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APV (2R)-amino-5-phosphonovaleric acid, a selective NMDA receptor an-
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CGP-55845A [(2S)-3-[[(1S)-1-(3,4-dichlorophenyl)ethyl]amino]-2-hydroxypropyl]
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LIF leaky integrate-and-�re
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rSIP real SIP: SIP determined by shortening the stimulus until no spike
appeared.

SEM Standard error of mean

SIP spike initiation point, the point of no return within the cell's voltage
trace. If the signal exceeds this point a spike is unavoidable.

U Voltage, here the membrane voltage

U̇ �rst time derivative of the voltage



Chapter 1

Introduction

Concerning the brain's information processing capabilities, neurons are the
central elements of brain function. They communicate via action potentials
(APs, also called spikes) sent to each other along the axons and transmitted
through synapses.

Despite the fact that more and more detailed knowledge erode many
neurobiological dogmata it seems still generally correct to stick to the views
that dendrite and soma are the input and processing regions for incoming
signals, that the action potentials are generated from the membrane potential
�uctuations somewhere around the axon hillock, that spikes are the binary
elements of the neural language, and that they are transmitted along the
axon.

Looking at the spikes as the key element of neural language, and focusing
at the widely recorded intracellular membrane potential, this work will focus
on the central question: what are the voltage conditions within a neural
soma that elicit a spike? It is generally agreed that spikes are generated by
a voltage threshold within the neuron, i.e. there is one �xed threshold level
the exceedance of which elicits a spike. However, it is also long known that
the voltage threshold may vary in central neurons (e.g. see [44, 9, 5] and also
[36]) as well as in distant elements such as the neuromuscular junction (e.g.
see [38]).

When looking at the spike generator from the viewpoint of dynamical
systems mathematics, the variable U for the voltage would thus be its state
variable, and the associated state space would then be one-dimensional. But
the fact that the threshold varies within the neuron immediately indicates
that the state space is too low-dimensional and demands the introduction of
further state variables.

6



CHAPTER 1. INTRODUCTION 7

1.1 Approach

The threshold concept of spike initiation has �rst been thoroughly described
by the work of Bernstein in 1871 and 1902 ([6, 7]), but has been around for
quite some time before (see [30] for a short overview). It has of course proven
to be both simple and useful. However, short after Bernsteins work Lucas
([30]) relativised the threshold concept by reporting its variability. Since then
it has often been reported qualitatively that a neuron, although �ring at its
(voltage) threshold, may be driven far above this threshold by su�ciently
shallow depolarizing ramps without eliciting a spike. It has also been shown
that the voltage threshold depends on stimulus form (e.g. see [5]). The
connecting feature between these �ndings is the slope of the internal voltage
changes, i.e. the �rst time derivative, dU

dt
or U̇ , of the voltage. Bryant and

Segundo proposed 1976 [10] that the stimulus slope is a relevant parameter
for spike initiation, however this did not result in an extension of the neural
state space. These considerations lead us to the idea to investigate U̇ as a
possible second state variable for the neural spike generator.

We will address this hypothesis by stimulating cells in vitro and in silico
with current ramps of di�erent slope. However, with this approach we will
not be able to directly control the membrane potential as active processes
and nonlinear elements in the membrane will a�ect the e�ective slope of
the membrane potential change. Using a voltage clamp setup, one could
control the voltage slope, but this would both eliminate the e�ects of natural
active/nonlinear processes as well as possibly impede precise locating the
spike start in its original form.

The soma is the most likely area to hit with a recording electrode, es-
pecially in a �blind� setup as will be used here. A central assumption now
is that the spike generator is located inside the range of a su�ciently good
space clamp with the soma. There are papers showing that the point of spike
initiation varies in one cell (e.g see [34]), or that it lies quite far down in the
axon (e.g. see [46]). In these cases one would have to doubt the quality of the
space clamp. However, there are no means by which this could be ruled out
with this experimental design. We do see our approach to be nevertheless
useful as it aims at developing a pragmatic and phenomenological tool for
data analysis of intracellular data.

After recording the cell's reaction to the stimulus we will use a novel
algorithm to precisely detect the �point of no return� in spike initiation, the
spike initiation point (SIP) on the voltage trace, thus being able to determine
both U as well as U̇ at this exact point. With these data at hand, we can
then analyze the neural spike generator within its new two-dimensional state
space projection, checking the validity of U̇ as a second state variable.
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For this task we will have to solve two central problems:

1. In order to determine the precise point at which the spike emerges from
the pre-spike dynamic we will have to focus on this exact region. In
order to investigate U and U̇ there we will have to invent an algo-
rithm that is capable of determining the SIP for each spike with high
resolution and precision. With these SIPs at hand we will be able to
determine both U and U̇ for each SIP, thus allowing the second analytic
step.

2. We will then run experiments on cells and models. In order to verify
the concept of a two-dimensional state space we will simulate them
with ramps of di�erent slopes, thus inducing various voltage slopes at
the points of spike initiation. After detecting the SIPs of these spikes
we can then analyze the relevance of U̇ as a second state variable.

1.2 Concepts

1.2.1 2-Dimensional State Space

With the intention to extend the state space to two dimensions, we will have
to do all further analysis within this new state space. This new way of looking
at a spike has been introduced in former work ([18]) and is currently more
and more used to look at spike properties. It is a combination of the two
state variables U and U̇ (see �gure 1.1).

This view also shows another interesting fact. Here we are able to distin-
guish two di�erent types of system dynamics:

1. in the left part of the state space we �nd the small circular wiggles of
passive sub-threshold dynamics due to some synaptic input or noise

2. in the right part we see the active spike dynamics which reminds of a
big circle

These two types of dynamics are clearly segregated and show very di�erent
properties. This gives rise to the hope that we could somehow be able to
distinguish both types of dynamics.

1.2.2 The Spike Initiation Point (SIP)

The SIP will be exactly the point at which the wiggling pre-spike dynamic
switches to the circular spike dynamic. It can thus be de�ned by the following
features:
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A B

C D

Figure 1.1: Construction of a spike in the 2-dimensional state space.
Each sub picture A, B, C, D consists of an U̇ against time plot (left), an U
against time plot (bottom), and the state space as a combination of those
two (U̇ against U , big plot). Note that there is no time axis in the state
space plot, here the time runs along the trajectory. The gray curve shows
the complete signal, whereas the black curve shows 4 di�erent time steps
during construction of the state space trajectory. The wiggle before the
spike resembles the pre-spike sub-threshold membrane potential �uctuations.
The sub pictures show 4 central elements of the spike. A: U̇ maximum (i.e.
steepest part of voltage spike upstroke), B: U maximum at U̇ = 0 (voltage
maximum), C: U̇ minimum (steepest part of voltage spike downstroke), and
�nally D: the complete spike.
All �gures shown are schematic drawings.
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� It is the point of no return: once crossed, the system will unavoidably
run into a spike, even if the stimulus is switched o� exactly at the SIP.

� It is the point at which the trajectory changes its typical pre-spike
behavior (small circles), gains speed and abruptly runs into the big
spike circle

We will not be able to investigate the �rst feature in real cells as this would
mean to switch o� the stimulus abruptly at the SIP. This would induce
strong artifacts, distorting the voltage trace and thus making the delicate SIP
analysis impossible. However, we will be able to run this kind of experiments
with models.

1.2.3 The Threshold Separatrix

In the analysis of dynamical systems situations are often similar to the prob-
lem we encounter here. Within a given state space there may be certain
attractors or repellers, in�uencing the course of the trajectory in dependence
of its starting condition. Between two given attractors there is a discrete
borderline: If the system starts on one side of this border, it will unavoid-
ably run into the one attractor, and it will run into the other one if started
on the other side. Such a line is called a separatrix.

There is only one simple attractor within our system: the resting poten-
tial. If the system is distorted by some subthreshold value it will unavoidably
return to the resting potential. The spike is not a real second attractor be-
cause the system will - after running through a spike - return to the resting
potential instead of staying in the spike. However, focusing on the point of
spike initiation it is justi�able to imagine the spike dynamic - namely the Na
equilibrium potential - to be a second attractor. Doing so, it seems reason-
able and useful to adopt the concept of a separatrix for the spike generator
as a possible threshold de�nition within the 2D state space.

Because the SIPs are de�ned as the irreversible transition points to the
spike dynamic, this concept would mean that the separatrix is the curve
de�ned by all SIPs of the cell. It will thus be a hyperplane within the state
space. In order to determine it, it is necessary to precisely de�ne the SIP
within each spike trajectory.

4-Aminopyridine is long known to be a classical inhibitor especially for
the A-type potassium channels. The currents mediated by these channels
are transient potassium currents activating at -50 mV. As they in�uence the
�ring threshold (e.g. see [20, 27]), our idea was to investigate the possible role
of the A-type potassium current on the spike threshold: whether it would
shift, distort or switch separatrices.
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Figure 1.2: The SIP and separatrix concepts.
Both �gures show schematic drawings of spikes in the U − U̇ state space.
Left: The SIP (�point of spike initiation�) marks the unavoidable transition
into the spike dynamic. In the state space plot the classic voltage threshold
would be resembled by the blue dashed line: all SIPs would lie vertically
aligned at the same voltage value. In case of a U̇ threshold it would be
a vertical line (magenta), with all spikes starting at the same slope but at
di�erent voltages. Right: Blue dots denote SIPs of the spikes displayed. The
separatrix (orange) is then the line formed by connecting all SIPs of one cell.
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1.3 Questions to the System

Based on these considerations, we will try to answer these questions:

� How can we precisely determine the SIP for a spike?

� Is U̇ a suitable second threshold parameter?

� Do cells and models exhibit separatrices?

� Is a 2-D state space su�cient?

� How do separatrices look like?

� Do model separatrices di�er from biological ones?

� Does a block of the A-type potassium channels a�ect the separa-
trices?



Chapter 2

A new Algorithm for Precise

Detection of the Point of Spike

Initiation

2.1 Materials and Methods

The analysis procedures described here were performed on voltage data of
action potentials, their time derivative as well as the appropriate stimulus
signals. All signals were sampled with 35 kHz. They were recorded in vivo

and simulated in silico according to the methods described in section 3.1.
Please refer to that section for details on materials, recording, modeling or
the like.

2.1.1 Finding the SIP

As has been stated above (see 1.2.1), the SIP de�nes the transition from
the passive pre-spike (i.e. sub-threshold) dynamic to the active (i.e. super-
threshold) spike dynamic. The algorithm presented here will make use of the
distinct features of the two types of dynamic in the U -U̇ -plane.

To �nd the transition point, we will try to estimate it from within the
pre-spike regime as well as from within the spike regime (see �g. 2.1). Within
the pre-spike dynamic, we take a 2.8 ms (100 data points at 35 kHz) long data
window which is near the spike, but still clearly inside the passive regime.
This is assured by de�ning a �xed distance of 0.6 ms (20 data points at
35 kHz) from the spike's voltage maximum which is easy to detect. We
calculate a linear regression from these data, thus projecting its trace beyond
the SIP. This is justi�able as the pre-spike dynamics is slow in relation to the

13
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Algorithm 2.1 Algorithm for the SIP �nder
START

# finding the SIPs from a voltage trace

Find spike maxima

Convert voltage data to 2-D U-dU data

Define data window relative to max(U) directly before, but clearly not inside spike

Determine suitable extrapolation function through these data

Define data window left of max(dU) spanning about 1/8 of the spike circle

Determine linear regression function through these data

For (each spike max)

determine intersection between linear regression functions

While (SIP not found)

move spike window one data point backward

determine actual intersection between linear regression functions

If (actual intersection is right of last intersection)

last intersection = actual intersection

Else

identify data point nearest to last intersection point

SIP = identified nearest data point

Endif

Endwhile

Append SIP to SIP-List

Endfor

Return SIP-List

STOP

short data window as well as in comparison to the spike dynamic, especially
for the simple ramp stimuli used in this study.

Within the spike regime, we start at max(U̇) and de�ne a similar window
left from there with a length of 0.14 ms (4 data points at 35 kHz). We calcu-
late the linear regression from this window as well and use it as a backward
estimate for the spike dynamic. As the spike trace is nearly linear at spike
start, this turns out to be a suitable assumption1. As an estimate for the
SIP, we then calculate the intersection point of both regression lines which
will lie far left at this �rst step. In each subsequent iteration, the in-spike re-
gression window is shifted left (i.e. backward in time) one data point at each
step while the window size is kept constant. As a consequence, the in-spike
regression line will become steeper and steeper, and the intersection point
will shift right on the pre-spike regression line with each iteration. With the
in-spike data window moving backward in time, it will eventually enter the
pre-spike regime, thus resulting in a shallower regression line and thus in the
intersection point shifting left again. The algorithm stops here, returning the
rightmost intersection point as the best estimate for the SIP. This estimate
is then mapped to the real data by choosing the data point with the smallest
euclidean distance to the SIP estimate.

1More sophisticated �ts have also been tested, but they turned out to be too prone to
slight variations in spike onset dynamics.
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Figure 2.1: SIP Finder: �rst snapshot.
This �gure illustrates an early stage of the SIP �nder process (see �gures 2.2
and 2.3 for subsequent snapshots). Within all 3 �gures the left plot displays
the spike onset in the state space, with the dense dots resembling the passive
pre-spike dynamics followed by the start of the (active) spike trajectory.
The right plot in each �gure shows a magni�ed view of the transition point.
The gray points are the data clearly within the pre-spike dynamic which
are used to calculate the linear pre-spike regression (blue line, blue dots are
the calculated supporting points). The magenta-colored points are clearly
within the spike dynamic, their linear regression is the green line (green dots
are the calculated supporting points). The red dot is the current intersection
of both regression lines, the yellow dots resemble the previous intersection
points. The red circle denotes the previous intersection point relative to the
current one.
U [mV] is on horizontal axis, U̇ [mV/ms] at vertical axis.
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Figure 2.2: SIP Finder: second snapshot.
This �gure shows the next step after �gure 2.1. The in-spike regression
window has been shifted backward in time by one data point. The resulting
green regression line intersects with the blue pre-spike line more right than
before (see red dot). The previous intersection point (red dot in left �gure2.1)
is now yellow, marked with a red circle. With each step the intersection point
shifts more and more right on the blue pre-spike regression line. See �gure
2.1 for �gure legend.
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Figure 2.3: SIP Finder: �nal snapshot.
This �gure illustrates the �nal stage of the SIP �nder sequence. The right
�gure is the last step in the process: now the left boundary of the in-spike
regression window has reached the pre spike dynamic, resulting in a shallower
green regression line. This causes the regression intersection to be more left
on the blue regression line (compare red dot with red circle denoting the
last intersection point. This causes the process to stop, and the rightmost
intersection point is taken to be the �rst estimate for the SIP. See �gure 2.1
for �gure legend.
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2.1.2 Checking the SIP �nder

In order to verify the precise function of the SIP �nder we need an alternative
way to determine the transition point from pre-spike to spike dynamic. As
this point is de�ned as the point-of-no-return we can �nd it by making the
stimulus ramp shorter and shorter until no spike is elicited any more. This
would thus mean to switch o� the stimulus exactly at the SIP. Despite all
e�orts for a clean adjustment of electrode and recording parameters artifacts
in the recorded voltage trace (due to the sharp edge at stimulus switch-o�)
could not be avoided. As the delicate analysis of the SIPs would have been
thoroughly a�ected by these artifacts this procedure was carried out solely
on models.

In this approach the SIP is searched for using the binary search algorithm.
The iterative procedure starts with a ramp stimulus of an initial length L0.
In the next steps the ramp is either elongated (if the last iteration did not
elicit a spike) to Ln+1 = Ln + Ln

2
or shortened (if the last iteration did elicit

a spike) to Ln+1 = Ln − Ln

2
for iteration n with n = 0 at the initial step.

This is repeated until a temporal resolution of ∆t 5 0.001 ms is reached.
These real SIPs (rSIPs) can then be compared to the �nder's SIPs (fSIPs)

by calculating the temporal di�erence between both points. Using the sep-
aratrix concept presented in chapter 3 we can also analyze the temporal
distance between complete separatrices.

2.2 Results

2.2.1 SIP Finder

For all natural spikes analyzed we can precisely and robustly determine the
phenomenological SIP with the algorithm described here. �Precisely� means
that the fSIPs - the only ones available for natural spikes - are both plausible
in U and U̇ as well as very close to the pre-spike subthreshold dynamic (see
�g. 2.4). �Robustly� means that the SIP �nder is able to �nd the SIP in all
cases of healthy spikes.

With the stimulus shortening procedure using the simulated models we
have an alternative tool at hand (see 2.1.2) to determine the real SIPs. Com-
paring these with the found SIPs, we encounter large di�erences between
rSIPs and fSIPs (up to 1.3 ms) with most Hodgkin-Huxley type models used
here. This means that reaching the rSIP does induce the irreversible dynamic
that will lead to a spike, but obviously in the beginning this dynamic is much
too weak to result in any detectable e�ects in the membrane voltage.
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Figure 2.4: Found SIPs are plausible.
SIP location is plausible in U (left plot), U̇ as well as in the U/U̇ state
space (right plot). Colors code from red via orange, yellow, green to blue
for steepness of stimulation ramp: red means shallow ramps, blue are steep
ramps. Black dots indicate position of detected SIPs.
Left plot shows voltage [mV] against time [ms], spikes are aligned with their
voltage maximum at t=0. Same group of spikes is shown in right plot in state
space withU [mV] on the horizontal axis and U̇ [mV/ms] on the vertical axis.
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Figure 2.5: Di�erences of rSIPs to fSIPs in models.
This Plot shows the Wang/Buzsáki variation of the Hodgkin/Huxley type
model, answering to ramp stimulation. Colors code from red via orange,
yellow, green to blue for steepness of stimulation ramp: red means shallow
ramps, blue are steep ramps. Black dots indicate position of detected SIPs:
while the right-hand cloud of SIPs indicate the fSIPs in both plots, the left-
hand cloud in the right plot as well as correspondingly the left-hand stripes
of dots in the left plot show the rSIPs.
Left plot shows voltage [mV] over time [ms], spikes are aligned with their
voltage maximum at t=0. Same group of spikes is shown in right plot in
state space. U [mV] is on horizontal axis, U̇ [mV/ms] at vertical axis.
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Figure 2.6: Spike dynamics in neurons and models.
Left: Trajectories of the original Hodgkin-Huxley model. Spike onset is
very shallow. Middle: Trajectories of the modi�ed Awiszus model. Note
that spike onset dynamic is much faster here. Right: Trajectories of a real
neuron. Spikes are still faster at spike onset, the trajectories emerge nearly
vertical from the pre-spike dynamic.
See �gure 2.5 for the e�ects of kinkiness on real and found SIPs.

Luckily, we see an interesting e�ect among the models. Contrary to the
other Hodgkin-Huxley models tested, the modi�ed Awiszus model does detect
the fSIPs much close to the rSIPs (see �g. 3.10). This model phenomenolog-
ically di�ers from the other ones in so far as its spike dynamic shows a much
more abrupt onset.

Close inspection of the trajectories of models and neurons reveal signi�-
cant di�erences concerning the speed of the dynamic at spike onset (see �g.
2.6). We can see that the faster the spike dynamic at spike onset, the closer
the fSIPs are to the rSIPs. As the modi�ed Awiszus model has a much faster
dynamic than the original Hodgkin-Huxley model, it allows the detection of
the fSIPs much closer to the rSIPs.

Comparing the trajectories of a real neuron to those of the models, we
see that it is still much faster at spike onset than any of the Hodgkin-Huxley
type models. This justi�es the interpretation that the fSIPs found on the
neuron's trajectories are similar to the rSIPs we cannot precisely detect.

2.2.2 Late Spike Phenomenon

During the shortening of the stimulus ramps we encountered an interesting
phenomenon in all Hodgkin-Huxley type models. When the ramp was short-
ened to determine the precise rSIP, it occurred for certain slope/duration
combinations that a spike occurred far (up to 60 ms) after the stimulus had
been switched o�.
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Figure 2.7: Late spike phenomenon.
Top left: a ramp of length 5.23438 ms and slope 758 mV/ms in the classic
Hodgkin-Huxley model induces a spike which occurs far after the ramp has
been switched o�. This illustrates the concept of a �point of no return� as
a de�nition of the SIP. Top right: a slightly shorter Ramp (5.2334 ms) does
not produce a spike but only a bump instead.
The late spike phenomenon depends on the parameter set of the respec-
tive model. The lower two �gures show a much longer time delay for the
Wang/Buzsáki variation of the Hodgkin/Huxley type model. Ramp pa-
rameters are: Length 4.29688 ms and slope 758 mV/ms (lower left), length
4.2959 ms with the same slope (lower right). All �gures: red curve shows
stimulus without scale for timing information only. Grey rectangle maps
beginning and end of stimulus to the voltage trace.
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For our search of the rSIP this phenomenon has been taken into account
by elongating the observation window after the stimulus in order not to miss
such a late spike. It does not, however, interfere with our analysis as we are
only interested at the SIP at this point, regardless of how long it takes for
the spike to occur.

2.3 Discussion

We have presented a new algorithm that allows a precise phenomenological
determination of the SIP in intracellular voltage data of neurons and cer-
tain models. It allows a new approach for the study of the spike initiation
processes.

Previously, any analysis concerning the spike threshold had to de�ne the
threshold point at each spike pragmatically somewhere as low as possible,
typically by applying a threshold line at the maximum value found in each
inter-spike interval. This is a reasonable approach when a simple voltage
threshold model is applied. If however one follows the arguments stated in
chapter 1, resulting in the view of a missing state variable, one will surely
miss certain features of the SIPs found using this method.

By applying the method presented here, one has a much more plausible
tool to �nd the SIPs with high (phenomenological) precision. This may open
new vistas for spike initiation research, spike timing issues or the like.

2.3.1 Point of Spike Initiation

It has been - and still is - a long discussion on where in the neuron the spike
is generated. Despite the classical view that the spike is initiated at the axon
hillock there have been theoretical and experimental ([16, 21, 40, 31, 32,
34, 42, 46]) approaches to answer this question, locating the spike initiation
site somewhere between the soma or even far inside the axon. Because the
electrical properties of these sites di�er, and because the electrical properties
will surely in�uence both stimulus form and cell response, the site of spike
initiation may challenge the algorithm presented here.

As the soma is the biggest part of the neuron, it is most likely that
sharp intracellular electrodes will penetrate the neuron at or at least near it,
especially as many recordings are done without detailed microscopic control.
If the spike is generated far from the axon it surely has to be questioned
whether the detailed analysis done by the SIP �nder leads to reliable SIPs.

However, the central idea behind this approach is a purely phenomenolog-
ical and pragmatical one. The somatic voltage trace is what is available for a
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signi�cant amount of intracellular recordings. Thus, our aim was to create a
tool that allows much more detailed analysis of threshold- and timing-related
questions than it was possible up to now. Despite the unresolved question
for the spike initiation site we see it justi�ed to apply the new SIP �nding
algorithm presented here to recordings with a fast and abrupt dynamic at
spike onset.

In the analysis presented here we have used a linear regression as the
forward estimate of the pre-spike domain. This is suitable in our case where
the membrane potential rises quasi linear due to the smooth stimulus ramp
and the absence of any preceding spikes. When applying this analysis to real-
world data with natural input and shorter interspike intervals, this approach
surely will have to be veri�ed. It may seem suitable to use a higher order
polynomial as a better �t to the data in those cases.

2.3.2 Speed of Spike Dynamics

Currently an exciting discussion takes place concerning the amount as to
which Hodgkin-Huxley type models are able to model relevant details of spike
initiation [36, 37, 33, 22]. Naundorf et al. [36] have reported the �nding that
Hodgkin-Huxley type models show a much slower spike onset dynamic than
real neurons as well as a high threshold variability.

Our study supports the �ndings of Naundorf et al. concerning the spike
onset speed. Fig. 2.6 illustrates the di�erence between models and neurons.
McCormick et al. counters and attributes both phenomenons to the spike
initiation site being located far inside the axon, and thus resulting in a slow
spike onset as well as a high threshold variability in the measured back-
propagating spike.

Because the project presented here is based solely on a phenomenological
search based on the simple voltage trace, we can hardly use the �ndings
presented here to bring the decision any forward. However, we can hope
to have presented a tool that may contribute to the further discussion by
allowing the precise determination of the SIPs for further analysis.

2.3.3 Late Spike Phenomenon

The late spike phenomenon is an interesting feature of the Hodgkin-Huxley
type models that - to our knowledge - has not yet been described in the
literature. It supports the view of a SIP as the �point of no return�: Once
the SIP is crossed the model's trajectory will unavoidably run into a spike.
This is exactly the behavior one would expect from a dynamical system when
a separatrix is crossed: it will run into another attractor. We can thus see
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this as another support for both the separatrix concept as well as the SIP
concept presented in chapter 3.

Although this e�ect may seem bewildering it seems to be of no relevance
for our analysis. Keeping in mind that models were noise-free and looking
at the relevant time window (less than 1 µs of stimulus length decides about
spike and no spike) it is a merely theoretical issue for dynamical systems
theory.



Chapter 3

Neurons Have a 2-Dimensional

Firing Threshold

3.1 Materials and Methods

3.1.1 Objective

In order to analyze cells for

� the existence of a threshold separatrix,

we will stimulate them with current ramps of di�erent slopes, thus resulting
in di�erent slopes in intracellular U . In order to verify the results we will
also test for

� the in�uence of an o�set on the separatrix

� its temporal stability

� dependency on the A-type potassium current

� the separatrices of Hodgkin-Huxley type models

3.1.2 Cells

3.1.2.1 Animals

In vitro experiments were carried out on acute brain slices of the intact
hippocampus region (containing CA1, CA3, DG, Subiculum) of adult (> 7
weeks) wistar rats of both genders. The animals were bred at the animal hus-
bandry of the Paul Ehrlich Center of Experimental Medicine at the Charité,
Berlin, Germany. They were kept at an 12 hour light/dark cycle and had ad

libitum access to food and water.

26
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3.1.2.2 Slice Preparation

Rats were anesthetized in a big closable glass container (diameter about
25 cm, height 30 cm) using an ether atmosphere. The bottom of this con-
tainer was covered with some layers of cellulose which were soaked with about
10 ml of ether. Rats were placed inside the container, and the lid was closed.
When the overall body movements had seized and there was no more reac-
tion to tilting the glass container, but the rat still showed clear respiratory
movements, it was quickly decapitated using a rodent guillotine (in-house
development of the Paul Ehrlich Center). The shading of the blood was used
to verify su�cient oxygenation.

The next actions up to the cooling of the hemispheres in the vibratome
chamber were carried out as fast as possible in order to minimize cellular
damage due to hypoxia. First, the cranial skin was cut rostro-caudal along
the medial line with a scalpel, starting between the eyes. Skin and fur were
removed to uncover the cranium. Then the caudal part of the scull was cut
at the caudal fontanel with a strong scalpel to remove the base of the scull.
The lateral chewing muscles were cut at their cranial insertion points. With
a strong pair of scissors, the cranium was opened on both sides, cutting just
below the scull ridge. Care was taken not no damage the brain. Now the
upper scull plate could be removed. The remains of the dura were carefully
removed, the brain was then cut transversely just behind the bulbi olfactorii.
Using a little spatula, the brain was removed from the scull and placed on a
plane glass surface in its in vivo orientation.

Using a razor blade, the two hemispheres were separated by a sagittal
cut. They were then tilted such that the formerly lateral side now pointed
upward. Now the cranial cortex was removed (about 3 mm thick) on both
hemispheres, and they were �xated with this freshly cut surface on the te�on
block of a vibratome chamber using cyanoacrylate glue (UHU GmbH & Co.
KG, Bühl, Germany). Now the ventral part of the brain pointed upward,
and the cutting direction of the vibratome was latero-medial. The cham-
ber was then �lled with cool (4°C) and carbogenated (bubbled with carbo-
gen gas, i.e. 5% CO2 and 95% O2, Messer Griesheim, Frankfurt, Germany
[now Messer Group GmbH, Sulzbach, Germany]) arti�cial cerebrospinal �uid
(ACSF) such that both hemispheres were fully submerged. From decapita-
tion to here the procedure took about 3 minutes. The ACSF contained 124
mM NaCl, 1.25 mM NaH2PO4, 1.8 mM MgSO4, 1.6 mM CaCl2·2H2O, 3 mM
KCl, 26 mM NaHCO3, and 10 mM Glucose.

The brain was cut into slices of 400 µm using a vibratome (Campden In-
struments Ltd., Loughborough, UK). The correct depth of the cutting plane
was determined by visual inspection; only slices were used where both the
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CA1/CA2 as well as the CA3 region of the hippocampus were clearly visible.
Slices were trimmed, but the hippocampus' connections to the neighboring
areas were left intact. Using a spatula and a soft brush (Rotmarder, size 3,
Pelikan GmbH & Co. KG, Hannover, Germany [now Pelikan Holding AG,
Schindellegi, Switzerland]) they were transferred onto little pieces of Kodak
lens cleaning paper. These were then moved to an interface storage chamber
for storage at room temperature. The storage chamber consisted of a block of
acrylic glass with two milled-in interconnected caverns that were �lled with
ACSF. Slices were placed into one of the caverns on the �uid surface of the
ACSF, supported by a tight grid of nylon stocking fabric. The atmosphere
above the slices was moistened by carbogen gas that had bubbled through
ACSF in the second cavern. Slices were left in the chamber for at least 1
hour before starting the experiments.

Some experiments and preparations were done in cooperation with G.
Kreck.

3.1.2.3 Recording Electrodes

Recordings were made with intracellular sharp electrodes. These electrodes
were freshly made before use (no electrode was older than 1 hour) from
GB120F-10 �lament borosilicate glass capillaries (Science Products GmbH,
Hofheim, Germany), using a Flaming-Brown horizontal electrode puller (model
P-87, Sutter Instruments, Novato, USA). The electrodes used showed a resis-
tance of 50-100 MΩ. For recording, they were �lled with fresh 2 M potassium
acetate and checked for the absence of recti�cation. In later experiments, the
electrode tip was carefully cleaned from bubbles using a heating wire under
microscopic control.

3.1.2.4 The Experimental Setup

Experiments were carried out in an interface recording chamber (in-house
development by U. Heinemann, based on a design of H.L. Haas [23], built in
the Paul Ehrlich Center, Berlin, Germany) at 35°C slice temperature. This
system was built from acrylic glass and consisted of a bath of aqua bides-
tillata with a thick acrylic glass cover. The water was heated by an electric
foil heating to 37°C (heating unit and control unit developed and built in the
Paul Ehrlich Center, Berlin, Germany) and bubbled by carbogen. Two ex-
perimenting chambers were milled into the cover, with little openings in their
side through which the moistened and warmed carbogen (that had bubbled
through the water) could sweep over the slices to provide a warm, O2-rich
and moist atmosphere. Each experimenting chamber had two nozzles at
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the upper end through which carbogenated ACSF was supplied, and a sink
on the opposite side. The ACSF feeding pipes lead through the water be-
low, thus warming up the ACSF. Each experimenting chamber was equipped
with two AgCl pellets as grounding electrodes. The interface chamber was
�xated by permanent magnets on the heavy steel top of a active pneumatic
experimenting table (Science Products GmbH, Hofheim, Germany) which
isolated the setup from vibrations. The slice was illuminated by a cold light
source (Olympus, Tokyo, Japan) via �ber optics. A stereo microscope (Leica
Microsystems GmbH, Wetzlar, Germany) provided optical control of slice
quality and coarse electrode position.

Before starting the experiment, the �oor of the slice chamber was covered
with one layer of lens cleaning paper (62647-B, Kodak, Rochester, New York,
USA). For drainage, the inner chamber walls were aligned with 2 mm wide
stripes of nylon stocking fabric which also led into the chamber's sink. Little
sheets of Kodak lens cleaning paper of an appropriate layout ensured that
the reference electrode pellets were in good electrical contact to the ACSF.
The chamber was constantly �own through by carbogenated and warmed
ACSF, supplied by a peristaltic pump (Minipuls 3, Gilson Inc., Middleton,
UK) via the two nozzles at a rate of about 1.6 ml/min. For experiments,
slices were transferred into the experimenting chamber on their little sheets
of lens cleaning paper using a pair of tweezers and placed near to the ACSF
supplying nozzle. For pharmacological experiments, the ACSF hose was
removed from the standard ACSF reservoir and placed inside a second ACSF
reservoir with added drugs. It took about 3 minutes for the new solution
to reach the chamber's nozzle. Once a week, all components of the setup
that come into contact with ACSF (hoses, storage chamber, experimenting
chamber) were cleaned using a 0.3 M solution of H2O2.

3.1.2.5 Cell Search and Stimulus Parametrization

The electrode was positioned over the CA1 region where all cells were recorded.
It was then lowered until electrical contact with the tissue was established.
The bridge balance was adjusted at the ampli�er to correct for the electrode's
resistance. The capacity compensation was adjusted to correct for the elec-
trode's capacity. During cell search, the electrode was lowered in steps of
about 2 nm, using a mechanical 3D positioning device (Leica Microsystems
GmbH, Wetzlar, Germany). To clean the electrode tip as well as to make
cell penetration easier, the so-called buzz1 was used frequently. This cell

1�Buzz� means a short increase of the capacity compensation, yielding to an oscillation
of the compensation circuit. The processes leading to both an easier cell penetration as
well as cleaning the electrode tip is not known, but it is a successful standard procedure
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search procedure was done without microscopic control, i.e. �blind�. Bridge
balance and capacity compensation were permanently checked and adjusted
if necessary.

While in the extracellular space, a repetitive hyperpolarizing pulse (am-
plitude 0.1 nA, duration 100 ms) was used with bridge balance slightly out of
balance. Proximity of a cell was suspected when the apparent electrode re-
sistance showed a sudden increase or when extracellular AP appeared. After
penetration of a cell it was hyperpolarized in order to help the cell to recover
from penetration. Under permanent control of the cellular health state the
hyperpolarizing current was slowly reduced to 0. Cells were then given about
10-15 minutes time for accommodation and regeneration before starting any
stimulation.

After this pause, they were roughly checked for �ring threshold, resis-
tance, time constant and spike amplitude. If these parameters seemed healthy
(see 3.1.4.1 for healthy parameters), the cells were used for experiments.

First, the amplitudes of the depolarizing and hyperpolarizing o�set cur-
rents were identi�ed. The depolarizing o�set amplitude was chosen to be
slightly sub-threshold. The hyperpolarizing o�set was chosen to be roughly
5-10 mV below the resting potential.

Now the slopes of the stimulus currents were de�ned from the resting
potential. As the precise form of the membrane potential during a ramp
could not be controlled, the membrane potential before the stimulus and
the potential at spike initiation were used as as �xed points and a linear
estimate was made. Stimulus slopes were now chosen such that the resulting
estimated linear membrane potential slopes were roughly 0.1, 0.2, 0.4, 1.0,
2.0 mV/ms. This procedure was repeated for both o�sets potentials in order
to investigate the in�uence of the o�set on the threshold.

3.1.2.6 Stimulation

Stimulus generation and data recording was controlled by an individually
developed LabView program. It provided a graphical user interface for fast,
easy and �exible access to all necessary parameters and controls. It also
provided automatic mechanisms to assure that all relevant recording and
stimulation parameters were saved in the data �le header.

The computer-generated stimulus signals were digitized at 35 kHz in order
to ensure high temporal precision even with fast signals. They were output
via a data interface card (Type PCI MIO 16 E 4, National Instruments Corp.,
Austin, Texas, USA) and then ampli�ed to comply with the needs of the

for sharp electrode recordings.
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stimulus channel of the ampli�er (Model IR-183, Neuro Data Instruments
Corp., New York, USA), fed into it and applied to the cell through the
recording electrode. Additionally, this stimulus output of the Neuro Data
ampli�er was recorded by the computer again (via the same card) and saved
along with the cellular signal (one individual �le per stimulus). Thus, the
real stimulus is accessible at any part of the intracellular signal. Both the
stimulus and the cellular signal were also displayed on an oscilloscope for
online control.

The recorded intracellular membrane potential was fed into the Neuro
Data ampli�er via its high-resistance (about 1013 Ω) head stage pre-ampli�er,
low-pass �ltered at 3 kHz, digitized at 35 kHz via the PCI card and stored on
the computer's hard disk (Pentium III 700 MHz Processor, Windows NT).
This high sampling rate was chosen in order to be able to precisely locate
the start of the spike. As the spike start contains relatively low frequencies
as compared to the �lter's cut-o� frequency, this does not interfere with the
low-pass �ltering.

3.1.2.7 In Vitro Experiments

After identi�cation of all stimulus parameters for the individual cell the ex-
periments could be started. At �rst the cell was stimulated by a 500 ms long
positive square pulse, adjusted to an amplitude that initiated a sequence
of spikes. In data analysis later on this served as an indicator for the cell
type. Second, a sequence of 9 di�erent 200 ms long square pulses with di�er-
ent sub-threshold positive and negative amplitudes was given, thus allowing
to determine voltage/current relationship, the cell resistance and the time
constant.

For each experimental run there were 5 di�erent slopes to be tested at 3
di�erent o�sets (positive o�set, resting potential and negative o�set), i.e. 15
parameter combinations. Each parameter combination was given 10 times to
enhance reliability, and the sequence of parameter sets was pseudo-randomly
selected. There was a pause of at least 2 s between each parameter set to
avoid any aftere�ects of the previous stimulation (see �g. 3.1).

In case of stability analysis, this procedure was repeated after a pause
in order to investigate temporal stability of the results. In case of phar-
macological experiments, Drugs were added to the ACSF and perfusion was
started at least 20 min before the actual measurement since di�usion into the
slice is rather slow (see [35]). After that the procedure was repeated with the
same stimulus parameters. After a pharmacological experiment, the slice was
discarded and the chamber thoroughly washed with standard ACSF before
using a new slice.
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Figure 3.1: Scheme of a typical stimulation.
Lower trace shows the stimulus, starting (in this case) with an negative
o�set (left) of -100 pA. Upper trace shows the cell's answer. One stimulus
run had the constant length of 1 second, which consisted of a 300 ms delay
after the onset of an eventual o�set, the ramp itself, and a trailing pause
after which the o�set was switched o� (right side of �gure). Between two
stimuli there was a 2 second pause. Specifying an optional boundary allowed
to start recording before and after the stimulus, i. e. before and after the
o�set. Typical stimulus slopes used were between 1.5 and 250 nA/s. Stimulus
amplitude was 744 pA in this case.

For pharmacological experiments, the idea was to test the impact of the
A-type potassium current on the �ring threshold. In order to test this hy-
pothesis, these channels were blocked using 50 µM 4-Aminopyridine (4-AP).
Application of 4-AP with 50 µM a�ects (among others) K currents mediated
by Kv1 and Kv3 channel members and can induce seizure like events. To pre-
vent generation of epileptiform discharges synaptic transmission was blocked
using a cocktail of glutamate and GABA receptor antagonists (30 µM CNQX
(6-cyano-7-nitroquinoxaline-2,3-dione, a competitive AMPA/Kainate recep-
tor antagonist), 60 µMAPV ((2R)-amino-5-phosphonovaleric acid, a selective
NMDA receptor antagonist), 5 µM Bicucullin (a competitive GABAA antag-
onist) and 1 µM CGP-55845A ([(2S)-3-[[(1S)-1-(3,4-dichlorophenyl)ethyl]a-
mino]-2-hydroxypropyl](phenylmethyl) phosphinic acid, a GABAB antago-
nist)).

3.1.3 Models

3.1.3.1 Modi�ed Leaky Integrate-And-Fire Model

The leaky integrate-and-�re (LIF) model was introduced by Lapicque in 1907
[29]. Contrary to the models of the Hodgkin-Huxley type, the LIF model is
a simple one. It incorporates a constant capacity, a constant resistance and
resembles a low-pass �lter:
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CU̇ +
1

R
(U − U0) = I

This term computes the passive �uctuations of the membrane potential.
In order to use it as a neuron model a threshold criterion is introduced:

U = U0 if U ≥ Uθ

Typically, it is equipped with a �xed voltage threshold, and its �mem-
brane potential� is simply reset to a given value U0 when the threshold is
reached, i.e. no spike is produced. This is a problem for the questions to
be investigated here as they explicitly need to look at the voltage trace ex-
actly at the transition from the sub-threshold behavior to the spike behavior.
Especially the SIP �nding algorithm needs the spike upstroke to determine
the SIP. In order to cope for this, an arti�cial analytical spike is attached to
the model's voltage trace exactly at U(t) = Uθ (see left plot in �g. 3.2). Of
course explicit care is taken to assure that there is a smooth transition from
the model trace to the spike trace as this will be the point to be analyzed
later. To do so, we determine the slope (dU

dt
) of the voltage trace at U(t) = Uθ

and �nd the attachment point with exactly the same slope within the onset
of the arti�cial spike.

The arti�cial spike is an analytical function that has been precisely �tted
to the onset and upstroke of a real spike according to the procedure described
in [18]. It mimics the spike onset and upstroke in great detail (see right plot
in �g. 3.2). In order to adopt it to the spike features (U and U̇ amplitudes)
of the data at hand it was compressed in the time domain by factor 2. This
modi�cation was used solely to make results comparable to the cellular data.

Within this simple model we are able to prede�ne arbitrary separatrices.
We will thus be able to test the analytical algorithms used further on to
check whether they are able to reproduce these built-in separatrices.

Three di�erent threshold criteria were used for the leaky integrate-and-
�re models:

1. Type A (exponential): UΘ =

{
1000 U̇ ≤ 0

exp
(

3− 0.2U̇
)

otherwise

2. Type B (root): UΘ =

1000 U̇ ≤ 0√
20
(
U̇ + 1

)
otherwise

3. Type C (quasi linear): UΘ =

{
1000 U̇ ≤ 0

5 + 0.5U̇ otherwise
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Figure 3.2: Behavior of the modi�ed leaky integrate-and-�re model.
Left: when stimulated, the membrane potential of the model rises to the
threshold value Uθ. While the original model would now simply reset the
voltage to U0, an analytically de�ned spike is attached to the voltage trace.
It is taken care to assure that dU

dt
is exactly identical at the transition from

model trace to spike trace. As we are only interested in the spike initiation
we do not need to take care of the post-spike behavior of the model.
Right: The analytical spike that is attached to the model. The slope of the
point of attachment on the spike is chosen to be exactly the same as on the
model's voltage trace at U(t) = Uθ.
Both �gures show voltage [mV] against time [ms].
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For easier comparison with cells and the other models the calculated voltage
data of the leaky integrate-and-�re models were shifted to the mean mem-
brane potential of all measured cells before analysis.

3.1.3.2 Hodgkin-Huxley-Model

The original Hodgkin-Huxley model ([24], used in the version from [28])
resulted from measurements that Hodgkin and Huxley had carried out on the
giant axon of the squid. This and the fact that the measurements were done
at low Ca+ and at a temperature of 10°C indicate that there is a big di�erence
in model behavior compared to a mammalian neuron at body temperature.
Nevertheless, the Hodgkin-Huxley model is modeled because of its principle
importance as a reference.

The central equation of the Hodgkin-Huxley model is the current balance
equation CmdV

dt
= INa+IK+Ileak+Iinj, that is it basically depends on the sum

of all currents �owing in and out of the membrane, according to Kirchho�'s
law. There is the sodium current INa and the potassium current IK , both
resembling the currents that �ow through the corresponding ion channels, the
leak current Ileak, indicating that the membrane is not hermetically sealed,
and of course all currents injected into the cell via a stimulation electrode,
Iinj.

For better comparison with cells and the other models the calculated
voltage data of the Hodgkin-Huxley model was shifted to the mean membrane
potential of all measured cells before analysis.

3.1.3.3 Wang-Buzsáki-Model

In 1996, Wang and Buzsáki [45] introduced a Hodgkin-Huxley type model
of hippocampal interneurons. Their motivation was to investigate gamma
oscillation in a hippocampal network model, so their current balance equation
is CmdV

dt
= INa + IK + Isyn + Ileak + Iinj with the synaptic input current Isyn.

The modi�cations of the original Hodgkin-Huxley model were made in order
to phenomenologically adjust the model behavior to the behavior of real
interneurons in respect to an afterhyperpolarization and high �ring rates.
There is no need, however, to consider any synaptic input for this work, so
the model falls back to the current balance equation known from the standard
Hodgkin-Huxley model. The parametrization is, of course, di�erent.

3.1.3.4 Awiszus-Model

In 1992, Awiszus [1] presented a modi�ed Hodgkin-Huxley model. His in-
tention was to adopt it to the behavior of a mammalian neuron at body
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temperature. Basis for this modi�cation was voltage-clamp data from small
rat neurons in the supra-optic nucleus area [15, 14]. In this modi�cation, an
A-type potassium channel is added to the standard Hodgkin-Huxley model,
so that the basic equation is CmdV

dt
= INa + IK + IA + Ileak + Iinj. This family

of models will allow to test the impact of the A-type potassium current.

3.1.3.5 Reduced Awiszus-Model

In his paper [1] Awiszus reduces the model from 6 to 5 dimensions by uti-
lizing the close relationship of the variables a and h. In this 5-dimensional
model, the corresponding equations are combined into one, thus reducing the
dimensionality. All other equations are identical with the full model.

3.1.3.6 Modi�ed Awiszus-Models

With the full Awiszus model modeling the A-type potassium channel, we
have the ability to investigate the in�uence of this type of channel on the
separatrix. We have thus modi�ed the model by blocking the A-type potas-
sium current. This is done by setting the maximum conductance for the
A-type potassium channel to GA = 0mS/cm2. As this modi�cation resulted
in a permanently spiking behavior at resting potential, we adjusted the leak
current parameters to Gleak = 0.1768mS/cm2 and Eleak = −76.95mV such
that the model did not spike at rest. This model will be referred to as �NoA�.

In order to provide a usable comparison for this modi�cation we modi�ed
the full model to the same values for Gleak and Eleak.

3.1.3.7 In Silico Experiments

The models were stimulated in the same way as the biological cells. Calcu-
lations were carried out on x86 computer architecture running Linux operat-
ing systems (RedHat Version 7.1 and 7.3, Suse Version 9.0, 9.1, 9.2, Ubuntu
Version 8.9 and 9.1), using the Mathematica software package (Wolfram Re-
search, Inc.) in versions 4 and 5. Models were numerically solved using the
built-in numerical solver for di�erential equations with a maximal step size
of 0.1 s.

Preliminary tests were conducted to check the in�uence of external noise
on the separatrix. For these we recorded intracellular noise with the ex-
perimental setup and shifted its mean to 0. This noise was then used to
noise the models by simply adding it onto the smooth model results. Fur-
ther comparison between pure and noisy models revealed identical SIPs (and
thus identical separatrices), so all further analysis was done with pure (i.e.
noise-free) models.
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3.1.4 Data Analysis

3.1.4.1 Cell Quality Criteria

Cells were only used for further analysis if they met the following quality
criteria:

� spike amplitude more than 60 mV

� action potential overshooting

� membrane resistance more than 25 MΩ

� membrane time constant more than 2.5 ms

3.1.4.2 Data Postprocessing

The postprocessing procedure consisted of several self-developed Perl and
Mathematica tools for automatized data preparation, arrangement and fea-
ture extraction. The aim of this process was to prepare and arrange the
crucial data for easy, standardized and widely automatized access by the
analysis programs. The following steps were applied:

1. unzip data �le

2. read parameter header

3. �nd maximum of �rst spike during stimulus ramp

4. write relevant information into log �le

5. re-zip data �le

Using a self-developed Mathematica tool set, this extracted information was
used to extract the relevant data (spikes as well as stimulus) from the raw
data �les and save them in a binary Mathematica format for easy and stan-
dardized access for all further analysis.

3.1.4.3 Data Analysis

All data have been processed in the same way, independent of their ori-
gin (cells or models). First of all, only the �rst spike on each ramp was
used for further analysis in order to eliminate any spike aftere�ects at the
SIP. This spike was extracted from the original data �le together with the
corresponding stimulus trace. From this original voltage data the voltage
derivative was calculated using the mean of three subsequent data points:
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U̇ i = f
1000

(
Ui+1−Ui−1

2

)
with U̇ i, the derivative of the ith data value, Ui, the

voltage value of the ith data value, f , the sampling frequency, and i, the
index. With the voltage given in mV this calculation yields the derivative in
units of mV/ms. It is a simple algorithm for calculating the derivative for
evenly spaced data, and it only makes a minor error within the 3-value data
window. We also have tested more complex derivative �lters like e.g. the
Savitzky-Golay �lter class, but there was no signi�cant di�erence within the
results.

Having U and U̇ , we can now use the algorithm described in 2 to precisely
determine the SIPs of the spikes. All 10 SIPs generated with the same
parameter combination were grouped together, and the center of gravity
(2-dimensional mean) of each of these clouds was calculated together with
the 2-dimensional standard deviation and standard error of mean (SEM).
Models of course were calculated only once per parameter combination as
they are completely deterministic. We �tted a function of the form a0 +
a1x + a2 log(x) with an ∈ R to each state variable separately by minimizing
the 2-dimensional distance of the function to the means. These �tted 2-
dimensional function now is the separatrix of the cell.

3.2 Results

3.2.1 Cells

3.2.1.1 Separatrices

We have been able to record from 22 cells that met the quality criteria (see
3.1.4.1). Among these cells were 10 regular spiking, 5 oscillatory, and 6 fast
spiking. One cell could not be clearly allocated to a special cell type by the
recorded data.

The cells showed very di�erent types of separatrices. They can be grouped
into 4 groups:

� vertical (n=6): The vertical separatrix is the type of threshold one
would expect from a cell with a pure voltage threshold. It varies in the
U̇ domain, but all spikes are elicited at the same voltage U .

� horizontal (n=4): This is the opposite of the vertical separatrix. All
spikes start at the same U̇ value, so e�ectively we have a U̇ threshold.
As a consequence, the SIPs span up to 20 mV, thus again strongly
questioning the 1-dimensional threshold concept.
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Figure 3.3: The 4 types of separatrices.
The cellular separatrices can be grouped into 4 types: horizontal (n=4),
vertical (n=6), slash-type (n=7) and backslash-type (n=5). Note that the
non-vertical separatrices span ranges of more than 15 mV, sometimes up to
30 mV (see next �gure). The colored dots represent the means of all stimulus
repetitions with the same parameters, the curves were �tted to these points.
The SEM crosshairs have the corresponding color, they were projected onto
the separatrix for better visibility. The color continuum codes for the slope
of the stimulus ramp: from red (shallow ramps) via orange and green to blue
(steep ramps). Note that same colors on di�erent cells do not necessarily
mean same slopes as ramps were individually adjusted and cell parameters
were di�erent for each cell.
Top left: backslash type separatrix, top right: horizontal type separatrix
(pure U̇ threshold), bottom left: slash type separatrix, bottom right: vertical
type separatrix (pure U threshold).
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Figure 3.4: All measured separatrices.
This plot shows the separatrices of natural cells, grouped by their type:
backslash-type (n=5, top left), horizontal (n=4, top right), slash-type (n=7,
bottom left), vertical (n=6, bottom right). Note that sometimes the classi�-
cation of a separatrix is di�cult.
Top left: backslash type, top right: horizontal type (pure U̇ threshold), bot-
tom left: slash type, bottom right: vertical type (pure U threshold).
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� backslash (n=5): Backslash-type separatrices show a behavior that
has qualitatively been reported from cells before: shallow ramps have
a higher U threshold value than steep ramps.

� slash (n=7): In slash-type neurons shallow ramps elicit spikes at lower
voltages than steep ramps: this is somewhat contrary to the backslash
type.

Note that this classi�cation is merely conceptual. Neurons seem to show a
continuum of separatrices, i.e. they can be any angle from horizontal via
backslash-type and vertical to slash-type. Despite our e�orts to �nd some
correlation between separatrix type and some other cell parameters we did
not succeed. We could neither establish a link between the separatrix form
and the cell type.

3.2.1.2 O�set

The neuron's separatrices show no signi�cant dependence on o�set (see �g.
3.5). Thus, for the analysis of the cellular data we ignored the o�set param-
eter and grouped data for each cell using the slope of the stimulus ramp.
Control evaluations with the three o�set data sets kept distinct showed no
signi�cant di�erence.

3.2.1.3 Stability and Sensitivity

Separatrices showed stability over time. In 5 cells we were able to repeat
a complete stimulation set at least once. Comparison of the separatrices of
healthy and stable2 cells showed no di�erence (see �g 3.6, A and B). As long
as the cell's relevant parameters are the same for each run, the separatrices
are congruent or at least in very close proximity.

However, there are stability experiments where the separatrix is clearly
shifted from run to run (see �g. 3.6, C). Searching for the cause of this shifts
we �nd that some of the monitored cell parameters have slightly changed:
membrane time constant, membrane resistance, spike amplitude. Being un-
able to prove any causal connection between these two e�ects due to insuf-
�cient data this phenomenon shall simply be stated here (see section 3.2.1.4
for similar �ndings).

2A cell is considered stable if their relevant state parameters (spike amplitude, resting
potential, membrane time constant etc.) were identical to the initial values in all successive
trials.
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Figure 3.5: Neural separatrices are insensitive to o�set.
These three separatrices from the same cell were generated from the resting
potential, from a -10 mV hyperpolarized state, and from a +5 mV depolarized
membrane potential. They are congruent.
Crosses show the SEM of the means, projected onto the separatrices, and
dots show the means of the SIPs elicited by the same stimulus slope. Colors
of crosses and dots code for the slope of the stimulus from shallow (red) to
steep (blue). Axes are U̇ [mV/ms] against U [mV].
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Figure 3.6: Separatrix temporal stability and sensitivity.
Left plot (A): This neuron initially displays the red separatrix (1). After
30 min the same stimulation set is repeated, resulting in the blue separatrix
(2). Both separatrices show an identical form and are nearly congruent.
However, the small change may be due to an increase in membrane resistance
(+2 MΩ) as well as an decrease in spike amplitude (-3 mV). Middle plot
(B): This neuron was tested with two runs 10 min apart: both separatrices
(red (1): �rst, blue (2): second) are perfectly congruent. All cell parameters
recorded here are identical between the two runs. Right plot (C): this neuron
showed the red separatrix (1) in the �rst run and was tested again after 20
(green, 2), 40 (turquoise, 3) and 60 (blue, 4) min, showing clear di�erences.
Looking at the other relevant cell parameters, we see a continuous reduction
in membrane resistance (-2 / -1 / -1 MΩ) as well as slight changes in spike
amplitude (-1 / -1 / ±0 mV).
Crosshairs show the SEM of the means, projected onto the separatrices,
the means of the SIPs are omitted in order to enhance visibility. Colors of
crosshairs code for the slope of the stimulus from shallow (red) to steep (blue).
Colors of separatrices in all 3 plots are solely for better distinguishability and
do not code for any parameter. Axes show U̇ [mV/ms] against U [mV].



CHAPTER 3. NEURONS HAVE A 2D FIRING THRESHOLD 44

3.2.1.4 Pharmacology

With 5 cells we were able to conduct pharmacological experiments. As a
result we cannot verify any e�ect of a pharmacological block of the A-type
potassium channels on the separatrix. However, another e�ect was visible
(and possibly shadowed any 4-AP e�ect) within these experiments: the sep-
aratrices react very sensitive already to the application of the synaptic block
cocktail alone. (see �g. 3.7).

As the hippocampal collaterals are intact it is necessary to provide a
synaptic block previous to the A-type channel block in order to avoid seizure-
like events due to reduced potassium conductance. This block (see 3.1.2.7)
already shifted the separatrix signi�cantly.

From the 5 cells treated pharmacologically 3 had a rather vertical initial
separatrix (see �g. 3.7 A and B for examples), and the remaining two had a
mainly horizontal one (one displayed in �g. 3.7 C). All vertical separatrices
showed a right-shift of about 3-5 mV towards higher voltage, both after
adding the block cocktail alone as well as after adding block+4-AP. The
horizontal separatrices exhibit a less obvious right-shift, and they additionally
showed a downshift of up to 3 mV/ms. With all cells tested the blue SIPs,
induced by steep ramps, shift more clearly than the red ones (shallow ramps).
Washing out the pharmacological substances was not able to restore the
separatrix to its initial position.

3.2.2 Models

3.2.2.1 Correctness of Separatrix Construction

With the modi�ed leaky integrate-and-�re models having been constructed
with pre-de�ned separatrices, we have the chance to test the separatrix con-
struction algorithm. It turned out that it precisely reproduced the prede�ned
separatrices. This con�rms our approach to use the presented algorithm to
reproduce the (phenomenological) separatrix.

3.2.2.2 Separatrices

The Hodgkin-Huxley type models showed backslash-type separatrices (see �g.
3.10 to 3.9). They were di�erent between models in detailed form (curvature)
or steepness, but none of them was found to show a horizontal or slash-type
separatrix. The Wang-Buzsáki model was the only one showing a nearly
vertical separatrix.

Some models (original Hodgkin-Huxley, Wang-Buzsáki) showed clear os-
cillations on ramp stimulation which one could imagine to distort precise
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Figure 3.7: The separatrix is a sensible indicator of the cell's state.
Left plot: The separatrix seems to be a very sensible indicator of the cell's
physiological state. This fast spiking neuron initially showed the red separa-
trix without any pharmacology. Second, the green separatrix was measured
30 min after application of the synaptic block cocktail without 4-AP. This
already shifted the separatrix 3 mV to the left. Third, the additional ap-
plication of 4-AP did not change it from its shifted state. Additionally, the
following cell parameters changed between runs: membrane resistance +5 /
+1 MΩ, spike amplitude -4 / ±0 mV. Middle plot: A regular spiking neuron.
Red: The initial separatrix. Green: After 20 min under block+4-AP. Blue:
After 50 min under block+4-AP. Additionally, the following cell parameters
changed between runs: membrane time constant -1 / -2 ms, membrane re-
sistance -4 / -12 MΩ, spike amplitude +4 / ±0 mV. C: Fast spiking neuron
with its initial red separatrix, the green after 35 min under block+4-AP, the
turquoise after 70 min under block+4-AP, the blue after 35 min wash. Ad-
ditionally, the following cell parameters changed between runs: membrane
time constant -2 / ±0 / -2 ms, membrane resistance +1 / +1 / +4 MΩ, spike
amplitude ±0 / +1 / -11 mV.
Crosshairs show the SEM of the means, projected onto the separatrices, the
means of the SIPs are omitted for better visibility. Crosshairs of left and
right plots have been omitted for the same reason. Colors of crosshairs code
for the slope of the stimulus from shallow (red) to steep (blue). Colors of
separatrices in all 3 plots are solely for better distinguishability and do not
code for any parameter. Axes show U̇ [mV/ms] against U [mV].
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Figure 3.8: Algorithm can reproduce real separatrices.
Real vs. reconstructed separatrices of the 3 di�erent prede�ned separatrix
types in the LIF models (see 3.1.3.1). Left: type A, middle: type B, right:
type C. The small deviations of the reconstructed separatrices are due to
the limited temporal resolution because of the sampled model signal as well
as to a systematic e�ect of the SIP �nder (see 2). The leftmost separatrix
is the real separatrix, while the found one is slightly more right. However,
they are near enough to show that the algorithm presented here is able to
phenomenologically reproduce a built-in separatrix.

detection of the SIPs and thus the separatrices. However, as the state space
is spanned by U and U̇ , any distortion of the voltage trace before the SIP
will simply shift the SIP along the separatrix without altering its form.

3.2.2.3 Real vs. Found Separatrices

Using the models, we are able to determine the real SIPs (and thus the
real separatrices) via a second method (see chapter 2). Depending on the
abruptness of the spike onset we see a signi�cant divergence between real
and found separatrices. Please refer to 2.1.1 for the results concerning real
vs. found SIPs.

3.2.2.4 O�set

The separatrices of the modi�ed Leaky Integrate-and-Fire models are - by
de�nition - independent of the o�set. Of course di�erent o�sets lead to di�er-
ent SIPs, especially because identical stimulus slopes lead to di�erent voltage
slopes at the SIPs. However, as the prede�ned threshold is independent of
any other parameters but U and U̇ , these e�ects merely shift the SIPs along
the separatrix (see the SEM ellipses elongated along the separatrix in �g.
3.10).
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Figure 3.9: O�set dependence in LIF models.
The separatrices of the leaky integrate-and-�re models are per de�nitionem
independent of the o�set. This Figure shows the real separatrix of the type
A model (see 3.1.3.1), with all o�sets grouped together. Shifts occur at the
steeper parts of the separatrix, but the orientation of the standard deviation
ellipses show that they follow the separatrix itself, thus retaining its form.
Dots denote the SIPs for the di�erent stimulus ramp slopes, with the color
shifting from red (shallow ramps) to blue (steep ramps), ellipsoids show the
SEM. Axes are U̇ [mV/ms] against U [mV].
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Figure 3.10: O�set dependence of the Wang-Buzsáki model separatrices.
The Wang-Buzsáki modi�cation of the Hodgkin-Huxley model as an example
for the o�set dependence of the separatrix. The three distinct lines in the
bottom left corner show the real separatrices, found via the ramp shortening
paradigm (see 2.1.2). The upper right corner shows the three corresponding
found separatrices, determined by the SIP detection algorithm presented in
2. The increased variability of the SIPs at the found separatrices is due to
the much faster dynamic at this point.
Dots denote the SIPs for the di�erent stimulus ramp slopes, with the color
shifting from red (shallow ramps) to blue (steep ramps). Axes are U̇ [mV/ms]
against U [mV].
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Figure 3.11: O�set dependence of modi�ed Awiszus model separatrices.
The modi�ed Awiszus model in the same layout. Note that the three detected
separatrices are close to the real separatrices. Also note that the orientation
and overall form of the found separatrices are identical to the real separatri-
ces, although they are shifted in state space.
Dots denote the SIPs for the di�erent stimulus ramp slopes, with the color
shifting from red (shallow ramps) to blue (steep ramps). Axes are U̇ [mV/ms]
against U [mV].



CHAPTER 3. NEURONS HAVE A 2D FIRING THRESHOLD 50

Figure 3.12: O�set dependence of Hodgkin-Huxley model separatrices.
The original Hodgkin-Huxley model shows a similar, but slightly di�erent
behavior. Instead of the three o�set separatrices being shifted along the
trajectories they are shifted perpendicular. However, we again �nd the found
separatrices to be shifted along the trajectories, thereby reproducing the real
ones.
Dots denote the SIPs for the di�erent stimulus ramp slopes, with the color
shifting from red (shallow ramps) to blue (steep ramps). Axes are U̇ [mV/ms]
against U [mV].
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The Hodgkin-Huxley models are clearly sensitive to o�sets, independent
of their �avor. Within all of these models we see the three real separatri-
ces for positive, zero and negative o�sets clearly separated. For the original
Hodgkin-Huxley model the di�erent o�sets shift the separatrices perpendic-
ular to the course of the trajectories (see �g. 3.10 C), with the negative
o�sets inducing the upper and positive ones inducing the lower separatrix.
This again also means that in this case the o�set shifts the course of the tra-
jectories. For all other Hodgkin-Huxley �avors tested here, the separatrices
are shifted along the trajectories. Contrary to the original model this indi-
cates that the o�set does not change the course of the trajectories. In these
models the rightmost separatrix is elicited from a hyperpolarized model, the
middle one from a model at resting potential, the leftmost from a depolarized
model. All models however show that the overall form of the real separatrix
is retained in any case, independent of the o�set.

The separatrices found by the SIP detector (see 2) typically lie far more
right (i.e. shifted forward in time along the trajectories) than the real ones,
meaning that they are detected signi�cantly after their real occurrence. Only
for the modi�ed Awiszus model we �nd the detected separatrix within the
range of the real separatrices. The temporal di�erence between real and
found separatrices is directly linked to the abruptness of the spike emerging
from the pre-spike dynamics: the smoother (i.e. less kinky) the spikes emerge
(see �g. 2.5 for a comparison), the more distant the found separatrices are
from the real ones, and vice versa.

It is worth noting again that the phenomenological separatrices found by
the algorithms and procedures presented in this work are able to reproduce
the key features of the separatrices in any case, be it angle, extension and
curvature. As the amount of divergence of real to found separatrices is clearly
linked to the sharpness of the trajectory's kink at spike onset, this again
nourishes the view that our algorithm can be able to precisely identify the
separatrices of real neurons as well.

3.2.2.5 Blocking the A-type Potassium Channel

With the A-type current being explicitly available in the Awiszus model, we
can test the model's response to completely blocking the A-type current.
To do so we have to compare the modi�ed Awiszus model (NoA) with the
modi�ed Awiszus model with implemented A-type current as these two di�er
only in their A-type channel conductance.

While the found and real separatrices are rather close for the full model
they are again clearly separated for the NoA model. As another support of
our �nding that the proximity of real and found separatrices is linked to the
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Figure 3.13: Modeled A-type channel block.
The red and green separatrices are the found and real ones of the control
model with working A-type channel, the turquoise and blue separatrices be-
long to the model with blocked A-type channel. The comparison of the real
separatrices of the two models (green vs. blue) shows a signi�cant left-and-
down shift (-5 mV, -4 mV/ms) together with a straightening. The found
separatrices are in close proximity and show just a small left-and-up shift
(-1.5 mV, +1.5 mV/ms). Note that the overall angle of tilt is preserved for
all 4 separatrices.
The gray areas indicate the approximate corridor of the trajectories bundle.
The waved area interconnects the two separatrices of the model without the
A-type current, and the checkered one interconnects the two separatrices of
the model with the A-type current. The checkered corridor is shifted a little
to the lower right side, thus indicating that the model with the A-type cur-
rent shows a slightly slower dynamic.
Dots show the means of the SIPs elicited by the same stimulus slope. Colors
of dots code for the slope of the stimulus from shallow (red) to steep (blue).
Colors of separatrices are solely for better distinguishability and do not code
for any parameter. Axes are U̇ [mV/ms] against U [mV].
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abruptness of the spike onset, the full model turns in deed out to have a
faster spike onset than the NoA version.

Looking at the found separatrices, we �nd a slight right-shift as well as
a slight down-shift for the NoA Version as compared to the full model. This
result is similar to the results found for the neurons (see section 3.2.1.4).
However, the neurons showed this e�ect already when the synaptic block
cocktail was added, there was no systematic 4-AP-related e�ect visible.

A more reliable result for the models is of course the real separatrix.
Here we see a clear shift of about 5 mV to the right and about 3 mV/ms
upward. The increased variability of the rSIPs (see green separatrix in �g.
3.13) indicates that the spike dynamic becomes irreversible later, closer to the
fSIP separatrix. The real separatrix becomes curved, but maintains its overall
orientation. Looking at the corridors of the trajectories bundle, it seems that
the separatrix is not detected earlier, but the models spike dynamic becomes
later irreversible.

However, due to obscure pharmacological results with neurons we are
unable to link these �ndings to biology.

3.3 Discussion

The results presented in this work support the hypothesis (see 1.1) of U̇ as
a second state variable, resulting in a 2-dimensional �ring threshold. These
thresholds can be seen as separatrices in an U -U̇ statespace projection which
separate the passive pre-spike regime from the active spike dynamic. These
separatrices are able to explain the (voltage) threshold variability found in
typical intracellular spike recordings, thus making the new threshold concept
much more adequate as compared to the 1-dimensional one.

We could also show that the algorithms presented here are able to pre-
cisely reproduce built-in separatrices from modi�ed leaky integrate-and-�re
models. Applied to neural intracellular recordings, we additionally could
show that neurons have various types of separatrices: vertical, horizontal,
slash-type, backslash-type. However, these types are not distinctly segre-
gated, but they seem to form a kind of separatrix-continuum.

Furthermore separatrices seem to be a highly sensible indicator not only
for the cellular health state, but also for small changes in spike-relevant cell
parameters. In this context we could not verify any e�ect of an A-type
potassium channel block.

Approaches to attribute certain cell types to certain separatrix types did
not succeed. We have not been able to map the separatrix type to the cell
type.
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3.3.1 Model Separatrices

The separatrices of the leaky Integrate-and-Fire models precisely reproduce
the built-in separatrices. This was to be expected as both the detecting al-
gorithm as well as the prede�ned threshold function work solely in the phe-
nomenological domain. It is, however, a proof for the ability of the algorithm
to precisely detect the phenomenological SIPs.

The Hodgkin-Huxley separatrices show a more complex situation. Here
we see a clear dependence on the starting membrane potential (depolarized,
hyperpolarized, rest). This feature is present throughout all Hodgkin-Huxley
models tested, but we �nd one di�erence: while the original Hodgkin-Huxley
model has the three o�set-related separatrices shifted along their longitudinal
axis, all other �avors of the Hodgkin-Huxley model have their o�set-related
separatrices shifted along the spike trajectory (see �g. 3.10).

Additionally, the found separatrices are unable to reproduce any o�set-
induced shift along the spike trajectories that occurs in the respective models.
In the contrary, they are all grouped more or less together. The exception is
the original Hodgkin-Huxley model: Here we see the same shift in the found
separatrices that is present in the real separatrices. However, this was to be
expected as all separatrices are per de�nitionem located on the trajectory
bundle. If a di�erent o�set shifts the trajectory bundle perpendicular to the
trajectory direction, the separatrices - real as well as found ones - will be
shifted as well.

It is an interesting �nding that Hodgkin-Huxley models seem to exhibit
mainly the backslash-type separatrices (although some are admittedly nearly
vertical). Although the models tested here were designed with di�erent inten-
tions there is none among them that would show a di�erent separatrix type.
Even further parameter variation did not result in any other separatrix form.
It would thus surely be an interesting approach to analyze systematically if
and under which conditions Hodgkin-Huxley models are able to switch their
separatrix into another type.

3.3.2 Separatrices in General

The idea of analyzing neural activity using phase plane projections is not
new. It has been used in various mathematical papers (see e.g. [19] and the
detailed works of Izhikevich, e.g. [25, 26]) in order to visualize neural behavior
in the voltage as well as in the frequency domain using the concepts of limit
cycles, attractors, bifurcations and thus even separatrices. However, this
approach results from the theoretical analysis of the neuron as a dynamical
system. Thus, even if the voltage U is used as one state variable, the other
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one typically is a more abstract concept like an inactivation variable or the
like.

The separatrix concept presented here is a much more phenomenological
one. As already stated in the introduction (see chapter 1) the idea was to
construct the separatrix by an experimental approach with an extension of
the threshold concept in mind. This lead us to the combination of U and U̇
as state variables, and the constructive experimental concept distinguishes
the two approaches profoundly.

Although the separatrix algorithm reproduces the principal orientation of
the real model separatrices, it fails to precisely locate the real model separa-
trices within the state space as well as their detailed curvature. As we have
shown the distance between found and real separatrices is large for models
with a slow spike onset and small or zero for models with a fast onset. Because
the SIP detector works purely phenomenologically it per se cannot capture
events that do not instantly show a signi�cant e�ect on the membrane poten-
tial. Thus, we cannot precisely reproduce the real model separatrices with
the algorithm presented here in most cases (because of the missing kink at
spike onset in most models). We can, however, reliably reproduce the type
(see 3.2.1.1) of the real separatrices as well as their slope.

While models make it easy to compare real and found separatrices, we
have a di�erent situation with the neurons. Here we have no chance3 to
reliably determine the �real� SIPs, not to talk about the corresponding sep-
aratrices. However, using the LIF models with prede�ned separatrices and
attached physiological spikes, we were able to reproduce the built-in separa-
trices precisely. Thus it seems reasonable to extrapolate from models to cells
- which means we can expect the found separatrices to reproduce at least the
principal orientation of the cell's real separatrices, if not even their position.

The separatrix concept of spike initiation touches the current debate be-
tween Naundorf et al. ([36, 37]) and McCormick et al. ([33, 46]). Naundorf
criticizes the Hodgkin-Huxley model for its slow spike onset dynamic as well
as for not reproducing the high threshold variability of real neurons. Mc-
Cormick argues that both features are due to the spike initiation site being
quite far from the soma inside the axon. As a consequence, intracellular
recordings would only capture back-propagated spikes. These would then
show the two features - kink and threshold variability - because of changing
electrophysiological properties on the transition from the narrow axonal spike
initiation site to the much wider soma. In McCormick's view the Hodgkin-
Huxley properties - slow spike onset and precise threshold - would neverthe-
less hold at the axonal spike initiation site.

3At least not with the techniques used in this study
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However, we have shown here that there is also a signi�cant amount of
threshold variability (about 6 mV with the ramps and o�sets used here)
within the Hodgkin-Huxley model. We have also shown that based on in-
tracellularly recorded voltage traces, cells exhibit a variety of separatrices
whereas Hodgkin-Huxley models solely show the backslash-type. Although
we cannot counter the distant spike initiation argument with the data at
hand, these �ndings might hint to some missing feature within the Hodgkin-
Huxley model. It would thus surely be fascinating to expand the separatrix
concept to spatially distributed multi-compartment neuron models.

The work of Azouz et al. ([2, 3, 4]) has shown how threshold variability
may be a relevant mechanism of neurons to allow precise synchronization
of syn�re chains for many purposes. They state that cells show a lower
threshold for rapid (i.e. steep) depolarizations and a higher threshold for slow
(shallow) ones. When cells encounter high-frequency membrane potential
�uctuations they will thus be able to �re in high temporal precision as the
rapid �uctuations will more likely produce a spike due to the low threshold.
This view translated to the separatrix concept would mean a backslash-type
separatrix with steep ramps eliciting spikes at lower voltages than shallow
ramps.

Consequently, one has to expect other separatrices to exhibit other func-
tional features. Slash-type cells would be the antipodal to this behavior,
eliciting spikes more easily for shallow ramps than for steep ones. Horizontal
separatrices would drive the idea of Azouz et al. to the extreme: These cells
would �re mainly independent of the voltage, mainly depending on U̇ . And
�nally we have of course cells with a vertical separatrix that would exhibit
a pure voltage threshold that has served as a suitable neural model trough
decades.

Summing up all these considerations, we have to conclude that cells can
exhibit a variety of functions within their interconnectivity network, and
that it is surely imaginable that di�erent functions are directly correlated to
di�erent separatrices.

3.3.3 Sensitivity

As was stated above we can show that separatrices are temporally very stable
as long as the cell's parameters are constant. On the other hand we do
occasionally see separatrices shifting from run to run. When searching for
the cause of this shift we see slight changes in the monitored cell parameters.
These changes are so small that normally they would seem to be unworthy
looking at.

But during the pharmacological experiments we encountered another un-
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expected result: separatrices shift already when the synaptic block cocktail
is added. Searching for the causes we again �nd that the monitored cell
parameters have changed a little bit.

Per se there are three possibilities for this e�ect: Either there is some
slow shift within the technical recording sequence, or there are physiological
changes within the cell due to fatigue or damage, or the cell may be actively
shifting its separatrix.

The �rst point should be no cause, as we of course are trying to eliminate
all technically induced biases. However, in further experiments extra care
should be taken on this issue. The second and third possibility are hard to
distinguish. In case of fatigue or damage one would surely expect one of the
monitored cell parameters to re�ect such changes. This is also likely, but not
that clear, for some active shifting process. If the cell should really be able to
shift its separatrix there may be parameters involved that are not monitored
within the standard recording procedure.

In order to keep things as simple as possible we can only state that there
are slight parameter changes visible whenever separatrices change - and on
the other hand that they do not change when the separatrices stay congruent.
This however would mean that the separatrix is a highly sensible indicator
for the cell's physiological state.

3.3.4 Pharmacology

Recent work of Sonner and Stern [41] have investigated the properties of
isolated A-type potassium channels. They have shown the 10-90% rise time
of the A-type potassium current to be 6.1±0.4 ms which is - as compared to
the spike speed - relatively slow.

If we now follow the argumentation that for fast spike dynamics the found
separatrices are likely to be identical to the real separatrices (see �g. 3.11),
this slow rise time can be taken as another support for this view. If the real
separatrix was signi�cantly earlier than the found ones (within the Hodgkin-
Huxley models, we have found temporal di�erences of more than 1 ms), then
an e�ect of the slower and smaller potassium current in the neurons treated
with 4-AP would have to be expected at the SIPs. However, we are unable
to attribute any of the visible e�ects clearly to 4-AP (see discussion of the
results in 3.2.1.4) as we are unable to distinguish between e�ects of the block
cocktail alone and 4-AP. It would therefore be adventurous to conclude any
support or falsi�cation for the separatrix concept from the pharmacological
�ndings.

The modeled A-type channel block shows two e�ects (see �g. 3.13): �rst,
the models trajectory bundle shifts up-left due to a modi�ed dynamic, and
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second, the real separatrix shifts further away from the found one (i.e. spikes
become irreversible at an earlier point).

This behavior does not match any of the e�ects observed in the cells
treated with 4-AP. In order to establish such a link between models and
biology a much more solid data base would be necessary, with statistically
veri�ed e�ects. Unfortunately, this is not available from the data at hand,
but remains an issue for further investigations. Additionally, an explanation
of the behavior of the model's separatrix remains an issue for a thorough
analysis of the model's parameters and gating variables. This would exceed
the scope of this work where our main focus was on the introduction of the
separatrix as a more satisfactory 2D threshold concept.

3.3.5 Conclusion

The work at hand has three main aspects:
First, the results presented in this work give strong evidence that a pure

voltage threshold is insu�cient to analyse properties necessary for spike ini-
tiation in sharp intracellular recordings. Taking U̇ into account as a second
state variable besides U seems to complete the phenomenological state space
of neurons in respect to spike initiation. Thus, it seems advisable to use the
2-dimensional state space with the 2-dimensional threshold concept for any
analysis work if detailed knowledge about the spike initiation threshold is of
central importance.

Second, the algorithm presented in chapter 2 provides a new analysis tool
that allows a precise, detailed and robust analysis of the point of neural spike
initiation. We have shown the SIPs detected by the algorithm to be very close
to the real ones if the spike onset is kinky enough (which is the case for real
neurons). Thus, all results give strong evidence that the SIPs found by the
algorithm are su�ciently close to the real ones for detailed further analysis.

Third, the separatrix concept developed in chapter 3 promises to be a
potent tool to phenomenologically describe the threshold behavior of a neu-
ron. We were able to show that all models as well as all neurons have such a
threshold separatrix within the U -U̇ state space. We were also able to show
that the separatrices found using our algorithms always reproduced the key
features - angle, curvature as well as relative range - of the real separatrices
of the models analyzed. This is a strong evidence for the correctness of the
separatrix concept as well as the reliability of the analysis procedure.

Being a relatively simple toolkit that works simply on recorded voltage
traces, the separatrix concept should also allow quick re-analysis of existing
as well as new data in order to determine and verify computational, phar-
macological, morphological or functional correlations of separatrix types.
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We can now answer the questions asked in 1.3:

� We can precisely determine the SIP for a spike using the algorithm
presented in chapter 2.

� U̇ is a suitable second threshold parameter.

� Both cells and models do exhibit separatrices

� The results of this work do not indicate that a 2-D state space
would be insu�cient

� There are various forms of separatrices, from horizontal via back-
slash and vertical to slash-type separatrices.

� Model separatrices can be found in cells, but not all cell separa-
trices have been observed in the models.

� 4-AP does a�ect the separatrices in the models, but there is no
clear e�ect in the cells.

3.3.6 Outlook

The next step would of course be to analyze the functional consequences of
di�erent separatrices. What is the di�erence between cells with a vertical or
a horizontal separatrix? Do they incorporate di�erent network properties?
Can cells change their separatrices to adopt to some functional changes?
What happens if the procedures presented here are applied to natural spike
trains? Will we be able to watch a separatrix shift?

If it turns out that the type of separatrix is a central key element to de�ne
neural function this would again challenge the Hodgkin-Huxley models - at
least if it turns out that they can only have the slash-type separatrix found in
the models tested here. On the other hand this could allow a signi�cant com-
putational simpli�cation when modeling larger neural networks: pre-de�ned
separatrices can easily be incorporated into many simple models like the leaky
integrate-and-�re model shown here. Already this model is computationally
much simpler than Hodgkin-Huxley models, allowing simulation of large net-
works with only a fraction of computational power that would be necessary
for Hodgkin-Huxley networks. This especially holds as there are a number
of enhancements and optimizations that make leaky integrate-and-�re mod-
els more and more �physiological�, thereby retaining most of their simplicity
([8, 13, 17, 39, 43], see also the work of Burkitt [11, 12] for a review).
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Appendix A

Supplements

A.1 Abstract

It is generally accepted that neural spikes are initiated solely by a volt-
age threshold mechanism. However, when looking at intracellular voltage
recordings, the voltage U exhibits a signi�cant range of voltage values, thus
contradicting the threshold concept as such.

From a dynamical systems perspective one clearly would conclude there-
from that the system is insu�ciently described using U alone as a state
variable. Inspired by qualitative reports of neurons that can be driven far
beyond their (voltage) threshold when stimulating them slowly enough, we
introduced the �rst time derivative of the voltage, U̇ , as a second state vari-
able. Plotting spikes within this two-dimensional state space suggests that
they can be locally interpreted as a dynamical system with two attractors:
one being the resting potential, the other one being the spike voltage max-
imum (due to the the Na equilibrium potential). These two attractors can
be imagined to be separated by a boundary line, a so-called separatrix. This
separatrix would thus be composed of points at which a spike has become
unavoidably.

In order to verify the separatrix as a 2D �ring threshold in U and U̇
these spike initiation points have to be identi�ed as precise as possible. In
physiological data the spike is characterized by a sharp kink at spike onset
where it abruptly and vertically emerges from the sub-threshold activity. An
algorithm has been developed that - both starting from the sub-threshold
as well as from the super-threshold domain - is able to identify these points
reliably, precise and robustly.

This procedure was veri�ed using Hodgkin-Huxley type and leaky integrate-
and-�re models. Here the real spike initiation points could be determined by
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successively shortening stimulus length. During analysis it turned out that
most Hodgkin-Huxley type models show a very shallow spike onset which in
in clear contrast to the sharp onset in cells. We could show that the found
spike initiation points are the more distant from the real ones the shallower
the spike onset was. On the other hand, if the model showed an abrupt
and vertical spike onset real and found spike initiation points were very close
together. Because real neurons show an abrupt and vertical spike onset we
can thus expect the detected spike initiation points to be identical to the real
ones.

Both cells and models were then stimulated with ramps of di�erent slopes
in order to test the threshold dependence on U̇ . The new algorithm was then
used to detect the spike initiation points for the �rst spike of each ramp. A
curve was �tted to these points within the U -U̇ state space, thus resembling
the separatrix of the cell.

We could show that all cells exhibit a separatrix. All 4 possible orientation
classes were found: vertical (i.e. a pure voltage threshold), horizontal (i.e.
a pure U̇ threshold), slash-type (i.e. from lower left to upper right) and
backslash-type (i.e. from lower right to upper left). Hodgkin-Huxley type
models showed mainly slash-type separatrices and a vertical one in one case.
Leaky integrate-and-�re models with prede�ned separatrices were used for
veri�cation, and the algorithm was able to reproduce all of these prede�ned
separatrices.

The neural separatrices showed temporal stability (when cellular state
parameters were constant) and independence of positive or negative o�set.
On the other hand, small changes in cell parameters (membrane time con-
stant, resistance, resting potential) showed clear changes and shifts in the
separatrices, thus indicating at them to be a highly sensible indicator of cell
state. Pharmacological experiments with A-type channel blockers did not
exhibit a systematical e�ect as - due to the sensitivity addressed above - al-
ready the necessary block cocktail changes cell parameters, thus shifting the
separatrix.
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A.2 Zusammenfassung

Es ist ein allgemein anerkanntes Kozept, dass neuronale Aktionspotenziale
mittels eines einfachen Schwellenmechanismus der Membranspannung U in-
duziert werden. Schaut man sich jedoch die Initiationspunkte von Spikes
innerhalb einer Zelle genauer an, so wird eine bemerkenswerte Variabilität
der Spannungswerte zu Spikebeginn deutlich, was dem Modell einer Span-
nungsschwelle jedoch widerspricht.

Aus Sicht der mathematischen Konzepte der dynamischen Systeme ist
ein solches Phänomen ein Zeichen für einen unterdimensionierten Zustand-
sraum, in dem (mindestens) eine Zustandsvariable fehlt. Inspiriert durch
die immer wieder kolportierten Phänomene, dass Zellen ohne Spike deut-
lich über ihre Spannungsschwelle depolarisiert werden können, wenn dies
nur langsam genug geschieht, wurde die erste Ableitung der Spannung nach
der Zeit, U̇ , als zweite Zustandsvariable eingeführt. Die Darstellung von
Spikes in diesem Zustandsraum legt nahe, dass man sie vorübergehend als
dynamisches System au�assen kann, in dem sich zwei Attraktoren - das Ruhe-
potential auf der einen Seite, das Spikemaximum (bedingt durch das Na-
Gleichgewichtspotenzial) auf der anderen Seite - be�nden, die durch eine Sep-
aratrix, eine Grenzlinie voneinander getrennt sind. Diese Separatrix müsste
demnach aus den Punkten bestehen, an denen im neuronalen Zustandsraum
ein Spike unwiderru�ich initiiert wurde.

Für die Veri�kation der Separatrix als einer 2-dimensionalen Feuerschwelle
aus U und U̇ müssen diese Punkte der Spikeentstehung möglichst präzise
bestimmt werden. Phänomenologisch sind sie in den Daten durch einen
scharfen Knick gekennzeichnet, in dem der Spikeansatz sich aprupt nahezu
senkrecht aus der unterschwelligen Aktivität erhebt. Es wurde ein Algorith-
mus entwickelt, der sowohl ausgehend von der unterschweligen als auch von
der überschwelligen Domäne diesen Spikeinitiationspunkt zuverlässig, präzise
und robust �nden kann.

Dieses Verfahren wurde an Modellen veri�ziert, in denen zusätzlich die
echten Spikeinitiationspunkte durch sukzessive Stimulusverkürzung bestimmt
wurden. Dabei wurde deutlich, das die meisten Hodgkin-Huxley-Modelle
im Gegensatz zu Zellen einen unphysiologisch �achen Spikebeginn besitzen.
Während bei Modellen mit schnellem Spikebeginn der gefundene Spikeinitia-
tionspunkt gut mit dem echten übereinstimmt, wird er bei den anderen um so
später detektiert, je �acher der Spike beginnt. Da die gemessenen Zellen alle
über einen aprupten Spikebeginn verfügen, kann davon ausgegangen werden,
dass der Algorithmus die Spikeinitiationspunkte präzise detektiert.

Zellen und Modelle wurden nun mit verschieden steilen Rampen stim-
uliert, um die Abhängigkeit der Schwelle von U̇ zu testen. Für die so
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induzierten Spikes wurden nun mittels des beschriebenen Algorithmus die
Spikeinitiationspunkte bestimmt. An die so gefundenen Punkte wurde im
U -U̇ -Zustandsraum eine Funktion ge�ttet, die die Separatrix für die jeweilige
Zelle bzw. das jeweilige Modell darstellt.

Es konnte gezeigt werden, dass alle Zellen eine Separatrix besitzen. Es
sind alle wurden alle Orientierungen beobachtet: senkrecht (entsprechend
einer reinen Spannungsschwelle), waagerecht (entsprechend einer reinen U̇ -
Schwelle) sowie ihre Kombinationen (schräg von links unten nach rechts
oben (slash-Typ) als auch von links oben nach rechts unten (backslash-
Typ)). Hodgkin-Huxley-Modelle zeigten nur eine slash-Typ-Separatrix sowie
in einem Fall eine senkrechte. Für Testzwecke wurden spikende Leaky Integrate-
and-Fire-Modelle mit vorde�nierten Schwellseparatrices eingesetzt, die von
den vorgestellten Algorithmen präzise reproduziert werden konnten.

Die Separatrices bei den Zellen zeitlich stabil (bei gleichbleibenden Zell-
parametern) und unabhängig von einem positiven oder negativen O�set. An-
dererseits zeigten sich bereits bei kleinen Änderungen der Zellparameter deut-
liche Änderungen in der Separatrix, was auf eine hohe Sensibilität der Sep-
aratrices für den Zellzustand hinweist. Pharmakologische Experimente mit
A-Kanal-Blockern zeigten keinen systematischen E�ekt, da bereits die Gabe
des zur Vermeidung epileptiformer Aktivitäten notwendige Block-Cocktail
die Separatrix veränderte, bevor der A-Kanal-Block zugegeben wurde.
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