 5.222 0.202 0.433 8 (2+6) 35, 37, 39 (xi)
4 5.848 3.052 2.161 0.202 0.433 10 (2+2+6) 33, 35, 37, 39 (xii)

Table 4.3: MGS can be switched on and off from one phase to the next. Times of optimal solutions with
1,2,3 and 4 phases. The flux modes of solutions (iv), (viii) and (xii) are visualised in the network in
Figs. 4.6 to 4.8.

active in the i-th phase, see Sec. 3.6.3. The results are listed in Table 4.4. The gain, i.e., the
relative reduction of biomass production times was only marginally lower than in the preceding
computations, where gene sets could also be switched off in subsequent phases. Remarkably,
although the additional constraint that genes can only be turned on results in a smaller total
number of gene switches (see Tables 4.3 and 4.4), the predicted four phases of biomass produc-
tion are very similar to those obtained if genes are allowed to be turned on and off (see Fig. 4.5).

Switching MGS only On
sub-
strates

l τ(l) [h] τ1 [h] τ2 [h] τ3 [h] τ4 [h] # gene
switches

# active
genes

glc, lac 1 7.344 0 41 (i)
2 5.394 2.580 2.815 10 43, 33 (ii)
3 4.850 2.053 0.180 2.618 18 (6+12) 37, 43, 31 (iii)
4 4.847 2.006 0.089 0.131 2.621 18 (2+4+12) 37, 39, 43, 31 (iv)

glc 1 7.513 0 41 (v)
2 5.729 2.512 3.217 10 43, 33 (vi)
3 5.180 1.782 0.181 3.217 16 (6+10) 37, 43, 33 (vii)
4 5.170 0.086 0.086 1.780 3.217 12 (2+6+4) 41, 43, 37, 33 (viii)

lac 1 7.344 0 41 (ix)
2 5.929 0.706 5.222 6 41, 35 (x)
3 5.885 0.433 0.230 5.222 8 (2+6) 39, 41, 35 (xi)
4 5.876 0.433 0.230 3.044 2.169 12 (2+8+2) 39, 41, 33, 35 (xii)

Table 4.4: Times of optimal solutions with 1,2,3 and 4 consecutive flux modes. Calculated with the
additional constraint that genes can only be turned on, but not deactivated from one interval to the next.
Solutions (iv),(viii) and (xii) are visualised in the network in Figs. 4.9 to 4.11.
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(A)

flux [mol/h]

time [h]

(B)

flux [mol/h]

time [h]

Synthesis rate of:
blue: Nucleic acids
orange: Triglycerides
magenta: Glycogen
green: Proteins

(C)
flux [mol/h]

time [h]

Figure 4.5: Flux rates through the biomass producing target reactions within various phases in the solu-
tion of the optimisation problem with l = 4 different phases, visualising the solutions (iv), (viii) and
(xii) from Tab. 4.3. (A) Glucose and lactate are available substrates, (B) Glucose is the only substrate,
(C) Lactate is the only substrate. The size of the coloured areas corresponds to the amount of biomass
components produced in the respective time interval. Due to the high demand for protein synthesis and
the high cost of fatty acid synthesis, the solutions are dominated by these requirements. Fatty acid syn-
thesis is limited to relatively small rates and must therefore be active most of the time, i.e., permanently
if lactate is available (A and C) and 67% of the time if only glucose is available (B).

4.4.2 Estimating the cost for switching

On the one hand, the above results show that switching between different phases of the metabolic
network allows for a faster production of all required output metabolites. On the other hand,
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Figure 4.6: Steady state flux distributions of the four different phases of biomass production. The shown
flux modes correspond to the optimal solution (iv) in Table 4.3. Active reactions are indicated by black
arrows, where the thickness indicates the flux rate. For the identification of rate-limiting reactions, those
fluxes which coincide with their upper bound are marked red.

the synthesis and degradation of proteins are consuming ATP. This additional energy demand
is not considered in the present method. However, the computations of Fig. 4.4 showed that the
capacity for output production is only reduced when the ATP demand is increased 2.5 fold at
least. Although these computations were done for the reference case, it is likely that the optimal
solutions from Tabs. 4.4 and 4.4 are not sensitive to the additional ATP demand neither. To ver-
ify this presumption, we added the additional ATP demand for switching between the different
phases a posteriori to the maintenance constraint vATP ≥mbATP.
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4.4. Performance of optimal sequences compared to single flux modes

Derivation of switching cost We estimate the cost of enzyme synthesis, but the energy that
is used for degradation of enzymes is not explicitly considered in our calculations. However,
since the whole available protein pool Atot is utilised in every phase, degradation and synthesis
of enzymes sums up to zero for every switch and the degradation is hence reflected in the
synthesis of enzymes. To determine the amount of ATP that is consumed for the synthesis, we
used an estimated cost of 5 ATP per amino acid. For one protein of enzyme j we then have a cost
of 5 ⋅ (γj [Da] /126 [Da]) molecules of ATP, where 126 [Da] is the average molecular weight of
a single amino acid. Given an optimal solution consisting of l phases, let Ek

j ∶= Atot 1
γA+⟨g,γ⟩

be
the enzyme concentration for reaction j in the k-th phase. The corresponding bounds are then
given by ubkj = Ek

j kc
+
j , lbkj = −Ek

j kc
−
j and the change in enzyme concentration for reaction j in

the k-th switch, k = 1, . . . , l−1, is Ek+1
j −Ek

j . We obtain these enzyme amounts asEk
j = ubkj /kc+j

for j = 1, . . . , n, k = 1, . . . , l and the total amount of enzymes, which are newly synthesised in
the transition from phase k to k + 1 is then given by

n

∑
j=1

max(∆kubj/kc+j ,0), k = 1, . . . , l − 1

where the ∆kub ∶= ubk+1 − ubk and the maximum is taken to neglect the negative values that
correspond to degradation of enzyme proteins. Altogether we have the following calculation
for the cost of switching from phase k to phase k + 1 denoted Ck for k = 1, . . . , l − 1:

Ck ∶= 5 ⋅ (γj/126) ⋅
n

∑
j=1

max(∆kubj/kc+j ,0) (4.5)

The value of Ck depends on the gene expression states gk, gk+1 in the two phases, because they
determine the values of the upper bounds. Hence, (4.5) gives a cost function for the enzyme
synthesis that depends on the switch in gene expression given by the pair gk, gk+1.

Impact on the required production time. The additional ATP demand was integrated into the
model by increasing the permanent maintenance constraint by an amount % [mol/h]. The new
maintenance bound is then mb′ATP ∶= mbATP + % and % is chosen such that during the total
duration τ = ∑l

k=1 τk the total switching cost is accumulated, i.e., τ% = ∑l−1
k=1C

k or, equivalently,
% = τ−1 ⋅ ∑l−1

k=1C
k. For the optimal solutions that were obtained for the proliferating and non-

proliferating case (Tabs. 4.4 and 4.5, respectively) the increase of the maintenance bound was
always below 10% and the optimal solutions remained virtually unchanged (production time
increased by less than 1%). Compared with the gain in time that is achieved by switching, we
can conclude that the additional cost for switching is marginal and does not impair the benefit
of using different flux modes. It is hence justified to neglect these costs in the computational
procedure for this metabolic network model.
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Figure 4.7: Glucose as substrate. The shown flux modes correspond to solution (viii) in Table 4.3, see
also Fig. 4.5. Note that lactate is secreted in the last phase. This is likely to be caused by a need of NAD
which is provided by LDH during lactate production.
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Figure 4.8: Lactate as substrate. The shown flux modes correspond to solution (xii) in Table 4.3, see
also Fig. 4.5.
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Chapter 4. Switching metabolic pathways as a means to optimise output production
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Figure 4.9: Glucose and lactate as substrates. The shown flux modes correspond to solution (iv) in
Table 4.4.
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4.4. Performance of optimal sequences compared to single flux modes
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Figure 4.10: Glucose as substrate. The shown flux modes correspond to solution (viii) in Table 4.4.
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Figure 4.11: Lactate as substrate. The shown flux modes correspond to solution (xii) in Table 4.4.

4.4.3 Robustness of optimal solutions against random variations of model parameters

The computations presented above were carried out under the assumption that the expression ef-
ficiencies of all enzymes are equal (ηj = 1 for all j). However, expression efficiencies may con-
siderably vary as convincingly demonstrated by the generally poor correlation between mRNA
and protein levels (see e.g. [Maier et al., 2009]). Therefore, in order to exclude that the results
obtained in the preceding sections critically depend on the choice of the expression efficien-
cies, we randomly varied their numerical values from a lognormal distribution (see p. 107), i.e.,
ηj ∼ lnN(0,0.362). As in the preceding sections, we determined for each sample the minimal
value of Atot with which the demanded metabolic output can be accomplished within 8 [h] in
the reference case (see Fig. 4.12). As expected, variations of the expression efficiencies had a
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large impact on Atot with deviations of up to a factor of 5 from the unperturbed value Atot =
0.087 [mg/gDW].
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Figure 4.12: Impact of variations in the enzyme expression efficiencies on the minimal total amino acid
mass Atot required to produce the metabolic output within 8 [h] in the reference case (all genes active,
no switch). The frequency distributions are the outcome of 2000 computations of Atot where the values
of the expression efficiencies were sampled from the lognormal distribution ηj ∼ lnN(0,0.362). The
unperturbed values, i.e., ηj = 1 for all reactions j, are marked in green. The mean of the samples is
indicated in magenta. Intriguingly, the mean of the samples is significantly above the value of Atot in the
unperturbed model. This can be explained by the nature of perturbed flux spaces and the corresponding
optimal solutions, which will be examined in Chap. 5.

Gain in production time For each sample of the parameters and the corresponding protein
amount Atot enabling output production within 8 [h], we proceeded by solving (P0) as well
as (P1) for l = 1,2,3,4 different phases and different combinations of glucose and lactate as
available substrates. Fig. 4.13 shows the range of obtained times τ(l), l = 1,2,3,4 using both
substrates.
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Figure 4.13: Possible ranges of the gain obtained with different numbers of metabolic phases and glucose
and lactate as allowed substrates. (A) Genes can be switched on and off, (B) Genes can only be switched
on. The red mark represents the reference case (ηj = 1 for j = 1, . . . , n)

Remarkably, for all random samples the strategy of alternating gene switches resulted in a
reduction of the total biomass-production-time. In the other substrate conditions, only glucose
or only lactate, we get virtually the same outcome as shown in Fig. 4.13 for both substrates.
Altogether, the results coherently validate that a gain in production time is achieved indepen-
dently of the expression efficiencies. Thus, the findings of the preceding section, according to
which a variable use of selected gene sets in different metabolic phases allows a reduction of
the biomass production time, turn out to be robust against variation of enzyme expression effi-
ciencies. Also the observation that the largest gain is achieved by allowing two different phases
and the extension to three and four phases only brings minor gains, is reconfirmed.

4.5 Discussion

The general approach that was developed in Chap. 3 was applied here with a binary gene ex-
pression space G ⊂ {0,1}n to a minimal illustrative example and to a core metabolic network.
The analytical examination of the minimal example as well as the computational results for the
core network showed that the efficiency of cells to accomplish their metabolic output can be
increased by variable usage of genes and related metabolic enzymes. The main conclusion is
that switching between different metabolic phases could be a regulatory mechanism that allows
for faster production of metabolic output. Temporal gene expression is mainly known and mod-
elled as a means to adapt the organism to changes in the environment. In contrast, the results
here are obtained from a model with constant environment and thus they suggest that temporal
gene expression could also have emerged as a strategy to produce metabolic output fast and
efficiently. The minimisation of production time is in particular advantageous for rapidly di-
viding cells. These are separately taken into account by (P1), where complete degradation of
enzymes is disallowed.
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4.5. Discussion

4.5.1 Biological assumptions and model building

As follows from Prop. 3.11 and Prop. 3.7, a gain in production time can only be achieved
by switching if the gene expression cannot be perfectly adjusted to a flux distribution that is
optimal for the metabolic requirements. Such a precise adaptation of the gene expression of
metabolic enzymes to flux requirements seems unlikely for several reasons. First, this assump-
tion would entail that all enzymes are saturated, i.e., operate at their maximal capacity (vmax,
cf. p. 40). In contrast, all metabolic pathways studied so far have in common that only few en-
zymes (mostly only a single one) are rate limiting, while the others are not saturated with their
ligands, and therefore possess a large overcapacity compared to the actual flux they carry. Sec-
ond, an investigation of the control of metabolic flux in the model bacterium Bacillus subtilis
by quantifying fluxes, transcripts and metabolites in eight metabolic states enforced by differ-
ent environmental conditions revealed that for the majority of enzymes in central metabolism,
enzyme concentrations were insufficient to explain the observed fluxes [Chubukov et al., 2013].
In line with this finding, a suboptimal control of gene expression was reported to be widespread
in bacteria [Price et al., 2013]. Third, from an evolutionary point of view, a perfect economical
allocation of proteins to the enzymes and transporters of the cellular reaction networks is un-
likely to occur, as biological systems that perform multiple tasks face the fundamental trade-off
that a given phenotype cannot be optimal at all tasks [Shoval et al., 2012].

The strategy of using different phases for the production of the different output metabolites
allows producing more or less of certain outputs simply by shifting the time points of switching
from one phase to the subsequent. Formally, every combination of outputs, given by Γ ∈ R∣T ∣

≥0

can be achieved by adjusting the time points of switching between v1, . . . , vl, as long as Γ ∈
cone(v1

T , . . . , v
l
T ) ( where vkT denotes the restriction to the target reactions t ∈ T ). On the other

hand, if we assume that the flux rates are precisely controlled by gene expression, the adaptation
of the flux distribution would require exact readjustment of most of the gene expression values.
However, this is highly unrealistic, since it involves many reactions and associated metabolic
genes (some dozens in our core metabolic network) and only if the expression of all metabolic
genes is correctly changed, the new required flux distribution can be obtained. In fact, the
flexibility to change the proteome is limited by the structure of the regulatory network of the
cell [Chubukov et al., 2012]. In contrast, readjustment of the durations of the phases in the
here conjectured strategy can be achieved by shifting the time point of few signals only (four in
our core network). These considerations show that the alteration between different metabolic
phases is theoretically an efficient and also flexible manner of producing metabolic output. The
results of this chapter are thus proposing a viable strategy for coordinated output production
and are giving a theoretical proof of concept by estimating a significant gain in efficiency that
is achieved by this strategy.

4.5.2 Possible explanation of metabolic cycling

In a non-dividing (”resting”) cell, the metabolic output does not lead to an accumulation of
the total biomass but instead serves to replenish the permanent loss of biomass components by
various degradation and damage processes (lipid oxidation, proteolysis, glycogen consumption,
RNA degradation). Based on the observations here, we can hypothesise that the phases that
achieve an efficient output production are repeated periodically to assure permanent restoration
of the biomass composition of the cell. As explained in the preceding paragraph this production
strategy can always adapt to changes in the demand for the different biomass components by ad-
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justing the durations of the individual phases. Formally, let ε < 1 denote the fraction of biomass
components that is lost in a given time and that needs to be restored within this time period
(= homeostasis) to prevent severe cell damage or loss of cell functions. Then the results here
predict that switching between different metabolic phases permits a faster reproduction of the
demand εΓ than achievable with a constant metabolic steady state. If this scenario repeats peri-
odically, the outcome is a so-called metabolic cycling where each cycle produces only a certain
fraction εΓ such that, without permanent loss, after 1/ε cycles the complete biomass would have
doubled. From this consideration one may conclude that the economic usage of the protein pool
that can be allocated to metabolic enzymes is one possible explanation for the periodic switches
between distinct metabolic states observed in various non-proliferating cell types as, for exam-
ple, yeast cells in batch cultures [Silverman et al., 2010,Slavov et al., 2011]. In mammals, such
oscillators have been found in almost all peripheral cell types [Nagoshi et al., 2005,Schibler and
Naef, 2005]. Ex vivo experiments have clearly demonstrated that such cell-intrinsic oscillators
may work independently from circadian changes of the cell’s environment (e.g. variations in
the concentration of nutrients or hormones) and phases of the cell cycle [Slavov et al., 2011].

4.5.3 Computational approach

The computational tools that were applied in this chapter are all based on the constraint-based
modelling approach. The whole computational procedure to obtain the results consists of many
separated steps, all of which include optimisation problems. The steps are executed in the
following order:

• Solving the reference case to determine the total protein amount Atot as well as Acrittot .

• Computing the required production time for varied maintenance bounds in order to anal-
yse the sensitivity.

• Generating the MFMs as optimal flux modes for the production of individual target metabo-
lites. The corresponding MGSs are used to defined the constraints on G ⊂ {0,1}n.

• Solving the optimisation problems (P0) and (P1) for the production of demanded output
with l = 1,2,3 or 4 different phases.

• Repeating the previous steps (step 2 is not necessary) for sampled enzyme efficiencies to
check for robustness.

The introduction of maintenance constraints is strongly increasing the computational complex-
ity of all these problems. However, for this core metabolic network all optimisation problems
are still tractable. In principle, the computational procedure from this chapter can also be ap-
plied to any other metabolic network that is given with the required biological information about
demanded metabolic output and enzyme parameters. To make the approach tractable for larger
networks, alternative computational methods will be presented in Chap. 6.

4.5.4 Outlook

The method that was presented in Chap. 3 and applied in this chapter was motivated by the hy-
pothesis that optimal resource allocation is not static, but switches between different pathways.
Hence it offers an explanation for alterations in metabolism which are not triggered by external
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signals and occur in a constant environment. The mathematical analysis showed that the expla-
nation of the alterations in the model relies on the assumption of binary gene expression, or at
least on a non-convex gene expression space. This means that the enzyme concentrations can-
not be adjusted individually to the exact amount necessary for a given metabolic steady state.
Several arguments were given to justify this assumption biologically. Also the flexibility of the
metabolic network and the underlying regulatory network to readjust to changes in demand or to
other conditions was discussed as an advantage of the strategy of sequential phases. This leads
directly to the question, which design principles can explain the functionality of metabolic net-
works. The present work argues for a design principle where the metabolic network only uses
a limited number of metabolic steady states, for which well suiting enzyme concentrations can
be established by gene regulation. These steady state flux modes are not perfectly suited for the
typical metabolic requirements, but switching between them and adjusting the duration of each
flux mode allows controlling the fulfilment of the individual biological functions, in particular
biomass production. This aspect was not formally discussed here, but a biological discussion
and mathematical analysis would be an interesting direction to further explore the interplay of
metabolism and gene regulation.
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5 Effects of perturbations of bounding
constraints

5.1 Overview

In Sec. 4.4.3 of the previous chapter, the robustness of the results was analysed w.r.t. the un-
known enzyme efficiencies ηj , j = 1, . . . , n. The resource allocation model was given by (3.7),
i.e., vj ≤ ubj ∶= gjkc+jAtot

ηj
∑i giγiηi

, where the enzyme efficiencies were all set to ηj = 1,
j = 1, . . . , n. To examine robustness, the ηj were then sampled from a lognormal distribution.
This can be seen as perturbing the original bounds lb, ub where ηj = 1, j = 1, . . . , n. The results
in Fig. 4.12 contain the surprising detail that in average the perturbed models require a signif-
icantly larger amount of amino acids to achieve the output production in the reference time of
8 [h]. In this chapter we will give strong evidence that this phenomenon is caused by effects of
the constraint-based representation of the flux space. On the one hand, this evidence is based
on the observation that other possible explanations can be ruled out. On the other hand, we
can observe and rigorously explain the same effect for a simpler case of a linear flux space,
where perturbations of the bounding constraints lead to deteriorated objective values in optimi-
sation. Another perspective on the perturbations, which might help to understand the origin of
these effects, can be obtained by iteratively perturbing the bounds and observing the asymptotic
behaviour as the number of iterations goes to infinity. The results are proven formally as qual-
itative statements for perturbations that are distributed with an unbiased expectation as e.g. the
normal distribution. To also examine the case of lognormally distributed perturbations, where
the expectation is biased, as well as to quantify the effects, the last section examines them em-
pirically. This empirical analysis confirms the significance of the effects, also for lognormally
distributed perturbations. Furthermore it helps to understand which structural properties of the
network representation are determining the effects of perturbations. These observations eluci-
date how the representation of the model, in particular the constraints that bound the flux rates,
gives rise to these unexpected side effects of perturbations.

5.2 Properties and variants of perturbations

Perturbations of parameters in the model description, as the bounds in this case,
can be modelled by random variables. The natural choice is the normal or log-
normal distribution. Their disadvantage are the long tails that represent biologi-
cally infeasible perturbations. Cutting off these unrealistic parts of the distribu-
tion might be a solution, but it also changes the expectation value.
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5.2.1 Notation and setting

An introduction to random variables and related notions is given in the Mathematical Prelimi-
naries, p. 16. The formal treatment in this chapter will be much simplified by the assumption
that the metabolic network contains only irreversible reactions, i.e., all reversible reactions were
split into two irreversible reactions. This formal modification has no impact on the calculations,
all results hold equally for networks with reversible reactions. The only difference would be that
formulations and calculations would have to distinguish between the positive and the negative
bounds.

With this convention the bounds on flux modes in the network are simply given by 0 ≤ v ≤ ub
and only the bounds ub are perturbed. Since we exclude blocked reactions from the network
analysis, ubj > 0 for all j = 1, . . . , n. The perturbation of the bound ubj is described by a random
variable Bj ∶Ω → R, where Ω is the sample space (see p. 16 for details). The values of Bj are
called the samples and denoted ũbj ∶= Bj(ω), ω ∈ Ω. The whole vector of perturbed bounds is
denoted ũb and

F̃ ∶= {v ∈ Rn ∶ Sv = 0, 0 ≤ v ≤ ũb}

is the resulting flux space. All Bj are considered to be independent random variables. This
might not be realistic if two random variables Bj , Bj′ refer to two directions of one reversible
reaction which was split up and both directions are catalysed by the same enzyme. But to facil-
itate the formal argumentation, this aspect is not always taken into account in the calculations.
The results do not depend on the assumption that all perturbations are independent, although
the interplay of several independent perturbations is essential.

5.2.2 The distribution of the perturbations

Usually, perturbations are of interest because the parameters that lead to the bounds ub are not
known exactly. In particular, they typically fluctuate from cell to cell. Therefore, it can be im-
portant to validate results that are obtained by a model with distinct bounds ub ∈ Rn. The given
bounds ub are just candidates for the real values that limit the metabolic flux rates in the cell.
By applying perturbations to these bounds we can explore the metabolic network with compa-
rable candidates ũb which might be as realistic as the original bounds ub. Which distribution of
the perturbations is appropriate in the mathematical model, depends on the distribution of the
error due to uncertainty or the distribution of the fluctuations. If the distribution is not known,
there might still be some qualitative information available that is helpful in making a choice. As
an example consider the case that the fluctuations in enzyme amounts are supposed to be mod-
elled. The underlying kinetics of synthesis and degradation of the enzymes has to be considered
then. Stochastic fluctuations in reaction kinetics are described by the chemical master equation
(see Sec. 8.2). In the simplest case, where the concentration just depends on synthesis and
degradation, the molecule amount is Poisson distributed around the equilibrium (see p. 167). A
good approximation of the Poisson distribution is given by the normal distribution [DasGupta,
2010, Thm. 10.5, p. 229]. For modelling fluctuations in the enzyme concentrations by perturb-
ing the bounds, the normal distribution is hence well qualified. To take into account that the
decrease of a reaction bound can at most lead to a bound at zero, the lognormal distribution is a
natural candidate to be used instead of the normal distribution. In this case the perturbation is
given by multiplication with a lognormally distributed factor. In this chapter we will restrict the
analysis of explicit distributions of perturbations to these two. Their most important properties
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are shortly introduced below. The analytical observations are stated for general perturbations
which are not biased for an increasing or decreasing perturbation. This means that the expecta-
tion is the original value, i.e. E(Bj) = ubj . The normal distribution fulfils this requirement, but
the lognormal does not. Only the empirical analysis will reveal that the formally discussed ef-
fects occur in the case of lognormal distributions as well. The median is an alternative measure
of bias and by this measure the normal as well as the lognormal distribution are unbiased, that
is, the median of Bj is ubj in both cases.

Normal distribution For ubj the normally distributed perturbation is given by Bj ∼ N(µ,σ2).
This notation means that Bj is a normally distributed random variable with mean µ and vari-
ance σ2, i.e., Bj has the probability density function (PDF)

f(x) = 1

σ
√

2π
exp(−(x − µ)

2

2σ2
)

For Bj the mean is µ = ubj , equivalently we can define Bj ∶= Xj + ubj , where Xj ∼ N(0, σ2),
because then Bj ∼ N(ubj, σ2) by definition. The cumulative distribution function (CDF) of a
normally distributed random variable is given by

F (x) = 1

2
(1 − erf (−(x − µ)

2

√
2σ2

)) ,

where erf denotes the error function erf ∶R → (0,1) given by erf(x) ∶= 2√
π ∫

x

0 exp(−t2)dt
[Fristedt and Gray, 1997]. The range of Bj ∼ N(µ,σ2), that is, the support of the PDF is R.
The expectation is given by the parameter µ, and coincides with the median.

Lognormal distribution A lognormally distributed perturbation is defined by multiplying with
a sampled factor, i.e., Bj ∶= Yj ubj , where Yj is a lognormally distributed random variable,
Yj ∼ logN(µ,σ2). The lognormal distribution can be defined via the normal distribution, i.e.,

Yj = exp(Xj) with Xj ∼ N(µ,σ2
j ).

The range of Yj or, equivalently, the support of the PDF is hence R>0. Here we will use log-
normal distributions with µ = 0, as a consequence the median is exp(µ) = exp(0) = 1. The
expectation is exp(µ + σ2/2), which is larger than the median.

Cutting off the distributions The support of the PDF of the normal distribution is R, which
means that the samples x of X ∼ N(µ, (σ2)) can be arbitrarily small or large. As a conse-
quence, the perturbed bound can be zero or even switch its sign. In the model scenario this
has no biological meaning. Therefore it is reasonable to cut off these perturbations, i.e., define
Bj ∶= max((ubj + Xj),0). As a consequence, we would have E(Bj) > ubj , while the me-
dian stays ubj . With the lognormal distribution we are not confronted with this problem, since
the range of Yj ∼ logN(µ,σ2) is R>0 and thus this is also the range of Bj ∶= Yj ubj , because
ubj > 0. Another important difference between the normal and lognormal distributions is the
relation between the probabilities of increasing and decreasing perturbations. In the lognormal
distribution, ũbj ≥ λubj and ũbj ≤ λ−1ubj , λ > 0, have the same probability. With the normal
distribution the probability for ũbj ≤ λ−1ubj is strictly larger. Furthermore, in the case of normal
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distribution, the deviations are relatively larger for small bounds, while the lognormal pertur-
bations are obtained by multiplying ubj with the sample and hence the dispersion is weighted
by the magnitude of the bound ubj . The normal distribution with positive cut off and the per-
turbation by a lognormal distribution have in common that E(Bj) > ubj , while the median is
exactly ubj . For the lognormal perturbations, a cut off from above seems reasonable, since the
probability for large samples is higher than in the normal distribution. An increase by the factor
a > 1 has probability

P (Bj ≥ ubja) = P (Yj ≥ a) = P (exp(Xj) ≥ a) = P (Xj ≥ log(a))

with the lognormal perturbation Bj = ubjYj = ubj exp(Xj). The same increase has probability
P (ubj + Xj ≥ ubja) with the normal perturbation Bj = ubj + Xj . The larger a, the higher
becomes the probability of a lognormal perturbation reaching a compared to the probability of
a normal perturbation reaching a.

These different variants of distributions with cut off will not be considered in the analysis
in this chapter, instead we will focus on the normal and lognormal distribution. The formal
discussion will show that the observed effects do not depend on the exact form of the distribution
but mainly on the expectation value and the support.

5.3 The core metabolic network revisited

Apart from the results of perturbations of the enzyme efficiencies presented
in the previous chapter, see Fig. 4.12, further computations with different dis-
tributions of the perturbations were performed. However, the results did not
change qualitatively, thus suggesting that the effect of the shifted average is not
caused by a certain feature of the distribution, but emerges from the mathemati-
cal structure of the flux space representation.

The perturbations that were applied to the core metabolic network in Sec. 4.4.3 did not directly
perturb the bounds, but were a bit more intricate. The parameters ηj = 1 are perturbed by a log-
normal distribution to η̃j ∼ logN(0, σ2) with σ = 0.36. The ηj occur as a factor of the turnover
numbers, but also in the penalty term∑n

j=1 γjgjηj of the resource allocation. Perturbing ηj by Yj
is in fact equivalent to perturbing the turnover numbers kc±j as well as the molecular weight γj
by Yj (cf. p. 45). Since the expectation of the lognormal distribution is above 1, also this penalty
term is increased in expectation by these perturbations, i.e. E(∑n

j=1 γjgj η̃j) > ∑n
j=1 γjgjηj . This

is of course a possible explanation for the decrease in performance of the model as observed
in Fig. 4.12. Therefore, the computations for the statistics of Fig. 4.12 were repeated without
perturbing the penalty term, i.e., ũbi = gikc+i Atot

η̃i
∑j gjγjηj

= ubjYj . However, the results did
not exhibit a significant difference to the results of Fig. 4.12. Also statistics with normally dis-
tributed perturbations with different parameters, with or without cut off, applied to ηj or only
to kc±j , gave in all cases the qualitatively identical result of decreased performance, i.e., a sig-
nificantly higher mean value of amino acid amount Atot required to achieve output production
in the reference time. This means that at constant Atot, the mean value of required minimal
production time over the perturbed models would have increased, see p. 87. We conclude that
this phenomenon is most likely not caused by the distribution of the individual perturbations,

108



Chapter 5. Effects of perturbations of bounding constraints

but seems to be a property of the resulting flux space and the optimisation that is performed
over this flux space. Such properties will be uncovered in the succeeding section for linear flux
spaces and LP optimisation. The close relation between the flux space of our resource allocation
model and the polytope given by the turnover numbers alone (see Corollary 3.5) strongly sug-
gests that the effect observed in linear flux spaces and in LPs is also occurring in optimisation
problems of the kind (OP3), p. 58, and that this is what caused the shifted average in Fig. 4.12.
However, a rigorous treatment of the non-linear case will not be given here.

5.4 Analytical results concerning the flux space and optimisation

5.4.1 Effects on the flux space

It turns out that even if the expectation value of each perturbation Bj of a single
bound ubj is again the original bound, i.e., E(Bj) = ubj , the length of any ray
segment in the flux space is getting smaller in expectation. This result is based
on the observation that the minimum of several independent random variables
with the same support is strictly smaller than the expectation of one of them, as
illustrated in Fig. 5.1.

Setting In the introduction different distributions were discussed for modelling perturbations.
Concluding, we can say that the normal and lognormal distribution are well suited, but it might
be necessary or at least reasonable to restrict the range by a cut off. Some distributions of
the perturbations that were mentioned have an expectation value that is in fact larger than the
unperturbed bound, i.e., E(Bj) > ubj . In this section, however, we require that the distributions
satisfy E(Bj) = ubj , j = 1, . . . , n. This leads to the question whether the observations also
hold in other cases, e.g. for lognormal perturbations, where E(Bj) > ubj . This question will be
answered affirmatively by the empirical analysis in the succeeding section. Another important
condition in this section is that the PDFs of the perturbations Bj of the individual bounds all
have the same support (a, b) ⊂ R. The open interval (a, b) ⊂ R can be unbounded, i.e., a =
−∞ as well as b = ∞ is allowed. Furthermore, we assume that the PDF and the CDF of the
perturbations Bj are continuous functions to avoid technical hindrances (this implies that the
support of the PDF is an open set, in our case here an open interval by assumption). We are
dealing in this chapter with the flux space

F ∶= {v ∈ Rn ∶ Sv = 0, 0 ≤ v ≤ ub} = C ∩
n

∏
j=1

[0, ubj],

with the underlying flux cone C = {v ∈ Rn ∶ Sv = 0, v ≥ 0}. The perturbation only affects the
bounds ub and thus not the flux cone. We assume ∞ > ubj > 0 for all j = 1, . . . , n. However, we
will discuss later the consequences of unbounded reactions, i,e., j with ubj = ∞ on the effects
of perturbations.

A fixed ray in the flux space In Chap. 3 we saw how a flux space can be completely described in
terms of ray segments, see Lemma 3.3. We will now see that every ray segment of F becomes
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shorter in expectation as the flux space is perturbed to F̃ . A ray is fixed by a normalised vector
from the flux cone, i.e., s ∈ C with ∥s∥2 =

√
∑n
j=1 s

2 = 1. The distance from 0 to the boundary of
the flux space is given by the ’radius’ r(s) ≥ 0, this scalar is defined by r(s) ⋅ s ∈ F and λs ∉ F
for any λ > r(s) (in other words r(s) ⋅ s ∈M , according to Def. 3.2). In fact, r(s) depends only
on the bounds, it can be given as

r(s) ∶= min
i ∈ supp(s)

(ubi
si

) . (5.1)

The minimum is taken over the support of s, see Fig. 5.1 A. Since ubj > 0 and sj > 0 for all
j ∈ supp(s), we have r(s) > 0. For a perturbed flux space F̃ we denote the corresponding
radius for a given normalised s ∈ C by r̃(s) = min

i ∈ supp(s)
(ũbi ⋅ s−1

i ). This minimum is taken over

perturbation samples ũbj = Bj(ω), it can be interpreted as the random variable

Z ∶= min
i ∈ supp(s)

(Bis
−1
i ) . (5.2)

Intuitively, it is compelling that the expectation of Z is smaller than the expectations of all
Bis−1

i . It will be formally proven in Lemma 5.2 and leads to the following statement:
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Figure 5.1: A) s is a normalised flux mode. The scaling of this flux modes is bounded by r(s) ∶=

min(
ubj
sj
, ubisi ). B) The PDF of the standard normal distribution is shown in blue and in dotted lines

the PDF of the minimum of 2,5,10 standard normally distributed random variables, respectively. Red
vertical lines indicate the corresponding expectation values.

Proposition 5.1. If the bounds ubj of the flux space F are perturbed according to independent
random variables Bj , such that E(Bj) = ubj and the PDFs of the Bj all have the same support
(a, b) ⊂ R , then E(Z) < r(s) for every s with more than one non-zero entries si > 0.

Before the proof is given, note that the condition that s has more than one non-zero entries
is not a restriction for a metabolic network. If the cone C contained an s with a single non-zero
sj this would mean that reaction j is completely independent of the steady-state assumption and
of the rest of the network. In particular, the flux space F could be seen as the product of the
flux space of the network that results from the deletion of j and the interval [lbj, ubj]. If such a
reaction exists in the network it can be discarded.
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Proof. When s has more than one non-zero entries si > 0, the random variable Z defined in (5.2)
is the minimum over at least two random variables Bis−1

i . Furthermore, we can exclude cases
where two bounds refer to the same reversible reaction that was split up. In this case s would
contain a futile cycle which can be subtracted from the flux mode. So we assume that all Bi,
i ∈ supp(s) refer to genuinely different reactions and are independent random variables. The
scalar multiples Bis−1

i , i ∈ supp(s) are then also independent. For every single Bis−1
i we have

E(Bis−1
i ) = E(Bi)s−1

i = ubjs−1
i , due to linearity of the expectation. To prove the proposition,

we just have to show that the expectation of the minimum over at least two independent random
variables is smaller than the minimum of the expectations of the individual random variables.
This is shown in Lemma 5.2 below.

If the Bi are normally or lognormally distributed, the support of Bis−1
i is just the support of

Bi, because si > 0 implies s−1
i R>0 = R>0 and s−1

i R = R, so that Lemma 5.2 can be applied. The
condition that E(Bi) = ubj is fulfilled for normal perturbations but in the lognormal case we
have E(Bi) > ubj and Prop. 5.1 is not implied.

Lemma 5.2. LetXi∶Ω→ R be independent random variables on the sample space Ω with equal
support (a, b) ⊂ R for i = 1 . . . , n. Define Z ∶= min(X1, . . . ,Xn). The median of Z is strictly
smaller than the median of Xi and the expectation of Z is strictly smaller than the expectation
of Xi for all i = 1 . . . , n.

Proof. Let Fi be the cumulative distribution function (CDF) ofXi and fi the probability density
function (PDF) for i = 1, . . . , n. Since FZ(x) = P (Z ≤ x) ⇔ (1−FZ(x)) = P (Z ≥ x), we have

FZ(x) = P (Z ≤ x) = 1 − P (Z > x)
= 1 − P (min(X1, . . . ,Xn) > x) = 1 − P (X1 > x, . . . ,Xn > x)

= 1 −
n

∏
i=1

P (Xi > x)

= 1 −
n

∏
i=1

(1 − Fi(x))

(5.3)

Since (a, b) is the support of fi, for a fixed x ∈ (a, b) the corresponding CDF fulfils 0 < Fi(x) < 1
for i = 1, . . . , n. This gives ∏n

j=1(1 − Fj(x)) < (1 − Fi(x)) which implies FZ(x) > Fi(x)
for every i = 1, . . . , n. If yi is the median of Fi, defined by Fi(yi) = 1

2 , then it follows that
FZ(yi) > 1

2 . Since FZ is strictly increasing on the support (a, b), we can conclude that the
median yZ of Z, defined by FZ(yZ) = 1

2 , is strictly smaller, i.e., yZ < yi for all i = 1, . . . , n. To
see that also the expectation is smaller for Z we will use Lemma 5.3 to express the expectations:

E(Z) = ∫
b

a
xfZ(x)dx = ∫

b

0

n

∏
j=1

(1 − Fj(x))dx − ∫
0

a
(1 −

n

∏
j=1

(1 − Fj(x)))dx

E(Xi) = ∫
b

a
xfi(x)dx = ∫

b

0
(1 − Fi(x))dx − ∫

0

a
(1 − (1 − Fi(x)))dx

(5.4)

Since ∏n
j=1(1 − Fj(x)) < (1 − Fi(x)), it follows that E(Z) < E(Xi), i = 1, . . . , n.

Lemma 5.3. Let X ∶Ω→ R be a random variable, with CDF F and PDF f = F ′, the derivative
of F . The expectation can then be given in terms of the CDF by E(X) = ∫

∞

0 (1 − F (x))dx −
∫

0

−∞
F (x)dx
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Proof. This can be shown with the fundamental theorem of calculus [Königsberger, 2001,
p. 200]. Using the derivative of x (F (x) − 1), which is xf(x) + (F (x) − 1), we get

∫
∞

0
xf(x)dx = [x(F (x) − 1)]∞0 − ∫

∞

0
(F (x) − 1)dx = ∫

∞

0
(1 − F (x))dx

Analogously, using xF (x) with derivative xf(x) + F (x) gives

∫
0

−∞
xf(x)dx = [x(F (x)]0

−∞ − ∫
0

−∞
F (x)dx = −∫

∞

0
F (x)dx

and we can conclude that E(X) = ∫
∞

−∞
xf(x)dx = ∫

∞

0 (1 − F (x))dx − ∫
0

−∞
F (x)dx.

The discussion here is focused on the expectation, but Lemma 5.2 shows that the situation
is similar for the median, in particular Prop. 5.1 also holds if expectation is replaced by median.

5.4.2 Objective values in linear optimisation are deteriorated in expectation

After having analysed the effect of perturbations on the flux space we will now
consider linear optimisation over this flux space. Since every fixed ray segment
is getting smaller in expectation, this should intuitively also hold for the ob-
jective value in optimisation, but it is not straightforward to verify it formally.
Here we will use projections of the flux space, given by the Fourier-Motzkin
elimination method. Lemma 5.2 will be reformulated with another condition,
which excludes in particular the case that a single non-redundant bound deter-
mines the whole network. The result is then obtained by a similar argument as
in Prop. 5.1.

Problem specification The two cases of optimisation that we will consider here are the standard
FBA

max c⊺v subject to
v ∈ F = {v ∈ Rn ∶ Sv = 0, 0 ≤ v ≤ ub}

(5.5)

and also the time dependent optimisation which was considered in the previous chapters and
originally introduced (p. 36) as

min τ s.t.
v ∈ F
S∗(τv) ≥ Γ

τ ∈ R>0,

(5.6)

where all components of Γ are strictly positive. If we assume that this problem is feasible, then
τ > 0 and τ−1 is well defined. As already mentioned in Sec. 2.3, the FBA problem (5.5) can be
seen as a special case of the time minimisation (5.6). To express both LPs in the standard form,
we write

112



Chapter 5. Effects of perturbations of bounding constraints

A =

⎛
⎜⎜⎜⎜⎜
⎝

0 Id
0 −Id
Γ −S∗
0 S
0 −S

⎞
⎟⎟⎟⎟⎟
⎠

, d =

⎛
⎜⎜⎜⎜⎜
⎝

ub
0
0
0
0

⎞
⎟⎟⎟⎟⎟
⎠

, and define x ∶= (τ
−1

v
)

and the polytope F ′ ∶= {x ∈ Rn+1 ∶ Ax ≤ d}, so that (5.6) can be written as

max{x1 ∶ x ∈ F ′} = max{x1 ∶ Ax ≤ d} (OPT)

To express the LP (5.5) in this format, the constraints S∗(τv) ≥ Γ are translated to x1 ≤ c⊺v ⇔
x1 − c⊺v ≤ 0 by the identifications S∗ = c⊺ and Γ = 1. Maximisation of x1 is then equivalent to
maximisation of c⊺v and hence the resulting LP (OPT) is equivalent to (5.5).

Identifying the objective value by projection Now we will investigate the consequences of per-
turbations of the bounds ub in (OPT) on the objective value. Since the objective value of (OPT)
depends only on the single variable x1, it can be determined by using the Fourier-Motzkin Elim-
ination method [Schrijver, 1998, Sec. 12.2] to project the whole flux space onto this variable.
For the case ofF , this projection can be done by considering all the equalities between flux rates
that are directly or indirectly given by Sv = 0 and substituting the bounding constraints v ≤ ub
and v ≥ 0 into these equalities, an example will be given below. In general, the Fourier-Motzkin
Elimination to project the polytope F ′ ∶= {x ∈ Rn+1 ∶ Ax ≤ d} onto the variable x1 yields the
following set of q linear inequalities:

x1 ≤
2n+l+2m

∑
i=1

α
(k)
i di =

n

∑
i=1

α
(k)
i ubi + 0, k = 1, . . . , q, (5.7)

where l, m are the numbers of rows of S∗, S, respectively. The coefficients α(k) ∈ R emerge
during the elimination procedure as linear combinations of entries of A. We get 0 for the
sum ∑2n+l+2m

j=n+1 α
(k)
j dj , because dj = 0 for j = n + 1, . . . ,2n + l + 2m. The set of inequalities

(5.7) is equivalent to Ax ≤ d. We will abbreviate the right hand sides of the inequalities with
gk ∶= ∑n

j=1α
(k)
j ubj . The objective value of (OPT) is the maximal x1 that still satisfies all these

inequalities. It can directly be given as

x∗1 = min
k=1,...,q

(gk) (5.8)

A perturbation of the bounds ubi, given by the random variables Bi ∶ Ω → R, i = 1, . . . , n,
defines the random variables

Gk ∶=
n

∑
j=1

α
(k)
j Bj k = 1, . . . , q.

Since the expectation is a linear function, we have E(Gk) = ∑n
j=1α

(k)
j E(Bj) = ∑n

j=1α
(k)
j ubj =

gk. The objective value over the perturbed flux space is given as a random variable x̃∗∶Ω → R.
It must satisfy for every sample ω ∈ Ω the inequalities x̃∗(ω) ≤ Gk(ω), k = 1, . . . , q, but no
further constraints. Analogously to (5.8), x̃∗ is then given by

x̃∗ = min(G1, . . . ,Gq) (5.9)
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To see, whether the objective value of (OPT) becomes smaller in expectation if the bounds are
perturbed, the strict inequality E(x̃∗) < x∗1 or, equivalently,

E (min (G1, . . . ,Gq)) < min(gk, . . . , gq) = min (E(G1), . . . ,E(Gq)) (5.10)

has to be verified. If the random variables Gk were independent, Lemma 5.2 could be directly
applied, since (5.10) is equivalent to :

E (min (G1, . . . ,Gq)) < gk = E(Gk), for k = 1, . . . , q (5.11)

However, the condition that the random variables Gk are independent is not given. They are
linear combinations of the independent random variables Bi. If one Bi appears in the linear
combinations Gk and Gk′ , these two are not independent. Therefore we will formulate a similar
Lemma, where the statement (5.11) is based on a different condition, namely

For each Gk, k ∈ {1, . . . , q} there exists a k′ ∈ {1, . . . , q}
and a subset Ω′ ⊂ Ω with P (Ω′) > 0

such that Gk′(ω) < Gk(ω) for each ω ∈ Ω′.

(COND)

Proposition 5.4. Consider the LP (OPT) and let the random variable Bj describe the perturba-
tions of ubj , such that E(Bj) = ubj , j = 1, . . . , n. Let {x1 ∈ R ∶ x1 ≤ ∑n

j=1α
(k)
j ubj, k = 1, . . . , q}

be the projection on the first variable with coefficients α(k)
j ∈ R. If the random variables

Gk ∶= ∑n
j=1α

(k)
j Bj fulfil condition (COND), then the objective value of (OPT) becomes smaller

in expectation.

Proof. If the condition (COND) is fulfilled, Lemma 5.5 can be applied and that establishes
(5.11) and thus also the equivalent strict inequality (5.10), which states formally that the objec-
tive value of (OPT) becomes smaller in expectation.

Lemma 5.5. Assume Xj ∶Ω → R, j = 1, . . . , n, are random variables and for a given j there
exists j′ and a measurable subset Ω′ ⊂ Ω with P (Ω′) > 0 and Xj′(ω) <Xj(ω) for ω ∈ Ω′. Then
we have E(mini=1,...,n(Xi)) < E(Xj).

Proof. Let Z ∶= mini=1,...,n(Xi), so we have Z(ω) ≤ Xj(ω) for all ω ∈ Ω. Let j, j′ and Ω′ be as
in the condition. Partitioning Ω into Ω′⊍Ω′′ = Ω (disjoint union, it follows that Ω′′ is measurable
as well), we can write the expectation value as

E(Z) = ∫
Ω
Z(ω)dP (ω) = ∫

Ω′
Z(ω)dP (ω) + ∫

Ω′′
Z(ω)dP (ω),

where the second term is ≤ ∫Ω′′Xj(ω)dP (ω) and the first term fulfils

∫
Ω′
Z(ω)dP (ω) ≤ ∫

Ω′
Xj′(ω)dP (ω) < ∫

Ω′
Xj(ω)dP (ω).

The strict inequality holds because Xj′ < Xj on Ω′ with P (Ω′) > 0. The expectation of Xj can
be analogously expressed as

E(Xj) = ∫
Ω′
Xj(ω)dP (ω) + ∫

Ω′′
Xj(ω)dP (ω)

and thus we have E(Z) < E(Xj).
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Discussion of the condition The condition (COND) is tailored to establish the statement Prop. 5.4.
Note that in some cases Lemma 5.2 and thus the proposition can also be proven by the same
argument as in Lemma 5.2. This is the case if every Gk can be paired with another Gh(k), such
that this pair is independent (see the example below).

Now we will have a look at the implications of (COND) on the metabolic network model. In
particular we want to know what kind of metabolic network models are excluded by (COND).
In fact it is not too difficult to find metabolic networks models where (COND) is not given and
where Prop. 5.4 does not hold. We can do this by considering the negation of (COND), which
means there exists a k̄, such that for all k ∈ {1, . . . , q} we have Gk̄(ω) ≤ Gk(ω) almost surely
(i.e. for all ω outside of a null set O ⊂ Ω, P (O) = 0). This implies that mink=1,...,q(Gk) = Gk̄.
In particular, the objective value τ̃∗ is just given by this single random variable, i.e. τ̃∗ = Gk̄.
Independent of the perturbation, the network is thus always bounded by the same single linear
constraint. The other constraints that were derived in the projection are not only redundant,
but they also remain redundant after perturbation. Such a situation is of course given, if the
network is only bounded by a single constraint by definition, as e.g. in FBA with molecular
crowding (3.3), page 41. Another example is a metabolic network where only the uptake is
bounded by a single constraint on one uptake flux or on the sum of several uptake fluxes, as
discussed on page 31. (Formally, all other reactions j have upper bounds ubj = ∞ and are not
perturbed.) The expected objective value can then be given in terms of the single constraint
alone and it is trivially not biased if the perturbation is not. Metabolic networks with a single
bounding constraint therefore constitute a class of models where Prop. 5.4 cannot be applied.
They can be seen as an extreme case. As will be shown in Figs. 5.7, 5.8, the interplay of several
constraints determines the impact of perturbations on the objective value of optimisation. The
effect described in Prop. 5.4 cannot occur if there is no interplay between several bounding
constraints. This is in particular the case, if there is only one bounding constraint.

5.4.3 Example

The theory can be elucidated on a small example based on the network that was already used
to introduce redundancy (p. 29). In fact, redundancy plays an important role for the effect of
perturbations.

v1 v2 v3

v5

v4

v6

Figure 5.2: This network was analysed regarding redundancy in Sec 2.2.2. Now we consider optimisa-
tion of the objective function c = (0,0,0,1,0,1) over the flux space given by the depicted irreversible
reactions with stoichiometric coefficients ±1 and upper bounds ub.

The FBA optimisation problem max c⊺v = v4 + v6 s.t. Sv = 0, 0 ≤ v ≤ ub, where

S =
⎛
⎜⎜⎜
⎝

−1 1 0 0 0 0
0 −1 1 1 0 0
0 0 −1 0 1 0
0 0 0 −1 0 1

⎞
⎟⎟⎟
⎠
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can be given in the standard form of (5.8), i.e., max{x1 ∶ Ax ≤ d}, with A =

⎛
⎜⎜⎜⎜⎜
⎝

0 Id
0 −Id
1 −c⊺
0 S
0 −S

⎞
⎟⎟⎟⎟⎟
⎠

and

d = (ub
0
) , where 0 denotes the 6 + 1 + 4 + 4 = 15-dimensional zero-vector. The steady-state

assumption gives the equalities v1 = v2, v2 = v3+v5, v3 = v4, v5 = v6 and by substituting we get
e.g. v1 = v3+v5, v1 = v3+v6, v1 = v4+v6, etc. Projecting can be done by substituting the bounds
v ≤ ub into these equalities. For the target reactions 4,6 we get the get the six inequalities

v4 + v6 ≤ ub1, v4 + v6 ≤ ub2,
v6 ≤ ub6, v6 ≤ ub5,
v4 ≤ ub4, v4 ≤ ub3.

The above formulation of the optimisation problem introduced the new variable x1, which is
only constrained by x1 ≤ c⊺v. Maximising x1 is therefore equivalent to maximising c⊺v = v4+v6.
Substituting the inequalities for v4, v6 we get the following bounds for the projection on x1:

x1 ≤ ub1 =∶ g1, x1 ≤ ub2 =∶ g2

x1 ≤ ub4 + ub6 =∶ g3, x1 ≤ ub3 + ub6 =∶ g4

x1 ≤ ub4 + ub5 =∶ g5, x1 ≤ ub3 + ub5 =∶ g6,

The objective value is x∗1 = min(g1, . . . , g6). In the perturbed case the bounds ubj will be re-
placed by the random variables Bj and the gk by Gk. Note that the pairs Gi,Gh with (i, h) =
(1,2), (3,6) or (4,5), are in fact independent, because they do not contain a common perturba-
tion Bj . Therefore, we can apply Lemma 5.2 for these pairs and get

E(x̃∗1) ≤ E(min(Gi,Gh)) < E(Gi),E(Gh), (i, h) = (1,2), (3,6), (4,5).

So we have in fact E(x̃∗1) < E(Gk) = gk for k = 1, . . . ,6 and hence, by (5.8), E(x̃∗1) < x∗1 .

5.4.4 An asymptotic perspective

The previous results might be counter-intuitive at first sight. Why do perturba-
tions which preserve the individual bounds in expectation, have a different effect
globally? This phenomenon appears to be an inevitable consequence if we read
the original bounds ub as a distinct point in Rn and the perturbations as steps of
a random walk. From this perspective, the original choice of bounds turns out
to be advantageous compared to a set of bounds which is randomly picked from
Rn. With very high probability such randomly picked bounds would not allow
any flux through the network at all. Also random perturbations must therefore
lead to a less favourable situation in expectation.
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Iteration of perturbations We will examine the two examples of normally distributed pertur-
bations Bj ∶= Xj + ubj and of lognormal perturbations Bj ∶= Yj ubj = exp(Xj)ubj , where
Xj ∼ N(0, σ2

j ). In case of the normal distribution, the iterated perturbations are given by
Bq
j ∶= ubj +∑

q
i=1X

i
j and for the lognormal case by Bq

j ∶= ubj ⋅∏
q
i=1 Y

i
j = ubj ⋅exp (∑q

i=1X
i
j), with

independent X i
j ∼ N(0, σ2

j ).

Blocked reactions In this chapter we assumed that all reactions are irreversible and a fixed reac-
tion j is hence blocked as soon as ubj = 0. A normally distributed perturbation can block any re-
action j immediately, because P (Xj ≤ −ubj) > 0. The probability that reaction j is blocked af-
ter q iterated normal perturbations is P (∑q

i=1X
i
j ≤ −ubj). If the limit limq→∞P (∑q

i=1X
i
j ≤ −ubj)

exists, we call it the probability that the reaction j is asymptotically blocked. Here we will
show that this probability is 1

2 for every fixed reaction j.

Iteration of normal perturbations The random variable ∑q
i=1X

i
j is again normally distributed

with mean 0 and with variance∑q
i=1 σ

2
j = q σ2

j [Georgii, 2007, Korrolar 9.6, p. 235]. In particular,
the variance is going to infinity. The statement that every reaction j is asymptotically blocked
with probability 1

2 is a direct consequence of the following Lemma.

Lemma 5.6. Consider a sequence of normally distributed random variables with PDFs fq(x) =
1

σq
√

2π
exp (− (x−µ)2

2(σq)2
) with mean µ and variance σ2

q , such that σq →∞ as q →∞. For fixed µ and
fixed x ∈ R, the value of the corresponding cumulative distribution function Fq(x) can be seen
as a function of q and we have lim

q→∞
Fq(x) = 1

2 .

Proof. Let x ≥ µ. Since the expectation µ is also the median, we have ∫
x

−∞
fq(t)dt = P (X ≤

x) = Fq(x) ≥ 1
2 and ∫

µ

−∞
fq(t)dt = 1

2 . This gives

0 ≤ Fq(x) −
1

2
= ∫

µ

−∞
fq(t)dt + ∫

x

µ
fq(t)dt −

1

2
= ∫

x

µ

1

σq
√

2π
exp(−(t − µ)2

2(σq)2
)dt.

By substituting z = t−µ
σq

, dz = 1
σq
dt we get

0 ≤ Fq(x) −
1

2
= ∫

x−µ
σq

0

1√
2π

exp(−z
2

2
)dz ≤ x − µ

σq
→ 0 as q →∞.

For the case x ≤ µ the proof works analogously, just note that ∫
x

µ f(t)dt = −∫
µ

x f(t)dt.

Iteration of log-normal perturbations The situation is a bit different for the iteration of the
lognormal perturbations given by Bq

j ∶= ubj ⋅ ∏
q
i=1 Y

i
j = ubj ⋅ exp (∑q

i=1X
i
j), with independent

Y i
j ∼ logN(0, σ2

j ). A reaction cannot be totally blocked after a finite number of perturbations,
because Y i

j > 0, i ∈ N and thus also ∏q
i=1 Y

i
j > 0 for every q ∈ N. However, the perturbed bound

can become arbitrarily small and from the practical point of view a reaction can be considered
to be blocked as soon as the bound is smaller than some given threshold ε > 0. Therefore,
we adjust the notion of asymptotically blocked. If the limit limq→∞P (ubj exp (∑q

i=1X
i
j) ≤ ε)

exists, we call it the probability that the reaction j is asymptotically ε-blocked. It follows
directly from Lemma 5.6 that this limit probability as well is 1

2 , because we have

P (exp(
q

∑
i=1

X i
j) ≤ ε

ubj
) = P (

q

∑
i=1

X i
j ≤ log( ε

ubj
)) = Fq (log( ε

ubj
)) .
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Consequences for the flux space For a single reaction j we saw that the probability to become
asymptotically blocked is 1/2. If we look at the whole metabolic network, we note that the
fulfilment of any specific metabolic function requires a group of several reactions to be active.
As we just saw, every single reaction becomes asymptotically blocked with probability 1/2. If
the number of the necessary reactions for a given metabolic function is k, then it follows that
perturbations will disable this function asymptotically with probability 1 − (1/2)k. To get an
idea of realistic values for k, elementary modes, the flux modes with minimal support, can be
helpful. In the core metabolic network from Chap. 4 for example, the length of an EM is at
least 11, which gives 1 − (1/2)11 ≥ 1 − 10−3 as the probability that the network allows asymp-
totically no flux at all. This core network contains only 46 reactions, because functional units
as e.g. the citric acid cycle are lumped together to one reaction. If these would be represented
explicitly the probability for complete blockade would be even larger. In conclusion we can say
that the iteration of perturbation of all bounds disables with high probability any function of a
metabolic network asymptotically. The capabilities of the network are progressively inhibited
and therefore, we also expect that already one of the indistinguishable iteration-steps is low-
ering the capabilities as is in fact observed in Prop. 5.1 or Prop. 5.4. These observations and
conclusions are of course based on the assumption that all reaction bounds are progressively
perturbed and can approach 0. As already mentioned and as will be analysed in detail in the
following section, the situation is different if only a subset of reactions is bounded or if only
a subset has bounds that have a chance to be non-redundant after perturbation. If this subset
is sufficiently small, the effect of a decrease of the capability, that is, of the objective value in
optimisation can even completely vanish, as was formally discussed for simple examples, see
page 115, and also observed in the core network, see Figs. 5.7, 5.8.

5.5 Empirical quantitative analysis

The qualitative results from the analytical investigation above will now be sub-
stantiated by an empirical analysis. It will show that the strict inequality from
Lemma 5.2 describes indeed a significant gap between the two expectation val-
ues. Also the decrease in the objective value in optimisation turns out to be sig-
nificant, with normal as well as with lognormally distributed random variables.
For the lognormal distribution this was not proven here. The dependence of the
effects on the structure of the flux space representation is then investigated. We
identify two extreme cases. If all bounds are weakly redundant, the objective
value is strongly decreased, but if redundant bounds were discarded before, no
decrease at all is observed.

5.5.1 Dependence on the distribution of the perturbations

The theoretical results were obtained for distributions with E(Bj) = ubj . But if we consider the
lognormal distributions Bi ∶= Yi ubi with Yi ∼ logN(µ,σ2), the expectation of an individual Yi
is E(Yi) = exp(1

2σ
2
i ) > 1 and thus E(Bi) is far above ubi for large σ2

i . With theoretical means
it is difficult to quantify the effects of perturbations. For Z = min(X1, . . . ,Xn), the CDF was
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given by (5.3), this gives the PDF

fZ(x) = F ′
Z(x) =

n

∑
j=1

fj(x)∏
i≠j

(1 − Fi(x)) , (5.12)

where fj = F ′
j is the PDF of Xj . In particular, for normally distributed Xj we get

fZ(x) =
n

∑
j=1

fj(x)∏
i≠j

⎛
⎝

1

2
− 1

2
erf

⎛
⎝

x√
2σ2

i

⎞
⎠
⎞
⎠
. (5.13)

It is not possible to read off something about the dependence of E(Z) on n or on the variance
here. The CDF of the (log-)normal distribution does not even have a closed form expression (the
error function ’erf’ is needed) and in the lognormal case we are confronted with the problem
that the CDF of a sum of lognormal distributions cannot be given explicitly, but has to be
approximated [Beaulieu and Xie, 2004]. On the other hand, values of the PDF and CDF of the
normal and lognormal distribution can be computed very precisely. This is also possible for FZ
and fZ by using (5.12) and (5.13), respectively. The following plots elucidate the dependence of
E(Z) on n and on σ2

j . For n = 2, Fig. 5.3 shows the dependence of E(Z) = E(min(X1,X2))
and of the median of Z on the variances of the two normally distributed random variables
X1,X2. For a pair of lognormally distributedX1,X2 the analogous results are shown in Fig. 5.4.
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Figure 5.3: Mean and median of Z ∶= min(X1,X2), with normally distributed X1,X2. Their variance
is given on the axes and the expectation resp. median is indicated by colour. The values lie strictly below
the expectation and the median of an individual Xi, which are 0 for i = 1,2. As the variance increases,
the expectation of Z decreases depending on σ1 + σ2. The median also decreases but with stronger
dependence on the smaller variance.

The question if E(Z) < 1 in the lognormal case is important regarding the flux space per-
turbations. Since E(X) = exp(1

2σ
2) > 1 for a lognormal random variable X ∼ logN(0, σ2),

an individual bound is in expectation larger after perturbation. On the other hand the minimum
over several constraints leads to a smaller expectation, which can affect a single ray segment of
the flux space (Prop.5.1) as well as the objective value in optimisation (Prop.5.4). The empirical
analysis shows that the decreasing effect of the minimum over several random variables largely
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Figure 5.4: Mean and median of Z ∶= min(X1,X2), with lognormally distributed Xi. Since the expec-
tation of a lognormal Xi ∼ logN(0, σ2

i ) is exp(1
2σ

2
i ), it is far above 1 for large σ2

i . Also if the minimum
of two Xi is taken, this still leads to an expectation above 1 as soon as both variances are big enough.
E(Z) takes its smallest values if X1 has a small variance, but X2 a big one (or vice versa). In this case
large deviations of X2 above 1 are prevented by X1, while large deviations below 1 can contribute to the
expectation E(min(X1,X2)).

dominates the larger expectation of the lognormal distribution, in particular the qualitative state-
ment of Lemma 5.2 also holds in the lognormal case and is significant, at least for a variance in
a reasonable range. Fig. 5.5 shows that for X ∼ logN(0, σ2), the expectation of the minimum
will be significantly below 1, as soon as n > 5 and 4 ≥ σ2 ≥ 0.5. Variances above 3 can be
considered as not relevant for our modelling purpose. With arbitrarily large variances we can in
fact achieve for any fixed n that E(Z) = E(min(X1, . . . ,Xn)) becomes arbitrarily large.

Lemma 5.7. For given n ∈ N, K ∈ R and Xi ∼ logN(0, σ2), i = 1, . . . , n, we have

E(Z) = E(min(X1, . . . ,Xn)) ≥K

as soon as σ ≥ log(K)+2n log(2)

erf−1(1/2)
√

2
, where erf−1∶ (0,1) → R is the inverse of the error function.

Proof. Let FZ be the CDF of Z and FX the CDF of the independent and identically distributed
Xi, i = 1, . . . , n. For any x ∈ R an ample estimate is given by E(Z) ≥ x ⋅ P (Z ≥ x) = x ⋅ (1 −
FZ(x)). We know that FZ(x) = 1 − (1 − FX(x))n and conclude that E(Z) ≥ (1 − FX(x))nx.
Define a(x) ∶= (1−FX(x))n, then 1−a(x) 1

n = FX(x). The goal is now to find x and σ such that
E(Z) ≥ a(x)x ≥ K. Since we are interested in K > 1, also x > 1 must hold. The median of X
is 1 for any σ, i.e., FX(1) = 1

2 . Therefore, x > 1 implies 1−a(x) 1
n = FX(x) > 1

2 ⇒ a(x) < (1
2
)n.

Let us restrict x to the range where a(x) fulfils

(1

2
)

2n

< a(x) < (1

2
)
n

⇔ 3

4
> 1 − a(x) 1

n = FX(x) > 1

2
.

The desired lower bound E(Z) ≥K is then established if K ≤ (1
2
)2n ⋅x < a(x) ⋅x⇔ x ≥K22n.

Apart from this bound, the choice of x is only limited by the upper bound 3
4 on the CDF, so we
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Figure 5.5: Dependence of E(Z) = E(min(X1, . . . ,Xn)) and the median of Z on n = 1, . . . ,15 and
on a varying variance, which is identical for all Xi. The random variables are independent and either
all normally distributed, i.e., Xi ∼ N(0, σ2), or lognormally distributed, i.e., Xi ∼ logN(0, σ2), i =
1, . . . , n. In case of normal distribution, the value of E(Z) decreases with variance as well as with the
number n of random variables in the minimum. The outcome is almost identical for the median. In the
lognormal case, we have the antagonistic effects that the expectation increases with the variance, while
the minimum decreases as n gets bigger. For n = 2 we still have E(Z) > 1 if σ2 > 3, but for n > 2, the
variance would have to be even larger to achieve E(Z) > 1. As soon as e.g. n ≥ 5 and 4 ≥ σ2 ≥ 0.5,
the values of E(Z) are below 0.5. In general we can always achieve E(Z) ≥ K for any K > 1 by a
sufficiently large variance as shown by the estimation of Lemma 5.7. However, a variance of lognormal
perturbations with σ2 above 3 is not reasonable for parameter perturbations. Already with σ2 = 3 the
probability of perturbing a given bound by a factor of 2 or 1/2 is about 0.69 and for a factor 10±1 we still
get a 18% chance. Concluding, we can say that also in the case of lognormal perturbations, the effect
given in Lemma. 5.2 occurs with significant magnitude in all relevant cases.
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5.5. Empirical quantitative analysis

This inequality can always be satisfied by a large enough σ, which proves the Lemma.

5.5.2 Dependence on the bounding constraints

Finally, the effect in optimisation problems over F and F̃ was analysed empirically for the core
metabolic network from Chap. 4. In the discussion of the condition (COND) on page 115 it was
pointed out that the relationship between all bounding constraints determines the strength of
the effect. As an extreme case the example of a network that is bounded by a single constraint
was given. The size of the ray segments as well as the objective value of optimisation after
an unbiased perturbation of that single constraint is then trivially not biased in expectation.
In particular the condition (COND) of Prop. 5.4 is not fulfilled. For the LP (5.8) only the
projection onto the maximised variable is relevant. Even if the original description contains
several bounding constraints it might lead to a single bound on this variable, an example is
given in Fig. 5.6.

i

h

t

Figure 5.6: Assume that only the reactions i and h are bounded from above in this example network.
These two bounds are surely non-redundant and the fluxes are independent of each other, i.e., the reac-
tions are uncoupled (Def. 2.5). However, the flux through the target reaction t is only bounded by one
constraint, namely vt ≤ ubi + ubh. The conditions of Prop. 5.4 are hence not fulfilled and in fact the
expected objective value v∗t = ubi + ubh will not be biased, i.e., if E(Bi) = ubi and E(Bh) = ubh, then
we will also have E(v∗t ) = ubi + ubh.

If in the example of Fig. 5.6 the reactions apart from i and h were bounded as well, we
would have several constraints on the objective value and Prop. 5.4 would apply (given suiting
distributions of the perturbations, e.g. normal distributions).

These examples showed that having only few non-redundant bounding constraints in a net-
work can lead to the extreme case where the objective value is not at all biased in expectation.
The other extreme is a network with stoichiometric bounds obtained from FVA (p. 29). These
bounds are all redundant, but many are weakly redundant, which means that an arbitrarily small
perturbation can make them non-redundant. Geometrically speaking the n constraints are all
touching the flux space, in particular each of them has a high chance to further restrict the flux
space after a perturbation. Intuitively, we would therefore expect that the more bounding con-
straints and the closer they are to the flux space (if they are redundant), the stronger decrease of
the objective value in expectation after perturbation. The results of the empirical analysis sup-
ports this hypothesis. If we have stoichiometric bounds, the objective value after perturbation
is strongly decreased in expectation, see Fig. 5.7 B). In contrast, if we reduce the representa-
tion of the flux space to a subset of non-redundant bounds, the expected objective value is not
at all decreased, see Fig. 5.7 C). The original bounds from literature give a scenario that lies
between these two extreme cases. We have bounds for almost all reactions and therefore many
more than in a non-redundant subset, but contrary to the stoichiometric bounds, they are not all
located close to the flux space, which means that not all are likely to constrain the flux space
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Chapter 5. Effects of perturbations of bounding constraints

after a perturbation. The decrease in the expectation of the objective value, Fig. 5.7 A), is then
significant but moderate compared to Fig. 5.7 B).
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Figure 5.7: In the small core metabolic network, introduced in Chap. 4, Fig. 4.3, the bounds were
perturbed by multiplication with Yi ∼ logN(0, σ2), for varying σ2. On the x-axis we have 20 different
choices of the variance. For each of these σ fixed, 400 perturbed bounds ũbj were sampled and used to
solve the linear FBA problem max{c⊺v ∶ v ∈ F̃}, with 15 different objective functions c. For each of
this 400 × 15 = 6,000 LPs the objective value was compared to the corresponding objective value of the
same optimisation over the unperturbed flux cone, i.e. max{c⊺v ∶ v ∈ F}, by taking the ratio of the
two objective values. All ratios {r1, . . . , r6000}, corresponding to one fixed σ, were binned to obtain a
density plot for each σ. On the y-axis the ratios minus one, i.e., ri−1, i = 1, . . . ,6000 are plotted. Values
below zero indicate that the objective value is smaller over the perturbed flux space. The red dotted line
indicates the average 1

6000(r1 + ⋯ + r6000) − 1 for each variance σ. In A), the literature parameters are
used to fix the bounds ub. In B) the corresponding stoichiometric bounds (Def. 2.4) are used and in C)
the set of constraints v ≤ ub was reduced to a subset of only non-redundant bounds describing the same
(unperturbed) flux space.

For normal perturbations the corresponding results are shown in Fig. 5.8. Qualitatively they
are not different. The decrease in the objective values is even stronger than with the lognormal
perturbations. A possible explanation is that the normal perturbations are frequently blocking
reactions, since P (Bj ≤ 0) > 0, whereas in the lognormal case P (Bj ≤ 0) = 0. This ex-
planation is supported by the fact that the number of perturbations giving an objective value
of zero (meaning that the biological function which is expressed in the objective function c is
completely disabled by the perturbation) was much higher in the computations with the normal
distributions (data not shown in the plots).

5.6 Conclusion

The observations stated in Prop. 5.1 and Prop. 5.4 are surprising at first, because unbiased
perturbations of the parameters lead to a biased effect on the whole model. The reason for
this effect are the flux couplings and redundancies in the bounding constraints v ≤ ub resulting
from the strict steady state condition Sv = 0. This is an example of an unexpected model
property which was not intentionally incorporated in the construction. In general it is important
to identify such properties, in order to avoid misinterpretations. The asymptotic viewpoint was
given to offer an alternative explanation which can be interpreted in an evolutionary manner. In
fact, the observation that random perturbations in the metabolic network impair the functionality
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Figure 5.8: Results of the computations as for Fig. 5.7, but with normally distributed perturbations, i.e.,
E(Z) = min(X1, . . . ,Xn) and Xi ∼ N(0, σ2). The variance was chosen much larger, because it defines
the absolute magnitude of the perturbation and therefore has to be adjusted to the average of the turnover
numbers ub.

in expectation is not surprising if we assume that the network has evolved to its given form in
order to provide this functionality. The performance of the network with the original parameters
should therefore be above the average of all biologically feasible sets of parameters.

An interesting aspect is that the effect does not always occur, but depends on the interplay
of several bounds that are coupled and that are non-redundant or can become non-redundant by
perturbation. Some examples of models were given where this condition is not fulfilled. These
examples and the corresponding formal considerations showed that an interplay of redundancy
before and after perturbation determines if the effect is occurring or not. Furthermore, flux
coupling plays a role, because it might tell us if a redundant constraint is likely to become non-
redundant. Most likely this relationship can be formulated to give equivalent versions of the
condition (COND) in terms of redundancy and flux couplings, however this direction was not
pursued here.

In general, a complete realistic model of metabolism, with maximal flux rates for almost all
individual reactions, can be expected to satisfy the condition (COND) and to exhibit a significant
decrease in expectation of the objective values in optimisation. The core metabolic network
from Chap. 4 was employed to illustrate the effect and also its dependence on the representation
of the flux space.

Different representations of the flux space, namely stoichiometric bounds or a subset of non-
redundant bounds, can be obtained computationally and the outcome of the perturbations is very
different in both cases. As a conclusion of this observation, we note that meaningful biological
information is only represented by the original bounds of the metabolic network model, but not
by the stoichiometric bounds or a subset of non-redundant bounds. The latter representations
are only useful for the mathematical handling of the model.
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6 Computation of optimal or
approximated solutions

6.1 Overview

The method for modelling resource allocation and alterations in metabolism presented in Chap. 3
is based on optimisation problems which are hard to solve computationally. The question of
complexity is not considered in detail here, but a short overview of different aspects of solv-
ing these MIQCP (mixed-integer quadratically constrained programming) problems is given in
the next section. Reducing the complexity by a divide and conquer algorithm is in general not
promising, as shown with a counterexample. Alternative approaches will then be presented and
discussed. To find approximative optimal solutions, a pre-selection, as introduced in Sec. 3.8,
can be constructed. Furthermore, we examine the possibility of computing optimal solutions
for all sequences of gene activation patterns which have been confirmed to be relevant. This
becomes interesting as more information about the gene regulatory network gives further re-
strictions on the gene expression space and on its dynamics, thus reducing the number of the
relevant sequences. In general, these approaches replace one hard to solve MIQCP problem
with a large number of smaller problems. This brings a gain in tractability, because the compu-
tation of these reduced problems requires an exponentially smaller amount of time and space.

6.2 Complexity of the optimisation problems

Problem formulation We will consider again the general optimisation problem (OP3), p. 58,
of the resource allocation model in Chap. 3. Without maintenance constraints, it can be for-
mulated as a mixed-integer quadratic programming (MIQP) problem, i.e., without quadratic
constraints, but with a quadratic objective function. This reformulation is done by substituting
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6.2. Complexity of the optimisation problems

τ ′k ∶= τk⟨gk, γ⟩−1 and wk ∶= τkvk, which gives

min
l

∑
k=1

τ ′k⟨gk, γ⟩ s. t.

Swk = 0 k = 1, . . . , l

τ ′k(Atotkc−j ) ≤ wkj ≤ τ ′k(Atotkc+j ) , k = 1, . . . , l, j = 1, . . . , n

gkj = 0⇒ wkj = 0 k = 1, . . . , l, j = 1, . . . , n

gk ∈ G, k = 1, . . . , l
l

∑
k=1

wkt ≥ Γt, for t ∈ T

and variables τ ′k ∈ R≥0, w
k ∈ Rn, gk ∈ {0,1}n .

(OP3b)

The equivalence of (OP3), p. 58, and (OP3b) follows from the same arguments as given on
page 38 for (OP1) and (OP1a). As soon as maintenance constraints are included in the model it
is not possible anymore to avoid quadratic constraints. The flux is constrained on the one hand
by the maintenance constraints, which are independent of resource allocation, and on the other
hand by the lower and upper bounds, which are scaled by ⟨gk, γ⟩−1. One of these two groups
of constraints must be expressed with quadratic constraints, depending on whether the original
flux rates vkj are the variables as in (OP3) or instead wkj ∶= vkj ⟨gk, γ⟩ as in (OP3b), in which
case the addition of maintenance constraints mbi ≤ vki is translated to the quadratic constraints
mbi⟨gk, γ⟩ ≤ wki , k = 1 . . . , l. In (OP3b) on the other hand, the bounds on vk are given by
quadratic constraints while the maintenance for reaction i can be included linearly as mbi ≤ vki ,
k = 1 . . . , l.

Avoiding a quadratic objective function In fact, it is even possible to formulate the MIQP prob-
lem (OP3b) without maintenance constraints as an equivalent mixed integer linear problem with
linear objective function (MILP) [Bisschop, 2010, Sec. 7.7]. This is conceptually a simplifica-
tion of the problem, but as it comes at the cost of introducing many new integer variables (in
our case the number of binary variables is doubled) it might not bring a practical improvement
of computational tractability. For the core metabolic network without maintenance constraints,
using this linearisation is in fact slightly increasing the computation time (all computations were
done with Gurobi Optimizer 5.6 (http://www.gurobi.com)).

Support variables In (OP3), p. 58, the binary variables gk are constraining the flux mode vk by
gkj = 0 ⇒ vkj = 0. To implement this constraint, it can be formulated as

−Mgkj ≤ vkj ≤Mgkj (6.1)

for some M ∈ R≥0 sufficiently big to render these constraints redundant in case gkj = 1. For
(OP3) this is fulfilled by M ∶= Atot(ming∈G⟨g, γ⟩)−1 ⋅ maxj=1,...,n(−kc−j , kc+j ). In fact, the min-
imum could be restricted to those g ∈ G where Fg contains a non-zero flux mode. For (OP3b)
we consider wk ∶= τkvk instead of vk, so M has to be multiplied by a factor τ̄ with τ̄ ≥ τk for all
k = 1, . . . , l. Such τ̄ can be computed by solving the LP that we get from (OP3b) with l = 1 and
fixing all g1

j to 1 (this was called the reference case for the core metabolic network in Chap. 4
and Atot was adjusted such that τ̄ = 8 [h]).
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Chapter 6. Computation of optimal or approximated solutions

Numerical precision Numerical errors are common in solving hard MILPs. They are often
caused by values close to zero. Due to the finite precision of floating point arithmetic, the com-
putational procedure cannot distinguish zero from values below a certain threshold ε (tolerance).
During the computation, much smaller numbers than those in the input of the problem can oc-
cur. In (OP3b) this can happen e.g. if a small flux rate vkj is combined with a short duration τk,
resulting in a very small value wkj = τkvkj .

Complexity of linear problems The complexity of linear programming was thoroughly investi-
gated but some questions are still open. Since the ellipsoid method was developed, we know that
an optimal solution can be found in polynomial time in the dimension of the problem [Megiddo,
1987]. However, the practical performance of this algorithm cannot compete with the simplex
method. All known variants of the simplex method have in the worst case an exponential run-
ning time in the size of the problem, but they exhibit polynomial and often even linear running
times for a large class of problems. Interior point methods [Karmarkar, 1984] are polynomial
time algorithms that can also compete with the simplex method. State of the art software is
using both, the simplex method and interior point methods to find an optimal solution.

Complexity of mixed integer linear problems When integer variables, or as in our case binary
variables, are included in the optimisation problem, the running time as well as the required
space are tremendously increased. Solving MILPs is usually done by a Branch and Bound
method (or Branch and Cut, which means that cutting planes are used in addition). These
methods include implicitly a tree search on all 2n possible assignments of the n binary variables.
In every node of the tree an LP (a relaxation of the MILP) has to be solved. This tree search is
called Branch and Bound method. Due to the size of the tree, even though some parts can be
discarded, the number of LPs that have to be solved may be exponential in the number of binary
variables. The running time may hence also increase exponentially compared to an LP of the
same size. More problematic for the practical computation is usually the space consumption
that comes with the tree search. As the tree is explored, a large number of nodes with partial
solutions (which might be the optimal solution or an ancestor of an optimal solution) must be
stored. Infeasible assignments of the binary variables do not have to be stored. In particular,
only those gene expression patterns g that are defined as feasible in the model, i.e., g ∈ G, have
to be tested during Branch and Bound. Therefore, the size of G is a critical parameter for the
tractability of the optimisation problem.

Conclusion The optimisation problem (OP3), p. 58, contains l ⋅ n + l continuous variables
for the l flux modes and the durations τ1, . . . , τl and furthermore n ⋅ l integer variables for gkj ,
k = 1, . . . , l, j = 1, . . . , n. In the case where the gene expression space in generated by minimal
gene sets (MGS, see Sec. 3.6.3) there will be an additional integer variable for each MGS.
Nevertheless the complexity of the problem decreases if MGS are included, because the size
of the gene expression space G and thus the tree for Branch and Bound is reduced. Since
l ≤ ∣T ∣, the number of target reactions and the total number of reactions are determining the
problem size. In practice it turns out that complexity is reduced significantly by restrictions on
G (e.g. MGS constraints) as well as on the allowed sequences of gene expression states (e.g.
monotone sequences in Sec. 4.4.1). In the application to the core metabolic network of Chap. 4
it was still tractable to solve all involved optimisation problems with Gurobi Optimizer 5.6
(http://www.gurobi.com). However, as the size of the network increases and with more
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6.3. Estimation of the objective value

target reactions, we are quickly confronted with an intractable optimisation problem. Therefore,
alternative ways to obtain solutions will be explored below.

6.3 Estimation of the objective value

For a given target reaction t ∈ T , let v(t) be an optimal solution of

max vt s.t.
v ∈ F∗

v ≥mb
with variables v ∈ Rn

where F∗ is the flux space and v ≥mb are the maintenance constraints as defined in Sec. 3.7.2.
The demanded total turnover of reaction t can be achieved in time Γt(v(t))−1 [h], but not in less
time. This gives a straightforward estimate for τ∗, the objective value of (OP2a), p. 55:

max
t∈T

(Γt(v(t))−1) ≤ τ∗ ≤ ∑
t∈T

Γt(v(t))−1

It is not difficult to give examples that each of the bounds can be attained. The minimal
example from Fig. 4.1 attains the lower bound if ub0 ≥ ub1 + ub2 and the upper bound if
ub0 ≤ min(ub1, ub2).

6.4 Partial solutions - a counterexample

Divide and conquer algorithms divide a problem into subproblems that can be
solved much easier and then reconstruct a solution from the solutions of the
subproblems. Although such approaches are useful, as we will also see in this
chapter, it seems in general impossible to obtain optimal solutions this way. For
the straightforward subproblems where only a subset of the target reactions is
considered, a counterexample is given.

By considering only a subset of the set of the target reactions T in (OP3), p. 58, we get solutions
that are optimal for producing this subset. In many cases, these optimal sub-solutions can even
be combined to an optimal solution of (OP3).

Formally, for every subset U ⊂ T we modify (OP3) to (OP3)U by removing the output-
constraints for t ∈ T ∖U , so that only for t ∈ U the constraints

∑l

k=1
τkv

k
t ≥ Γt

remain. Since the number of integer constraints in the MIQCP problem (OP3) is then reduced
from ∣T ∣ ⋅ l to ∣U ∣ ⋅ l, these subproblems are easier to solve. Let VU = {v1, . . . , vi} be a set of flux
modes of an optimal solution of (OP3)U . We can assume that i ≤ ∣U ∣, see Prop. 3.10. The union
Vk = ⋃U⊂T,∣U ∣≤k VU collects such flux modes of optimal sub-solutions for all U ⊂ T with at most
∣U ∣ = k target reactions. Optimal solutions to all subproblems of this kind are collected in V∣T ∣−1
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Chapter 6. Computation of optimal or approximated solutions

and intuitively we would expect this set to be a good pre-selection for (OP3), see Sec. 3.8.
However, the following counterexample in Fig. 6.1 shows that an optimal solution of (OP3)
cannot always be composed from solutions of subproblems (OP3)U , i.e., the pre-selection V∣T ∣−1

is not perfect in general.
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reactions:
1: → A
2: A→ B
3: A→ C
4: A→ D
5: B→ E
6: E→ 5 F
7: B→ 4 F + 2 G
8: C→ 3 G
9: H→ F
10: G→ I
11: C→ 3 H + 3 I
12: J → I
13: D→ 2 J + 3 K
14: D→ L
15: L→ 3 K
16: F→
17: I →
18: K→

Figure 6.1: A network with 18 irreversible reactions. Reaction 1 takes up a substrate that serves for
production of three possible outputs. The three output reactions are also the target reactions, i.e., T =

{16,17,18}. The demanded output is Γ16 = Γ17 = 10 and Γ18 = 7. We assume that the resource
allocation model is defined by (3.8) with the values Atot = 3, kc+1 = 1, kc+j = 5 for j = 2, . . . ,15 and
unbounded target reactions which are also excluded from resource allocation, i.e., kc+t = ∞ and γt = 0
for t = 16,17,18. All reactions except the three target reactions are subject to resource allocation with
γj = 1, j = 1, . . . ,15. The flux space of this network is then defined as in (OP3) as F∗ ∶= {v ∈ R18 ∶

Sv = 0, 0 ≤ v ≤ Atotkc
+⟨g, γ⟩−1 with g ∈ {0,1}18, gj = 1 ⇔ vj > 0, j = 1, . . . ,18}, without any

further constraints on the gene expression states g. The stoichiometry is given on the right. This network
example is not realistic because mass is not conserved (e.g. D can be converted to 3 K or alternatively to
3 K plus 2 J). However, it can be part of a larger metabolic network which is realistic, in particular mass
conserving, with the same target reactions and additional metabolic output.

Regarding the results of Sec. 3.8, we note that the network model of Fig. 6.1 is a conic sprout
(Def. 2.7) and that only the single uptake reaction 1 is not redundant. It follows by Prop. 3.21
and the observations on page 32 that an optimal solution of (OP3) can always be composed of
EMs and the same holds for the subproblems (OP3)U . There are six EMs of the network, their
support and maximal output production is shown in Fig. 6.2. We will show that this model has
the following two properties:

• Every optimal solution of (OP3) contains the EM e1, i.e., supp(e1) ⊂ supp(vi) for one of
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6.4. Partial solutions - a counterexample

the flux modes vi, i ∈ {1,2,3}, of the optimal solution.

• The same EM e1 is not contained in any optimal solution of (OP3)U with U ⫋ T .

As a direct consequence, the complete set V∣T ∣−1 of optimal solutions of proper subproblems
is not a perfect pre-selection, no matter which optimal solutions are chosen for V∣T ∣−1.

The inner representation of the flux cone of F∗ is given by {v ∈ R18 ∶ v = Eλ, λ ≥ 0},
where the matrix E contains the EMs as columns, i.e., E⋅,i = ei, i = 1, . . . ,6. A flux mode v that
does not contain the EM e1 must then be given as v = E′λ, λ ≥ 0, where E′ is obtained from
E by deleting the first column e1. We define F ′ ∶= {v ∈ F∗ ∶ v = E′λ, λ ≥ 0} ⫋ F∗. Solving
(OP3) over F∗ gives a strictly smaller objective value than over F ′ and we can conclude that
every optimal solution must include e1.

e1

4 02

e2

3 03

e3

0 32

e4

0 30

e5

5 00

e6

0 03

Figure 6.2: The six elementary flux modes of the network (computed with the efm-tool [Terzer and
Stelling, 2008]). The whole flux space space can be given by convex combinations of these flux modes
and zero. The flux rates of the target reactions are indicated for each maximal EM in the flux space F∗

which is bounded according to our resource allocation model. All EMs have in fact the same enzyme
cost, since they all use exactly four reactions subject to resource allocation (the target reactions in this
example were excluded from resource allocation). The EM e1 can be beneficially combined with e3 to
produce all three target metabolites. However, for the demand of any proper subset U ⫋ T , the use of e1

is not efficient and for this reason this EM cannot be found by solving the subproblems (OP3)U .

To see that the example network also fulfils the second property, we will look at all subsets
of T = {16,17,18}. For the one-element subsets U = {16},{17},{18} just note that e5, e6, e3

would always replace e1 because they have a higher flux rate through the sole target reaction
16,17 or 18, respectively. For the subset U = {16,18}, the EM e1 only contributes to the output
flux v16 and is hence replaced with e5 again. Similarly e6 substitutes e1 in case U = {17,18}.
It remains to check that e1 cannot be contained in an optimal solution of (OP3)U with U =
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{16,17}. Note that all EMs, generating the whole flux space, have output flux ei17 ≤ 3 and
e1

17 = 2 only. Therefore, any flux mode v containing e1 fulfils the strict inequality v17 < 3.
Producing the demand Γ17 = 10 would therefore require strictly more time than 10

3 whenever
e1 is part of the solution. But on the other hand, the time 10

3 is sufficient to produce the whole
demand of U = {16,17} with the flux mode e2. We conclude that e1 cannot be part of an optimal
solution of (OP3)U with U = {16,17} or with any U ⫋ T .

6.5 Pre-selections that approximate an optimal solution

Solving the optimisation problem (OP2a), p. 55, is not tractable for much larger
networks than our core metabolic network of Chap. 4 and also computing the
perfect pre-selection given in Sec. 3.8, based on EM enumeration, is only appli-
cable in medium sized networks without maintenance constraints. This section
presents the construction of a pre-selection that approximates an optimal so-
lution. To guarantee a small error, the size of the pre-selection is required to
be very large. In practice it is therefore not possible to formally assure a high
quality of this approximation. Nevertheless, the pre-selection turns out to give
good results in practice and this approach is hence promising.

In Sec. 3.7 we saw that all elements of F∗ which are not decomposable in a specific sense,
allow finding an optimal solution to (OP2a), p. 55, with l = ∣T ∣, just by solving the LP (LPps)
which contains only ∣T ∣ constraints. In practice, the applicability of this approach is hindered
on the one hand by the fact that EM enumeration is not tractable for large networks and on
the other hand because it requires that the flux space is a conic sprout (Def. 2.7). As soon as
we have maintenance constraints, as in the application in Chap. 4, this condition is not given
anymore. The methods presented in this chapter are an alternative to deal with larger networks
with or without maintenance reactions. In this section a pre-selection approach is given. Once
a pre-selection is given, it suffices to solve the computationally trivial LP (LPps) in order to get
a solution to (OP2a). The pre-selection is called perfect, if this solution is optimal. This is the
case for the pre-selection that was defined by Prop. 3.19. However, its construction requires
to enumerate all EMs or even the superset of non-decomposable elements. These enumeration
problems have exponential complexity in the size of the network, since already the output of all
EMs has exponential size in general [Fukuda and Prodon, 1996].

Here we will construct a pre-selection by solving (OP2a) with l = 1 for different demands Γ.
The computational problem is hence reduced to l ⋅n = n binary variables instead of ∣T ∣ ⋅n. Since
the individual steps of this method are independent, the space complexity is independent of the
size of the resulting pre-selection, in contrast to EM enumeration with the double description
method, where all EMs are computed simultaneously. Also if (OP2a) is solved with the Branch
and Bound method an exponential number of intermediate candidate solutions is produced, see
Sec. 6.2.

6.6 Formal construction of the pre-selection

The following proposition shows how to obtain a pre-selection that is approximating an optimal
solution of (OP2a), p. 55. Approximating means that the optimal choice of flux modes from
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the pre-selection has an objective value τ̄∗ that is close to the global optimum τ∗ of (OP2a). By
increasing the size of the pre-selection the difference τ̄∗ − τ∗ gets arbitrarily small. However,
to guarantee a small difference in practice, the required size is so large that the construction
is not tractable. Nevertheless the result is of practical use, because it tells us how the flux
modes of the pre-selection should be chosen. Following these instructions, we can obtain good
approximations, as will be illustrated with the core metabolic network of Chap. 4.

Proposition 6.1. Given an instance (P) of the optimisation problem (OP2a), p. 55, with ob-
jective value τ∗ and a tolerance θ > 1, a pre-selection can be generated, such that an optimal
choice, i.e., an optimal solution of (LPps) gives an objective value τ̄∗ ≤ θτ∗.

Proof. A construction of the pre-selection A of flux modes w ∈ F will be given. In (OP2a) the
demand for output through target reaction t is given by Γt ≥ 0, t ∈ T . We will define a collection
D of demands D ∈ RT

≥0 and for each D ∈ D the optimisation problem (OP2a) with l = 1 and
demand D, i.e.,

min δ s.t.
w ∈ F∗

δwt ≥Dt for t ∈ T
with variables δ ∈ R≥0, w ∈ Rn

(6.2)

is solved. (We use δ here instead of τ for the duration to avoid confusion with the total duration
τ of an optimal solution of the optimisation problem (OP2a) which we want to approximate.) If
this problem is feasible, we get an optimal solution (w, δ) and w∗ is added to the pre-selection
A . A given collection D thus generates a pre-selection A (D). This collection D will be
constructed as a grid ∏t∈T{x0

t , x
1
t , . . . , x

k(t)
t } ⊂ R∣T ∣

≥0 . To satisfy the tolerance θ with the pre-
selection A (D) it suffices that D fulfils the following condition. For every flux mode v that is
part of an optimal solution of (OP2a) there must be a D ∈ D such that an optimal solution w of
(6.2) with D fulfils

θwt ≥ vt, t ∈ T. (6.3)

A grid D = ∏t∈T{x0
t , x

1
t , . . . , x

k(t)
t } ⊂ R∣T ∣

≥0 will now be constructed to fulfil this requirement. At
first we set x0

t = 0 for all t ∈ T . We will now infer conditions on D which suffice to fulfil (6.3).
By choosing the grid points suitably we can then assure that for any v from an optimal solution,
these conditions are fulfilled by at least one D ∈ D .

For a start we just require that Dt = 0 ⇔ vt = 0 for t ∈ T . The components t with vt = 0 are
then fixed to Dt = 0. Only the components t where vt > 0, or equivalently, Dt > 0, remain to be
further specified. Their index set will be denoted T+ ⊂ T . Let (w, δ) be an optimal solution of
(6.2) with this D. For t ∈ T+ we have vt,Dt > 0, so we can write vt

Dt
δwt ≥ vt and hence

max
t∈T+

( vt
Dt

) δwt ≥ vt, t ∈ T+. (6.4)

Sincew is an optimal solution of (6.2), we can assume that there is a t ∈ T+ withwt ≥ vt, because
otherwise v would give a better solution. As a consequence we have maxt (Dtvt )wt ≥Dt, t ∈ T+,
but δ is minimal for this inequality and therefore δ ≤ maxt (Dtvt ). Substituting into (6.4) gives

max
t∈T+

( vt
Dt

) ⋅max
t∈T+

(Dt

vt
)wt ≥ vt, t ∈ T+.
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For t ∈ T ∖ T+ we even have wt ≥ vt = 0. Replacing in the optimal solution of (OP2a) v with w
and the duration τv of v with τv ⋅maxt ( vtDt ) ⋅maxt (Dtvt ) gives thus a feasible solution of (OP2a).
We conclude that the whole optimal solution can be approximated with tolerance θ if there is
for every v from the optimal solution such a D ∈ D which fulfils

θ ≥ max
t∈T+

( vt
Dt

) ⋅max
t∈T+

(Dt

vt
) (6.5)

Every v can then be substituted by an optimal solution w of (6.2) with some D ∈ D and the total
duration increases then by at most θ, i.e., τ̄∗ ≤ θ τ .

Since (maxt (Dtvt ,
vt
Dt

))2 ≥ maxt ( vtDt ) ⋅maxt (Dtvt ), a sufficient condition for (6.5) is given by
Dt
vt
, vtDt ≤

√
θ or, equivalently,

1√
θ
≤ Dt

vt
≤
√
θ for t ∈ T+. (6.6)

These conditions are stating that v and D are in close vicinity. The closeness is defined com-
ponentwise and by the ratio. In case t ∉ T+ ∶= {t ∈ T ∶ vt > 0}, the components vt, Dt are both
zero and otherwise their ratio must be close to one. This means that the smaller the value vt > 0,
the closer must Dt be in absolute terms. As a consequence, in every component the required
density of the grid is going to infinity as zero is approached. To avoid this explosion we have
to define a threshold ε > 0 and assume vt ≥ ε, t ∈ T+, for all flux modes v. This assumption is
necessary to obtain a finite grid D satisfying the tolerance θ of the approximation. As explained
below this proof, this is in fact not a relevant restriction.

The stoichiometric upper bounds subt (Def. 2.4) bound the flux rates vt from above. Al-
together we thus have vt ∈ {0} ∪ [ε, subt]. The interval [ε, subt] will be partitioned into
Im ∶= [ε(

√
θ)m−1, ε(

√
θ)m], m = 1, . . . ,Mt − 1 and IMt ∶= [ε(

√
θ)Mt−1, subt], where Mt =

⌈ log(subtε−1)
log(

√
θ)

⌉. If vt ∈ Im, then 1√
θ
vt ≤ ε(

√
θ)m−1 and

√
θvt ≥ ε(

√
θ)m. Hence, (6.6) is implied by

the inequality
ε(

√
θ)m−1 ≤Dt ≤ ε(

√
θ)m. (6.7)

Therefore, it suffices to let Dt vary over the grid points

xkt = ε(
√
θ)2(k−1), k = 1, . . . , ⌈(Mt + 1)/2⌉ (6.8)

Then we have for every m = 1, . . . ,Mt a grid point xkt , which coincides with one of the two
bounds given in (6.7), namely

• ε(
√
θ)m−1 = xkt , in case m is even and we take k = (m + 2)/2.

• ε(
√
θ)m = xkt , in case m is odd and we take k = (m + 1)/2.

For vt ∈ Im we can then set Dt = xkt to fulfil (6.7) for all t ∈ T+. In case that vt is not in any
of the intervals Im, we must have vt = 0 and hence this component can be fitted exactly with
x0
t = 0, which was already defined in the beginning. Altogether these grid points provide for an

arbitrary v a D ∈ ∏t∈T{x0
t , x

1
t , . . . , x

k(t)
t } = D which satisfies (6.7) and hence also (6.6).
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To obtain a finite collection D , the proof of Prop. 6.1 required to exclude target fluxes
0 < vt < ε of flux modes v from an optimal solution. This means that the optimisation is limited
to F ε ∶= F∗ ∩ {v ∈ Rn ∶ vt ∉ (0, ε), t ∈ T}. This is in fact not a relevant restriction of the model,
since flux rates below a certain threshold ε are biologically meaningless. The difficulty with
flux rates close to zero is not just a characteristic of the construction of Prop. 6.1, but is also
causing numerical troubles in solving the optimisation problems, as shortly noted at the end of
Sec. 6.2, thus suggesting that this is an inherent property of the problem (OP2a).

The grid D is completely defined by (6.8). Constructing D and solving (6.2) for every
D ∈ D yields the pre-selection A (D). In practice it is however not possible to realise this
construction for a small tolerance θ > 1. The size of the grid D that is sufficient to achieve

an approximation with error ≤ θ is given by ∏t∈T (1 + ⌈(Mt + 1)/2⌉) with Mt = ⌈ log(subtε−1)
log(

√
θ)

⌉,

which gets very big for small θ > 1. But the construction shows how the grid points should
be distributed. The essential message is that the density of the grid points must be increased
exponentially in each component t ∈ T as we approach zero, instead of spanning for example
an equidistant grid. Using a θ that is large enough to achieve a grid of tractable size, we obtain
the desired distribution of grid points. This gives very good approximations when applied to
the metabolic network from Chap. 4, as shown in Tab. 6.1 below. The construction of Prop. 6.1
gives hence also a practicable alternative to solving the optimisation problem exactly.

6.6.1 Improving a given solution

We will now present a modification of the optimisation problem (OP2a), p. 55, which allows
to improve a given feasible solution containing several flux modes. This improvement can be
applied to the approximated solution from the just presented pre-selection approach or to any
feasible solution. Assume that the given solution contains d flux modes x1, . . . , xd. To com-
pute h new flux modes v1, . . . , vh which can be combined with the xi, we solve the following
optimisation problem extending (OP2a) with the continuous variables τ1, . . . , τd.

min∑l

k=1
τk, subject to:

vk ∈ F∗, k = 1, . . . , l

∑d

k=1
τkx

k
t + ∑l

k=d+1
τkv

k
t ≥ Γt ∀t ∈ T

with variables:

τk ∈ R≥0, v
k ∈ Rn, k = 1, . . . , l = d + h

(OP2x)

The given flux modes x1, . . . , xd are fixed parameters. This extension adds only d continuous
variables, but no integer variables and also no constraints. The tractability of the optimisation
problem is therefore not affected (cf. p. 127). The computation of a pre-selection by Prop. 6.1
is based on solving (OP2a) with l = 1. In case this is tractable, also (OP2x) with h = 1 can thus
be computed and used to improve the approximated solutions attained with the pre-selection.

6.6.2 Approximation in the core metabolic network

In the metabolic network introduced in Chap. 4 the exact optimal solutions could be computed
and this model can hence be used to test the performance of the approximation approach. As
mentioned above, it is not possible to choose a small tolerance θ, since this would immediately
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lead to an intractable number of grid points D . Some computational experiments with grids
D of different sizes, generated according to Prop. 6.1 were carried out. The tolerance had to
be larger than 5 to obtain tractable grid sizes. However, it turns out that the obtained results
are very good, with errors below 1%, see Tab. 6.1. Also the improvement of the solution by
employing (OP2x) turns out to bring a significant gain. Comparing the results for the three

improvement 2nd improvement
∣D ∣ ∣A ∣ time

[h]
error
[%]

time error time error

glc, lac
80 76 4.887 2.191 4.824 0.869 4.795 0.267
624 467 4.833 1.063 4.805 0.485 4.795 0.257
2400 1304 4.818 0.757 4.791 0.182 4.785 0.060

glc
80 77 6.081 22.904 4.964 0.338 4.949 0.024
624 546 5.882 18.892 5.524 11.648 4.982 0.692
2400 1778 5.003 1.131 4.962 0.301 4.948 0.013

lac
80 67 5.852 0.003 5.852 0 5.852 0
624 491 5.852 0.003 5.852 0 5.852 0
2400 1115 5.852 0.003 5.852 0 5.852 0

Table 6.1: Results of computing an optimal solution by solving (LPps) with a preselection generated
by the procedure given in Prop. 6.1 for our core metabolic model (compare with Tab. 4.3 where exact
optimal solutions are given). Approximative pre-selections of different sizes were tested. The number
of flux modes in A generated from the grid D is smaller than the number of grid points since several
D ∈ D can give the same optimal flux mode. Furthermore, the improvement by (OP2x) with h = 1 was
applied twice to each solution, computing one new flux mode each time. The errors for all solutions are
given in percent of additional time needed for output production, w.r.t. the optimal solutions of Tab. 4.3.

different substrates shows that the performance of the approximation depends strongly on the
optimisation problem. While the method even finds an exact optimal solution in the network
with lactate as the only substrate, we have large errors with a small grid and glucose as the
only substrate. Especially in this case, we can see that the additional use of (OP2x) has great
benefits. Altogether, the results in Tab. 6.1 can be summarised by stating that increasing the
size of the pre-selection as well as employing (OP2x) several times yields in all cases a solution
with a duration that is only less than 1% increased, compared to an optimal solution. In the
case where the large grid (∣D ∣ = 2400) is used and two improving flux modes are computed one
after the other, the error is even pushed below 0.1%. These results suggest that the two methods
applied in concert can yield near optimal solutions also in larger networks, where the direct,
exact solution of the optimisation problem (OP2x) is not tractable anymore. However, it has to
be noted that this approach will be rather heuristic, because Prop. 6.1 is not applicable with a
small tolerance in practice, due to the high number of required grid points D . The computations
here gave errors that were magnitudes smaller than formally guaranteed by Prop. 6.1. The
application of the approach to other and larger networks relies on the hypothesis that a similar
outcome can be expected in general.
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6.7. Exhaustive enumeration of gene expression sequences

6.7 Exhaustive enumeration of gene expression sequences

In the basic formulation, (OP3), p. 58, allows arbitrary gene expression patterns.
However, to get a biologically meaningful model, the space G of possible gene
expression patterns has to be limited. Also the sequence of different gene ac-
tivations may be limited in order to capture certain aspects of the regulatory
dynamics in the model. The more information about the gene regulation is in-
cluded, the smaller becomes the space of feasible sequences of gene expres-
sions. If it is sufficiently small, we can compute for every feasible sequence an
associated optimal sequence of flux modes. This gives not only one optimal se-
quence, but a complete picture, in particular of the trade-off between the cost
of switching and the time that is gained (see Fig. 6.4). The computation can be
facilitated by sorting out those gene expression patterns, which are surely not
used in an optimal solution. The approach is illustrated on the core metabolic
network introduced in Chap. 4.

Assume a sequence g⃗ ∶= (g1, . . . gl) ∈Dynl of gene expression patterns is given. The allocation
of enzymes is then fixed in each phase, i.e., for each flux rate v1, . . . , vl in (OP3), p. 58, the
bounds are fixed. The optimisation problem is thus just an LP. A brute force approach for solv-
ing (OP3) would be to compute an optimal sequence of flux modes on every feasible sequence
g⃗ ∶= (g1, . . . gl) ∈Dynl, that is, to solve the LPs

min
l

∑
i=1

τi, subject to:

vi ∈ Fgi , i = 1, . . . , l

∑l

i=1
τi v

i
t ≥ Γt for t ∈ T

with variables:

τi ∈ R≥0, v
i ∈ Rn, i = 1, . . . , l.

(6.9)

Note that this remains an LP if maintenance constraints are added. For the definition of Fg see
p. 46. For every g⃗ ∈ Dynl we get an objective value τ∗(g⃗). Ordering g⃗ by their corresponding
objective values gives a hierarchy in efficiency. A sequence g⃗ with minimal objective value
τ∗(g⃗) together with the corresponding optimal flux modes and durations computed in (6.9) is
an optimal solution of (OP3). The availability of optimal solutions for all feasible sequences
g⃗ ∈Dynl gives furthermore the possibility to get more insight into the problem, for example by
analysing how the objective value depends on parameters, as e.g. the usage of certain reactions
or the number of switches of genes (Fig. 6.4). In particular, we can analyse the trade-off between
the costs for switching and the gain in efficiency. This can be done for various switching cost
functions. For all these additional examinations it is not necessary to repeat the computation of
(6.9) for all g⃗ ∈Dynl.

Solving (6.9) for one given sequence is computationally trivial and it is therefore possible
to compute the optimal solution for a large number of sequences g⃗. The size of Dynl depends
on the size of G itself and on further conditions concerning the order in which the gene expres-
sion patterns g ∈ G can occur. In Sec. 3.6.3 the concept of minimal flux modes (MFM) was
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introduced. It reduces G to a biological meaningful set of gene expression patterns. The space
of feasible sequences Dynl ⊂ Gl was furthermore restricted by taking into account the slow
degradation of enzymes, which lead to the monotonicity constraints gi ≤ gi+1, see Sec. 3.6.3.
All these restrictions have to be implemented in (OP3) by further constraints on the binary vari-
ables gkj . The representation can become very large and it might also be impossible to represent
Dynl with linear or convex constraints. These restrictions on Dynl make the exhaustive enu-
meration of solutions for all g⃗ ∈ Dynl interesting, because on the one hand, a constraint-based
representation of Dynl is not required anymore and on the other hand, Dynl might be small
enough to compute an optimal solution for each g⃗ ∈Dynl.

6.7.1 Representing the space of sequences

The monotonicity constraint that was applied to the core metabolic network is an example of
constraints on the sequence of flux modes. The constraints gi ≤ gi+1 can be interpreted as
defining a set of feasible transitions from one gene expression state to another. In general,
defining such feasible transitions seems to be a natural structure that can capture many aspects
of the gene regulatory network (GRN) dynamics. Defining a set Tr of all feasible transitions
(gi, gi+1) ∈ G ×G gives a directed graph (G,Tr) which can give a representation of Dynl.

Sequences defined by GRN dynamics A restricted space of sequences naturally emerges when
a model is given where a specified GRN controls the expression of the metabolic genes g.
Let x ∈ G × R be a state of the complete GRN, where G denotes as before the metabolic
genes and R all other genes of the GRN. The state transition graph (STG, see Sec. 7.2 for a
formal introduction) defines all transitions (x,x′) that can take place in the model. A transition
between two states g, g′ ∈ Gwould then be feasible if and only if it is realised by a corresponding
transition in the whole GRN. Formally, define Tr to be the set of all tuples (g, g′), such that
there exists a transition (x,x′) in the STG of the whole GRN with x∣G = g and x′∣G = g′.

Identifying all necessary sequences We will now describe how an enumeration of all feasible
sequences can be obtained from the graph structure (G,Tr). Of course we want to avoid having
redundant sequencesDynl. Repetitions (g, g) ∈ Tr are for example redundant, since τk ∈ R≥0 in
(3.23) can represent any duration of the given gene expression state g. Furthermore, since also
τk = 0 is possible, feasible sequences of length < l do not have to be listed if they are already a
sub-sequence of another sequence in Dynl.

Evidently, repetitions occur if and only if the graph (G,Tr) has self-loops and we can hence
avoid repetitions by discarding all self-loops. Regarding the sub-sequences we will assume now
that after deleting the self-loops the graph contains no directed cycles of length ≤ l. Every node
can then occur at most once in a path. A node of (G,Tr) is called terminal if it has no outgoing
edge, i.e., ḡ is terminal if there is no g ∈ G with (ḡ, g) ∈ Tr. If the graph (G,Tr) has no
terminal nodes, every feasible sequence g1, . . . , gh with h < l occurs also as a subsequence of
some g⃗ ∈ Dynl with length l and at the same time every (sub-)sequence occurs only once. By
adding self-loops to all terminal nodes we create this situation artificially. So let (G,Tr′) be
the graph obtained from (G,Tr) by deleting all self-loops of non-terminal nodes and adding
self-loops to all terminal nodes. In the directed graph (G,Tr′), a path of length h is a sequence
of h edges (gi, gi + 1) ∈ Tr, i = 1, . . . , h, connecting h + 1 nodes g1, . . . , gh+1. If all paths in

137



6.7. Exhaustive enumeration of gene expression sequences

(G,Tr′) of lengths l are enumerated, then it follows that every sequence of length h = 1, . . . , l
is represented by one of these paths, or by a subsequence of one of these paths.

Graphs with directed cycles In case a directed cycle of length ≤ l is contained in the graph,
nodes can be visited several times by a path of length l and it is necessary to allow these rep-
etitions. For example, consider the ”trefoil” graph, where one node a is connected to three
other nodes x, y, z by edges in both directions. Apart from these six no further edges exist. To
get from x via y to z the middle node a has to visited twice. In other words, the enumeration
of the paths will include cycles of the graph, which leads to hard combinatorial problems, see
e.g. [Johnson, 1975].

Enumerating all paths Under the assumption that no directed cycles of length ≤ l are contained
in the graph (G,Tr), all required paths can be enumerated by performing from each node a
depth-first search until depth l. Equivalently the search can just be started in an extra source
node s that only has outgoing edges, one to each node g ∈ G and search until depth l + 1.
The pseudo-code is given below. It consists of one function, EXPLORE(), which is called
recursively. We start in the source node s that was added to the graph. (All variables are global
so that the function has no arguments.) The initialisation is currentNode ← s, depth = 0 and
path = (none, . . . ,none) ∈ (G ∪ {none})l.

function EXPLORE( )
if depth = l then

pathList← pathList ∪ path
else

depth← depth + 1
parent← currentNode
for all child with (parent, child) ∈ Tr′ do

path(depth) ← child
currentNode← child
EXPLORE( )

end for
currentNode← parent
depth← depth − 1

end if
end function

The size of pathList, i.e., the number of paths that are enumerated can be computed indepen-
dently of an enumeration as the sum of all entries of the l-th power (Adj)l ∈ N∣G∣×∣G∣, where
Adj ∈ N∣G∣×∣G∣ is the adjacency matrix of the graph (G,Tr′). The entry Adjg,g′ is 1 if there is an
edge from g to g′ and the entry ((Adj)l)g,g′ gives the number of path of length l starting in g
and ending in g′.

6.7.2 Reducing the set of gene expression patterns for optimal solutions

Above we discussed how an enumeration ofDynl can be algorithmically obtained from a graph
representation of the dynamics of the GRN. Of course many other ways to obtain enumerations
of Dynl are possible depending on the representation of the gene expression state and its dy-
namics. In the very simple case where Dynl = Gl for example, we just have to generate all
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l-element subsets of G, since the order is irrelevant. In this case, it is furthermore possible to
reduce the number of sequences g⃗ for which an optimal sequence of flux modes must be com-
puted by (6.9) to find the most efficient solution. The idea is to find gene expression states g ∈ G
that can be omitted, because a different g′ ∈ G allows in all target reactions at least the same
flux rate. Discarding such states we get a reduced gene expression space Ḡ. If Dynl = Gl, the
choice of g ∈ G is free in every phase k = 1, . . . , l in (OP3) and therefore it suffices to optimise
over Dynl = Ḡl.

Definition 6.2. Let g, g′ ∈ G be gene expression states. We say that g is dominated by g′, if for
all v ∈ Fg there exists v′ ∈ Fg′ , such that vt ≤ v′t for all target reactions t ∈ T .

To find an optimal solution by exhaustive enumeration, the gene expression space G can
thus be reduced by discarding dominated elements. The problem to decide if g′ dominates g is
closely related to a polytope containment problem, i.e., the question if polytope P is contained
in polytope P ′ [Eaves and Freund, 1982]. Domination of g by g′ is assured as soon as

πT (Fg) ⊂ πT (Fg′) ,

where πT is the projection to the target reactions T , i.e., πT (v) = vT , the restriction of the flux
vector v to T . This containment of the two projected polytopes is a stronger property than
the domination defined above, see Fig. 6.3. The following Lemma gives a different sufficient
condition for domination. It has the advantage that it can easily be tested by solving one single
LP and is hence well suited to be used for reduction of G and Dynl. Remember that Fg is the
polytope {v ∈ Rn ∶ Sv = 0, lb(g) ≤ v ≤ ub(g)}, where ubj(g) = Atotkc+j

gj
⟨g,γ⟩ , j = 1, . . . , n.

Lemma 6.3. If the LP {min α ∶ αvt ≥ ubt(g), t ∈ T and v ∈ Fg′} has an objective value
α∗ ≤ 1, then g is dominated by g′.

Proof. Let v∗ ∈ Fg′ such that α∗v∗t ≥ ub(g)t for all t ∈ T . Every flux mode v ∈ Fg fulfils
vt ≤ ub(g)t ≤ α∗v∗t for all t ∈ T . If α∗ ≤ 1 then this gives exactly the definition of g being
dominated by g′ with v′ = v∗.

It is clear that Lemma 6.3 holds equally if ub(g) is replaced by the corresponding stoichio-
metric bounds (Def. 2.4). In the practical application the stoichiometric bounds should be used
because they are often much smaller for some reactions and this makes the sufficient condition
stronger and more dominated states are detected.
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A)

Fg

Fg′′

Fg′

B)

Fg∗

Fg∗∗

Figure 6.3: A) Projections of the hypothetical flux spaces Fg, Fg′ and Fg′′ on two target reactions. The
grey area is the projection of Fg and the projections of the flux spaces Fg′ and Fg′′ are indicated by
their boundaries (dashed lines). If there are only these two target reactions, we can conclude that the
gene expression state g is dominated by the states g′ and g′′, since both flux space projections contain
Fg. However, the test given by Lemma 6.3 recognizes only the dominance of g′ but not of g′′. The test
checks if the box around the projection of Fg, indicated by the full line, is included in the other flux
space. B) An illustration of the slight difference between g∗ ∈ G being dominated by g∗∗ ∈ G and the
containment of the corresponding projected flux spaces. The blue and the grey region are projections of
Fg∗ resp. Fg∗∗ on the only two target reactions. Although the containment πT (Fg∗) ⊂ πT (Fg∗∗) is not
given, g∗ is dominated by g∗∗ by definition.

6.7.3 Application in the core metabolic network

In the core metabolic network, exhaustive enumeration is still tractable. For the computations
in Sec. 4.4 no constraints on the sequences of gene expression are given, i.e., Dynl = Gl. The
gene expression space G itself is generated by 20 MGS and contains 177 elements. In Tab. 4.3
the results of solving (OP3), p. 58, with l = 1,2,3,4 are given. For the condition where both
substrates are available (rows (i)−(iv)) also the exhaustive enumeration approach was applied.
At first, the 177 gene expression states could be reduced to only 94 by discarding those that
cannot fulfil one of the maintenance constraints or cannot produce any of the demanded output.
Furthermore, we sort out elements g ∈ G that were found to be dominated by another gene
expression state by applying Lemma 6.3. Discarding another 33 elements this way, the gene
expression space is reduced to 61 elements. To obtain a complete picture of the efficiency with
l = 1,2,3,4 consecutive flux modes, we solve (6.9) for all g⃗ ∈ Dynl for l = 1,2,3,4. Altogether
the number of LPs that must be solved is hence ∑4

k=1 (
61
k
) ≈ 5.6 ⋅ 105 (the number of 1,2,3 or 4

element subsets of G). Since LPs can be solved very fast, this can be done in about 1 hour on a
PC (2.5 GHz).
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Figure 6.4: Durations of the optimal solutions for the core metabolic network. In Tab. 4.3 optimal
solutions are given with l = 1,2,3,4 and no constraints on the number of switches of MGS (rows (i) −
(iv)). Here the number of MGS switched in the sequence of l flux modes is at most n = 0,1, . . . ,20.
We can see that allowing only two switches between two consecutive flux modes already decreases the
durations by about 30 [min]. Two similar large jumps occur when at most 6 and at most 10 switches
of MGS are allowed, switching more than 10 MGS brings no significant improvement. While it makes
almost no difference in this instance if three or four consecutive flux modes are allowed, the global
optimal solution of less than 5 [h] cannot be achieved with only two consecutive flux modes. Instead of
the number of flux modes, also a finer measure of the switching cost could be used, as e.g. the formulas
derived in Sec. 4.4.2.

6.7.4 Conclusion

In the exhaustive enumeration approach, mostly the time complexity is critical for the tractabil-
ity, because every LP is solved independently. Solving an individual LP is very fast and reli-
able. In case exhaustive enumeration can be applied, it has the advantage of giving very reliable
results, compared to solving (OP3), p. 58, directly. The major advantage of the exhaustive
enumeration is that the complete set of optimal solutions for all gene expression states allows
analysing the model in various aspects. For example, an optimal solution on some arbitrary
subspace of Dynl can be determined just by traversing the enumerated results. Also the trade-
off between switching costs and gain in efficiency can be analysed w.r.t. to different measures
of cost. Once the exhaustive enumeration of optimal solutions for all sequences g⃗ ∈ Dynl has
been computed, the obtained data can be used for all these various purposes without further
noteworthy computational efforts.

6.8 Discussion

The complexity of the general method, which consists of directly solving the optimisation prob-
lem (OP3), p. 58, is strongly limiting its applicability. Regarding further research based on our
resource allocation model and on sequences of flux modes, it is therefore crucial to devise com-
putational procedures with better tractability.

Reducing the search space - More computational capacity, more specific biological models

The alternative computational methods presented in this chapter are essentially restricting the
search space of optimisation. The method of pre-selection, Sec. 6.5, is restricting the flux space
to a finite set of flux modes. While the goal here was to span a grid over the flux space, such that
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6.8. Discussion

every optimal solution can be approximated with flux modes from this finite grid, a pre-selection
could also be constructed by other strategies based on biological data or on computational meth-
ods. In the approach of exhaustive enumeration the flux space F∗ is restricted to the polytopes
Fgk corresponding to the gene expression state of a fixed g⃗ = (g1, . . . , gl) = Dynl. The flux
distributions are not preselected in this case. Although (OP3) reduces to an LP over the poly-
topes Fgk , the exhaustive enumeration is in general not a simplification of the problem, because
the size of Dynl is limiting the tractability now and a small size of Dynl is also reducing the
computational effort in solving the optimisation problem (OP3) directly, where the search tree
of Branch and Bound is reduced. The exhaustive enumeration can be rather seen as an alter-
native way of computing an optimal solution which has the advantage that the LPs are solved
separately and independently. The procedure is thus very reliable from a computational point
of view. Furthermore, a large amount of relevant data is obtained, giving a complete picture of
the efficiency in dependence on alterations in the metabolic network. It is a promising approach
for models where the dynamics of the genes is restricted, so that Dynl is relatively small. A
complete GRN model behind the metabolic genes for example is likely to reduce the feasible
gene expression sequences dramatically.

Decomposition of optimal single flux modes

Not discussed in this chapter, but a near-by alternative to obtain solutions to (OP3) is the de-
composition of a single flux mode which fulfils the requirements, i.e., an optimal solution of
(OP3) with l = 1. In Chap. 3 we saw that optimal solutions with arbitrary l are characterised by
non-decomposability of the flux modes. In the other direction, it is not true that decomposing
an optimal solution of (OP3) with l = 1 gives an optimal solution for arbitrary l. The network
of Sec. 6.4 serves as a counterexample again, because an optimal solution with l = 1 does not
contain the EM e1, while this EM is necessary for an optimal solution with l ≥ 3. In practice,
decomposition of single optimal flux modes yields nevertheless close to optimal solutions when
applied to the core metabolic network of Chap. 4. However, this approach is not considered
as an alternative here, because first a theoretical estimation of the approximation could not be
established and second, decomposing a flux mode completely is a difficult task. The approach
of [Chan and Ji, 2011] to decompose a flux mode into two flux modes with strictly smaller
support as well as own variants based on optimisation were tested. The performance as well as
the reliability were in all cases not satisfying.
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7 Logical network models of gene
regulation

7.1 Overview

Logical networks are discrete models of systems of distinct components that interact based
on logical rules which can be represented by Boolean expressions, also in the case of multi-
valued logic. In biology this formalism is used in particular for networks of gene regulation and
signalling. It offers an intuitive way to encode knowledge about the biochemical interactions
and can serve very well as an interface to a user who is not acquainted with the mathematical
formalism and computational methods. Since Boolean expressions do not provide a unique
representation of logical functions, it is desirable to find a minimal one. This can be achieved by
the Quine-McCluskey algorithm and also by more efficient techniques. Here we will consider
multi-valued logical networks which are encoded by Boolean expressions. The choice of an
appropriate encoding leads to a modified version of the Quine-McCluskey algorithm to find a
short and easily readable representation of the logical rules. After this procedure is presented,
the formal derivation of the network dynamics from the logical rules is given and the application
of the method is illustrated.

7.2 Transition systems and logical networks

7.2.1 Transition systems

Logical networks can be seen as an instance of finite transition systems, which
is a wider class of discrete models. The dynamics of such a system can be
completely described by a directed graph, the so-called state transition graph.
However, in practice the representation is implicit. In the case of logical net-
works, the interactions between the components are described. With additional
specification of the dynamics, the state transition graph can then be derived.

Transition systems is a concept from computer science that is used in various forms to model
real world systems, for example baggage transfer at airports, critical electronic circuits, as well
as computer programs [Baier and Katoen, 2008]. For such man made systems the functionality
is completely known (in contrast to biological systems), but due to the complexity we cannot
explicitly identify all possible dynamic evolutions. Transition systems describe the dynamic
behaviour with a discrete set of states and binary relations, called transitions, between these
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states. All possible states and transitions constitute the so-called state transition graph (STG),
which is basically a directed graph if the transition system is finite [Baier and Katoen, 2008].
The transition system is completely defined by the STG. However, in practice the size of the
STG is often too large to be computed or stored. The description of the transition system is
usually given in an implicit way.

Model checking The term model checking is used for a number of different methods of formal
verification of concurrent systems [Baier and Katoen, 2008,Clarke et al., 1999]. Most prominent
are those based on propositional temporal logic, such as Linear Temporal Logic (LTL) and
Computation Tree Logic (CTL). These logics can describe the temporal ordering of events
represented by the states of a transition system [Baier and Katoen, 2008]. The states of a
transition system are labelled by so-called atomic propositions, in the case of modelling of
gene regulatory networks (GRN) or other biological networks, these atomic propositions are
the levels of activity of the different components (representing expression levels of genes or
concentrations of regulatory or metabolic species). Based on these atomic propositions, the
temporal logics can be used to specify properties of the possible evolutions from the given
initial state [Baier and Katoen, 2008].

Petri nets Petri nets can be seen as a graphic representation of a restricted class of transition
systems [Murata, 2002, Baier and Katoen, 2008]. Here we focus on finite transition systems.
A corresponding finite Petri net can then be represented by an STG in the strict sense. Finite
Petri nets have not only been used to model metabolic networks [Zevedei-Oancea and Schuster,
2003, Genrich et al., 2001, Schuster et al., 2002b], but also for regulatory networks [Steggles
et al., 2007, Chaouiya et al., 2011]. The integration of a metabolic and a regulatory network
in the Petri net formalism was exemplified in [Sim̃ao et al., 2005] and an automated procedure
was presented in [Palinkas and Bockmayr, 2011]. The studies [Chaouiya et al., 2011, Sim̃ao
et al., 2005, Palinkas and Bockmayr, 2011] are all based on a logical network model of gene
regulation, as will be discussed in this chapter.

7.2.2 Logical networks

Biological knowledge about gene regulation or signalling can often be stated by logical con-
ditions. For example, in Escherichia coli the trp operon (trpOp) is attenuated by tRNA and
repressed by trpR [Yanofsky, 2000] and so we can state that ”trpOp is activated if not tRNA
and not trpR”. Therefore it is common that models of regulation contain some logical com-
ponents. For example [McAdams and Shapiro, 1995] proposes a hybrid approach where the
biochemical network is partly modelled as a logic circuit. Logical networks as models for gene
regulation were introduced in [Glass and Kauffman, 1973] and [Thomas, 1973], providing a
theoretical foundation for modelling gene regulation as discrete events which are governed by
logical rules. A specific mathematical framework of logical networks will be considered here.
A general and concise introduction to this formalism can be found in [Richard, 2010]. Logical
networks are an area of ongoing research and are often used to model GRN and also signalling
networks. Apart from this framework, many other methods use a logical description of gene
regulation, see e.g. [Karlebach and Shamir, 2008, McAdams and Arkin, 1998, McAdams and
Shapiro, 1995]. Also integrated models of metabolism and gene regulation rely on logical de-
scriptions [Covert et al., 2001, Sim̃ao et al., 2005]. A toolbox that integrates logical rules for
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transcriptional regulation into a constraint-based model of metabolism is presented in [Jensen
et al., 2011].

Formal definition To describe a logical network with n components, we denote each compo-
nent by an integer i ∈ {1, . . . , n}. The component i is assigned a maximal value k(i) and it can
take integer values from Mk(i) ∶= {0,1, . . . , k(i)}. In the case that k(i) = 1 for all i = 1, . . . , n
we have a Boolean (binary) network, where every component can only take the values 0 or 1.
In case k(i) > 1, the component i is called multi-valued (MV) and in a GRN we can then dis-
tinguish different expression levels, where k(i) is the maximal activity. A logical network with
at least one MV component is called MV network. The state space is then given by ∏n

i=1 Mk(i).
The regulation of each component l ∈ {1, . . . , n} is given by a function φl∶∏n

i=1 Mk(i) → Mk(l)

which will be called target function here. The target value φl(x) tells us where the component
l is tending to in the state x.

To define possible dynamics, we must specify if one or several components can change their
value simultaneously. In the case of MV components we must also specify if the value can
change by steps > 1 or not. Here we will consider only updates that are asynchronous and
unitary. Asynchronous means that only one component changes its value in one transition and
unitary means that this value changes only by ±1. For an overview of different updates of
logical networks and the resulting dynamics see [Richard, 2010, Gershenson, 2003].

From target functions to update functions Once the update is fixed, to asynchronous and unitary
in our case, two so-called update functions will be derived for each component. They tell us
whether a component tends to be up or down regulated in a given state x ∈ ∏n

i=1 Mk(i) or whether
it is stable. For a component l ∈ {1, . . . , n} we have the update functions Ψl

+,Ψ
l
−∶∏n

i=1 Mki → B,
where Ψl

+ evaluates to 1 in exactly those states, where the actual value of l is smaller than the
target value. In this case l is up regulated. Ψl

− is defined similarly for down-regulation, if the
actual value is smaller than the target value. If both update functions give 0, this means that
l is stable in this state. The case that both update functions evaluate to 1 is excluded by the
definition. A detailed description of the update functions will be given in Sec. 7.5.

7.3 Representation of binary functions with minimal DNF

The research area of logical synthesis deals with representation, manipulation
and optimisation of logical functions. It was initiated 1938 by Claude Shan-
non who noted the connection between Boolean functions and electrical cir-
cuits [Shannon, 1938]. Minimisation is one of the subjects of logical synthesis.
A technique to find a certain minimal Boolean expression for a given function
will be formally introduced, before the approach is adapted to the multi-valued
case in the next section.

The representation of logical networks and their dynamics by logical functions was briefly
introduced above. Binary logical functions f ∶Bn → B can be given by Boolean expressions,
introduced on p. 16. In the following we will see how this formalism can be used to represent
also MV logical functions. This representation is very well suited for the application to logical
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network models of biological systems. On the one hand, the biological data and knowledge
can be easily encoded without any acquaintance of the formalism. On the other hand, the
representation is suitable for further computational processing such as simulation or model
checking. In fact, Boolean expressions are frequently used to represent biological models of
gene regulation and signalling by logical target functions, see e.g. [Chaouiya et al., 2011, Saez-
Rodriguez et al., 2007, Zhang et al., 2008, MacLean and Studholme, 2010, Fauré et al., 2006].

Other representations of logical functions Many examples for Boolean or MV logical net-
works modelling gene regulation or signal transduction can be found on the GINsim webpage
(http://www.ginsim.org/). The logical networks on the GINsim web page are often
given by so-called logical parameters. This is another way of representing the truth-table of
the logical functions that govern the behaviour of the components of the network [Thieffry
and Thomas, 1995, Chaouiya et al., 2004]. This formulation is adjusted to the specific math-
ematical treatment of the networks, but as a representation it is not well suited, since even
simple logical rules are not easily understandable from the corresponding logical parameters.
A canonical representation of binary logical functions are the so-called Binary Decision Dia-
grams (BDD) [Crama and Hammer, 2011,Brayton and Khatri, 1999]. For MV logical functions
a corresponding extension, called Multi-valued Decision Diagram (MDD), can be used [Bray-
ton et al., 1990]. Both alternative representations of logical functions do not provide a self-
explaining description as it is provided by Boolean expressions and which can serve as an
interface to a user who is not acquainted with the formal background.

7.3.1 Boolean functions in sum-of-product expressions

Boolean expressions (cf. p. 16) give a representation of logical functions which is not at all
unique. In fact an arbitrary number of equivalent expressions can be given for any logical
function. A formal description of Boolean expressions and the relationship to logical functions
is given next. In particular, this is necessary for the algorithm presented in Sec. 7.4.

Definition 7.1. A literal is a statement about the value of a Boolean variable x. We write the
literal x, to state that x ≡ 1 and the literal x, the negation, to state that x ≡ 0.

The binary function f ∶Bn → B that is defined by an expression over n variables can only
take two values. Hence it is already defined by the true points T ∶= {t1, . . . , tr} ⊆ Bn of f ,
containing all states that are mapped to 1 [Crama and Hammer, 2011]. All other states Bn ∖ T
are mapped to 0. When a biological system is modelled, the Boolean variables usually refer to
the state of individual components, for example they can specify the expression level of a gene
or the abundance of a signalling molecule or a metabolite. Since any Boolean expression can
be written just by using the operators and, or, not, this representation of the logical function
is easily understandable, even without any knowledge of the formal background.

Minimisation As already mentioned and illustrated in Fig. 7.1, the representation of a logical
function by a Boolean expression is not unique. Operations on Boolean expressions lead usually
to very large expressions which often have a much shorter equivalent form. An example is the
derivation of the update functions for up- and down-regulation of a component from the target
functions (see Sec. 7.5). For further processing of the model as well for the user who wants to
read and understand the resulting Boolean expressions, it is hence desirable to find a minimal
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f(a, b, c) a b c ∈ T
0 0 0 0

1 0 0 1 ✓ → t1 = a ⋅ b ⋅ c
1 0 1 0 ✓ → t2 = a ⋅ b ⋅ c
0 0 1 1

1 1 0 0 ✓ → t3 = a ⋅ b ⋅ c

1 1 0 1 ✓ → t4 = a ⋅ b ⋅ c
1 1 1 0 ✓ → t5 = a ⋅ b ⋅ c
1 1 1 1 ✓ → t6 = a ⋅ b ⋅ c

f(a, b, c) ≡ a ⋅ b ⋅ c+ a ⋅ b ⋅ c+ a ⋅ b ⋅
c + a ⋅ b ⋅ c + a ⋅ b ⋅ c + a ⋅ b ⋅ c

Figure 7.1: Truth table for a Boolean function f ∶B3 → B and the directly derived DNF. Every true point
t ∈ T can be written as a conjunction of literals such that every variable is fixed. A straightforward way to
obtain a DNF for f is to take the disjunction of all these conjunctions, yielding the DNF t1 +⋯+ tr ≡ f .
This Boolean expressions can often be drastically reduced. In this example, an equivalent expression is
f(a, b, c) ≡ a + b ⋅ c + b ⋅ c. In verbal form it can be stated as ”f gives 1 if a
or (not b and c) or (b and not c). Otherwise f gives 0”.

Boolean expression for a given logical function. Minimisation is one of various procedures
on logical functions that are considered in the field of logical synthesis [Brayton et al., 1990].
To clarify what we mean here by minimality, the composition of a Boolean expression will be
defined more precisely.

Definition 7.2. A conjunction (product) of literals is called minterm. A disjunctive normal
form (DNF) is a disjunction (sum) of minterms.

As we saw in Fig. 7.1, a DNF can be directly derived from the true points of a function.
However, the example also illustrated that often an equivalent DNF of smaller size exists.

Definition 7.3. A Boolean expression in DNF will be called minimal if any equivalent expres-
sion in DNF has at least the same number of minterms and if it is the same number, then it has
at least the same number of literals.

It is convenient to represent minterms by vectors of a fixed size. To do so, we have to assume
that the minterm contains at most one literal of each variable, which is a reasonable assumption,
since otherwise there would be a tautology or a contradiction.

Definition 7.4. A minterm m can be represented by a vector α ∈ {0,1,*}n, where αi = 1 if
m contains the positive literal xi of the i-th variable, αi = 0 if m contains the negative literal xi
or αi = * if m contains no literal of xi.

The expression a + b ⋅ c + b ⋅ c from Fig. 7.1 for example can be given in vector notation as
(1**) + (*01) + (*10).

Definition 7.5. On binary functions with domain Bn we introduce the partial order ≤ by defin-
ing g ≤ f if ∀x ∈ Bn ∶ g(x) = 1⇒ f(x) = 1.

Since every Boolean expression in n variables defines a binary function on Bn, this gives
also a partial order on the set of all expressions in n variables. Equivalent expression are equal
in this order.
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Definition 7.6. Given a function f , an implicant is a minterm m, such that m ≤ f . The
implicant p is a prime implicant of f if there is no implicant m ≤ f with p < m (which means
p ≤m and not p =m).

In other words prime implicants are maximal elements (w.r.t. ≤) in the set of all implicants of f .
In a DNF of the function f all minterms are of course implicants of f . Furthermore, their sum
gives exactly f .

Definition 7.7. A cover of f is a set of implicants m1, . . . ,mk, such that the disjunction m1 +
. . . +mk ≡ f . If all mi are prime implicants it is called a prime cover. It is called minimal
prime cover, if there is no prime cover of f with less than k prime implicants.

A DNF is hence a cover of f and we will see that a minimal DNF is a prime cover.

7.3.2 Finding minimal representations

State of the art in practical minimisation A logical function in n variables can have a minimal
DNF with an exponential number of minterms in the worst case (an example is the function that
evaluates to 1 if and only if the sum of all variables that are true equals ⌈n2 ⌉). The standard
procedure for Boolean minimisation is the Quine-McCluskey algorithm [Quine, 1952, Quine,
1955, McCluskey, 1956]. But efficient minimisation of large expressions requires more sophis-
ticated algorithms and often heuristic approaches are used. A collection of such algorithms for
minimisation was developed under the name ESPRESSO [Rudell and Sangiovanni-Vincentelli,
1987], providing exact as well as approximative minimisation. These methods were also ex-
tended to handle MV logic [Rudell and Sangiovanni-Vincentelli, 1987]. An implementation of
the ESPRESSO algorithms is also available [Lavagno et al., 1990]. The ESPRESSO algorithms
essentially represent the state of the art in efficient two-level minimisation. Some methods were
developed that are similar to ESPRESSO, but also contain different approaches, [Hlavička and
Fišer, 2001,Sapra et al., 2003]. For functions with certain properties they were found to further
improve the performance.

To work with binary logical networks that are used for biological modelling the software
tool Bool-net [Müssel et al., 2010] was developed. It also features the computation of minimal
expressions to represent a given Boolean network. In case the variables are Boolean and their
number is small (≤ 5), the standard Quine-McCluskey algorithm can be used for minimisation.
This is usually the case for models of gene regulatory or signalling networks. In the following
section we show how the Quine-McCluskey algorithm can be modified to deal also with MV
logical functions in order to find a minimal and well readable representation. The presented
algorithm is also part of a tool [Palinkas and Bockmayr, 2011] for translating integrated models,
consisting of a logical network for the gene regulation and a metabolic network, into Petri nets
and into continuous time Markov chains (CTMC), see p. 17, in a format that serves as input to
the probabilistic model checker PRISM [Hinton et al., 2006], see p. 165.

Comment on multi-level minimisation Another name for DNF is sum-of-products. Equivalently
there are product-of-sum expressions also known as conjunctive normal form (CNF). Both are
two-level expressions. An example for a three-level expression is A ⋅ (B +C)+X ⋅Y . This sum
of products of sums is not a two-level expression, but has to be expanded to A ⋅B +A ⋅C +X ⋅Y
to become a DNF. The three-level expression is in this example shorter than a minimal DNF,
which shows that minimal DNFs can be further reduced, if expressions with more than two
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levels are admitted. An algorithm to achieve Boolean minimisation for an arbitrary number
of levels is given in [Lawler, 1964]. The goal here is to find short and easily understandable
expressions. It is clear that expressions with too many levels will not be easily understood,
because the structure is too complex. On the other hand, allowing more than two levels can
reduce the size. The example A ⋅ (B + C) + X ⋅ Y ≡ A ⋅ B + A ⋅ C + X ⋅ Y was given
above. The three level expression might be preferably here. However, a large impact compared
to a minimal DNF cannot be expected in general, so that this direction is not further pursued
here. Two levels are clearly necessary at minimum to express certain Boolean functions. In
the other direction, Fig. 7.1 shows how a DNF can be directly derived from the true points
of a function and therefore two levels also suffice. The methods mentioned in the previous
paragraph refer to two-level minimisation (however, EXPRESSO provides also methods for
multi-level minimisation [Bartlett et al., 1988]).

7.3.3 The Quine-McCluskey algorithm

The method proposed here for minimising expressions of MV logical functions uses a modifi-
cation of the standard algorithm for Boolean minimisation from Quine and McCluskey [Quine,
1952, Quine, 1955, McCluskey, 1956] which will be abbreviated QMC. Let f ∶Bn → B be a
Boolean function with true points T = {t1, . . . , tr}. The covering t1 + ⋯ + tr gives already a
DNF that is equivalent to f . The purpose of QMC is to find an equivalent DNF which is mini-
mal according to Def. 7.3. To fulfil the first condition of this notion of minimality, the number
of implicants in the covering must be minimal. Note that every covering can be replaced by a
prime covering of at most the same size, because each implicant m in the cover is either a prime
implicant or there is a prime implicant p such that m ≤ p ≤ f and hence p can replace m and
the cover will still be equivalent to f . The second condition of minimality, that the number of
literals in the implicants of the covering is minimal, is surely satisfied by the prime implicants,
because a minterm can only be increased in the partial order ≤ if a literal is discarded. There-
fore, to find a minimal DNF for f we have to find a minimal prime cover of f according to
Def. 7.7. This is done in two disjoint steps:

• Finding all prime implicants

• Choosing a minimal number of prime implicants that cover f

Here we will only be concerned with the first step. Once the prime implicants are determined,
the second step is a general combinatorial problem (set covering problem) and it makes no
difference whether binary or MV logic or a binary encoding of MV logic is considered.

Computation of all prime implicants

All prime implicants of a Boolean function f can be generated from the set of all true points
T = {t1, . . . , tr} [Crama and Hammer, 2011, Sec. 3.2.1]. Once the set of all implicants is
available, it is ordered by ≤ of Def. 7.5 and the prime implicants are then identified as the
maximal elements. Another method, which can be applied to any DNF of f is called consensus
procedure as described in [Crama and Hammer, 2011, Sec. 3.2.2]. A variant of this approach,
which is adapted for the practical implementation, will be described now. In this variant, we
assume that the initial DNF is the disjunction of the true points. Pairs ti, tj of true points are
considered where the number of positive literals in ti is by one larger than in tj . The vectors
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of the true points hence differ in at least one entry and if they differ in exactly one entry they
are merged to one new implicant of f . This method, called binary-merge here, consists of
iteratively testing pairs and merging them eventually to a new implicant.

Generating all implicants with Binary-Merge The merging procedure will be carried out by ap-
plying the following rule to pairs of implicants, starting with pairs of true points. All implicants
are given in vector notation (Def. 7.4).

Binary-Merge rule:

If:
• α and α′ are identical except in the j-th variable, where αj = 1 and α′j = 0.

Then:

• Merge to α′′ with α′′j ∶= ∗ and α′′i ∶= αi (= α′i) for i ≠ j.

This rule is applied to all pairs of true points. After this, all implicants that were merged at
least once, are discarded. Since α′′ ≡ α+α′ (where ≡ is used for equality of Boolean values), we
can replace the two implicants α, α′ with α′′ and the cover will still be equivalent to f . In a next
iteration, the rule is applied to all pairs from the set of the new implicants that were obtained
by merging in the previous iteration, see the example below. (In every iteration, only such pairs
have to be tested where the number of positive literals differs by one. Note that this order is
inherited from the previous set of implicants and hence only the initial set of true points has to
be ordered.) In the end, when no merges are possible anymore, the prime implicants are given
by the set of all implicants that were never merged in the whole procedure.

This algorithm is a variant of the consensus procedure as mentioned above. A proof that
the consensus procedure yields all prime implicants is given in [Crama and Hammer, 2011,
Sec. 3.2.2]. Another proof, tailored for the variant used here, will be given below, it will also
serve to prove the generalised procedure in the next section.

Example Consider T = {a ⋅ b ⋅ c, a ⋅ b ⋅ c, a ⋅ b ⋅ c, a ⋅ b ⋅ c}. The first iteration merges four pairs
of true points:

a ⋅ b ⋅ c (100)
a ⋅ b ⋅ c (101)

⎫⎪⎪⎬⎪⎪⎭
a ⋅ b (10*),

(100)
(110)

} (1*0),
(111)
(110)

} (11*),
(101)
(111)

} (1*1)

Since all initial implicants (the true points) were merged at least once, they are all discarded and
only the new implicants are potential prime implicants. (If one implicant would not be merged
with any partner, it would be a prime implicant). The second iteration merges two pairs that
fulfil the merging condition. Both result in the same single prime implicant a, which is hence
equivalent to the function given by T .

a ⋅ b (10*)
a ⋅ b (11*)

} a (1**){
a ⋅ c (1*0)
a ⋅ c (1*1)

Proposition 7.8. All implicants of f are generated in the merging procedure Binary-Merge.
The implicants that were never merged are exactly the prime implicants of f .
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Proof. First note that a prime implicant cannot be merged with any other implicant, since merg-
ing results in a strictly greater implicant in the partial ordering ≤. We will show now that every
implicant of f is generated during Binary-Merge. This implies that also all prime implicants
are generated. Given α′′ (the vector of an implicant of f ) with at least one ∗-entry α′′j = ∗ we
can split α′′ up. This means that we invert the merging that produced this ∗-entry. Splitting
α′′ at the entry α′′i = ∗ produces the implicants α, α′ with αj = 1 and α′j = 0. The resulting
implicants are strictly smaller than α′′, i.e., α < α′′ and α′ < α′′. We proceed by splitting α and
α′ at one of the remaining ∗-entries and iterate this. Finally this gives implicant-vectors that
contain no ∗ at all, which means that they describe one single state where f evaluates to 1, i.e.,
a true point ti ∈ T .

10*1*
1011*

1001*

10111
10110
10011
10010

The splitting is the inverse operation of the merging procedure described above, so we can
conclude that the implicant α′′ is generated in this procedure. Note that in the iterative appli-
cation of the splitting of an implicant α, all implicants ω < α occur and all these implicants
are merged at one point in Binary-Merge. This implies that an implicant ω that was never
merged in Binary-Merge must be a prime implicant.

In the example of Fig. 7.1 the prime implicants are a, b ⋅ c and b ⋅ c. This is already a minimal
covering set and f(a, b, c) ≡ a + b ⋅ c + b ⋅ c is hence a minimal DNF.

7.4 Generalisation to multi-valued functions

To handle multi-valued (MV) logical functions, we will encode the MV vari-
ables with binary variables. This leads to binary logical functions representing
the original MV function. The binary variables of one MV variable are inter-
dependent, which leads to a restricted state space of the binary variables. In
this setting the notion of implicant will be extended and the merging procedure
described above will be adapted to find all prime implicants according to the
extended notion. In the beginning, the encoding of the MV variables is chosen
such that this adapted minimisation procedure will lead to a short and also well
readable expression to represent the MV logical function.

The concepts from logical synthesis can be generalised from binary (Boolean) to multi-valued
(MV) logic [Brayton et al., 1990]. This holds in particular for all definitions of Sec. 7.3.1. The
generalisation used here is different from [Brayton et al., 1990]. It is tailored for the application
to biological networks, with the goal to give a well readable representation. Once a generalisa-
tion is defined, the next question is how to deal with the new formalism computationally. On the
one hand, computational methods from the binary setting can be adapted for the MV functions.
On the other hand, the MV functions can be encoded in binary form, so that the methods that
were developed for Boolean functions can be applied. A variation of such encodings is possible.
As pointed out in [Brayton et al., 1990], the efficient processing of MV functions depends on
a good choice of the encoding. In [Villa and Sangiovanni-Vincentelli, 1990] a general method
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is presented that finds an optimal encoding for a given MV function, in the sense that a MV
prime-cover corresponds to a prime cover in the binary encoding of the same size.

Apart from the issue of efficient processing of the function, also the expressiveness of the
binary encoding is of interest. As pointed out in [Van Ham, 1979] a 2k-valued variable can be
encoded by k binary variables. However, these binary variables will have no individual meaning
w.r.t. the biological network under consideration. For our purpose here we chose an encoding
which allows good computational handling and, at the same time, consists of meaningful vari-
ables. This ensures that the resulting minimal expressions represent the biological information
in a compact and immediately understandable form. This is an important feature, because oth-
erwise an additional method would be needed to translate the obtained representation, so that it
is comprehensible. The goal is that the modeller can read of the interactions directly from the
Boolean expressions.

Notation A multi-valued domain consists of consecutive integers from 0 to a maximal value
k. This domain is denoted by Mk ∶= {0,1, . . . , k} ⊂ Z, so that in particular M1 = B. A
statement about variables in square brackets is meant to be interpreted as a B-value, according
to the validity of the statement. For example consider the variables x ∈ M5, a, b ∈ B and let
x = 5, a = 1, b = 0, then we have the following equalities of B-values (indicated by ≡ to
distinguish it from arithmetic equality): [3 ≥ x] ≡ 0, [3 ≤ x] ≡ a ⋅ b and [x = 3] ≡ b.

A MV logical function is a mapping φ∶∏n
i=1 Mk(i) → Mh for some h ≥ 1. If h > 1, φ can

be represented by several B-valued functions φj , j = 1, . . . , h, where φj evaluates to φj(z) ≡ 1
at exactly those states z ∈ ∏n

i=1 Mk(i) which are mapped to φ(z) = j. These states are the true
points Tj of φj . Note that these are disjoint sets, i.e., Tj ∩ Ti = ∅ if j ≠ i, and φ(z) = 0 if and
only if φj(z) = 0 for all j = 1, . . . , h. Therefore, the mappings φj , j = 1, . . . , h, can be seen as a
decomposition of φ into MV logical functions with Boolean range. If such a decomposition is
given, φ can be retrieved as φ(z) = j, if φj(z) = 1 and φ(z) = 0, if φj(z) = 0 for all j = 1, . . . , h,
since only one of these h+1 cases can be satisfied by z. In the following we will therefore focus
the discussion on binary-valued functions φ∶∏n

i=1 Mk(i) → B.

7.4.1 Binary encoding and minimisation of MV functions

Encoding for MV variables The logical function φ takes binary values, but the components of
the state z ∈ ∏n

i=1 Mk(i), in other words the variables, are MV. A single MV variable zi ∈ Mk(i)

will be encoded by the k(i) binary variables

xij ∶≡ [zi ≥ j] for j = 1, . . . , k(i). (7.1)

This encoding was introduced in [Van Ham, 1979]. It gives a natural representation of the or-
dering relation on the integers which correspond to the expression levels of the genes in the
biological model. From the modelling point of view it is hence particularly suitable for biolog-
ical regulatory networks, because in many cases the regulatory effect of a gene depends mono-
tonically on the expression level (although very high concentrations of activating molecules
sometimes have the contrary effect in gene regulation). Hence it often suffices to know that
z ≤ k or z ≥ k in order to determine the regulatory effect on another component of the network.
This encoding was also used for Constraint Satisfaction Problems in [Tamura et al., 2009],
where the benefit is that ordering relations between variables can be expressed easily.
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Defining MV-literals In the Boolean case the choice of literals (Def. 7.1) was rather canonical.
For each variable a a positive and a negative literal is defined, stating that a ≡ 1 or a ≡ 0,
respectively. A straightforward extension to the MV case of a variable zi ∈ Mk(i) would be
to consider every statement [zi = j] as a literal, j = 0, . . . , k(i). In [Brayton et al., 1990] the
generalisation is based on a larger set of literals. Every subset L ⊂Mk(i) defines a literal which
states that z has a value from L, i.e., the literal expresses the disjunction∑l∈L[zi = l]. Obviously,
this larger set of literals makes it possible to represent logical functions by shorter expressions.
Here we will choose a set of literals that lies between these two cases. Instead of defining a
literal for every subset of Mk(i) we do it only for the intervals I(j, j′) ∶= {j, j+1, . . . , j′} ⊂Mk(i),
with j, j′ ∈ Mk(i), j < j′. The encoding (7.1) gives the binary variables xij ≡ [zi ≥ j] and
xij ≡ [zi ≤ j − 1], for j = 1, . . . , k. Every interval is thus given by the product of two binary
variables or by only one binary variable, i.e.,

zi ∈ I(j, j′) ⇔ xij ⋅ xij′+1

if we define the symbols xik(i)+1 ∶≡ 1 and xi0 ∶≡ 1.

Arithmetic literals and polynomial representation The sets of literals that were presented above
have in common that each individual literal refers to one single MV variable. In principle it
would also be possible to encode relations between several variables in one literal by using
arithmetic expressions. For example, we could add the literals [a ≤ b] or [a+ b ≤ 4] for a pair of
MV variables a, b ∈Mk (where ≤ denotes the usual order on R). This would allow even shorter
expressions, e.g., if [a ≤ b] is not available as literal it has to be expressed as the disjunction
∑k
j=1 [a ≥ j] ⋅ [b ≥ j + 1]. How an algorithm for finding a minimal expression with such ’mixed’

literals could be designed is unclear, since existing approaches (or at least those mentioned in
this text) depend crucially on the separation of variables in the literals. In this context it should
be noted that a totally different and purely arithmetic description of functions f ∶∏n

i=1 Mk(i) → B
can be given by polynomials over finite fields [Dingel and Milenkovic, 2008].

Encoding of MV functions The binary encoding of MV variables z ∈ ∏n
i=1 Mk(i) given by (7.1)

leads to a binary function f ∶Bq → B, where q is the number of binary variables needed for the
encoding. According to (7.1) we have q = ∑n

i=1 k(i). To map a state z ∈ ∏n
i=1 Mk(i) to its binary

encoding, we will define a mapping β∶∏n
i=1 Mk(i) → Bq.

Let J ∶= {(i, j) ∶ i ∈ {1, . . . , n}, j ∈ {1, . . . , k(i)}} and note that for each m ∈ {1, . . . , q}
there is exactly one pair (i, j) ∈ J , such that m = j +∑i−1

h=1 k(h). Therefore the m-th component
of the image of z will be defined by

β(z)m ≡ xij ≡ [zi ≥ j] for (i, j) ∈ J with m = j +
i−1

∑
l=1

k(l).

To refer easily to all those binary variables that encode one distinct MV variable zl, we introduce
the notion of an l-section for the binary variables xl1, . . . , x

l
k(l)

and the corresponding entries in
the vector notation of an implicant.
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Example A MV state z ∈ ∏n
i=1 Mk(i) =M3 ×M4 ×M4 ×M3 ×M1 is encoded as x ∈ B15 and the

l-sections partition the state as follows:

x = (

1−section

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
x1

1 x1
2 x1

3

2−section

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
x2

1 x2
2 x2

3 x2
4

3−section

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
x3

1 x3
2 x3

3 x3
4

4−section

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
x4

1 x4
2 x4

3

5−section

³·µ
x5

1 ).

Lemma 7.9. A state x ∈ Bq is in the image of β if and only if it obeys the dependencies xli+1 ⇒ xli
for all l = 1, . . . , n and i = 1, . . . , k(l) − 1.

It is clear that these implications are necessary and in the other direction a state that satisfies
all implications uniquely defines a state of the MV variable according to (7.1). In particular,
the image im(β) ⊂ Bq is completely characterised by the implications between the Boolean
variables. The size of the image of β is just the number of elements of ∏n

i=1 Mk(i), which is
∏i(k(i) + 1). The Boolean state space Bq has 2∑i k(i) = ∏i 2

k(i) elements. If at least one
k(i) > 1, we have ∏i(k(i) + 1) < ∏i 2

k(i). This gap is getting very big when we have several
variables. For example, five variables from M3 have a state space with 243 elements. But β
maps into B15 which has 134 times as many elements.

●
x = 0

●
x = 1

●
x = 2

●
x = 3

● ●

● ●

● ●

● ●

β

Figure 7.2: The four states of a single variable x ∈ M4 and its image under the map β onto the cube of
the three Boolean variables [x ≥ 1], [x ≥ 2], [x ≥ 3] on the x, y, z-axis. Elements outside the image of β
are contradictory assignments as e.g. [x ≥ 1] ⋅ [x ≥ 2] ⋅ [x ≥ 3], corresponding to the front-left-top vertex.

Encoding the function as binary The MV function φ∶∏n
i=1 Mk(i) → B can be encoded as a

binary function f ∶Bq → B. For elements x ∉ im(β) we define f(x) = 0 and on the image of β
as the composition of β and φ:

f(β(z)) ∶= φ(z).

In order to be able to compare Boolean expression in q variables with such a binary encoding
f (in particular to consider minterms in q binary variables as implicants of f ), it is necessary to
define f also outside of the image of β.

Ordering of binary encoded functions Let f be the binary encoding of the MV function φ. The
implicants of f are minterms over the q Boolean variables that encode the MV states. Due to
the implications given in Lemma 7.9, additional minterms can be considered as implicants, see
for example Fig. 7.3. For binary functions g, f ∶Bq → B the order relation g ≤ f was defined by
g(x) ≡ 1 ⇒ f(x) ≡ 1 for all x ∈ Bq. In case that g, f are binary encodings obtained with β, we
will consider instead the order g ≼ f defined by g(x) ≡ 1 ⇒ f(x) ≡ 1 for all x ∈ im(β ) ⊂ Bq.
From the definitions it follows directly that all implicants according to ≤ are also implicants
according to ≼.
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φ(x) x

0 0
1 1
1 2
1 3

f(x1, x2, x3) x1 x2 x3

0 0 0 0
1 0 0 1
1 0 1 0
0 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

→ γ3 = x1 ⋅ x2 ⋅ x3

→ γ5 = x1 ⋅ x2 ⋅ x3
→ γ6 = x1 ⋅ x2 ⋅ x3

prime implicants:

x1 ⋅ x3 (1*0)

x1 ⋅ x2 (11*)

Figure 7.3: An example of a binary encoding. Assume that the function f from Fig. 7.1 encodes a
multi-valued function φ∶M3 → B. Instead of the Boolean variables a, b, c from Fig. 7.1 we then have
x1 ∶= [z ≥ 1], x2 ∶= [z ≥ 2] and x3 ∶= [z ≥ 3] to encode the variable z ∈ M3. The encoding with
β∶M3 → B3

1 gives the value of z in these Boolean variables. The truth-table of f is reduced, since not
all elements in B3 are in the image of β. According to Lemma 7.9, this is the case for four of the states
and these are crossed out in the truth-table. Three true points of f remain. The merging-rule can be
applied two times to obtain the two prime implicants 1*0 and 11* (in vector notation). According to
the standard order ≤, these are prime implicants. Hence they cannot be merged in the Quine-McCluskey
algorithm and f(x1, x2, x3) ≡ x1 ⋅ x3 + x1 ⋅ x2 is the minimal DNF. However, if we take the MV logic
into account then x1 ⋅ x3 ∶⇔ [x ≥ 1] ⋅ [x < 3] ≡ [1 ≤ x ≤ 2] and x1 ⋅ x2 ∶⇔ [x ≥ 1] ⋅ [x ≥ 2] ≡ [x ≥ 2].
So actually f(x) ≡ [1 ≤ x ≤ 2] + [x ≥ 2] and this is obviously equivalent to [x ≥ 1], so that we can write
f ≡ x1. In the ordering ≼ the minterm x1 is in fact an implicant of f and hence x1 ⋅x3 and x1 ⋅x2 are not
prime implicants.

7.4.2 Minimising the Boolean expression of the binary encoding

The example in Fig. 7.3 shows that the binary encoding of MV functions can be reduced further,
if the implications between the Boolean variables are taken into account. We will now show
how the merging procedure Binary-Merge described above can be extended to overcome
this limitation. Other techniques to generate the prime implicants might be modifiable in a
similar way. This is the case e.g. for the method described in [Crama and Hammer, 2011,
Sec. 3.2.1], where every implicant is generated from a pair of true points. To every pair of true
points an operation is applied that yields a new implicant (the so-called hull) and it has to be
checked whether this is an implicant or not. It is hence straightforward to modify this technique
by checking if the hull is an implicant according to the relation ≼. For Binary-Merge we
will define the modification formally and prove that all prime implicants according to ≼ are
generated.

Block structure of l-sections The difference between the relations ≤ and ≼ lies in the implica-
tions between the binary variables of one l-section which define the image of β. Let f be the
binary encoding of a MV function φ∶∏n

i=1 Mk(i) → B, i.e., f ∶ im(β) → B. Let α be the vector
of an implicant of f . From Lemma 7.9 we can infer that in each l-section a 1-entry is only
preceded by 1-entries. Furthermore, a 0-entry can only be succeeded by 0-entries. This means
that the l-section consist of a block of 1s followed by a block of ∗, followed by a block of 0s.
One or two of these blocks can be empty.
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Lemma 7.10. Let f be as above and assume the truth table of f is given. The merging procedure
Binary-Merge given on page 150 results in at most one ∗ in each l-section.

Proof. Every merge in Binary-Merge gives one new ∗ and the initial input consists of im-
plicants that do not contain any ∗. Hence, to get by merging a minterm µ with two ∗ in one
l-section, it would be necessary that two implicants are merged which are identical outside this
l-section and have each exactly one ∗ in it. Due to the block-structure just mentioned, these
l-sections must be of the form 1...1*0...0. Hence, if the implicants are not identical on
this l-section then their ∗ is located at different entries and they cannot be merged.

Merging procedure for encodings of MV functions The merging procedure Binary-Merge is
extended to Multi-Merge by allowing to additionally merge pairs α, α′ of implicant vectors
according to the following rule:

Multi-Merge rule:

If:
• α and α′ are identical except on one l-section and for all entries j in this
l-section αj = α′j or αj = ∗ or α′j = ∗.

Then:

• Merge to α′′ as follows. In all entries j where αj = αj , set α′′j ∶= αj . In all
other entries we have αj = ∗ or αj = ∗ and define α′′j ∶= ∗.

This rule is applied additionally, which means that a pair is merged according to the rule
Binary-Merge if possible, but in case this rule does not apply the pair can also be merged
according to the Multi-Merge rule.

α ∶ ...***000...

α′ ∶ ...111***...

α′′ ∶ ...******...

α ∶ ...11***0...

α′ ∶ ...1**000...

α′′ ∶ ...1****0...

α ∶ ...111**0...

α′ ∶ ...1*0000...

merge not allowed

Figure 7.4: Example of the application of the Multi-Merge rule to three different pairs α, α′ of
implicant vectors. Only one l-section is shown, the implicants are assumed to be identical in all omitted
entries. For the last pair the condition for merging is not fulfilled.

Proposition 7.11. The merging procedure Multi-Merge, that is, Binary-Merge extended
by additionally merging pairs according to the Multi-Merge rule above, generates all impli-
cants according to the ordering relation ≼ and the prime implicants are exactly those that were
never merged.

Proof. At first we will show that the new minterms α′′ are in fact implicants of f . Similar
to Binary-Merge the new minterms turn out to be equal to the disjunction of the pair of
implicants, i.e., α′′ = α+α′, which shows that they are implicants as well. To see this identity, it
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suffices to consider only the single l-section where α, α′ are not identical. Let j′ be the largest
index in this l-section, such that αj′ = 1, and j′′ the smallest index, such that αj′′ = 0. Due to
the block structure, this l-section of α encodes [j′ ≤ zl < j′′]. Similarly we can define h′, h′′ for
α′. The condition for merging α and α′ is satisfied if and only if h′ < j′′ and j′ < h′′, because
if h′ ≥ j′′ we have αh′ = 0 and α′h′ = 1, and if j′ ≥ h′′ we have αj′ = 1 and α′j′ = 0. For the MV
variable zl the disjunction α + α′ encodes [j′ ≤ zl < j′′] + [h′ ≤ zl < h′′] ≡ [min(j′, h′) ≤ zl <
max(j′′, h′′)]. Note that j′, j′′ can equivalently be defined by αj = ∗ ⇔ j′ < j < j′′, as a direct
consequence of the block structure. Therefore for the l-section of the disjunction ω ∶= α+α′ we
have ωj = ∗ ⇔ min(j′, h′) < j < max(j′′, h′′), which shows that ω = α′′.

We proceed similarly as in the proof of Prop. 7.8 and define a splitting operation that is
inverting the merging extended with the Multi-Merge rule. Those implicants where at most
one ∗ occurs in each l-section of the vector are split in the same way as described in the proof
of Prop. 7.8. For all other implicants we define a splitting operation that is the inverse to the
extended merging described above. Let α be the vector representation of such an implicant. An
l-section where the number of ∗-entries is d > 1 is fixed. These entries constitute a block starting
at some index s, i.e., αs = αs+1 = ⋯ = αs+d−1 = ∗. We split α into h implicants ω1, . . . , ωh. Each
ωi has exactly one ∗ in this l-section and this ∗ is located at ωis+i−1 for i = 1, . . . , h. See also
the example below. Note that, due to the block structure, the l-section is completely determined
by fixing the index of the single ∗. We conclude that the described splitting operation is well
defined.

By using this splitting operation, all merges in Multi-Merge can be inverted and the
argument from the proof of Prop. 7.8 can be adapted to see that all implicants must be generated
in Multi-Merge and the prime implicants are exactly those elements that are never merged.

Example Splitting of an l-section of α with d = 3 into ω1, ω2, ω3. The dots ’..’ indicate the
variables outside the l-section which are identical in α,ω1, ω2 and ω3.

..11***0..
..11*000..
..111*00..
..1111*0..

Further simplification of the minimal DNF The procedure Multi-Merge thus gives us the set
of all prime implicants w.r.t. the ordering by ≼. Selecting a minimal cover from this set gives
a minimal DNF composed of the MV-literals defined at the beginning of Sec. 7.4.1. Due to the
choice of these MV-literals, this DNF gives a well readable representation of the logical func-
tion. To further improve the readability, it is straightforward to apply additionally the following
simplifications:

• [zi ≥ j] ⋅ [zi ≥ j + 1] is substituted with [zi = j]

• [zi ≥ j] ⋅ [zi ≥ h] with h ≥ j + 2 is substituted with [h − 1 ≥ zi ≥ j].

This way we make sure that every MV literal, i.e., every interval of Mk(i) for some i ∈ {1, . . . , n},
is represented by one single binary literal. Furthermore, negations can be eliminated by apply-
ing the rule that

• [zi ≥ j] is substituted with [zi ≤ j − 1] if j ≥ 2 and in the case j = 1 with [zi = 0].
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7.5 Representation of logical networks and their dynamics

The formal derivation of the update functions of a logical network, which de-
scribe the dynamics of the logical network starting from the target functions,
will be given. This is also an example where minimisation of Boolean expres-
sions is necessary, because the formal construction of the update function leads
to large Boolean expressions, which can be drastically simplified. An example
of application is given, based on an implementation of the algorithm.

The representation of logical networks was introduced in Sec. 7.2. As mentioned before, the
biological knowledge is usually given by the target functions. Each component l ∈ {1, . . . , n}
has a target function φl∶∏n

i=1 Mk(i) →Mk(l), which can be equivalently encoded by the mapping
β in k(l) + 1 binary functions as described in the previous section. For φl the binary functions
f lj ∶ im(β) → B are defined by

f lj(β(x)) = {1, if φl(x) = j
0, otherwise

, j = 0,1, . . . , k(l). (7.2)

In fact, one of the k(l)+1 functions f lj is implicitly defined by f lj(x) = 1⇔∑i≠j f
j
i (β(x)) = 0.

Alternatively, we can also define the binary functions by inequalities instead of equalities as
follows.

glj(β(x)) = {1, if φl(x) ≥ j
0, otherwise

, j = 1, . . . , k(l) (7.3)

and gl0 = gl1.

φ(x) x1 x2

0 0 0
2 1 0
3 2 0
1 0 1
1 1 1
1 2 1
0 0 2
0 1 2
0 2 2

f0(β(x)) f1(β(x)) f2(β(x)) f3(β(x)) [x1 ≥ 1] [x1 ≥ 2] [x2 ≥ 1] [x2 ≥ 2]

1 0 0 0 0 0 0 0
0 0 (1) 1 0 1 0 0 0
0 0 (1) 0(1) 1 1 1 0 0
0 1 0 0 0 0 1 0
0 1 0 0 1 0 1 0
0 1 0 0 1 1 1 0
1 0 0 0 0 0 1 1
1 0 0 0 1 0 1 1
1 0 0 0 1 1 1 1

Figure 7.5: Example with a function φ∶M2 ×M2 → M3. The evaluation on all states x = (x1, x2) ∈

M2 ×M2 is given in the left table. The right table contains the truth tables for the binary encodings
f0, f1, f2 and f3 of φ. The MV variables x1, x2 are encoded by four binary variables. Only the states
of the domain im(β) ⊂ B4 are listed in the table. The values of the encoding functions refer to the first
variant (7.2) with f lj , while the values of the alternative variant (7.3) with glj are given in brackets, if they
are different.
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Composition of the update functions Once such a formal description of the network is given,
the update functions Ψl

±∶∏n
i=1 Mk(i) → B can be derived. Using the second variant (7.3), we can

write the update functions (without using gl0) as

Ψl
+(x) =

k(l)

∑
i=1

[xl ≤ i − 1] ⋅ gli(β(x)) and Ψl
−(x) =

k(l)

∑
i=1

[xl ≥ i] ⋅ gli(β(x)).

These are very large expressions and it is necessary to replace them by a short equivalent form
to understand their meaning for the GRN model and to allow for further automatic processing
of the model, as e.g. translation into other formats.

Implementation The Multi-Merge procedure was implemented as part of an tool to trans-
late integrated logical models of GRN and metabolism into the Petri net format [Palinkas and
Bockmayr, 2011] and into continuous time Markov chains (CTMCs, see Chap. 8) in the mod-
elling language of PRISM. The derivation of update functions from target functions as outlined
above is part of the translation procedure and the minimisation of the representation is hence
a crucial part. The implementation of the whole tool was done in the python language and is
available upon request.

Uniquely satisfied implicants The minimisation algorithm gives a DNF where all minterms are
prime implicants. In the translation to Petri nets these minterms are translated to transitions. If
several minterms of the DNF can be true in one state, this leads to several transitions realising
the same shift of tokens which can be enabled simultaneously. In the state transition graph
the consequence is that there are some states s and s′ with multiple edges from s to s′. In
nondeterministic network dynamics, it is usually not relevant if there is one or multiple edges
between s and s′. However, it is important when we consider the extension to a stochastic Petri
net. In that case every edge in the state transition graph is assigned a probability (or a rate in
a CTMC). The multiplicity of edges from s to s′ affects then the probability (or velocity) to
get from state s to state s′. In such a situation it might be appropriate to require that at most
one minterm in the DNF can be satisfied. This can be implemented by further manipulating the
update functions, see [Palinkas, 2011]. The number of required products in the DNF might be
increased when this property is enforced.

Usage of the python implementation In the python implementation of the Multi-Merge pro-
cedure, the function minexpr gives a minimal DNF of a given statement bex on MV vari-
ables z1, . . . , zn. Any statement that is correctly evaluated to True or False by python (with
the built-in function eval) is allowed. Internally, the algorithm represents the statement as a
Boolean expression in the encoding β(z). The range of a MV variable is {0, . . . , k(i)} ⊂ Z,
hence only the maximal values k(i) must be given. To assign to each MV variable its maximal
value, a dictionary cdict={name_z1:k1,...} will be used. minexpr can now be called
with these two arguments:

>>>import logicfun as lf
>>>bex=’a>=1 and b>=2 or a==1 and b>=3 and c<=1’
>>>cdict={’a’:3,’b’:3,’c’:3}
>>>lf.minexpr(bex,cdict)
’a>=1 and b>=2’
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The following expression is an example of a binary encoding which is already in minimal DNF
as a Boolean expression but can be further minimised if multi-merge is applied. (If all maximal
values are equal, cdict can just be this integer instead of a dictionary.)
>>>bex=
’a>=1 and c>=1 or b>=2 and not c>=2 or not a>=3 or not b>=3’
>>>lf.minexpr(bex,3)
’True’

7.5.1 Illustrative application to a T cell model

As an illustrative example of a logical network that is given by MV logic target functions, we
will consider a T-cell model presented in [Mendoza, 2006]. This model is available on the GIN-
sim webpage (http://www.ginsim.org/) and was also translated into a Petri net repre-
sentation [Chaouiya et al., 2011]. The algorithm presented there is not based on the Boolean
representation of logical networks. Boolean minimisation is thus not available as a means to
obtain a Petri net of minimal size. In fact, the size of the resulting Petri net depends on the
order in which the components are processed in the algorithm. By picking different orderings
Petri nets with 25 or more transitions were generated [Chaouiya et al., 2011]. The Petri nets
translation of [Palinkas and Bockmayr, 2011], using the multiQMC algorithm, achieves imme-
diately a minimal Petri net, where minimal means that the number of transitions (implicants)
and the number of arcs (literals) are minimal. For the T-cell model a minimal Petri net contains
23 transitions. (Above we shortly discussed the additional property that at most one transition is
allowed to be enabled in the DNF of the update function. When this is enforced, 24 transitions
are needed.)

The model of the T-cell gene regulatory network is provided on the GINsim web page using
logical parameters. This is just another format to describe the target functions and can be
translated systematically to the representation with binary encodings [Palinkas, 2011]. For
example, the logical parameters for the component IFNgR are

KIFNgR(IFNg1) =KIFNgR(IFNg1, SOCS1) =KIFNgR(IFNg2, SOCS1) = 1,

describing all sets of active interactions where the target value of IFNgR is 1. All sets where
the target value is 2 are given by KIFNgR(IFNg2) = 2. For all other sets of active interactions,
the target value is 0. We can define the dynamics of IFNgR by its logical target function
φ∶M1 ×M2 → M2. Let f0, f1, f2 be the binary encodings of φ. The logical parameters can be
translated to Boolean expressions for f0, f1, f2:

• The parameters tell us that IFNgR has target value 1 if gene IFNg is on level 1 or, if
IFNg is on level 2 and at the same time SOCS1 is active. So we get

f1(IFNg,SOCS1) ≡ (IFNg ≥ 1) ⋅ (IFNg ≥ 2) + (IFNg ≥ 1) ⋅ (SOCS1 ≥ 1)

• The target value is 2 whenever IFNg is on its maximal level 2 but SOCS1 is off, so we
have

f2(IFNg,SOCS1) ≡ (IFNg ≥ 2) ⋅ (SOCS1 ≥ 1)
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• For f0 we can derive an expression that is the conjunction f1 ⋅f2, which gives (IFNg ≥ 1)⋅
(IFNg ≥ 2) + (IFNg ≥ 1) ⋅ (SOCS1 ≥ 1). Now multi-merge is necessary to reduce this
expression to (IFNg ≥ 1)

The update functions for IFNgR represented in minimal DNF with the MV-literals introduced
in Sec. 7.4.1 are

Ψ+
IFNgR ≡ IFNgR<=1 and IFNg==2 and SOCS1==0

or IFNgR==0 and IFNg>=1

for up regulation and

Ψ−
IFNgR ≡ IFNgR>=1 and IFNg==0 or IFNgR==2 and IFNg<=1

or IFNgR==2 and SOCS1==1

for down-regulation, as computed with the Multi-Merge procedure.

7.6 Discussion

Logical modelling is a very abstract approach for biological systems. The mechanisms which
control metabolic or gene regulatory networks on the molecular level are not governed by logi-
cal rules but by kinetic parameters and also by stochastic fluctuations (as discussed in the next
chapter). Although the logical rules can give a good representation of the phenomenology of
the system, they might fail in some cases to capture the dynamics of the system correctly. Still,
the logical approach is widely accepted. In fact, for uncovering design principles and motifs
of regulatory networks such highly simplified approaches are sometimes more appropriate than
quantitative and continuous models. They may help us to extract the principal mechanisms
that cause an observed dynamic feature of the biological system. Although the biochemical
processes in a cell are very complicated, the resulting dynamical properties of some parts can
be rather simple and close to logical switches. In such a case, a complex differential equation
might just reproduce a simple logical function and we reduce the mathematical complexity of
the model by using this logical description. A further benefit of modelling with logical func-
tions is the natural representation which is easily understandable without any knowledge about
the underlying mathematical formalism. Logical expressions are basically an abbreviation of
everyday language, with the only difference that they are stated with mathematical precision.
Biological knowledge can easily be formulated by logical expressions. However, as the model
is processed computationally, new logical formulas arise which contain redundancies and can
be very large. Minimisation of logical expression is thus necessary to keep the representation of
the model manageable for further treatment. Regarding multi-valued logic, the readability also
depends on a convenient formal encoding of the multi-valued variables. Furthermore, a suitable
algorithm must be available which allows for fast minimisation of this encoding. A solution
was proposed in this chapter.
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8 Stochastic modelling with logical
networks

8.1 Overview

Stochastic modelling has been applied in various ways to biological systems. The main goal of
this chapter is to introduce stochastic logical networks, a stochastic extension of logical net-
works introduced in Chap. 7. Quantitative and probabilistic aspects which were already inherent
in the logical network can be revealed thereby and more biological information can be incor-
porated in the model. However, including quantitative information in an abstract formalism
like logical networks raises the question if the resulting model is biologically meaningful. This
question will be addressed by comparing stochastic logical networks with mechanistic models,
namely ODEs and also the chemical master equation which is a stochastic model of molecu-
lar interactions. What the chemical master equation and stochastic logical networks have in
common, is that they both define a continuous time Markov chain.

Stochastic logical networks are formally introduced in Sec. 8.3. An example illustrates the
extension and the new aspects of the dynamics which can be observed. The extension is then
applied to a logical network of a simple regulatory motif. This logical network was obtained
from an ODE model and the stochastic logical network recovers the dynamics of the original
ODE model. The relationship between the deterministic ODE model and the master equation is
discussed in Sec. 8.2. In Sec. 8.3 a short overview of how stochastic logical networks relate to
different deterministic or stochastic modelling approaches is given.

A very useful attribute of this stochastic extension of logical networks is that it shares with
the master equation the formalism of continuous time Markov chains. As a consequence, we can
incorporate the master equation into a stochastic logical network. This way, distinct components
and interactions can be modelled by detailed kinetics taking quantitative and stochastic effects
into account while keeping the complexity of the model as low as possible. In Sec. 8.4, such a
combination of the master equation and a stochastic logical network is illustrated on a model for
galactose utilisation in yeast. It allows reproducing stochastic effects which cannot be captured
by the purely logical model, and which have been previously observed with a fully kinetic
model of much higher complexity.

8.1.1 Background - stochastic modelling

Molecular systems, such as gene regulatory networks, metabolic networks or signal transduc-
tion have been modelled in many different ways ranging from stochastic to deterministic and
from discrete to continuous methods. Apart from approaches that stick to one particular theo-
retical framework, hybrid models were developed, e.g. [Alfonsi et al., 2005], which combine
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different mathematical descriptions, motivated by the fact that, depending on the biochemi-
cal mechanisms, different mathematical models may be appropriate or tractable. Metabolic
reactions mostly occur very fast and the amount of substrates and products is much larger.
Stochastic modelling is hence not tractable [Puchałka and Kierzek, 2004]. At the same time,
the effects of random fluctuations can be expected to be marginal. As a consequence, deter-
ministic ODE models of metabolism can describe the dynamics very accurately. In contrast,
ODE models of gene regulation might not capture important stochastic effects caused by the
small number of regulatory proteins, which can determine the regulatory dynamics and even
cell fate [Elowitz et al., 2002, Oppenheim et al., 2005, Kærn et al., 2005]. To account for these
effects, the molecular interactions can be modelled as a stochastic process using the master
equation, which describes the probability of molecular interactions. The chemical master equa-
tion is a Kolmogorov forward equation and hence defines uniquely a continuous time Markov
chain (CTMC), assuming that some technical conditions are satisfied, see [Grimmett and Stirza-
ker, 1992, p. 242]. Even though this mathematical framework is very different from the ODE
description of a biochemical system, both theories are closely related. In contrast to these two
mechanistic modelling approaches on the molecular level, the logical networks introduced in
Chap. 7 give a very abstract and rather phenomenological description of the interactions.

Probabilistic modelling of abstract logical networks Probabilistic modelling with abstract log-
ical networks has often been implemented using discrete time Markov chains (MCs). In [Kim
et al., 2002] a gene regulatory network (GRN) was modelled by a Markov chain, where the
transition probabilities between different states of the GRN were derived from microarray data.
Stochastic perturbations of single components of a Boolean network were modelled in [Garg
et al., 2009] by randomly changing the activity of a single component, which also gives rise
to a MC. Most studies in this direction are based on the modelling formalism of probabilis-
tic Boolean networks [Shmulevich et al., 2002] which describes logical networks with binary
components (hence Boolean networks) where the regulation of a component is not fixed to
one update function (cf. p. 145). Instead, several possible update functions for one compo-
nent are given together with associated probabilities. A synchronous update of the network is
then performed, which means that for each component, one of the target functions is chosen
randomly with the associated probability. An extension of probabilistic Boolean networks to
asynchronous updates, as well as more complex update schemes, was described in [Merle and
Bourdon, 2010]. In [Liang and Han, 2012] a computational approach to simulate probabilistic
Boolean networks is presented. Based on random bit streams [Han et al., 2014], the transition
probabilities between different states are computed by simulation. In contrast, the transition
rates in the stochastic logical networks presented in this chapter are already incorporated in the
definition of the MC. The method [Liang and Han, 2012] also allows modelling of perturba-
tions of the individual components, implemented by randomly changing the activity of single
components, similar to [Garg et al., 2009]. All these approaches from the literature have in
common that they describe MCs and that they are aimed to analyse the long-term behaviour.
While [Liang and Han, 2012, Kim et al., 2002] are computing the stationary distribution of
the CTMC (see p. 17), the robustness of given attractors to random perturbations is analysed
in [Garg et al., 2009]. The motivation for these approaches is always the uncertainty of the
regulatory interactions and the random fluctuations in the expression levels. The state space of
the used formalisms is discrete. Also the time is discretised and not continuous as in CTMCs.
These approaches are therefore not comparable with the stochastic logical networks introduced
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here, because they differ in the modelling approach as well as in the mathematical formalism.
When continuous time Markov chains are used to model biological systems, this is mostly

done in a kinetic approach, similar to the chemical master equation, see e.g. [Calder et al.,
2006, Kim et al., 2002, Kwiatkowska et al., 2008, Murray, 1989]. In contrast, stochastic logical
networks are not a kinetic approach, but the motivation is to replace the nondeterminism of
the abstract logical network model with probabilities for the transitions in the state transition
graph and to observe the resulting stochastic and quantitative effects in the dynamics. This
model reflects the fact that the exact time point of a regulatory event is always random, which is
modelled in a straightforward manner by probabilistic transition rates. In contrast to the above-
mentioned modelling approaches, uncertainty about the existence and the type of the regulatory
interactions are not considered. Neither are random perturbations of single components.

The practical analysis of stochastic logical networks can be done by probabilistic model
checking with the PRISM model checker [Hinton et al., 2006], which can verify and give the
probability for dynamic properties of all kinds, short-term behaviour as well as properties of
the stationary distribution. These computational methods have been applied in various ways to
analyse biochemical systems [Calder et al., 2006, Kim et al., 2002, Yuan et al., 2011].

8.2 Markov chain models of biochemical reactions and regulatory inter-
actions

The chemical master equation and continuous time Markov chains (CTMCs) are
introduced formally and the most important properties are discussed. The mas-
ter equation is a classical application of CTCMs to biological systems. An ex-
ample is given and the connection of the master equation to deterministic ODE
models is discussed. The difference between these two mathematical models
lies solely in the fluctuations of molecule amounts in the master equation model.
As larger volumes are considered and the amounts of molecules are hence ris-
ing, the fluctuations are diminished and the probabilistic model converges to the
deterministic ODE model in the so-called thermodynamic limit.

8.2.1 Chemical master equation and CTMCs

The chemical master equation The chemical master equation gives a discrete and stochastic
description of reactions or regulatory interactions of molecules. The state of the modelled
system is given at every time point by the number of molecules of each species. The rate of
an interaction or reaction of several molecules is computationally determined by the collision
probability of these molecules [Gillespie, 1976]. Formally, if m species are given, the state
space is U ⊂ Nm

0 and the vector u ∈ U describes a state, assigning to each species a number of
molecules. The chemical master equation can be used to describe metabolic reactions [Levine
and Hwa, 2007], but also to model signalling pathways [Calder et al., 2006] and regulatory
interactions, e.g. binding of proteins to DNA, phosphorylation of regulatory molecules, etc.,
see [Thattai and Van Oudenaarden, 2001,Hegland et al., 2007], [De Jong, 2002] and references
therein.
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Each reaction or interaction, denoted j = 1, . . . , n, has a corresponding rate function (also
called propensity function [Gillespie, 1977]) rj ∶U → R≥0, which gives the rate of the reaction
or interaction in dependence of the state, i.e., the amounts of molecules of the distinct species.
The rate rj(u) is zero, if and only if the reaction or interaction is not possible in state u. If
reaction or interaction j occurs in state u ∈ U , the consequence is a transition to a new state
u′ ∈ U . We assume that at most one reaction or interaction j realises the transition (u,u′).
The transitions and their rates define a generator matrix G ∈ RU×U of a CTMC on the state
space U (see p. 17). The off-diagonal entries are then gu,u′ = rj(u) or gu,u′ = 0 in case no
reaction or interaction realises this transition. The diagonal entries are by definition gu,u =
−∑v∈U∖{u} gu,v. This definition also holds for a countable infinite state space U , in case the
number of outgoing transitions is finite in all states. For every fixed initial state u0 ∈ U this
CTMC defines a stochastic process {Xt}t∈[0,∞), where Xt∶Ω → U is a random variable and
P (X0 = x0) = 1 (see p. 17).

The embedded Markov chain If there is a transition from u to u′, the waiting time until it
triggers is exponentially distributed [Grimmett and Stirzaker, 1992, p. 95, 243] with parameter
gu,u′ [Baier et al., 2003]. Until the stochastic process triggers, it rests in u. In case u has several
outgoing transitions, these are in competition to trigger first (the so-called race condition). The
first transition that is triggered determines the next state. The probability that the next state
will be u′ is given by gu,u′

−gu,u
. Since gu,u = −∑v∈U∖{u} gu,v, these probabilities of all the outgoing

transitions sum up to one and hence they define a discrete time Markov chain (MC) on the state
space U (see p. 17) which is called the embedded Markov chain of the CTMC.

Dynamics of a CTMC: Trajectories, the mean trajectory and the stationary distribution. Here
we consider the dynamics of the CTMC or the embedded MC starting at a fixed initial state
u0 ∈ U . That is, we have a stochastic process {Xt ∶ t ∈ T}, with T = R≥0 and P (X0 = u0) = 1.
A realisation of this process is described by the sequence of states ui that are visited, starting
in u0, and the waiting times di between the transitions. Formally, this gives a sequence of
states and the associated waiting times, i.e., ((u0, d0), (u1, d1), (u2, d2), . . .) with ui ∈ U and
di > 0, i = 0,1,2, . . .. If the state space is infinite or if the transitions constitute cycles, these
sequences can be infinite. By neglecting the waiting times we get a sequence (u1, u1, u2, . . .)
of states, describing the dynamics in discrete time steps. To distinguish these two objects, we
will call ((u0, d0), (u1, d1), . . .) a trajectory and (u0, u1, . . .) a sequence of states. While the
trajectory is a realisation of the CTMC, the sequence is a realisation of the embedded MC. By
construction, the probability of a distinct sequence of states is the same in the CTMC and in the
embedded Markov chain. However, the CTMC has an infinite set of trajectories corresponding
to one sequence of states.

Model checking - probabilistic extensions Model checking denotes formal methods which can
be used to verify properties of the state transition graph (STG) of a logical network or of an-
other model that can be formulated as a transition system (cf. Sec. 7.2). For CTMCs as well
as for MCs and related objects, the temporal logic of model checking was extended and com-
putational procedures were developed to perform probabilistic model checking. The computer
tool PRISM [Hinton et al., 2006] can carry out these computations. Some features of PRISM
will be introduced now and will be used later. In probabilistic model checking we can dis-
tinguish between transient properties and steady state properties. Transient properties concern
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the system at a certain time point or within a finite time interval, while the so-called steady
state properties refer to the stationary distribution of the CTMC or MC (see p. 17). Here we
will only deal with transient properties, although steady state properties are also well suited
to analyse biological models [Kwiatkowska et al., 2008, Palinkas, 2011]. A theoretical sketch
of what model checking is telling us can be given as follows. The complete dynamics of a
CTMC with a given initial state is described by the set of all trajectories starting in the initial
state. The rates define a probability measure on this set [Baier et al., 2003]. In most cases, a
dynamic property can be formulated as a property of a trajectory in the CTMC. The subset of
all trajectories with this property has then a probability measure which can be computed with
PRISM [Hinton et al., 2006]. The same holds for MCs and the sequences of states, which in-
herit a probability measure from the transition probabilities [Baier and Katoen, 2008, p. 757].
Furthermore, PRISM is able to consider the mean of all trajectories by using so-called reward
structures on the CTMC [Kwiatkowska et al., 2008]. This allows computing at a given time
point the expectation value of each component of the states. The trajectory that is constituted
by the expectations of all components at all time points will be called the mean trajectory here.

Simulating a CTMC For the computational simulation of the CTMCs, the stochastic simula-
tion algorithm [Gillespie, 1977] can be used. In most applications, a large number of simulation
runs of the CTMC are carried out in order to approximate the average behaviour, i.e., the mean
trajectory. In contrast to the computational procedure of PRISM, this gives just an approxima-
tion of the mean values, but it contains all components and all time points in the (finite) interval
that was simulated.

The chemical master equation and differential equation models In the 70s, Gillespie gave a the-
oretical justification for the master equation based on mechanistic considerations and proposed
a Monte Carlo method to simulate the master equation [Gillespie, 1976]. The basis of this the-
oretical derivation was different from the deterministic theory which leads to the classical ODE
model [Gillespie, 1976,Oppenheim et al., 2003]. The master equation is a description of an en-
semble of molecules that are well-mixed. A state of the system is only specified by the numbers
of molecules. Location and momentum are not considered. To account for this missing infor-
mation, a collision probability for molecules is introduced, based on the current amounts of the
different species. This is based on the assumption that the system is well-mixed, meaning that
the location of an individual molecule is given in probabilistic terms by a uniform distribution.
Today, stochastic effects have been recognized to be necessary for a comprehensive descrip-
tion and understanding of certain regulatory mechanisms [Elowitz et al., 2002, Arkin et al.,
1998,Alfonsi et al., 2005] and the master equation, in particular the simulation with Gillespie’s
algorithm, is widely used.

8.2.2 Example: CTMC model of an autoregulated gene

The mass action kinetics of chemical reactions can be naturally expressed with the master equa-
tion. In fact, the formal representation is very similar to the usual ODE model. In the master
equation the rate functions and the stoichiometric coefficients describe the changes in concen-
tration, which are given by the derivative in the ODE model. As an example we will consider
now a single gene which is autoregulated. This simple regulatory motif is known to promote
bistability of the gene expression, see [Alon, 2007, p. 37] or [Thomas et al., 1995].
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Differential equation of autoregulation Let x denote the concentration of the gene product.
In GRN models it is interpreted as the activity or expression level of the gene. The ODE
description is given by the derivative

dx

dt
= (ka − kb)

xh

θh + xh
+ kb − kdegx (8.1)

We will write this as dx
dt = rsyn(x) − rdeg(x), the function for the synthesis rate is given by

the Hill function rsyn(x) = (ka − kb) xh

θh+xh
+ kb, where h is the Hill parameter, determining the

slope of the switch [Alon, 2007, p. 13]. This function describes the switch between a basal
rate kb, in case autoregulation is not active, and the synthesis rate ka if autoregulation is active.
The degradation rate of the gene product is given by rdeg(x) = kdegx , where kdeg is a kinetic
parameter. In case of positive autoregulation we have kb < ka and the two synthesis rates kb, ka
determine two different equilibrium points eq1 = kb/kdeg and eq2 = ka/kdeg, i.e., dx

dt = 0 for
x = eq1 or x = eq2. Assuming that eq1 < θ < eq2, the expression level approaches the lower
equilibrium eq1 as soon as it is below the threshold θ. Above θ the expression tends to eq2.
Negative autoregulation is given when kb > ka. If we assume that kb > θ > ka, the expression
level will tend to θ from every point. In fact, this feature leads to increased stability of the
expression level, as will be discussed in Sec. 8.4.1.

In the limit h → ∞, the switch between the two expression levels occurs immediately, i.e.,
the Hill kinetics of the synthesis approximates a step function

rsyn(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

kb, x < θ
(ka + kb)/2, x = θ
ka, x > θ

. (8.2)

According to this step function, the synthesis rate is constant on [0, θ) as well as on (θ,∞),
which means that as long as the threshold is not crossed, the expression x follows the simple
dynamics of constant synthesis and linear degradation. In fact, the intermediate value rsyn(θ) =
(ka + kb)/2 can be set to rsyn(θ) = ka or to rsyn(θ) = kb, since this change in a single point is
meaningless in the real system and has no effect on the dynamics.

CTMC of autoregulation The master equation model is based on the same kinetic functions
for degradation and autoregulated synthesis as the ODE model. The only difference is that the
kinetic functions define transition rates in the CTMC, instead of the derivative of expression
levels. The state space is N0, counting the number X of molecules produced by the gene and
present in the system. The degradation of the gene product reduces the number of molecules
by one. The rate of this transition depends on the current number X of molecules and is given
by rdeg(X) = kdegX . Synthesis increases the number by one, the rate is given by the same Hill
function as in the differential equation, i.e., rsyn(X) = (ka − kb) Xh

θh+Xh + kb.

Fluctuations around the equilibrium points As a consequence of the Hill kinetics, the synthesis
rate is virtually constant apart from a small neighbourhood around the threshold. In particular,
assuming that the equilibrium points are separated from the threshold, the molecule amount
locally at an equilibrium point is described by a constant synthesis rate and linear degradation.
Therefore, the stationary distribution of the CTMC is a Poisson distribution around this point of
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X = 0 X = 9

⋯

rsyn(X)

rdeg(X)

Figure 8.1: The CTMC of the chemical master equation model of synthesis and degradation of one
species (e.g. a gene product) represented by a directed graph. The nodes represent the states u ∈ U , which
are given by the amount X of molecules of the species. A transition with rate > 0 between two states
is indicated by a directed edge. Assuming that the molecules are synthesised and degraded one by one,
the only edges are between consecutive states X, X + 1. Formally, the CTMC is defined by its generator
matrix G, which is in this case given by gX,X+1 = rsyn(X) and gX+1,X = rdeg(X), X = 1,2, . . . ,m− 1,
where m is a model parameter implementing an upper bound on the molecule number (an unbounded
CTMC with m = ∞ is possible as well). All other off-diagonal entries of G are 0 (and the diagonal is
determined by the rest of the matrix as explained on page 17). This model is hence completely defined
by the functions rsyn, rdeg and the bound m. Without autoregulation, rsyn is constant. The degradation
is usually linearly dependent on the concentration, i.e., rdeg = kdegX where kdeg is a kinetic parameter.

equilibrium [Grimmett and Stirzaker, 1992, p. 251, the Simple death with immigration process
with λ = ksyn, µ = kdeg], see Fig. 8.2.

The thermodynamic limit Consider a biochemical process in a given volume and the corre-
sponding master equation. Since the system is assumed to be well-mixed, the process stays the
same, if we model only a part of the volume or if we multiply the whole system. In particular,
the concentration and the collision probabilities stay the same. For the mathematical descrip-
tion this change in scale is changing the parameters, because they refer to absolute molecule
numbers. Regarding the amount of molecules, scaling the volume by α also scales the num-
ber of molecules by α. This has to be taken into account by adjusting the parameters of the
master equation which refer to the number of molecules. The threshold θ must be scaled by α,
since it gives the number of molecules sufficient to trigger the autoregulation. Degradation was
given as a function of the molecule number in the original volume. To take that into account
we use α−1kdeg as degradation parameter in the transformed model. The molecular dynamics in
the CTMC are affected by the change in volume and molecule numbers. Naturally, the random
fluctuations are diminished, if a larger volume with a higher number of molecules is considered.
For the Poisson distribution around the point of equilibrium this effect is shown in Fig. 8.2.

In the so-called thermodynamic limit α → ∞, that is, scaling the volume and the molecule
numbers equally while keeping the concentration constant, the fluctuations in concentration
vanish and the dynamics of the master equation becomes deterministic and coincides with the
ODE model [Oppenheim et al., 2003, Kurtz, 1978, Kurtz, 1972], which itself is not affected by
changes in the volume, since it only deals with concentration values. The derivation of this
result in [Kurtz, 1978] is in fact establishing the convergence of the stochastic process given by
the CTMC to the mean trajectory of the CTMC and also to the solution of the corresponding
ODE in the thermodynamic limit.
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Figure 8.2: The Poisson distributed fluctuations around an equilibrium point eq1 < θ of a positively
autoregulated gene are considered. The random fluctuations are only relevant for the dynamics if there is
a significant probability that they cross the threshold. In this case, the random fluctuations would cause
the component to change its activity level. Depending on the considered volume, the molecule numbers
are different. Accordingly, the equilibrium point is eq1′ = α ⋅ eq1, if the volume is scaled by α and the
threshold is θ′ = α ⋅ θ. The probability that the fluctuations cross the threshold is given by P (Y ′ ≥ θ′),
where Y ′ is a Poisson distributed random variable with parameter eq1′, which means that eq1′ is the
expectation of Y ′. This probability can be obtained as 1−Fα(θ

′), where Fα is the cumulative distribution
function of Y ′, the index indicating the dependence of Y ′ on α. A) The probability of crossing the
threshold for increasing volume, α = 1,2, . . . ,30. B) The Poisson distribution of the fluctuations, i.e.,
fY ′ = Poiss(α⋅eq1), is shown for α = 1,4,40 on top of the phase diagram of the ODE (8.1). The
probability P (Y ′ ≥ θ′) is the integral over fY ′ above the threshold, which is exactly 1 − Fα(θ

′). This
probability is significant if α = 1, but with increasing α the fluctuations are considerably reduced in
relative amplitude and the probability of crossing the threshold vanishes, as can clearly be seen in A).
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CTMC of the master equation
discrete state space

probabilistic rates

Differential equations
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deterministic

Mean trajectory of the CTMC
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α →∞

Figure 8.3: In the thermodynamic limit the random fluctuations on the molecular level vanish. As a
consequence, the three different descriptions of the dynamics of the biological systems are becoming
equal.

8.3 Introduction of stochastic logical networks

A logical network is completely defined by its state transition graph (STG)
or, equivalently, by the update functions (cf. p. 145). Dynamic properties can
be described in terms of trajectories or of sequences of states and can be ver-
ified with model checking. It is straightforward to extend a logical network
to a CTMC by assigning an individual rate or velocity to the up- and down-
regulation of each component. The resulting model will be called a stochas-
tic logical network. Every edge in the STG inherits a transition rate from the
update function. This enriches the dynamics in two ways: First, the transi-
tion rates define a probability measure on the space of all feasible sequences
of states. Second, waiting times in every state of the sequence give a trajectory
of the system in continuous time.

From update functions to the STG The dynamics of a logical network is nondeterministic be-
cause a state in the STG can have several successors and hence several possible updates. As
already mentioned in Chap. 7, the STG is directly derived from the update functions. Every
component j of a logical network has two update functions, Ψj

+, Ψj
−, as introduced in Sec. 7.5.

They define, in terms of Boolean expressions, all states in which the component j is up regu-
lated or down regulated, respectively. Let i = 1, . . . , n be the components of the logical network.
The state space is then ∏n

i=1 Mk(i) = ∏n
i=1{0,1, . . . , k(i)}, where k(i) is the maximal value of

component i. The nodes of the STG are all states u ∈ ∏n
i=1 Mk(i). Let u, u′ be two distinct

nodes, then there is an edge from u to u′ if and only if there is an i ∈ {1, . . . , n} and a sign
σ ∈ {+,−} for up- or down-regulation, such that Ψi

σ(u) ≡ 1 and the state u′ fulfils u′j = uj for all
j ≠ i, while u′i = ui σ 1. As a consequence, every edge in the STG corresponds to one distinct
update function. If we assign a velocity or rate to the up- and down-regulation of the differ-
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ent components, this gives a rate for each update function and as a consequence one rate for
each edge in the STG. The STG thus defines a CTMC, which we will call a stochastic logical
network.

In one state of the STG different update functions are competing to trigger first. The proba-
bilities for each update to trigger define the embedded Markov chain, cf. p. 165. They are only
determined by the ratios of the rates. The absolute time information which tells us how long the
stochastic process rests in a given state is not contained in the embedded Markov chain. This
additional attribute of the continuous time Markov chain can be used to distinguish slow and
fast processes in the model.

Scope and justification of stochastic logical networks The abstract modelling approach of log-
ical networks aims at analysing and reproducing the qualitative behaviour of a biological sys-
tem. However, absolute quantitative aspects are beyond the scope of this approach. The paths
through the STG are giving an ordering of the regulatory interactions, but the continuous time
introduced in the extension cannot be expected to represent the exact time points of the modelled
biochemical events. However, the specification of the rates of the different update functions is
a way to incorporate relative information about the velocity of the regulation of the different
components. For example, we can implement that gene A is much faster up regulated than gene
B, a fact which might be crucial for the regulatory dynamics. In a similar fashion [Fauré et al.,
2006] uses a priority order to relate different updates of a logical network, but this approach
remains in the nondeterministic framework. Nondeterminism can be seen as the extreme form
of uncertainty, where neither probabilistic nor any other information concerning the next event
is given. In contrast, the priorities of [Fauré et al., 2006] introduce a fixed hierarchy, which
means that the implied temporal order is assumed to be deterministic. At the same time, the
choice among one hierarchy class is still nondeterministic. The stochastic logical networks do
not enforce an order on the transitions. The probabilistic rates are only distinguishing likely
dynamics from unlikely events.

To conclude, the assignment of rates to the update functions is a possibility to incorporate
more biological information about the system into the model. However, this is not a kinetic
description based on a physical model of molecular interactions, as the ODEs or the master
equation.

Definition 8.1. Let a logical network with components i = 1, . . . , n, a state space U ⊂ Nn
0 and

update functions Ψ+
i , Ψ−

i ∶U → {0,1} be given. A stochastic logical network is obtained by
assigning a fixed rate ri± ∈ R≥0 to each update function Ψ±

i for i = 1, . . . , n, ± ∈ {−,+}.

Refinement of the rates The logical condition of an update function Ψ±
i gives the set of all

states where the component i is up regulated resp. down regulated. The assignment of one rate
to the update function assumes that the velocity of the up-regulation of i is independent of the
current state u. To define the CTMC of the stochastic logical network, we could also assign
individual rates ri±(u) dependent on u. This is usually not practicable due to the size of the
STG. However, it is possible to partition the set of states where Ψ+

i evaluates to 1 and to assign
different rates (but the same update) to the individual parts. For example, we might implement
a fast up-regulation with rate 2 for all states where component i is not expressed at all and a
slower up-regulation with a rate of 1 if i has already an intermediate expression level. This
would roughly mimic the typical saturation curve of gene expression.
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Example The extension of a logical network to a stochastic logical network will be illustrated
with a small example. In Fig. 8.4 the complete definition of the logical network is given. For
every edge the corresponding update function is given. The STG is shown in Fig. 8.5. Assuming
that up- and down-regulation of all components takes place with a similar velocity, we assign
the same rate ri± = r to Ψ±

i for all i = 1, . . . , n and ± ∈ {+,−}. Since absolute time measures are
clearly beyond the scope of this modelling approach, the actual value r of the rates is irrelevant
and will be set to r = 1. The STG of this example network contains three distinct cycles and one
fixed point. From every state there is a path leading to the fixed point. In particular, the system
is never trapped in one of the cycles, but can only get trapped in the fixed point.

a)

b)

c)

X

Y

Z

logical target functions
component target

value
condition

X
0 Y = 1
1 Y = 0

Y
0 (X = 0) ∨ (Z = 1)
1 (X = 1) ∧ (Z = 0)

Z
0 X = 0
1 X = 1

update functions
up down condition rate
Ψ+
X (X = 0) ∧ (Y = 0) 1

Ψ−
X (X = 1) ∧ (Y = 1) 1

Ψ+
Y (Y = 0) ∧ (X = 1) ∧ (Z = 0) 1

Ψ−
Y (Y = 1) ∧ ((X = 0) ∨ (Z = 1)) 1

Ψ+
Z (Z = 0) ∧ (X = 1) 1

Ψ−
Z (Z = 1) ∧ (X = 0) 1

Figure 8.4: Illustrative example of a logical network. a) The interaction graph shows activating (normal
arrowheads) and inhibiting (blunt arrowheads) interactions between three components. All components
can have binary values. b) The target functions for each component describe the regulatory interactions
in detail. c) The update functions for asynchronous update. They are derived from the target functions
and define the STG shown in Fig. 8.5. The last column, with the rates for the update functions, defines
the extension of the logical network to a stochastic logical network.

Dynamics of the stochastic logical network In the underlying logical network the nondetermin-
istic dynamics are completely described by the paths in the STG or in other words, by all
feasible sequences of states. The extension of a logical network to a stochastic logical network
brings many new possibilities to analyse the dynamic properties in quantitative and probabilis-
tic terms. The capabilities of probabilistic model checking of CTMCs were shortly introduced
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Figure 8.5: The STG of the network given in Fig. 8.4 is shown twice. On the left, every edge is labelled
with the update function that defines this edge. All update functions are associated with the rate 1, thus
defining a CTMC on the graph. The embedded Markov chain on the STG is given by the transition
probabilities shown on the right. They can be derived by taking the ratio of the rate of the transition
and the sum of all rates of outgoing edges, see page 165. The state 101 is a fixed point. Furthermore
the state transition graph has several cycles: Cycle A: 000 → 100 → 110 → 010 → 000 and Cycle B:
000 → 110 → 111 → 011 → 010 → 000 and Cycle C: 000 → 100 → 110 → 111 → 011 → 001 → 000.
However, the dynamic is never trapped in one of the cycles. Instead, from every state the fixed point 101
can be reached. For the probabilities this means that traversing a cycle once has a probability < 1. It is
0.52 for cycle A, 0.54 for cycle B and 0.55 for cycle C. As a consequence, the probability of traversing
these cycles several times is getting extremely small. In contrast, the probability of being in the fixed
point after only two transitions (starting in 000) is already 0.5.

on page 165 and will be illustrated on the example. Using the PRISM model checker we are
able to compute probabilities for certain events and the expected time of different regulatory
processes. Starting in the state 000 e.g., we can identify the probability that the trajectory will
satisfy the following:

(i) component Z is never active
(ii) the state 010 is never reached

(iii) Y is activated before Z
(iv) it takes at least twice as much time until Z is activated as it takes for

first activation of Y
(v) component Z is active for a larger ratio of time than Y .

Many interesting properties can be formulated in terms of sequences of states of the embedded
MC, thus neglecting the waiting times in the states. Here the first three examples are properties
which refer only to the sequence of states, while the last two properties take the continuous
waiting time into account and are hence properties of trajectories of the CTMC of the stochastic
logical network. In fact, (iv) is a specification of (iii), quantifying the time difference instead
of just giving the order of the events. (i) is fulfilled by the infinite sequence cycling the four
states withZ = 0. However, the probability of this infinite cycle is zero and every other sequence
clearly contains a state with Z = 1. This example shows how the probabilistic view is enhancing
the analysis compared to the nondeterministic perspective, which does not distinguish (i) from
(ii), although it is just a matter of time until Z is activated and (i) not valid anymore, while (ii)
is clearly satisfied by many paths and has probability > 0.62. (iii) is satisfied if and only if the
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second transition is 100 → 110. This has probability 0.5, because the first transition from the
initial state is fixed to 000→ 100.

Computing these probabilities by hand is only possible for such simple networks and prop-
erties of course. The continuous time properties (iv), (v) are already much more difficult to ver-
ify, but can easily be handled by the computational methods available with the PRISM model
checker. (v) is an example of a long-term property which refers to the infinite time interval
[0,∞) and can be directly verified if the stationary distribution is available.

8.3.1 The mean trajectory

As already mentioned, the PRISM model checker also allows computing the values of the mean
trajectory at distinct time points. For stochastic logical networks we can therefore obtain the
expectation of the expression levels of the components at a time point t. Identifying the expecta-
tion at a sufficient number of time points gives a good approximation of the average dynamics of
the components in continuous time. Note that the resulting dynamics is completely continuous.
While a component can only take values in the discrete set {0,1, . . . , k(i)}, the expectation can
possibly take any value in [0, k(i)]. The expectation of a component i with maximal activation
level k(i) as a function of time is hence given by E(i)∶ [0,∞) → [0, k(i)]. For the network of
Fig. 8.4 the mean trajectory, consisting of the expectations of the three components, is shown
in Fig. 8.6.

Figure 8.6: The mean trajectory of the stochastic logical network of Fig. 8.4. For the three components
X,Y,Z the expectation value was computed at 500 equidistant time points from 0 to 10, which gives a
good approximation of the functions E(X),E(Y ),E(Z)∶ [0,10] → [0,1], i.e., the expectation values
of the individual components at all time points. The convergence to the fixed point 101 is clearly visible.
However, since arbitrarily long trajectories with alternating values of the three components are possible,
the mean values are only slowly approaching the values of the fixed point.

8.3.2 Relationship between different models

Hill functions are naturally approximated by step functions. In fact, a step function is a logical
function, as soon as we can define the preimages of the distinct values by logical formulas (as
e.g. the step function (8.2) for autoregulation). Since a Hill function converges to such a step
function, the logical network model of gene regulation can be seen as a discrete approximation
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of the regulatory kinetics in ODE models, see [Thomas et al., 1995] and [Alon, 2007, p. 13].
This translation of the differentiable Hill functions into step functions, and hence into logi-
cal functions, can be reversed. In [Krumsiek et al., 2010] the Hill function was generalised
in order to give a differentiable function that reproduces the switch-like behaviour of a given
logical function. A comparison between different modelling formalisms is given in Fig. 8.7.
Between the smooth Hill functions and the step functions, which can be interpreted as logical
functions, also intermediate formalisms as e.g. piecewise linear functions can be considered.
In [Jamshidi, 2012] a comprehensive treatment of the translation of a model between these dif-
ferent formalisms is given. The classical ODE format of a biochemical system is closely related
to the stochastic model given by the master equation and the two descriptions coincide in the
thermodynamic limit. It has to be noted that the master equation model is computationally not
tractable for large volumes, because the state space, which is counting the molecule numbers,
is exploding. In contrast, the stochastic logical networks are based on a minimal state space
necessary to represent the relevant expression or concentration levels of the components. The
stochasticity of the master equation constitutes itself in the fluctuations around the equilibrium
values. These fluctuations in turn make the regulatory switches, caused by crossing the thresh-
olds, random events. In stochastic logical networks, the regulatory switches are stochastic as
well, but they are based on assigned probabilities and not on a kinetic model.
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Figure 8.7: Different modelling frameworks for gene regulatory networks, signalling or metabolic net-
works. Depending on the kind of update, logical networks can have deterministic, nondeterministic or
stochastic dynamics. Also the master equation model of a biochemical system is discrete and stochastic.
The relationship between ODEs and logical descriptions of regulatory interactions was already subject
to several studies and [Thomas et al., 1995, Krumsiek et al., 2010] give formal methods to get from one
to the other, respectively.

8.3.3 Example of the feed-forward loop

A feed-forward loop (see Fig. 8.8) is a network motif presented in [Alon, 2007, Sec. 4.7,p. 57f].
It consists of three genes. The dynamical characteristic of this motif is that it produces pulse-
like gene expression of one of the genes, see Fig. 8.9. This effect is achieved by a delayed
repression of the gene.
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X Y Z

Figure 8.8: Feed-forward loop, a regulatory motif to generate a pulse-like expression of gene Z. Once
gene X is active, it activates Z, but at the same time Y causes a delayed repression of Z.

In [Alon, 2007, Sec. 4.7.2] a kinetic model is given, consisting of the synthesis and degra-
dation of the proteins Y and Z. In the following this model will be presented and compared to a
stochastic logical network of the motif. The concentration of X is assumed to be constant and
we thus have only the four processes:

1 ∶ ∅ Ð→ Y, −1 ∶ Y Ð→ ∅,
2 ∶ ∅ Ð→ Z, −2 ∶ Z Ð→ ∅

The kinetic parameters are k1 for synthesis of Y and k−1, k−2 for degradation of Y and Z,
respectively. For synthesis ofZ the rate is k2a if the gene is not repressed and k2b if it is repressed
by Y . The expression of Y has the equilibrium level k1/k−1. Gene Z has two equilibria, k2b/k−2

in the repressed case and k2a/k−2 in the unrepressed case. The threshold of the expression level
of Y , above which the repression is effective, is denoted by θ. The resulting deterministic ODE
model is given as follows [Alon, 2007, p. 60]:

dY

dt
= k1 − k−1 ⋅ Y

dZ

dt
= (k2a − k2b) ⋅ (1 + (Y /θ)h)−1 + k2b − k−2 ⋅Z

(8.3)

The first term of dZ
dt , namely (k2a − k2b) ⋅ (1 + (Y /θ)h)−1 + k2b is the Hill function for the

regulatory switch. In the limit h → ∞ the Hill function approximates (except at θ, cf. p. 167)

the step function rsynZ(Y ) = {k2a, Y ≤ θ
k2b, Y > θ

.

A logical network of the feed-forward loop It is straightforward to give the logical network that
describes the feed-forward loop of Fig. 8.8. The gene that produces X is always active. To
represent the relevant concentration levels of Y , two levels suffice. For the gene producing Z
we have to distinguish between the basal expression level, if transcription is initiated by X but
repressed by Y , and the upper expression level, in case transcription is activated by X and not
repressed. Hence, three levels are necessary.
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Figure 8.9: Pulse like gene activation of gene Z, generated by a feed-forward loop. The solution of the
ODEs (8.3) is shown. Parameter values are k1 = 2.5, k2a = 25, k2b = 2.5 and k−1 = k−2 = 2.5, threshold
θ = 2.5/4 = 0.625 and a Hill coefficient of h = 20. The initial values are Y = Z = 0. The switch-like
regulation of Z, implemented by the Hill function above, leads to the pulse of Z expression before the
concentration comes to rest in the lower equilibrium, k2b/k−2 under repression by Y .

target functions
component target

value
condition

Y
0 X = 0
1 X = 1

Z
0 X = 0
1 (X = 1) ∧ (Y = 1)
2 (X = 1) ∧ (Y = 0)

update functions
up down condition rate
Ψ+
Y (Y = 0) ∧ (X = 1) 1

Ψ−
Y (Y = 1) ∧ (X = 0) 1

Ψ+
Z (Z = 0) ∧ (X = 1) ∨

(Z ≤ 2)∧(X = 1)∧(Y = 0)
10

Ψ−
Z (Z = 2) ∧ (Y = 1)

∨ (Z ≥ 1) ∧ (X = 0)
1

Table 8.1: The logical network of the feed-forward loop is given by the target functions. The asyn-
chronous and unitary update is then derived and given by the update functions. Together with the rates
in the last column this defines the stochastic logical network. The kinetic parameters of the ODE model
were just scaled by 0.4, to get the rate 1 for degradation of Y and Z as well as for the repressed synthesis
of Z and a rate of 10 for the unrepressed synthesis.

The logical networks of the feed-forward loop and its dynamics are fully described by
Tab. 8.1. The formulation of the target functions is the straightforward implementation of
the regulatory interactions. The four update functions Ψ±

Y , Ψ±
Z describe the up- and down-

regulation of the genes Y and Z. The extension to a stochastic logical network is simply given
by assigning rates to all update functions. These rates define the velocity of the regulatory
switch. It is natural to use the parameters for synthesis and degradation in the ODE model for
the corresponding rates in the stochastic logical network (here these parameters were scaled by
0.4). Using the PRISM model checker [Hinton et al., 2006] we computed the mean trajectory
of the network. The CTMC has infinitely many trajectories, but in fact only three different cor-
responding sequences of states, see Fig. 8.10. The mean trajectory is shown in Fig. 8.11 (A).
The dynamics is in remarkable concordance with the solution of the deterministic ODE model,
Fig. 8.9. However, it is not immediately clear if the single trajectories of the CTMC are close to
the mean or not. The convergence of the mean of Z to Z = 1 in Fig. 8.11 (A) for example, could
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Figure 8.10: The STG of the logical network of the feed-forward loop. Component Z can take three
values, 0,1,2. SinceX is a constant input and we are only interested in the case whereX is active, states
with X = 0 are neglected. From the initial state 100, only three possible sequences exist and they all
lead to the fixed point 111. Every edge is labelled with the update function which defines the edge. The
associated rates of the update functions define a CTMC on the STG.

also result from two sets of trajectories: One set with Z = 2 and another with Z = 0 in the long
run. If these sets of trajectories both had the probability measure 0.5, the mean trajectory would
converge to Z = 1. To ensure that the trajectories are really concentrated around the mean, the
probability for a distinct expression level is computed and shown in Fig. 8.11 (B). These results
confirm that almost all trajectories converge quickly to Y = 1, Z = 1 (in this simple model this
can also be deduced by looking at the STG in Fig. 8.10).

Figure 8.11: (A) The mean trajectory shows the expectation of the expression levels of the genes Y and
Z. The characteristic pulse like dynamics of the feed-forward loop is clearly reproduced by the stochastic
logical network. (B) To verify that the individual trajectories of the CTMC, i.e., the realisations of the
stochastic process, are in fact concentrated around their mean, the probability of Y = 1 and of Z = 1 is
shown. The mean trajectory is converging to Z = Y = 1 and the probability of Y = 1, Z = 1 is converging
to 1, thus confirming that almost all individual trajectories are indeed reaching the state Z = Y = 1 in the
time interval [0,6].
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Conclusion It is important to note that, in contrast to the master equation, stochastic fluctu-
ations around the equilibrium level are not included in the stochastic logical network model.
Every equilibrium level is represented by one state and a change between different states can
only be caused by a regulatory switch. That is, the corresponding logical condition must be
fulfilled for a transition to occur and then the time point of the switch is random.

The mean trajectory of the CTMC of a stochastic logical network gives rise to a continuous
dynamics. The concordance with the solution of the ODE model of the feed-forward loop is
due to the short time scale and the simple regulatory structure, which results in a very limited
set of possible dynamics. The time scale is short, because any trajectory ends in the fixed point
X = Y = Z = 1 after few switches only. In case of more complex regulatory dynamics, the
mean trajectory cannot be expected to reproduce the ODE evolution. In particular if e.g. two
fixed points exist, such that the probability to reach one of them is 1 and each is reached with
a significant probability, then the mean trajectory would converge to a convex combination of
these two fixed points which might not correspond to any (reachable) state. In the long run,
even trajectories corresponding to the same sequence of states can lead to a meaningless mean
trajectory. The reason is that the trajectories of one sequence are similar at the beginning, but
with progressing time they are significantly shifted. As a consequence, the characteristics of the
sequence will be lost in the mean. For example, the mean trajectory of an oscillating component
would not oscillate indefinitely, but converge to the mean of the oscillation.

Nevertheless, in case of network dynamics which end up quickly in one unique fixed point,
as the feed-forward loop, the logical model can capture the quantitative characteristics of the
dynamics without considering the kinetics of the interactions. Probabilistic model checking
offers various possibilities to elucidate properties that are not captured by the mean trajectory
(cf. Fig. 8.11) and hence to compensate for the mentioned shortcomings.

8.4 Including the master equation in a stochastic logical network

Negative autoregulation is a network motif that can make the regulation more
robust to stochastic fluctuations. This kinetic effect cannot be captured with
a logical model, but with a small master equation model which gives here a
CTMC with 10 expression levels for the gene. After looking at this master
equation model in isolation, this model will be combined with a stochastic logi-
cal network model of a galactose switch. Two genes in this regulatory network
are modelled by the master equation. This allows examining the stabilising ef-
fect of the interplay of the autoregulation of these two genes. The expectation
of the dynamic behaviour is computed for varying signal strength of galactose
sensing. Despite its low complexity, the combined model demonstrate a quan-
titative stochastic effect which was also identified in a detailed model of high
complexity.

8.4.1 Negative autoregulation

The kinetic modelling of autoregulation was shortly discussed on p. 166. While positive au-
toregulation establishes bistability, negative autoregulation promotes robustness in gene expres-
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sion. The equilibrium point of expression is given by the threshold θ of negative autoregulation.
This is derived from the kinetic model in [Alon, 2007, p. 31f], where it is further argued that θ
is a biochemical parameter that varies much less from cell to cell than the production rate ksyn
and this leads to less variation in the expression level between cells. Increased robustness in
negatively autoregulated cells could also be shown experimentally [Becskei and Serrano, 2000].
Another effect of negative autoregulation is an acceleration of the response of an activated gene,
which means that it takes a shorter time from transcription activation until the concentration of
the gene product reaches its steady state. A fast response requires a high synthesis rate ksyn of
the gene product. As a consequence, also the steady state concentration will be high, see [Alon,
2007] for details. This dependency can be resolved by negative autoregulation, because the
response time is then determined by ksyn as before, but the steady state concentration is fixed
by θ. While the first effect of negative autoregulation, the robustness, depends on the stochastic
fluctuations in parameters, the second one, the response time, depends on the kinetics and can
also be observed in an ODE model.

Master equation for negative autoregulation In Fig. 8.1 it was explained how a master equation
model of a single gene product that is synthesized and degraded is translated into a CTMC. The
states of the CTMC are given by X , the number of molecules of the gene product. This CTMC
is completely defined by m, the upper bound of X , and two functions, rsyn and rdeg, which
assign a rate of synthesis and degradation to each stateX . In the case of negative autoregulation
the synthesis rate is given by the Hill function rsyn(X) = (ka − kb) ⋅ (1 + (X/θ)h)−1 + kb for
X < m and with kb < ka. The autoregulation threshold θ is defined as the concentration where
repression reduces transcription by 50% [Alon, 2007, p. 32]. At the upper bound the synthesis
rate is rsyn(m) = 0. For the discrete CTMC model we will use the step function that is obtained
by taking the limit h → ∞ (cf. p. 167). The bounded master equation model for a negatively
autoregulated gene is then given by the rate functions

rsyn(X) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ka, X ≤ θ
kb, m >X > θ
0, X =m

and rdeg(X) = kdegX, (8.4)

wherem is the bound on the molecule number. For comparison, we also look at a similar model
without autoregulation, given by the rate functions

rsyn(X) = {ksyn, X <m
0, X =m

and rdeg(X) = kdegX, (8.5)

where the kinetic parameter ksyn determines the constant rate function. The basal synthesis rate
kb is set to zero. To observe the effect of fluctuations of the synthesis parameters, which can
vary from cell to cell, ka and ksyn are varied and the stationary distributions of the CTMCs are
computed, see Fig. 8.12. To compute the stationary distributions it suffices to solve a system
of linear equalities defined by the generator matrix, see [Grimmett and Stirzaker, 1992, p. 244,
(20)*, additional linear equalities are necessary to ensure that the distribution has only nonneg-
ative values and sums up to 1].

As the parameters are varied, the distributions and in particular the mean values of the
autoregulated model are less shifting compared to the model without autoregulation. This result
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is also obtained by analysing the corresponding ODE model [Alon, 2007, Sec. 4.7.2]. The
results of the master equation models in Fig. 8.12 are furthermore showing that also for fixed
ka, the random fluctuations around the equilibrium are reduced, because we observe a higher
concentration of the stationary distributions around the mean values (i.e. the equilibrium points)
for the model with autoregulation (see also [Bundschuh et al., 2003] for a detailed discussion
of the stochastic effects of negative autoreguation).
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Figure 8.12: Stationary distributions of two different master equation models of synthesis and degrada-
tion of a single gene with varying parameters. In blue, the results for the model without autoregulation
given by (8.5) with m = 10 are plotted. The constant synthesis rate ksyn was varied between 0.25 and
0.75. With autoregulation the CTMC is given by (8.4) with m = 10, θ = 5 and kb = 0. The unrepressed
synthesis rate ka was varied between 0.5 and 1.5 (in the negatively autoregulated case the synthesis rate
is often higher to enable fast activation of the gene [Alon, 2007, Sec. 3.4]). The resulting stationary dis-
tributions are plotted in red. For all distributions, the mean values, which coincide with the equilibrium
point X = ksyn/kdeg resp. X = ka/kdeg [Grimmett and Stirzaker, 1992, p. 95,251], are indicated above
the plots. Apparently, negative autoregulation leads to a higher density of the distribution around the
mean, which means that for a fixed synthesis rate ka the fluctuations in the concentration of the gene
product are reduced. Furthermore, variations in ka (among different cells) are shifting the distributions
of autoregulated X much less than without autoregulation, which is also reflected in the mean values.

8.4.2 Logical modelling of galactose utilisation in yeast

Introduction Glucose is the main carbon source for yeast cells. However, if glucose is not
available, the cells can use alternative substrates as carbon source. The budding yeast Saccha-
romyces cerevisiae can use galactose instead of glucose. The metabolic pathway to transform
galactose to glucose-1-phosphate, named Leloir pathway, is catalysed by the enzymes of the
GAL gene family. If glucose is not available but galactose is present in the medium, the GAL
genes are activated on the transcriptional level by a network of activation and repression. This
complex construction constitutes a robust switch that allows for quick activation of the galac-
tose pathway. The complex regulation of the Leloir pathway was subject to extensive research
on the experimental level as well as in the field of mathematical modelling. While [de Atauri
et al., 2004] and [Berkhout et al., 2013] analyse quantitative and stochastic behaviour of an
ODE model representing the core of the regulation of the Leloir pathway, a larger logical model
of glucose repression in yeast was presented in [Christensen et al., 2009], where the Leloir
pathway is only a minor part.
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Regulatory mechanism of galactose sensing and uptake The Leloir pathway, consisting of the
uptake of galactose, the conversion to galactose-1-phosphate and then to glucose-1-phosphate,
is catalysed by the structural genes GAL1, GAL2, GAL7 and GAL10. Depending on the regu-
lation, these structural genes (further on just abbreviated as GalS) can be in an activated state,
which means that all enzymes for the Leloir pathway are produced. Otherwise they can be in
a repressed state or in an unrepressed state that is ready for induction, i.e., production of the
enzymes can be initiated immediately. These structural genes are transcriptionally activated by
gal4p, the product of GAL4. This activation can be prohibited in several ways. Repression:
In the presence of glucose, GAL4 is inactivated, such that no protein gal4p is produced and
can bind to DNA to initiate transcription of GalS. Inhibition: gal4p is present and could bind
to DNA for activation of the structural genes. However, activation is still inhibited by gal80p
which binds to gal4p, so that it cannot activate the structural genes GalS. This is the case if no
glucose and also no galactose is present and the cell is for example feeding on glycerol instead.
Inhibition by gal80p can be relieved quickly by the regulatory protein gal3p, which then leads
to an activation of the pathway. The mechanisms of the induction by gal3p are not completely
understood at the moment. Whether the protein gal3p is the inducer itself or if it instead syn-
thesizes an inducer from galactose, is not known. However, we can say that gal3p together
with galactose leads to induction [Lohr et al., 1995, Johnston, 1987]. The difference between
the glucose-repression and the gal80p-inhibition lies in the time it takes for activation of the
structural genes. It takes 3-5 [h] if glucose was present as repressor and only 10-20 [min] if
the activation was only inhibited by gal80p. This means that the cell can switch quickly (10-20
[min]) from glycerol to galactose as substrate, but needs a long time (3-5 [h]) to switch from
glucose to galactose, [Johnston, 1987]. The transcription of GAL3 is activated, similar to the
structural genes, by gal4p. Induction can only occur if galactose is present in the cell. The entry
of galactose depends on gal2p and gal1p. In case the GAL structural genes are not expressed,
galactose entry must still be possible on a very low scale, so that induction can take place. The
activation of the structural genes will then lead to higher galactose uptake and hence reinforce
their own expression. Once the Leloir pathway is active, gal3p is not necessary anymore, be-
cause gal1p can also mediate activation of the structural genes [Lohr et al., 1995], [Johnston,
1987].

Building an abstract model of the galactose regulation In the abstract logical network model
of gene regulation, a gene is not distinguished from the protein it produces. The components
of the regulatory network will be denoted gal3, gal4, gal80, galS, representing the genes as
well as the corresponding proteins. Furthermore, regulatory input is given by the components
gal(ext), denoting external galactose, which is the signal for gal3 activation, and external glu-
cose glc(ext), which acts as repressor of gal4. The Leloir pathway can be integrated into the
logical model as a metabolic network [Palinkas and Bockmayr, 2011]. The abstraction of the
complex regulatory mechanisms to a discrete logical model is not unique. For example, it is a
matter of interpretation if the components gal80 and glc(ext) are acting together on the com-
ponent gal4, inhibiting or activating it and gal4 is then the sole regulator of the structural genes
galS, or if instead glc(ext) and gal80 act together with gal4 on galS directly. Both variants
are a reasonable abstraction of the biochemical processes.

A crucial property of the galactose switch is that induction can be triggered much faster
in the unrepressed (no glucose) and uninduced state (no galactose) than in the repressed state.
The reason is that in absence of the repressor, gal4 can already bind to the promoter which
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initiates transcription of the structural genes. It is just not possible to start transcription due to
the inhibition by gal80. As soon as gal80 is released by gal3, transcription can be initiated.
To reflect this in the abstract model, we let glc(ext) regulate the state of gal4 and let gal80
be a regulator of galS. If glucose repression is released, the component gal4 can be activated,
and the structural genes only thereafter. In the logical model dynamics, represented by the
state transition graph (STG, see p. 170), this means that two transitions are needed for pathway
activation, whereas one transition suffices from an uninduced state where the component gal4
is already active.

The inducer is in reality activated by internal galactose. However, the transport of galactose
is only activated after induction. It is assumed that there is either a slow constitutive transport
process or that basal GAL2 expression enables the first entry of galactose which can trigger
induction [Lohr et al., 1995]. We could model this by implementing both transport processes
as reactions of the metabolic network of the Leloir pathway, where one of them is permanently
enabled. This is an example where the rates of the stochastic logical network can be used to
incorporate an important biological aspect naturally in the model. In this case the rate of the
two transport processes could be adjusted to implement the difference in velocity.

Another possibility is to use external instead of internal galactose concentration in the con-
dition for the activation of gal3 (as inducer). To justify this twist, we look at the STG of the two
variants. Since one transport reaction is always enabled, there is a transition from every state
s with external galactose present to a state s′ with internal galactose present. Such a transition
represents the constitutive transport process that does not require galS expression. From s′

there is a transition to a state s′′ where gal3 is active. Altogether we have from every state s in
the STG where external galactose is present, a path of at most two transitions, which leads to a
state s′′, where gal3 is active. Such a path of length 2 is replaced by a single transition from s
to s′′, if we let gal3 be regulated by external galactose instead of internal. Also here the rates
of a stochastic logical network can serve to reflect the process behind this single transition in a
small rate.

A logical network model To give a logical network model of the GRN, it suffices to specify
the regulation of each component by logical target functions as described in Sec. 7.2. In its
simplest form, each component is represented by a binary (Boolean) variable, that is, each
component can be in an active state (gene is expressed, signal is present) or in an inactive state.
The scheme of the model in Fig. 8.13 is an incomplete representation of the logical model. The
target functions given in Tab. 8.2 describe the regulation of each component in detail.
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gal(int) gal1p glc1p

UGL UGA

gal80

gal3

gal4

galS

Figure 8.13: A graphical representation of the integrated model of the regulation of galactose utilisation.
The genes are drawn as boxes and the metabolites as circles. The thick black arrows indicate the interac-
tions of the GRN (blunt arrowhead for inhibition), the thin arrows represent the metabolic reactions and
the dotted green arrows stand for the production of enzymes by the structural genes galS which catalyse
the pathway. Here we mainly discuss the dynamics of the GRN, but an integrated logical model of GRN
and metabolism can also be given formally [Palinkas and Bockmayr, 2011].

target functions
component target

value
condition

gal3
0 gal(ext) = 0
1 gal(ext) = 1

gal4
0 glc(ext) = 1
1 glc(ext) = 0

gal80
0 false
1 true
2 false

galS
0 (gal4 = 0) ∨ (gal80 = 2) ∨ (gal3 = 0) ∧ (gal80 ≥ 1)
1 (gal4 = 1) ∧ (gal80 ≤ 1) ∧ (gal3 = 1) ∨ (gal4 = 1) ∧ (gal80 = 0)

Table 8.2: Logical target functions that describe the interactions of the logical network of galactose
utilisation given by the interaction graph in Fig. 8.13.

Together with the stoichiometry of the metabolic network, an integrated model of gene reg-
ulation and metabolism can be derived [Palinkas and Bockmayr, 2011]. The stoichiometry is
already given by the scheme in Fig. 8.13, where all coefficients are ±1. However, here we will
focus on the GRN since the dynamics of the metabolic network is rather simple and completely
determined by the three components galS, gal(ext) and glc(ext) of the GRN. To define the
dynamics of the GRN, the update type of the logical network has to be specified (see Sec. 7.2
or page 170). Once all these specifications are given, the translation of the model into a Petri
net representation as well as into a PRISM model of the corresponding stochastic logical net-
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work can be done automatically by the procedure described in [Palinkas and Bockmayr, 2011].
This procedure generates in the first step the update functions. They are given in Tab. 8.3 for
asynchronous and unitary updates. Since the gene gal80 is reported to be negatively autoregu-
lated, thus allowing a short response time and keeping the expression to a moderate level (see
Sec. 8.4.1), this component was implemented with three levels and a constant target function.
This component is so far just a constant input into the GRN. However, the autoregulation will
play a role in the next section. With this abstract model, the basic properties of the galac-

update functions
up down condition
Ψgal3
+ (gal3 = 0) ∧ (gal(ext) ≥ 1)

Ψgal3
− (gal3 = 1) ∧ (gal(ext) = 0)

Ψgal4
+ (gal4 = 0) ∧ (glc(ext) = 0)

Ψgal4
− (gal4 = 1) ∧ (glc(ext) ≥ 1)

Ψgal80
+ (gal80 = 0)

Ψgal80
− (gal80 = 2)

ΨgalS
+ (galS = 0 ∧ gal4 = 1 ∧ gal80 = 0) ∨ (galS = 0 ∧ gal4 = 1 ∧ gal3 = 1)

ΨgalS
− (galS = 1 ∧ gal3 = 0 ∧ gal80 = 1) ∨ (galS = 1 ∧ gal4 = 0)

Table 8.3: From the target functions, Tab. 8.1, the update functions Ψc
±, describing asynchronous, unitary

update of every component c of the GRN, can be derived.

tose switch, as described above, are preserved. The dynamics of this logical model is quickly
summarized. Looking at the dynamics by initial state we get:

• In the initial state glc(ext) = 0, gal(ext) = 0, gal80 = 1, the structural genes galS are
repressed by gal80, but gal4 is present and can start transcription of galS as soon as the
repression is released, that is, as soon as gal3 is activated.

• In the initial state glc(ext) = 1, gal(ext) = 0, gal80 = 1, the structural genes galS are
repressed and in addition gal4 is not expressed. To activate galS two regulatory events
are hence required: activation of gal3 and of gal4.

• In the initial state glc(ext) = 1, gal(ext) = 1, gal80 = 1, the structural genes are not
repressed by gal80, but for transcription, gal4 is missing. As soon as gal4 is activated,
galS will also be switched on.

• In the initial state glc(ext) = 0, gal(ext) = 1, gal80 = 1, galactose is the only substrate
and galS will be activated immediately.

The differences in the time it takes to release expression by gal3 activation and the time to
initiate transcription by gal4 activation can be incorporated in a stochastic logical network of
this model by adjusting the rates of gal4 up-regulation and gal3 up-regulation, i.e., of the update
functions Ψgal4

+ , Ψgal3
+ .

8.4.3 A combined probabilistic model of logical and kinetic dynamics

The aim is now to combine the extension to the stochastic logical network with detailed kinetic
modelling of two components, namely the components gal3 and gal80. Apart from the reg-
ulation by external galactose, the gene gal3 is also positively autoregulated. The interplay of
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this positive autoregulation of gal3 and the negative autoregulation of gal80 is assumed to have
a stabilising effect on the galactose switch [Johnston, 1987, de Atauri et al., 2004]. We will
incorporate the two autoregulatory interactions by modelling the components gal80 and gal3
with the master equation in 10 expression levels.

Master equation models To define the master equation model of a single gene as a CTMC,
it suffices to give rate functions for synthesis and degradation. The master equation model of
negative autoregulation for the gene gal80 was already given by the rate functions in (8.4).
For the gene gal3, the synthesis rate depends on the galactose signal gal(ext). Furthermore,
the positive autoregulation causes a switch in synthesis rate when the threshold θgal3 of gal3
concentration is surpassed. This is implemented by a piecewise linear step function of the form

rgal3syn (gal3, gal(ext)) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

max ((gal(ext) − d),0) , X ≤ θgal3
gal(ext) + d, m >X > θgal3
0, X ≥m

,

i.e., the synthesis rate is proportional to the signal gal(ext) and shifted by d > 0 or by −d < 0
depending on the autoregulation. The degradation is modelled analogously to gal80, with pa-
rameter kgal3deg . For these two components the CTMCs of the master equation are thus completely
described. The remaining components of the GRN are modelled with only two expression levels
as a stochastic logical network. The complete CTMC of this combined model can be directly de-
rived from Tab. 8.4 as follows. The components {gal3, gal80, gal4, galS, gal(ext), glc(ext)}
of the GRN model with their resolution in 10 resp. 2 expression levels give the state space
U = {0,1, . . . ,9}2 × {0,1}4. If two states u, u′ are identical except in one component c where
u′c = uc ± 1 and the condition listed in Tab. 8.4 for the update c± (leftmost column) is fulfilled in
the state u, then the transition from u to u′ is occurring with the rate gu,u′ (right columns). Dif-
ferent rates are given for the model with autoregulation and the model without autoregulation.
All other off-diagonal entries gu,u′ of the generator matrix of the CTMC are zero (cf. Fig. 8.1).
Tab. 8.4 thus completely describes two different CTMCs on the same state space.

The impact of the autoregulation on the activation of the structural genes Since the activation of
galS, and hence of the galactose pathway, depends on the signal of external galactose, gal(ext),
we will vary the strength of this signal in the model and observe the resulting dynamic be-
haviour. The interacting regulators gal3 and gal80 are modelled with the same range and the
regulation of galS can hence be deduced by comparing their expression levels directly. When
the concentration of gal80 surpasses the concentration of gal3, we assume that not all of the
inhibitor can be bound and the expression of galS will be repressed. The update function for the
activation of galS is hence given by the expression (galS = 0)∧(gal4 = 1)∧(gal3 ≥ gal80+1).
To make the effect of the autoregulation of the components gal3 and gal80 visible, the model is
also considered without autoregulation. This means that the two components are modelled by
the master equation with rate functions which do not depend on the concentration of the own
product. These rate functions are also given in Tab. 8.4.

8.4.4 Computational analysis of the combined model

With these two variants of the combined model we will now examine the effect of the au-
toregulation of gal80 and gal3 on the sensitivity of the galactose switch to the signal strength.
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update functions and rates
update condition rate,

with autoregulation
rate,
no autoreg.

gal3+ (gal3 ≤ θgal3) max ((gal(ext) − d),0)
gal(ext)

gal3+ (gal3 < 9) ∧ (gal3 > θgal3) gal(ext) + d

gal3− (gal3 > 0) kgal3deg ⋅ gal3 kgal3deg ⋅ gal3

gal80+ (gal80 ≥ θgal80) ∧ (gal80 < 9) kgal80
b constant

gal80+ (gal80 < θgal80) kgal80
a

gal80− (gal80 > 0) kgal80
deg ⋅ gal80 kgal80

deg ⋅ gal80

gal4+ (gal4 = 0) ∧ (glc(ext) = 0) constant constant
gal4− (gal4 = 1) ∧ (glc(ext) = 1) constant constant
galS + (galS = 0) ∧ (gal4 = 1) ∧

(gal3 ≥ gal80)
constant constant

galS − (galS = 1) ∧ (gal3 < gal80) ∨
(galS = 1) ∧ (gal4 = 0)

constant constant

Table 8.4: The update functions for this probabilistic model are given in several parts, in order to repre-
sent the varying rates conveniently. In the leftmost column the component and direction of regulation is
indicated. A condition defines a set of states where the corresponding update occurs with the rate given
in the columns on the right. The components gal80 and gal3 are modelled with the master equation
and expression levels from 0 to 9 representing the amounts of regulatory protein. The rate functions in
the two columns on the right define the master equations for gal80 and gal3. The other components
are modelled as a stochastic logical network with the rates given in the right columns as well. A sim-
ple model, where the autoregulation is neglected, as well as a model including the autoregulation of
gal80 and gal3, are considered. With the rates for these two models, this table completely describes two
CTMCs as explained in the main text above. These CTMCs were then analysed with the PRISM model
checker, see Fig. 8.14.

Ideally, the genetic switch defines a threshold of the signal of external galactose and activates
the pathway if and only if the threshold is surpassed. The activity of galS in dependence of the
signal gal(ext) would then be a step function. Robustness means that despite the stochasticity
in the regulatory interactions, the dynamics are close to this ideal case, i.e., there is a small
probability of false activation when the signal gal(ext) is below some threshold, and also of
missing activation when the threshold is surpassed. To test this notion of robustness, the signal
strength gal(ext) was varied between 0 (no external galactose) and 4 (very strong galactose
signal) and different indicators for pathway activation were computed. The parameters of the
master equations of the components gal3 and gal80 were chosen such that the dynamics of the
autoregulation is captured within the small range of 10 expression levels. For gal3, the exact
values are kgal3deg = 0.2 and d = 0.3 and the threshold was set to θgal3 = 4. For the component
gal80 we set the degradation rate to kgal80

deg = 0.2 as well. The synthesis is given by kgal80
a = 2 and

kgal80
b = 0. The threshold was set to θgal80 = 5. The rates for the logical components are constant

and were set to 1. With these parameters the master equations represent gal3 and gal80 with 10
expression levels and model the dynamics of positive and negative autoregulation, respectively.
To neglect the autoregulation in the master equations, we use a constant synthesis rate for gal80
and for gal3 a rate proportional to the signal gal(ext). This is the kinetic correspondence to the
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logical model, where autoregulation is neglected.

Comparison of the dynamics with and without autoregulation The basic dynamical properties,
as listed above on p. 185, are of course preserved in the refined model, no matter if autoregula-
tion was included in the synthesis rates of the master equations or not. The differences between
these two variants are merely in the quantitative and stochastic properties of the switch. To
examine these properties with and without autoregulation, four indicators were analysed with
the PRISM model checker [Hinton et al., 2006]. The initial state in all computations is given by
glc(ext) = 0, no external glucose, gal80 = 5, moderate abundance of repressor, gal3 = gal4 = 0
and the structural genes are inactive, galS = 0. We are interested in the activation of galS, since
this tells us if the pathway for galactose utilisation is switched on. In Fig. 8.14 A) the expected

Figure 8.14: Indicators of stability of the galactose genetic switch are plotted for the models with and
without autoregulation of gal80 and gal3. For the model with autoregulation, the curves of the indicators
of galS activation show then a more switch-like behaviour. Also the expected number of oscillations is
at least 20% lower at all values of signal strength.
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number of oscillations of the expression level of galS was computed. Since we are starting in
the initial state galS = 0, an oscillation is completed whenever the update ΨgalS

− is executed. In
the PRISM model checker we assign a reward of 1 to this update and have then the possibility
to compute the expected number of executions of this update (i.e., the expected reward). An
oscillation of the structural genes galS indicates that the switch is unstable. It is clear that the
instability will reach its maximum at an intermediate signal strength just on the threshold of
pathway activation. The model with autoregulation has a similar distribution of the oscillations,
but at any computed signal strength the amount of oscillations is at least 20% lower than in the
model without autoregulation. The plot thus reveals a significantly increased stability of the
switch, if gal3 and gal80 autoregulation is included in the model. A similar indicator is com-
puted in Fig. 8.14 C), where the probability that galS is permanently active during a fixed time
interval shortly after induction is shown. The curve for the model with autoregulation is closer
to a step function and this means closer to the ideal switch. False activation of galS while the
signal is low is less probable, but regular activation, following a strong signal, is more likely
than in the model without autoregulation. Similar results were obtained for the two remain-
ing indicators. The probability for quick first activation of galS (within a short time interval
after induction) was computed in Fig. 8.14 B) and the competition between gal80 and gal3,
which determines galS activation and was examined in Fig. 8.14 D), where the probability of
gal3 ≥ gal80, which means that all inhibitors are bound by gal3, is plotted.

Conclusion All computational results confirm that the model with autoreguation fulfils the
condition of robustness, as formulated above, to a significantly higher degree than the model
without autoregulation. The effect of the autoregulation of the two components gal3 and gal80
on the stability of the galactose switch was also analysed in [de Atauri et al., 2004] and an in-
crease in stability was observed as well. The model used in [de Atauri et al., 2004] is based on
differential equations and contains detailed and fully stochastic representations of the underly-
ing regulatory mechanisms. This model is therefore of high complexity. The investigation here
shows that it is possible to capture individual aspects of this biochemical system with a model
of an overall low complexity. It is clear that such an approach cannot replace a fully mecha-
nistic description as given in [de Atauri et al., 2004]. However, apart from the possibility to
reproduce certain quantitative and stochastic behaviours, the development of simplified abstract
models has a value on its own because it helps to identify key mechanisms that lead to certain
dynamical features.

8.5 Discussion

The straightforward extension of a logical network as defined in Chap. 7 to a CTMC is termed
stochastic logical network here. It should not be confused with probabilistic Boolean net-
works [Shmulevich et al., 2002] which are based on different assumptions and lead to discrete
Markov chains. This chapter tried to grasp the relationship between the modelling approach
of stochastic logical networks and the classical master equation of biochemical systems. On
the one hand, they share the same mathematical format, namely CTMCs. On the other hand,
they are based on different derivations. While the master equation is a mechanistic model based
on considerations about the collision probabilities in a well-mixed reaction system, the logical
models are often derived as phenomenological models. The contrary is the case in the relation-
ship between ODEs and the master equation. Here the mathematical format is different, but the
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ODE model as well as the master equation are based on very similar physical considerations.
It turns out that the difference between these models lies essentially in the ”resolution” of the
molecular amounts. The continuous concentration values in the ODE model can be seen as an
infinite resolution, while the absolute molecule numbers are still present in the master equation.
By taking the thermodynamic limit, the master equation reaches the infinite resolution of the
ODE model and the stochastic fluctuations vanish. As a consequence, the two models coincide
in the thermodynamic limit. It is clear that stochastic logical networks and the master equation
are drastically different and we cannot expect to find a general coherence between them. Since
the regulatory switches in probabilistic logical models are enabled by a fixed logical rule, the
model is only stochastic in the time points of the switches. It accounts thus rather for cell to
cell random variations of the kinetic parameters governing the regulatory interactions than for
the fluctuations of expression levels and concentrations in a single cell. This chapter aimed to
show that stochastic logical networks are able, despite their high abstraction level, to capture
some features of regulatory networks, which usually require quantitative and stochastic models
of much higher complexity to be reproduced. The rates on the update functions are also a pos-
sibility to include more biological information, in particular quantitative aspects, in the logical
model.

The application to the galactose utilisation model gave an illustration of how the minimal-
istic logical modelling approach can be combined with the master equation. Due to the con-
cordance in the mathematical format, this combination is straightforward and very flexible. It
is hence well suited to model different parts of a biochemical system with different precision.
Given an abstract logical model, we have the possibility to refine it step by step, incorporat-
ing kinetic description of critical interactions. In the galactose model, we integrated a master
equation model of the autoregulation of two genes into the stochastic logical network. With this
’minimal’ extension, the model captured the stabilising effect of these features.

The mean trajectory of the stochastic logical network can reproduce the quantitative be-
haviour of a simple regulatory pattern. However, this holds only for short-term dynamics of
networks with simple dynamical properties. In other cases, probabilistic model checking still
enables us to verify many aspects of the short-term as well as of the long-term behaviour of the
stochastic process and to complement the information given by the mean trajectory.
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Outlook: Constraint-based modelling

approaches for the interactions between
gene regulation and metabolism

9.1 Overview

In models of gene regulation of metabolism, as they were discussed in the preceding chapters,
the gene expression determines the concentration of enzymes which in turn control the flux
rates. This control can be formalised by defining a maximal flux rate which depends linearly
on the enzyme concentration. In constraint-based models the dependence on the enzymes can
be represented by the bounds on the flux distributions. This allows the natural integration of
transcriptional regulation into constraint-based models. In the other direction, the regulatory in-
put from the metabolism to the gene regulatory network (GRN) is determined by the metabolite
concentrations. It is not evident how to include this feedback regulation into a constraint-based
model. A strategy which circumvents the problem is to deal only with relative values. Instead
of absolute levels of gene expression or concentrations, only the information whether a gene is
up- or down-regulated and whether the concentration of an enzyme or metabolite is increased
or decreased is used as input or computed as output, respectively. This relative information only
makes sense in a dynamic model, as e.g. the resource allocation model presented in Chap. 3.
Two such approaches are presented in this chapter, both are working in the constraint-based
modelling framework. The first approach uses the correlation between flux rates of two reac-
tions to predict interactions in the GRN which are mediated by the metabolic network. This can
be seen as the constraint-based version of a similar method based on metabolic control analysis.
Second, an approach is proposed to deduce concentration changes from alterations in flux rates
and enzymatic activity.

9.2 The flux space has more to give than single flux modes

An often criticised aspect of FBA and similar methods is the fact that the result
is just a single flux mode. Particularly in cases where many different optimal
solutions exist, a single flux mode gives only an arbitrarily chosen detail of the
whole picture. Hence, it is a promising alternative to consider regions of the
flux space instead. However, in high dimensions the representation and compu-
tation of such regions is a difficult computational task.
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Limitations of optimisation-based methods The flux space is the set of all flux distributions that
are feasible according to all biological aspects that are considered in the model, i.e., translated
into constraints. Methods which are based on optimisation, as e.g. FBA, compute distinct ele-
ments of this set as optimal solutions, but the flux space itself, as a geometric object representing
the capabilities of the metabolic network, is not at all explored. Many aspects of the biological
model are thus neglected. As an example, consider the computation of flux variability (FVA,
see Sec. 2.2.2) in a metabolic network with flux space F . For a reaction j this gives an interval
[slbj, subj] of the feasible flux rates. If c ∈ [slbj, subj] we know that a flux mode v with vj = c
exists, but we do not know if there are many flux modes of this kind or if this describes rather an
exotic behaviour which is very unlikely in practice. Formally, we can consider the intersection
F ∩ {v ∈ Rn ∶ ∥vj − c∥ ≤ ε} for some small ε > 0. If the intersection is small, we can conclude
that a flux rate vj close to c can only be obtained under narrow conditions on the flux rates of
the other reaction in the network. This can be interpreted in the way that the flux rate vj = c
is not robust, i.e., a small change in some part of the network is likely to force the flux rate of
reaction j to deviate from this value. In fact, it is often the case in practice that only a part of
the interval [slbj, subj] corresponds to intersections with significant volume and the rest of the
interval represents marginal parts of the flux space, see e.g. Fig. 9.3. It is questionable whether
these marginal parts can be considered as feasible flux rates.

Computing regions of flux modes that have certain properties, as e.g. optimality, was applied
for different purposes [Almaas et al., 2004, Braunstein et al., 2008, Bordel et al., 2010, Schel-
lenberger and Palsson, 2009, Price et al., 2004b]. The plus of information that these methods
bring comes with a plus in computational complexity. A convenient and straightforward way to
compute regions of flux modes with given properties and to obtain the volume of these regions
is to sample the whole flux space. We can then sort for all sample flux modes which fulfil cer-
tain conditions. By counting samples, the volume can be determined relative to the volume of
the whole flux space or relative to some superset with known volume. The difficult part here is
to obtain a sufficiently large number of uniformly distributed samples of the flux space or of a
subset.

9.2.1 Sampling

Curse of dimensionality It is easy to sample uniformly from a box ∏n
i=1[ai, bi] ⊂ Rn, since it

suffices to sample every coordinate xi ∈ [ai, bi] uniformly. For most other regions F ⊂ Rn it is
not possible to directly obtain uniformly distributed samples in a similar fashion. Instead, we
can consider a box which contains F , and generate random samples from this box. Afterwards
the samples that lie outside of F are discarded. This so-called rejection sampling is applicable
if containment x ∈ F can be tested quickly and the ratio of the volume of F to the volume of
the box is not too small, so that a sufficient amount of samples remains. In particular, if the
dimension of F is smaller than n, this method fails because vol(F ) = 0 and the probability that
a sample point lies in F is zero. For a flux space F ⊂ Rn, containment can be easily tested by
verifying the defining linear (in-)equality constraints Sv = 0, lb ≤ v ≤ ub. However, the second
condition concerning the volume is not fulfilled in relevant cases. The problem here is a geo-
metric phenomenon that arises in high dimensions. Let us look at two simple geometric objects,
a cube and a ball, because we can explicitly compute their volume. For the n-dimensional unit
ball the volume goes to zero as n → ∞ (although it increases until n = 5). Independent of the
dimension, the volume of the unit cube is 1 and it is the smallest cube that contains the unit
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ball. Therefore the ratio of the volume of the ball and the smallest circumscribing box goes to
zero as the dimension goes to infinity. Such phenomena arising in high dimensions and caus-
ing computational difficulties are sometimes called curse of dimensionality [Lee and Verleysen,
2007, p. 6]. When the flux space is fitted into a box, the same effect is encountered. First of all,
the flux space F ∶= {v ∈ Rn ∶ Sv = 0, lb ≤ v ≤ ub} has dimension h = n − rank(S) and lives
in the subspace null(S) = {x ∈ Rn ∶ Sx = 0} ⊂ Rn. Since h < n in relevant cases, the volume
of F as a subset of Rn is thus 0. This problem can be fixed by projecting null(S) onto Rh.
The projection of F has than dimension h (given that no reaction is blocked, i.e., slbj < subj ,
j = 1, . . . , n). The smallest circumscribing box in Rh, containing the flux space F , can be given
by FVA in the following way. Let A ∈ Rh×m be the matrix that gives the projection of null(S)
onto Rh, by x ↦ Ax. To determine the minimal (maximal) value of the l-th component of the
projection of F , the optimisation problem al (bl) ∶= min (max){Al,⋅x ∶ x ∈ F} is solved (where
Al,⋅ is the l-th row). The box is then given by ∏h

l=1[al, bl] ⊂ Rh. The problem of dimensionality
of the subset F ⊂ Rn is then fixed. However, for a large dimension h the problem that the
volume of the projection of the flux space is vanishing compared to the volume of the box in
Rh remains. In the core metabolic network introduced in Chap. 4 we have n = 46 and h = 35
and the ratio of the volume of the projection of the flux space to the volume of the smallest
circumscribing box is so small that virtually no samples from the box are also elements of the
flux space.

Random walks that converge to the uniform distribution An alternative method for sampling
from a region F ⊂ Rn is the so-called Hit-and-run sampling [Kaufman and Smith, 1998]. This is
basically a random walk on F . This method requires an oracle which can determine for a given
point x ∈ Rn if x ∈ F or not. Since the oracle is called many times during the computational
procedure of Hit-and-run sampling it must be sufficiently fast. Given an initial element x1, a
random direction and a random distance in chosen to get the next element. The element given
by this direction and distance is tested for containment by the oracle. If it is contained in F it
is accepted as the next element x2 and the iteration continues. Otherwise, another element is
chosen randomly and tested until a next element x2 ∈ F is found.

The probability P (xi = y) describes a probability density on F and the goal of the method
is that in the limit i → ∞ this probability is constant for all y ∈ F , i.e., the uniform distribution
is approximated [Lovász and Vempala, 2006]. In [Kaufman and Smith, 1998] a variation was
proposed, where the choice of the direction is not uniform, but biased to directions where many
samples were found previously. It is called Artificial Centering Hit-and-Run (ACHR). This
modification is in particular countering the problem that classical Hit-and-Run sampling can
get stuck in high dimensional corners [Lovász and Vempala, 2006] (the reason is again a curse
of dimensionality phenomenon: in a corner of a cube for example, the proportion of directions
pointing outside of the cube with dimension n is 1 − 0.5n.) While the classical Hit-and-Run
sampling is rigorously proven to converge to the uniform distribution on a polytope, see [Lovász
and Vempala, 2006], the ACHR method is not shown to converge. However, it was verified
empirically that ACHR converges very fast to the uniform distribution, see [Kaufman and Smith,
1998], where the fast convergence of ACHR was shown experimentally for rectangular regions
and simplices. For the analysis of metabolism, ACHR has been applied to flux spaces of various
metabolic networks [Almaas et al., 2004, Schellenberger and Palsson, 2009, Yang et al., 2010]
and is also implemented in the cobra toolbox [Schellenberger et al., 2011b]. An improved
implementation of ACHR for flux cone sampling has been proposed recently [Megchelenbrink
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et al., 2014]. Concerning futile cycles, sampling thermodynamically feasible flux modes is
discussed in [Reimers, 2014], see also [Xie, 2012], where a variant of ACHR is proposed which
avoids flux modes with futile cycles.

Correlation of reactions If a sufficient amount of samples of the flux space is available, this
enables to easily analyse the correlation of sets of reactions [Reed and Palsson, 2004, Xi et al.,
2009, Schellenberger et al., 2011b]. For pairs of reactions this can be seen as a relaxation of
FCA (Sec. 2.2.2). Since the samples only give a random selection of elements, we cannot
deduce a coupling relation with certainty. However, the projection of the samples on a reaction
pair reveals the predominant relationship between the two reactions. This might show a strong
relation which is not detected by FCA, see for example Fig. 9.3. Another relaxation of the
notion of flux coupling (FCA), based on elementary modes, has been proposed in [Marashi,
2011].

9.3 Metabolism as part of the gene regulatory network

Constraint-based methods describe the metabolism only in terms of flux rates.
Metabolite concentrations are assumed to be constant (steady-state assumption)
and are not specified. Also the regulatory feedback from the metabolic network
to the GRN must hence be derived from the flux rates. The straightforward ap-
proach used by the method regulated FBA [Covert et al., 2001] is to associate
a high concentration of a metabolite with a high flux rate of the reactions that
consume or produce it. This is based on simple mass action kinetics and can
be used to implement the regulatory feedback in terms of flux rates. However,
reaction kinetics is often much more complex and this simple correlation is in
many cases not given. Another possible perspective on the interplay between
a metabolic networks and the GRN is to identify interactions in the GRN that
are mediated by the metabolic network. The idea is that regulatory input given
by the expression of metabolic genes determines the state of the metabolic net-
work and therewith also the regulatory feedback to the GRN. Altogether the
metabolic genes thus have a regulatory impact on other genes, which is medi-
ated by the metabolism. We will discuss methods that predict these metabolic
mediated interactions in the GRN.

9.3.1 Determining metabolic mediated interactions between two genes

A method based on metabolic control analysis

In [Baldazzi et al., 2010] a method is presented to derive signed interactions (up- and down-
regulating interactions) between regulatory components of a gene regulatory network, which
are mediated by the metabolic network. The metabolic network is given by a kinetic ODE
model. However, only the signs of certain partial derivatives must be given, while the specific
values of the kinetic parameters are not required. A sophisticated computational procedure is
then used to determine the propagation of the regulatory effects in the metabolic network and
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to predict the regulatory feedback from the metabolism to the GRN. This procedure includes
the symbolic inversion of a matrix containing partial derivatives. As a consequence, it is not
possible to retrace how the results of this method are obtained even for minimal examples. The
method is illustrated on a simple network which we will also discuss here. It is a simplified
model of glycolysis, see Fig. 9.1. Hexose-6-phosphate (H6P) can be processed to PEP but can
also bind to FruR which is thereby inactivated. This inactivation is represented by the reversible
reaction 10 which describes the conversion of H6P and free FruR to bound FruR. Regulatory
input into the GRN is only given by free FruR. Therefore, the flux v10, being the only effector on
the concentration of free FruR, determines the regulatory feedback from the metabolic network
to the GRN. The method [Baldazzi et al., 2010] determines the signs (activation, inhibition, no
effect) of interactions of the two genes, fbaA and pykF with free FruR, the regulatory component
of the metabolic network. A kinetic model of the network is formulated with ODEs. The
parameters are not exactly specified. To apply the method it suffices to specify the sign of
the partial derivatives of flux rates. These signs just indicate if a regulatory interaction from a
gene-product to a reaction is activating or inhibiting.

B

pykF fbaA

pykF

fbaA [
− −

− −
]

Figure 9.1: A: Schematic representation of a small example from [Baldazzi et al., 2010]. Genes and
their products are distinguished by capitalising the name of the protein. Free FruR can bind with H6P
to give ’FruR’. This process is given by the reversible reaction 10. The concentration of free FruR
determines the activation of the genes pykF and fbaA. The stoichiometry of reaction 6 is 1⋅H6P→ 2⋅PEP.
B: From the dynamics in the metabolic network the regulatory effect of the proteins PykF and FbaA
on the concentration of free FruR are determined by the method. C: The result is represented in a sign
matrix of the interactions between the genes pykF and fbaA. They both have an inhibiting effect on
themselves as well as on the other gene.

9.3.2 A method using the flux space of a constraint-based model

Based on the association of flux rates with metabolite concentrations and regulatory feedback
to the GRN as in regulated FBA (rFBA) [Covert et al., 2001], we can use the flux space of a
constraint-based model to find gene interactions that are mediated by the metabolic network.
In rFBA, a regulatory interaction from a metabolite to the regulatory network becomes active,
if the flux rate of the associated reaction is above a given threshold. The concentration of the
metabolite is then assumed to be high enough to be effective in regulation.
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Let i be a reaction which is regulated by gene A of the GRN and j a reaction which is asso-
ciated with a metabolite that is a regulator of gene B of the GRN. To determine the regulatory
effect that gene A exerts on gene B, we can identify the dependence of the flux rate of j on the
flux rate of i. Flux coupling describes some cases of dependence qualitatively (see Def. 2.5).
But also if a pair of reactions is uncoupled, there might be a strong correlation between the flux
rates, which is revealed when the flux space is examined. This is done by projecting the flux
space on the two reactions i and j under consideration. Formally the projection can be defined
as

πij(F ) ∶= {x ∈ R2 ∶ ∃v ∈ F, s.t. vi = x1, vj = x2}.
The projection gives a 2-dimensional polytope, the region of all possible pairs of flux rates of i
and j that can occur together in a flux mode of F . Some projections of very simple networks
are given in Fig. 9.2.

For a given x ∈ πij(F ) consider the ε-ball Bε(y) ∶= {y ∈ R2 ∶ ∥y − x∥ ≤ ε}. Similar to
the above considerations about the robustness of the flux rate of a single reaction, it is interest-
ing here to know how many flux modes are projected to Bε(y). In practice this question can
be answered by simply projecting a large number of samples with πij . The resulting sample
concentration in the projection gives valuable additional information about the correlation of
the two flux rates. In Fig. 9.3 top left e.g. the projected samples of the core metabolic network
of Chap. 4 reveal that the directionally coupled reactions are effectively almost fully coupled,
i.e., a flux through PGKf that is significantly higher than that of PDH is possible but extremely
unlikely. Also in the other plots, large parts of the projection are almost empty. This means that
flux modes with such combinations of flux rates are feasible but only if the flux rates of all other
reactions lie in certain narrow ranges.

Exact computation of volumes of regions of a flux space is in general rarely tractable, but if
a large number of uniformly distributed samples from the flux space is available, it can be well
estimated [Braunstein et al., 2008].

Computation of flux space projection

The projection πij(F ) ⊂ R2 can be equivalently written as an infinite union of 1-dimensional
intervals, namely

πij(F ) = ⋃
e∈[slbi,subi]

{e} × [aj(e), bj(e)],

where aj(e), bj(e) are the minimal and maximal flux rates of reaction j, given that vi = e, i.e.,

aj(e) = min {vj ∶ v ∈ F, vi = e}
bj(e) = max {vj ∶ v ∈ F, vi = e}

(9.1)

To compute the projections in practice, we can take equidistant points e1, . . . , eq ∈ [slbi, subi]
and compute the intervals {ek} × [vmin(ek), vmax(ek)] for k = 1, . . . , q by solving the LPs
(9.1). An approximation of πij(F ) is then obtained by taking the convex hull of this finite set
of 1-dimensional intervals.

Projection of sampled flux modes and regression analysis

Once uniformly distributed samples of flux modes v ∈ F are available, the projection on the two
reactions i, j is explicitly given by the corresponding vector components vi, vj . The distribu-
tion of these sample points in the projection of the flux space is adding important information.
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Figure 9.2: Projection on two reactions. The grey area indicates those points that are the projection of a
flux mode of the depicted network. In very simple networks, as the four examples here, the projection
can be determined exactly by hand. In case of two fully coupled reactions the projection is a line, see top
left.

Fig. 9.3 illustrates the approach on the small core metabolic network that was introduced in
Chap. 4. To derive a simple description of the dependence of reaction i on reaction j, a linear
as well as a piecewise linear regression of the sample points in the projection is given. Let the
projected samples be denoted by s1, . . . , sN , sk = (xk, yk) ∈ πij(F ) ⊂ R2, k = 1, . . . ,N . The
linear regression is a linear function f ∶R→ R, f(x) = ax+ b, where the parameters a and b can
be determined explicitly, see e.g. [Georgii, 2007]. To obtain piecewise linear regression, the in-
terval [slbi, subi] of feasible flux rates of reaction i is partitioned into h intervals Il, l = 1, . . . , h,
given by Il ∶= [slbi + l−1

h (subj − slbj), slbi + l
h(subj − slbj)]. The set of samples, {s1, . . . , sN}

is partitioned accordingly into sets Sl, consisting of those samples sk = (xk, yk) with xk ∈ Il,
l = 1, . . . , h. A linear regression line is then computed for each of the h sets Sl. The resulting
piecewise linear approximation of the sample points is drawn in red in Fig. 9.3 to capture non-
linear dependence between the reaction rates. A larger h gives a more detailed picture of the
relationship between the two fluxes. However, in each interval the number of samples points
must remain large enough to ensure the quality of the regression.
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Figure 9.3: Illustrative examples of some projections of the linear flux space F of the core metabolic
network of Chap. 4 without the resource allocation model. The dependence between reactions is shown
for the following pairs of reactions from left to right and top to bottom: PGKf over PDH, TK2f over
OxP, TCA over OxP2 and TCA over TK2f. The projections of 2000 sampled flux modes are plotted
as dots. These samples were obtained with the ACHR-sampling method implemented in the COBRA
toolbox [Schellenberger et al., 2011b] for Matlab. A linear regression line as well as a piecewise linear
regression is computed to reveal the type of dependence between the two reactions. The projections
of the flux space were computed with FVA at 40 equidistant flux rates of reaction i. It is given by its
boundary plotted as a thick blue line. These examples show that the distribution of the samples gives
important information that is not provided by flux coupling.

9.3.3 Comparison of the constraint-based and the metabolic control analysis approach

In Fig. 9.4 the results of the constraint-based approach to the network of [Baldazzi et al., 2010]
are discussed. The projections of the two pairs of reactions of interest are shown. The effect
of the flux through reaction 7 on the flux of reaction 10 is predicted to be negative, i.e., more
FruR is released if the flux v7 is increased. The same result was obtained in [Baldazzi et al.,
2010] where a positive sign for the interaction from PykF (catalysing reaction 7) to the amount
of free FruR was deduced by the method, see Fig. 9.1 B). On the other hand, the results differ
for the effect of FbaA, i.e., the associated flux v6, on the flux v10 determining the amount of
free FruR. In the constraint-based model the effect can be positive or negative. In fact, the sign
depends on the ratio of the fluxes v7 and v8. In the right plot of Fig. 9.4 we see that blocking
reaction 6 also blocks reaction 10 and a high flux through reaction 6 enables in both directions
a high flux through reaction 10. This effect is caused by the steady-state assumption and can be
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explained as follows. Binding of FruR depends on H6P. On the one hand, reaction 6 produces
PEP which is a substrate of reaction 8, and since reactions 8 and 5 are fully coupled, production
of H6P depends on v8. Therefore, a high flux v6 is enabling a high production of H6P. On the
other hand, reaction 6 is consuming H6P. Due to the stoichiometry of reaction 6 (H6P → 2⋅
PEP) production of H6P can be twice as much as the consumption by v6. Therefore, the H6P
availability depends on the choice between reactions 7 and 8 for PEP consumption. If PEP is
mostly consumed by v7, then more H6P is consumed by v6 than can be produced by v5. In this
case, the amount of unbound FruR increases. In the other direction, if v8 is consuming more
PEP than v7, then more H6P is produced than consumed by v6, and remaining H6P must bind
to free FruR.

This possible positive effect on FruR binding by v6 appears only in the constraint-based
approach. It is not predicted in the metabolic control analysis used in [Baldazzi et al., 2010]
where only a negative effect is predicted.
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Figure 9.4: Results of the constraint-based approach. See Fig. 9.3 for explanation of the shown infor-
mation. The plots show the projections on reaction 10 (FruR binding) against reaction 7 on the left and
against reaction 6 on the right. In this small network the samples are distributed rather uniformly and are
hence not adding new information to the projection. (As in Fig. 9.3, the COBRA toolbox [Schellenberger
et al., 2011b] was used to generate samples.) These flux space projections show that a high flux through
v7 is forcing reaction v10 to go in the negative direction, i.e., the bounded FruR is released. If v7 is close
to zero, FruR is mostly being bound, i.e., v10 ≥ 0. For reaction 6, the situation is different. A high flux
v6 enables a high flux v10 in both directions. If FruR is bound or released depends on whether reaction 7
or 8 is the main consumer of PEP as explained in the main text.

9.3.4 Discussion

The constraint-based approach is based on the same assumption as the method rFBA [Covert
et al., 2001], namely that the flux rates are in correlation with the concentration of the reactants
and the latter can hence be deduced from the flux rates. The approach of [Baldazzi et al.,
2010] is based on a kinetic description of the network and on metabolic control analysis, see
e.g. [Heinrich and Schuster, 1996, Sec. 5]. The kinetic parameters are neglected, instead the sign
of certain partial derivatives must be given. In fact, these signs give a qualitative description
of regulatory interactions between species and reactions. The case study of the small example
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from [Baldazzi et al., 2010] revealed that the constraint-based approach does not always predict
the same effect. But on the other hand, the results were also not contradicting. The difference
was in fact that the constraint-based method gave an ambiguous result, where the method of
[Baldazzi et al., 2010] predicted an interaction with negative sign. The question, which method
is preferable for a given model, is not tackled here. The complex procedure of the method
of [Baldazzi et al., 2010], involving symbolic inversion of a matrix, makes it hard to retrace the
emergence of the final result from the individual features of the model. For the constraint-based
approach this could be done by considering the implications of the steady-state assumption in
the small network.

9.4 Relative description of concentrations in constraint-based models

Consideration of metabolic concentrations in constraint-based models is hin-
dered by the circumstance that the flux space only specifies flux rates and
neglects metabolite concentrations. In the case where the regulation of the
metabolism by the GRN is modelled, this is not a big problem, since the reg-
ulatory control by enzymes can be naturally translated to bounds on flux rates
as e.g. done in the method proposed in Chap. 3. The predicted dynamic be-
haviour computed by this method is given as a sequence of steady state phases.
Each phase is characterised by a gene expression pattern and a flux distribution.
In this section, an outlook is given, how such a dynamic picture of metabolic
activity can be used to deduce some information about the corresponding dy-
namics of the metabolite concentrations. This information is only relative and
qualitative. For a given metabolite we can predict, whether its concentration is
increasing or decreasing or unchanged in the transition from one phase to the
next. Based on these results, the feedback from the metabolic network to the
GRN can then be modelled.

9.4.1 Reaction kinetics - an interplay of flux rate, enzyme activity and metabolite con-
centration

The kinetics that governs a reaction depends on the type of the reaction and the involved species,
see [King and Altman, 1956] or [Beard and Qian, 2008, Sec. 4]. Essentially, the reaction rate
is determined by the enzyme activity and the concentration of the reactants. The dependence
of the enzyme activity is in general linear, but the dependence on the reactants is mostly non-
linear. However, we can say that the concentration of substrates has usually a positive effect on
the reaction rate, while the concentration of a product of the reaction has a negative effect on
the rate. Combining this rough and qualitative information about the effects of the enzyme con-
centrations Ej and the concentrations ci for reactions j = 1, . . . , n and metabolites i = 1, . . . ,m,
we will make some deductions in a relative and dynamic setting. Dynamic, because we con-
sider transitions between two steady state phases as for example in the sequences of flux modes
v1, . . . , vk in Chap 4. Relative, because we only refer to increase or decrease of a flux rate or a
concentration of an enzyme or metabolite in the transition from one phase to the next.
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We consider one fixed transition between two phases of flux distributions vk and vk+1. For-
mally, we distinguish the case that the flux of a reaction j changes the direction in the transition,
i.e., sign(vkj ) = −sign(vk+1

j ) < 0. In this case it is clear that, independent of the enzyme concen-
tration, some substrates of j must have decreased their concentration or some products increased
and vice versa, if sign(vkj ) = −sign(vk+1

j ) > 0.
For the case that the flux did not change the direction, we define formally the changes in

flux rates as well as in enzyme activity by

∆Ej ∶= sign(Ek+1
j −Ek

j ) ∈ {−1,0,1} and

∆vj ∶= sign(∣vk+1
j ∣ − ∣vkj ∣) ∈ {−1,0,1}.

(9.2)

The fluxes vk+1
j and vkj have the same sign and the definition does not distinguish whether

these are positive or negative, because we assume that the enzyme activity bounds the flux rate
equally in both directions. If the concentrations of the reactants are constant, the equivalence
Ek+1
j < Ek

j ⇔ vk+1
j < vkj holds and this means that ∆Ej = ∆vj . In the other direction, the

question is what we can deduce about changes in metabolite concentration, given the changes
in flux rate and enzyme activity. The prediction will be based on simple and evident rules.
Looking at one reaction j, three cases can be distinguished:

• ∆Ej = ∆vj ⇒ no inference possible,

• ∆Ej < ∆vj ⇒ either some substrate must have increased its concentration or, if j is
reversible, some product decreased its concentration

• ∆Ej > ∆vj ⇒ either some substrate must have decreased its concentration or, if j is
reversible, some product increased its concentration

Such an approach was applied before to describe qualitatively, how a single gene perturbation
can propagate regulatory changes in a GRN [Veber et al., 2008].

The conditions given by the second and third case can be formulated as linear constraints
on integer variables ∆ci ∈ {−1,0,1}. These variables represent the possible changes of the
concentrations, i.e., ∆ci = sign(ck+1 − cki ), where cki is the concentration of metabolite i in
phase k for i = 1, . . . ,m. The set of reactions j where ∆Ej < ∆vj will be denoted J<. In the
index set J> we collect all reactions j which either change the direction of flux, i.e., sign(vkj ) =
−sign(vk+1

j ) ≠ 0, or where ∆Ej > ∆vj . When formalising the rules above, one has to take into
account that the roles of substrates and products depend on the direction of the flux. We use
the binary sign function given by sign+(vkj ) = 1 if vkj ≥ 0 (i.e., zero counts as positive) and
otherwise, for vkj < 0, sign+(vkj ) = −1. The conditions can then be formulated by the following
constraints:

sign+(vkj ) ⋅∑
i

sign(si,j)∆ci ≤ −1, for j ∈ J<

sign+(vkj ) ⋅∑
i

sign(si,j)∆ci ≥ 1, for j ∈ J>

The constraints for j ∈ J< (j ∈ J>) are slightly stronger than the condition formulated in case
two (three) above. The constraint for j ∈ J< states that the number of substrates that increased
and products that decreased their concentration is strictly larger than the number of substrates
that decreased and products that increased their concentration. While the implication of one
single condition is not likely to restrict the possible concentration changes ∆c significantly, the
interplay of all constraints is likely to impose significant restrictions, see e.g. Fig. 9.5.
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m3

m1

m2

k
j

Figure 9.5: Example network to illustrate the deduction of changes in metabolite concentrations. The
positive directions of the reactions are from left to right. In a transition between two metabolic phases,
we suppose that no flux rate inverted its sign and that all fluxes go in the positive direction. Furthermore
assume that ∆Ej > ∆vj and ∆Ek > ∆vk. From ∆Ej > ∆vj we can conclude then that either m1

decreases its concentration or m2 increases. Since also ∆Ek > ∆vk, we deduce that m2 increased its
concentration.

9.4.2 Implications on feedback

The goal of this analysis of possible concentration changes is to make deductions about the
feedback to the GRN, which is determined by the concentration of certain regulatory metabo-
lites. The constraints above define a space Hk ⊂ {−1,0,1}m of feasible concentration changes
in the transition from phase k to phase k + 1. To infer predictions about the regulatory feed-
back, the space Hk has to be analysed. If i is a metabolite with regulatory impact in the GRN,
then we want to know if the constraints restrict ∆ci to a subset of {−1,0,1} or not. In case
∆ci = 1 is enforced, we can conclude that the regulatory feedback of metabolite i is increasing
in the transition from phase k to phase k + 1. Similarly, the contrary effect can be concluded
if ∆ci = −1. In case ∆ci ≥ 0, we can at least exclude a decrease in the regulatory effect of
metabolite i and similar an increase can be excluded if ∆ci ≤ 0. In practice, the possible ranges
of ∆ci for i = 1, . . . ,m can easily be determined by solving integer linear programming (ILP)
problems or with the help of Answer Set Programming [Lifschitz, 2002, Gebser et al., 2007].

9.5 Discussion

This last chapter gave an outlook on some approaches that can serve for modelling the reg-
ulatory feedback from the metabolic network to the gene regulatory network (GRN). Like in
the previous chapters, the main interest here is on constraint-based methods. Regarding the
approach of modelling the transcriptional regulation of metabolism, presented in Chap. 3, the
last section here is of most interest, because it describes a possibility to fill the gap of feedback
regulation within the constraint-based framework and is designed for application to sequences
of flux modes. The approaches discussed in the Sec. 9.3 give a static description of interactions
between genes, which are mediated by the metabolic network. This is useful if the focus of
interest is on the gene regulation.

In contrast to the regulation of reaction rates by metabolic genes, which can be naturally
translated into the constraint-based framework, the question of concentration(-changes) leads
to quite intricate computational procedures (in [Baldazzi et al., 2010]) or to uncertain assump-
tions (in rFBA [Covert et al., 2001] and the approach presented here in Sec. 9.3). It is rather
difficult to make sure that an appropriate description of the biological system under consider-
ation is preserved. This is an essential weak point of constraint-based modelling compared to
differential equations.
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