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FOREWORD

Understanding the out of equilibrium behaviour of interacting quantum many-body systems has moti-
vated physicists from various fields for over a century. These systems lie at the cross-section of quantum
mechanics, solid-state physics, material sciences and thermodynamics and are connected to some of the
most intriguing open problems in these fields. Naturally, they have been studied extensively and trying to
even list the achieved, often ground-breaking results, both of theoretical and experimental nature, would
prod a lifetime of academic research.

Given this vast amount of interesting research, this thesis necessarily has to be narrow in scope. We
will restrict the discussion to few, yet paradigmatic phenomena that we believe to be physically relevant.
In the process, we will investigate equilibration, thermalisation and its limits, break-down of propagation
due to disorder, the dynamics of quantum phase transitions, continuous quantum field tomography, as
well as various aspects of modern experiments with ultra-cold atoms in a mindset of analogue quantum
simulations.

Rather than giving justice to the traditional approaches of condensed matter, thermodynamics or ma-
terial sciences, we will fully focus on the perspective of quantum information theory. Motivated by the
unprecedented experimental control of ultra-cold atoms in optical lattices, we focus on the behaviour of
small systems where individual atoms or spins can be tracked. We aim at establishing rigorous mathe-
matical statements and concise interpretations of experimental results. Using new mathematical tools and
relying on information theoretic interpretations, we hope that this thesis will provide a useful contribution
to the study of the intriguing behaviour of quantum many-body systems out of equilibrium.
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INTRODUCTION: QUANTUM MANY-BODY SYSTEMS OUT OF EQUILIBRIUM

The study of interacting quantum many-body systems began more than a century ago and still remains
one of the most active fields in modern physics. In condensed matter physics, these systems provide
the basis for investigating transport properties and give rise to intriguing phenomena such as quantum
phase transitions or superconductivity. Often their study requires extensive perturbation analysis or nu-
merical simulations using super-computers. This complexity, which often makes them exceedingly hard
to describe, is also one of their most intriguing features.

More recently, such systems have also been the focus for an investigation in the light of quantum infor-
mation theory. While the motivating questions, such as the study of electronic transport, are often akin to
those of more traditional approaches, the used tools and general mindset differ significantly. These tools
are often taken from classical information theory, such as the Shannon entropy, but also computational
complexity theory and other concepts from computer science are applied. Particular focus is often put
on establishing rigorous mathematical results. While this necessarily means that the attention is focussed
on simplified paradigmatic models, in its rigor and due to its fresh viewpoint, quantum information
significantly contributed to the way we currently view the physics of interacting atoms.

In this thesis, we explore this point of view and employ it to investigate many intriguing physical
properties from thermalisation, over the break-down of conductance due to randomness, to the dynamics of
quantum phase transitions [1-6]. While free systems, capturing non-interacting particles, will be used as
guidelines, the focus is clearly placed on interacting models and it is precisely the effect of such interactions
that this thesis is investigating. We specifically focus on understanding out of equilibrium behaviour of
interacting quantum many-body systems. This area poses many notoriously hard questions and we need
to employ diverse mathematical tools, numerical simulations and experimental investigations to approach
them. A crucial theme for the whole thesis will be, how this dynamical behaviour can be connected to
static properties of the model, such as local structure in eigenstates. In general these connections are hard
to establish for the interacting case, which clearly highlights the complexity associated with such models.
Whenever successful, however, such connections between static spectral features and dynamical behaviour
provide substantial insight into the true nature of those systems and help to provide a comprehensive
picture of their physical behaviour, be it for many-body localisation or quantum phase transitions.

This thesis consists of two main parts. In the first, we present analytical ways of rigorously capturing
the out of equilibrium evolution of interacting quantum many-body systems. We put great emphasis
on following experimentally realistic settings and are guided by the capabilities of modern experiments
probing interacting atoms. The achieved results are based on involved mathematical tools. In order to
keep the presentation accessible and connect it to physical intuition, most technical steps are discussed
separately in appendices.

The second part of this thesis also revolves around dynamical behaviour of interacting quantum systems,
but is more experimentally minded. We present the exciting possibility to probe long-standing physical
questions in the laboratory. Specifically, we focus on ultra-cold atoms in optical lattices, explore their
capabilities in detail and employ them to study the dynamics of quantum phase transitions. We now
discuss the structure and findings of this thesis in more detail, beginning with the first main part.

In chapter 3, we describe how measurements on quantum systems pushed out of equilibrium, for ex-
ample by a sudden change of the Hamiltonian, after some time can again be described in terms of static
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ensembles, i.e. they equilibrate. We describe how this is compatible with the unitary nature of quantum
mechanical evolution and investigate the role of the allowed observables and initial states. Following
the experimental setting of ultra-cold atoms in lattice systems and similar platforms, we focus on locally
interacting models on a lattice structure, which is carefully introduced.

Based on free systems describing non-interacting particles, we show that such equilibration can be con-
nected to transport properties of the model. Specifically, we investigate free fermionic Hamiltonians with
an evolution that allows for particle propagation. In this setting, we are able to prove that dynamically
states become locally indistinguishable from Gaussian states, i.e. after some time, results of local mea-
surements are completely captured in terms of a single correlation matrix [6]. Afterwards, we turn to
interacting models and present a very general way of proving equilibration. We approach the time evolu-
tion in these interacting systems both on a rigorous mathematical as well as intuitive level and connect it
to notions of information propagation and entanglement growth.

Having described how local expectation values of out of equilibrium states can be captured with static
ensembles, we turn to an investigation of the nature of those ensembles in chapter 4. We present sufficient
conditions to ensure that they look like thermal Gibbs states, that is, they thermalise. This provides at least
a partial quantum mechanical explanation for the immense success of thermodynamics in describing large
quantum mechanical models and resolves the apparent contradiction between unitary quantum evolution
and the monotonic increase of entropy expected in thermodynamics.

Following the presentation of systems that thermalise, we turn to the counterpart, where transport is
strongly suppressed due to random local potentials, i.e. localisation, in chapter 5. Aside from giving a large
class of models that fail to thermalise, this phenomenon is of independent physical interest, as it provides
the basic mechanism how random impurities can lead to a complete absence of conductance in solid
states. To approach such behaviour, we first review static and dynamic localisation of single electrons
in such a random field, based on seminal work by Anderson. We formulate these finding in a many-
body language relying on entanglement entropies, tensor network states and dynamical evolution of local
operators. Starting from this preparatory discussion, we consider electronic interactions and investigate
their influence on localised systems in so-called many-body localisation.

Many-body localisation is being extensively studied in recent years. Despite great efforts, a full charac-
terisation of the phenomenon is still outstanding and its discussion in the literature is multifaceted. In
chapter 6, we present different aspects of many-body localisation, ranging from a dynamical suppression
of transport properties, over the existence of local constants of motion, to localising behaviour in the eigen-
states of the model. Given this inchoate picture of many-body localisation, both its true nature as well
as experimental probes of the phenomenon are controversially debated. We therefore follow the goal of
establishing a unified definition that is experimentally testable and provides useful theoretical insight.

Motivated by this goal, we link different facets of many-body localisation relying on an in-depth mathe-
matical analysis. Specifically, we prove that the existence of local constants of motion in interacting models,
quite surprisingly, is sufficient to show that these models allow for information propagation [5], that is,
two parties can use a many-body localised model to communicate. Moreover, we show how a dynamical
suppression of information propagation on the low-energy sector can be used to obtain a simple, localised
structure of the low-energy eigenstates, thus partially generalising the exponential clustering theorem
[4]. In this way, we provide two intriguing connections of static and dynamic properties in the context
of interacting localising systems. Based on those efforts, we summarise different features of many-body
localisation and propose a possible definition of the phenomenon. This will conclude the first main part
of the thesis.

In the second part, we discuss the exciting prospect of quantum simulators, which are experimental
devices that potentially outperform classical computers. We focus on ultra-cold atoms, as they provide one
of the most promising platforms for performing such simulations and already allow to prepare and control
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ensembles with several thousand atoms. For these systems, we carefully introduce their capabilities in a
language of quantum simulators and demonstrate how they can be employed to solve out of equilibrium
problems in many-body quantum physics.

We begin with a general overview of quantum simulators in chapter 8 and discuss similarities and
differences to the idea of a quantum computer. For simulators based on ultra-cold atoms, we review
the experimental basics and discuss the available measurements and Hamiltonians of such experiments.
We argue that in optical lattices, nearest neighbour interactions, in particular the Bose-Hubbard model,
directly emerge, thus connecting this experimental discussion to earlier chapters of this thesis.

Our main application of a quantum simulator will be the dynamical study of quantum phase transitions.
In order to introduce the setting, we present the basic definitions and mechanisms of such transitions in
chapter 9. We focus our attention on the Bose-Hubbard model, partly because it is a realistic model
for solid-state physics, but also because it provides rich physical behaviour due to its interacting nature.
We show how general static properties of quantum phase transitions can be captured in terms of critical
exponents. From this, we move towards the dynamic crossing of critical points and present the Kibble-
Zurek mechanism, which gives basic intuition for the underlying physical processes.

In order to approach the dynamics of those transitions in more depth, we rely on a joint numerical,
analytical and experimental effort, in an instance of a partially certified analogue quantum simulation pre-
sented in chapter 10. This work constitutes the first experimental study of the dynamics of an essentially
homogeneous quantum system entering a critical phase in such a setting [1]. We show that the experimen-
tal results agree extremely well with numerical investigations in one dimension, thus partially certifying
the analogue quantum simulation. We proceed to apply this quantum simulator to two and three dimen-
sions, a regime that cannot be accessed using currently known numerical or analytical schemes. With
this simulation, we study realistic experimental time scales of dynamically crossing a quantum phase
transition and uncover complex behaviour outside the scope of the Kibble-Zurek mechanism or any other
known theory.

Finally, in chapter 11, we focus once more on the idea of a quantum simulator, but now look at the
last step of the simulation, namely how to extract the results of the experiment. We argue that this
often implies that quantum many-body tomography has to be performed, which is a reconstruction of the
experimental quantum state. We show how this can conceptually be achieved in the context of continuous
quantum fields, which constitute one of the hardest instances for tomography. Moreover, we perform a
proof-of-principle application for ultra-cold atoms in a continuous optical trap [2]; a platform that has
very successfully been used in the past to study issues of equilibration and thermalisation.

In this way, this thesis presents various aspects of out of equilibrium behaviour of quantum many-
body systems, both from a theoretical as well as experimental side. Moreover, by employing advanced
mathematical tools, we link dynamic and static properties of interacting Hamiltonians and thus provide
important intuition for their often exceedingly complicated behaviour.






PUBLICATIONS OF THE AUTHOR OF THIS THESIS

[1]

[2]

(3]

[4]

[5]

(6]

S. Braun, M. Friesdorf, S. S. Hodgman, M. Schreiber, ]. P. Ronzheimer, A. Riera, M. del Rey, L.
Bloch, J. Eisert, and U. Schneider. “Emergence of coherence and the dynamics of quantum phase
transitions”. Proc. Natl. Acad. Sci. 112 (2015), p. 3641.

A. Steffens, M. Friesdorf, T. Langen, B. Rauer, T. Schweigler, R. Hiibener, J. Schmiedmayer, C. A.
Riofrio, and ]. Eisert. “Towards experimental quantum field tomography with ultracold atoms”.
Nat. Comm. 6 (2015), p. 7663.

J. Eisert, M. Friesdorf, and C. Gogolin. “Quantum many-body systems out of equilibrium”. Nature
Phys. 11 (2015), p. 124.

M. Friesdorf, A. H. Werner, W. Brown, V. B. Scholz, and J. Eisert. “Many-body localisation implies
that eigenvectors are matrix-product states”. Phys. Rev. Lett. 114 (2015), p. 170505.

M. Friesdorf, A. H. Werner, M. Goihl, J. Eisert, and W. Brown. “Local constants of motion imply
transport” (2014). arXiv: 1412.5605.

M. Gluza, C. Krumnow, M. Friesdorf, C. Gogolin, and J. Eisert. Gaussification and equilibration in free
Hamiltonian systems. In preparation.


http://arxiv.org/abs/1412.5605




Part I

Equilibration & Localisation






EQUILIBRATION

A theory is the more impressive the greater the simplicity of its premises, the more different kinds of
things it relates, and the more extended its area of applicability. Therefore the deep impression that
classical thermodynamics made upon me. 1t is the only physical theory of universal content which I am
convinced will never be overthrown, within the framework of applicability of its basic concepts.

Albert Einstein

The above quote is maybe the most concise way to summarise the immense success thermodynamics had
in past centuries. Based on statistical physics, a framework was established within which the theory is con-
sistent, and despite ongoing debates on various different aspects, is one of the soundest physical theories
we have. Surely thermodynamics is an impressive way to capture the collective behaviour of large ensem-
bles of atoms. Despite the great underlying complexity of describing 1023 interacting atoms, for many
practical purposes it is somehow sufficient to describe the collection of atoms with a few macroscopic
parameters, such as pressure and temperature.

For someone with a background in quantum mechanics, this seems almost magical. Surely a full de-
scription of this physical setup ought to include a solution of the Schrodinger equation, should crucially
depend on the precise initial condition and feature truly quantum mechanical effects, ranging from the
uncertainty relation to entanglement. So, how can it be that for an overwhelming majority of practical
purposes, all this complexity is hidden from the macroscopic observer. In other words: Why does nature
look so thermal?

This question is almost as old as quantum mechanics itself, beginning with the work of von-Neumann
[25], which is an impressive demonstration of his knowledge and already poses and answers many impor-
tant questions relating to the apparent contradiction of quantum mechanics and thermodynamics. Based
on this seminal work, the question emerged how to consolidate the unitary dynamics of quantum me-
chanics and the necessary growth of entropy in thermodynamics. In recent years, the topic moved into the
focus of attention again. Based on the breath-taking progress in the experimental control over several thou-
sands of atoms, for example in optical lattices, the emergence of thermodynamics can finally be probed
in the laboratory [1, 3, 26—37]. What is more, the immense progress in numerical codes and increase
in computational power has enabled large scale computer simulations to investigate those questions [32,
38—41]. Finally, many essential mathematical and theoretical concepts were established in recent years and
both the applicability and limitations of thermodynamical descriptions of quantum mechanical systems
are becoming significantly clearer [3, 4, 42—47].

In this thesis, we review the basic ideas and concepts how quantum mechanics can lead to an evolution
that is, in many contexts, indistinguishable from thermodynamical descriptions. Based on locally interact-
ing many-body models, we look both at rigorous mathematical results as well as experimental probes for
this question. Afterwards, we specifically focus on the break-down of thermodynamic descriptions, due
to the presence of disorder. Based on the seminal work of Anderson [48], we look at interacting electrons
in a random lattice, the breakdown of electronic flux and the corresponding failure of the system to even
out initial imbalances in particle number or energy. We start by describing the basic principle behind
thermalising behaviour of complex quantum many-body systems.
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3.1 BASIC PRINCIPLE

In classical mechanics, the evolution of a generic system is only constrained by its energy and in ergodic
systems explores the full phase space of fixed energy evenly, in a suitable sense [7]. Thus, the time average
can be replaced by an average over the micro-canonical ensemble, which in turn approaches the canonical
ensemble in the thermodynamic limit [8]. In contrast, integrable systems have constants of motion, thus
only explore a small section of phase space and can be captured in terms of these constants of motion and
action-angle variables [7].

In quantum mechanics, the Schrédinger equation is linear and thus any system is integrable in the sense
that with growing system size there always exist an exponentially large number of constants of motion.
In the case of arbitrarily large but finite systems, which will be investigated in this thesis, one can simply
diagonalise the Hamiltonian and the evolution is then given by

(1) =) (kip)ye i),

k

where [k) denotes the eigenstates of the Hamiltonian, assuming for simplicity that they are non-degenerate.
Obviously, any projector onto eigenstates of a Hamiltonian or functions thereof are constants of motion,
as they commute with the Hamiltonian

[H, [k)(kI] =0

and the evolution explores only a vanishing fraction of the full Hilbert space. In this way, on a finite system,
all states show recurrence behaviour and return arbitrarily close to their starting point. For some states,
such as the superposition of few eigenstates, this will even take place after short times. This recurrence
behaviour poses a fundamental challenge to one of the main pillars of thermodynamics, namely the second
law. After all, how could entropy grow consequently, if it has to return to its original value after some
time? Moreover, looking at the above time evolution, it seems entirely unclear how the microcanonical
ensemble should appear and any description in terms of a Gibbs state seems, a priori, completely out of
reach.

Thus, it is clear that thermodynamic descriptions of quantum mechanical systems can never be able to
capture arbitrary settings, meaning that it is easy to construct large classes of initial states and Hamiltoni-
ans that do not allow for a description in terms of Gibbs states. Therefore, the obvious task is to precisely
identify the settings and mechanisms that lead to a thermodynamic description. After all, experimentally
prepared states will surely not be individual eigenstates, at least for large energy corresponding to the
bulk of the spectrum. There spectral gaps are so small and the density of states so large that any real-
istic state is a superposition of many different eigenstates. Thus, natural states are not arbitrary points
in Hilbert space, but rather have rich underlying structure. Most importantly, typical measurements only
obtain some rough information of the state and are far from fully specifying the exact state.

In the following, we dive deeper into the underlying mechanism of thermalisation. The first requirement
in order to describe experimental observations in terms of statistical ensembles is that they become time
independent. Usually, one starts with a system that was pushed out of equilibrium [3]. This can be
done in many ways. Since experimentally it is typically hard to directly alter states, it is common to
alter the Hamiltonian. For this one prepares a thermal state of the original Hamiltonian, often one that is
close to the ground state. Then the Hamiltonian is altered either suddenly, a process known as a quench,
or slowly along some path in Hamiltonian space, which is known as a ramp [49]. For quenches, one
moreover distinguishes so-called local quenches [50], where only few Hamiltonian terms are altered and
global quenches [26, 51], where Hamiltonian terms are altered everywhere on the lattice, for example
by changing a global magnetic field. Geometric quenches correspond to the sudden alteration of the
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geometry of the lattice [52, 53]. Finally, periodic driving, in which the Hamiltonian is altered along some
periodic curve, is also a very interesting possibility [54, 55]. In this section, we focus on the effects of
sudden quenches, either local or global.

After the quench, we investigate the measurement outcomes of observables and want to understand to
what extent they equilibrate. To approach those measurement outcomes, we introduce some mathematical
notation for measuring and distinguishing quantum states.

Operators and state distinguishability

For capturing distinguishability of states, we employ the usual norms induced by the scalar product of
the Hilbert space. For hermitian operators, they take the following form

A= sup [(WIANW)]= sup|Tr(Ap)l,
e[ |=1 peD

[All =Tr(IAD,

where D denotes the set of density matrices. They are referred to as operator norm and 1-norm, re-
spectively. These norms can be directly connected to the operational distinguishability of states which is
carried out below. In the case of finite lattices with bounded Hilbert spaces, such as spins, the norms can
be calculated using the spectrum of the operator

[All = max [E[,
Eespec(A)
Al = > €.
E€spec(A)

For convenience, we work with normalised operators, whenever possible; in particular for spin systems.
Observables will be normalised in the operator norm

[Al=T.

Since all bounds and statements can trivially be rescaled by the corresponding operator norm, this is
without loss of generality and moving to the general case is straightforward.

In order to accurately describe non-equilibrium settings and capture them in form of static ensembles,
we need ways to quantify the distinguishability of states. The most direct way to achieve this is given by
the 1-norm distance. Let us imagine that we have two states p and o that are close in 1-norm ||p —o||; = e.
We are now promised that the system is either in the state p or in o with equal probability and are given
the task to find out which it is. For this, we perform a projection measurement that has two outcomes
corresponding to some projector P and Q = 1 —P. The probabilities for the two measurement outcomes
between the two states can now only differ by e

Tr (P(p—0)) < |[Pllllp—olli = €.

The best possible strategy to guess the state after such a single measurement is to separate p — o into a
positive and negative part. Then P is taken as the projector onto the positive eigenspaces and Q =1—P is
the orthogonal projector. Then, if the measurement outcome P appears, one assumes that the system was
in state p and if Q appears, one would guess that the state was o. This gives an error probability

L IT(Pp) — Te(Po)| — [Tr(Qp) ~ Tr(Qo)l = 3 — o — ol = 3 —¢,

2
where we used that P and Q separate positive and negative part of p — o and therefore the 1-norm can
be expressed in terms of them. Thus, the error in guessing the state is at least % — € for any possible

measurement [56, 57].
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We now express equilibration using the norms introduced above. As we argued before, the full state
is always distinguishable from a static ensemble. This makes it crucial to consider realistic experimental
distinguishability. In any experiment, there is typically some set of observables A whose expectation
value can be efficiently measured. This set is typically rather small and in particular grows at most
polynomially with the system size. This restriction to extracting only partial information of the state is
crucial and ultimately the reason why equilibration happens under very generic conditions [42—44]. Such
a reduced set A of observables naturally induces a norm

Ipll1,4 := sup [Tr (Ap) ],
AcA

which is bounded by the usual 1-norm, but could potentially be smaller.

The above distinguishability in terms of expectation values can also be reformulated using POVM mea-
surements. Given a set of measurement projectors M = {Py,---,Pn}, we can define the corresponding
distinguishability as [58]

D (o, w) = 3 3 [Tr (P (p— )]
j

For the purpose of this thesis, the typical set of restricted observables are local measurements on a large
but finite lattice system. This setting is in the focus of many investigations of equilibration [3, 32, 42, 59],
as it corresponds to a large class of realistic experimental observables, such as the measurement of the
orientation of local spins [39, 60, 61] or distribution of ultra-cold atoms in an optical lattice [32, 62, 63].
Naturally, one could also think of experimental settings where non-local observables can be accessed, such
as a measurement of momentum [57, 62]. Most of our discussion also applies to such non-local sets of
observables A as long as they only provide a small amount of information on the prepared quantum state.
For local measurements, this discussion is simplified as necessarily only limited information on the global
state can locally be measured, which is additional motivation to restrict to this setting. To discuss this case
of local systems and measurements on them, we introduce the basic setting and notation in the following
section.

3.2 LOCAL SYSTEMS

In this thesis, we focus our efforts on lattice models with local interactions. These models play a crucial
role in our understanding of quantum many-body systems and in the study of condensed matter theory.
While physical forces, like the Coulomb interaction, are usually long range, one is often capable of em-
ploying effective local models, for example due to screening effects which shield the electronic repulsion
[9]. A paradigmatic class of examples is given by tight-binding models, which are derived by looking at
the overlap of electronic orbitals and which are often capable of accurately capturing electrons in atomic
lattice structures [9]. Notable instances are Fermi- and Bose-Hubbard models, which accurately describe
the interplay of interactions and conductivity in electronic systems [10]. Other local systems often consid-
ered are spin systems describing the magnetization behaviour of solid states, such as Heisenberg models
[0]. These and similar systems clearly provide motivation to study locally interacting atoms on lattice
structures. Additional incentive comes from recently emerging experiments which allow to implement
such models on a large scale, while still allowing for control on the level of single constituents. For the
purpose of this thesis, ultra-cold atoms in optical lattices will take the center stage [62], but also ion chains
[37] or photonic platforms [64] are capable of experimentally probing locally interacting lattice models.

Motivated by these models, throughout this thesis we assume that the physical system at hand can be
captured by a regular structure. For this, we stick to the simplest setting of a cubic lattice in d ;-dimensions.
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The results presented in this thesis can easily be extended to more general systems, such as interacting
atoms on a Kagome or hexagonal lattice [62] as long as the lattice has a finite dimension. In order to
keep the notation and setting accessible and to provide physical intuition, we nevertheless refrain from
describing our results in a general graph theoretical language incorporating general lattices.

Each site of the d;-dimensional lattice £ is equipped with a local degree of freedom, which could be a
spin or a bosonic or fermionic orbital. For many physical settings, we think of a family of systems with
varying size and look at statements that are independent of this size. On the lattice, we assume that there
is some natural distance defined, which for simplicity is defined as the largest distance over all lattice
axes, which results in the sets of equi-distant points being rectangles. On the lattice, we use X,Y,S C £ to
denote local regions. We further need enlarged versions of these regions, denoted by X; that contains X as
well as all sites within distance 1. The distance of two sets X, Y is taken to be the smallest distance between
all sites within the region. For a set, |X| denotes the number of sites in the set and diam(X) the largest
possible distance of sites within the set. Its boundary is denoted by 9X. For any set X, we also need the
complement X¢ consisting of all sites of the lattices that are not in X.

The local constituents can be summarised in one global Hilbert space 3, which is given by the tensor
product of the local systems in the case of spins or by the usual Fock space in case of fermions or bosons. A
general spin quantum state on L sites with a local spin-system with dimension dgp, is naturally captured
by the tensor of its coefficients in the computational basis

dspir\

Wy=" > ¢y it i)

1 =1
For fermions or bosons, a similar expression in second quantisation can be used.

We assume that the local constituents of the lattice are coupled by a Hamiltonian that is local, in a sense
to be made precise now. For this, we first define a complete operator basis 0, where j labels the physical
site and r the element of the local operator basis. For fermions or bosons, the local operator basis can be
constructed using the canonical creation and annihilation operators. For site j, we denote them by f}L and
f; for fermions and b;r and bj; for bosons. While the antisymmetry of the fermionic wavefunctions only
allows for fj,f;r,f;r f5, f; fJT as possible combinations, for bosons one needs to consider an infinite number

of strings of bosonic creation and annihilation operators on each site. For spin systems, one always has a
finite local operator basis and for convenience we set

1
0 1,

Gj - AV dspin

\/(;7_ is a normalisation constant and work with a hermitian basis ortho-normalised with respect
spin

to the Hilbert Schmidt scalar product

where

T T
Tr (O-j: szz) = 8j1,i,0m 12/
where j1,j2 denote the lattice site and 11, v, labels the operators on the sites. Note that this implies that all
basis operators except for the identity are traceless. As a simple example, the local operator basis for a spin-
- i i i i i i- ices L1 Lgx 1Lgy 1452
1/'2 sys’.cem in this gauge is, for example, given by the normalised Pauli-matrices 7# L 50% 50Y, 505
With this construction, we are ready to define the support of an operator.
Definition 1 (Support). The support of an operator is the smallest set, such that the operator acts trivially outside

of this set. For spin systems, this can be defined as

supp(A) = argm)}n{le tA=Ax®1xc}.
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Figure 3.1: Taken from Ref. [5]. Graphical depiction of a cubic lattice system with distances given by the maximum
over the distances of each axis direction. Therefore the enlarged sets X; of squares are also squares. The support of
an approximately local operator is indicated using red color, with its localisation center marked by X.

The support of an operator can be determined from its unique decomposition into the local operator
basis, which, for spin systems, can be constructed using

dspin
A= Z Tr (Ao}’ -+ 012) oy - 012 .

T, =1

We call an operator strictly local, iff it has a finite support that is independent of the lattice size. When we
want to stress the support of a local observable, we use it is a subscript, meaning that Ax is supported on
X. The algebra of all operators local to some region X is denoted by Ax. In a slight abuse of notation, the
distance between strictly local observables d(A, B) is defined as the distance of their supports.

Aside from strictly local operators, we also need approximately local operators, which can be defined using
a reduction map. For any finite region S, we define a reduction map I's that takes out the part of the
operator on this region. In the picture using the local operator algebra, this corresponds to dropping all
terms that have non-identity contributions outside the region S. For spin systems, this can be achieved by
performing a trace over S€, as all operators other than the identity have zero trace. Thus, for spin systems,
we can write the reduction map as

1
1sel”
spin

Ils(A) =1 Q@ Trse (A)

where dspin 18 the local spin dimension. Alternatively, it can also be shown that such a local reduction can
be achieved by a random twirl over the unitary Haar measure [65]

Tg(A) = J du uAut.

c

Using this reduction map, approximate locality of an operator is a statement how well it can be approxi-
mated by these reductions.

Definition 2 (Local operator). An operator is called strictly local, iff it has finite support independent of the system
size. Correspondingly, an operator is called approximately local iff there exists a set X and its enlarged sets Xy, such
that

A =Tx, (A < f(1),

for some function f with suitable decay independent of the system size. Typically f is chosen to decay exponentially.
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A prime example to be considered later is the time evolution of an initially local observable in the
Heisenberg picture. This is also a clear example, why it is often crucial to think of the operator as a family
of operators depending on the system size and make statements that are independent of this size.

In contrast to local operators that, at least approximately, only act on a small part of the system, a
Hamiltonian is called local if it only couples objects over a small length scale, meaning that it is a sum of
local operators. Typically it is defined in the following way. We first express the Hamiltonian in the local
operator basis above and order this decomposition with respect to the supporting sets Z

H=) hz.
VA

Note that, as follows from the above operator basis construction, this decomposition is unique up to an
overall energy shift. In particular, this means that hz only contains those operators in the Hamiltonian
that are not already contained in subsets of Z. For this thesis, we are interested in families of Hamiltonians
for different system sizes. Locality of the Hamiltonian is then a statement how the Hamiltonian terms hz
can be bounded by the size of the sets Z independent of the system size.

Definition 3 (Local Hamiltonian). Let H = ) , hz be the operator basis decomposition of some Hamiltonian.
Then H is called quasi-local, iff the local Hamiltonian terms can be bounded

Inz]) < Cendiam(Z)

7

for some constant p independent of the system size. It is called local or finite range, iff there exists a length scale 1
independent of the system size, such that

[hz]l =0 V diam(Z) > 1o .

A different way of phrasing this definition is that a finite range Hamiltonian is the sum of strictly local
operators and a quasi-local Hamiltonian is the sum of approximately local operators. Most results that
can be obtained for quasi-local Hamiltonians can still be obtained in the case where the Hamiltonian
terms do not decay exponentially, but only algebraically, as long as the decay is suitably strong compared
to the lattice dimension d; [66, 67], if the decay in the results is changed accordingly. We forego this
generalisation in order not to complicate the results.

Turning back to the issue of equilibration and thermalisation, we take the local operators introduced
above as our set of available measurements. More precisely, we restrict to some local subset of the lattice
S C £ that will be chosen independent of the global system size and use operators As supported on it.
For those local operators, we will use the following notation for the distinguishability

lell1,s == llell1,as = sup [Tr(Ap)l,

As€EAsg
where Ag denotes the algebra of operators supported on S. Allowing for arbitrary measurements on
subregions allows to fully reconstruct the local density matrix. Therefore, the difference between a time
evolved state p(t) and a static ensemble pstat that can be accessed on the local region S is given by

llo(t) — Pstat 1,8 = | Trse (p(t) — pstat) |1 -

As motivated above, this local distinguishability will be used as our measure for how distinguishable
quantum states are. For this quantity, we will find that time-evolved states will often equilibrate, in the
sense that they locally become indistinguishable from a static ensemble

[Trse (p(t) — pstat) |7 < €,

for some small error e for the overwhelming majority of times. Before we present the details of such
equilibration, let us briefly comment on the static ensembles that appear in this way.
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3.3 STATIC ENSEMBLES

If equilibration takes place, it immediately follows that the state psiat needs to be given by the infinite time
average [42]

T
Pstat = W = hm = Jdt p(t Z PypPy ,
0

where Py are the possible degenerate eigenprojectors of the Hamiltonian. This state corresponds to the
maximum entropy state, keeping all constants of motion, namely the eigenprojectors of the Hamiltonian,
fixed [68]. This behaviour can thus be seen as a dynamical Jaynes principle [42], which corresponds to the
maximisation of the entropy keeping a set of expectation values fixed.

While equilibration as such can easily be proven for most times [69], it is very hard to get time scales on
when this equilibration sets in. While very promising results for free systems exist [6, 70], the best known
bounds that hold for generic systems are exponentially large in the system size [58, 71]. We comment on
this in detail later and find that there are indeed systems where the equilibration time scales are diverging
for a natural class of states.

Once one knows that the system can be described by a static ensemble on a realistic experimental time
scale, the obvious question is how this ensemble can be characterised. As described above, it can be seen
as the maximum entropy state keeping all constants of motion fixed. When only looking at a small set of
measurements, it is, however, often not necessary to include all eigenprojectors as constants of motion. In
fact, it is heavily debated which constants of motion are needed. The corresponding ensemble relating to
the maximum entropy keeping the expectation value of some constants of motion Z, fixed is called the
generalised Gibbs ensemble (GGE) [3, 72—74]

PGGE = arg max S1(o)
oeD,

Vm:TrZmo=TrZmp

B
where D is the space of density matrices, S1(p) = —Tr(plog(p)) denotes the von-Neumann entropy, Zo =
Tr(e~ Lm*mZm) and the Lagrange multipliers i, are fixed by the expectation values of the constants of
motion. Finally, if the only constant of motion that needs to be included is the expectation value of the
energy, then the system thermalises, in the sense that the expectation value of selected observables can,
for most times, be described by a Gibbs state,

1 _
PGibbs = foe BH p

where 2y = Tr(e”PH). This is the maximum entropy state, keeping the expectation value of the energy
fixed. The energy, or correspondingly the temperature, is of course fixed by the initial state and does not
change over time.

A notable class of systems that does not show this behaviour are localising systems. These show a strong
suppression of transport, which leads to particle or energy imbalances being preserved for all times. Thus,
they can never be captured in terms of thermal ensembles, but rather possess detailed memory of their
precise initial conditions. The origin of this memory is precisely that these models have local constants
of motion. As those constants of motion could be used as local measurements, yet their value can never
change, it is clear that such constants of motion need to be included in any static description in terms of a
generalised Gibbs ensemble.
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In the following, we lay the ground-work for describing physical systems in terms of static ensembles,
by describing the essential mechanisms behind equilibration. We investigate these questions from two
complementary viewpoints that are very common in the study of quantum many-body systems. The first
is an algebraic viewpoint, where the locality of the lattice explicitly enters. In combining Lieb-Robinson
bounds with transport properties of the system, one finds that mixing takes place and central-limit type
arguments can be applied. This formulation has the nice feature of immediately being connected to our
physical intuition. What is more, it provides meaningful equilibration time scales. Its downside is that it
so far only applies to rather special Hamiltonians and generalisation to more complex systems seem hard.

In contrast to this description in terms of local algebras and commutators, the other viewpoint is that of
working with eigenvalues and eigenvectors of the Hamiltonian. Here, the Hamiltonian is simply seen as
some matrix and assumptions on its eigendecomposition are made. It has the strong advantage of very
broad applicability. In particular, equilibration can be shown under very mild conditions on the spacing of
the energy levels. Its downside is that physical intuition is usually lost. For example, it does, a priori, not
seem to have any intuitive connection to the spreading of quasi-particles in a lattice and any signature of
locality is well hidden in the complicated structure of the eigenstates. Due to the generic nature of those
bounds, they do not incorporate our physical intuition like ballistic spreading and thus include settings
where equilibration indeed takes a long time. More precisely, the best known bounds are exponentially
long in the system size.

We start with the first of these two approaches. Based on known results for bosons, we mostly focus on
the fermionic case, where the underlying principles are clearer, since unbounded operators are avoided.

3.4 EQUILIBRATION IN FREE SYSTEMS

In the following, we present equilibration results in a paradigmatic setting which can still be easily ac-
cessed, namely bosonic or fermionic systems that are free in the sense that they capture non-interacting
particles. Due to their simple algebraic structure, these models can often be solved exactly and provide
valuable intuition for the study of more general models. Importantly, they provide a physically realistic
setting for which realistic equilibration time scales can rigorously be derived.

We present such equilibration results in free fermionic systems [6]. Based on a related line of argument
in the bosonic case [45, 73, 75], we show that, for rather general initial states, explicit time scales can be
derived, which are very short and of the same order as those experimentally observed in more generic
Hamiltonian models [32, 76]. The main advantage of the fermionic setting compared to bosons is that it
is more directly accessible, due to the finite Hilbert spaces involved. This makes the presentation intuitive
to understand and allows to focus on the underlying physics. To begin, we first introduce free systems,
which can be captured in terms of quadratic Hamiltonians.

3.4.1 Free systems

For general bosonic or fermionic systems, we work with the collections of mode operators of the form

T
T= (CO/CEI"'/CL/C-‘]—_> 4

where ¢ and cf denote either bosonic or fermionic annihilation and creation operators. For simplicity, we
assume that the fermions are spinless and thus work with just one fermionic species. For the above opera-
tors 1;, we introduce a function d(j, k) that captures the distance between the corresponding operators on
the lattice. As each lattice site has two indices associated to it, corresponding to creation and annihilation
operator, d(k,j) is not a metric, as d(k,j) = 0 does not imply k =j.
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Naturally, any bosonic or fermionic Hamiltonian can be expressed in terms of these operators. Such a
Hamiltonian is called free or quadratic, iff it is a quadratic polynomial in these operators

2L
H= Z r;rhj,k'rk ’
j k=1

where h is an arbitrary hermitian matrix. Such operators can be solved in a particularly easy way by
diagonalising the interaction matrix h using mode transformations that leave the commutation or anti-
commutation relations invariant. In particular, for bosons the matrix can be diagonalised in a symplectic
way. The corresponding commutation relations are then preserved and diagonalising h corresponds to
moving to a new set of bosonic modes. For fermions, the same is true using orthogonal transformations.
Sometimes this rotation into the eigenmodes of the problem is named Bogoliubov transformation in the
literature [11]. In both cases, the transformed Hamiltonian takes the following easy form

H=> Aélex.

Given a fixed number of particles, the ground state of those systems is simply given by filling these eigen-
modes according to their energies and all other eigenstates can be obtained by populating the eigenmodes
in different configurations, as their population is completely decoupled. In this sense, quadratic Hamil-
tonians correspond to non-interacting particles. We now turn to the thermal states of such Hamiltonians,
which can be described in a conceptually simple way.

3.4.2 Gaussian states

The thermal states of free Hamiltonians are called Gaussian states [77, 78]. They are uniquely defined by
only specifying their expectation values with respect to quadratic combinations of creation and annihila-
tion operators. These matrices are called correlation matrices

Yj,k =Tr (ijTk)

and capture the expectation value of arbitrary combinations of two fermionic basis operators. There
is an enormous literature focussing solely on Gaussian states and many interesting properties of these
matrices can be derived. Most importantly, for fermionic systems, they can always be diagonalised by an
orthogonal transformation which conserves the fermionic anti-commutation relations [79]. For bosons, the
same can be achieved using a symplectic transformation that in turn preserves the bosonic commutation
relations [77]. In both cases, this allows to decompose the correlation matrix into its eigenvalues ny, in the
same way as for free Hamiltonians, which are the particle numbers in the corresponding eigenmodes &y.
Gaussian states are then the states of the form

1 i
P = Z»io exp (—%nkckck> ,

where Zo = Tr (— exp (Zk nkélék)) is a normalisation factor. In this way, a Gaussian state is the gen-

eralised Gibbs ensemble corresponding to the maximum entropy state keeping the correlation matrix, or
alternatively its eigenmode occupations, fixed.

Another interesting feature of those Gaussian states is that it is straightforward to calculate their n-point
correlation functions

Tr (o, - Tj) -
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In particular, they can be decomposed according to Wick’s theorem, which states that any n-point function
of a Gaussian state can be decomposed in terms of products of 2-point functions [12]. For fermions,
this can be written in terms of a determinant, which is easy to calculate, whereas it takes the form of a
permanent in the bosonic case [80-82]. Such Gaussian states allow to investigate large scale systems, thus
giving rise to an extensive literature focusing on this paradigmatic setting.

3.4.3 Equilibration in the Gaussian setting

We begin by looking at equilibration in the setting of Gaussian states and free Hamiltonians. There, the
full evolution of the state can be captured by keeping track of the correlation matrix, as it uniquely defines
the Gaussian state. Thus, many essential concepts in the study of the dynamics of quantum many-body
systems can be easily defined and are conceptually lucid. For simplicity, we will focus on the fermionic
case, in order to avoid the mathematical difficulties connected to the unbounded bosonic operators. In
this case, evolution under a free Hamiltonian is a mode transformation and preserves the fermionic anti-
commutation structure, in the sense that creation or annihilation operators are mapped to a sum of those
operators in an orthogonal way

Tk (t) = Z Vk,j (t) Tj .
j

For the correlation matrix, this yields the evolution

YT1,T2 (t) - Z VT],j] (t)vrz,)z(t)y]1,]2(0) .

j12

The evolution Vj ;(t) shows a rich structure that contains many important features, which we also
encounter in a more general way in later parts of this thesis. Firstly, the particles do not move arbitrarily
fast over the lattice, but rather the spreading happens, at most, in a ballistic fashion. This result, which
also can be generalised to interacting systems, is called a Lieb-Robinson bound (see appendix B).

Definition 4 (Free Lieb-Robinson bounds). The evolution V of a free systems is said to fulfil Lieb-Robinson
bounds, iff

[Viej (£)]| < Crg et IH=alxD

where CLR, W, Vv are constants independent of the system size and d(j, k) denotes the spatial distance between the
positions j and k.

Theorem 1 (Free Lieb-Robinson bounds from locality). Given a free Hamiltonian H = 3 _; T}th,ka with
finite range interactions

dlp hj,kzo Vd(j,k)>1o,

and uniformly bounded matrix elements 3x : |hy, k| < «, then it fulfils Lieb-Robinson bounds with suitable constants
CLR, 1, V-

These bounds put an upper limit on the speed of any propagation in the lattice, be it information,
particles or energy. This is discussed in more detail, when we treat those bounds in the general context
of interacting systems. The main interest in Lieb-Robinson bounds stems from the fact that they are
extremely universal and, as stated above, can be derived from nothing but locality of the Hamiltonian [73]
(see appendix B for the general formulation in interacting models).
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Figure 3.2: The figure schematically shows the spreading of a single fermionic operator in time over the lattice.
The evolution is contained inside a light cone given by Lieb-Robinson bounds. The black curve shows a numerical
simulation of a free fermionic hopping Hamiltonian on 201 lattice sites with the fermionic operator starting at the
middle. Schematically plotted is the absolute value of the matrix elements |Vj | after time t = 35 in natural units,
which clearly shows that this Hamiltonian spreads the matrix elements over the lattice, thus leading to a homogeneous
suppression of them.

The second important feature in the evolution of free systems relates to the question whether these
bounds are actually saturated. After all, it could also be that particles in the system cannot move at all.
As we discuss in chapter 5, this is the case when random potentials are introduced to the free system. For
translationally invariant models, however, one typically expects particles to indeed spread over arbitrary
distances. We capture such behaviour with the following definition.

Definition 5 (Transport for free Hamiltonians). We will say that a free Hamiltonian on a system with L sites on
a d dimensional lattice with evolution matrix V has transport iff

[Vie,j| < Crrans min{t~92/3, 17473} v j,
for some suitable constant Cirans and for all times t € [0, trecl, where trec denotes a recurrence time.

The intuition behind this definition is that an initially localised annihilation or creation operator spreads
over a large area, such that its component on an single localised annihilation operator is dynamically
suppressed. The choice of the exponent 1/3 is justified by the fact that it can be shown that, for example,
the free hopping Hamiltonian with constant on-site potential shows this behaviour [73] (see Fig. 3.2).
Naturally, this suppression cannot continue indefinitely. At some point in time, lower bounded by Lieb-
Robinson bounds, the evolution hits the boundary of the system. From this moment on, the matrix
elements will roughly be uniformly distributed over the lattice, until eventually the recurrence of the
system takes place.

It should be noted that the above definition of transport is very much tailored to free systems. As we
discuss in detail later, describing transport in interacting models is far less clear cut. For example, we
encounter settings where particles are localised, while operators still become non-local in the Heisenberg
picture over time. In these models, we can thus send information through the chain, despite energy and
particles being localised even for infinite times (see chapter 6). This can never happen for free fermions, as
an annihilation operator always remains a linear superposition of local creation and annihilation operators
and thus particles themselves have to propagate.

The above transport assumption is already sufficient to derive fast equilibration for the simplest case of
having particles only on a certain small region X of a 1D chain. Then, only operators supported on this
region X can contribute to the expectation value, which gives

ITr (ricrp) | < (2X)Z Chans 729273,
trans

for fermionic operators on arbitrary positions k, 1. Here we used that there are only 2|X| possibilities, cor-
responding to creation and annihilation operators on |X| many sites, that can contribute to the expectation
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value, but each of these is homogeneously suppressed due to the transport in the system. Thus any local
expectation value has to equilibrate to zero on a very short time scale in this setting.

Naturally, the above case is of limited interest as such relaxation has to move towards the vacuum. Still,
it already shows how well controlled equilibration in free systems often is. An important result that goes
beyond this simple setting is provided in Ref. [73], where the evolution of occupation numbers of initial
states that are periodic product states under free hopping Hamiltonians is considered. In this case, the
equilibration time scale is given by the periodicity of the initial state, determining the length scale in
the problem, divided by the hopping strength. This time scale is independent of the system size and
equilibration thus happens quickly.

More generally, equilibration in free models can be obtained by tracking the evolution of the correlation
matrix, which lead to notable results [45, 75, 83-85]. As they are often specific to the models consid-
ered, we will not present the details here. There is, however, one important aspect that all these free
equilibration results have in common. The corresponding Hamiltonians have eigenmode energies that are
non-degenerate. Thus, the correlation matrix dephases over time and its infinite time average is diago-
nal in the Hamiltonian eigenmode basis. This is a special instance of using that equilibration provably
moves towards the infinite time average, which will be used and explained in detail in section 3.5. In this
way, if those systems equilibrate, they equilibrate to the generalised Gibbs ensemble (GGE) keeping the
expectation values of the linearly many number operators of the Hamiltonian eigenmodes fixed [75]

P = PGGE = L Tumefe ,
Z0

¢l e . a1 .. .
where 2y = Tre™ 2k k€ and ¢y is the annihilation operator for eigenmode k.

While Gaussian states are a paradigmatic setting, they are necessarily connected to non-interacting
particles. In order to understand equilibration in more generic systems, two generalisations are needed,
namely to derive results for strongly correlated initial states and to move to interacting Hamiltonians. In
the next section, we show how the first step can be performed.

3.4.4 Equilibration through Gaussification

The following section is based on Ref. [6]. We sincerely thank Marek Gluza, Christian Krumnow, Christian Gogolin
and Jens Eisert for collaborating on this successful project.

In this section, we show how the Gaussian equilibration results presented above can be extended to
settings where the initial state is far from Gaussian. In order to achieve this, we show that under the
evolution of a free system with transport, many initial states end up locally looking Gaussian on short
time scales. While this result immediately allows to extend equilibration results to correlated initial states,
it is also of independent interest, as it in general captures the emergence of local Gaussianity, even in
settings that do not equilibrate quickly.

We begin in some initial state p, that is assumed to have exponential clustering correlations
[Tr(pAB) — Tr(Ap)Tr(Bp)| < Causee 445/,

where & is a correlation length, A, B are normalised local operators and C_j,q; is a constant independent
of those operators. We further assume that the state has a fixed particle parity, in the sense that the
expectation value of any odd polynomial of fermionic operators vanishes. In contrast to the initial state,
which is allowed to be quite generic, the conditions on the Hamiltonian are more restrictive. Firstly, we
assume that the Hamiltonian is free, in the sense that it is quadratic in the creation and annihilation
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operators (see section 3.4.1). The physical condition placed on it are Lieb-Robinson bounds and transport,
as introduced above. In the above setting, we arrive at the following result, which allows to extend the
Gaussian results to the setting of correlated initial states.

Theorem 2 (Gaussification). Let H be a free fermionic Hamiltonian that has transport and admits
Lieb-Robinson bounds. Further, let p be an initial state with exponential clustering correlations and
fixed particle parity and S be some finite region of consecutive sites. Then for any € > 0, there exists a
time interval [tielay, trecl, Such that

”TrSC [p(t) - pG(t)] ||1 < (z‘s‘)(4+4dL”S‘+] evte [trelaxr trec] ’

where pg is the Gaussian state fixed by the correlation matrix of p and tyeax is constant in the system
size.

This result shows that under the evolution of a free Hamiltonian that has transport, initial states with
exponentially decaying correlations dynamically Gaussify, in the sense that they will locally resemble
Gaussian states after a short relaxation time. In the following, we provide the proof in the simplified
setting of having a subsystem S that contains only two sites. This greatly simplifies the proof and still
shows the basic mechanisms behind it. We thus focus on an intuitive presentation of the underlying
principle. The mathematical details as well as the extension of the proof to larger subsystems S are
contained in appendix C.

Proof. We begin by formulating the problem in the Heisenberg picture, which relies on expressing the
local 1-norm as an expectation value with fermionic annihilation and creation operators. At this point,
we use the simplifications that come with dealing with fermions rather than bosons. Then, the transport
properties of the Hamiltonian are used. Firstly, the fermionic operators will be restricted to the causal
Lieb-Robinson cone, as in the bosonic case [73]. In a second step, a careful local grouping of the fermionic
operators is performed. Using exponential clustering, one can then show that the expectation value
decouples into patches. In case they consist of more than two operators, we will be able to use transport to
show that they contribute very little to the expectation value. This gives only clusters with two operators,
also referred to as pairs, which can never resolve the difference between the state p and its Gaussian
version pg, which is taken to have the same second moments.

Heisenberg picture: We begin by reformulating 1-norm closeness in terms of expectation values of opera-
tors

ITrse (p(t) —pg(t)) |1 = sup [Tr(Ap(t) —Apg(t))l .
AT

In the next step, we expand the operator A in a fermionic operator basis for the subsystem S

A= Z Ay, mys) (ﬁ (t)>m1._, (TZ\S\(t)>m2‘S‘ ,

my,---,Mys)

where 171 to 15|5| are the fermionic operators on the subsystem. Normalisation of the operator ||A|| = 1
implies that all of the 22/S| possible coefficients satisfy @y, jys)| < 1. Thus, the proof of the theorem can
be reduced to showing that

|Tr (v, 15, (D(p—pg))| < €',
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for some collection of q < 2[S| operators labelled with the indices sq to sq. For this, we expand the time
evolution of the fermionic word

> Vi () Ve 5 (0T (15,015, (0—pg))]|
j1/"'rjq

which will be analysed and restricted to the Lieb-Robinson cone in the next step.

Causal cone: Based on Lieb-Robinson bounds introduced above, we will separate the lattice £ in two sets:
An effective light-cone € ={i € £|3j € S : d(i,j) < (v+ 2ve)[t]} and its complement £\C, where ve will
be picked such that the final bound is optimal. In the next step, we will use the bounds to restrict the
full dynamics of all fermionic operators to the inside of the effective light cone. Using the exponential
suppression provided by Lieb-Robinson bounds, this can be done with an error (see appendix C)

¢/ +=2C  p(dg)e Hvelth

where C /LR (dg) is a constant resulting from summing up the exponential series and 4= here and later on
denotes that this error is acquired in addition to the other error sources. With this, we can assume that
all indices are inside the Lieb-Robinson cone, up to an error that decays exponentially with time, since we
enlarged the light cone by 2v¢[t|. In the next step, a careful book-keeping of the index positions will be
performed.

Tracking index positions: At this point, we will use that the subsystem consists of two sites, such that at
most four fermionic operators corresponding to indices j1,j2,j3,j4 can contribute. The goal is to perform
a careful separation of the different configurations of those four indices over the light cone into parts that
look Gaussian and a rest that is dynamically suppressed. For this, we introduce a length scale A and will
say that a set of indices are A-close-by, if they can be ordered in a way such that consecutive indices are
within distance A of each other. The notion of A-closeness is then used to effectively separate the indices
into patches of indices sitting within distance A of each other (see appendix C for a formal definition). For
each of those patches C, we introduce the operators

Cr= ] Ve (0075,
seCy

which contain all fermionic operators supported on it. We proceed by using the fact that these patches
are separated from each other by a length scale A and separate them using the exponential clustering
correlations of the initial state. Ignoring a sign resulting from reordering the fermionic operators into the
patches gives expressions of the form

(Cr)o-(C)p,

where (-), denotes the expectation value with respect to the initial state p. The analogous argument for
the case of larger subsystems, creates an error term (see appendix C)

e/ +=(2S])2SH 11281 C g 2 E

For the Gaussian state, a similar procedure can be carried out using Wick’s theorem, which gives an error
term (see appendix C)

e’ = (2SHNCIS Capuer e/ E
Both contributions have an exponential suppression in the length scale A. By letting it grow algebraically

with time A « t* both these contributions are exponentially suppressed in time.

Using transport: Having decoupled the patches, we now separate the terms according to their index
configuration as follows.
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A) The case of all four indices being close-by.
B) Two pairs of indices being respectively close-by, but separated from each other.

C) All other partitions, which therefore have a single index separated by a distance larger A from the
rest.

The terms in contribution C) are zero, as the expectation value of a single fermionic operator vanishes due
to a fixed particle parity in the initial state. The quadratic terms in contribution B) are identical for the
actual state p and its Gaussian counterpart pg, which is fixed by demanding that is has the same second
moments. Thus, they do not contribute to the deviation from Gaussianity. The full non-Gaussianity of the
initial state is thus contained in contribution A). We now use the transport property of the Hamiltonian
(see Def. 5) to show that it is dynamically suppressed.

Here, we use that all the four indices are A-close to each other in contribution A). For this cluster, the
number of positions and thus of index configurations scales like the size of the light cone |€| oc t94. Yet,
due to transport, we have a homogeneous suppression of four fermionic operators and thus get a total
scaling

4
e o tdet—3de

which is algebraically suppressed in time. In case the subsystem is larger than two sites, significant
difficulties appear. While the above characterisation into three contributions can directly be generalised,
it is not directly clear how to bound the contributions of clusters of fermionic indices, as combinatorial
prefactors quickly destroy the argument. Employing an elaborate counting scheme and using unitarity of
the evolution, this can nevertheless be performed. The full technical proof of this suppression is contained
in appendix C and yields

¢! 4—(2]s)d+4d)ISIHT ) 4 Adde g5 (1-+ 162 Cause /%) .
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Collecting all error terms and choosing a suitable scaling of the separation length A in total gives the
scaling (see appendix C)

_de
ext e,

which concludes the proof. Thus the non-Gaussianity that can locally be observed is suppressed alge-
braically in time. For any fixed error €, we can therefore find a relaxation time t,,y, such that the
difference to a Gaussian state is bounded by e for all times t € [tyelax, trec]. Here, the recurrence time is set
by the point where the homogeneous suppression breaks down. O

With the above argument, we are able to derive equilibration for a number of free systems, even in
settings where the initial state is far from Gaussian. For this, we use the fact that they evolve to a state that
is locally indistinguishable from a Gaussian state, together with the equilibration of correlation matrices.
In the greater programme of describing dynamical quantum processes with static ensembles, this is a
crucial step, which gives explicit realistic time scales for which the system locally can be described in
terms of a static ensemble.

Our next goal is to obtain similar results for interacting models. Due to the complex nature of these
systems, the obtained results are somewhat limited in comparison, especially concerning the equilibration
time scales. Despite these difficulties, we find that generic interacting quantum many-body systems show
equilibration behaviour.
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3.5 EQUILIBRATION ON AVERAGE

Complementary to the above setting, which so far can only be applied to free Hamiltonian systems, are
approaches that work directly with the eigendecomposition of the Hamiltonian [69]. The quantity that is
typically investigated here is the squared distinguishability

ITr (A(t) (p— w)) |

The main difference to the previous approach is that this quantity is not evaluated for a specific instance
in time, but rather time averages are being considered

T

Hdt ITE(ACY) (p— ) .
0

This can be seen as an infinite time average weighted with the normalised indicator function of the interval
[1,T]. For large enough times, this finite time average will be indistinguishable from the infinite time
average. Without prior assumptions, however, the required time T can be doubly exponentially large in
the system size, while under realistic physical conditions, it is usually much smaller [71]. These finite time
averages are discussed in the next section, where they are used to capture equilibration time scales. More
generally speaking, also different time averages can be considered

jdt (1) Tr (A(t) (p— w))?

which are also known as energy filters (see appendix E). We will mostly stick to the simple time average
with equal weight for all times and denote the infinite time average as

—| =

f:= lim
T—o0

-
Jdt f(t).
0

Due to the fact that the squared distinguishability in the integral is strictly positive, we can directly
deduce that, if the integral is small, the difference in expectation value has to be small for most times. It is,
however, always possible that for some rare times, the states are perfectly distinguishable. This is in sharp
contrast to equilibration in free systems presented above, where for a whole interval in time, equilibration
was proven.

Following Refs. [69, 86], we focus on spin systems and explicitly expand the above integral. For simplic-
ity, we assume a Hamiltonian spectrum that is fully non-degenerate. This makes the infinite time average
state completely diagonal

w=p(t) =) [kNKlplk)kl,
k

where [k) denotes the eigenstates of the Hamiltonian. Thus the integral above takes the following form

2

Tr(A() (p—w) P =] Y (IALK) (K plj)e HEE)
jkjF#k

The square can, in a next step, be expanded explicitly

Tr(AD (p—w)P= Y  GIAK) (Klpl) > (sIAl) (rlpls) e BB = (E—E)
j kj#£k T,8:T#S
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At this point, it is clear that the distinguishability over time is immediately connected to the difference of
energy gaps. Let us therefore briefly look into the structure of spectrum of local Hamiltonians.

For local Hamiltonians, it can be shown that the distributions of the eigenvalues is Gaussian, in the sense
that the integrated density of states approaches a cumulative normal distribution when the system size
grows [87]. In essence the argument relies on using that most Hamiltonian terms commute and are thus
independent. Therefore, a form of a central limit theorem can be used [87]. From this, we can also deduce
that the distribution of arbitrary energy differences is, to a good approximation, distributed according
to a Gaussian, as differences of Gaussian distributions are again Gaussian. In contrast, when one only
looks at the differences between energy levels that are next to each other, important structure appears.
The literature roughly divides the behaviour of these consecutive gaps into two classes. The first is, when
their likelihood approaches a Poissonian distribution with index zero, when the system size is increased,
meaning that they are distributed according to

1
The other assumes a Wigner-Dyson distribution

P(A) = %e*“EZ/AZ ,

associated to the behaviour of random matrices drawn from the Gaussian orthogonal ensemble (GOE)
[88]. A Poissonian distribution is typically associated to so-called integrable models [89], which can be
decomposed into non-interacting subspaces, whereas a Wigner-Dyson distribution, in a suitable sense,
tells us that the model is interacting. The above statement takes different forms in the current literature
[42, 88, 89] and seems like a folklore theorem, while a strict statement of the consequences of the spacing
of the consecutive gaps remains elusive so far. These distributions refer to the limiting behaviour of
consecutive gaps when the system size approaches infinite.

For finite systems, it is also crucial whether exactly the same value for an energy gap can appear twice
when looking at all possible energy differences, rather than just consecutive ones. If this is not the case,
then the gaps are called non-degenerate.

Definition 6. (Non-degenerate energy gaps) A Hamiltonian is said to have non-degenerate energy gaps, iff for the
spacing of its energy levels By ; ; s, the following uniqueness result holds

Vk#]‘rr#S:Ek_Ej:ET_Esﬁk:T/\j:s.

This assumption guarantees that the time averages considered above dephase in the infinite time aver-
age. The condition is very generic, in the sense that it is fulfilled, as soon as arbitrarily small random
nearest neighbour interactions are added to the system [69]. In order to understand its physical meaning,
it is useful to first look at a commuting Hamiltonian H = Ha + Hp with [Ha,Hg] = 0. Here the exci-
tations of Ha and Hp are independent and the corresponding excitation energies appear as gaps many
times in the spectrum. A particular example of such commuting Hamiltonians are the free systems we
encountered earlier. Here the occupation of the eigenmodes was completely independent and the corre-
sponding eigenmode energy appears as an energy gap all over the spectrum. In this way, the condition
above guarantees that the corresponding Hamiltonian is fully interacting. In other words, there is no
tensor product decomposition of the full Hilbert space, such that the Hamiltonian does not couple these
two subsystems. Following from this assumption, one can rigorously derive a very general equilibration
result for the infinite time average. This is very much complementary to the equilibration in free models.



3.5 EQUILIBRATION ON AVERAGE 27

Theorem 3. (Equilibration on average) Given a Hamiltonian on a spin system with local dimension
dspin With non-degenerate energy gaps, then the infinite time average distinguishability on a subsystem
S can be bounded by [69]

S|

spin

2deg"/?

[Trse (pe — w)l1 <

Here w is the dephased state introduced above, N is the total number of spins and the effective dimension
counts how many eigenstates of the Hamiltonian are part of the state

1
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The above theorem states that the average distinguishability between the time evolved state and the static
ensemble w is small, if the effective dimension is large. Due to the fact that the theorem is formulated
for the infinite time average, it does not contain any information on time scales, but rather just means
that the states are barely distinguishable for most times. The effective dimension plays a crucial role and
it is at this point that the initial state enters. In particular, a large effective dimension excludes the case
where only a few eigenstates are superimposed and the evolution would thus be quickly recurrent. In
local systems, a large effective dimension can be motivated by looking at the entanglement structure of
the eigenstates. For this reason and as a preparatory discussion for many later part of this thesis, we now
introduce entanglement measures and discuss the properties of local states.

3.5.1 Local states

In this section, we explore local descriptions of states. We begin by reviewing the essentials of entangle-
ment. A bipartite quantum state between two regions X and Y is called separable, iff it can be written
as
p=) Apk®pl,
j

where A; > 0 and p);<, pi( are density matrices. All states that are not of this form are called entangled. For
mixed states, deciding whether an arbitrary given state is entangled or not is is a NP-hard problem in the
language of complexity theory [90], meaning that it most likely cannot be solved in a time polynomial in
the size of the system on which the state is defined [91, 92]. For pure states, the calculation of entanglement
is greatly simplified. In fact, all the different ways to capture entanglement for mixed states collapse to

the same measure, which captures how mixed local reductions of the states are [91]. For a bipartite setting
between regions X and X¢, a state is entangled exactly iff

S1(Trxe(p)) >0,

where S1(p) = —Tr(plog(p)) denotes the von-Neumann entropy. We call this entanglement measure the
entanglement entropy. A more fine-grained measure of how mixed a states is, is given by the Renyi
entropies.

Definition 7 (Renyi entropies). The family of quantities
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with o« > O are called the Renyi entropies. For lim_,1, they approach the standard von-Neumann entropy.

Naturally, each Renyi entropy directly also gives a way to quantify entanglement for pure states. Two
special abbreviations are common in the literature, namely Hmax := S, which captures the rank of p and
Hpin = lim g0 S, which is the largest eigenvalue of p. As the names suggest, they fulfil

Hmin < So < Hmax Vo

One of the key insights in the research of local systems is that the local interaction structure of a Hamil-
tonian also reflects itself in the properties of its eigenstates, at least for low energies. The state with the
lowest energy is called the ground state. In case there is a uniform lower bound for the excitation energy to
the first excited state, independent of the system size, the model is called gapped and the largest possible
lower bound is called the spectral gap 'y. Using such a gap, one can infer a lot of structure of the ground
state. Even though the results can often be generalised to degenerate subspaces, we restrict to the con-
ceptually simpler case of a unique ground state. On a mathematically rigorous level, a key result is the
exponential clustering theorem [66, 93, 94].

Theorem 4 (Exponential clustering theorem). Let H be a quasi-local Hamiltonian with spectral gap v > 0 and
unique ground state |Eq). Then this ground state has exponentially decaying correlations, in the sense that

| (Eol ABEo) — (Eo| A [Eq) (Eol B[Eo) | < Ce Wa(AB),

where A, B are local operators and C, u are constants that strongly depend on the gap vy, but are independent of the
system size.

We will later demonstrate that such a statement can be generalised also to higher excited states in the
context of localising systems (see section 6.4) and provide a proof reminiscent to that of the exponential
clustering theorem. Another important feature of ground states of gapped models is that their entangle-
ment entropy can be bounded in one dimension (1D) [95-97].

Theorem 5 (1D area law). Let H be a quasi-local Hamiltonian in 1D with spectral gap v > 0 and unique ground
state |[Ep). Then the entanglement entropy of this ground state across any bi-partite cut is bounded by a constant,
independent of the system size.

Here the assumption that the system is one-dimensional is absolutely crucial. A similar result also holds
for the more general Renyi entropies [95]. This result is a particular case of a so-called area law [98].
While entanglement entropies generically scale like the volume of the considered region, and thus fulfil a
volume-law, an area-law implies that the entropy only grows like the boundary of that region.

Definition 8 (Area law). A state p is said to satisfy an area-law for some entanglement measure Ex between
region X and its complement, iff its entanglement between that region and its complement is bounded by the size of
boundary |0X| of that set

Ex(p) < CloX],
for some constant C that is independent of the system size and the region X.

It is often suspected that the ground state of gapped local Hamiltonians also fulfil an area-law for the
entanglement entropy in higher dimensions than 1D, but the proof remains elusive despite considerable
efforts [98]. However, there are important instances, where it has already been successfully proven [99—
101]. Interestingly, the exponential clustering theorem is in no way restricted to 1D. Intuitively, one might
assume that if a pure state has decaying correlations, this might be enough to achieve a bound for the



3.5 EQUILIBRATION ON AVERAGE 29

entanglement. In 1D, this indeed turned out to be true [102, 103]. In higher dimension, it is unclear
whether a similar result can hold [102, 103]. As it would immediately imply an area-law for the ground
states of gapped local Hamiltonians, it is likely that the proof will be hard.

Finally, especially in one dimension, it is often useful to approximate states with tensor networks. There
is a whole zoo of such tensor-network states and one could easily fill this whole thesis with a review of
such states. Here we focus on the setting of 1D pure states that can be captured as matrix-product states
(MPS) [104], which are defined as follows (see also appendix A).

Matrix-product states

A state [) is called a matrix-product state with bond dimension D, if we can write it as

dspin
|Ll)>: Z Cj],---,jL|j]/"'/jL> ’
jiegr=1
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where (A1[j1]] and |A[j1]) are boundary vectors of size D and Ay[j] for each position k are
complex D x D matrices. For sufficiently large D any state can be captured in this form. One
speaks of a state being an MPS if the bond dimension for an approximation with fixed 1-norm
error grows only linearly with the system size. If the state is translational invariant, then one
can choose the matrices A to be the same at all sites and drop the subscript.

The success in approximating a state with a low bond dimension MPS is directly connected to the
entanglement entropy for spatial cuts. For example, given an area-law for a Renyi-entropy S with 0 <
o < 1, one can prove that the state can efficiently be approximated in one-norm with an MPS that has a
bond dimension growing linearly with the system size (see appendix A for details).

Let us now discuss these results in the context of equilibration and the effective dimension in local
quantum systems. A natural assumption on the initial state is that it is to some extent locally described,
for example in the form of exponential clustering correlations characteristic of ground states of gapped
models. Since most eigenstates of generic local Hamiltonians are expected to be very entangled [87],
it seems intuitive that many eigenstates are needed to write down the initial state, thus giving a large
effective dimension of the initial state. This assumption can be tested numerically, at least on small
systems, which often shows that the effective dimension increases exponentially with the system size, in
particular when looking at states with an energy in the bulk of the spectrum [3, 26, 42]. A usual setting
where this is the case are global quenches, where all local Hamiltonian terms are changed [3, 26].

Rigorous results come from the study of random Hamiltonians. In this setting, it is assumed that
the eigenstates are distributed according to some random ensemble, for example the Haar measure [13].
In this setting, one can show that eigenstates are strongly entangled and correspondingly many initial
states that are, for example, described with a low bond dimension MPS have a large effective dimension
[13]. The effective dimension in Thm. 3 can also be replaced by some other measure of how spread
out the initial state is as a distribution over the eigenstates. As a single eigenstate does not evolve at
all, a common measure is also the second largest populated eigenstate, which can be used instead of the
effective dimension [105].

Theorem 3 discussed above is an equilibration result very much complementary to the equilibration in
free systems that we described in the previous section. Its clear strength is that it can be applied to very
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general settings. In particular, the only assumption on the Hamiltonian are the non-degenerate energy
gaps. More recently, it was pointed out that fully non-degenerate energy gaps are by no means necessary
[71]. Doing a careful counting, some degenerate energy gaps can be accounted for, without significantly
altering the results [0, 71]. In the following, we look at the time scale, on which equilibration on average
takes place. As mentioned before, the corresponding bounds are very large and far from the short time
scales encountered in free models in section 3.4.3.

3.5.2 Time scales

The above result merely says something about the infinite time average, but it is unclear how long it will
take for the effect to set in. In particular, it could well be that the state remains distinguishable from its
infinite time average for a very long time, which is greater than any experimentally accessible time scale.
In order to make these results applicable to experimental setting, the questions of time scales is thus of
utmost importance.

Unfortunately, while there were important efforts to obtain bounds on the equilibration time [58, 59, 71,
86, 106], the best known bounds are still very long. In order to get some handle on finite time averages,
one first separates the full energy scale into small parts €. For each of these sections, the number of energy
gaps contained in it are counted and referred to as N(e) [71]. For a POVM measurment with M possible
outcomes, one can then derive the following bound [58]

-
57N (e 1

— |dtD b
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which gives an estimate for the average distinguishability over a time interval T. Let us have a look at how
this equilibration time scales with the system size.

The crucial point in this estimate is the linear coupling between e and T. The number of gaps N(e) in
a certain energy interval € increases exponentially with the square of the system size, at least for energy
differences close to zero. Thus, to keep the number of gaps of the order of the effective dimension, which
increases only exponentially with the system size, € in turn has to be made exponentially smaller. Thus,
this decrease in e has to be compensated by an exponential growth of the equilibration time T. Therefore
the bound above still falls short of providing a reasonable experimental time scale.

This is, however, a consequence of the general applicability of the result. In fact, settings can be con-
structed where the above bounds are saturated [58], even though they are somewhat contrived. More
recently, even translationally invariant models were found where equilibration time scales are very long
[86, 107, 108]. There, particles travel extremely slowly, for example only in a logarithmic fashion and it
takes a long time for them to explore the full system (see chapter 6).

The above discussion clearly shows that more structure is needed to arrive at physically realistic time
scales. These assumptions will likely be similar to the ones encountered in the context of equilibration in
free systems. Explicitly, we expect Lieb-Robinson bounds, transport and special local structure in the initial
state to play a crucial role and ultimately be the reason why many models in nature equilibrate quickly,
often even on a time scale independent of the system size [32]. While no proofs of fast equilibration in
generic interacting models were achieved, we still think that it is worthwhile to explore this topic further,
before we move towards the investigation of the static ensembles in the chapters on thermalisation (see
chapter 4) and localisation (see chapter 6). For this, we give a more detailed picture of how the evolution
of local systems takes place.
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Figure 3.3: Shown is a sketch of the information propagation in an Alice-Bob type setting. Alice encodes a bit by
either applying a unitary VA on her part of the chain or doing nothing. After an evolution time t, Bob makes a
measurement on his part of the chain. Whether the two parties can communicate this way depends on whether the
support of Bob’s measurement B¢ over time leaves the region S.

3.5.3 Local dynamics

In this section, we look at the implications of locality for the dynamical evolution of the Hamiltonian. This
can most conveniently be investigated in the Heisenberg picture, where observables rather than states
are evolved in time. Naturally, the locality of the evolution can also be formulated in the Schrodinger
picture, where operator locality can be translated to entanglement of the state. We establish this connection
explicitly for some important results later on.

In order to capture the spreading of operators in the Heisenberg picture, we introduce some mathe-
matical definitions in this direction. The spreading of operator support can conveniently be captured by
comparing the time evolved observable with its truncated versions

Bt =Ts(Bo)l,

where I's denotes the truncation map introduced in section 3.2.

This quantity directly relates to information propagation in the system. For this, let us introduce a
common Alice-Bob type setting (see Fig. 3.3). Here different parts of a spin system, for simplicity a 1D
chain, are given to two parties [109]. Let us use a setting where a small region X is initially handed to
Bob, on which he can measure some local observable B. Alice’s task is to either do nothing or apply a
local unitary Va on her part of the chain, which is denoted by S¢. This way, the two parties are trying to
communicate a classical bit between them. Using the I' map, one can capture the signal strength, meaning
how well Bob can detect Alice’s action. Let us start with the lower bound

B = Ts(Be)|| >«

=B~ Ts(Bo)| = | [dUTr (Va [B, VL] 0) | > &
FA

=3V, - )Tr (VA [Bt,v,@ p)’ > K

=3Va ¢ |Tr (BeVioVa ) — Tr (Bup)| > «,

where we used that the Haar measure is normalised. Thus, from the lower bound, we can deduce that
the action of a unitary on the region S¢ can be detected by an observable initially localised on X. Thus in
the above Alice-Bob protocol, the two parties can provably communicate, if a lower bound to the error of
the I' map is known. Similarly, an upper bound directly allows to conclude that this observable cannot be
used to send signals through the chain

Bt —Ts(By)|| <
- ‘Tr (Bth\pVA) —TI'(Btp)‘ = ’Tr <VA {Bt,v/u p)‘
= ’Tr (VA {Bt — Fs(Bt)/V/T\} p)‘

< [[By —Ts(Be)|| < k.
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We now present a way to obtain very general upper bounds using only locality of the Hamiltonian in the
form of Lieb-Robinson bounds [110]. In section 3.4.3, we already encountered their simplified version for
free systems, there a single fermionic creation operator dynamically was mapped to a superposition of
such operators, which were distributed over a region that spread ballistically. In a more abstract language,
it could be seen as a statement how quickly the support of the fermionic observable spreads over the
lattice. For interacting spin systems, such a bound takes the following form.

Definition g (Lieb-Robinson bound). Let Bx be an initially local operator and Bx (t) its dynamical
evolution. A system is said to fulfil Lieb-Robinson bounds, iff

[Bx (£) — P, (Bx(t))]| < Cr X e~ #(=vItD

with constants CLr, W, v independent of the system size and Xy the enlarged regions around X (see
chapter 3.2). Here v plays the role of a velocity linearly connecting space and time.

This can be seen as an effective light cone, with which the support of an operator increases. Outside of
the cone, the support of the operator is exponentially suppressed. Thus, these bounds provide a direct
way to upper bound the speed of information in any local spin model. As in the case of free systems,
the main feature of Lieb-Robinson bounds is that they can be derived in very general systems, relying on
nothing but locality of the Hamiltonian [66, 93, 110-112].

Theorem 6 (Lieb-Robinson bound from locality). Let H be a family of quasi-local spin Hamilto-
nians for different system sizes with terms that are uniformly bounded independent of the system size.
Then there exists constants CLR, 1, v independent of the system size, such that for all local operators
Bx, we have

IBx (t) — x, (Bx(t))]] < Crg [X|e~# (It

In other words, the system fulfils a Lieb-Robinson bound.

In this way, the evolution of any local Hamiltonian can be captured in terms of an effective light cone.
Interestingly, this result can be used to establish a connection between the speed of sound in quantum
systems and the speed of light in relativistic theories. In fact, one can show that in the continuum limit of
letting the lattice spacing go to zero, an exact light cone emerges and the exponential tails vanish [113].

In recent years, Lieb-Robinson bounds have played a crucial role in our understanding of local Hamil-
tonian models. Fundamental insights into the ground states of local models, such as the exponential
clustering theorem and the 1D area-law proof (see section 3.5.1), both rely on Lieb-Robinson bounds [66,
95]. In a similar spirit, we will later see an application of the bounds to connect dynamical localisation
to the structure of individual eigenstates (see section 6.4). Moreover, the classification of quantum phases
heavily benefited from this tool [114, 115]. In fact, the only known instance where such a quantum phase,
in this case one with topological order, is provably stable to a physically realistic perturbation also relies
on Lieb-Robinson bounds [116, 117].

Such bounds were derived in many important settings. For spin systems, one can generalise them to
more general graphs as well as interactions that only decay algebraically [36, 66, 67], as long as their decay
is strong enough [67]. The result can also be directly carried over to fermionic systems. For bosons, the
discussion is more complex, due to the locally unbounded Hilbert spaces. This leads to the situation
that Lieb-Robinson bounds are often experimentally observed [31], while a proof for such situations is
still outstanding. Interestingly, even special bosonic settings can be constructed, where arbitrarily fast
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spreading of information is provably possible [118], highlighting the incompatibility between quantum
mechanics and special relativity. The details of these generalisations, as well as an attempt to provide an
intuitive proof for Lieb-Robinson bounds in spin systems, are contained in appendix B.

As described above, Lieb-Robinson bounds can be seen as a direct way to bound the speed with which
information can travel through the system. As information can always be encoded in sending particles
or energy, this naturally also bounds the speed of any form of transport in the system. It is, however,
crucial to note that these concepts are no longer as clearly linked in interacting models, as they were
in free systems. In interacting models, the operator can explore an exponentially large algebra. From a
physical point of view, this means that models can be created that show a complete absence of particle or
energy transport, but still allow to send information through them. We explicitly construct this in section
6.2 in the context of localising models. This discussion highlights the importance of exploring all facets of
transport in a quantum information language in interacting models, which is an area that would certainly
be an interesting research topic in the near future.

The above described Lieb-Robinson bounds provide a clear intuition for the dynamics of local models.
Starting with a local observable, it expands its support at most in a linear fashion. As states can be
constructed that have strong inhomogeneities, it is clear that the observable first needs to explore the full
lattice, before equilibration for arbitrary states is possible. Therefore, as long as no information of the
initial state is used other than a large effective dimension, equilibration needs to take at least linearly long
in the system size. Still, there is a huge gap between those linear lower bounds and the exponentially long
bounds that can be derived for generic models.

Recently, it was speculated that tighter bounds on equilibration could be derived using transport [119].
Similar to the free system, such a transport assumption would guarantee that the Lieb-Robinson bound is
not only an upper bound, but rather accurately describes the behaviour of the system. Outside of the realm
of localising systems (see chapter 6), this seems to indeed be the case, as is impressively demonstrated in
experimental probes of such light-cone behaviour [34, 36, 120]. While we share the underlying intuition,
there still seems to be a long way to go to turn it into rigorous mathematics. Not only is the precise notion
of transport unclear, but also special features of the initial state are needed. Aside from having to some
spatial homogeneity, such as translational invariance, we expect that they have to be local to some extent.

Let us now look at equilibration from the point of view of numerical simulations and state dynamics.
As described in the beginning, the usual way how to explore the out of equilibrium dynamics is to start
with some equilibrium state, for example the ground state of a local Hamiltonian. Thus, the initial state
can often efficiently be captured as a tensor network state with low bond dimension, at least in 1D (see
section 3.5.1). Then the system is pushed out of equilibrium. This can either happen by a sudden change,
which is known as a quench, or by continuously tuning a Hamiltonian parameter, which is known as
a ramp. During these out of equilibrium dynamics the time evolution can be simulated in a tensor
network language. For this, the unitary evolution is broken into small time steps, using a so-called Trotter
decomposition [121] and is sequentially applied to the MPS [122].

This application of unitary gates increases the bond dimension, which is truncated again after every
step. How well this truncation can work is ultimately determined by the growth of entanglement over
time [41]. Assuming that the Hamiltonian is local, Lieb-Robinson bounds give an upper bound on how
fast this can happen. As it turns out, in local models, the entanglement over any cut can at most grow
linearly, which means that a state initially fulfilling an area law, will also fulfil an area law for later times,
albeit with a linearly growing prefactor [65, 123, 124]. For the simulation of quenches with MPS [41], this
means that a linear growth of the bond dimension is sufficient. Thus, short time evolution can provably
efficiently be captured.

Again, as explained when presenting Lieb-Robinson bounds, equilibration is likely to take at least lin-
early long in the system size, at least for spatially inhomogeneous states. Often, we expect the equili-
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bration to move towards strongly mixed states, for example thermal states. Naturally, the global state
always remains pure under the Hamiltonian evolution and the only way to locally look strongly mixed
is by building up entanglement. In settings where entanglement growth is very slow, such as localising
systems (see chapter 6), equilibration therefore also takes a long time. This concludes our discussion of
equilibration of local expectation values. Before we move towards the description of the static ensembles,
let us quickly summarise our insights into equilibration of quantum many-body systems.

36 SUMMARY: EQUILIBRATION

In the preceding chapter, we investigated out of equilibrium settings, for example created by a sudden
change of of the Hamiltonian. We described two crucial results that capture the equilibration behaviour of
quantum many-body systems. They were formulated in two complementary pictures. The first looked at
free systems described by Gaussian states, where the evolution of creation and annihilation operators has
a particularly easy structure. This allowed us to investigate equilibration directly and gave rise to realistic
physical settings where equilibration provably happens on a short time scale. We further demonstrated
that this Gaussian description can still be applied for non-Gaussian initial states, as long as the evolution
obeys Lieb-Robinson bounds, bounding the speed of particle propagation and has transport. This was
achieved by showing that the evolution of a free fermionic systems with transport provably moves towards
states that locally look Gaussian [6].

The complementary approach looked at equilibration on average, where time averaged distinguishability
from a static ensemble is considered. There, extremely general states and Hamiltonians are investigated.
This came at the price of only being able to derive results on average that only hold for very long time
scales. As captured by Lieb-Robinson bounds for interacting models, we saw that spreading of information
in local models happens at most ballistically. Based on this, we speculated that, similar to the setting of
free systems, fast equilibration might rely on the actual evolution of the Hamiltonian leading to ballistic
spreading of particles. Defining such transport seems, however, to be a difficult task, most importantly as
information and particle propagation are very distinct processes in generic quantum systems (see section
6.2). By looking at equilibration in a picture of local states, we captured it in terms of entanglement
growth. This gave rise to descriptions in terms of tensor networks, a tool that plays a prominent role in
many sections of this thesis.

To summarise, despite the sketched difficulties, especially concerning realistic equilibration time scales,
for many practical purposes, local expectation values of time-dependent states can often be captured in
terms of static ensembles. For completeness, let it be noted that there are also other possible routes to
equilibration. For measurements that are low-rank projectors, for example, equilibration can be proven to
happen very quickly [58]. Another approach is to carefully consider the nature of macroscopic observables
and ask how well one would reasonably be able to measure fluctuations of macroscopic systems [70, 105,
125]. While this approach does not apply to mesoscopic quantum systems usually considered in optical
lattices or ion traps and is thus somewhat neglected in this thesis, it is certainly an interesting avenue to
understand equilibration for large scale physical models. Finally, many insights also come from models
where eigenstates are drawn randomly. As pointed out above, a large effective dimension of many initial
states can be derived [42]. What is more, one even can show that in such models, typical observables
quickly equilibrate with very mild assumptions on the spectrum [126, 127].

In the next chapter, we investigate the nature of the static ensembles. In particular, we are interested in
the question to what extent they can be captured in terms of Gibbs states. Afterwards, we show that such
a description breaks down in models with randomness and investigate how this randomness effects the
equilibration and the corresponding static ensembles in the model (see chapter 5).



THERMALISATION

In the previous chapter, we explored conditions under which measurement outcomes of the system can be
described in terms of static ensembles. We further argued that the emerging equilibrium state necessarily
is equal to the infinite time average, which takes the following form for the case of non-degenerate energies
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This can be seen as the maximum entropy state, keeping all constants of motion, namely the eigenprojec-
tors of the Hamiltonian |k)k|, fixed [3, 42]. From a practical point of view, this still does not help when
trying to capture the equilibrium state, as full diagonalisation of the Hamiltonian is required to obtain the
constants of motion. Moreover, the equilibrium state still has 2™ free parameters, corresponding to the
overlap with the eigenprojectors.

Fortunately, it is often by no means necessary to specify the values of all those constants of motion. In
the previous chapter, we already encountered the example of free systems, whose infinite time average
is provably captured in terms of a generalised Gibbs ensemble with only the linearly many eigenmode
number operators as constants of motion. This emerging description in terms of a small set of parameters
seems to be common behaviour of quantum many-body systems. Thus, the full information provided by
the overlaps with the different eigenvectors is hidden from the macroscopic observer for many realistic
settings.

For interacting models, one often even finds that a single parameter is sufficient for accurately capturing
equilibrated expectation values. This parameter is the Lagrange multiplier which describes the energy
constraint present in any closed quantum system and is the inverse temperature 3 = k;—T. As before, we
restrict the available measurements to some small region, thus directly ensuring that only a small amount
of information of the state can be extracted. In this setting, thermalisation means that local expectation
values look thermal, in the sense that
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where Zo = Tr(e P™) denotes the partition sum. In this case, it is sufficient to locally describe the
equilibrium state in terms of a single parameter, namely (3, instead of 2™ degrees of freedom corresponding
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to the eigenvector occupations.

In this chapter, we review different approaches to thermalisation. First, we look at the eigenstate thermal-
isation hypothesis (ETH), which resolves the issue at the level of individual eigenstates. Afterwards, other
approaches are investigated, where less structure of the eigenstates is assumed at the price of less generic
initial states.

4.1 EIGENSTATE THERMALISATION HYPOTHESIS

For thermalisation, the different eigenstates involved in the infinite time average w need to combine to a
thermal ensemble. The ETH is an extreme form to solve this problem, by demanding that each eigenstate
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itself already has a thermal form. While there are many version of it, we restrict to the most direct
approach [128-131].

Statement 1. (Eigenstate thermalisation hypothesis) A Hamiltonian H is said to fulfil the ETH, if its eigenstates
[Ey) in the bulk of the spectrum are locally indistinguishable from the Gibbs state
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where By is chosen such that the thermal state has energy By and e is sufficiently small.
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In order to turn this statement of the ETH into a definition, some things would still need to be clarified.
Firstly, demanding the ETH only for the bulk of the spectrum is necessary, as ground states often have
little entanglement and thus do not look thermal. That being said, the precise cross-over to behaviour
in the bulk of the spectrum would need to be specified. Secondly, the role of € is unclear. Intuitively, it
should be a function of the system size that decays sufficiently quickly with it. So far, there seems to be
no consensus on such a rigorous version of the ETH [42].

The ETH assumes that each eigenstate locally looks thermal with a temperature fixed by its energy.
Assuming this hypothesis, it is quite clear how thermalisation would take place. If a state has a high
effective dimension, meaning large overlap with many eigenvectors, then it equilibrates according to the
results of the previous chapter. The ensemble is then captured in terms of the dephased state w. If this
distribution is narrow in energy, which is well possible as any fixed energy window in the bulk of the
spectrum still contains exponentially many eigenstates, then the infinite time average would simply be a
mixture of many states that all locally look thermal with roughly the same temperature. Thus, the full
state would be locally indistinguishable from a Gibbs state of that temperature [42]. While intuitively this
line of argument it quite clear, a further investigation of the precise mathematical assumptions and the
resulting scaling would surely be needed.

Note that the ETH in itself does by no means guarantee thermalisation for all initial states. In particular,
merely assuming a large effective dimension is not sufficient. After all, the involved eigenstates in w could
be far from each other in energy and thus lead to a classical mixture of local expectation values of Gibbs
states with very different temperatures. As the mixture of Gibbs states with different temperatures is not
again a Gibbs state, it seems likely that such a state could not be captured in terms of a thermal ensemble.
Thus, even if one is willing to assume the ETH, thermalisation still requires some promise of having a
narrow energy distribution in the initial state, or at least only large weight in a small energy region that
would thus dominate the expectation value.

The ETH was extensively tested numerically in various contexts, with sometimes striking success [38,
131-133]. One direct, but nevertheless important consequence of the ETH is the fact that most eigenstates
have to be strongly entangled. After all, they are supposed to locally look like a Gibbs state. As the
entropy of this thermal state is usually extensive, at least for temperatures away from the ground state,
this directly shows that the eigenstates fulfil a volume- rather than an area-law.

While it is unclear to what extent it truly is the defining mechanism behind thermalisation, its investiga-
tion clearly has moved the field forward substantially. In particular, it gave rise to a closer investigation of
the eigenstates and showed that their entanglement features are closely connected to the physical question
of how to capture dynamical time evolution. That being said, it is clear that the ETH is exceedingly hard
to test, even numerically. While the original question of thermalisation can be accessed experimentally
or using simpler numerical tools, testing the ETH in an experiment is impossible, if only for the fact that
individual eigenstates in the middle of the spectrum can never be prepared. Thus, it is clearly still a
hypothesis. Interestingly, it was recently argued that as long as thermalisation takes place for states that
are narrow in energy [42] or for all product states [134] of an interacting model, then the ETH is not only
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sufficient, but in fact necessary in order to achieve thermalisation. This would, in a certain sense, also
greatly simplify its numerical and experimental verification.

That being said, the original question we are following, namely why nature looks thermal, could also
be related to specific structure in the initial state and demanding that exponentially many product states
thermalise is not necessarily connected to the actual behaviour of quantum models. In fact, it seems
intuitive to assume that in realistic initial states, the weight of the individual eigenvectors in an energy
region will be a rather smooth function. Thus, it might not be necessary that each eigenstate itself looks
thermal but rather only that a mixture of them does. In the following, we will explore this approach to
thermalisation further.

4.2 ALTERNATIVE ROUTES TO THERMALISATION

The ETH resolves the issue of thermalisation by placing very strong assumptions on the eigenstates, while
initial state can be quite general. Ref. [135] proceeds along different lines and obtains thermalisation by
a perturbative coupling to a bath. In this context, no promise on the behaviour of individual eigenstates
is needed, while the Hamiltonian and the initial state are now restricted. The argument assumes a small
subsystem coupled to a large bath, which is assumed to have a Gaussian distribution of energies, which
seems reasonable in the context of large locally interacting systems (see chapter 3.2). The whole system
is placed in a state that is close to the microcanonical ensemble, in the sense that the eigenstates within
one interval are approximately evenly populated. Note that this class of states is still very large and
also includes pure states [135]. Coming from a point of view of experimental preparations with realistic
uncertainties, this seems very natural.

The coupling between system and bath is assumed to be bounded in operator norm. This allows for
a perturbation analysis relying on the change of eigenprojectors of the Hamiltonian [135] (see also Thm.
VIL3.1 in Ref. [14]). In this setting, it can then be shown that the subsystem looks like a Gibbs state, which
gives a route to thermalisation that is free of assumptions on the level of individual eigenstates.

The main weakness of the above approach is that, due to the fact that it relies on perturbation theory, it is
restricted to a coupling between system and bath that is bounded in operator norm. For systems coupled
only at the boundary, for example small connected subsystems of a large lattice, this seems reasonable
in one spatial dimension, but poses a severe restrictions in two or higher dimensions. Still, it is a crucial
result, in that it highlights that the ETH is by no means the only way to guarantee thermalisation in
interacting quantum systems. This topic is comprehensively reviewed in Ref. [42].

More generally speaking, this approach solves the issue of thermalisation by assuming a smooth function
in the eigenvector occupations within a small energy interval. Such a state is, in essence, a microcanonical
ensemble. Recently, the structure of such microcanonical ensembles was investigated in the context of
translationally invariant systems and in fact it was shown under rather general conditions that they are
locally indistinguishable from a Gibbs state [136, 137]. These results are connected to thermalisation based
on a similar reasoning as the work discussed above, where the microcanonical ensemble can be seen as
coming from a preparation procedure that populates eigenstates with similar energy equally.

Often, thermalisation is investigated in the context of global quenches (see chapter 3). There, one begins
in an eigenstate of one Hamiltonian and abruptly changes some Hamiltonian parameter. The initial state
typically has overlap with many different eigenstates of the new Hamiltonian [138-140], which guarantees
equilibration on average (see section 3.5), at least in the setting of non-degenerate energy gaps. These states
typically roughly uniformly populate eigenstates around a certain energy [138—140]. This highlights that
in the setting of quenches, there is some structure of the initial state that could be used, much in the spirit
of the above mentioned publications.
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Finally, it is worth noting that considerable progress was achieved in the investigation of the structure
of thermal states. In particular, it was found that they have exponentially clustering correlations at large
enough temperature [141]. This does not only give a universal upper bound to any phase transition tem-
perature, but can also be used to show that temperature can be defined locally [141]. Such a local structure
of thermal states is an important insight and could potentially prove very useful in understanding to what
extent dynamics of non-equilibrium states can be captured using thermal ensembles.

Having reviewed different aspects of thermalisation behaviour, we now move towards a setting in which
the non-equilibrium state does not thermalise. While there are many levels at which thermalisation can
fail, we focus on the most interesting scenario, where equilibration takes place, but the equilibrium state
has memory of its precise initial condition and can thus not be captured with a single parameter 3.

4.3 FAILURE OF THERMALISATION

While thermalisation is expected to be a very generic phenomenon, there are systems and settings in
which the description in terms of a simple Gibbs ensemble fails. For example, as we already discussed in
section 3.4, free systems require the inclusion of linearly many constants of motion in a generalised Gibbs
ensemble.

Generally, it is a hard problem to decide which constants of motion are required to accurately capture
local expectation values. There is, however, one clear case where constraints have to be included, namely
if the system possesses local constants of motion. After all, these local constants of motion are possible
local measurements and, in general, their value cannot be accurately captured in terms of a Gibbs state.
This can be seen by the following argument.

By definition, these local operators commute with the Hamiltonian. Thus, the eigenstates of H can be
separated into different sectors corresponding to the eigenvalues of the constant of motion. Furthermore,
as the operator is supported on a small region, its influence on the global energy scale necessarily is small.
More precisely, each eigenvector sector will contain states with arbitrary energy density, at least for large
enough systems. Thus only tuning the temperature cannot be sufficient to select any of those sectors.

Now imagine a state that only has initial support in one of those sectors. As there are only a fixed
number of such sectors, but exponentially many eigenstates, this is still perfectly compatible with a large
effective dimension and provable equilibration. As the local operator is a constant of motion, the dynamics
of this sector is decoupled from the others and it is clear that a description in terms of a Gibbs state can
never emerge. In this way, any local constant of motion has to be included in a static ensemble in terms of
a generalised Gibbs ensemble.

If such a local constant of motion exists, it is also clear that the ETH cannot be fulfilled, as there exists
a local operator that can distinguish eigenstates, despite the fact that they can be close in energy density.
This clearly hints at a failure of thermalisation being connected to the structure of individual eigenstates.
In fact, it turns out that the failure of a system to thermalise can be connected to a lack of a special form
of entanglement in the eigenstates [68].

In the following two chapters, we will investigate the paradigmatic setting of localisation, where such a
lack of entanglement, as well as the existence of local constants of motion is created by random local po-
tentials. This randomness prohibits thermalisation, strongly suppresses transport and is often considered
as an explanatory mechanism for a breakdown of conductance in solid-state physics. Before we dive into
this, let us briefly summarise our insights into thermalisation.
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4.4 SUMMARY: THERMALISATION

To summarise, in this chapter we investigated the precise nature of the equilibrated ensembles. Based
on the fact that these ensembles are given by infinite time averages, we argued that its description is
closely connected to constants of motion. One class of such constants of motion are the eigenstates of the
Hamiltonian. Thus, their specific structure is of crucial importance to capture the static ensemble. Fol-
lowing the eigenstate thermalisation hypothesis (ETH), the eigenstates are strongly entangled and already
individually look locally like a thermal Gibbs state. We argued that this hypothesis can be employed to
show thermalisation in case the initial state has a sufficiently narrow energy distribution. In the context
of global quenches, this seems to indeed be the case and the ETH would be sufficient to rigorously cap-
ture thermalisation, meaning that the out of equilibrium state can locally be captured in terms of thermal
ensembles.

In some way, however, shifting the issue of thermalisation to the level of individual eigenstates is unsat-
isfactory. After all, the ETH is only a hypothesis that, so far, cannot be approached analytically, cannot
be measured experimentally and can only be checked numerically with large effort. Thus, also approach-
ing thermalisation without assuming the ETH is an important endeavour. For this, we argued that more
structure in the initial state is needed.

Given the fact that experimental preparations always have an energy uncertainty, it will commonly be
hard to purposely select eigenstates with similar energy. Thus, typical initial states have a distribution
of eigenvectors that is relatively smooth. Based on such assumptions, we saw that perturbation theory
can also be used to obtain thermalisation, without having to place assumptions on individual eigenstates.
More recently, these arguments, which are mostly restricted to 1D, have been embedded in proofs that
the microcanonical ensemble locally looks like a Gibbs state. Such approaches could also be suitable
candidates to explain thermalisation and could provide a proof of the phenomena without having to rely
on heavy assumptions such as the ETH.

In contrast to this investigation of thermalisation, first models were presented where this description in
terms of Gibbs states fails. There, the systems shows some memory of its precise initial configuration, for
example due to the presence of a local constant of motion. In such cases, only accounting for the energy
constraint is not sufficient, but rather other constants of motion have to be included in a generalised
Gibbs construction. In the following, we explore a large class of systems where this memory of the initial
conditions is created by the presence of random local potentials.






LOCALISATION WITHOUT INTERACTIONS

In the following two chapters, we explore the dynamical behaviour of many-body systems with strong
local random potentials. These models provide an intriguing class of systems to explore the notions of
equilibration and thermalisation presented so far. In particular, as is argued in the following chapters,
these models show very slow equilibration behaviour, if they equilibrate at all and a failure to thermalise.
Rather the existence of local constants of motion leads to the model having a local memory and these
constants of motion need to be included in the description of the static ensemble.

The results of this chapter, are, however, also interesting outside of the realm of equilibration and
thermalisation. Firstly, because these models are, to a certain extent, easy to solve. This allows to establish
links between dynamic and static features and to extend prominent results, like the exponential clustering
theorem, to other eigenstates. Thus, they provide an ideal arena to understand Hamiltonian properties
and their physical implications in more depth.

Secondly, these systems are extremely important from a condensed matter point of view, as they provide
an explanation how impurities can lead to a complete break-down of conductance. This is largely based
on Anderson’s work back in 1958, capturing free electrons in a random potential. One of the key questions,
namely to what extent these results are stable in the presence of electron-electron interactions, is, however,
still open and has recently been investigated with considerable effort. The discussion of interacting elec-
trons is postponed to an upcoming chapter and heavily builds on the tools and intuition provided in the
following discussion of non-interacting electrons in a random potential.

This chapter should be seen mostly as a review of known results for non-interacting electrons, but
already formulated in a many-body language. We start our discussion by a review of Anderson’s results
for single electrons. From this, we move towards the case of many non-interacting electrons. Similar to
our take on equilibration, such free models provide an ideal arena to first understand the basic concepts.
We argue that the random local potential leads to a localisation of the eigenmodes of the system, which
in turn results in a breakdown of transport and thermalisation, thus connecting back to our investigations
of equilibration and thermalisation. Using these insights, we proceed to establish possible definitions of
localisation that are meaningful in the context of many particle quantum mechanics. This will guide our
way towards comprehensively capturing the localisation of many interacting particles.

5.1 ANDERSON LOCALISATION

Following an advanced Drude model, electrons can be considered as classical particles, which travel freely
through regular lattices, but are scattered at random impurities. This leads to a increased resistivity due
to quantum interferences and resulting weak localisation [142], but could never explain why impurities
can lead to a complete absence of transport. In a seminal work in 1958 [48], Anderson studied the
conductivity properties of a tight-binding model with random on-site potential. In this simplified model
of a dirty crystal, he was able to give strong arguments that allow to conclude that randomness can indeed
lead to a complete breakdown of the propagation of single electrons. This result sparked large interest,
both in the physical as well as in the mathematical community [46, 47, 76, 142, 143] and has lead to several
intriguing experimental explorations of the phenomenon [144-146]. In the last 50 years the results were
put on a very rigorous mathematical footing, which we will summarise in the following.
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The tight-binding model studied by Anderson is based on single electron cubic lattices described in
terms of a 12(Z%) sequence. Using [1) as the characteristic vector of lattice site 1, the Hamiltonian is given

as [143, 147, 148]

H=—] > Xk+ Y wili)il , (5.1.1)

0.k j

where (j, k) denotes nearest neighbours on the lattice and ] is the hopping strength. For simplicity, we
assume that wj is independent and identically distributed, for example drawn uniformly from some
interval [—h, hl, even tough also some correlated random distributions can be considered, as long as the
correlations decay rapidly enough [143]. The first term is the well-known hopping term that allows the
electron to move to neighbouring lattice sites and, together with a constant potential, is the discrete lattice
Laplacian. In more recent work [143], the model was extended to also allow for long-range hopping, as
long as the corresponding weight decays sufficiently fast.

In order to describe the mathematics of Anderson localisation, it is crucial to state the problem on an
infinite dimensional lattice. For this, let us first define the resolvent set of an hermitian operator H

R(H) ={z: (H—2z1)"" exists}.

The spectrum of an operator is then the complement of this resolvent set o(H) = R\ R(H) [15]. It can be
divided into two parts

Pure point opp = {z: (H—z1) is not injective},

Continuous 0cont ={z: (H—z1) is not surjective} .

The pure point spectrum corresponds to the operator having proper eigenvalues and eigenvectors, as in
the finite-dimensional case. The new feature in infinite dimensions is that the spectrum also has other
contributions and for example the momentum operator has only continuous spectrum. Thus, part of the
spectrum is not connected to eigenvectors. In the case of the momentum operator, the common way to
approach this in the physics literature is to still talk of “eigenvectors” in form of plain waves. These,
however, do not lie inside the Hilbert space of .2 functions.

The distinction into pure point and continuous spectrum also directly gives a decomposition of the
Hilbert space [143]

H = Hpp & Heont -

These Hilbert spaces are characterised in the RAGE theorem, due to Ruelle, Amrein, Georcescu, and Enss
[143]. Abstractly speaking, it tells us that the pure point spectrum corresponds to localised wave vectors
that dynamically stay confined to certain regions, while the wave functions from the continuous Hilbert
space leave any finite region over time. In this sense, the pure point spectrum corresponds to localisation,
whereas the continuous spectrum leads to transport.

In order to state the result, we first introduce a reduction map for the 12 sequence, by just setting all
elements outside a certain region to zero

(ilw) jeX,

0 else .

Gl Ox (b)) =

The RAGE theorem then takes the following form [143].
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Theorem 7 (RAGE). Let X be a finite subset of the lattice, Xy its enlargements (see chapter 3.2) and Qx the
reduction map introduced above. Then, for any Hamiltonian H, we have the following characterisations of the
Hilbert spaces

.
1 .
W) € Heone & Jim Jim - Jdt 1Qx, (e ) =0,
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where Hpp corresponds to the pure point spectrum space of H and Hcont to the continuous spectrum space.

Thus, the evolution of states supported on the Hilbert space of the continuous spectrum is outside
any finite region for almost all times. In contrast, the pure point part of the Hilbert space consists of
states that are initially localised and, even for arbitrarily long times, travel long distances only with a
small probability that vanishes as the distance approaches infinity. For the localised part, naturally also
superpositions can be considered, which implies that the initial set is not necessarily connected, but does
not change the transport properties. With this, we are ready to return to Anderson localisation.

In the following, we will restrict to 1D systems, where localisation takes place for all energies. The
possibility of a mobility edge will be discussed afterwards. The first result concerns the spectrum of the
Hamiltonian presented in Eq. (5.1.1). Anderson found that it consists only of eigenvalues and there is
no continuous part [48, 143]. Using the RAGE theorem, this directly gives us a form of localisation. The
Hamiltonian, however, fulfils even stronger localisation, which can be stated in a dynamical as well as a
static version. We begin with the static or spectral reading.

Anderson localisation: Spectral reading
The Anderson Hamiltonian shows spectral localisation in the following sense [143, 147, 148].

Theorem 8. (Single particle: Spectral localisation) For any energy interval [Ey, Eq], the correspond-
ing eigenvectors |by) of the Anderson Hamiltonian in Eq. (5.1.1) are exponentially localised with
probability one, in the sense that

o Vi) : Ixo Vj [(jldi)| < e >0l lo

where 1y is a uniform localisation length for all eigenvectors in the interval and x¢ is a localisation
center .

Here it is important to stress the probabilistic nature of the Anderson model. Naturally, not all disorder
realisations lead to a localised model. After all, a possible realisation is the translationally invariant
case. Thus, statements about Anderson localisation are usually formulated in terms of expectation values,
meaning that with probability one, a drawn realisation has a certain property. Aside from this static
statement about the eigenvectors of the model, there is also a dynamical result which states that wave-
packets initially localised on one site remain exponentially localised even for infinite times [143, 147, 148].
This can be seen as a bound for the transitions amplitudes in the system.
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Anderson localisation: Dynamic reading

Theorem 9. (Single particle: Dynamical localisation) With probability one, the time evolution of the
Anderson Hamiltonian (Eq. (5.1.1)) is exponentially localised, in the sense that

v, k) sup|(jle tH k)| < emHiTR,
t

where W is a uniform decay parameter.

Summarising these two results, on-site disorder drawn, for example, uniformly from an interval [—h, h]
with probability one leads to both spectral as well as dynamical localisation as stated above in the case
of single electrons in 1D. Here, it should be noted that these result are not equivalent and models on
special lattices can be constructed that have spectral, but not dynamic localisation [143]. Such single-
particle localisation has also been experimentally investigated on various platforms [144-146] and the
phenomenon is by now well understood.

In two dimensions, Anderson localisation of all eigenvectors is commonly expected to still hold, even
though a rigorous proof has so far been elusive [142]. In 3D, localisation becomes connected with the avail-
able energy in the system. This gives rise to the exciting perspective of having a mobility edge, meaning
that the model has fully suppressed propagation at low energies, while transport becomes activated when
enough energy is available. Such behaviour has not been fully captured mathematically, but successfully
observed experimentally [142, 145, 149, 150]

These single particle results are now the basis for our discussion of localisation for many electrons. We
first show that they can be translated to an eigenmode localisation for non-interacting particles in the next
section. This eigenmode localisation has numerous physical implications and directly yields insights into
equilibration and leads to a break-down of thermalisation. Based on this, true many-body localisation
then will move into our focus. Building on the results for non-interacting particles, we look at possible
definitions of the phenomenon and explore its physical nature in all of its facets.

5.2 EIGENMODE LOCALISATION

Using single-particle Anderson localisation, one can directly investigate localisation for free systems con-
sisting of non-interacting particles. By exploring this in detail and recasting it in a many-body language,
we lay the ground-work for capturing localisation in the context of interacting particles. The starting point
is to use Anderson localisation to deduce that the eigenmodes of non-interacting models localise. For
simplicity and in order to better fit to the later chapter on interacting models, we perform this in a nearest
neighbour spin or fermionic model, but it can equally well be done for bosonic systems.

In contrast to the previous section, here we work with finite systems, in order to avoid the complications
concomitant with having to describe the system in terms of a quasi-local algebra [16]. Strictly speaking,
Anderson localisation does not give localisation of electrons on finite lattices. That being said, in practice
the results are expected to hold as long as the system is large enough and the realisations will be localised
with an overwhelmingly large probability. After all, any numerical [151-153] or experimental investiga-
tion [144-146] of the phenomenon necessarily takes place on a finite system and still localisation can be
observed. In this way, the restriction of the theorems to infinite systems should not be seen as a physical
requirement. In practice localisation will take place even on rather small models.
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The many-body models investigated in this section involve physical particles, such as electrons. Thus,
they will preserve the total particle number. As this constraint is highly important for later purposes, let
us properly define it.

Definition 10 (Particle number conservation). Let N =} ; n;j be the number operator of a fermionic or bosonic
system and M =} _; 0% be the magnetic field operator of a spin system. A bosonic / fermionic system is called
particle number conserving iff its Hamiltonian commutes with the number operator

[H,N]=0.

Correspondingly a spin system is called particle number conserving, iff its Hamiltonian preserves the magnetic field
HM]=0.

This is motivated by considering spin flips as quasi-particles and the Hamiltonian conserving their number.

The definition for spin systems already alludes to a mapping between spins and fermionic particles,
called the Jordan-Wigner transformation, which we encounter later on. Under this map, particle conser-
vation is mapped to a conservation of the magnetic field. In order to capture the localisation of non-
interacting particles, we will look at a simple spin model. At this point, we mostly focus on spin models,
as they are conceptually simple to describe and more importantly provide the main basis for the inves-
tigation of many-body localisation in chapter 6. The system is described by a Hamiltonian acting on a
spin-1/2-chain. We look at the so-called XX model with randomly drawn magnetic fields

— X X Y Y . g%
Hxx = IZ(‘%‘ i1+ 0; "j+1>+ZWJ"i :
j j

where wj is randomly chosen as before. This Hamiltonian has a particularly simple structure, which is
not directly visible in this spin representation. It can, however, be mapped to a fermionic system using a
Jordan-Wigner transformation, which results in a free Hamiltonian. This transformation is introduced in
the following.

5.2.1 Jordan-Wigner transformation

As discussed earlier, quadratic fermionic or bosonic systems have a simple structure and can be solved by
rotating them to their eigenmodes (see section 3.4.1). This solution of free Hamiltonians can be extended
to spin systems by mapping them to fermions. To prepare for this transformation, for each site j, we
introduce spins creation and annihilation operators of the form

st _ X 1 i sY
0% = —= (05 +1i07),

_g‘_‘
N

0} = —(o¥ —ic?),

) ﬂ ) )

where o7, G]-y are the usual Pauli-matrices. Interestingly, however, these operators are neither fully com-
muting, nor fully anti-commuting. In particular, they fulfil

(05,0811 =0 Vj#k,
s sty
{0‘]- 05 }=1,
where [, -] denotes the commutator and {-, -} denotes the anti-commutator. This special structure makes

these operators hard to deal with and ultimately is the reason for the success of mapping them to anti-
commuting fermions. The key point in this mapping is that the isometry between spin and fermion system
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needs to translate between commuting and anti-commuting operators. This is achieved in the so called
Jordan-Wigner transformation [154], which provides a presentation of spins as fermions and vice versa.

Jordan-Wigner

The Jordan-Wigner transformation consists of the following mapping between commuting
spin-1/2 operators and anti-commuting fermionic operators

S
G)?‘ —f]f) —fjf]- =1-2n4,
O‘js = H(] —2n)fj,
1<j
O‘S}L = H(] —2n)f!
1<j

Here an ordering of the lattice sites is assumed, which is arbitrary but fixed for all operators.

The Jordan-Wigner transformation maps nearest-neighbour spin operators to nearest-neighbour fermionic
operators. In particular, in 1D we have

stgs - — £le.

O']-S_HTO'-S =l . f

j 1t

Z

05

z — . . — Pap— .
051 =4nynjp —2ng —2nj + 1.

This mapping crucially relies on the systems being confined to 1D, while in higher dimensions any order-
ing of the lattice size necessarily leads to very non-local fermionic strings, thus destroying the locality of
the model.

Finally, let us comment that Jordan-Wigner is far from being an optimal mapping between spins and
fermions. While it establishes the connection at a very intuitive level and is invaluable as an analytic tool,
in numerical simulations this mapping is often replaced by the Bravyi-Kitaev transformation, which uses
particle number conservation [155]. In the following, we will use the Jordan-Wigner transformation to
investigate the behaviour of localised spin systems and establish a connection to Anderson localisation.

5.2.2  Non-interacting spin Hamiltonians

In this section, we carry out the Jordan-Wigner transformation of the XX-model and connect this spin
system to Anderson localisation of fermionic particles. As a first step, we rewrite the model in terms of
spin creation and annihilation operators

L-1

L
Hxx = —J Z (0‘5}-0-)'54—1 + GS}LHG]-S) +ij (1 —ZGS]TG]-S) ,
j=1 j=1
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Figure 5.1: Two randomly chosen examples of eigenmodes for a free fermionic system on a 2D 30x30 lattice with a
local potential drawn uniformly randomly from the interval [—2,2]. Plotted is the absolute value of the eigenvector.
Remarkably, even on this rather small system, the eigenmodes are already very localised.

where L as usual denotes the system size. Here, for simplicity, we work with open boundary conditions,
as the periodic case requires a careful analysis of the boundary terms [154]. Now carrying out the Jordan-
Wigner transformation yields the following fermionic representation in 1D

L
H= Y flhjufi,
k=1

—2W1 —] 0 0
— —2 — 0o ...
h J W) J /
0 —] —2W3 —]

where we omitted the global energy shift by } ;wj. This interaction matrix is the same as the Anderson
lattice Hamiltonian in Eq. 5.1.1, which stems from the fact that the interaction matrix of a free Hamiltonian
captures the system’s behaviour for single particles.

With this, we know that the eigenvectors of the interaction matrix h, which are the eigenmodes, are expo-
nentially localised. As mentioned earlier, there are so far no mathematically rigorous finite size estimates
for Anderson localisation. Nevertheless, when investigating these free fermionic models numerically, the
eigenmodes are strongly localised with overwhelming probability (see Fig. 5.1).

Using the fact that the Hamiltonian is quadratic, we can solve it by diagonalising the interaction matrix
h and define new fermionic creation operators

fl=> Glow e,

)

where |¢y) are the eigenvectors of h. Given that the eigenmodes of the system are localised, the same
holds for these rotated operators, as captured in the following lemma.

Lemma 1 (Eigenmode-operator localisation). Assuming that all eigenvectors of a 1D free system are localised
o V) Ixo Vj (Gl < e xo0l/to

then the fermionic creation and annihilation operators for those eigenmodes are also approximately local in the
operator sense (see chapter 3.2)

1
1

Vi 33Xy} |[fi — Tx ()| < 2e7 VP
Ji-raip] <2

where {X1} are the sets containing all sites within distance 1 to the respective localisation center x.
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Proof. For the proof, we pick an eigenmode |¢y) with localisation length 1y and center xp and build sets
X that include all sites within distance 1 to xg. Then, we get the following bound on the rotated fermionic
annihilation operators

=T (] < X 1Glowl IRl < Y Y e fixol/to

j@x, =l
lj—xol=r
— /1 YA
gZLZe < 2e Ry
T>

Here we used that in 1D, there are only two points with fixed distance to the center xo. The proof for
the creation operator is identical, as the complex conjugate of the eigenvector does not change its locality
properties. O

Thus, Anderson localisation implies that the fermionic eigenmode operators can be truncated to local
regions with an error that decays exponentially with the size of the truncation. A similar estimate would
also hold in higher dimensions, where the sum over all points with a fixed distance would lead to a
polynomial prefactor that is dominated by the exponential decay at large distances. Using the above
derivation, we obtain the following expression for the Hamiltonian

H= Z }\kﬁr(f‘k = Z A fig . (5.2.1)
k k

Here all number operators fiy = ﬁtfk commute with each other and are approximately local following
lemma 1. In this sense, finite system size localisation of a single electron directly gives localisation for
non-interacting spin systems and naturally also for free fermionic systems.

While the localisation of eigenmodes is a natural language for non-interacting systems, the very notion
of eigenmodes relies on the Hamiltonian being quadratic. This will greatly complicate our investigation of
many-body localisation, as the language employed in the results of Anderson is no longer suitable. Rather,
we have to switch to a true many-body picture of the phenomenon and look at locality of the dynamical
evolution, the Hamiltonian spectra, the entanglement properties of eigenvectors and the existence of local
constants of motion.

It is thus instructive to present the above eigenmode localisation in a way that can be carried over to the
setting of many-body localisation, capturing interacting fermions or spins. We therefore look at different
aspects of locality and relate them to the derived Hamiltonian decomposition in Eq. (5.2.1), thus laying
ground-work for later chapters. Moreover, we explore the physical implications of localised eigenmodes,
in particular with respect to equilibration and thermalisation. We begin by looking at the time evolution
of local operators in these systems.

5.2.3 Localised operators

In this section, we investigate the dynamical evolution of local operators in free spin or fermionic systems
with random local potentials. For those models, we have the decomposition from Eq. (5.2.1)

H= Zﬁk ,
k
H,7] =0& [ﬁj,ﬁk] =0 Vjk.

As argued earlier, given a sample of the randomly chosen local potentials, we strongly expect that this
random sample will lead to fully localised eigenmodes, even for finite systems. From this, we know that
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the Hamiltonian can be decomposed into commuting, approximately local operators. Thus, the model
has an extensive number of approximately local constants of motion. This is immediately true for the
fermionic picture, but also carries over to the 1D spins systems above, as there the fermionic strings
involved in the Jordan-Wigner transformation of f and f' cancel. In 2D, this is no longer the case and it
seems entirely unclear whether a XX-type Hamiltonian with local disorder allows such a decomposition
in dimensions larger than one.

Thus, in 1D, many approximately local operators exist that do not move at all. Concerning the evolution
of other local operators, one can use the localisation of the fermionic eigenmodes to directly infer a
strong suppression of propagation [156, 157]. In order to approach this, we can expand the initially
local fermionic operator in terms of the rotated operators f and f'. In this expansion only terms with
support nearby contribute significantly. The eigenmode operators are invariant in time, up to a global
phase, so that their absolute weight in this decomposition does not change. Thus, the weight is trapped in
eigenmode operators that are supported close-by. In this way, a localisation of all fermionic eigenmodes
implies a localisation of the evolution of any local operator.

Mathematically speaking, this is best captured in terms of a zero-velocity Lieb-Robinson bound (see
appendix B). The strongest form of such a statement is given by the truncated Hamiltonian formulation
of Lieb-Robinson bounds [4]. We take this as a basic definition, for later purposes.

Definition 11 (Strong dynamical localisation). A Hamiltonian H exhibits strong dynamical localisation iff its
time evolution satisfies

IA(L) — ettHAAe HA| < Clpee ™! Vi,

for a suitable u > 0, where A is an arbitrary local observable, Cioc > 0 a constant independent of the system size
and HY, denotes a Hamiltonian which includes all interactions contained in a region of distance no more than 1 from
the support of A.

This definition rigorously captures the behaviour of a localised Anderson system in a true many-body
language. Due to this suppression of propagation, we can directly establish some connections to the
equilibration and thermalisation results discussed in chapters 3 and 4. Interestingly, both presented equili-
bration results cannot be applied to the case of non-interacting localised particles. While the Hamiltonian
is free, it does not have transport, thus making it impossible to apply the equilibration result shown in
section 3.4. Moreover, due to the free structure, the model has hugely degenerate energy gaps, which
does not allow to derive equilibration on average (see section 3.5). Both is compatible with the expected
physical behaviour of such systems. Since excitations are trapped locally, one is capable of producing local
oscillations that are never damped away. Thus, equilibration simply does not happen and it is no wonder
that the known bounds cannot be applied.

The above argument, however, does not address the issue of equilibration completely. After all, it might
well be possible that the localisation length of the system is extremely large. Then, while it might be true
that the evolution only sees a local section of the system, the effective size might still be large enough to
practically talk about equilibration up to an error that decreases with the localisation length. One could,
for example, think of applying the equilibration results in free systems (see section 3.4) up to a time scale
for which the localisation length has not yet been reached. This would give a form of equilibration for the
model. Moreover, since the evolution of a local observable only takes place on a finite region, it would
trivially be independent of the system size.

In such a setting, one could therefore still ask whether thermalisation takes place. As discussed earlier,
if free systems equilibrate, they provably equilibrate towards a generalised Gibbs ensemble using the
linearly many number-operators as constants of motion (see section 3.4), thus showing that just using
a Gibbs state can never work. Using a many-body language, this absence of thermalisation can also be
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Figure 5.2: Poissonian level spacing for the non-interacting Anderson model of many particles. The system size is
L = 4000 averaged over 50 realisations. Plotted is the probability of a spacing between consecutive energies over its
size. The decay is exponential, as is expected from a Poissonian distribution.

seen as follows. The absence of particle transport implies that particle number or energy imbalances can
never even out. Therefore, such initial conditions are always remembered and the state looks, at all times,
locally very different from a thermal state, with a homogeneous particle number and energy distribution.
More generally, one could think of locally measuring the constants of motion of the Hamiltonian. As their
value can never change over time, it is clear that they would have to be included in a generalised Gibbs
construction for the static ensemble.

This concludes our discussion of the evolution of local operators under non-interacting localised Hamil-
tonians. We saw that they can only equilibrate on a region given by the localisation length and can never
thermalise. As we described in chapter 4, this absence of thermalisation is often connected to a lack of
entanglement in the eigenvectors of the system. This will be investigated in the following section.

5.2.4 Spectral properties of free localised systems

In this section, we use Anderson localisation to investigate the behaviour of eigenstates and eigenener-
gies of models with many non-interacting particles in a random local potential. Let us first comment
on the spectrum of these Hamiltonians. Due to the randomness, the eigenvalues will be non-degenerate
with probability one. The spectral gaps, however, necessarily are hugely degenerate due to the commut-
ing structure of the free system. Moreover, the consecutive energy gaps are distributed according to a
Poissonian distribution (see Fig. 5.2).

We now turn to the eigenvectors of the system. We begin by noting that specifying all occupation num-
bers of the eigenmodes uniquely determines the eigenstate. Thus, we can directly obtain the eigenstates
of the model by occupying the single-particle orbitals

otk = () (1) (7))

where [()) denotes the vacuum state. Due to this particularly simple structure, for any spatial cut, only
the fermionic modes around the cut can contribute significantly to the eigenvector entanglement. Thus,
intuitively it is clear that localisation of all eigenmodes implies an area-law for all eigenvectors for arbitrary
energies and particles numbers. This area-law behaviour can also be rigorously proven directly starting
from the Anderson model and working on sufficiently large systems [158, 159]. In fact, in 1D the above
construction also gives rise to an efficient approximation in terms of a matrix product state (see appendix
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Figure 5.3: This figure gives an overview over important aspects of 1D Anderson localisation in a many-body language.
Central to the characterisation is the localisation of the eigenmodes of the model. From there, a zero-velocity Lieb-
Robinson bound, MPS eigenstates and the existence of local constants of motion follow. These in turn can be connected
to various other localisation properties. Somewhat complementary are spectral characterisations, which state that the
model has degenerate energy gaps, since it is free, and a Poissonian level spacing.

A). Further, due to the fact that local constants of motion exist, the ETH has to be violated, as argued in
section 4.1.

This concludes our discussion of the properties of non-interacting particles in a random potential. We
briefly summarise our insights before we proceed towards understanding those models in the presence of
interactions.

5.3 SUMMARY: NON-INTERACTING LOCALISATION

In this chapter, we introduced one-dimensional Anderson localisation, which is characterised by local
random potentials, causing single electrons to be completely localised, both in a static and dynamic sense.
Great care was taken to present those results on a mathematically rigorous level, while still keeping the
connection to physical experiments and numerical simulations.

Building on those single particle results, we turned to the case of many non-interacting particles. Here,
Anderson localisation implies the localisation of the fermionic eigenmodes and results in a Hamiltonian
that can be written in terms of commuting and approximately local number operators. While, mathemati-
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cally speaking, the application of Anderson localisation to finite systems is not directly possible, numerical
evidence suggests that this eigenmode localisation takes place even on finite samples with large probabil-
ity. Using the Jordan-Wigner transformation, we further saw how this result can be carried over to spin
models.

Based on this eigenmode localisation, we were able to obtain diverse localisation properties in a language
of quantum many-body systems (see Fig. 5.3). Aside from the existence of approximately local constants
of motion, we saw that full eigenmode localisation implies a complete absence of any kind of transport,
resulting in initially local operators that will remain approximately local for arbitrary times. Moreover, we
saw that this eigenmode localisation also reflects itself in the structure of the eigenstates, which show a
uniform area-law for the entanglement entropy. Finally, we used the eigenmode localisation to argue that
equilibration can only take place on sizes up to the localisation length and that thermalisation necessarily
has to break down. In this way, we saw many different aspects of localisation, ranging from the evolution
of local operators, over eigenvector properties, to signatures in the out of equilibrium behaviour of these
systems.

In the following, we move to the case of interacting systems. There, the insights from this discussion are
crucial for capturing localisation in all of its facets, in particular because the notion of eigenmodes can no
longer be employed. We continue to investigate issues of equilibration and thermalisation, in such models.
Interestingly, we will see that propagation is no longer fully suppressed, but rather that entanglement can
grow without limits at a very slow rate. In contrast, the system still has local constants of motion, thus
demonstrating that the localisation properties discussed above do not imply each other. This highlights
the importance of establishing a clear and unified definition of what many-body localisation should be.



MANY-BODY LOCALISATION

After having studied the localisation of non-interacting particles in the previous section, it is crucial to ask
what happens in the presence of interactions. In fact, the very applicability of Anderson’s results to any
realistic disordered solid-state system depends on its robustness to the presence of electronic repulsion.
This question is already included in Anderson’s original work [48]. Nevertheless, even today, it is far from
being comprehensively answered.

The arising complications are largely due to the fact that, as soon as interactions are present, the free
structure in the Hamiltonian naturally disappears. Therefore, the previous way of capturing localisation in
terms of eigenmodes can no longer be employed, but the preparations using a true many-body language
in the previous chapter will prove useful. Based on those different formulations and facets of localisation,
we explore the interacting case.

The original question in the study of many-body localisation was to what extent interactions could
enable transport. In a seminal work by Basko, Aleiner and Altshuler [46, 47], a careful perturbation
argument is carried out that strongly suggests that Anderson localisation should be robust under the
inclusion of interactions. Based on those results, there is a commonly held believe that the interacting
model should still have a vanishing dc-conductance [160], meaning that particles are localised even for
infinite times. More precisely, they find a dependence on temperature, suggesting that there should be
a mobility edge, such that transport is fully suppressed for low temperature, while it becomes activated
for high temperature. This mobility edge is shifted with the strength of the randomness. For the spin
or fermionic systems considered here, with a finite-dimensional local Hilbert space, this implies that for
strong randomness, there should be no transport even for infinite temperature. In our discussion, we
restrict to this case of strong randomness, where localisation happens for arbitrary energy. Moreover, we
will also limit our discussion to 1D models, as they have been studied in much more detail and the basis of
MBL, given by Anderson localisation, is best understood there. This follows the general spirit of this thesis
to comprehensively lay groundwork for the investigation of interacting quantum many-body systems. In
a similar spirit, we will avoid the discussion of disorder realisations and averages and rather work with
single realisations and investigate the connection of localisation properties on this level.

Curiously, even in this simplified 1D MBL setting, the absence of conductance does not mean that the
model has a full suppression of propagation in the sense of a zero-velocity Lieb-Robinson bound. In par-
ticular, in the Schroedinger picture, it is numerically found that entanglement of states can grow without
bounds [151, 152, 161, 162]. This means that the different aspects of Anderson localisation are no longer
equivalent in the presence of interactions and many different possible definitions of the phenomenon of
many-body localisation (MBL) have thus been put forward. In essence, any of the different aspects of
single-particle localisation were, at some point in time, considered as a reasonable definition.

In the following, we review the analytical, numerical and experimental efforts to explore static and
dynamic features of MBL. Our approach is largely model independent and is based on establishing fun-
damental connections between different localisation properties of operators and states. That being said,
for most people in the community many-body localisation is connected to a model that describes many
electrons that are coupled with a nearest neighbour interaction. In the 1D case, the Hamiltonian in its

53
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Figure 6.1: This figure presents the different facets of many-body localisation, which are divided into static and
dynamic features. In sharp contrast to the case of an Anderson insulator, we can no longer meaningfully talk about
eigenmodes. Moreover, the system does not have a zero-velocity Lieb-Robinson bound, but rather entanglement
entropies can grow without bounds. This leaves the characterisation of MBL in an inchoate state and makes it hard to
characterise the phenomenon in a comprehensive way. In this chapter, we go through each of different facets of MBL
in detail. Moreover, in an attempt to unify those decoupled approaches, we explore links between static and dynamic
properties, thus paving the way for a unified definition of MBL.

fermionic version, or using the Jordan-Wigner transformation (see section 5.2.1) in its spin formulation,
takes the following form

H __]Z (f fie1 1] f )+Zw] —2my) +UY mymie
j
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where the interaction strength U and the random field w; are shifted in the transformation (see section
5.2.1). In the literature, this model has been investigated extensively, both numerically and analytically
and many of its dynamic and static features have been taken as fundamental aspects of MBL.

During our review of those results, a multi-faceted picture of MBL emerges, which is displayed in
Fig. 6.1 and will be explained step by step in the proceeding sections. Despite great efforts, many ques-
tions in this newly developing field cannot yet be fully answered. In an endeavour to nevertheless give
structure to those results, we present recent efforts to unify the different approaches and to interrelate
their characteristic features. In particular, we present two mathematically rigorous links between static
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and dynamic features of localisation, which tie together different lines of thought in the study of MBL. We
connect them to insights into equilibration and thermalisation and thus provide a detailed picture of MBL.
This brings us closer to a single unified definition of the phenomenon and hopefully presents a significant
contribution to the long-term goal of capturing MBL in a rigorous mathematical language and making it
experimentally accessible. We begin by exploring the evolution of local operators in MBL systems.

6.1 LOCALISED OPERATORS

As argued in earlier sections of this thesis, the evolution of local operators contains important structure,
from causal cones in the language of Lieb-Robinson bounds to transport properties of particles and infor-
mation. In the Anderson model, we saw a full suppression of propagation in the sense of a zero-velocity
Lieb-Robinson bound. For the interacting systems considered in many-body localisation, this is no longer
the case. Rather one finds that entanglement grows until it reaches a volume law in finite systems [151,
152] and thus is unbounded for infinite systems. This distinct difference to an Anderson insulator came
as a surprise and to date no complete classification of the transport behaviour of MBL systems has been
achieved. Based on the current literature and our own research, we expect the following behaviour con-
nected to the time evolution of local operators.

e A full suppression of energy and particle transport [46, 47]
¢ Complete suppression of propagation for very low energies [4, 157]
¢ The existence of local constants of motion [163-166]

* Unbounded propagation of information [5]

Here the first three are in complete accordance with the behaviour of Anderson insulators. In contrast,
the last one is markedly different and shows the interacting nature of those systems. In the following, we
discuss those aspects of propagation in more detail, beginning with energy and particle transport.

6.1.1 A full suppression of energy and particle transport

One of the key features of free systems is the fact that there is no conceptual difference between the
propagation of information, particles or energy as all of them are directly linked together. After all, the
only possibility for a creation operator to spread in a free system is by obtaining support on other single
creation or annihilation operators far away. For systems with particle number conservation, this means
that any form of transport is precisely captured by the movement of single particles.

For interacting systems, this is no longer the case, but rather it is possible to send information through a
chain without sending energy or particles [5]. Following the current consensus in the field, this is the ex-
pected behaviour of many-body localised systems [5, 167]. In fact, the observed unbounded entanglement
growth is a rather special dephasing effect [162] and would fit together well with a complete absense of
particle or energy transport. This is also in accordance with the intuition presented in the original work
by Anderson [48], as it would imply a vanishing dc conductivity. A rigorous proof of such a behaviour
starting from a concrete model is however still open, at least on a mathematically rigorous level, which
does not rely on the perturbative methods used in Refs. [46, 47].

Looking back to our discussion on thermalisation, such a suppression of energy transport would directly
imply a break-down of thermalisation. After all, the energy profile of a thermal state is always evenly
distributed, whereas MBL systems are not capable of reducing such energy imbalances on length scales
larger than the localisation length, even if one waits for infinite times.
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6.1.2 Complete suppression of propagation for very low energies

When looking at the unbounded entanglement growth, one realises that a superposition of many eigen-
states is necessary to achieve it [5, 152, 162]. This suggests to assume that such growth is not possible,
when only the first couple of excited states are used in the model. This would provide intuition for an
information mobility edge, below which any form of transport is completely suppressed [157, 168]. Denoting
by [k), 1) eigenstates of the Hamiltonian with energy Ey, E; respectively, we capture this concept in the
following way [4].

Definition 12 (Information mobility edge). A Hamiltonian H is said to have an information mobility edge at
energy Emep iff for all times t, all density matrices p € span{|l)(k|] : Ei, Ex < Emep) and all normalised local
operators A, B, the Hamiltonian time evolution satisfies

ITr (p[A(t), B]) | < min(t, 1)Cpep e HIAB)

with constants Cpop, i > 0 independent of t. That is, all propagation is suppressed for states supported only on the
low-energy sector below the enerqy Eop-

Intuition for the presence of such behaviour for interacting models can come from the perturbation
arguments performed in Refs. [16, 47]. In particular, if one assumes an Anderson insulator with a strong
positive chemical potential and adds interactions, then the low-energy sector should still consist of few
electron states, which hardly feel the presence of interactions. Thus, for those states, the propagation
should be completely suppressed, as in the case of an Anderson insulator. It should be noted that the
above definition refers to fixed energies, in contrast to other notions of mobility edges in terms of an
energy density, which relates to an energy that grows with the system size.

6.1.3 The existence of local constants of motion

Recently, the existence of local constants of motion has moved into the focus of attention, as it is one
of the key features of non-interacting localising systems. These are operators that are approximately
local and still completely invariant over time. In the case of non-interacting Anderson insulators, such
approximately local constants of motion are given by the rotated number operators iy or polynomials
thereof (see chapter 5).

In a similar way, it is often assumed that MBL is connected to the existence of an extensive number
of commuting, approximately local constants of motion. Again, similar to the setting of an Anderson
insulator, the Hamiltonian can completely be expressed in terms of products and sums of these local
operators [5, 164—166]. In the non-interacting case, this expression is only linear, whereas for the MBL
case, one expect higher order interactions in terms of these simple, number-operator type constants of
motion [163, 169]. Thus, the Hamiltonian is often assumed to be of the form

H= Zhiz’iJrZIi/iZ’iz’)' 4+, (6.1.1)
i ij

where Z; are approximately local commuting operators with a simple spectrum similar to that of a number
operator. The couplings J; ; are usually assumed to decay exponentially with the distance [163, 169]. This
is chosen in accordance with the logarithmically slow growth [163, 169] that is observed numerically [151,
152]. In contrast, other authors have also considered MBL Hamiltonians, which are a simple sum of
commuting constants of motion [165]

H=> hy,
j
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which can for example be obtained by performing an infinite time average of the Hamiltonian with itself.
As the Hamiltonian commutes with itself, the full operator is unchanged, but the local terms will be
diagonalised in the global basis at the cost of loosing exact locality [97]. Given that the full Hamiltonian
has to have non-degenerate energy gaps, such constants of motion cannot have a simple spectrum, as they
are commuting. Thus, such constants of motion themselves have a complex spectrum, which makes their
locality very hard to exploit, since perturbation methods cannot be employed (see appendix D).

An immediate consequence of the Hamiltonian given by a polynomial of approximately local commut-
ing operators is that these operators are independent of time. Thus, there are certain local operators that
remain local for arbitrary times and in fact even stay completely invariant. As in the case of free models,
it is immediately clear that these operators have to be included in any description of out of equilibrium
situations in terms of static ensembles. Therefore, they necessarily enter into constructions in the form of
generalised Gibbs ensembles (see chapter 3).

6.1.4 Unbounded propagation of information

The above aspects of the dynamical behaviour of many-body localisation focus on the similarities to the
non-interacting settings of an Anderson insulator. Yet, the numerically observed unbounded growth of
entanglement entropies clearly implies that not all propagation is suppressed. The usual picture for this is
that the interactions cause a slight splitting of the eigenvalues of the Hamiltonian, which in turn enables
propagation.

Connected to this is the investigation of entanglement growth over time. The typical setting here is
to start with a product state and observe how it evolves under the time evolution of the interacting
Hamiltonian. In stark contrast to the non-interacting setting, one observes a growth of entanglement
entropies that typically takes place at a logarithmic rate [152, 161]. Thus, for infinite systems it would
result in an unbounded entanglement [151, 152, 161, 162, 169].

This hints at the possibility to use MBL systems for sending information. In fact, we show in section
6.2 that such behaviour can be rigorously derived from remarkably few assumptions. Based on the mere
existence of local constants of motion and the fact that the model is fully interacting, we construct other
operators that spread without bounds in the Heisenberg picture. This directly gives rise to an Alice-Bob
type protocol in which the two parties can provably communicate, if enough energy is available in the
system to activate states above the information mobility edge.

In this way, the logarithmic entanglement growth is connected to a logarithmic growth of support of
operators in the Heisenberg picture. This definitely holds true in case the Hamiltonian is of the form
in Eq. (6.1.1) [5]. Such slow growth of operator support implies that expectation values can only equili-
brate after a time that scales exponentially with the system size, at least for general initial states. Thus,
equilibration in MBL models is commonly expected to be exponentially slow, even for states that have
exponentially large effective dimension [5]. Therefore, MBL systems are a prime example of naturally oc-
curring models in which the bounds on equilibration times derived in section 3.5 provide a tight scaling,
even for physically realistic initial states.

6.1.5 Summary: Local operator in MBL systems

In this section, we summarised the current viewpoint on the evolution of local operators under MBL
Hamiltonians. Following the inchoate state of current research, we gave intuition how local operators
dynamically behave in such systems. We presented the common intuition that energy and particle prop-
agation are fully suppressed, just like in an Anderson insulator. Similarly, when only looking at low
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energies, the interactions should not be sufficient to enable propagation. Moreover, we expect that the
Hamiltonian can be decomposed into approximately local and commuting constants of motion. In con-
trast to the case of an Anderson insulator, the Hamiltonian should also have higher order interactions
between those constants of motions, which ultimately cause the unbounded growth of entanglement [163—
166].

In the following section, we explore this connection further. In an effort to understand the propagation
properties of MBL Hamiltonians, we present a rigorous mathematical proof that those system have an un-
bounded growth of operator support in the Heisenberg picture and can thus be used to send information
through them. Interestingly, the proof uses equilibration results in an unexpected way and relies solely on
the existence of a single approximately local constant of motion and a non-degenerate spectrum associated
with interacting models.

6.2 LOCAL CONSTANTS OF MOTION IMPLY INFORMATION PROPAGATION

The following section is based on Ref. [5]. We sincerely thank Albert H. Werner, Marcel Goihl, Jens Eisert and
Winton Brown for the very fruitful collaboration.

In the following, we review a recent work relating static and dynamic properties of many-body localisa-
tion. In particular, we argue that the existence of a constant of motion together with a generic Hamiltonian
spectrum implies that the system can be used to send classical information through it [5]. It is interesting
to connect this to the equilibration results of free fermionic systems presented in section 3.4. There we saw
that transport can lead to equilibration behaviour. The result presented in the following can, to some ex-
tent, be seen as the inverse implication. Based on equilibration results, we show that the system provably
allows for information propagation, as long as the existence of a local constant of motion is assumed.

6.2.1 Information propagation

In order to capture how information can be sent through these models, we briefly review the protocol
introduced in section 3.5.3. We imagine that there are two parties, for brevity referred to as Alice and Bob,
who control different parts of a spin system [109, 170]. For simplicity, let us restrict to 1D and let Alice
control some part at the left end. We further assume a fixed separation between the parties and finally
that Bob controls the rest of the chain. Alice now encodes a message by either doing nothing or acting
on her part of the spin chain with a local unitary V5. At a later time, Bob measures some local operator
Bi. How well these two parties can communicate with such a protocol is captured by the difference in
expectation value for Bob, depending on Alice’s action,

5= | (G| VABVE ) — (W[ B W) |,

which can be seen as a signal strength s. At time zero, the support of Vo and B are spatially separated
and the above quantity is zero. Over time, the support of By might grow and thus eventually lead to a
signal. Such a procedure amounts to a positive channel capacity in the language of information theory if
s > 0. In yet less information theoretic terms: a local modification necessarily leads to a measurable state
modification far away in the chain for later times. Thus, whether the two parties can communicate crucially
depends on the growth of the support of the operator in the Heisenberg picture. In this way, the following
quantity is a meaningful way to capture the capability of a Hamiltonian to propagate information.
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Definition 13 (Information propagation on average). A Hamiltonian allows for information propagation on
average, if for any € > 0, there exists a strictly local observable B with ||B|| = 1, such that, for each finite region
Sc{,

[Be —Ts(Be)l| = 1—¢,
where T is the truncation map and fy = imt_, o % fg dtfy denotes the infinite time average of a function fy.

This definition is very restrictive in the sense that it demands that the lower bound can be chosen
arbitrarily close to 1. On the other hand, it does not require any information on the corresponding time,
but only refers to the infinite time average, which is connected to the overwhelming majority of times.
To calculate this average, very large times might be needed (see chapter 3). Correspondingly, it is well
possible for the support of the observable to take exponentially long to grow. From this definition, we can
immediately conclude, that we have

s =1 (WIVABVL 1) — (W Belb) | > T—e€,

for some initial state vector ), which follows directly from rewriting the reduction map in terms of a
unitary twirl over the Haar measure (see section 3.5.3). Hence we can interpret 1 — € as a signal strength
s. Thus, if a Hamiltonian allows for information propagation in the above sense, Alice and Bob can
indeed communicate using the described protocol and send information. This result is independent of
the distance between them, as long as Bob is allowed to measure on a large enough subsystem. Our main
result states that this information propagation can be rigorously deduced from only the existence of a
local constants of motion with a suitable spectrum and non-degenerate energies and energy gaps in the
Hamiltonian. For this, we state a formal definition of a local constant of motion suited for later purposes.

Definition 14 (Local constant of motion). Let Z be an operator that commutes with the Hamiltonian and has
M disjoint eigenvalues, all separated by a spectral gap lower bounded by v > 0, independent of the system size. Z
is an exactly local constant of motion, iff it is strictly local and an approximately local constant of motion, iff it is
approximately local according to Def. 2.

The main purpose of this definition is to ensure that the spectrum of the operator is similar to that
of a number operator in the sense that it has a fixed number of distinct eigenvalues separated by a
spectral gap. Without this, our perturbation analysis could not be carried out and the approximate locality
of the operator would be rendered useless (see appendix D). Note that for the exactly local case, the
spectral assumptions are automatically fulfilled and our definition thus indeed captures the concept of
a local constant of motion (see appendix D). Finally, to recapitulate earlier definitions, the decay of the
approximately local operator will be captured by a decay function, where we assume a localisation region
X such that

1Z—Tx, () < g(l),

with X; denoting the set containing X and all its neighbours up to a distance 1, as usual (see chapter
3.2). Using this approximate locality, a direct consequence of the simple spectrum of the constant of
motion is that the dimension of the eigenspaces has to grow exponentially in the system size. This can
be seen from a perturbation theory point of view, where the exponentially small tails are not sufficient to
create transitions between distinct energy values. Thus, the spectrum is approximately given by that of a
strictly local operator, which has the feature of exponentially growing eigenspaces since it is extended by
tensoring with identity (see appendix D). With this insight, our theorem takes the following form.
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Theorem 10 (Information propagation). Let H be a Hamiltonian with non-degenerate energies and
gaps and Z be an approximately local constant of motion with decay function g with localisation region
X, spectral gap y > 0 and eigenspaces with dimension larger than dyin. Then H necessarily has
information propagation on average in the sense that there exists a local operator B initially supported
on X D X with ||B|| =1 such that By, on average, has support outside any finite region S

Be—Ts B> 11390 _ &

Y  2qV/2

(6.2.1)

We remark, that the first non-constant term in Eq. (6.2.1) can be chosen arbitrarily small by picking
the initial support X; large enough, thus making g(1) arbitrarily small and the second non-constant term
decays exponentially with system size L, due to the exponential growth of the degeneracy dpn. This result
shows that for many-body localising Hamiltonians, a zero velocity Lieb-Robinson bound does not occur
and it is always possible to use the system to send information. The results does not rely on any specific
form of the Hamiltonian and uses only the existence of a single approximately local constant of motion.
Our results do not provide any statement on the influence of the involved energy scale and are perfectly
compatible with the existence of an information mobility edge, in the sense of Def. 12. Let it be noted that
the results certainly do not apply to an Anderson insulator, which has hugely degenerate energy gaps.
This is in accordance with our previous discussion, which argued that an Anderson insulator shows a full
suppression of propagation, as all eigenmodes are localised. Let us now turn to a sketch of the proof.

6.2.2 A sketch of the proof

Our results only rely on the existence of an approximately local constant of motion and assume no specific
structure of the Hamiltonian. In order to first present the argument in its simplest form, however, we here
assume that the Hamiltonian is diagonal and the local sites consist of spin-1/2 systems. A good example
is the following simple MBL model

— . g% . . 0%0%
H=) hof+) Jijofo},
j i,j

where 0% are the Pauli-Z-matrices and J; ; € R decays exponentially with the distance between the spins.
The proof relies on perturbation arguments and a nifty construction of a local observable B [5], but the
main idea is similar to the following proof sketch, which relies on using equilibration results following
from non-degenerate energy gaps [69].
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Figure 6.2: A schematic visualisation of the main result presented here. A constant of motion, on a 2D lattice, here
drawn in blue, together with non-degenerate energy gaps is sufficient to show that a different operator exists, drawn
in red, that has to spread without limits in the Heisenberg picture.
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For this, we construct two objects. Firstly, a state that is the equal superposition of all eigenstates and
secondly, a local operator B that initially has expectation value one with respect to this state, but at the
same time has a zero diagonal in the energy eigenbasis and thus zero expectation value for the equilibrated
infinite time average. Since equilibration guarantees that local expectation values are described by the
infinite time average, this allows us to conclude that the Heisenberg evolution of the operator B has to be
non-local (see Fig. 6.2).

Lemma 2 (Diagonal Hamiltonians). Let H be a diagonal Hamiltonian with respect to the local o* basis on a
spin-1/2 lattice with non-degenerate eigenvalues and gaps. Let B = o3 be the Pauli-X-matrix supported on spin j.
Then H necessarily has transport on average in the sense that the operator By has, on average, support outside any
finite region S

Bt —Ts (B)[| > 1—dlSI-N/2.

Proof. For the argument, we use a state vector ) that is initially a product with |+) on all sites. Let us
point out that this (\p) simply reflects an equal superposition of all eigenstates of the system and is thus
an infinite temperature state. Since we assume that the Hamiltonian has non-degenerate energies, we
know that the infinite time average of p = [{)(\| is diagonal, since all off-diagonal elements correspond
to non-zero energy gaps and are thus dephased away. Moreover, as the diagonal is invariant under the
time evolution, we know that the time-averaged state w is the normalised identity matrix. Considering a
subsystem S, we can use the non-degenerate energy gaps to employ the equilibration results from section
3.5 for the expected deviation from the infinite time average

< ﬂ < alsI=N/2 (6.2.2)

Here N is the total number of spins and the effective dimension, previously defined using the infinite time
average (see section 3.5), counts how many eigenstates of the Hamiltonian are part of the state
d 1
f = < | onNg
(k)

The above result states that, for most times, the reduced state of p; looks like the identity. Due to the time
reversal symmetric way in which these equilibration results are proven (see section 3.5), they also directly
apply to the inverse evolution p_; [69]. To investigate the transport properties of the Hamiltonian, we
look at the time evolution of an observable B consisting of a single Pauli-X-operator somewhere in the
region S. The key trick is to use the initial expectation value and to insert time evolution operators

1=Tr(Bopo) =Tr (Btp—t) - (6.2.3)

Since we know that the equilibrated state is the normalised identity, the expectation value of any local
traceless operator A has to vanish on average

Tr(Ap_¢) =0.

Since By is traceless and the time evolution leaves the trace invariant, we can conclude that the operator
B¢ on average cannot be local anymore. More precisely, we have that

[Bt —Ts(By)[ = ||Bt — d!SI=Nlge ® Trge (B)||
> |Tr(Bp—t) — dISI=NTrg (p5  Trse (By))

7
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where we used that ||B|| > [Tr(Bp)| and defined p> = Trsc(p). Next we use the inverse triangle inequality,
Eq. (6.2.3) and insert 0 = Tr(d— !SI gTrse (B)) which is using the fact that the reduced observable has zero
expectation value with the infinite time average

[ Tr(Bep—t) — Trs (pS (dISI=NTrge(Be))| = 1— |Trs (p5,dISI=NTrse (By))|
>1—|Trs ((p2 —d~13115)dISImNTrge (By)) | .

Another application of |Tr(Bp)| < ||B|||lp]|1 allows us to use the equilibration results in Eq. (6.2.2). Using
|d!SI=NTrge (By)|| < 1 yields the estimate

[Be—Ts(Bo > 1— S —a Slts| |asNTrse(Bo)|

>1—als-N/2,
This concludes the proof in the simplest setting. O

The main idea for the proof still can be carried out in the setting where the Hamiltonian is no longer
assumed to be diagonal, but where only the existence of an approximately local constant of motion is
guaranteed. For this, it is first assumed that the constant of motion is exactly local. This implies that it is
possible to distinguish different sets of eigenvectors locally and thus allows to construct local observables
that have zero diagonal in the eigenbasis of the Hamiltonian. Moreover, a state with large expectation
value with respect to this observable can be constructed. This again allows to use the equilibration results
for this state, together with the off-diagonality of the observable in order to prove transport. Finally, the
argument is concluded by performing a perturbation analysis, which makes room for the decaying tails of
the approximately local constant of motion. This argument requires a detailed mathematical analysis and
is contained in appendix D.

6.2.3 Summary: Information propagation in MBL

In this section, we saw that systems with suitably non-degenerate spectrum and an approximately local
constant of motion, provably allows for information propagation. We explicitly constructed local excitation
operators whose effect spreads over arbitrary distances, thus giving rise to a protocol to use MBL systems
for signalling. Our results are nicely complemented by recent work showing that if the Hamiltonian can
be written in terms of approximately local constants of motion, logarithmic Lieb-Robinson bounds can be
derived [166]. Our result can be seen as a rigorous proof that this logarithmic cone can never be tightened
to a zero-velocity Lieb-Robinson bound, at least if one allows for infinite energy in the system. Let it
be noted that, in contrast to the setting in Ref. [166], we do not require any special decomposition of the
Hamiltonian, but rather the existence of a single approximately local constant of motion is sufficient. What
is more, this work constitutes an important step towards proving a lower Lieb-Robinson bounds in generic
spin models. While upper bounds on information propagation can easily be obtained (see appendix B),
proving that propagation actually takes place is an exceedingly hard task, at least outside of the regime
of free models (see section 3.4). In this context, our work can be seen as the first proof of propagation
in an interacting physical model, albeit we are not yet able to provide the corresponding time scale. It is
interesting to note that this time scale is directly linked to equilibration time scales and any progress on
finding useful bounds on those (see section 3.5) would immediately yield a time scale for the information
propagation proven in this section.

This concludes our discussion of the propagation of operators in MBL systems. In the following, we turn
to the behaviour of states and in particular look at eigenstates of MBL systems. Here local descriptions,
for example in the form of tensor networks, play a crucial role.
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As we saw in the previous sections, structure of eigenvalues and eigenvectors can often be directly con-
nected to physical behaviour. For example, we saw that non-degenerate energy gaps give rise to equilibra-
tion behaviour and eigenstates fulfilling the ETH guarantee thermalisation. In this section, we investigate
these spectral properties of MBL systems. We argue that eigenstates of such models are expected to have a
particularly easy structure, at least if the randomness is sufficiently strong. We present different formula-
tions of this statement and compare the interacting eigenstates to the case of an Anderson insulator. In the
entanglement behaviour, we see a sharp distinction between eigenstates of generic models, which usually
fulfil a volume law for the entanglement entropy, while MBL eigenstates are expected to fulfil an area-law.
In this way, the randomness leads to a distinctly different eigenstate behaviour, at least if the randomness
is sufficiently strong [171]. While entanglement entropies are an important aspect, also the violation of
the ETH as well as tensor network tool approximations are considered as static localisation properties. We
begin by looking at the eigenvalues of those models.

6.3.1 Spectral transition

In the condensed matter community, one prominent feature of systems is to look at the gaps between con-
secutive eigenvalues. A distinction is made between the Poissonian case which occurs for non-interacting
models (see Fig. 5.2) and the Wigner-Dyson surmise expected for interacting models [172]. For MBL sys-
tems, it is found that they have Poissonian level spacing [173]. Interestingly, this transition does not seem
to occur for arbitrary randomness, but rather there is a sort of phase transition for suitable strong random
potentials [171].

Furthermore, it was uncovered that the level spacing can behave differently depending on the investi-
gated energy. In particular, it is possible to have a disorder strength such that the low-energy sector already
has Poissonian statistics, while the high-energy eigenvalues follow the Wigner-Dyson surmise [171]. This
is a very exciting development, since it shows that for interacting models, there can be a mobility edge
even in 1D; a behaviour impossible for the normal Anderson model. Note that this distribution of gaps is
independent of the question whether the energy gaps are non-degenerate. In fact, as argued earlier, such
non-degeneracy is expected independent of the localising nature of the system and solely relying on the
fact that it is interacting. We now turn to the eigenstates of the system.

6.3.2  Fock space localisation

One possible approach is to investigate how the many-body eigenstates look in the original localised or-
bitals of the single-particle setting. In the non-interacting case all eigenstates naturally can be specified
by giving the occupation numbers of the individual orbitals resulting in Fock states in those localised or-
bitals. Once interactions are turned on, it is natural to ask how many of these original Fock configurations
significantly contribute to the new eigenstates. For generic models, one would expect that this number
grows exponentially with the system size, while for localised systems, it should grow at most linearly.
Moreover, for states with fixed particle number, one would expect no growth at all for localised systems,
while generic models should need more and more Fock configurations to construct the many-body eigen-
vectors. This intuition was confirmed by perturbation arguments [46, 17] and was an early characterisation
of MBL.
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6.3.3 Eigenvector entanglement

A different characteristic feature of localisation is the entanglement property of individual eigenstates. In
the non-interacting case all of them fulfil an area-law, meaning that their entanglement scales like the size
of the boundary of the cut. Thus, in 1D all eigenstates have a constant half-chain entanglement entropy
independent of the system size. This has also been considered as a possible characterisation of MBL
[174]. Numerically, strong disorder indeed seems to imply an area-law behaviour, while again settings
are possible that show a mobility edge, now in the sense that low-energy states have little entanglement,
while eigenstates in the middle of the spectrum show a volume law [171].

Aside from entanglement, also other probes for the behaviour of localising eigenstates were proposed.
In particular, the correlation matrix (f]tfﬁ evaluated on individual eigenstates has proven to be a useful
probe [175]. Moreover, also the total correlations of eigenstates were proposed as an investigative tool and
show a similar drastic change of behaviour between localising and thermalising regime [176].

6.3.4 Tensor-network approximations

Concomitant with the above indications that eigenstates of MBL systems have little entanglement, it is
often argued that they should allow for an efficient approximation in terms of tensor networks [174]. In
one dimension, these two statements are equivalent, at least when the entanglement is captured in terms
of Renyi entropies (see chapter 3.2). In higher dimensions, however, this is no longer the case. While a
tensor-network description directly implies an area-law, the converse is no longer true [103]. Therefore,
demanding that the eigenstates of MBL systems are efficiently captured in terms of tensor-networks is a
strictly stronger statement then only bounding their entanglement.

6.3.5 Breakdown of ETH

Immediately connected to the entanglement behaviour of individual eigenstates is the validity of the
eigenstate thermalisation hypothesis (see chapter 4). It was proposed as a possible mechanism for ther-
malisation and, in its most intuitive form, states that already individual eigenvectors should locally be
indistinguishable from the global Gibbs state, where the temperature is fixed by the corresponding energy
of the eigenstate [26, 131]. This implies that eigenstates should locally be very mixed and is thus incom-
patible with an area-law for the entanglement entropy. In this way, the break-down of the ETH is a similar
approach to MBL [153, 161], but is strictly stronger than only demanding an area-law behaviour of the
entanglement of all eigenstates.

6.3.6 Summary: Spectral features of MBL

In this section, in addition to the different discussed aspects of dynamical localisation of local operators,
we now saw a plethora of static characterisations that capture local eigenstates or the spectrum. We
encountered various ways in which eigenstates of MBL systems are localised, in contrast to the dynamical
behaviour of MBL. While product states obtain arbitrarily large entanglement over time, all eigenstates of
the system have little entanglement, at least in the case of strong disorder considered here. As dephasing
of a superposition of many product eigenstates can still lead to a large entanglement, these two pictures
are perfectly compatible [5].
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Based on the above eigenstate localisation, many people think of MBL as a quantum phase transition for
all eigenstates or equivalently at “infinite temperature”. We will encounter such transitions for the usual
ground state case in chapters 9 and 10. There again, the juxtaposition of static and dynamic properties will
pose intriguing physical questions that require extensive numerical, analytical and experimental efforts.

In summary, we encountered a very tangled landscape of localisation properties, both in static and
dynamic formulations. Within the scope of this thesis, we are not able to fully clarify all aspects, but
provide further significant steps in this direction. In particular, we now present an insightful link that
connects the dynamic features discussed earlier with the eigenvector localisation described in this section.

64 EIGENVECTORS AND SUPPRESSION OF TRANSPORT

The following section is based on Ref. [41]. We sincerely thank Albert H. Werner, Winton Brown, Volkher B. Scholz
and Jens Eisert for the very insightful collaboration.

In this chapter, we present a link between dynamic and static properties of MBL [4], in the spirit of the
well-known exponential clustering theorem (see Thm. 4 and Refs. [66, 94]). The general idea is to use a
dynamical suppression of propagation and from that derive that correlators in eigenstates have to decay
exponentially. In contrast to the exponential clustering theorem, our result is not limited to the ground
state. Rather, the strong suppression of propagation on the low-energy sector of MBL allows to show such
exponential clustering for many excited states of the model.

We begin with some generic assumptions on the spectrum of the Hamiltonian [4], which seem natural
in the context of MBL systems or Anderson insulators with local random potentials.

* Non-degenerate energies (Al): The energies of the full Hamiltonian are assumed to be non-degenerate.
The smallest gap between these energies is called vy.

 Locally independent gaps (AII): The energies of reduced Hamiltonians Ha and Hg which include all
interactions inside rectangular regions A and B respectively (see Fig. 6.3), are assumed to be non-
degenerate when viewing them as operators on their respective truncated Hilbert spaces H{4 and
Hg. The smallest gap is called ¥. Moreover, the gaps of these Hamiltonians need to be locally
independent with respect to each other, in the sense that

Eo—FEp=FEp—FEp =a=da,b=b,

where a,a’ and b, b’ label the eigenvalues of Ha and Hp respectively. Thus, the only possible way
in which the spectral gaps can be the same is if they both are zero. The smallest difference of these
gaps is called n.

® Non-symmetric gaps (AIIl): For all eigenvalues Ey of the full Hamiltonian the spectrum is no-where
symmetric, in the sense that

min|[E, — Ey| — [Es —Exl|> (>0 Vk.
T#S

Note that the above conditions allow for degenerate energy gaps and are, with high probability, fulfilled
by Anderson insulating models. Assumption AII can also be reformulated, by demanding that the joint
Hamiltonian H = Ha + Hp supported on two disjoint rectangular regions has non-degenerate energies,
since these energies are all possible sums of the local energies E, + Ey,. We now turn to describing our
dynamical assumptions, which are the basis for our proof of exponential clustering of eigenstates.
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Figure 6.3: Taken from Ref. [4]. This figure shows the Hamiltonian decomposition used in the proof of theorem 11.
For the two considered observables A, B truncated Hamiltonians H, Hg are used that include all terms around the
support of those operators and have a square support that is chosen as large as possible without overlapping.

6.4.1 Strong dynamical localisation

We first present the main result in the easiest possible setting. Here, we assume a full suppression of
propagation in the sense that the systems has strong dynamical localisation (see Def. 11). This assumption
is certainly rather strong and probably only fulfilled in the case of non-interacting particles. We move
towards MBL systems in the next step, but for now restrict ourselves to this easiest case.

The goal is to exponentially bound the correlator (k| AB [k) — (k| A [k)(k| B [k), where |k) is an eigenstate
of the Hamiltonian and thus show that eigenstates have exponentially clustering correlations. For this, we
rely on energy filtering with a Gaussian filter function (see appendix E)

o0

IH(A) = ”E J dt e~ *teitHpe—itH
7

—00

which partly diagonalises the observable in the Hamiltonian basis up to an error that is distributed ac-
cording to a Gaussian with width «. By tuning this parameter «, one can interpolate between keeping
some locality of the original observable and the error in the diagonalisation. The first key step in showing
exponential clustering of eigenstates is to show that the energy filter for two disjoint observables with
their respective local Hamiltonians decouple [4].

Lemma 3 (Decoupled energy filtering). Under the assumption of locally independent gaps (AIl), energy-filtering
of two observables can be factorised into local energy filters

[THA+HE (AB) — THA(A)IHE (B)|| < 290+ T e &7/ (4]

with & = min{n, V2¥} and L the system size as usual. Here Ha and Hp are chosen to include all Hamiltonian
terms within distance d(A, B)/2 of the support of A and B respectively (see Fig. 6.3).

The crucial ingredient used here is the fact that Ho and Hp have independent gaps in the sense of
Def. AII, which means that their difference is uniformly bounded from below by &. Using that the energy
filter diagonalises the local observables and labelling the spectrum of Ha and Hp with a and b respectively
is the basis for analysing the following term

[HatHe Ay - Z la, b){a, b| ABa, b)(a, bl
a,b

+Z|a,b><a,b|AB|a,b>(a,b—IEA(A)I‘;B(B)H .
a,b

What is left to do is to show that both the decoupled as well as the joint filter achieve the diagonalisation
in the eigenbasis of Ha and Hg. This analysis is straightforward, but slightly tedious and can be found in
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appendix F. Based on this lemma, we can now move to the main result of this section in its simplest form
[4], which relies on the strong dynamical localisation as discussed in the chapter on Anderson localisation
(see Def. 11).

Theorem 11 (Clustering of correlations of eigenvectors). If the Hamiltonian shows strong dynam-
ical localisation and its spectrum has non-degenerate energies (Al) and locally independent gaps (AII),
then all its eigenvectors have exponentially clustering correlations

| (kI AB k) — (k| A [k)(KI B |K) | < 4Cjpc e H4(AB)/2

where wand Cy, are the constants from the definition of strong dynamical localisation.

Proof. The proof uses the local Hamiltonians Ha and Hg (see Fig. 6.3) and the following estimates

(k| AB k) = (k| Ti (AB) [k)
T (IEATHB(AB) [K) + Qe ™)
11 (KITEA (AIEE (B) k) + Qe
1 (KT AT (B [K) + Qe
v (KA TKYKIBIK) + Qe ™),

where Q(x) denotes a linear scaling in the quantity x. In each step, an error term of the form Cre™*! with
C; to Cyv is introduced. The constant C appearing in the main theorem is the sum of them. Constants
C1, Ci11, Crv directly follow from the properties of the applied Gaussian filter (see Def. 10) and constant
Cqj is derived in lemma 3

C1 =2Cioc ,
Cr = 24L+le—£2/(4oc)eu1 )
Crrr = Cioc »

Cpy = e ¥/ (4ol

C:=Ci1+Cu+Crr+Crv.

The constants C;; and Cyy can be chosen arbitrarily small, by picking a sharp enough filter function,
meaning a sufficiently small «. In particular, we can choose Cr1, Cryv < Cjoc/2, which yields

C =4Cloc -
Choosing 1 = d(A, B)/2 concludes the proof. O

As presented above, if a Hamiltonian has strong dynamical localisation, then all its eigenvectors prov-
ably have exponentially clustering correlations. In the following section, we move towards a setting that
includes the expected behaviour of MBL systems and relies on a considerably weaker assumption.

6.4.2 Information mobility edge

In the following, we look at the low-energy sector of an MBL Hamiltonian. While allowing for arbitrary
energy scales in an MBL system gives rise to an unbounded growth of entanglement and makes informa-
tion propagation possible (see section 6.2), this propagation is expected to be no longer possible on the
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Figure 6.4: Taken from Ref. [1]. We perform exact diagonalisation of the one-dimensional Heisenberg model with
random on-site magnetic field of the form H =} _; (oo}, | + 0? 0? 1 tofof, 1 +wiof), where w; is drawn uniformly
from the interval [—h, h]. a The left plots shows the number of eigenstates for 14 sites as a function of the discretised
energy for h = 1 averaged over 100 realisations and the variance of this averaging is indicated by vertical error bars.
The resulting function is close to a Gaussian. b In the middle, the integrated density of states of this model with
the same parameters is shown. The corresponding error bars are too small to appear. This quantity is related to the
number of states © by an exponential factor 2&. This plot indicates that indeed the number of states has small tails and
thus few states at low energies. ¢ The right plot depicts the (von Neumann) entanglement entropy of the eigenvectors
as a function of the energy. The results were obtained for the disorder strength h = 4 on a system of 12 sites and for
each individual state an average over the different cuts through the 1D chain was taken. This plot corroborates the
intuition that the entanglement entropy and thus the associated bond dimension of the corresponding MPS increase

with the energy.

low-energy sector. In particular, we assume an information mobility edge in the sense of no information
propagation below a certain energy, as described in Def. 12. Based on this, we are able to show that all
states below this information mobility edge provably have exponentially clustering correlations.

Theorem 12 (Clustering of correlations of eigenvectors). If the Hamiltonian has an information
mobility edge at energy Eyop and it has non-degenerate energies (Al) and non-symmetric gaps (AIII),
then all eigenvectors [k) up to that energy o, cluster exponentially, in the sense that for all k > 0

| (kI AB [k) — (I A [k)(kI BIK)|

B 4427 —ud(A,B)
< (12”@(Ek+K)Cmoan“”d(A;(z)e )e o

where ©(E) is the number of eigenstates up to energy E and « can be chosen arbitrarily to optimise the
bound.

The proof of this statement is rather technical and contained in appendix F. Let us highlight some
important features of this bound. Firstly, one is able to freely choose an energy cutoff k that allows to
optimise the bound. For those familiar with the proof of the exponential clustering theorem, k serves
as an artificial gap. For typical local models, we expect the density of states to behave like a Gaussian,
an intuition that can be numerically tested for small systems (see Fig. 6.4), and rigorously proved in a
weak sense [87]. In this case the number of states behaves like a low-order polynomial in the system
size at energies close to the ground state energy Ey + k. Thus fixing a k > 0 independent of the system
size leads to a prefactor that scales like a low-order polynomial in the system size where the order of
the polynomial increases as one moves to higher energies. In the bulk of the spectrum, the number of
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states grows exponentially with the system size, thus rendering our bounds useless as one moves to high
energies. Interestingly, this feature of stronger correlations, associated with a larger entanglement in the
state, at higher energies seems to be shared by the Heisenberg chain with random on-site magnetic field
(see Fig. 6.4).

Our result can also be applied to the ground state of models, where it provides an extension of the
previous results [157] and for example for the case of an almost degenerate ground state is a substantial
improvement. More importantly, however, the above theorem also applies to excited states and for the
first couple of excitations certainly provides highly non-trivial statements.

6.4.3 Implications on area laws and matrix-product states

In one dimension, the conclusions of our main theorem about the correlation behaviour of eigenvectors
can be turned into a statement about their entanglement structure. It was noted before that many-body
localisation should be connected to eigenvectors fulfilling an area law (see Conjecture 1 in Ref. [174]), and
eigenvectors being well approximated by matrix-product state vectors of the form (see appendix A)

dspin
IMPSp) = 3 (AlallAzl2) - A e IALGL) i, i)

j1,d=1

where (A1[j1]l and |Ar[ji]) are boundary vectors of size D and Aylj] for each position k are complex
D x D matrices, with D being the bond dimension. Our main theorem allows to rigorously prove this
connection.

Corollary 13 (Area laws and matrix-product states). An eigenvector |K) of a localising Hamilto-
nian can be approximated by an MPS with fidelity |(kIMPSp)| > 1 — €, where the bond dimension D
for a sufficiently large system is given as follows.

a If the Hamiltonian shows strong dynamical localisation and has non-degenerate energies (Al)
and locally independent gaps (AII), then the statement holds for all eigenvectors |k) and, for
some constant C > 0, the approximation has a bond dimension

16
D = C(L/e)Pa2e .

b If the Hamiltonian has an information mobility edge at energy Enop, and has non-degenerate
energies (AI) and non-symmetric gaps (AIII), then the statement holds for all eigenvectors below
this energy Epop and the bond dimension is given by

D =poly (©(Ex +«),L) ,
for any fixed « which enters in the precise form of the polynomial.

The proof is a direct consequence of our main theorem together with the fact that exponential clustering
in one dimension implies an entropy bound for any bipartite cut of the chain [102]. Using techniques
from [177] this leads to an efficient MPS approximation with the above bounds on the bond dimension
(see appendix F for details).
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6.4.4 Summary: Eigenvectors and suppression of transport

This concludes the connection between dynamical suppression of propagation and the correlation struc-
ture of individual eigenstates. We saw how an information mobility edge can be used to show that the
full low-energy sector provably has exponentially clustering correlations and can thus, in 1D, be efficiently
approximated by matrix-product states. The result discussed above is one of the few instances where one
is able to achieve a direct link between static and dynamic properties of local Hamiltonian models, much
in the spirit of the exponential clustering theorem [66, 94]. It highlights the fact that MBL models are not
only interesting in their own right as physical models of impurities in solid-state physics, but also are
useful for investigating long-standing questions in quantum information, such as the precise connection
between eigenvector behaviour and dynamical properties.

In the following, we summarise the different MBL features encountered, order them and propose a
possible definition of the phenomenon.

65 DEFINING MANY-BODY LOCALISATION

When it comes to a possible definitions of MBL, there are presumably as many opinions as physicists
working on MBL, maybe more. In fact, currently it is not even clear to what extent there is only a single
MBL phase, or whether it should be further separated into different MBL phases as recently proposed [178,
179]. So far, the different characterisations are very much a question of taste and little consensus has been
achieved on the paramount questions which features should be taken as the defining property of MBL.
At the current stage, it is therefore also unclear which experimental probes should really be measured
in order to ensure that a system is in the MBL phase and how this is connected to other classifications
commonly considered.

In the following, we first sort the previously encountered aspects of MBL in a systematic way. We
proceed to recapitulate the links presented in this thesis or performed in other publications over the last
years. Based on this, we propose a possible unifying definition of MBL and speculate how it is related to
other features usually considered. We begin by reevaluating the graphical representation of the different
features of MBL (see Fig. 6.5).

The individual boxes should be quite clear at this point. We argued that local operators behave in
special way in MBL systems. In general, they slowly spread over the full lattice, corresponding to the
possibility to propagate information. Yet, this propagation vanishes when restricting to the low-energy
sector. Following our intuition, it should also be absent when only looking at how particles or energy
propagates. Finally, there exist certain local operators that do not propagate at all and are even local
constants of motion.

When looking at the evolution of states, we encountered a log-growth of entanglement that eventually
saturates in a volume-law. Despite this volume-law like behaviour, the infinite time average is not cap-
tured by a thermal ensemble, which is not surprising when assuming that local constants of motion exist.
Therefore a generalised Gibbs ensemble description is needed.

Finally, we investigated spectral properties, namely non-degenerate energy gaps and consecutive gaps
that are distributed according to a Poissonian distribution. The eigenstates of MBL systems are expected
to be local, where many possible statements of this locality can be considered.

We now focus our attention on establishing links between these, a priori, disconnected features. Let us
begin with the gray arrows, which are straightforward conclusion or are based on results that were known
outside of the MBL context. First, let us look at the different features of eigenstates of MBL systems. Surely,
a lack of entanglement in the eigenstates implies that the ETH is violated, as does Fockspace localisation.
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Figure 6.5: A characterisation of MBL and the connections achieved within the scope of this thesis as well as in
other publications. Links achieved with the involvement of the author of this thesis are marked in red, while other
contributions are drawn in blue. Te arrows are label with the appropriate citation. The established links bring together
different aspects of MBL and show that currently much structure is provided by the existence of local constants of
motion.

Based on a tensor network representation of a state, we can deduce an area-law behaviour. Moreover if
a model does not dynamically thermalise due to memory of the initial conditions, which is implied in
this context, then the ETH also has to be violated. Also, if a model does not have particle transport, then
initial imbalances will always be remembered and thermalisation cannot take place. The same holds if the
system has local constants of motion.

Let us now move to connections that were developed specifically in the MBL context. Recently, local
constants of motion have moved into the focus of attention. Ref. [180] provides a proof that a sufficient
amount of exactly local constants of motion allows to proof an area-law for all eigenstates. In fact the
reference proves that a spectral tensor network can be obtained that captures all eigenstates, which is a
strictly stronger statement. Using a perturbation analysis [5] based on our bounds in appendix F, this
result can be generalised to the setting of approximately local constants of motion. Further, one can
deduce the failure of the system to thermalise [72, 74] from the existence of local constants of motion. Ref.
[166] provides a link that local constants of motion are sufficient to show that information propagates only
slowly through the system. It, however, leaves open the crucial question whether information propagation
is possible at all, meaning whether the logarithmic bounds are tight. In our work [5], we answer this
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questions in a very general context. Surprisingly, the existence of a single constant of motion, together
with a non-degenerate spectrum, which reflects the fact that the Hamiltonian is interacting, is sufficient
to proof that information has to eventually spread through the whole system. This rather intricate insight
into the dynamics of interacting systems provides a clear link between equilibration behaviour and local
constants of motion.

This rich structure provided by local constants of motion and the Hamiltonian being a polynomial of
them would suggest to define MBL via this structure. The clear downside of such a definition is that
constructing the local constants of motion is typically very hard and analytically has so far only been
performed for the Ising model [181]. Even numerically it is far from clear how this could be performed
outside of the regime where the model can be solved completely using exact diagonalisation [164, 165,
182], with first approaches just being conceptually developed [183]. While some have suggested to use
time-averaging [165], this has the downside that the emerging constants of motion do not have a simple
spectrum and are thus not suited for deriving the eigenstate structure [5].

A further downside of considering local constants of motion as the defining feature of MBL is that they
are not directly experimentally accessible. From this point of view, transport properties are much more
suited for a definition of MBL, as they could be easily measured. Motivated by this, in Ref. [4], we linked
a strict mobility edge for the propagation of information with local structure of the eigenstates. In par-
ticular, such a full suppression of information on the low-energy sector is sufficient to obtain exponential
clustering of all eigenstates in the low-energy sector. This can be seen as an extension of the exponential
clustering theorem to excited states in localising models. Such a full suppression is, however, not sufficient,
for a characterisation of MBL for two reasons. Firstly, it does not allow to distinguish an Anderson insu-
lator from an interacting localising model. For this, one would have to complement it with a dephasing
measurement, for example as proposed in Ref. [184]. Secondly, it only refers to the low-energy sector
and thus leaves out the possibility of a mobility edge. In fact, it was numerically observed that, even if the
low-energy sector is localising, the eigenstates of the model can still be strongly entangled in the middle
of the spectrum [171].

Such a mobility edge is currently being explored intensively, but most questions are still open. In
particular, does this actually imply that particle transport is possible at high energies? Will the model
thermalise at those energies? Or is there some signature of localisation left, despite the volume-law
entanglement in the eigenstates? As we cannot address these issue at the moment, we go back to the
simpler setting where localisation takes place for arbitrary energies.

Before we move towards an attempt of a definition, let us further stress the importance of establishing a
consensus on the true nature of the phenomenon by exploring a recent debate on MBL in translationally
invariant models. Clearly, the original mindset of localisation following the work of Anderson [48] related
to impurities in models and relies on randomness in the system. That being said, many features commonly
associated with MBL can also be observed in models without such random potentials. For example,
the slow growth of entanglement entropies is very much reminiscent of a classical glass, which is also
characterised by extremely slow equilibration processes [185]. Recently such classical glasses have served
as candidates to derive quantum version thereof [185]. Such and similar approaches indeed give models
which equilibrate exponentially slowly and where transport processes only have a logarithmic speed [107,
108, 185-187]. This lead to an ongoing debate to what extent such systems should count as having MBL
[188]. It is, however, unclear whether the models in Refs. [107, 108, 185] can truly be characterised in terms
of a vanishing conductivity or, much more likely, will allow for transport when they are coupled to an
external battery. This debate of the existence of MBL in translationally invariant models stresses further
the strong need for some clarification in the field.

Abstractly speaking, a many-body insulator should be a model that has no transport for physical prop-
erties such as particle number and energy, like an Anderson insulator, but is interacting, as for example
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manifested in non-degenerate energy gaps. This would suggest to define MBL using the following two
features.

I The model has no particle or energy transport, in the sense that the amount of particles or energy
that is transported can be bounded with a function that is exponentially decaying with the distance
for all times.

IT The model is fully interacting and allows for information propagation.

There are still many issues connected to such a definition of MBL. Firstly, the precise notion of energy
and particle transport would have to be developed in a rigorous mathematical language. Here traditional
condensed matter type approaches, like the Kubo formula [17], will certainly play an important role, but
are not sufficient for capturing the flow of particles in finite and closed systems. Moreover, such a notion
of the suppression of transport would have to be translated to an experimental protocol, similar to the
failure of thermalisation that was impressively demonstrated using ultra-cold gases [76]. Secondly, one
would need an easy protocol that allows to show that a model is interacting, which will most likely be
connected to a protocol testing for information propagation, for example by exploring the influence of a
local operation in time. An alternative would be a direct measurement of the unbounded entanglement
growth, which seems hard given current experimental techniques [189, 190]. Such interest in entanglement
properties of ultra-cold atomic systems will also be encountered in chapter 11, where a possibility to
approach this issue is outlined using tensor network tomography. Despite these obvious difficulties, the
above two features seem substantially easier to access than constants of motion or the special structure of
eigenstates. This is especially true from a numerical point of view, where a full diagonalisation of such
models usually needs exponentially large resources. Thus, it seems likely that using the above definition
of MBL, one could efficiently test a given system for it.

Naturally, this is only half of what a useful definition needs to offer. Surely it is important that one can
actually decide whether a system fulfils it, but moreover, one would like to be able to learn something
from this classification. This gives rise to the endeavour of connecting the above definition to different
MBL properties usually considered, much in the spirit of the efforts presented in this work. Based on the
intuition gained in Ref. [4], we would indeed expect that a suppression of energy or particle transport
should be enough to derive a form of localisation of eigenvectors. Ideally, one could further show that it
can be connected to the existence of local constants of motion and a Hamiltonian that is a simple function
of those operators. Thus would allow to use the rich structure provided by these approximately local
constants of motion that currently puts them in the center of many characterisations of MBL (see Fig. 6.5).
If such a programme is successful, then the above properties I and II would be a useful definition of MBL.
Firstly, because one can numerically or experimentally decide whether it is fulfilled and secondly, because
it would imply the rich localisation structure in terms of local operators and local eigenstates usually
associated with MBL. There is, however, still a long way to go before these connections are properly
established. Yet, such efforts seem to be the only possibility to bring some structure and clarity in the
discussion of MBL, which is currently heavily influenced by misunderstandings and incoherent pictures
of the phenomenon. In the following, we summarise our discussion of MBL.

6.6 SUMMARY: MANY-BODY LOCALISATION

In this chapter, we discussed one-dimensional many-body localisation (MBL). Based on Anderson’s results
for non-interacting electrons, we looked at the case when interactions are included in such a localising
system. Since electrons naturally are interacting in any realistic solid-state system, the analysis of the
effects of the interactions is paramount for the validity of Anderson’s results as an explanation for the
break-down of conductance due to random impurities.
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Despite decades of interest, great progress on this question was only achieved in the last years and it is
an immensely active field to date. This leads to a very multifaceted picture of MBL, which we thoroughly
reviewed. Moreover, we presented two successful applications of advanced mathematical tools to link
different dynamic and static features of MBL. Based on those connections and similar effort performed
in the last two years, we made an attempt to present a unified picture of MBL. Given the current state
of research, this was necessarily of a speculative nature. Following the intuition gained in this thesis, we
nevertheless presented a possible definition of MBL that can experimentally be checked and argued why it
could still be connected to various other localisation properties. While time will show whether this is truly
the correct way to capture MBL, we are confident that efforts like this will be needed to move forward in
this field. This concludes the first part of this thesis, which we summarise in the following.



SUMMARY: EQUILIBRATION & LOCALISATION

In the first part of the thesis, we investigated large spin systems and their emerging complex behaviour.
Once pushed out of equilibrium, despite this complex nature, the systems have the tendency to locally
relax to an equilibrium value. This equilibration can be investigated in two important settings. In the
first, free systems provide realistic time scales and can be directly connected to physical intuition, such as
spreading of particles. By using transport of the free Hamiltonian, as well as Lieb-Robinson bounds, we
demonstrated that such equilibration results can also be generalised to correlated initial states, by proving
dynamical Gaussification. A complementary approach is provided by directly looking at the eigenstates
and energies of the Hamiltonian. Here, based solely on the assumption of non-degenerate energy gaps,
equilibration can be derived.

Building on this, we looked at thermalisation, i.e. local expectation values that can be rigorously cap-
tured in terms of thermal ensembles. We presented different approaches to thermalisation, interpolating
between making assumptions on the eigenstates of the Hamiltonian and on the initial state of the sys-
tem. While these results to some extent explain the immense success of thermodynamics in describing
large-scale quantum many-body systems, they surely do not fully cover the characterisation of static en-
sembles. In fact, many models can be constructed that show a memory of the precise initial conditions,
thus requiring a description in terms of generalised Gibbs ensembles.

Localising systems were originally developed to capture the transport behaviour of electrons in the pres-
ence of random impurities. They, however, are also a clear class of models where thermalisation has to fail.
Naturally, localisation is being explored from many different angles and constitutes an important subfield
of the study of condensed matter systems, where it predicts a complete breakdown of conductivity, in
contrast to the predictions of the Drude model. Such behaviour is rigorously understood in the absence of
interactions, where it can be captured using Anderson localisation, characterised by local random poten-
tials leading to localisation of single electrons in both a dynamic and static fashion. As soon as interactions
are included, however, the physical model is substantially more complex.

The resulting many-body localisation (MBL), has been investigated with great effort in recent years. Still,
a complete picture of the phenomenon has not been achieved. This is largely due to the fact that different
localisation properties naturally appearing in non-interacting Anderson insulators are no longer all present
in the interacting case. The key example in this direction is the unbounded growth of entanglement,
despite static features that are still localised. In this thesis, we presented rigorous mathematical efforts
that provided links between static and dynamic features of MBL. We provided a mathematical proof
that these systems can be used to send information, based only on a non-degenerate spectrum and the
existence of an approximately local constant of motion. We further looked at the structure of individual
eigenstates and were able to generalise the exponential clustering theorem to excited states in the context
of MBL. With such links, we performed significant steps towards unifying the different pictures and
presenting a comprehensive definition of MBL, in the hope to also make the phenomenon more accessible
in experiments.

In our discussion of MBL, we saw that random local potentials are capable of strongly changing the be-
haviour of all eigenstates of a model. This can be seen as an “infinite temperature” quantum phase transition,
characterised by all eigenstates changing due to a parameter change in the Hamiltonian. In the next chap-
ters, we will encounter the paradigmatic case usually considered as a quantum phase transition, namely
where the ground state changes dramatically when an external parameter is moved over a critical point.
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Interestingly, these transitions are to a certain extent universal, in that the ground state behaviour around
the critical point can be characterised with remarkably few parameters, which are the critical exponents of
the model. As in the case of MBL, particular focus will be put on understanding the dynamical features
of such a transition. For MBL, the eigenstate localisation resulted in strongly suppressed transport and
could thus be dynamically probed. For ground state transitions, the key question will be whether the
universality in the static properties can also be probed dynamically. As quantum phase transitions are
one of the hardest and most interesting problems in the field of quantum many-body systems, a joint
analytical, numerical and experimental effort will be needed to capture their behaviour. This will follow
the emerging idea and mindset of a dynamical quantum simulation, which will be the essential tool in the
second part of this thesis.



Part I1

Dynamical quantum simulations
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ULTRA-COLD BOSONS AS ADYNAMICAL QUANTUM SIMULATOR

Numerically simulating quantum many-body systems out of equilibrium is, in general, a very challenging
task. Yet, given the limited settings which can be completely solved analytically, especially in the presence
of interactions, such numerical approaches are often invaluable to understand the dynamics of interacting
quantum systems. As described earlier, tensor network tools are extremely useful for this task [41, 191]. In
1D, these work well, as long as spatial entanglement entropies are small [98, 103]. For localising systems,
this means that often very long time evolution can be efficiently simulated [151, 152]. For generic models,
however, time evolution quickly builds up entanglement and dynamical tensor network simulations are
thus limited to small times [41]. Moreover, tensor network tools do not nearly work as well in higher
dimensions [191]. Thus, there are many important and long-standing problems in the study of out of equi-
librium behaviour of quantum many-body systems whose investigation is greatly hindered by insufficient
means to describe and explore the corresponding dynamics numerically.

Quantum simulators provide an exciting possibility to overcome these limitations and promise to achieve
a comprehensive understanding of the dynamical behaviour of large scale interacting atomic systems.
The idea for such devices emerged in a seminal article by Feynman [192], in which he proposes to use
an experimental quantum mechanical setup to artificially engineer and control the behaviour of another
quantum system. In this way, rather than enforcing quantum mechanical laws onto a classical computer,
one directly use one quantum system to simulate another [192, 193]. This innovative idea has since
inspired many collaborations between theoretical and experimental physicists with already very promising
results [1, 2, 32, 34, 37, 62, 194-197]. Using novel experimental tools, models of solid state systems, for
example using optical lattices, can by now be tuned and probed in the laboratory. Interestingly, while
the dynamics are qualitatively similar, due to the vastly different lattice spacing, which is in the 100 pm
regime in a usual solid state [9, 62], but in the 100nm regime in an optical lattice, the corresponding
time scales are dramatically different. This makes it possible to resolve the expansion of single electrons
on experimentally accessible time scales and thus allows to probe solid state behaviour at the level of
individual particles [29, 32, 62, 194]. Based on these exciting efforts, important questions raised on the
previous pages have already been tackled, such as the issue of equilibration time scales [32].

While this success is certainly promising, quantum simulators as computational devices are by no means
fully understood. One of the most exciting questions relates to the certification of quantum simulators.
After all, given that the simulator indeed solved a problem that cannot be accessed using classical means,
it is unclear what steps can be performed to gain trust in the result of the simulation [194, 195]. Moreover,
given the huge dimension of the Hilbert spaces describing many interacting atoms, it is not at all trivial
to retrieve the result of the simulation.

In the remainder of this thesis, we investigate quantum simulators and highlight their potential and
current limitations. In this chapter, we explore the basic principle and describe the main steps of a
dynamical quantum simulation. We then introduce optical lattices as one of the most promising platforms
for such simulations. Following an introductory discussion of quantum phase transitions in chapter 9, we
present a study of the dynamics of quantum phase transitions using a quantum simulator in chapter 10.
With this, we thus further investigate the relation of static and dynamic properties of Hamiltonians that
also played a prominent role in earlier parts of this thesis. Afterwards, motivated by the questions how
the results of a quantum simulator can be extracted, we present a successful application of quantum field
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tomography for ultra-cold atoms in a continuous setup. We begin with the general underlying principle
of a quantum simulator.

8.1 CONCEPT OF A QUANTUM SIMULATION

Quantum simulators are devices that are capable of reproducing the behaviour of a specific model Hamil-
tonian to a high accuracy without noise or loss processes contributing significantly. Moreover, they are
built in such a way that certain non-trivial initial states can be prepared, some degree of control over
the Hamiltonian parameters is given and at least partial information of the behaviour of this state can be
extracted.

Quantum simulators come in two distinct different variants: digital and analogue simulators. Digital
quantum simulators are conceptually close to the idea of a quantum computer. The desired Hamiltonian
evolution or state preparation is broken down into small unitary gates and these gates are then applied
consecutively [196]. In contrast to a full quantum computer, the gate set of a digital quantum simulator is
not necessarily universal, but still allows for non-trivial calculations. These devices have several important
advantages. Since the evolution is discretised, the unitary gates can be tested for their accuracy individ-
ually and error correction procedures can be performed [197]. Moreover, using the unitary gates, initial
states can be prepared with great control and the results of the simulation are easily accessible. Unfortu-
nately such devices also have a crucial downside: they are exceedingly hard to build experimentally.

While ion-chain architectures already allow for the application of contrived unitary gate sets [37], these
systems still have a long way to go before they will be able to truly outperform classical computers. More
promising in this respect is the idea of an analogue quantum simulation. Such a device does not build on
the possibility of applying almost arbitrary unitary gates, but rather accepts that the system itself has a
certain interaction structure and evolves according to its own Hamiltonian. Here one fully embraces the
quantum system as is and builds on its intrinsic complexity. Using advanced experimental tools, one tries
to maximise the control over the system and develop procedures of preparing interesting initial states
and measuring as many features of the state as possible. While this approach is of course limited in its
capabilities, at least compared to a full quantum computer, such analogue simulations already provided
enlightening insights into the physics of many-body systems that could not have been obtained using
numerical descriptions on a classical computer [1, 32, 35, 195].

For the scientific field considered in this thesis, the most important kind of such an analogue quantum
simulator is one that is capable of simulating out of equilibrium dynamics. Such a dynamical simulation
typically consists of four steps. First, a suitable initial state is prepared. Since the experimental tools
for preparation are typically limited, one often picks ground states or thermal states of a certain model.
Following breath-taking progress in recent years, however, this paradigm is slowly shifting as even influ-
encing the initial state at the level of individual lattices sites has become possible [63].

The second step of the simulation is the tuning of the Hamiltonian over a certain path in time. Most
important are quenches, where the Hamiltonian is changed abruptly, but also slow changes along a ramp
are an important setting, for example allowing for the investigation of the dynamics of a quantum phase
transition that we will perform in chapter 10 [1, 27, 198]. More recently also periodic driving was used
extensively, as it allows for the simulation of topological order [54, 55].

The next step is to extract the result of the simulation. This so-called read-out is highly non-trivial, since a
naive tomographic reconstruction of the state is impossible for the desired system sizes [199]. Instead, one
usually focuses on extracting key properties, such as local expectation values or entanglement features,
which is the approach we will take in chapter 10. A more advanced way is to use efficient tomographic
tools, which are based on certain natural classes of states [18]. For example, assuming that the final
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state is close to being pure, in the sense that it has low rank, one can perform compressed sensing. In
this setting, surprisingly few random measurements are already sufficient to characterise the state to
great accuracy [200, 201]. A different way is given by tensor network tomography, which assumes that the
result of the simulation is a state that can efficiently be represented in terms of a tensor network. Then,
the corresponding state can be reconstructed using only linearly many measurement settings [202, 203].
What is more, once the tensor network state is obtained, it can be used to predict other measurements,
thus building trust in the correctness of the state [2]. We will discuss this prospect in detail in chapter
11, where we present a generalisation of such schemes to quantum fields and employ them to study
interacting ultra-cold atoms in a continuous setup. There, we will also see how such tensor network
tomography of dynamical quantum simulations is related to entanglement growth and how it connects to
issues of equilibration, thermalisation and Lieb-Robinson bounds.

Finally, the last step of a quantum simulation is the certification [204]. To have a concrete example
in mind, let us consider the following experimental work, which is widely considered one of the most
promising applications of a quantum simulator to date [32], namely the investigation of the equilibration
time scale problem described in detail in section 3.4. To review the setting, we start with an initial state of
one particle on every second site of 1D chain. The Hamiltonian is such that the atoms are allowed to move
freely, which leads to an equilibration of the initial particle number imbalance between even and odd
lattice sites. The extracted result of the quantum simulator is a simple number, namely the occupation of
odd lattice sites. This is performed for different evolution times, allowing to directly access equilibration
time scales experimentally. The result of the simulator thus is a simple one parameter curve, namely
(Modd (1))

Despite the simplicity of the question, its numerical investigation is exceedingly hard. As discussed
above, using tensor network methods, which are by far the best way to address the problem, the biggest
issue is the growth of entanglement over time, which requires a linear increase of the bond dimension.
Thus, the simulation requires larger and larger resources for longer time and even on large scale super-
computers necessarily stops to be reliable at some point [32]. Thus, the dynamical quantum simulator
in this instance really answers a question that cannot be addressed classically [32]. This however, brings
us back to the issue of certification. Given this concrete and rather simple result of a quantum simulator,
which could even be summarised in terms of a single equilibration time, how can we be sure that it is
correct? While this is of course a common question in any physical experiment, it becomes absolutely
crucial in the context of quantum simulators, since it is no longer possible to compare the outcome to any
classical simulation.

In order to approach the issue of certification, typically a very pragmatic approach is taken, meaning
one simply certifies the simulation in a certain regime that is still classically accessible. In the example
mentioned above [32], this was done by simulating the evolution for short times, which is still traceable
using standard tensor network tools. Since the quantum simulator produces correct results for short times,
one has gained trust also in the results for longer times. A different approach is taken in the investigation
of a dynamical quantum phase transition [1], to be presented in chapter 10. There, the problem can
be simulated in 1D, again using tensor network tools or exact diagonalisation. Again, in this case the
quantum simulation can be certified, building trust in it functioning correctly. For 2D and 3D settings,
the quantum simulator can then be used to obtain results out of reach for classical computation. This
certification in easy regimes is a practical way of approaching the problem. Strictly speaking, however,
there is of course no promise that the quantum simulator still works correctly when the difficult part of
the simulation is carried out. Here, it is also important to keep in mind that usually large amounts of
experimental data are needed to provide sufficiently accurate results. This directly relates to the problem
of sampling from probability distributions; an issue controversially discussed in so-called boson sampling
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[80-82]. There it turns out that suitable quantum mechanical measurement at the end are needed for a
certification with a realistic effort [205].

In conclusion, the question of how to certify a dynamical quantum simulator is still to a large extent
open. One often cited possibility is that the quantities one is typically interested in are robust. The intuition
behind it is that phenomena like equilibration are so generic that slight imperfections in the experiment
do not have important influence. Up to now, this and related approaches are very preliminary. Thus, how
to certify quantum simulations outside of the classical regime is certainly one of the most exciting research
question in the study of these machines and one can surely be curious how this fundamental issue will be
addressed in the near future.

There are several promising experimental platforms for the realisation of quantum simulations. All of
them have seen breath-taking progress in recent years [1-3, 32, 34, 37, 62, 195-197]. Ion chains give full
control on the level of individual constituents, allow for a tuning of the Hamiltonian and its interaction
structure and even full tomography is possible for these systems [36, 37, 196, 197]. Their main limitation
is the system size currently reached, which is typically limited to ten to twenty ions in a 1D alignment.
Also super-conducting qubits, photonic chips and several more have demonstrated great potential. That
being said, we will fully restrict our investigation to ultra-cold atoms in optical potentials. While they do
not provide the same tunability and measurement capabilities as ions, they already make it possible to
simulate large scale quantum systems with several thousand atoms in 1D, 2D or 3D. Thus, these platforms
were used to already obtain results that are out of reach for state of the art classical simulations on modern
computers [1, 32, 34, 195].

In the following, we look at the experimental principle underlying the capturing and controlling of ultra-
cold atomic systems. We stick to a high-level overview guided mostly by the intention to outline the basic
principles, capabilities and limitations relevant for theorists dealing with these systems.

8.2 ULTRA-COLD ATOMS

In this section, we look at the basics of the capturing of atoms [62, 206]. We will focus on the case of
trapping them in an optical lattice. The case of a continuous setup relies on different trapping procedures
and will be discussed from a theory point of view in chapter 11.

The first step is to heat a certain material such that the contained atoms, for example Pottasium, are
evaporated and enter a vacuum chamber. After an initial step of standard cooling procedures, the charge
neutral atoms are trapped in a harmonic electromagnetic trap. Afterwards, the atoms are cooled down
sufficiently close to absolute zero, which usually means into the nano-Kelvin regime. This is done by
supplementing standard cooling procedures with laser cooling and finally evaporative cooling as soon as
the atoms are trapped. This last step, where only the cold fraction of the atoms is retained, is only possible
for bosons, as it would lead to a drastic particle loss for fermions, which cannot have a macroscopic
occupation of the ground state. Thus, evaporative cooling for fermions is often done by adding a bosonic
species and perform the cooling on them. Still, cooling fermions is substantially harder, which ultimately
is the reason that often certain tools are first developed for bosonic systems.

Once the atoms are cold enough, standing laser waves can be used to create an optical lattice with
the desired geometry. They range from standard cubic arrangements to more exotic ones, for example
honey-comb lattices. Due to energy minimisation, the atoms start to assemble at the knots of the standing
laser-waves, thus creating a lattice geometry. In the case of cubic geometries, the lattice spacing is given
by half the wave-length of the used lasers. Using two lasers with a wave length that differs by a factor
2, also superlattices can be implemented. This, for example, allows to achieve initial configurations with
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atoms only on every second site, which was, for example, used to investigate equilibration time scales as
discussed previously [32].

In the following, we look at the emerging Hamiltonian. In order to simplify the presentation, we do not
touch upon fermionic systems, which is a vastly interesting research field in its own right [30, 207, 208],
but rather only focus on bosons. There, we argue that a Bose-Hubbard model emerges, which captures the
behaviour of the atoms in the lattice to excellent accuracy. Finally, available measurements are discussed,
which then concludes the necessary preparation of ultra-cold atoms as a quantum simulation platform
that we need for the investigation of the dynamics of quantum phase transitions presented in chapter 10.

8.2.1  Optical lattices

The optical lattice should be seen as a sinus-shape standing wave created by a reflected laser beam [27, 62,
206]. To excellent approximation, the particles in the optical lattices interact with each other in the form
of a delta contact potential with strength go. The corresponding Hamiltonian is thus given by

2
H= de yi(x) (;ﬂ +sin(kx) + vtrap(x)) Y(x) +go de YW ()W) Y(x),
where ¥(x) denotes the second quantised field annihilation operator. For the following discussion, we
neglect the trapping potential Virap(x) and discuss its effects separately later on. If the system is large
enough, it can be well approximated by a translationally invariant, periodic system and the corresponding
eigenstates of this continuous Hilbert space are the Bloch waves. The physics that is experimentally tested
is normally contained within the lowest Bloch band. The eigenvectors in this band can be recombined into
the most localised orbitals possible, which are known as Wannier functions. These are localised on the
knots of the standing laser wave and have strongly decaying tails away from their center. These functions
can be well approximated by a Gaussian
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where a,x = \/h/(Mmway) is the confinement in the axial direction, which in turn is given by
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with Vj being the laser intensity along the corresponding axis and Eg the recoil energy [62]. These
localised Wannier orbitals can be used as the basis for a second quantisation of the Hamiltonian model in
terms of creation and annihilation operators corresponding to those orbitals [9]. Starting from this, one
can rewrite the model as the canonical Bose-Hubbard Hamiltonian [206]
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where (j, k) denotes the summation over nearest neighbour sites and b, bt denote bosonic annihilation and
creation operators. Here the nearest neighbour structure is an approximation and relies on the fact that
the localised Wannier orbitals have tails that decay so quickly that atoms separated more than one lattice
spacing do not interact anymore. The parameters U and | are, as usual in second quantisation, given by
overlap integrals between the Wannier orbitals
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For calculating the hopping, one has to look at the coupling of the Hamiltonian between nearest neighbour
sites. As it turns out, for this the actual Wannier functions should be taken into account, as the Gaussian
approximation leads to rather crude results. Numerically fitting the Wannier functions and evaluating the
overlap integrals yields [209]

J=aVBe YVVEg,

where V is the laser intensity given in energy recoil Eg = h?k?/2m units, and o = 1.39666, 3 = 1.051
and y = 2.12104. Thus, the hopping can be well controlled by modulating the intensity V of the laser that
creates the standing wave. Using that the laser beams of different spatial dimensions in a cubic geometry
can be controlled individually, the hopping strength in the different directions can be controlled separately.
Choosing the laser intensity very strong in one or two spatial dimensions thus allows to make the system,
which intrinsically is three-dimensional, effectively two or one dimensional.

In order to approach the interaction term, we have to look closer at the atomic interaction. Its delta
potential comes with a prefactor
B 2h2a,
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where as is the three dimensional s-wave scattering length, m is the mass of the atom, and a; =
Vvh/(mw, ) is the confinement length in the perpendicular dimension. Performing the interaction in-
tegral (8.2.1), the strength of the interaction U becomes
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Thus the parameter U also depends on the lattice depth Vj,;, but in a much weaker fashion then the hop-
ping J. In order to control U and to obtain a second degree of freedom in these models, experimentalists
use a Feshbach resonance [210]. By tuning a homogeneous external magnetic field, the scattering length
as of the atoms can be influenced, thus effectively controlling the parameter U. This resonance allows
for the tuning of the interaction in a wide range (see Fig. 8.1). By combining the control given by the
Feshbach resonance with the tunability of the intensity of the standing laser wave, almost any path in the
Hamiltonian parameter space spanned by U and ] can be implemented. In particular, sudden quenches of
the hopping strength are possible, but also slow ramps that increase the hopping continuously over time.

The speed of most relevant dynamic in the Bose-Hubbard model is given by the hopping strength. For
example, it is the hopping that controls the spread of information and the speed of quasi-particles is
crucially determined by it. For that reason, many experimentalist prefer to work in a rescaled time, that
takes the hopping strength into account. These are called integrated tunneling events and are defined as

t
(V(t)
Ttunnel = J'dt ]T :
0
A good example to see that this is indeed a natural language to talk about the Bose-Hubbard dynamics, is
the fact that the experimentally observed Lieb-Robinson cone in the setting of initially having one particle
per site is simply v = 6 in this rescaled time units [31].

In addition to the optical lattice, the experiment needs an electro-magnetic trap to keep the bosons con-
fined in a small spatial region [62]. Typically, this trap is harmonic, with the corresponding Hamiltonian
term being

2.2
Hirap = Zw Xjn; .
j
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Figure 8.1: We thank Ulrich Schneider for useful discussions on this. The plots show the influence of the external magnetic
field on the Bose-Hubbard parameter U/] for Potassium-39, for 1D chains with a lattice depth V = 19Ey along the
chain and a transversal lattice depth of V = 30Eg, where Er denotes the recoil energy [62]. The Feshbach resonance
is located at B =402.50 G.

This trap keeps the atoms confined in its center. Due to ever-increasing control in the manipulation of ultra-
cold atoms in optical lattices, by now also other trapping potential such as boxes can be implemented [63],
but harmonic traps are still widely used.

Using the above mentioned trap, the shape of the atomic cloud can be altered almost at will. In particular,
it is easily possible to create ellipsoidal shapes, where one radius is very small [62]. In this way, the cloud
can be made almost 2D. Using newer techniques, the cloud of atoms can also be pressed against a mirror,
until it truly consists only of a single 2D layer [63]. As mentioned earlier, however, even 3D clouds can be
decoupled by simply tuning up the corresponding laser intensities, until hopping is strongly suppressed.
Thus decoupled 2D or 1D arrangements can be implemented [62].

Having reviewed the basics of ultra-cold bosons in an optical lattice, we now move towards different
measurement techniques that allow to characterise the experimental state.

83 AVAILABLE MEASUREMENTS

Optical lattices allow for the trapping and manipulation of several thousand atoms. On this scale, perform-
ing tomography, so actually reconstructing the quantum state, is a more than challenging task. Therefore,
the usual approach is to extract few characteristic properties of the experimental states. We will move
beyond this paradigm when discussing quantum field tomography in chapter 11. In the following, we
present key imaging techniques in optical lattices that measure important properties of the state and thus
serve as read-out techniques for the dynamical quantum simulator.

8.3.1  Time of flight

A crucially important way of measuring the properties of the atomic state in an optical lattice is given by
time of flight (ToF) imaging. [211, 212] The goal is to explore the correlation structure of the atoms and
measure the phase correlators

(bliby) = Tr (pbby ) -

For this, the optical lattice and the trap are completely turned off and the particles start to expand freely. In
this process, the originally localised Wannier functions begin to overlap and create an interference pattern
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akin to a double-slit experiment. After a certain expansion time, a picture of the atomic cloud is taken.
Given that the density of the gas reduces quickly, the interactions between atoms are negligible and the
expansion process is governed by a free field Hamiltonian. Moving to a Fourier basis, expanding the time
evolution of the field operators and employing a stationary phase argument, one can derive the following
formula for the final density of atoms [211, 212]
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where 1 denotes the position in the experimentally measured density distribution, k = 31 and W denotes
the Fourier transform of the localised Wannier functions on the lattice [62]. Note that it is usually argued
that the second term in the exponential should be small enough to be ignored, but this only works well
for long expansion time [212].

Following the above formula, it is clear that the ToF image indeed contains some information on the
phase correlators. This allows for the distinction between the two phases of the Bose-Hubbard model
to be discussed in detail in chapter 9. The extreme cases for those systems are a product state for the
infinitely deep Mott insulator, as well as a perfectly coherent state for the non-interacting superfluid. In
the case of long evolution times, where the exponential in the time of flight expression is simplified to
a Fourier transform, this gives rise to particularly simple ToF images. For the Mott product state, the
correlator is a delta peak, which means that ToF image, which is the Fourier transform, would give a flat
profile, modulated by the Gaussian envelope [Wg(k)[2. In contrast the perfect superfluid in 2D and 3D
has no dependence on distance and the resulting ToF is thus extremely peaked. [27, 62]. Therefore such
ToF measurements are ideally suited to distinguish the two different phases of the Bose-Hubbard model.
In chapter 10, we demonstrate that this intuition can also be turned into an extraction of the correlation
length of the atomic cloud. Note that also first proposal exist that employ the ToF information to access the
entanglement in optical lattices [189, 190, 213], taking the particle number conservation into account [214].
These, however, still have a long way to go before allowing for an efficient entanglement measurement
under experimentally realistic conditions, which is one of the motivations for the tomographic procedure
we present in chapter 11. We now turn to another important measurement, namely an in situ resolution
of the atomic positions.

8.3.2 Insitu

An exciting new prospect is the possibility to resolve the atomic positions on the level of individual sites
[63, 215, 216]. Using novel experimental tools, this single-site imaging allows to take a picture of all the
lattices sites showing the distribution of atoms. The procedure is as follows. First the lattice is ramped up,
such that the Wannier functions become very localised and hopping between sites is strongly suppressed.
Then, a laser beam is focused on the atoms and the scattered light collected in a microscope. During this
procedure, the atoms are heavily laser-cooled, allowing to scatter many thousand photons of each atom,
thus giving a very high resolution. Typically, the used laser light is of similar wave length as the optical
lattice, which is still sufficient to clearly distinguish different lattice sites [63, 215, 216]. The scattered light
allows for pairs of atoms to form molecules, which leave the optical lattice very quickly. Thus, only the
parity of the local atom number can be resolved and an even number of atoms looks like the vacuum.
Experimentally, this means that usually settings are considered where the local particle number is small
and the distinction of odd and even parity yields important information. Using this technique, particle
number fluctuations can be resolved to great accuracy and this tool has already delivered breath-taking
images [63, 215, 216].
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Importantly, in an optical lattice, all of the above imaging procedures are single-shot images. Averag-
ing over many realisations thus gives the expectation value of the measured operators, but the images
contain significantly more information. In particular, fluctuations around the mean value can easily be
extracted [217-219]. This technique has, for example, been used successfully to extract density-density
fluctuations. For completeness, let it be mentioned that also other tools, like band mapping, which gives
certain momentum information of the atoms, have provided important insight [28, 62, 220].

This concludes our discussion of different measurement techniques that are available to extract informa-
tion from states in optical lattices.

84 SUMMARY: ULTRA-COLD BOSONS AS A DYNAMICAL QUANTUM SIMULATOR

In the following, building on and extending the above introduction, we very briefly summarise the capa-
bilities of ultra-cold bosons in optical lattices as a platform for performing analogue dynamical quantum
simulations. For this, the key features are the class of initial states that can be prepared, the Hamilto-
nian time evolutions that can be implemented and finally the information that can be extracted using
measurements.

Initial states: The optical lattice gives several techniques to influence the initial state. Naturally thermal
states of the Bose-Hubbard Hamiltonian can be prepared. Due to very effective cooling mechanisms, very
low temperature states can be realised, which essentially behave like the ground state [27, 62]. In addition,
there are two tools that have been used very successfully for the manipulation of the initial state. Firstly,
one can superimpose two laser beams with a wavelength that differs by a factor two. Such a superlattice
allows for creating an imbalance of particle numbers between odd and even lattice sites. In this way, the
initial state with particles only on every second lattice site can be prepared that we already encountered
in the context of equilibration earlier (see chapter 3) [76, 221]. Secondly, the newly developed microscopes
can be used to influence the states at the level of individual sites [63]. With this, it is in fact possible to
create arbitrary binary configurations of particle numbers on a 2D layout. For this, a 2D layout with one
particle on every site is constructed. Using a laser focused on individual lattice sites, it is then possible to
flip the spin configuration of individual atoms, which can be used to remove them from the optical lattice
in a second step.

Hamiltonian: The natural Hamiltonian of bosons in an optical lattice is the Bose-Hubbard Hamiltonian.
Tuning the lattice depth and using magnetic fields, the interaction and hopping strength can be tuned at
will. In addition, usually harmonic traps are used, even though this is no longer necessary. Superimposing
of different lattices gives further control over the Hamiltonian. One of the most exciting applications for
this is to use two lattice beams with incommensurate wave length. With this, quasi-periodic lattices can
be constructed. This technique has recently been used to observe an instance of particle localisation in
optical lattices [76]. The possibility to address single sites of the lattice also greatly increases the ability to
tune the Hamiltonian. In particular, almost arbitrary local potentials can be applied to the optical lattice
[62]. This also achieves a fully random potential, which would allow to further look at localisation effects
and systematically tune the disorder strength. Aside from single site addressing, also tilts of the lattice,
created by an inhomogeneous magnetic field have successfully been implemented [60]. Interestingly, this
enables to create effective spin models with spinless ultra-cold atoms, where the number of atoms on a
site takes the role of the spin.

Read-out: Finally optical lattices provide several important read-out techniques, allowing to extract the
result of the analogue quantum simulation. Firstly, the parity of particles on all sites can be measured.
Using time of flight techniques also phase correlators can be obtained. By systematically exploiting the
fact that all measurements are single-shot, also higher order correlators are directly accessible.
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This concludes our discussion of ultra-cold bosons in an optical lattice as an architecture for dynamical
analogue quantum simulation. In the next chapter, we introduce quantum phase transitions. Based on this
introductory discussion, we present an application of a quantum simulator in the paradigmatic setting of
dynamically crossing the Mott-superfluid transition (see chapter 10).



DYNAMICS OF QUANTUM PHASE TRANSITIONS

Quantum phase transitions are one of the most intriguing phenomena connecting to quantum many-body
physics. Similar to classical phase transitions, they are characterised by a drastic change in the system’s
behaviour when an external parameter is altered. In classical thermodynamics, the transition is driven by
thermal fluctuations and, for example, the system can cross from a low-temperature ferromagnetic phase
into a paramagnetic one, when the temperature moves over the Curie point.

In order to observe classical phases, large systems necessarily have to be considered. In fact, for a rigorous
mathematical definition, infinite systems are needed. Thus, phase transitions are a true many-body phe-
nomenon and a priori, one would expect that their description is highly complex. While this is certainly
correct, many aspects of classical phase transitions can be captured exceedingly well with strikingly simple
scaling laws. Based on renormalisation group theory, critical exponents can be calculated, which separate
phase transitions into universality classes. For each of those classes, many important characteristic fea-
tures of the system around the phase transition can be captured by simple power-law scalings with those
critical exponents.

In quantum phase transitions the system’s behaviour again changes dramatically upon varying an external
parameter. In stark contrast to classical phase transitions, this is even possible for zero temperature, as
the transition is driven by quantum fluctuations. In this way, one often looks at the ground state of a
system and, for example in the case of the transverse field Ising model, also finds a crossing between
ferromagnetic and paramagnetic behaviour, but now as a phenomenon of ground states and the low-
energy physics connected to it. Similar to the case of classical phase transitions, the static properties of
quantum phase transitions is relatively well understood by now, with experiments successfully capturing
it in a wide range of settings [27, 37, 195, 208]. Again it turns out that their statics can, with great accuracy,
be captured in terms of simple scaling laws, despite their intrinsic complexity [19].

As such, the characterisation of quantum phases, a priori, only refers to the behaviour of the instanta-
neous ground states and is accompanied by the closing of the spectral gap above it. This usually implies
that it is no longer possible to follow the ground state adiabatically and raises the fundamental question
how well a quantum phase can be prepared in an experiment. After all, any experimental preparation
procedure will take place in finite time and thus certainly will not prepare perfect ground states. This is es-
pecially true for critical models, where the ground state is characterised by a diverging correlation length.
In order to prepare such a phase, these long-range correlations have to be established, which naturally
connects to Lieb-Robinson bounds and poses several intriguing problems in the study of the evolutions of
local Hamiltonians.

Still, one would expect that quantum phase transitions can be observed under experimentally realistic
conditions. This directly poses the question: What is the dynamical signature of a quantum phase tran-
sition? Moreover, it clearly relates to the general theme of this thesis how static and dynamic features
of Hamiltonian models are connected. Here, ground states pose a perfect arena to further study this
connection, in particular because they can be probed experimentally and have extensively been studied
analytically and numerically.

An interesting point is also that, strictly speaking, phase transitions are necessarily connected to infinite
systems. Naturally, many signatures of the occurrence of the phase transition should still be present for a
finite system and be thus experimentally testable. Here dynamical probes might be ideally suited. After
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all, as captured by Lieb-Robinson bounds, any finite time evolution of local observables is necessarily
supported on a finite subsystem. Thus, assuming that one succeeds in finding a clear dynamical signa-
ture, dynamical experimental probes would constitute an excellent way to demonstrate the onset of the
transition in a finite system.

For the connection of static and dynamic features of quantum phase transitions, Kibble and Zurek pro-
vided a valuable intuitive explanation, which was originally developed for the case of classical transitions
[222—224]. Guided by the adiabatic theorem and the description of the static physics in terms of critical
exponents, they provide an argument why and in which form dynamical crossings of quantum phase
transitions can also be captured in terms of simple scaling laws. While the Kibble-Zurek mechanism has
proven successful in some experimental settings [225-229], its general applicability and even rigorous for-
mulation is a largely open problem. In particular, it is still completely open to what extent it applies to
physically testable settings, with experimentally realistic time scales and truly interacting models. It is
precisely this fundamental problem of exploring the dynamical signatures of quantum phase transitions
in interacting models that will motivate and guide us for the following chapters. We begin by reviewing
the essential physics of quantum phase transitions and look at important models with such a transition.

9.1 DEFINING QUANTUM PHASE TRANSITIONS

To define a quantum phase transition, we need to look at the energy difference between the ground state
and the first excited state. As discussed in chapter 3.2, a Hamiltonian is called gapped, if this energy
difference can be uniformly bounded from below, independent of the system size and the largest possible
lower bound is called the spectral gap. The physics of the ground state is closely connected to the spectral
gap above it. For example, the exponential clustering theorem (see Thm. 4 in chapter 3.2) states that
locality and a spectral gap imply that the ground state correlations are exponentially decaying with a
correlation length that is finite and independent of the system size. Usually the converse is also true,
namely that models where the spectral gap vanishes as the system size is increased indeed have ground
states with a diverging correlation length. These models are called critical.

A quantum phase transition is characterised by the drastic change in the behaviour of the ground state
of the model when an external parameter is altered. In order to formulate the phenomenon, it is thus
necessary to talk about some family of Hamiltonians H(g), where g is an external parameter , such as a
magnetic field, or the laser intensity of an optical lattice. For simplicity, we assume that the dependence
on ¢ is linear and taken from an interval [0, 1], which covers most interesting cases

H(g) =Ho +gV.

Strictly speaking, for each fixed value of g, we will considers Hamiltonians on varying system sizes L. As
this system size dependence is always needed, for example to define the spectral gap, we will suppress
it in the notation. We further always assume that these Hamiltonians are local, with a locality structure
that is independent of the parameter g and the system size L. For example, the Hamiltonian is always
nearest-neighbour, for any value of g.

For the Hamiltonian family H(g), we look at the family of ground states |[Ep(g)) and a continuous
function y(g) describing the spectral gap between the ground state and the first excited state for different
values of g. We will use the following definition.

Definition 15. (Gapped family of Hamiltonians) A family of Hamiltonians H(g) is called gapped, if the spectral
gap v(g) is uniformly lower-bounded independent of g

Ivo>0:v(g) =v0o Vgelo1].
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As long as the spectral gap exists, independent of the system size, then it is clear that the ground state
has to be an analytic function of g [15, 20], which excludes the possibility to drastically change at a single
parameter value go. In particular, as long as the spectral gap remains open, the system cannot change its
long-range correlation structure or its scaling for the entanglement entropy (see section 3.5.1). This leads
to the following definition of a quantum phase.

Definition 16. (Quantum phases) Given two states o) and 1) that are ground states of local Hamiltonians Ho
and Hy respectively, then they are said to be in the same phase, if there exists a path in Hamiltonian space H(g),
g € [0,1] such that Ho = H(0), Hy = H(1) and the family of Hamiltonians is gapped.

Correspondingly, two quantum states are in different phases if no such path in Hamiltonian space can
be found. Thus, quantum phase transitions are necessarily connected to a closing of the spectral gap. This
can either happen at a single point, which is called a critical point g¢ or for an extended interval, which is
known as a critical phase.

The above definition is clearly a static statement about how the ground state changes when an external
parameter is varied. As such, it is a priori decoupled from the dynamical behaviour of the system. Yet,
following the intuition provided by classical phase transitions, like the melting of ice, it should obviously
be possible to probe them in a dynamic fashion. Again, this juxtaposition of dynamical and static features
poses an intriguing problem and is the motivation for our study of the dynamics of quantum phase
transitions. Before we move to those dynamical aspects, we will first review their static characterisation in
more detail. We begin by looking at important models that show such a quantum phase transition.

9.2 TPARADIGMATIC MODELS

In the following, we review paradigmatic quantum mechanical models with a quantum phase transitions.
We begin with the transverse field Ising model, which has a single critical point separating a ferromagnetic
and a paramagnetic phase. It has the clear advantage of being solvable using a Jordan-Wigner transform
(see section 5.2.1). The same is true for the XX model, which has a critical phase, instead of just a single
critical point. Such models allow for important insights, but at the same time, are not complex enough to
uncover the full structure of quantum phase transitions in general.

In contrast, the Bose-Hubbard model, whose phase transition we explore afterwards, is characterised
by a full critical phase and shows considerably richer behaviour. This comes at the price of not being
exactly solvable, which gave rise to the development of a large collections of effective models describing
different aspects of it and ultimately is the reason why a quantum simulator is so useful in exploring the
rich physics of its phase transitions, where all the effective models break down.

9.2.1 Transverse field Ising model

The first paradigmatic model that we investigate is the transverse field Ising model [19]

HIS:—ZG}‘Gﬁ—BZGf,

(.k) j

where we take B > 0 without loss of generality [19] and use periodic boundary conditions. This Hamil-
tonian can be transformed into a free fermionic Hamiltonian, using a Jordan-Wigner transformation (see
section 5.2.1). Applying a mode transformation to this fermionic system, the free Hamiltonian can then be
solved. It can be separated into two sectors, corresponding to odd and even parity of fermions, which is
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necessary to cope with respectively anti-periodic and periodic boundary conditions [154, 230]. Omitting a
global energy shift, the even parity part takes the form [230]

HIs,even = ZAk (ﬁifk) ’
k

2 2 2
Ak = 2\/<B —Cos <£Tk>) + sin? (fk) ,

where f is some function of B and the usual fermionic operators f. Since it is the only part of the system
that is important for the dynamical questions later on, we restrict the discussion to this even particle sector.
The above Hamiltonian has only one eigenmode that can become gapless, namely the one corresponding

to k = 0. Its excitation energy is zero precisely if B = 1. Thus, the model has a single critical point at B =1,
which separates two phases. For B > 1, the external magnetic field is dominant and the spins are aligned
with it. For B < 1, the spin-spin interaction dominates the physics and the model becomes ferromagnetic.

The transverse field Ising model was extensively study in the context of the dynamics of quantum phase
transitions, numerically [225, 231] as well as experimentally [228, 229]. There, one usually focuses on a
key property that separates the two phases. In this Ising model, one commonly works with the so-called
number of kinks, defined as

1
EZ“ —0505,1) .
J

This quantity measures how many spins are not parallely aligned and is a useful measure to quantify the
number of defects in the paramagnetic phase.

Another exactly solvable model that we already encountered earlier is the XX-model (see chapter 5). It
is again exactly solvable and the eigenmode energy with smallest absolute value is the spectral gap of
the XX-model. For infinite systems, the eigenmode energies become a continuous cosine function, which
leads to a gapless phase for a whole range of parameters g. The same is true for the Bose-Hubbard model.
In stark contrast, however, the model is no longer analytically solvable and the origin of the gapless phase
is substantially less clear than the presence of gapless modes described above. It thus provides a more
realistic model of a quantum phase transition in an complex interacting quantum system.

9.2.2 Bose-Hubbard

The Bose-Hubbard model can be thought of as the easiest instance of a model showcasing a conducting-
insulating transition due to interactions [9, 10]. It is given by the Hamiltonian

_ T e
Hpn=—-J ) b].bk+§ijbjbjbj,
(k) j

where b and b' are the bosonic annihilation and creation operators. For non-zero hopping, it is convenient
to choose a different parametrisation

_ b+ LS bptb. b,

Hen=J(— Y blbe+ Z—JijbijbJ ,
(.%) j

where ] now can be seen as the relevant time scale and U/] captures the phase transition of the model.

We now discuss the different phases of the model. In contrast to the usual approach of statistical
thermodynamics, we will not work with a chemical potential, but rather with a fixed particle number
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N = 7L, where fi is the filling fraction. The underlying reason for this decision is that in optical lattice
experiments, tuning the chemical potential is not possible, but it is much more natural to think of a fixed
number of atoms in the optical trap. In order to observe a phase transition, we will assume that fi is an
integer, meaning that system size and particle number are commensurate. Otherwise, only the superfluid
phase would remain.

For very large U, the on-site interaction is the dominant term. The system is then in a Mott insulator
phase, which carries his name as Mott was the first to characterise the suppressed conductance due to
interactions [10]. As creating a particle hole excitation is energetically suppressed by a spectral gap, the
phase is insulating with a conductivity that scales like ePY, where 7 is the energy of the particle-hole
excitation and {3 is the inverse temperature [232]. Therefore, in contrast to localisation where randomness
suppresses electronic transport completely often even independent of temperature (see chapter 6), it is
thermally activated in this Mott phase. As the phase is gapped, the correlations in the ground state decay
exponentially.

The opposite limit is that of zero interactions U = 0, which leads to a free bosonic Hamiltonian consisting
only of hopping. The corresponding system can be solved with a Fourier transform, with the lowest energy
eigenmode corresponding to the Fourier mode with k = 0. Since the system is bosonic, all states occupy
the ground state which is thus given by

N

1
Wsr) = | 7 ]Zb,-* 0)

where |()) denotes the vacuum and N the number of particles in the system. This phase is usually called
the superfluid phase. Using a Bogoliubov approximation, which relies on a macroscopic occupation of the
ground state, one can in fact show that the model does not have a viscosity for low velocities in this
parameter regime and is thus superfluid [233]. It is characterised by strong local particle fluctuations
and, for the case of an infinite lattice, the local density approaches that of a coherent state [62]. Its phase
correlations are true long-range in the 2D and 3D case and the phase correlator approaches the filling
fraction at large distances limr_mo(b(T)bT) =7 [62]. In contrast, in 1D, the phase correlation in the ground
state decays algebraically <bgbr> oc 77X [234]. This can be seen by using a Luttinger liquid theory, which
accurately describes the low-energy sector of the Bose-Hubbard model [62, 234]. Thus, one usually says
that the model has true long range order in 2D and 3D and quasi long range order in 1D.

The phase transition between the two quantum phases of the ground state strongly depends on the
dimension. In 3D it can be reliable found using mean-field techniques [235, 236]. In 2D, usually Monte-
Carlo is applied [237], while the 1D case can best be investigated using tensor network tools [234]. The
critical values are (U/])c ~ 3.3 [1D], 16.74 [2D], 29.36 [3D] [62, 237, 238]. In 1D, the error bars are rather
large, since the transition happens at a very fine tip, which is hard to locate precisely numerically.

As already touched upon above, the Bose-Hubbard model has two limits which are easy to understand.
For U = 0, the model becomes a free bosonic Hamiltonian, which can be solved using a Fourier transform.
The other limit is the case where U > ]. There, the interactions dominate, which allows to introduce
effective fermionic models. Since, in 1D, it is more powerful then the often employed hard-core boson
approximation, we present the doublon-holon model.

Doublon-Holon

The doublon-holon model provides an effective description of the 1D Bose-Hubbard model in the case
of strong interaction U >> J. It assumes a background state of a Fock state with fixed particle number 1
on every site [120]. For simplicity, and since it is the only setting we encounter later in the experiment
presented, we restrict to the case of a fixed filling i = 1. In this case, the Hilbert space is truncated to
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allow at most two particles on each site. This effectively turns the bosonic model into a spin system. In
this model, two kinds of excitations are introduced: Doublons, which correspond to two particles on a
site and holons, which are the lack of a particle. Using a double Jordan-Wigner transformation, which
takes both species into account (see section 5.2.1 for basics of Jordan-Wigner), yields fermionic operators
d and h fulfilling the usual fermionic anti-commutation relations of a two species fermionic model. In this
approximation, the Bose-Hubbard Hamiltonian takes the following form [120]

L1 L1

H=—] Y (zdindmﬂ Rl et +h c.) +v2] Y (dmhmit +hmdmit +h.c)
m=0 m=0
L-1

+u Y (dhdm),
m=0
where h. c. denotes the hermitian conjugate. In this equation, already a projection term was dropped,
which eliminates the possibility of having a doublon and a holon on the same site. Naturally, this should
be impossible. Since this is energetically strongly suppressed, it is possible to drop the restriction and
work with so-called unconstrained fermions. One should, however, be careful here and check that the
condition (dfndmhinhm> >~ 0 is fulfilled. In practice, this seems to work well for (Ll/]) > 8, below which
the doublon-holon model breaks down [31, 120].

Moving to Fourier transformed operators d and h is a first step in solving the model, which yields

L-1 L—-1
H=Y Hio=) [eakdldi+en(hfhe +io((h! af +d xho],
k=0 k=0

where

en(k) = —2J cos (Tk) , ea(k) =2en+U, o(k) =2V2]sin (sz) :

The above Hamiltonian, which is simply a free fermionic system, can of course be solved exactly by
decoupling it into its eigenmodes using a mode transformation (see section 3.4.1). Here it is important to
note that the Hamiltonian above does not conserve the fermionic particle number, which implies that the
corresponding vacuum is not an eigenstate of the model.

Further, since the model is fermionic, it is straightforward to calculate the speed of information propaga-
tion. Since the correlations can only be established by the travelling of doublons and holons, the relevant
speed of the model is given by their relative speed, which is given by [31]

32 I3 I4
V=max|vy, vy =6l-F O (F)
It is interesting to see how this compares to the Lieb-Robinson estimate (see appendix B), which is linear
in the norm of the local Hamiltonians terms and turns out to be vig =~ 44]. Thus, the Lieb-Robinson
estimate is an order of magnitude larger, but reproduces the correct linear scaling in J.

Using the doublon-holon model, also phase correlations functions of the type <b;r<b]-) can be calculated
using Wick’s theorem, as long as the state is Gaussian in the doublon-holon picture (see section 3.4.2).
Due to the fact that two fermionic species are involved, the corresponding matrices become, however,
quite involved [1, 120].

Naturally aside from the two approaches presented above, there are many other settings in which the
Bose-Hubbard model can be approximately solved and many important techniques have been developed
over the years [239]. We forego an introduction of them in order to keep our presentation as simple as
possible. This concludes our introduction of paradigmatic models with a quantum phase transition. We
now turn to a very general characterisation of such transitions in terms of critical exponents.
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9.3 CRITICAL EXPONENTS

One of the most important features of classical phase transitions is that the behaviour close to the phase
transitions is to some extent universal. Rather than having to include all microscopic details of a model,
many important features around the phase transition scale algebraically with the distance to the transition,
where the corresponding exponents are obtained from the universality class the phase transition belongs
to [21].

It is one of the most important insights in the study of quantum phase transitions that such a scaling
analysis can also be performed [19]. Using renormalisation group theory, again critical exponents can
be derived which capture the ground state behaviour close to the transition. For us, two scaling laws
are important: that of the spectral gap and of the correlation length in the ground state. We restrict the
discussion of such a scaling analysis to the special case of a second order transition, which means that the
discontinuity of the ground state energy appears only in the second derivative [21]. For concreteness, we
focus on the Bose-Hubbard model, even though the Ising model and the XX chain can be described with
a similar scaling analysis. For it, we use the parameter g = U/] for the Bose-Hubbard model. For g < g,
the system is in superfluid phase, which is gapless. Away from the phase transition, at which the spectral
gap has to close, the gap is found to scale algebraically in 2D and 3D

Y o< (g—ge)V*.

As long as the model is gapped, we know that the correlation length in the ground state has to decay
exponentially (see Thm. 4 in chapter 3.2). The corresponding correlation length is also found to scale
algebraically, with

Eoc(g—ged) ™,
the exponent v is called the correlation length critical exponent and is the same as the v in the scaling of
the gap. The other exponent z in the above scaling is called the dynamical exponent. This originates in the
Lagragian renormalisation theory, where space is rescaled with some length scale factor and the exponent
z describes the corresponding rescaling of time.

In the case of the Bose-Hubbard model, the above scaling analysis works well in the case of two or
three dimensions. The universality class of the Bose-Hubbard model in d dimensions is that of a d + 1
dimensional XY model [239]. The dynamical exponent is thus z = 1 independent of the dimensions [239,
240], while the correlation length critical exponents are [232, 241]

y
d=2 0672,
d=3 1/2,

for the . = 1T Mott lobe. The 1D transition of the Bose-Hubbard model does not obey the usual algebraic
scaling, but rather is of Berezinsky-Kosterlitz-Thouless (BKT) type [19, 238]. This means that the gap
around the critical point does not close algebraically, but rather in an exponential fashion [239]

v o e (992
The relation between correlation length and gap is still linear, meaning that

Ex1/y,

as in the 2D and 3D Bose-Hubbard model. It is worth noting that the above scaling behaviour naturally
only works in a small region around the critical point. To estimate the size of this region is usually a hard
task, as it depends on the microscopic details of the model [19].
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Having introduced the bare necessities for the description of the static descriptions of quantum phase
transitions, we now move to the investigation of their dynamics. In particular, we investigate what hap-
pens when we start in the ground state of the gapped phase and move across the quantum phase transition.
The motivation for this is three-fold. Firstly, we believe that the dynamics of quantum phase transitions
is an interesting research question in its own right, as it is clearly a fundamental building block in our
understanding of these transitions. Secondly, by Lieb-Robinson type arguments, it is clear that dynamical
processes are intrinsically local. One could thus hope that dynamical signatures are more easily experimen-
tally accessible then static properties and allow for probing quantum phase transitions in finite systems
in the laboratory. Finally, the dynamics of such a transition are directly relating to the speed at which
correlations propagate, are a intriguing setting to explore the non-equilibrium dynamics of a quantum
many-body system and relate to the fundamental question how well gapless phases can be prepared in
finite time. We begin our discussion with the mathematical basis of slow Hamiltonian deformations in the
presence of a gap, namely the adiabatic theorem.

9.4 ADIABATIC THEOREM

In this section, we present the adiabatic theorem. For this, we assume that the Hamiltonian is slowly varied
along some path of gapped Hamiltonians from g = 0 to g = 1, with the state initially being in a ground
state of the Hamiltonian p(t = 0)) = [Eo(g = 0)). In order to simplify the presentation, and since it is the
only setting we encounter for the rest of this thesis, we restrict to a unique ground state. Note that due to
the fact that the spectral gap remains open, it is sufficient to demand uniqueness of the ground state for
any value of g within the interval [0, 1], since perturbation theory excludes the possibility of the ground
state degeneracy changing without the closing of a gap [20].

The adiabatic theorem is a statement how well the evolution of the time-evolved state is contained within
the ground state manifold. In order to state it, we first introduce a parametrisation of the Hamiltonian
path that depends on a total time T

H(t) =H(g=t/1), t€[0,1].

Here always the same path from g = 0 to g = 1 is taken, but the total time T in which this happens is
varied. Adiabatic theorems are now a statement how well an evolution starting in the ground state is
contained in the ground state manifold as a function of the gap and the time scale .

There is a multitude of such theorems, some of which do not even require a spectral gap [22, 242—245].
We present the easiest setting, which still provides an explicit scaling, rather than just an asymptotic
statement [243]. As throughout this thesis, we work on a finite system, such that issues connected to
unbounded operators are safely avoided.

Theorem 14. (Adiabatic theorem: Simplest version) Let H(g) = Ho + gV be a gapped family of Hamiltonians with
ground states |Eg) and uniform gap yo and H(t/T) a time parametrisation of the path g = 0 to g = 1 in time T.
Then the time evolved state at parameter value g, U<(g) |Eg—o), has a fidelity with the instantaneous ground state
|Eg) that can be bounded as

2
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As all adiabatic theorems, the above is a statement how well the evolution is contained in the ground
state manifold. In leading order in the inverse gap, it scales like 1— (||V]|/ (TY%))Z. The first insight is that,
as long as the spectral gap is non-zero, then it is possible to choose T large enough, meaning the evolution
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slow enough, such that the ground state manifold is not left. Another important aspect of the above
bound is the scaling in the operator norm ||V||. In the typical setting, V is a globally supported operator,
for example a magnetic field on every site. There, the adiabatic theorem needs a time scale T that grows
linearly with the system size to compensate the linear growth of || V||. This is to be expected, because the
fidelity used in the adiabatic theorem is a very fragile error measure. In particular, for product states that
are not perfectly aligned on every site, the fidelity decays exponentially in the system size. Presumably,
one could formulate less stringent adiabatic theorems, which only look at local distinguishability between
the time evolved state and the ground state and correspondingly find a scaling of T that is independent of
the system size.

An important ingredient in such a local adiabatic theorem, but also an investigation that is highly
interesting in its own right, is how the ground state |E4) changes as a function of the parameter g. Since
the ground state degeneracy cannot change as long as the spectral gap remains open [20], it is clear that
there is some unitary connecting the ground state at different values of g

|Eg> =U(g)[Eo) .

Moreover, since there is a spectral gap, the exponential clustering theorem (see Thm. 4 in chapter 3.2) can
be applied and the ground states have exponential clustering correlations for all values of g. For 1D, this
directly implies an area-law for the entanglement entropy for the family of ground states (see Thm. 8 in
chapter 3.2). In higher dimensions, however, the following is, a priori, not clear: If we start in a ground
state with an area-law and slowly change the parameter g, will the state at later times, which is close to
the instantaneous ground state, also fulfil an area-law? Moreover, if the state can initially efficiently be
represented as a tensor network, how will the bond dimension grow?

Motivated by these questions, as well as the investigation of the stability of topological order [116, 117],
the above unitary was investigated in recent years, in particular with respect to its locality. It has become
known as quasi-adiabatic continuation or spectral flow [114, 116]. Without going into the details, it turns out
that the unitary U(g) has a locality structure, in the sense that Lieb-Robinson bounds in the parameter
g can be derived [114]. Thus, if g is only slightly changed, then the ground state changes only locally
and its long-range correlations are only slightly changed. From this, one can directly derive that ground
states of a gapped family of Hamiltonians fulfil an area-law for all g, if they fulfil it for any value of
g within the relevant interval [115]. Note that while an area-law is not sufficient for an efficient tensor
network representation in higher dimensions [103], the growth of the bond dimension is still bounded,
due to the explicitly local form of the unitary [114, 246]. In the following, we look into the dynamics of
quantum phase transitions and encounter the Kibble Zurek mechanism that relies on the adiabatic theorem
and provides valuable intuition for the crossing of quantum critical points.

9.5 KIBBLE-ZUREK MECHANISM

The Kibble-Zurek mechanism provides a strikingly simple guideline for the behaviour of a dynamical
ramp over a quantum phase transition. It was originally developed for thermal transitions, where is
was experimentally tested [226—229]. It was later generalised to quantum phase transitions, which is the
context in which we encounter it now.

We start in a ground state of a gapped phase and slowly change the Hamiltonian parameter g across a
quantum phase transition. The goal is to keep track of the evolution and in particular to understand the
behaviour of the ground state at the end of it. As it is our key interest, we will focus the discussion on the
Bose-Hubbard model, where we move from the gapped Mott insulator phase into the gapless superfluid.
In this case, the relevant parameter separating the two phases is the correlation length, which is the reason
why we put particular focus on the behaviour of this correlation length in the state after the ramp.
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The basic logic of the Kibble-Zurek mechanism (KZM) is as follows [222, 224, 240, 247]. While we
are in the gapped phase, we can use the adiabatic theorem and thus know that the system stays in the
ground state manifold (see section 9.4), as long as the parameter g is changed slowly enough. When
approaching the phase transition, the spectral gap necessarily closes and the adiabatic theorem is no
longer applicable, which usually indeed implies that the ground state manifold is left. The subsequent
dynamics is exceedingly complicated, involves excited states and the full complexity of the interacting
system emerges. At this point, predicting the dynamics from an analytical point of view seems exceedingly
hard.

As a first approximation, one could assume that the dynamics is mostly local, leading to a correlation
length that is effectively frozen. Such an assumption, which is usually called the adiabatic-frozen approx-
imation, can then be used to predict the correlation length at the end of the ramp. More precisely, we
perform the quench in some time T and try to predict how the final correlation length & scales with this
ramp time. For simplicity, we assume that g is a linear function of time

and shift g¢ such that the phase transition occurs at g = 0. The goal is to find the scaling of the crossover
time, between the adiabatic and frozen region, which we denote by tgs. This is done by obtaining an
estimate for the breakdown of the adiabatic approximation. Here, the KZM does not rely on the precise
scaling in the adiabatic theorem (see Thm. 14), but rather argues as follows. Adiabaticity should be deter-
mined by the gap and how it compares to the rate of change measured by 9¢g/g of the Hamiltonian. The
crossing between adiabatic and frozen regime should take place when these two quantities are comparable

)) _ atg‘tcrs

Y(g(tes)) = g (ters) .

From the critical exponents, we know that the gap, close to the phase transition, scales like y o gYZ.
Inserting this in the above equation yields

vz
tcrs X TT+vz ,

which is the KZM prediction for the crossing point [240, 248]. Following the adiabatic-frozen approxima-
tion, this result directly tells us how the correlation length at the critical point should scale depending on
the quench rate t

v

&final ¢ gv(tcrs) =Tl+vz .

This is the Kibble-Zurek scaling for the correlation length when moving over the phase transition.

Such a scaling analysis was performed for many different quantum phase transitions. In simple models,
such as single qubits [249] and the Ising chain [225, 230] it has worked well and the scaling of the final
state was correctly predicted. For us, this is reason enough to look at bit closer at the mechanism. In
particular, it seems unclear to what extent the adiabatic-frozen approximation should be taken as an
actual description of the dynamics.

A direct investigation of the adiabatic-frozen approximation is, to our knowledge, missing almost com-
pletely from the literature. This could be, at least partially, be due to the fact that it is by no means
straightforward to turn the above intuition of adiabatic and frozen regimes into a testable prediction that
the participating physicists would agree on. In order to gain some intuition, let us look at the evolution
of the adiabaticity and the correlation length in the Bose-Hubbard model when moving from the Mott-
insulating to the superfluid phase [1]. The numerics follow the experimental study to be presented in
chapter 10 and the details of how the Hamiltonian is precisely varied is postponed until then. For now, let
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Figure 9.1: Tuken from Ref. [1]. Evolution of adiabaticity and correlation length for a ramp in the Bose-Hubbard model
across the quantum phase transition, moving from Mott to superfluid. The precise ramp schedule is discussed in
chapter 10. Red dots represent the overlap with the instantaneous ground state. Blue dots display a change of the
coherence length &. The vertical dashed line indicates the phase transition. We observe that initially the evolution is
very adiabatic, while across the phase transition, adiabaticity breaks down and drastic change at the phase transition
occurs.

us simply observe that Fig. 9.1 does indeed show an initial regime that is almost adiabatic. This should
come as no surprise, as this part of the approximation is backed up by the adiabatic theorem. When,
however, looking at the dynamics of the correlation length, no frozen regime seems visible. In particular,
the correlation length seems to change most dramatically precisely at the phase transition.

We confirmed that such a behaviour of drastic change at the phase transition takes place for many
different ramp schedules and seems to also be fulfilled in the Ising chain (see Fig. 9.2), where the final
scaling predicted by KZM is correct [225]. This clearly means that, while the KZM can lead to correct
predictions of the final scaling, it should not be taken as an actual approximation of the out of equilibrium
dynamics.

For completeness, let it be noted that the above derivation is by no means the only possibility to arrive
at the Kibble-Zurek scaling. For example, one approach directly studies the Schroedinger equation and
looks at the possibility to do a series of approximations, eventually leading to a direct scaling collapse of the
dynamics [250-252]. This approach has the advantage of giving a correct description of the approximate
dynamics. Its applicability, so far, however seems to be limited to conceptually simple models, like the
Ising chain [251] or a mean-field system [250].

A different approach, which in principle can be applied to any system, is adiabatic perturbation theory
[49, 198, 253]. Here, the ideal evolution is taken to be the adiabatic evolution following the ground state
and a perturbation analysis around this is performed. This again can reproduce the KZM scaling. In
contrast to the above adiabatic-frozen approximation, it is mathematically rigorous, but relies on extensive
knowledge of the behaviour of the low-energy sector. Moreover, since it is a perturbation analysis around
the infinitely slow limit, it raises one fundamental question, namely how slow the evolution has to be, for
the KZM scaling to occur.

This is just one of many important questions that remain unsolved in the study of the dynamics of
quantum phase transitions. In particular, what are the precise conditions for universality to set in? What
role do interactions of the model play? How slow does the ramp need to be and does its precise shape
matter? What is the role of the system size? Does the complexity of the underlying model matter and is
universality maybe only present for integrable systems?
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Figure 9.2: We consider a linear ramp from B = —5 to B = 0 in the Ising model with periodic boundary conditions on

L = 80 spins on a time scale T = 100 in the natural units. Displayed is the evolution during this ramp as a function of
B. Red dots represent the overlap with the instantaneous ground state. Blue dots display the number of kinks defined
as 17 > 5(01— 0505, 1), which can be seen as an indicator for the two phases and is the quantity usually considered in
KZM scalings in this model [225, 240]. We see that adiabaticity indeed breaks down close to the phase transition at

B = —1, while the number of kinks show a non-trivial evolution during the full ramp.

While the KZM is certainly an important step and a valuable intuitive tool, it is far from being a complete
answer to the above questions. Especially in the setting of realistic experimental systems, that are of
limited size and where the dynamics happens on a reasonable time scale, the above questions seem
entirely open. Given that analytical tools are limited and their applicability is often questionable, this
leaves numerical and experimental studies of the phenomena. Naturally, the dynamics of quantum phase
transitions belongs to the most challenging numerical problems in the context of quantum many-body
systems. Not only does it refer to time-dependent behaviour, but also the phase transitions needs to be
crossed, for which many approximation schemes are known to fail.

96 SUMMARY: DYNAMICS OF QUANTUM PHASE TRANSITIONS

In this chapter, we described that ground states of quantum systems are in the same phase, if a gapped
path of Hamiltonians can be found that connects them. Thus, a quantum phase transition is necessarily
connected to the closing of the spectral gap. By looking at three paradigmatic models, we gained intuition
how such transitions can occur. We focussed on the Bose-Hubbard model, which is interacting and thus
provides a realistic model of some progresses in solid-state physics. Using critical exponents, the static
properties of the model close to the transition can still be well understood and the crucial properties of
the ground state can be captured using power-law scaling. Having captured the equilibrium properties
of such quantum phase transitions, we looked into their dynamical behaviour. Based on the adiabatic
theorem, we encountered the Kibble-Zurek mechanism, which suggests a way to capture the results of
dynamical crossing a quantum phase transition in terms of power-laws, similar to the static properties of
the systems.

In the following, we aim at understanding those dynamical transitions across quantum phase transitions
in more depth. We present a recent study that approaches this issue in the Bose-Hubbard model, which
due to its interacting nature, is an exceedingly complicated task. We will therefore rely on the application
of a dynamical quantum simulator, which will allow us to uncover complex behaviour that cannot be
captured using any known theoretical description.
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Quantum phase transitions are among the most intriguing phenomena connected to the study of inter-
acting quantum many-body systems in and out of equilibrium. Despite their intrinsic complexity, their
static properties are often well captured in terms of strikingly simple scaling laws (see chapter 9). While
this static description is relatively well understood by now, it is still largely unknown to what extent there
also is a dynamical signature of the transition. Exploring this question is surely an interesting endeavour
in itself, but also directly relates to the fundamental question how quantum phases can be prepared and
measured in experiments.

This issue has so far mostly been approached in free models, which allow for an in-depth investigation
and shed light on the complexity of dynamic quantum phase transitions. Following a sudden quench in
these models, the evolution is well-captured in terms of spreading quasi-particles which move with a
ballistic speed, upper bounded by Lieb-Robinson bounds (see appendix B). In contrast, in the context of
quantum phase transitions, the Hamiltonian has to be altered slowly. This leads to an ongoing change of
the notion of quasi-particles, meaning that they are continuously created and deformed while they spread
through the system.

For slow ramps in interacting models, the Kibble-Zurek mechanism provides some guideline on what
to expect when moving from a gapped phase into criticality (see section 9.5) . Its precise conditions and
applicability to experimentally realistic settings is, however, still heavily debated. Given the great difficulty
in approaching these questions analytically, numerical studies have proven to be an indispensable tool
to simulate the involved processes. Due to the lack of effective models properly capturing the phase
transition of interacting systems, these investigations are, however, limited in scope. Thus, despite great
effort, it is still largely open how quantum many-body systems dynamically change phases in strongly
correlated models.

In this chapter, we present a recent joint effort of theory and experiment to investigate this problem
in the paradigmatic setting of the Bose-Hubbard model. These experiments capture, for the first time in
such a setting, the dynamics of an essentially homogeneous quantum system entering a critical phase. In
contrast, earlier work focussed on the inhomogeneous transition dominated by mass transport [254] or
looked at the transition from the gapless into the gapped phase [215]. In the work presented here [1],
we find intriguing behaviour outside of the Kibble-Zurek mechanism, thus demonstrating the intricate
dynamical behaviour of dynamical quantum phase transitions into a gapless phase.

We begin by reviewing the experimental setting and explain in detail how the relevant parameters are
extracted from the experimental data. We show that the experimentally obtained dynamics in 1D exactly
fit various numerical simulations, thus certifying the quantum simulation in one spatial dimension. We
then proceed to use the quantum simulator in higher dimensions, where numerical tools are absent and
the simulator takes the center stage in capturing the relevant physics of the dynamical crossing of a
quantum phase transition.
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Figure 10.1: Taken from Ref. [1]. a Shown is the evolution of the phase correlation length & during the ramp from
large U/] (on the right) to small U/] (on the left). For fast ramps, it changes little from its small original value in
the Mott phase. For slower evolutions eventually approaching the adiabatic limit, it necessarily has to diverge at the
phase transition. b This plot shows the experimental ramp protocol in terms of the scattering length a (see section
8.2.1), the lattice depth Vi, and the resulting Hamiltonian parameter U/]. In the first part of the ramp (I), the lattice
is ramped up to prepare the initial Mott insulator state at fixed scattering length a. During the second step, the initial
value (U/]); is tuned using a Feshbach resonance which alters the scattering length at fixed lattice depth (see chapter
8). Finally, the lattice is ramped down again, thus crossing the Mott-superfluid transition indicated by the gray line in
the U/] plot. ¢ These images are the obtained time of flight (ToF) pictures after different evolution times Tramp. Shown
is the optical density in arbitrary units corresponding to the distribution of atoms in a 2D image of positions py, py
measured in inverse units of the laser wave length Ay, = 2d;,;. As is clearly visible, they change from the broad ToF
profile of a Mott insulator to the peaked profile expected in the superfluid phase with longer evolution time.

10.1 CROSSING THE PHASE TRANSITION

Our study begins by loading 3“K atoms into a 3D optical lattice with lattice depth Vi, at U/] > 250,
which gives a 3D Mott insulator state with almost exactly one atom per site [1]. Starting in this gapped
phase, the system is slowly ramped into the superfluid. The two phases of the Bose-Hubbard model are
characterised by the behaviour of the phase correlators (b;fbk> (see section 9.2.2). Due to the fact that the
Mott insulator phase is gapped, all correlations have to decay exponentially, which gives

(I bic)l = 1(b]by) — (bl ) (by) < e 4K)/&

where we used that the state has a fixed particle number and thus (bb, (bj) = 0 and where d(-,-) denotes
the lattice distance between the positions. In contrast, the superfluid phase has long range order. Thus,
any correlation length, which is defined in terms of an exponential fit, has to diverge in this phase.



710.2 1D RESULTS 103

In this way, the correlation length constitutes the ideal quantity to observe the dynamics of crossing
the Mott-superfluid phase transition and most important features of the transition are connected to this
key quantity. Thus, in the following, we focus on the fundamental question at what rate and by what
mechanism the phase correlations are established. For this, it is crucial to make the correlation length
experimentally accessible, which constitutes the read-out of our quantum simulation. As described in
appendix G, this correlation length can be extracted with a time-of-flight as well as a density measurement.
Even for this simple quantity, quite an elaborate analysis is needed, which clearly highlights that the final
read-out stage of a quantum simulation has to be taken seriously and should be seen as a direct motivation
for our investigation of tomography in chapter 11.

The main goal behind the quantum simulation described here is to explore the dynamical signature
of the Mott-superfluid phase transition in the Bose-Hubbard model, in the setting of the Kibble-Zurek
mechanism which slowly moves from the gapped phase into criticality. For this, we start in a large Mott
insulator and cross the phase transition by linearly ramping down the lattice depth V},; (see Fig. 10.1). In
order to study the dynamics, the same dynamical ramp is performed in different time scales. For each total
ramp duration Tramp, the correlation length at the end of the ramp is measured, leading to a correlation
length as a function of total ramp time, as discussed when the Kibble-Zurek mechanism was introduced
(see section 9.5). For convenience, in this whole chapter, we will measure the ramp time Tramp in natural
units of integrated tunneling events (see section 8.2.1). We now turn to the evaluation of the results in
1D, which can still be numerically checked in order to certify the correct behaviour of the experiment as a
dynamical quantum simulator.

10.2 1D RESULTS

In the following, we present the result of Ref. [1] for the dynamical behaviour of the correlation length
when moving from Mott to superfluid on different time scales. The discussion is restricted to a high-level
overview. We begin by the observations in one spatial dimension, which was achieved by keeping the
optical lattice very strong in the other two directions, thus effectively decoupling the 3D cloud into 1D
tubes (see section 8.2.1).

The experimentally observed phase correlation length shows several dynamical regimes (see Fig. 10.2).
For very short ramps, the system can hardly react at all and the correlation length is dominated by the
initial Mott insulator, which has a correlation length significantly below one lattice spacing. In this phase,
the dominant Hamiltonian term is the interaction, leading to a state that is close to a product state with
exactly one particle per site. Due to the finite initial value of | > 0, however, the initial state is slightly
entangled and possesses short-range correlations.

For slower evolutions, the full ramp stops being diabatic and the system starts to react to the ramping
of the critical parameter over the phase transition. Thus, the correlation length starts to quickly increase
up to several lattice spacings. In these two regimes, the experimental data agrees almost perfectly with
the numerics performed in a translationally invariant system.

For the numerical analysis, we used three different numerical tools (see Fig. 10.3). The numerically
most efficient description relies on the doublon-holon model (see section 9.2.2). As discussed, it is a free
fermionic model that is capable of accurately capturing the Bose-Hubbard model on the Mott insulating
side away from the phase transition. For that reason, it captures the short evolutions well, which are
dominated by the initial state and the evolution in the Mott phase. Since the model is free, very large
systems can be simulated. In practice, the explicit numerical calculation of the correlators is involved, as
it is a model with two fermionic species and the application of Wick’s theorem (see section 3.4.1) becomes
non-trivial.
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Figure 10.2: Taken from Ref. [1]. a The left plot shows the dynamical behaviour of the correlation length measured in
units of the lattice spacing dj,; when moving from the Mott insulator into the superfluid phase in different time scales
Tramp in 1D. As the insets show, for longer evolution times, the final ToF image changes from a broad distribution
corresponding to a Mott insulator to the peaked image of a superfluid. The experimentally extracted correlation
length (blue dots) agrees extremely well with the numerical analysis in terms of a time-dependent DMRG simulation
in a homogeneous model of varying size (blue line). While very short evolutions are well-captured in terms of the
doublon-holon model (red line), it is not capable of accurately describing the phase transition and breaks down
for intermediate ramp times. Finally, for long times, the trap becomes visible leading to a deviation between the
experimental data and the numerical analysis in a homogeneous model. b The right plot shows the same study, but
now for different final ramp positions (U/])¢, showing that all these ramps qualitatively have very similar behaviour.

The doublon-holon model can also be used to connect the experimental results to Lieb-Robinson bounds
and the spreading of quasi-particles. While for the Bose-Hubbard model, no exact Lieb-Robinson bound
for the correlation length in our context is known (see appendix B), the doublon-holon model is fermionic
and thus has such a bound. It captures the speed of spreading of the quasi-particles [120] (see section
9.2.2). In fact, as demonstrated in Fig. 10.4, the qualitative behaviour of the correlation length for short
times is reproduced by looking at the maximum correlation length that can be created during the slow
ramp, given by [1]

Tramp

E»('Tramp) =&+ J dtv(t),
0

where v(t) is the Lieb-Robinson velocity depending on H(t) (see section 9.2.2).

The second numerical method applied is a full exact diagonalisation of the system, which uses all sym-
metries of the model, namely translational invariance as well as particle number conservation. Since the
initial state is the ground state of the system, we can choose to work in the sector with fixed particle num-
ber and states that are invariant under shifts. This greatly reduces the Hilbert space, allowing to describe
up to 15 particles on 15 sites. In order to achieve such a description numerically, it is necessary to first
construct a complete basis for the corresponding subset. The Hamiltonian is then constructed as a sparse
matrix, described by its action on the basis states [255]. This numerical technique is significantly more
powerful than the free doublon-holon model for the setup at hand. As it constitutes an approximation-
free full solution of the dynamics, it is obviously correct. The only downside of the method is that only
relatively small systems can be considered.
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Figure 10.3: Taken from Ref. [1]. a Shown is the numerical analysis of the final correlation length & after the ramp,
depending on the ramp duration Tramp using different numerical tools. For short evolutions, the initial state and the
Mott phase dominate the dynamics, making a description with the doublon-holon model (red dots) feasible. Exact
diagonalisation (blue dots) works for longer times, but eventually breaks down due to the finite system size. Only
time-dependent DMRG (green line) can capture the evolution for ramps lasting longer than one tunneling time. The
break-down of the doublon-holon model and the exact diagonalisation are indicated by the dashed vertical lines. b
The plot gives a finite size scaling of exact diagonalisation (blue dots) for small system sizes and t-DMRG data (red
dots) for larger systems. As the saturation with the system size L shows, the DMRG result for all times considered
here are capable of accurately describing the dynamical behaviour of an infinite system.

For short and intermediate times, the Lieb-Robinson light cone provably restricts the dynamics (see
appendix B), thus showing that short time evolution only sees a small subsection of the system. There-
fore, the limited system size in exact diagonalisation only becomes relevant for longer times above one
tunneling event, as can be seen from a system size scaling (see Fig 10.3).

The third and final method used to described the dynamical evolution at hand is time-dependent DMRG.
This crucial numerical tool is of invaluable help in the description of quantum many-body systems [41,
122]. From a modern point of view, its main idea is to always store the state as a matrix-product state
(see appendix A). This saves a lot of memory and allows to describe very large system sizes. As long as
there is good reason to believe that the desired state has little entanglement and is thus well described in
terms of a tensor network, DMRG and related tools are almost exact, sometimes up to machine precision.
This is particularly true for ground states of gapped 1D models (see section 3.5.1) and, as it turns out, also
applies to our setting of slow quenches.

Using a version of time-dependent DMRG, relying on the open-source code OpenTEBD [122], we are
able to describe the slow quenches for substantially longer times [256], with system sizes that are large
enough to make them indistinguishable from the behaviour of infinite systems, where the quantum phases
are well defined (see Fig. 10.3). In this regime, a substantial deviation between the numerical analysis and
the experimental data becomes visible.

For these longer ramp times, the experimentally measured correlation length decreases again, which is a
clear signature of the fact that the experiment takes place in a trap, in contrast to the numerical description
of an essentially infinite homogeneous system, where the notion of quantum phases are well-defined. A
detailed investigation of the influence of the trap is contained in appendix G. Let us stress again that
these systems behave indistinguishably for shorter ramp times, thus demonstrating that the experiment
reproduces the behaviour of an essentially infinite homogeneous system for short and intermediate times.
In this way, the experiment is indeed a dynamical quantum simulator allowing to study the dynamics of
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Figure 10.4: Taken from Ref. [1]. This plot shows the comparison of the growth of the correlation length & predicted
by the doublon-holon model (red dots) for short total ramp times with an estimate in terms of Lieb-Robinson bounds
(blue line). The numerical simulation in terms of the doublon-holon model, which is an excellent approximation up
to its breakdown indicated by the gray line, shows similar qualitative behaviour as the maximum correlation length
allowed by Lieb-Robinson bounds in this model.

a quantum phase transition. In 1D, we are able to certify it using numerical simulations, which, as we
discuss later on, is no longer true in higher dimensions, where the quantum simulator can demonstrate
its full power.

To summarise, we demonstrated that the experimentally measured correlation length in 1D shows three
distinct dynamical regimes. For short ramps, it hardly changes and is well described with a free fermionic
model. For intermediate ramp times, it grows strongly and is in excellent agreement with numerical
simulations performed in a homogeneous system. For longer times, the trap causes a decrease of the
correlation length, which does not take place in the homogeneous model. In the following, we investigate
the intermediate ramp time regime in more detail and relate it to the Kibble-Zurek mechanism discussed
earlier (see section 9.5).

10.2.1  Power-law behaviour

For intermediate ramp times, we observe a strong growth of the correlation length in the experimental
data. Due to the agreement with the numerics performed in a homogeneous model of various sizes, we
know that this is indeed the behaviour of an essential infinite homogeneous model which undergoes the
Mott-superfluid phase transition. When looking at the growth in detail (see Fig. G.3), we find that there
is a central region extending over one order of magnitude that, to good approximation, looks linear in the
log-log plots presented. Thus, they are compatible with the power-law growth of the correlation length
suggested by the Kibble-Zurek mechanism (KZM). Since the KZM is not an exact theory, it is hard to
evaluate to what extent it can be applied it to our setting. Still, in this respect, the intuition provided by
it seems to be a useful guideline. In the following, we look into extending this connection and investigate
the power-law growth in more detail.

In order to delve deeper into the dynamics of the Mott-superfluid transition of the Bose-Hubbard model,
we altered the ramp to end at different positions in the superfluid phase. Following the intuition of the
adiabatic-frozen approximation, the final position should have no influence on the observed power-law,
as the system is said to be "unable to react" in the gapless phase [240]. This does not seem to be the
case, as demonstrated by the experimental and numerical data in Fig. 10.5. We rather observe a strong
dependence of the observed power-law on the final position within the superfluid phase that seems to



10.3 HIGHER DIMENSIONS 107

have a complicated functional form and decreases when going too close to the free case of non-interacting
bosons at U = 0. In this way, we observe a dynamical signature of the Mott-superfluid phase transition
that lies outside the intuition provided by the KZM.

Naturally, we cannot conclude that out experimental findings are in contradiction to the KZM. Given the
fact that its formulation is vague from the beginning and its precise assumptions are unclear, one should
rather ask to what extent it gives useful intuition. For the setting at hand, this is only partially the case
and for predicting the precise behaviour of the power-law, it is not true at all.
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Figure 10.5: Taken from Ref. [1]. a Shown is the dependence of the final correlation length & on the ramp time Tramp
and a power-law fit for intermediate ramp times. As this fit shows, for intermediate ramp times, the observed growth
of the coherence length is compatible with a power-law fit. b Shown is the exponent b of the power-law fit and its
dependence on the final lattice depth (U/])¢ for experimental data (blue dot) and numerical simulation using t-DMRG
(red dots). The error bars indicate the uncertainty of the exponent b in the power-law fit itself and due to the precise
range where the fit is applied. Contrary to an intuition guided by the KZM, the power-law crucially depends on how
deep the ramp moves into the superfluid regime.

When plugging in the critical exponents of the Bose-Hubbard model in 1D, the KZM suggests a power-
law with exponent one independent of the final position of the ramp [240, 257]. Our results seem to lie
significantly below this value. As has recently been pointed out [258], the application of the KZM to the 1D
setting might have to be altered due to the special case of a Kosterlitz-Thouless transition. Exploring this
special phase transition in more detail would surely be an interesting endeavour, which would necessarily
also rely on a deeper understanding of the KZM. We now turn to the case of higher dimensions, where
such special cases do not appear.

10.3 HIGHER DIMENSIONS

In the following, we present the investigation of the dynamics of the quantum phase transition of the
Bose-Hubbard model in 2D and 3D. Due to the absence of good analytical descriptions of the model at
the transition and the extreme difficulty in describing it numerically, quantum simulators are the only
feasible tool. As described in section 8.2.1, changing the dimensionality in the experimental architecture
is straightforward, as one can ramp down the different spatial lattice dimensions individually. Further,
as we numerically checked that in 1D the experimental system accurately describes an essentially infinite
homogeneous quantum system for short and intermediate times, we gained confidence that the simulation
accurately describes the dynamics of the phase transitions also in 2D and 3D.
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The results of the experimental study are presented in Fig. 10.6. The first remarkable feature is a clear
similarity between the different dimensions. They behave almost identical for the same final value of U/].
Only the break-down position of the power-law regime seems to vary, with a power-law stretching further
in higher dimensions. Given that the critical values and exponents are dramatically different in 1D, 2D
and 3D (see section 9.2.2), this similarity is very surprising.

Moreover, when looking at the exponents of the power-law (see Fig. 10.6), we find the same qualitative
behaviour as in 1D. The dependence on the final position within in the superfluid phase seems non-trivial
and shows the intriguing feature that it decreases again when the final position lies too deep within the
superfluid phase. Again, such a behaviour cannot be explained within the scope of the KZM. Further, the
general power-law exponents we observe seem to lie significantly above the predicted values.
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Figure 10.6: Taken from Ref. [1]. a Shown is the experimentally observed behaviour of the correlation length & at the
end of the ramp for various ramp durations Tramp. The results are presented for 1D, 2D and 3D for three different
final positions (U/])¢ within the superfluid phase, showing a remarkable similarity between the different dimensions.
b Plotted are the power-law exponents b extracted from the experimental data, depending on the final position (U/])¢
within the superfluid phase for 2D and 3D. As in 1D, the curves show complicated behaviour and share the feature
that they start to decrease again when the ramp reaches too deep into the superfluid phase.

In earlier works, some limitations of the KZM have already been pointed out. One often cited intuition,
based on classical transitions, is that of coarsening of defects [259]. It suggests that the slow ramp across
a critical point cause defects as predicted by the KZM, which after their creation undergo a non-trivial
evolution. While this might be well related to the physical processes taking place, its predictive power
seems small, as it is by no means clear how this coarsening effect can be captured.

In free models with either a multicritical point [260] or a gapless phase [261, 262], such as the XX model,
it was already observed that the KZM had to be altered. In this context, this does not pose a substantial
problem, as the models are exactly solvable and every dynamical behaviour can thus be either analytically
calculated or obtained using simple numerical simulations. The interesting regime for the KZM, however,
is the application to interacting models that cannot be exactly solved, such as the Bose-Hubbard model at
hand. Its application to this interacting setting is so far substantially hindered by the lack of systematic
ways of adapting and improving it for the particular setting at hand. It is for example, unclear how the
precise ramp schedule and its final position can be accounted for. Moreover bounds to the speed of the
transition and, as also connected via Lieb-Robinson bounds, to the system size are unknown. While it is
often said that evolutions need to be slow enough and correspondingly system sizes large enough, it is
not clear what this would mean precisely. Thus, it is not clear in which setting the Bose-Hubbard model
has to be probed to produce the Kibble-Zurek predictions. Based on our results, we think it is fair to
speculate that the dynamics of quantum phase transitions are far less universal than commonly assumed.
They rather seem to pose a intriguing and complicated area of research on quantum many-body dynamics
and due to their intrinsic complexity, their future study will have to rely on quantum simulators, much in
the spirit of the work presented here.
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10.4 SUMMARY: DYNAMICALLY PROBING THE MOTT-SUPERFLUID TRANSITION

In this chapter, we studied the dynamics of the Mott-superfluid phase transition of the Bose-Hubbard
model, separating an insulating and a superfluid phase. For this, we relied on an instance of a partially
certified analogue quantum simulation and demonstrated the first experimental study of an essentially
homogeneous quantum system entering a critical phase in such a setting. The results in 1D could still
be efficiently checked numerically. This gives reason to trust the simulator also in higher dimensions. In
those 2D and 3D studies, the true power of the experiment emerged and we were able to discuss results
that seem completely inaccessible without the simulator. In those results, we uncovered complicated be-
haviour that could not be captured using any known theory. While the observations were compatible with
power-law behaviour as expected from the Kibble-Zurek mechanism, the exponents of those power-laws
showed complex behaviour that could not be explained within the realm of this mechanism. Thus, the
dynamics of quantum phase transitions on realistic experimental time scales are surely not comprehen-
sively understood. Here again, further connections between static and dynamic properties of Hamiltonian
models have to be established. Further efforts in this direction are certainly needed and, given the great
difficulty of this problem, will likely be based on analogue quantum simulators.

In the following, we explore the concept of a dynamical quantum simulator further. Specifically, we
focus on the read-out that retrieves the result of the simulation. In the study just presented, such a read-
out solely focussed on extracting a single parameter, namely the correlation length. Even there, we already
saw that this extraction is by no means a trivial task. In general, one would naturally like to maximise
the information retrieved from the simulator, rather than just obtaining a single parameter. This task is
achieved by tomography, which is a reconstruction of the experimental quantum state. We explore this
approach in the context of ultra-cold atoms in a continuous optical setup in the next section. This setup
has in the past successfully been used to explore issues of equilibration and thermalisation and, due to its
continuous nature and involvement of large collections of atoms, is one of the most intriguing challenges
for the task of quantum state tomography.
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Quantum simulations have already contributed significantly to our understanding of many-body physics.

Given this development, the mindset when it comes to experimental investigations is slowly shifting. In
the past, experiments were mostly performed to corroborate or falsify theoretical predictions. The un-
derlying theoretical model was approximately solved and some key quantity, such as a conductance was
extracted. This predictions in terms of a single experimentally measurable quantity could then be com-
pared to the actual outcome of an experiment.

The mindset behind quantum simulations is fundamentally different. Here, the experiment is taken
as a fully-fledged investigative tool to understand the physical situation at hand. Given the absence of
good theoretical descriptions or numerical tools, the information obtained from the experiment plays a
very different role, as it no longer is a simple check of a ready-made prediction, but rather a gateway
towards understanding new behaviour. This leads to substantially increased expectations when it comes
to experimental measurements. In particular, rather than only extracting a single quantity, one aims at a
best possible reconstruction of the state, in order not to lose any information provided by the quantum
simulator. Due to the large number of degrees of freedom involved in quantum many-body systems, this
necessarily relies on a useful ansatz class that captures commonly encountered states well. One promising
route is compressed sensing, which reconstructs low rank states well [200, 201]. A different approach
relies on tensor-networks [202, 203], which work well as long as entanglement entropies are small, at least
in 1D. We follow this mindset, but take it to the level of continuous systems.

Continuous setups have always played an important part in the investigation of ultra-cold atoms. In
fact, many physical theories, such as descriptions of electronic behaviour in terms of Luttinger liquids,
rely on the absence of a discrete lattice structure. Based on immense progress in recent years, these
systems can now be experimentally studied and controlled with unprecedented precision [263-265]. This
gives rise to numerous interesting applications. From the viewpoint of this thesis, especially experiments
looking into thermalisation of interacting particles [35] and an investigation of Lieb-Robinson bounds [34]
should be highlighted and demonstrate that these platforms are capable of significantly contributing to
our understanding of quantum many-body systems out of equilibrium.

Mathematically speaking, the continuous setting can be seen as a limiting procedure where the lattice
spacing is sent to zero. As anyone who took courses in quantum field theory surely knows, this leads
to diverse mathematical difficulties, mostly routed in the fact that, even for finite systems, the Hilbert
space is not separable anymore. This requires new ways of thinking of the involved states. While often
one follows the algebraic view, where states are merely defined by their action on local operators, we
rather focus on a paradigmatic class of conceptually easy states that are still versatile enough to capture
quantum many-body systems in and out of equilibrium in many contexts. This will be continuous matrix
product states (cMPS), which provide the basis for investigating the read-out of quantum simulations in
the continuous context [266].
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Continuous matrix-product states

A translational invariant cMPS is described by two matrices Q,R € CP’ on the auxiliary
system, where the parameter D capturing their size is called the bond dimension. The state is
defined as

[Wa,R) = Traux (ﬂ’efé dx(Q@HR@w(X))) 0)

where P denotes path ordering with respect to the position x and the trace goes over the
auxiliary space on which Q and R are supported.

The general approach of tomography with these states is to reconstruct the matrices capturing the cMPS
based on measurement data. We continue by introducing a setup for continuous quantum fields with
massive particles that has very successfully been applied to questions of equilibration and thermalisation
in the past [35, 265]. For these quantum simulations, we show that cMPS provide an ideal ansatz class to
optimise the read-out stage. Based on this, we present the first proof-of-principle application of a quantum
field tomography for interacting particles [2].

11.1 ULTRA-COLD BOSONS IN A CONTINUOUS OPTICAL SETUP

The experimental architecture that we focus on in this chapter are ultra-cold bosons that hover in a contin-
uous harmonic trap created by an atom chip [265]. Using evaporative cooling, very low temperatures in
the nano-Kelvin regime can be achieved. The cloud is thus, initially, almost in the ground state. Similar to
optical lattices, again Feshbach resonances can be used to tune the interaction between the atoms and thus
interpolate between free theories and strongly interacting condensed matter systems. As the harmonic
trap is large and spans roughly 100 um, the system is, to good approximation, translationally invariant in
the center of the trap. Therefore, we restrict to this center region, where a fit in terms of a translationally
invariant cMPS will be used.

Due to very strong confinement in two directions, the resulting atomic cloud is almost one-dimensional
and, in the middle of the trap, described to excellent approximation by a Lieb-Liniger model [267]

L/2
H= J dx (1va (x)V¥(x) + goWT (x)¥! (x)‘l’(x)‘i’(x)) )
2m
—L/2

It can be seen as a continuous relative of the Bose-Hubbard model, consisting of a kinetic term and one
describing the contact interaction. The model is integrable, in the sense that it can be solved by the Bethe
ansatz [268]. Note that, due to the intricate nature of the solution, out of equilibrium questions, such as
those of equilibration and thermalisation are hard to answer. This makes it necessary to probe this model
in instances of quantum simulations.

In current experiments, preparing out of equilibrium initial states is not a trivial task. In the setup
considered here, it is achieved by a sudden split of the condensate along the longitudinal axis. This
creates two 1D condensates next to each other [265]. The splitting procedure is a complex 2D process in a
quantum field and exactly modelling it is so far out of scope. Nevertheless, the splitting provides a pivotal
tool in the creation of out of equilibrium settings. Further, by varying the details of the splitting procedure,
a large class of initial states can be prepared [265].
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The quantity usually investigated after the splitting is the relative phase between the condensates. It
can be probed with comparably simple time of flight techniques and exploiting the fact that each image
provides a single shot quantum measurement of the phase [269]. In fact, the possibility to use time of flight
imaging is another crucial reason why the splitting procedure of the atomic cloud is usually performed.

Directly after the split, the two condensates are perfectly in phase [35]. Before the time of flight imaging,
they are left to evolve up to a time ty,,4, which we will call hold time. Up to this time scale, the dynamics
leads to a relaxation process during which the relative phase decorrelates and eventually reaches the
uncorrelated thermal predictions [35]. As is commonly expected in interacting models, the time scales
for this process are very short, on the order of milliseconds, and thus much faster than predicted by
current bounds on equilibration times scales (see chapter 3). This probe of thermalisation behaviour is
particular interesting, as it probes time of flight information, which is intrinsically non-local. Due to the
very limited information obtained by the observable, this is still perfectly compatible with equilibration
and thermalisation as described in chapter 3 and 4.

In the proof-of-principle application presented here, only phase correlation behaviour was experimen-
tally measured. Since no density information is available, we only reconstruct an effective state for the
phase behaviour. The theoretical tools used are, however, general enough to reconstruct the full cMPS
as long as enough measurement information is provided [2, 270]. For our reconstruction, no underlying
theoretical model is used and it is thus perfectly suited for the context of quantum simulations, where the
experiment is used as an investigative tool to explore unknown physical behaviour. The class of cMPS
states is best suited for ground states of locally interacting models, or other states that are connected to
low spatial entanglement entropies [2]. In this way, it can conceptually be used as an experimental probe
for the measurement of entanglement; a prospect that we explore in the final parts of this chapter.

11.2 RECONSTRUCTING PHASE CORRELATIONS

The starting point for our reconstruction is to express the correlation functions in terms of the cMPS
matrices. In order to separate phase and density behaviour of the state, we employ a polar decomposition
of the field operators

Wix) =n(x)'/ 2%,

where n(x) = Wi(x)¥(x) is taken to be the density of one of the two condensates and 6 is the phase
operator at position x. The construction ensures that these effective field operators indeed fulfil the correct
commutation relations. The phase correlation functions, which can experimentally be measured, are
defined as

CV (x1,...,xn) = Re <ei<9X] Oy +Oxy -+ Ox, em)>

=Re (n(e) "I 0 Wxo)n(x2) 2L )

where 0y, are the phase differences of the two condensates at position x; and the angular brackets denote
the ensemble average [2]. Since it is sufficient for our tomography procedure, we restrict to even correla-
tions functions which are normal ordered x7 < x» < - -+ < xn. Further, we assume translational invariance
in the experimental setup, which is, for the short equilibration time considered here, a reasonable assump-
tion, as we work in the center of the trap [2]. In the cMPS formalism the phase correlation function takes
the form

dZ
Ak, T A Tno
C™(ty,...,tnq) = z Py, ky € K1 Mk T
{kj}=1
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with T = %341 — x| being the difference between spatial positions, which are positive due to normal
ordering, Ay are eigenvalues of the transfer operator usually referred to as poles [2] and

] _
Okyden s =Mk Mic k- M My,

1

where M = R2 ® R™2 in a suitably chosen basis [2, 270].
As only phase information is measured, it is impossible to reconstruct the full cMPS in terms of Q and

R matrices. Rather, we will use the experimental data to reconstruct the phase correlation behaviour of the
cMPS given in terms of the M matrices and the poles A,. We now turn to the details of this reconstruction.

For now, we focus on the experimental data with short hold time after the longitudinal split of tygg =
3ms. A comparison to longer hold times follows later on. In order to obtain the phase correlation
behaviour of the cMPS, we have to reconstruct the poles Ay as well as the M matrix, which is a complex
square matrix of size D x D, where D is the bond dimension [2]. This is a task that is feasible for large-scale
quantum systems, which highlights the power of cMPS as an ansatz class in this context.

We begin by extracting the poles. For this, it is sufficient to look at two-point correlation functions. This
was performed by a straight-forward least-square fit. In a second step, the M-matrix is reconstructed.
Using the fitted 2-point correlation function and normalisation conditions, some entries can be fixed a
priori [270]. To obtain the other entries, experimentally measured four-point correlation functions are
fitted. For this, we use a Nelder-Mead simplex algorithm from the open-source library SciPy [271]. In
order to capture the quality of our fit to the correlator, we use the mean relative deviation, defined as

IC(x Crec( )12
€= _—
|S| Z ‘CI‘EC

where S denotes the set of normal ordered indices x; < x2 < -+ < xn. As described in Ref. [2], taking
the bond dimension D = 2 proved to be sufficient to approximate the four-point correlation function
up to a mean relative deviation of 1.4%, which is of the same magnitude as the experimental errors.
Thus, we are capable of accurately capturing two- and four-point correlation functions with the cMPS
formalism. Naturally, there are many ways of fitting correlation functions and it is, a priori, not at all clear
to what extent one has truly gained knowledge of the state. Thus, we are left with the task to certify the
reconstruction. It is one of the strong suits of our cMPS method that this is easily possible.

In order to gain trust that the presented method indeed reconstructs the state and can thus function
as a tomographic tool, one has to perform steps towards certifying the reconstructing. For this, we use
the fitted M-matrix and poles Ay to predict higher order correlations functions. Here, no fit is performed
and the cMPS prediction is compared directly to the experimental values. As presented in Fig. 11.1, these
predictions work very well, with a relative mean deviation of 3.2 %. This can be seen as a clear sign that
we actually reconstructed the phase behaviour of the state.

To estimate the robustness of the algorithm with respect to experimental noise, a bootstrapping method
is used [23]. For this, Gaussian noise is added to the experimentally measured four-point correlations.
Subsequently, the reconstruction procedure is implemented and the entry-wise relative standard deviation
of the six-point phase correlation functions is compared. For the average over all entries, a deviation of
1.1 % is found, with a maximum relative standard deviation of 2.8 %. Thus, the reconstruction is robust
with respect to experimental fluctuations and errors in the measurement procedure.

Having demonstrated clear indications that our tomographic procedure is capable of obtaining the phase
behaviour of the quantum field, we now turn to an investigation how our tomographic procedure can be
used to approach the thermalisation behaviour of the state.
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Figure 11.1: Tiken from Ref. [2]. a The left plot shows the experimentally obtained six-point correlation function
depending on three discretised spatial positions x3,x4,x5 measured in um. b The center plot gives the theoretical
prediction, based on the fitted cMPS relying on two- and four-point correlators. ¢ On the right, a diagram of the
experimental measurement uncertainties is shown (vertical bars) as well as the error in the reconstruction (surface plot)
defined as the deviation between the experiment and the tomographic prediction. We see that the cMPS produces the
six-point correlators with excellent accuracy.

11.3 INVESTIGATING THERMALISATION

As explained, the experiment begins by splitting a 1D condensate along the longitudinal axis, thus prepar-
ing an out of equilibrium state. The resulting condensates are left to evolve freely. As is demonstrated
by time of flight measurements, the phase correlations between the condensates equilibrate and can, in a
suitable sense, be captured with thermal ensembles for long times [35]. In this section, we evaluate our
tomographic results with this thermalisation behaviour in mind. For this, we performed the same proce-
dure of fitting two- and four-point phase correlation functions and using the resulting cMPS to predict
six-point correlators for different hold times, during which the condensates can evolve freely. For different
times of tygg = 3, 7, 23 ms, we find that our fit quality with a bond dimension D = 2 cMPS decreases sig-
nificantly with relative mean deviations of € = 3.2% ,10.7 % , 34.1 % (see also Fig. 11.2). It is not clear what
the origin of this decrease in fit quality is. It can, however, be connected to different aspects of quantum
many-body systems out of equilibrium. Previous investigations demonstrated that the experiment can be
well-captured within a framework of pure quantum states [35, 265], which allows to apply the ideas and
concepts presented in this thesis.

To begin with, as described in chapters 3 and 4, thermalisation behaviour of quantum many-body sys-
tems relies on entanglement entropies growing with time, which is necessary to make the pure state
compatible with locally looking like a strongly mixed thermal state. With the exception of Anderson
insulators, where entanglement entropies saturate quickly and many-body localised model, where entan-
glement entropies grow only logarithmically, generic interacting models are connected to a linear growth
of entanglement entropies [3, 26]. Such a larger entanglement is connected to a larger bond dimension nec-
essary for the cMPS fit, similar to the case of a discrete lattice system and MPS (see section 3.5.1). Therefore,
a growth of entanglement entropies over time, as expected from thermalisation behaviour, would be an
excellent explanation of our observation that the fit decreases with increasing time. This could potentially
be revealed by attempting fits with higher bond dimensions and showing that the state can be reproduced
more accurately. Unfortunately, the measurement data used here is not suited to attempt such fits [2].
Still, it seems a promising gateway towards quantifying entanglement in interacting quantum many-body
systems, especially as entanglement is notoriously hard to measure experimentally [189, 190].

Another possible reason for the observed decrease in fit quality is connected to Lieb-Robinson bounds
(see appendix B). As mentioned, the experiment takes place in a large harmonic trap, where only the
central region is observed. For short times, one knows that the effective light cone, as given by Lieb-
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Figure 11.2: Taken from Ref. [2]. Shown is the four-point phase correlator for a non-trivial cross section where three
positions are fixed. Plotted is the experimental data (blue dots) including measurement uncertainties (error bars) as
well as the tomographic reconstruction (black line). The plot is presented for different hold times of a tjgq = 3ms,
b tpolg = 7ms and ¢ tpoq = 23ms. As indicated by the relative mean deviation € for the full four-point correlators,
the fit quality decreases substantially with equilibration time, which is compatible with out intuition of a growing
entanglement entropy with time.

Robinson bounds, only couples the center to a small region around it. Such light-cone like behaviour has
also been confirmed experimentally for these platforms [34]. For longer times, however, the light-cone
widens and thus includes larger and larger areas of the trap. Thus the harmonic trap should become
more and more visible with hold time. Such behaviour can also be seen in the experimentally obtained
two-point correlators by observing how much they depend on the position at which they are evaluated
[2]. We find for the hold times tjoq = 3ms, 7ms, 23 ms deviations from translational invariance of 0.3 -
1072, 541072, 8.3- 1072, clearly indicating that for longer hold times, our assumption of translational
invariance is considerably less accurate. This is perfectly compatible with the intuition provided by Lieb-
Robinson bounds in a trapped model. We now summarise our partial reconstruction of a quantum field
in an experiment of ultra-cold atoms in a continuous optical trap.

11.4 SUMMARY: QUANTUM FIELD TOMOGRAPHY

To conclude, in this chapter, we investigated the read-out part of a dynamical quantum simulation. We
demonstrated that, in a continuous setup of ultra-cold interacting atoms, continuous matrix product states
can be used as an ansatz class for quantum field tomography. We provided the theoretical tools for this
task and applied them in a proof-of-principle application on a paradigmatic platform. By using the
reconstructed state as a predictive tool, we were further able to gain trust that the reconstructed state
indeed captures the experiment well.

Finally, by investigating the observed fit quality, we established connections between the out of equi-
librium evolution of the cloud of ultra-cold atoms with important mechanisms of quantum many-body
systems out of equilibrium. When pushed out of equilibrium by a transversal split, the system equilibrates
and in fact thermalises. Intuitively, such thermalisation behaviour should rely on an entanglement growth
that roughly saturates Lieb-Robinson bounds, which would fit well to our observation of a decrease of fit
quality in terms of a fixed bond dimension cMPS. Based on this, we provided an outlook how our tomo-
graphic procedure could be used as a probe to measure entanglement, which would provide substantial
insight into the out of equilibrium behaviour in analogue dynamical quantum simulators.
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In this thesis, we explored various aspects of interacting quantum many-body systems out of equilibrium.
Guided by a quantum information mindset, we were able to approach many long-standing problems on
the intersection between quantum mechanics, statistical physics and condensed matter theory. Based on
a current review with the involvement of the author of this thesis [3], we introduced and covered a large
variety of settings and intriguing questions. In this general framework, the specific results obtained in this
thesis were embedded. We will summarise them in the following and present open research questions in
the various areas.

We first investigated equilibration, where two complementary settings could be identified in which the
deviations from equilibrium can be mathematically bounded. Equilibration on average, capturing time
averaged distinguishability from static ensembles, applies to very general systems, but deriving realistic
equilibration time scales for interacting models seems difficult in this framework. For this task, it seems
crucial to identify physical properties, such as transport, that guarantee fast equilibration. After all, there
are indeed instances of systems that equilibrate extremely slowly, such as many-body localised models.
For understanding the role that concepts like transport play, the second equilibration setting, which is
given by free models, will surely prove useful. In the fully Gaussian setting, many processes can be
directly calculated. Moreover, as we were able to prove, the evolution of free Hamiltonians that allow for
transport will lead to states that are locally indistinguishable from Gaussian states and are thus captured
with remarkably few parameters [6]. As this result establishes a connection between transport and the
mathematics of equilibration, we hope that it will constitute an important stepping stone in the long-
standing task of obtaining realistic equilibration time scales.

From this we moved on and presented different approaches to characterise the equilibrated ensemble.
Here, conserved quantities played a crucial role. In case the only conserved quantity that needs to be
included in the description is the energy, one obtains a Gibbs state, meaning that the system thermalises.
In the realm of this thermalisation, it is clearly open what the precise mechanism for the emergence of the
Gibbs state is and to what extent it truly results from the eigenstate structure in form of the eigenstate
thermalisation hypothesis. For approaching this question, properly understanding the break-down of
thermalisation, for example in the context of localising interacting systems, seems to be a promising
approach.

In order to explore localisation, we carefully introduced the concept of single particle Anderson localisa-
tion. We looked at static and dynamical localisation of single electrons and connected it to the localisation
of eigenmodes in free models of non-interacting particles. We proceeded to use this eigenmode localisation
to derive many-body localisation properties, thus capturing localisation in a general language. Based on
this preparatory discussion, we investigated the influence of electronic interactions, resulting in many-body
localisation (MBL).

Following the various aspects of MBL currently considered in the literature, we gave an in-depth survey
of its different facets. Here, both spectral and dynamical readings played a crucial role. In order to
unify this picture and move in the direction of comprehensively defining many-body localisation, we
proceeded by establishing important links between those dynamic and static characterisations. Specifically,
we showed how the existence of a local constant of motion and a non-degenerate spectrum is sufficient
to prove that the system allows for information propagation [5]. That is, one can explicitly construct
local operators with a support that spreads without limits over time. Using this operator, one can then
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devise a protocol that allows two parties to send a classical bit over arbitrary distances. Conversely, our
second result showed that a full suppression of propagation on the low energy sector provably implies
exponentially clustering correlations for the corresponding eigenstates [4]. This can be seen as an extension
of the exponential clustering theorem in the context of localising systems. Using entanglement entropies,
our result can be used to show that, in 1D, an efficient tensor network representation for these states
can be constructed. While our efforts surely constitute important progress in comprehensively capturing
many-body localisation, so far this could not fully resolve the inchoate state of its characterisation. In
order to present a unifying definition, surely more such connections are needed and in particular their
relation to experimentally measurable quantities like that of particle transport will have to be established.

In the second part of this thesis, we moved to a more experimentally minded framework, in an effort to
cope with the fact that numerically simulating quantum systems out of equilibrium is exceedingly hard.
Here, quantum simulators took the center stage, which are experimental devices that allow to access phys-
ical questions that would be completely out of reach without them. We reviewed their general principle,
putting focus on a key candidate for such simulations, namely ultra-cold atoms in optical lattices. For this
platform, we reviewed the experimental implementation of the Bose-Hubbard model and presented differ-
ent available measurements that allow to extract the distribution of atoms and probe correlators between
them.

We demonstrated the capabilities of ultra-cold atoms in optical lattices by investigating the dynamical
signature of quantum phase transitions. Similar to our take on MBL, the crucial question here was how static
and dynamic properties are interrelated. In particular, we approached the question whether the universal
description in terms of power-laws can be used to describe the dynamical crossing of such a transition in
an experimentally realistic setting. As an introductory step, we first defined quantum phase transitions
and showed how their behaviour can be captured. We then turned towards their dynamical features. With
the Kibble-Zurek mechanism, we encountered a common description of the crossing of a quantum phase
transition.

Based on this introductory discussion of quantum phase transitions, we investigated their dynamics
with a platform of ultra-cold atoms in an optical lattice in an instance of a dynamical quantum simulation.
In the Bose-Hubbard model, the Mott-superfluid transition was dynamically crossed, thus conducting
the first experimental study in such a setting of the dynamics of an essentially homogeneous quantum
systems entering a critical phase [1]. In one dimension, we were able to certify the simulation with
various numerical tools, which also shows that the experiment, for the time scales investigated, indeed
reproduces the dynamical behaviour of a translationally invariant and practically infinite system. Relying
on the quantum simulator, also the 2D and 3D quantum phase transitions were probed, which are almost
inaccessible using state of the art numerical tools.

For the growth of the correlation length, which is a good indicator for the Mott-superfluid transition,
we experimentally observed power-law behaviour as expected from the dynamical universal description
in terms of the Kibble-Zurek mechanism, The precise power-law exponents, however, showed a complex
behaviour outside of the scope of any known theoretical description. This clearly shows that the connec-
tion between static and dynamic features of quantum phase transitions is by no means fully understood
and further efforts, most likely building on instances of quantum simulations, will be needed to compre-
hensively understand those interrelated features.

Quantum simulators certainly have great potential, but in their current implementations also severe
limitations. In the context of ultra-cold atoms, in particular, the final read-out of the results will have to
improve to exploit their full capabilities. We investigated this task for a continuous platform of ultra-cold
atoms, which is one of the hardest instances of the problem. In an effort to maximise the information
extracted from this quantum simulator, we provided tools to perform quantum field tomography, which
effectively reconstructs the experimental quantum field.
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Using continuous tensor network states, we were able to reconstruct the phase behaviour of an experi-
mental state in a continuous 1D setup [2]. By predicting higher-order correlation functions, we provided
good reason to trust the state reconstruction. By looking at its quality, we were further able to obtain
possible signatures of entanglement increase over time, thus connecting this study to the investigation of
equilibration and thermalisation in interacting models. We further gave an outlook how such tomography
procedures could be used as a means to measure entanglement of ultra-cold atoms, which would greatly
improve our current understanding of these systems as analogue quantum simulators. This would surely
make them even more powerful and we certainly expect that the open questions in equilibration, thermal-
isation, many-body localisation and the dynamics of quantum phase transitions will greatly benefit from
the application of quantum simulators in the near future.

Naturally, this thesis could only touch upon a small fraction of interesting out of equilibrium behaviour
of interacting quantum many-body systems. Most intriguing for future studies will surely be the investi-
gation of problems that lie at the intersection of the two main parts of this thesis. For example, a deeper
understanding of many-body localisation as a true quantum phase transition and its characterisation in
terms of critical exponents would certainly constitute a fruitful research direction. Further, it would be
interesting to see how this transition behaves dynamically and to what extent power-law scaling can be
employed to describe the crossing into a localised phase.

Moreover, bosons in random potentials provide an intriguing research area. Due to the unlimited num-
ber of particles allowed on local lattice sites, these systems seem ideal candidates to understand the precise
role of energy and temperature for the transport behaviour in localised systems and to accurately capture
mobility edges in MBL systems. Further, to achieve a clear picture of the similarities and differences of lo-
calised systems and spin or Bose glasses would surely be insightful. Here it seems likely that an in-depth
debate on the precise classification of transport behaviour in finite systems in the mindset of quantum
information theory would be highly useful. In this context, but even more generally, there surely is much
more to be learned from an in-depth exchange between condensed matter physics and quantum informa-
tion theory and we hope that this thesis will serve as an important stepping stone in these endeavours.
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MATRIX-PRODUCT STATES

In this appendix, we briefly review matrix-product states (MPS), which are efficient ways of describing
one-dimensional states, making use of the underlying local lattice structure [191, 272]. MPS are applied
very successfully to a wide range of fields, from numerical simulations of ground states [41] to the analytic
descriptions of quantum field theory [273]. There are several different ways to approach these states. We
find it most illustrative to think of an MPS as the result of a truncation procedure of the coefficient tensor
of a state. As before, let the state be expressed in terms of its coefficient tensor

dspir\

Wy=" > it i)

j1,dr=1

This tensor can now be approximated by performing singular value decompositions over spatial cuts (see
Fig. A.1). At each cut, one has the possibility to reduce the amount of information stored by truncating
the singular values. Usually, only D many of them are stored at any cut. The sum of the squares of the
discarded singular values gives a good measure for the quality of the approximation. In particular, if we
move, e.g., from left to right over the chain, the discarded weight is defined as

€D(|1b>) = Z Z sz,k ’
j

k>D

where s; 1. denotes the k-th singular values at a cut j. It is this discarded weight that captures how well the
state ) can be written as an MPS with bond dimension D and is directly related to the fidelity between
the two states [177]

[(WIMPSp)[ =2 T—ep () .

This in turn directly gives a bound on the 1-norm distance following [56]

T—[(WIMPSp)| < || Y| — IMPSpXMPSp| |1 < \/1 —[(WIMPSp)/?
= || b)Y —IMPSp)XMPSp| |1 < €.

Note that the above procedure of simply truncating singular values results in an MPS state that is not
normalised. Normalising the state, however only results in a larger fidelity [177].

As is clear from the above construction, any state can be written as an MPS, if one allows the bond
dimension to grow exponentially with the system size. One does, however, colloquially speak of a state
being an MPS, if it can be approximated up to a fixed 1-norm error by an MPS with a bond dimension that
grows only linearly with the system size. Interestingly, for such states, it usually turns out that a bond
dimension constant in the system size is sufficient, when one relaxes the error measure and only demands
that local observables are well approximated, meaning that only the local 1-norm difference measured by
|| - I|1,x for some region X is small [102].

As described above, the success in approximating a state with an MPS is determined by the distribution
of singular values over spatial cuts. If one cuts a spin chain into regions X and X€¢, the square of these
singular values are precisely the eigenvalues of the density matrix reduced to region X or equivalently X¢
[41]. The ways these values are distributed can be characterised by looking at the different Renyi entropies
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First step Cj1yeensin -_— — C —
transpose —
T T T |
Second step — C — VD = Vv u, —
Third step Vi seint — An
b |
Iteration gives Al — Ay — A3 — -+ — Ao —An — An

Figure A.1: We thank Marcel Goihl for providing this figure. The figure depicts the usual procedure to approximate a
general 1D state with an MPS. For this, the coefficient tensor is recast into a product of small matrices. In this figure,
the graphic notation from Ref. [274] is used, meaning that open lines are to be interpreted as indices of tensors. If they
are joined, it corresponds to the contraction of the corresponding indices. First, one reshapes the coefficient tensor
into a matrix using the local structure of the lattice. Then an SVD is performed and the corresponding singular values
are truncated down to the bond dimension D. It is in this neglecting of singular values that the approximation error
can be controlled. The singular weight is then multiplied to the right. Iteration of this procedure yields the MPS.

of the reduced density matrices [177]. If states are weakly entangled, the singular values have a narrow
distribution corresponding to small Renyi entropies and the state can be well captured in terms of an
MPS, whereas strongly entangled states have a broad distribution in singular values and require a large
bond dimension. Thus, an area-law for a Renyi entropy with 0 < « < 1 of a family of states depending
on the system size is sufficient to guarantee that the states can be locally approximated by an MPS with
a bond-dimension independent of the system size L [177, 275]. Interestingly the von-Neumann entropy
itself is not sufficient to provide an error estimate, as the distribution of singular values can be fine-tuned
to achieve an arbitrarily large error, even if the state obeys an area-law for the von-Neumann entropy [275].

In higher dimensions, analogues of MPS can be constructed, for example using so-called projected
entangled pair states [272]. They are numerically very useful [191, 276] and were used to classify quantum
phases [277, 278]. It is, however, not known whether the ground states of gapped local Hamiltonians can
be efficiently approximated by a tensor network state in dimensions higher than one. Part of the problem
is that it is unknown whether these ground states obey an area law for the Renyi entropies. Interestingly,
it was recently pointed out that even the presence of such an area law would not necessarily imply an
efficient tensor network description and that large classes of states can be constructed that violate this
intuition [103].

One of the most important applications of the tensor network descriptions presented above is that they
are the basis for highly efficient numerical descriptions of quantum states [41, 279]. In contrast to exact
diagonalisation tools [255], which are typically limited to 10-20 sites, large systems of sometimes more
than hundred sites can be considered. Especially when states are expected to have a small amount of
entanglement, for example in the search of ground states of gapped local models, this makes them an
indispensable tool [41, 280].



LIEB-ROBINSON BOUNDS

In this appendix, we give a detailed overview of Lieb-Robinson bounds. The basic principle is to connect
the locality of the Hamiltonian with the dynamical evolution of operators in the Heisenberg picture [66,
93, 110, 112]. We provide various formulations of these bounds, present an intuitive outline of the proof
and sketch generalisations as well as zero-velocity versions thereof.

We begin by stating several different formulations of such Lieb-Robinson bounds. For this, we consider
families of systems with varying size, for example by considering translationally invariant Hamiltonians.
The Lieb-Robinson bounds are then required to hold with constants independent of this system size. For
the concrete statements, let By (t) be a local operator supported on Y that is time-evolved in the Heisenberg
picture and Y the enlarged sets of its support Y, as usual. Further, let Ax be a general operator on X,
where, as always throughout this thesis, the operators considered are normalised in operator norm. With
this, Lieb-Robinson bounds take the following form.

Lieb-Robinson bounds - Different formulations

Definition 17. (Lieb-Robinson bounds) Let C,v,u > 0 be constants independent of the system size.
A Hamiltonian is said to satisfy Lieb-Robinson bounds if one of the following bounds holds.

Excitation formulation:
By (1), e*9AX]|| < Cmin{|X], [¥[}min(1, g) e~ *{d(AXBVI=VE
Commutator formulation:
By (1), Ax]]| < Cmin{|X], [V}~ #(EAXBYI=V
Reduction formulation:
By (t) =Ty, (By (£)]] < CI¥]e 1),
Truncated Hamiltonian formulation:
By (t) — e'tHiByeitHI| < Cly|er(VY)

with T the reduction map introduced in chapter 3.2 and H' the truncated Hamiltonian including all
Hamiltonian terms fully supported on Yy, which is the set including Y and all sites within distance 1 of
it.

All these bounds share the important feature that time and space are connected linearly with a constant
v that is therefore called the Lieb-Robinson velocity. This gives rise to an effective space-time cone, in an
analogous way as the speed of light. Outside of this cone, there is an exponential suppression in the
distance. Interestingly, this exponential decay is connected to the underlying lattice structure and sending
the lattice spacing to zero gives an exact light cone [113].
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It is important to note that all these formulations have physical intuition connected to them. The most
restricted is the excitation formulation, which can be seen as a statement about signalling between two
regions X,Y where a unitary excites the system in X and the effect is measured in Y (see section 3.5.3).
The second is a variant thereof, where the restriction of unitarity is dropped. The reduction formulation
again is a statement about signalling, but now from the whole complement Y{ to a small region Y. The
truncated Hamiltonian variant, finally, is the strongest form and implies that information cannot even be
transmitted when the Hamiltonian can locally be changed. This discussion immediately establishes some
connections between these different bounds. Interestingly, when suitably increasing the corresponding
constants, all of these bounds become equivalent.

Lemma 4. (Connecting Lieb-Robinson bounds) On a finite-dimensional cubic lattice, the different formulations
of Lieb-Robinson bounds are all essentially equivalent, in the sense that the can be derived from each other when
allowing for slight changes in the corresponding constants.

The proof of this statement is contained in Refs. [4, 65, 94]. The main appeal of Lieb-Robinson bounds
stems from the fact that they can be derived for spin systems from the locality of the Hamiltonian alone.
For this, we decompose our Hamiltonians according to the support of the local terms H = } , hz, as
described in chapter 3.2, which gives the following statement.

Theorem 15 (Lieb-Robinson bounds from locality). On a cubic lattice of spins, let H = ), hz be a Hamiltonian
that is exponentially decaying, in the sense that

3C, 1 ¢ |hz|| < Cle W dam(Z) vz oA,

then it fulfils all formulations of Lieb-Robinson bounds for some constants C,v, u independent of the system size.
The decay constant w can be chosen arbitrarily close to ', but has to differ by epsilon p’ = p+¢€, € >0.

This statement for exponentially decaying Hamiltonians naturally includes the case of finite range Hamil-
tonians. For the simplest case of nearest neighbour interactions on a d;-dimensional cubic lattice, the
constants in the commutator formulation are given by [111]

1By (t), Ax]|| < Cmin{|X], Y[} e~ H(d(AxBy)=vt)

c=2,
1
HZEI
v=4d;e sup |[hz|,

ZCA

where hz are the local nearest neighbour terms, e denotes the euler number and d is the lattice dimen-
sion. We now turn to the general proof of such bounds in local models and present a high-level argument
of the necessary steps.

THREE STEPS OF THE PROOF

Naturally, there are plenty of articles that provide a proof of Lieb-Robinson bounds in different formula-
tions [66, 93, 110, 111] and we have no intention of repeating the argument in all detail. That being said,
these proofs are often technical and we think that it might prove useful for some readers to present the
argument in an abstract and intuitive form based on Ref. [94]. For this, we pick the commutator formu-
lation, which is the usual basis for the proof. We separate the argument in three main steps. First, the
commutator is rewritten in terms of a differential equation, which in turn gives rise to an integral inequal-
ity. For this integral, a Picard iteration is performed. This Picard iteration is then the basis for a careful
counting argument over all possibles paths connecting the two regions involved in the commutator.
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Differential equation

We focus on deriving the commutator formulation. The goal is thus to bound
[AX/ BY (t)] ’

for some normalised operators Ax, By supported on local and disjoint regions X and Y respectively. In
order to stick to the simplest possible setting, we restrict the proof to a nearest neighbour Hamiltonian. In
order to obtain the desired bound, we look at the related quantity

Cpy(X,t) = sup [[Ax,By(t)].
AxEAx

In order to exploit the locality, we divide the Hamiltonian in two parts
H = Hx + Hrest ,

where Hx contains all terms fully supported on X and the other contains the remaining terms. To simplify
notation, we introduce the following time evolution operators

Tt(AX) — eitHAxe—itH ,

X (Ax) = ettHx Ay ithx
We now introduce a function interpolating between these two evolutions

f(Ax, By, 1) = 7 (PX4(AX) By | ,

Cey(X,t) = sup [f(Ax, By, t)l|,
AxEAX

where we used that ™%, (Ax) € Ax. Differentiating the function f and using the decomposition of the
Hamiltonian, we obtain

—0if(Ax By, = Y [[rmz) T (PiAx)] By -
Z,ZNX#£0,Z¢ X
Now, this quantity is reordered using the Jacobi identity to recover the original term
“d® = Y ([ [re (PaA) By ]| = [r (PeAx) e (hz), By )
Z,Z0X#£0,Zg X

= Y (ot = [r (AN rhz), By]])

Z,ZNX#D, Z¢ X

The first part of the differential equation corresponds to a unitary evolution and does thus not alter the
norm of f(t) [281, 282]. In the other term, one can get rid of the outer commutator by using linearity of the
norm and the fact that ||Ax|| = 1. With this, also the second term can be related to a single commutator of
the type we had at the beginning

[ (P*4(A)  ruhz), By | < 201 Fre(hz), Byl | < 2fwi(hz)] Coy (Z,1).

Thus, integrating the above differential inequality yields a bound for the Lieb-Robinson commutator

Cp,(X,t) < Cy(X,00+2 >  |e(hz)ll |dsCp,(Z5).

Z:ZNX#£D, Zg X

o=
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It is worth pointing out that in the sum over Hamiltonian terms, only those are included that connect
the region X with its complement. This is a result of introducing the inverse time evolution of Hx at the
beginning of the proof; a clever trick that substantially sharpens the resulting Lieb-Robinson bounds at
the end [94]. For example, it is immediately clear at this point that Hamiltonian terms that only occupy a
single site, such as magnetic field type terms, do not enter the Lieb-Robinson bounds [282].

In the following, we use the above integral inequality as the starting point for a Piccard iteration. This al-
lows us to map the derivation of Lieb-Robinson bounds to a combinatorial problem of connecting different
regions with nearest neighbour connections.

Picard Iteration

The Piccard iteration works by reinserting the bound in itself. The first step takes the following form

Cp,(X,t) <Cp,(X,00+2 Y  [Ite(hz)]Csy(Z0)
Z:ZNX#0,Zg X
[t] s

4y > Imta)linig| [ds [as’ a2

Z:ZNXA0,Z¢X Z:Z'NZ#A0,Z'¢ Z 0 0

Iterating this, a large sum appears, where each summand corresponds to a certain way of moving through
the lattice [111]. These summands can be constructed as follows. In each step, one picks a Hamiltonian
term with the restriction that it has to overlap with the term chosen in the step before. As mentioned
earlier, on-site Hamiltonian terms can be discarded in this procedure. In order for such a path to have a
non-zero contribution to the Lieb-Robinson commutator, the path has to connect the local support regions
of the observables Ax and By. Each path is weighted by the norm of all Hamiltonian terms along its
way [111], as well by a % term, where 1 is the length of the path. The latter term is simply the result of
the iterative integration of a constant term. To conclude the argument, we need to count the number of
relevant paths or at least provide a reasonable upper bound.

Path counting & Poissonian tails

At this point, we need to count all paths that connect the regions Ax and By and add them with their
corresponding weight. To derive Lieb-Robinson bounds, we assume that there is a uniform upper bound
on the norm of all local Hamiltonian terms

sup [hz < .,
Z

where hz are the uniquely defined Hamiltonian terms in the local decomposition as used before. In
order to get a handle on the number of relevant paths, we use the following simplification. Rather than
only counting all paths connecting the relevant regions, we simply count all possible paths of a certain
length. In our case of nearest neighbour interactions on a cubic lattice, any Hamiltonian term therefore
only connects to few other Hamiltonian terms, the number of which we denote by A. The starting point
for the paths is the support region X of the observable Ax. Since the first step already has to leave the
region, they have to involve the boundary 90X, meaning that there are at most |[0X|A many starting points.
In total, there are only [0X|A™ many relevant paths of length n. Assuming initially disjoint observables
[Ax, By (0)] =0, we have the following bound [111]

(2Aa)™

Cey (X, 1) <IOX| 3 ==
—
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This dependence on the boundary 09X is special to the case of nearest neighbour interactions. For the
general case of exponentially decaying Hamiltonians, it has to be replaced by |X| > [9X| [94]. With this, we
have almost concluded the proof. The last step is based on the insight that to connect two disjoint regions
X and Y that are separated by a certain distance d(X,Y), there is a minimum number of Hamiltonian terms
that have to be used. Thus, the sum in the above bound does not start at n = 0. In the setting of nearest
neighbour Hamiltonians, the number of needed terms is precisely given by the distance, which gives

(2Ak)™
Cey(X ) <X 3 =——.
n>d(AxBy)

This term is now the tail of a Poissonian distribution. Thus, the proof can be concluded by using a
Poissonian tail bound. An important bound here is given by [111]

n
3 X < exe—d(Ax,By)

' ~ 7
n>d(Ax,By)

which gives an exponential suppression in the distance d(Ax,By) and concludes the proof of Lieb-
Robinson bounds. As recently pointed out, this Poissonian tail bond can be tightened in the case of
nearest neighbour terms [282]. This concludes our outline of the proof. We now turn to generalisation of
Lieb-Robinson bounds.

GENERALISATIONS

The above proof, despite being presented for nearest neighbour interacting spin-systems on a cubic lattice,
can be generalised considerably. In particular, very general lattices are possible, as long as they have a
fixed number of nearest neighbours [94, 112]. Moreover, as already mentioned above, it is not necessary
that the Hamiltonian has a nearest neighbour interaction structure, but in fact it is sufficient that it is local,
in the sense of exponentially decaying interactions.

An interesting debate that considerably gained momentum recently, is to what extent locality of the
Hamiltonian is truly needed. In particular, many works started to investigate the dynamical behaviour
of models that have interactions decaying according to a power-law [36, 66, 67]. Interestingly, there is a
sharp cross-over. For a decay that is stronger than the lattice dimension d, again an effective light cone
emerges. The only difference is that outside of the cone, one no longer finds an exponential decrease, but
rather the suppression given by the power-law decay of the Hamiltonian interactions [66, 94]. When the
interactions decay even weaker, meaning with a power-law exponent that is equal to the lattice dimension
or smaller, the causal structure completely disappears [67].

Given the recent advances in the high-precision control over quantum many-body systems in experi-
ments, it became possible to test Lieb-Robinson bounds also experimentally [31, 34, 36]. Here ion chains,
based on charged particles in an electromagnetic trap, due to their long-range Coulomb interactions, even
allow to tune the Hamiltonian to achieve a power-law [36]. Complementary, optical lattices based on
neutral particles allow for the implementation of nearest neighbour interactions [62]. Interestingly, this
allows to test Lieb-Robinson bounds for bosonic particles [31], where the proof presented above breaks
down since the creation and annihilation operators are no longer bounded in operator norm.

The search for some form of rigorous Lieb-Robinson bounds in bosonic models is still ongoing. In
some experimental settings, the bosonic systems can effectively be described in terms of fermions, such
that Lieb-Robinson bounds immediately can be applied [120]. Fully harmonic systems provide another
instance of bosonic systems fulfilling a Lieb-Robinson bound [113]. On an intuitive level, for the case of a
finite number of particles on each site, it is usually expected that a light-cone like behaviour should hold;
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an intuition that was confirmed experimentally [31, 283] and analytically proven for the propagation of a
region of bosons on top of an otherwise empty lattice [284]. If, however, the local particle number is not
restricted, then supersonic communication is provably possible [118], which clearly shows that generally
the light cone like behaviour can be violated for interacting bosons. Thus, it remains open to find natural
restrictions on such bosonic systems and see what precise conditions are needed to guarantee the existence
of an effective speed of light.

This concludes our discussion of more general versions of Lieb-Robinson bounds. In the following,
we turn to localising systems. There, at least in the case of Anderson localisation (chapter 5), tightened
versions of Lieb-Robinson bounds are expected to hold, which will be presented in the next section.

ZERO-VELOCITY BOUNDS

In the case of free systems, random onsite potentials can lead to a complete localisation of all eigenmodes
of the model. While the mathematical derivation of the systems size scaling is still outstanding, it is
expected that this even holds for finite systems with large probability (see chapter 5). In this case, the
following zero-velocity Lieb-Robinson can be derived.

Zero velocity Lieb-Robinson bounds

Zero-velocity Lieb-Robinson bounds correspond to the normal ones by setting v = 0.

Excitation formulation:
By (t), €'9”X]|| < Cmin{|X], [Y]} min(1, g) e HA(AXBY),
Commutator formulation:
By (1), Ax]| < Cmin{jX|, [Y]} e Hd(AxBY),
Reduction formulation:
By (t) — Tye (By (t))]] < ClYle ™!,
Truncated Hamiltonian formulation:

By (t) —e"™MBye "t < Cly|e .

While for the v # 0 case, the bounds are all essentially equivalent, this no longer holds true in the
zero-velocity case. Rather they are strictly ordered, meaning that the truncated Hamiltonian formulation
is stronger than the reduction formulation, which in turn is stronger than the commutator formulation.
Only the excitation and commutator formulation are again essentially equivalent [4].

This concludes our discussion of Lieb-Robinson bounds. We presented different version of them and
explained their physical meaning. We proceeded by presenting an abstract outline of the general proof
strategy, which gave an intuitive overview of the necessary steps and explained in which way locality of
the Hamiltonian is exploited. Finally, we discussed generalisation of such bounds and their sharpened
version in the case of Anderson localisation.
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The following appendix is based on Ref. [6]. We sincerely thank Marek Gluza, Christian Krumno, Christian Gogolin
and Jens Eisert for collaborating on this successful project.

In this appendix, we provide the details for the proof of theorem 2. For convenience, we repeat the
statement.

Theorem (Gaussification). Let H be a free fermionic Hamiltonian that has transport and admits Lieb-Robinson
bounds. Further, let p be an initial state with exponential clustering and fixed particle parity and S be some finite
region of consecutive sites. Then for any € > 0, there exists a time interval [tielax, trecl, such that

HTrSC (p(t) - pG(t)) H] < (2|S|)(4+4dﬁ)|s‘+] e Vte [trelax; trec] ’

where pg is the Gaussian state fixed by the correlation matrix of p and tyelax 1S constant in the system size.

Proof. In the following, we provide the proof of the above theorem. We begin by reformulating 1-norm
closeness in terms of expectation values of operators

[Trse (p(t) —pg(t)) |1 = sup [Tr(Ap(t) —Apg(t)) .
AT

In the next step, we expand the operator in a fermionic operator basis for the subsystem S

A= Z Amy,-e myg) (T1 (t))m] e (T2|S| (t)>m2\5| ,

my,,Mys)

where 17 to ;5| are the fermionic operators on the subsystem. For convenience, we will introduce S=2S|.
Normalisation of an operator ||A| = 1 implies that all of the 2° possible coefficients satisfy |a;, .. <1

Thus, the proof of the theorem can be reduced to showing that

sl

|Tr (vs, (1) -+ 75, (1) (p—pg)) | < €,

for some collection of q < S operators labelled with the indices s; to sp. For this, we expand the time
evolution of the fermionic word

Z Ve ji (8) - Vi (O Tr (5, - 75, (P —pG)) |
j1/"'/jq

which will be analysed and restricted to the Lieb-Robinson cone in the next step.

Causal cone Based on Lieb-Robinson bounds introduced above, we will separate the lattice £ in two sets:
An effective light-cone € ={i € £|3j € S: d(i,j) < (v+ 2ve)[t]} and its complement £L\C, where v will
be picked such that the final bound is optimal. In the next step, we will use the bounds to restrict the
full dynamics of all fermionic operators to the inside of the effective light cone. As a preparatory step, we
need the following basic lemma for dealing with a partial fermionic sum.
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Lemma 5 (Partial fermionic unitary). Let I be some subset of the 2|L| fermionic lattice indices, labelling creation
and annihilation operators and V(t) be some unitary rotation on them. Then

Z vk,j (t)T]' <1 Vk,
jel

where v; denotes the usual collection of creation or annihilation operators.

Proof. The proof can be carried out with straightforward norm estimates and using the normalisation of
the two-point correlator y. We begin with

> Vil = sup (WY Viemth > Vigmihb) = > Y VigjVigm sup  (blrhri )
jel |||1l|)ﬂ))||>—1 mel jel meljel ||\1l|)ﬂ))||>—1

We now rewrite this as a matrix multiplication on the index space

ZVk,jTj < sup (k| VPryP1V[k) ,
jel Y

where [k) is a vector on the index space, P; denotes the projector onto the interval I and y denotes
fermionic correlation matrices. Now doing a straightforward norm estimate and using ||y|| < 1, as every
fermionic mode cannot support more than one particle, gives

2 Viegni|| < IVIIP LIV IPHIVE < T,
jel
which concludes the proof. O

With this, we can approach the suppression outside of the Lieb-Robinson cone.

Lemma 6 (Lieb-Robinson cone). Let "{j} out LR” denote the constraint that not all indices are contained inside
the Lieb-Robinson cone. We then have

I
L. s T T —pvelt]
Z VS]fh Vsmr]mrﬂ Tjm <mCLR(dL)e <y
{j} out LR

where C/LR is a constant connected to summing the exponential tails of the Lieb-Robinson estimate.

Proof. We begin by splitting the sum according to whether the first index is inside the cone or not

D Ve VeminTin  Tim (C.o.1)
{j} out LR
= Z Vs1,j1rj1 Z VSz,jz"'Vsm,jmsz"'ij
j1¢€C {2, dLeL
+1 2 Ve > Vsriz VsmimTi2 = Tim|| -
jrec {2, i1} out LR
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where the other indices are free if j; is outside the cone, while at least one other index is outside the cone
if j1 lies in it. We will deal with those two contributions separately. For the first term, where j; lies outside
of the light cone, we can estimate the second half by one due to normalisation of c;(t) and for the first
half obtain

Y Vet < ) Veil<C ) > e R(1=VIt])

j1¢€C j1¢¢ 1>(v+2ve)lt]  mel
d(m,51 ):1
L
SCir Y 2dg (L+ (v v de ™ emnlbi2velth
1=0

where we used that the number of points on a cubic lattice with a fixed distance 1 to a certain point in our
semi-metric is given by 2d; 19471, We now use the following estimate

L
Cir ) 2dg (L+ (v+2ve)t) 4 Temlewveltl < ¢ p(de),
1=0

where C ;_R (d;) is a bounded constant independent of L and t due to the exponential suppression in space
and time. This yields

Z Vs Ty || < CILR(dL) e Hveltl (C.0.2)
j1¢C

With this, we estimated the first term in Eq. (C.o.1). For the second, we notice that the first sum can be
bounded by one due to lemma 5. The second term gives the same term as we originally had, but with the
order of the fermionic word reduced by one. Thus an iteration gives exactly m error terms of the form in
Egq. (C.0.2), which concludes the proof. O

Using the above lemma, we thus can reduce all indices to the inner part of the Lieb-Robinson cone, up
to an error

e += §C,LR(dL) e Mveltl

Inside this cone, we now introduce a way to keep track of the different index configurations.
Tracking index positions: We proceed by introducing a notion of partitions, which groups the indices ji

and makes them tractable.

Definition 18 (A-partitions). Let iy,...,in € L. The A-partition p associated to these indices is the unique
partition Cy,...,Cy of the subindices 1, ...,n with the following properties:

i) Each patch C; is path connected: Va,b € C; there exists a chain s1,...,8q € Cy with s; = a,sq = b and
d(erIjST+]) g A VT

ii) All patches are separated by more than A:
i#j,a€Ci,beCj = dljajp) > A

We will use pa({jx}) = p to denote that the indices are distributed according to the A-partition p and
Ip| to denote the number of sets in the partition. For concreteness, let us look at a setting of four indices.
Here a possible partition could be

{Cy,Co, C3} ={{1,31,{2}, {4},
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which would tell us that lattice positions j; and j3 are within distance A, while everything else is separated
by a distance more than that. We will call a partition even, if it contains only sets with an even number
of indices. In general, the sets contained in a partition will be called patches and a patch with |C;| = 2 is
referred to as a pair and |Ci| > 2 as a cluster. As there are at most S fermionic operators in the fermionic
word, the total number of partitions is given by the Bell number Bg, which can be bounded as Bg < (S)S
[24]. For each patch of the partition, we will define a corresponding operator given as

Cr = CT‘ (p, i t) = H Vs,is (t)Tjs .
seCy
In the following, we will group the fermionic operators into the patches given by partitions p
Tr (e, (1) 1o, (D(p—pg)) = > _sign(p) Y (Cr-Cuyp,
P PA(]1//)m):P
where sign(p) results from a reordering of the fermionic operators into the partitions. The expectation

value of these operators can now be decoupled using the exponentially clustering correlations in the
initial state.

Decoupling clusters: We proceed by using the fact that the partitions are separated by a length scale A.
Together with the exponential clustering of the state, we can show that the expectation value can thus be
decoupled into a product of expectation values for the individual patches

Y osignlp) Y (Ci)pr (C)p-
P pA(j1/""/jm):p

For this, we rely on the following lemma.
Lemma 7 (Decoupled patches). Given a A-partition into [p| many patches, we have the following bound

2

j]r--:/jnee
pPal{ial)=p

(1o Chppo—(Cadp - (Crppo| < SICIP Caust e /%,

where (A), = Tr(Ap) denotes the expectation value with respect to p.

Proof. The decoupling of the clusters works iteratively. We will begin with decoupling the last one

>

)'1,....,]',16@
pal{iat)=pP

<Cl ---Clp\>p - <Cl ---Clp\—1>p<élp\>p

If we expand the clusters back into the original fermionic words, we obtain an involved expression in
terms of the evolution matrices V and the fermionic operators c. For simplicity, we will use the trivial
bounds |Vj x| < T and ||c|| < 1. For each individual fermionic word, we can use the exponential clustering
of the initial state, which gives

Z <C1 "'Clp\>p - <é1 '--Clp\—1>p<é|p\>p < Z Celust e A8 < ‘G‘Scclust e A/E ’
j1,.-in€C j1,-ein€C

Pal{iat)=p Pal{ia)=p

where we overcounted the contribution of a fixed partition by allowing all indices to freely move over the
effective light cone €. This argument can now be iterated for the different patches, yielding

>

j],..:,jnee
pPal{iat)=pP

(€1 Crppe— (Ci)o - (G| < SIEP Causte™2/%,

as there are at most S many patches. This concludes the proof. O



FERMIONIC GAUSSIFICATION 147

Thus, in this step, we accumulated an approximation error
e/ +=S55T1eP Cyusr e 2%,

where we bounded the number of partitions by §5. For the Gaussian state, we do not immediately know
that it also shows clustering of correlations. Yet, using Wick’s theorem, a similar procedure can be carried
out, resulting in the following lemma.

Lemma 8 (Decoupling Gaussian patches). Given a A-partition into |p| many patches, we have the following
bound

Z <C1>pc .. <C|p\>PG} - <C1>pG v <c\p|>pe < gS|G|Scclu5t e*A/& ’
j1,...,jne€
Pal{ia)=p

where (A)p = Tr(Apg) denotes the expectation value with respect to the Gaussian state pg.

Proof. Here we will show that expectation values of the Gaussian state can be broken down into individual
expectation values for the different clusters. For this, we will use that, while we, a priori, do not have
exponential clustering for arbitrary operators, the two-point correlation functions have to be equal to
those of p, by definition of the Gaussian state and thus decay exponentially. Thus, we can use Wick’s
theorem to break down the correlators into second moments and use exponential clustering on that level.
We begin by using the trivial bound [Vj x| < 1 on the evolution matrix, which gives

j1,---Jn€C

pal{iad)=p

< Z <a(0¢1) a(‘Xn)> _<H a((xi]> <H a(‘Xi)>

S i1 % Jes ji PG i e
J1,--Jn€C i€p i€pq
pal{ial)=p

where the triangle inequality was used and any configuration of indices will be bounded individually.
Using Wick’s theorem we can rewrite the expectation values in both terms as a function of second mo-
ments. Here all possible combinations of second moments will appear, which are at most S! < 3s many.
Naturally, the first term will contain more such two-point contributions than the second one. The crucial
thing to note is that if such a term appears, which is contained in the first, but not in the second term, then
this implies that it contains at least one pair of indices with a distance larger than A. Using exponential
clustering of the two-point correlators, this gives a suppression of Cyse ™2/ %. In total, we thus obtain

> (€1 Cadpe — (C1)pg - (Cqdog| < SSIEIS Causte™2/F,
jl/~--rjn€e
pPal{ia})=p

where [€[3 captures the different index configurations and §5 all terms appearing in Wick’s theorem. [

Thus, decoupling the expectation values of the Gaussian terms yield an approximation error
e += gs|G|5Cc1u5t e E.

Having decoupled the patches, we now separate the terms according to their partition as follows.
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A) All even partitions, which have at least one cluster with at least four fermionic operators
B) Only pairs
C) All other partitions, which therefore have a cluster with an odd number of fermionic operators

The terms containing odd partitions immediately have to vanish, as the state has an even particle parity.
The quadratic terms in turn are identical for the actual state p and its Gaussian counterpart pg, which is
fixed by demanding that is has the same second moments. Thus, contributions B) and C) are bounded with
the above error terms, which are exponentially suppressed in A, which will be picked later to optimise
the bound. The full non-Gaussianity of the initial state is thus contained in contribution A), which will be
bounded in the following.

Using transport: We now use the transport property of the Hamiltonian (see Def. 5) to show that this
non-Gaussian term is dynamically suppressed. This is expressed in the following lemma.

Lemma 9 (Larger clusters). Let us look at the following sum of A-partition of n < S numbers with only even
contributions that contains at least one cluster of size at least four. Then for suitably large t, we have

> > [(Ca)p -+ (Cu)pl

P even K1, kn€C
with cluster p A ({kq,- kn})=p

- & 4d
s;s@+2dﬁﬁ+‘26&ms(A4dﬁets‘) (1+ 1€ Caust e2/5) .

Proof. We begin by ordering the partitions according to the number of pairs they contain. As the partition
contains at least one cluster with at least four indices, we know that there can be at most (n —4)/2 pairs
in the expansion. We thus have to bound

A

R(t) := Z Z [<C1>p---<é\p|>p_<c1>PG"'<C\P|>PG}

m=0 _peven |kg,...kn€C

with m pairs pal{ka=p
In order not to overburden the notation, many dependences are suppressed here, as before. In particular,
the precise set of indices s, where the time-evolving fermionic operators are originally supported, is
omitted. This should not cause confusion, as all following arguments will be independent of that initial
configuration. For the purpose of this proof, the ks can therefore truly be thought of as free indices, which
will be relabeled when needed. In the next step, we order the partitions and move all clusters to the left
and all pairs to the right and use that the pairs look identical for the states p and its Gaussian counterpart

PG

A

R(t) = > > [ {Cipimdo = (C€)ng - (Crp-mdoc | (Clpt-ms o (Cipi)e
m=0 _Ppeven |ki,..kne@
with m pairs |\ ({ko})=p

Next, we want to decouple the sum of the indices for the cluster and the sum of the indices for the pairs.
First, we define p. as the cluster part of the partition and p, as the pair part. For concreteness, consider
the following example

p=1{{1,2,57),(3,6,48),
pe ={{1,2,5,71},
pp = ((3,6),14,8)).
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A

cluster pair pair

0990990999099 090920090900920200020020900000000002000203000000
ki ks k2 ks ks ke k4 ks

—— exclusion region | ——

Figure C.1: Example of a partition on the lattice. The indices k1, k3, k5, k7 form a cluster, while the others form two
pairs. The pairs must not be closer than a length A = 3 to the cluster, leading to an exclusion region I for the pairs.

Here the partition p implies that indices k1,k2, ks, k7 are within distance A of each other and form a
cluster. Correspondingly k3, ke and k4, kg respectively form a pair and all three patches are separated
from each other with a distance larger than A (see Fig. C.1). As a summation scheme, we first choose the
indices of the cluster contributions. The pairs are then still free to be distributed over the lattice except that
they have to have a distance larger than A to the cluster indices. Thus the cluster indices can be thought
of as creating an exclusion region I for the pair indices. Taking the maximum over such exclusion regions,
using an operator norm estimate for the cluster contribution and relabelling indices appropriately gives
the following bound

[7—2]
RE= > ) > 201G 1 i max > (Cipemat)o--Crpo
m=0 peven | k.. kp n€C 3100 jmECNT
with m pairs palkal)=pe Pal{ic)=pp

(C.0.3)

The cluster terms can be bounded by using the trivial operator norm estimate ||r5|| < T and the homoge-
neous suppression of the evolution matrix V. A counting of the possible index configurations gives for
each cluster |C| many positions. Around those positions, the indices can vary on a region that is maximally
(25A)4< large. Each contribution is homogeneously suppressed with Ciranst™94/3. This gives

n—2m

A N n—2m - n—2m _
Z 2 ”C] ” ce ”Clp\fm” <20e ((ZSA) dL) (Ctranst dg /3>
k1,...,k‘p|,m€(~3
pal{ka})=pc

s -2
< 2(28)%%5 (A% Cipanet~%e/21ef/4) "

< Z(Zg) deS gtrans(t) ’

where we defined the following function

Nl

[3-2]
Gtrans(t) := (Ad’C Ctranst_dﬁ/3|e|] /4

m=0

) n—2m
In the relevant regime where the cluster contributions are suppressed, the term in the bracket needs to be
smaller than one. This allows to estimate
s (Ad —dg/3)1/4)"
gtrans(t) <SS (A £ Ciranst™ 7% |e| > .

To complete the argument, we still need a bound for the second part of the sum in Eq. (C.0.3). For this,
we note that rather than looking at the pairs of the partition p, we can also take a maximum over all
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possible partition of the corresponding indices into m pairs, which we denote by o,. Thus, we define the
following function

fm)=max| 3 (Ci)p (Cm)p
om |j1,---dm€EC\I

Palfial)=0om

We thus obtain the bound for the contribution of the clusters in Eq. (C.0.3)

) 13-2]
R(t) < 552(25)%° guans(t) Y f(m)
m=0
13 -2]
—Bslt) Y f(m),
m=0

where 3 the sum over the partitions. So what is left to do is to bound the function f. Naturally, if there
are no pairs left, the function is trivially one. A single pair corresponding to f(1) can be bounded by
relaxing the constraint that the indices form a pair and let them roam free on the full region €\ 1. The
unconstrained problem can be bounded using lemma 5, while exponential clustering can be used to bound
the difference of constrained and unconstrained problem, consisting of contributions of terms separated
by a distance larger than A

> (C)p > (G > (Cu)p

j21-1J21€C\I j21-1,321€C\I j21-1J21€C\I
d(21-1,i21)<A d(2i-1j21)>4A

<T+ |e‘zcclusteiA/a .

< +

The main obstacle for bounding the function f for m > 1 is that the partition o, ensures that all indices are
pairs, which results in a complicated constraint that prohibits that indices occupy closeby lattice regions.
To bound the function, we will drop this constraint and show that the difference between the constrained
and unconstrained problem can be bounded. This will rely on an recursive argument that eventually
recovers the original function f(m), but with a number of pairs m that is reduced by at least two. If
we drop the constraint that the pairs must not overlap, the only constraint remaining is that consecutive
indices form pairs, meaning that d(j>1—1,j21) < A. For the product of all unconstrained pairs, this directly
gives

m
Z (C1)p--(Cm)p| = H Z (Cop| < 1+ Ccluste_A/E\(ﬂz}m-
j1,+ed2mEC\I =11 j1—1,j21€C\I
d(2i-1j21)<A d(21-1,21)<A

This leaves us with controlling the difference between the constrained and unconstrained pairs

e(Gm/ I) =

j1see2m€CNI j1,---d2m€CNI
Palial)=0om d(j21-1,20)<A

In order to get this under control, we will introduce the notion of a refinement of a partition [24]. This
gives a partial ordering of partitions where p > o precisely if p can be created by joining sets contained in
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0. The key insight here is that the above difference between constrained and unconstrained pairs precisely
amounts to all possible coarsening of the partition o,

elom, =] > Y (G (Gl -

O even 3 3
J1,---J2m EC\I
o>0 2
™ palfial)=0o
d(2i-1j21)<A

This coarsening necessarily leads to pairs that are overlapping. Those will be summarised into numbers
C1 = I1,(C+)p that contain all pairs in that coarsened set. Reordering the sum according to newly created
clusters and pairs and including all even partitions g with w < m — 2 pairs and at least one cluster yields

m—2
elom, <Y ) > G ICqwl [max] > (Clgiwin)p (Clpde
w=0 g even 13 q—wEC K1,... kw€EC\I

withwpairs qA({ia}):% qA({jcx}):qp

d(ai—1421)<A

As we only need the homogoneous suppression for those terms, it does not matter whether they are actual
clusters or products of pair norms. Thus, we can proceed in the same way as in Eq. (C.0.3). We thus obtain
the following recursion formula

m—2
flm) < Bs(t) Y_ (1),
1=0

with the final points f(0) = 1 and (1) = 1+ |€]2Cqyuste 2/ % and the relation to the desired bound
52

R(t) < Bs(t) ) f(1).
1=0

In each step of the recursion at most S branches can be created, which implies that in total at most
S5 values appear. As f(1) > f(0) the worst case estimate is all of these branches ending at f(1) =

(1 +1CI2 Couste 2/ 5). Finally, in the relevant regime, where the above estimate indeed yields a bound,
we have < 1 and thus f* < B. Thus, in total we have the bound

R(t) < 85Bs (1) (1+1€12Causee /%) .
Substituting 3, estimating girans(t) as described above and using 2 < S yields
& N 4
R(t) < §551512(28)4251S (A%« Cupanst 473 1€1/4 ) (14 ]€I2 Causre ™/ )

= S 4d
< S(2+2d4)5+1zcéans <A4d/; |G|t3ﬁ> <1 + |€|2CclusteiA/£) .

As derived above, the contributions with one cluster give an error term

- & 44d
e +=8(2+2dc)8H1o ¢l A e[t (14012 Cauae ™/ F)
Summarising the different e’ created and bounding the S contributions of all terms with S(2+2d< JS+1 the

= t~492/24 which in leading order gives a

proof is concluded by using |C| = (v +v¢)t%s and choosing A
scaling

_dz
ext o6 .
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Thus the non-Gaussianity that can locally be observed is suppressed exponentially in time. In other
words, for any fixed error €, we can find a relaxation time t,,x, such that the difference to a Gaussian
state is bounded by e for all times t € [tyelayx, trec]- Here, the recurrence time is set by the point where the
homogeneous suppression breaks down. O



CONSTANTS OF MOTION IMPLY INFORMATION PROPAGATION

The following appendix presents the technical results of Ref. [5]. We sincerely thank Albert H. Werner, Marcel Goihl,
Jens Eisert and Winton Brown for the very fruitful collaboration.

In this appendix, we provide a proof for the statement in section 6.2 that the existence of a single
constant of motion that is approximately local together with a non-degenerate spectrum is sufficient to
prove information propagation. For simplicity and as it can be generalised later on, we begin with the
case of an exactly local constant of motion.

Corollary 16 (Information propagation: Strictly local constants). Let H be a Hamiltonian with non-degenerate
energies and gaps and Zx be a strictly local constant of motion supported on X, with eigenspaces with dimension
larger than dpin. Then H necessarily has transport in the sense that for any finite region S containing X there exists
a local operator B initially supported on X with ||B|| = 1 such that By, on average, has support outside S

alsi+Ixi1/2

—N/2
1/2 ’

Bt —Ts (Be) || >1—

dmin
Proof. We begin by looking at the spectral decomposition of the local constant of motion

M
Zx =Y APy,
k=1
with exactly local projectors Py supported on X and M distinct eigenvalues. The goal is then to construct
an operator that is block-off-diagonal with respect to the projectors Py. For this, let dpyi, be the smallest
dimension of the eigenspaces of Zx, when viewed as a local operator. For the construction, we fix two
eigenspaces of Zx. The larger of the two is then truncated down to the dimension drunc of the smaller one.
Note that the resulting dimension of both spaces is lower bounded by dpin. In these subspaces, we further
fix some basis labelled by two indices |k, r) where k labels the eigenspaces of Zx and r the basis vectors in
each of these subspaces. We denote the eigenspaces by k = 0 and k = 1. The operator A is constructed to
be supported on the small region X and taken to be the flip operator between the subspaces

dtrunc

B= ) [k=0r)(k=T11+lk=17Xk=01].
T

The operator norm of this observable is one and we proceed by constructing an initial state that is an
eigenstate of A to eigenvalue 1, but still has large effective dimension. For this, we pick the subspace with
smaller dimension and take the equal superposition, denoted by |v) of all eigenvectors in this subspace.
For this, it is crucial to choose the subspace with smaller dimension, as the truncation in general, is not
aligned with the eigenstates of the global Hamiltonian. The number of eigenvectors in the untruncated
subspace is lower bounded by dpmin = dmind™ "X/, which is simply the smallest eigenspace dimension of
Zx when viewed as an operator on the full lattice. The initial state vector is then taken to be

Nﬁzkaw+8wy

It is straightforward to check that this is indeed an eigenstate of B, since B [v) = |[v). What is more, the
state vector [) has an effective dimension lower bounded by din. Based on this analysis of the constant

153
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of motion, we can directly follow the proof of lemma 2, as presented in section 6.2. Using the construction
of the initial state and the observable B described above, we immediately obtain

dsys

Bt =Ts (Be) || 21— —57,
defe'/?

from the same equilibration results as in section 6.2 (see Eq. (6.2.2)). Inserting the effective dimension
described above deg > dmin = dmind™ X! and dsys = dS! concludes the proof. O

In many localising systems, one does not expect the constants of motion to be strictly local, but only
approximately local (see Def. 2) [180]. Using perturbation theory, it follows that this decay is sufficient
to obtain local approximations for the eigenprojectors and makes it possible to once again construct an
observable A that is transported through the system. This gives rise to the Thm. 10 as stated in section
6.2. For convenience, we repeat the theorem here.

Theorem (Information propagation). Let H be a Hamiltonian with non-degenerate energies and gaps and Z be
a approximately local constant of motion with decay function g with localisation region X, spectral gap v > 0 and
eigenspaces with dimension larger than dpmin. Then H necessarily has information propagation on average in the
sense that there exists a local operator B initially supported on Xy D X with ||B|| = 1 such that By, on average, has
support outside any finite region S

g(t) __ds

”Bt —Ts (Bt) || 21— 137 - 2,&1/2 .

min

Proof. The first step of the proof is to show that the approximate locality of the constant of motion also
implies quasi-local eigenprojectors. Let

M
Z=> MNPy
k=1

and let y denote the smallest spectral gap. Due to locality, we can express Z for each fixed 1, as
2 =Tx,(2) + Vi,
with a bounded perturbation V; satisfying

VI =2-Tx,(2),
Vil < g(1) .

Let P! be the eigenprojectors for the truncated observable. Perturbation theory assures us that the per-
turbed eigenspaces stay approximately orthogonal (see Thm. VIL3.1 in Ref. [14])

V; 1
HPk(]l—P11<H| < M - & ,
Y Y
which also implies
A% 2g(1
[Py — Pil < 2l _ 2901) : (D.o.1)
Y Y

Choosing the distance 1 large enough such that the function g becomes smaller than v/2, we know that
the perturbed and unperturbed eigenspaces have the same dimension [14]. This local approximation of
the eigenprojectors of the constant of motion are the basis for the construction of the observable B as well
as the initial state p.
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In order to construct the observable, we work with the truncated constant of motion I'x,(2), fix two
subspaces and construct the same flip operator as in the case of exactly local constants of motion

dtrunc
B= Y k=0rk=T1+k=1r(k=0,1.
T

Without loss of generality, let k = 0 be the space with smaller dimension and k = 1 the one truncated to
dirunc- Let P} be the projector on the truncated subspace of P} corresponding to the image of B.

For the initial state, we use the corresponding subspaces, again labelled by k = 0, 1 of the full constant
of motion Z. Again we pick the smaller of the two subspaces and define |v) to be the equal superposition
of all eigenstates within this space. The initial state vector is then

_ 1
V2

By construction, the effective dimension and the equilibration results are the same as in the case of a

) (v) +Bv)) .

strictly local constant of motion.

Crucial in the above construction is that we use the truncated constant of motion I'x, (Z) for the observ-
able B in order to ensure locality, while we use the full object Z for the initial state in order to achieve a
large effective dimension. What remains to be shown is that despite this locality difference in the construc-
tion, we still achieve a large expectation value of B with ), but an almost vanishing expectation value
with the infinite time average.

As a first step, we show that B is almost block-off-diagonal with respect to the eigenprojectors of the full
constant of motion Z. Introducing the identity 1 = P} + Q},, this takes the following form

0
[PKBPy || < [PkPLBQLP [ + [Pk QLBPLPL| < 297 .

Here we used that B is block-off-diagonal with respect to the truncated constant of motion I'x, (2). The
same estimate holds for the projectors Q.

Using this, bounding the expectation value with the infinite time average is straightforward

Tr(Bw) = Tr(BPowPy) + Tr(BQowQy) (D.o.2)

(1)
< [[PoBPoll + |QoBQol| < 497 .

We now have to show that the expectation value of B with p is large initially

(WIBI) > (o BB ) — | (/B V) + (v{ BBB v} |.

In the following, we show that the first term is almost one, while the other two almost vanish due to the
block-off-diagonality. For the first term, we use that B> = P{ + P}|;, where P}|; is the projector onto the
image of B in P}. Using that (v| Q [v) can only increase if we enlarge the subspace of the projector Q, we
obtain

(VBB V) = (v PE V) — [ (v QY Iv) |

> (lPo ) —| (1 Qo vy | —42L1
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where we used (D.o.1). The second term can be bounded directly using block-off-diagonality

g(l)

| (VIBv)| < ||[PoBPo|l < 27 .

The last term, finally can be bounded as follows.

| (VIBBB ) | = | (v| PoB(P§ + PY[1)Po V) |
< |[PoBP§ | + [P} Po|

l
< by +250 +

390

v

9()

—

N

To summarise, we have

oy

(WIB ) > 195 (D.03)

Putting together the estimates for the expectation value of B with the initial state, the equilibration result
and the expectation value of B with the infinite time average, we obtain the desired bound. More precisely,
we choose p = [P)| and proceed as follows

Bt —Ts (By) || = Tr(Bp) — [Tr (T's (Bt,) p—t) |

Tr(Bp) — [[w—p—t]l1 — [Tr (Ts (By,) w) |

d
> Tr(Bp) — za,;% —|Tr (Ts (Bey) W) |

2
2

-

Inserting the effective dimension deg = dmin and using Egs. (D.o0.2) and (D.0.3) concludes the proof

- 1 d 1
[Be—Ts B > 1990 G490
Y dein Y
>1-1390 j‘f 5.
Yy 24V

min



ENERGY FILTERING

The following appendix presents the technical basics of Ref. [4]. We sincerely thank Albert H. Werner, Winton
Brown, Volkher B. Scholz and Jens Eisert for the very insightful collaboration which resulted in this work.

A important technical tool of this thesis is energy-filtering with respect to a suitable filter function.
Energy-filtering of a local observable A supported on X is defined as

HA) = J dtf(t) A(t) .

Here f: R — R is a so-called filter function, usually taken as a C*®-function. Here, A(t) = eitHpe—itH
refers to time evolution under the full Hamiltonian H, but we later also consider filters with respect to
truncated Hamiltonians. Energy-filtering allows to alter the matrix elements of a local observable in the
eigenbasis of a Hamiltonian, while still keeping some form of locality [168]. We work with two types
of filter functions. Gaussian filter functions in particular provide a good compromise between locality in
Fourier space and decay behaviour in real time and hence allow us to pick out narrow energy windows,
while still preserving the approximate locality of the observable.

Definition & Lemma 10 (Gaussian filters). A Gaussian filter is defined as

o
x 42
A = — Jdte *XUA(t),

where « > 0 defines the sharpness of the filter. The matrix elements in the eigenbasis of the Hamiltonian fulfil
2
(IR (A)Is) = (1] Als) e (Eam /1000

For strongly localising systems (see Def. 11), local observables filtered with a Gaussian filter still remain approxi-
mately local in the sense that

ITHA) — IR A)] < Clpee ™™,

where Hy contains all Hamiltonian supported on the enlarged sets Xy around the support X of A (see chapter 3.2).
For systems with a mobility edge (see Def. 12), we have

(k| [T¢(A), B k)| < Cope HIAB)

Proof. The Gaussian suppression of off-diagonal elements readily follows from the definition
o Cxt?
(M Ix(A)ls) :== - dte (r|A(t)[s)

= (r|Als)/ % Jdt e~ ot pit(Er—Ey) ,
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a
a
L 1 ] L [} 1 1 1
—4 —2 0 2 4 —4 —2 0 2 4
a Energy difference b Energy difference

Figure E.1: Taken from Ref. [1]. Presented is a schematic sketch of the energy filtering under a Gaussian (a) and a
high-pass (b) filter and the role of the sharpness o.

and the fact that the Fourier transform of a Gaussian is again a Gaussian. Assuming strong dynamical
localisation, deriving locality is straightforward,

[e¢]

ITH(A) — IKY A = ﬁ Jdt e ot (A(t)—e““lAe—“Hl)

—00

—pul
<Cloce H ’

where used that the Gaussian filter is normalised. The case with a mobility edge can be shown in the
same way. O

Another important filter is the high-pass filter, which blocks large negative energy differences.

Definition & Lemma 11 (High-pass filters). A high-pass filter is defined by

i T et
l'y(A) = lim — J dt T ic At).
—00

Here o > 0 describes the sharpness of the filter. The matrix elements can be bounded for any |[Es —E+| > o > 0 by

(ITa(A)ls) | Jeo?/ (4 for Er > Es

<T“ A |S> 1— %6762/(40() fOT E, < Eg

Local observables remain approximately local under a high-pass filter, in the sense that

(4a+m ).

efud(A/B)

[ {Kkl T (A), BI k) | € ———

Proof. Calculating the off-diagonal elements of such a high-pass filter relies on the subsequent bound on
the error function of a Gaussian random variable proven in Ref. [66], stated here as lemma 12. Making
use of the identity proven in Ref. [66]

7

) 2 0
lim - J dt e e At _1 = J dew e—(WHAE)/(4x)
t+ie 2V

—0 —o0
the bounds for the matrix elements of 'y (A) follow from lemma 12. The locality statement can be shown
by splitting the integral into three parts [157] and using our assumption of dynamical localisation

efud(A,B) a2 efoct2 efcxtz
(K [Fa(A), BIK) < S —— x dt et ¢ dt ——+ | dt—
[tI<1 1<It<A [tI>A

e_ud(A/B) ] TT
——— ([ 1T+InA+—/— )] .
U ( +in Jr27\ oc)
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Here estimating the first term used the min(1,t) factor included in the definition of a mobility edge (see
Def. 12). Choosing
NV
2/a

concludes the proof. O

In this lemma, we used the following estimate [66].

Lemma 12 (Hastings-Koma). Let E € R, o« > O then for all y > 0 with E < —y

1 /= (w+B)2 ] 2

I i —dx < —e— Y /(4x)

7\ J dw e < 2e

—0Q
and forall y >0 with E >y
l E J dw ef(wzng)z —1 < 167'\/2/(40().
2 o 2
—00

As in the above statements, we refer to the Gaussian and high pass filters of sharpness « as 1! and '},
respectively. In case the local observable is filtered with the full system Hamiltonian, we often omit the H.
It is an interesting insight that the locality structure of a Gaussian filter is independent of its sharpness «
for dynamically localising systems, while it still depends on o for a high-pass filter.
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The following appendix presents the technical results of Ref. [1]. We sincerely thank Albert H. Werner, Winton
Brown, Volkher B. Scholz and Jens Eisert for the very insightful collaboration which resulted in this work.

In this appendix, we provide the proofs for the statements in section 6.4. We begin by proving lemma 3
needed for the proof of theorem 11. For convenience, we restate the lemma.

Lemma (Decoupled energy filtering). Under the assumption of locally independent gaps, energy-filtering of two
observables can be factorised into local energy filters

[IEA+ (AB) — LA (A) 1P (B)|| < 20T &7/ e

with & = min{n, V2¥}. Here Ha and Hg are chosen to include all Hamiltonian terms within distance d(A,B)/2
of the support of A and B respectively (See Fig. 6.3).

Proof. To show that instead of applying an energy filter to AB, we can also apply it to the observables
individually, we need to use that the eigenvalues of Ha + Hp are disconnected on the two regions and we
can thus label them by two different quantum numbers a, b. We hence get

HI‘;“HB(AB) — > la,b)a, bl ABla,b)(a, b+ > _la,b)a, bl AB|a,b)a, bl —IEA(A)I‘JB(B)H :
a,b a,b

We will use the triangle inequality and proceed to show that both energy filters give only the diagonal
entries up to a small error. Starting with the first term gives the following estimate,

IKA(A)IG®(B) — ) la,b)a, b ABa,b){a,b|
a,b

It W, (Ea—Ea/-i-Eb—Eb/)z
> > Ia,b><a,b|AB\a,b><a,b\exp<_ — )H

a,b a’#a,b’#b

=) )

ab a’#a,b’#b
4L —m?/(4
=24L g7/ ()

J— ’ _ , 2

4

where we assumed locally independent gaps. The second term yields the following estimate,

Ie* (A)IK®(B) — ) la, b){a, bl ABla, b)(a,b|
a,b

(Ea—E /)% (Ep—Ey/)?

‘ Z Z |a/b><a/b|AB ’a/,b/><(ll,b/’ei 4o e 4cxbl)

a,b a’#a,b’#b

<22t 672172/(400 .

—‘ > la,b)a,b|ABD$DY
a,b
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Sa . o o (Ea—E’)? .
Here, DY is a diagonal matrix with entries e (Ea—Ea)?/(4e) for @ # a’ and zero otherwise and we assumed

locally independent gaps. Adding the two contributions and defining & = min{n, v/2¥} concludes the
proof. O

We proceed by presenting the proofs for the case of an information mobility edge. In this section, we
provide the proof of theorem 12. As a first step, we need the following lemma, which states that each
eigenvector only contributes a term that is exponentially suppressed with the distance of the two observ-
ables to the correlation function. For this, we need the localisation assumption only for the eigenvector [k)

[4].

Lemma 13. Let A, B be local observables and |k) a weakly localised eigenvector of H, i.e. satisfying

sup |(k|[A(t), Bl k)| < Cpoc e HIAB)
te[0,00)

Then the contribution of any eigenvector |1),1 # K, to the correlation function is exponentially suppressed, in the
sense that

I(K] A LU B [K)| < 2Cpope M4AB)

Proof. The proof of this lemma again uses an energy filter with a Gaussian filter function (see Def. 10) and

works with (k| B [k) = 0, which can always be achieved by using a shifted observable B = B — (k| B [k). For

this proof the filter function is multiplied by a complex factor e**(Fx=Et) such that its Fourier transform

approximately suppresses all transitions except the one from level k to level 1. In a mild variant of the
above filter function, we define f: R — R ™" and the corresponding filter as

f(t) = geit(Ekal)ef(th i
V Tt

I¢(A) = Jdt f(HA(L),
(1 1¢(A) Is) = (1] A|s) e~ (Es—Er)—(E1—EW)?/ ()
With this energy filter, we can proceed to prove the lemma

(K AU B K| = | (kI T (A)BIK) — Y (K| A [m)(m] B [k) e~ (Em—EV*/(4e)
m#l

<I(KIIE(A), B [K) |+ (kI BIg(A) [k)| + 2Fe "/ (4e)
<Cpngpe 4AB) 4oL (e—yz/moc) n e—cz/(4oc>> _
Here, v > 0 refers to the smallest gap and ¢ > 0 is the smallest degeneracy of the gaps for fixed Ey as

defined in the main text and in the last step we used weak dynamical localisation of the eigenvector [k).
We can now conclude the proof by choosing « small enough such that

oL (e—vz/mcx) +e—c2/(4oc)) < Cpgpe MAAB)

which means that we pick a filter function that is narrow enough in Fourier space. Setting & := min(y, ()

—1
52 ( ZZL—H)
— (In >,
4 Cmob

independently of d(A, B). O

it would even be enough to choose
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We now turn to the proof of theorem 12. For convenience, we repeat the theorem here.

Theorem (Clustering of correlations of eigenvectors). If the Hamiltonian has an information mobility edge at
energy Emop and it has non-degenerate energies and non-symmetric gaps, then all eigenvectors |k) up to that energy
Emob cluster exponentially, in the sense that for all k > 0

(k| AB [k) — (k| A [k){K| Bk)]

B 4427t —ud(A,B)
< <1z7r®(Ek+|<)Cmob+hnmd(A’Kz)'3 )e 5 ,

where ©(E) is the number of eigenstates up to energy E and « can be chosen arbitrarily to optimise the bound.

Proof. The proof runs along and builds upon the lines of thought of both Ref. [66] and of [157], and
generalises both. The basic idea is again to start from the correlation function and to transform it into an
expression depending on the commutator. For this, we fix a constant k > 0 and define

L (1

E1<Ex+k

to be the projector onto the subspace of energies smaller than Ey. + k and write P+ for 1 — P. Decomposing
the identity with respect to P and P and using a high-pass filter I'y for a suitable o > 0 (see Def. 11), we
separate the correlator into terms

(kIABk) = (kl(A—Tx(A))PBIK)
+ (K (A —=T(A))PLBIK)
+ (k\ BPT A) k) + (kI BPLT (A) k)
+ (K ), Bl k) .

Lets consider the first term on the right-hand side of Eq. (F.0.2) that contains P and expand the projector
in the eigenbasis of H, which gives

[(K (A =To(A)PBI) < > [(KI(A—Tx(A) LXUBIK)|
E1<Ex+k
<2 ) [{KALKUBIK).

E1<Ex+k

Here, we used that all matrix elements decrease under a high-pass filter (see lemma 11) for all « > 0. As
before, we set (k|B|k) = 0 w.l.o.g. and then proceed by bounding all the terms in the sum individually.
Using lemma 13 yields

| (k| (A —T«(A))PB k)| < 4O(Ex + k)Cppope HIAB)

where O(Ey + k) simply is the number of eigenvectors contained in P. The other term in Eq. (Fo.2)
containing P can be bounded analogously, yielding

| (k| BPT&(A) [k) | < 20(Ex + K)Cpope H4AB)

The terms containing P+ in Eq. (F0.2) are bounded using the explicit form of the matrix elements of a
high-pass filter (see lemma 11), which delivers

(K BPIT(A)[k) < > (kIBlm)m|DAIk) ,
Ei>Ex+k
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where D is a diagonal matrix whose entries are bounded by e <*/4e) 3 A simple norm estimate con-
cludes the estimation of this term
e— K7/ (4x)

<k|BPJ'roc(A) k) < |IDJ| < )

The other term containing P~ can be estimated in the same way

—k2/(4a)
(K| (A = To(A)) PLTH (A) k) < %

The commutator term in Eq. (F.0.2) is bounded by using locality of a high-pass filter (see lemma 11). We
are still free to choose a value for o in the high-pass filter. Taking

K2
%= Jud(A, B)
gives
—ud(A,B)
(K| T (A), B] k) < (1271®(Ek +K)Cpop + 27+ 4+ In ””diﬁ' B)> ¢ —.
This concludes the proof. O

We now provide the proof of corollary 13. It follows from the above results that in the case of 1D
systems, the corresponding eigenstates satisfy an area law for a suitable entanglement entropy, which in
turn implies that they can be well approximated by a matrix-product state of a low bond dimension. We
bound the bond dimension by using theorem 1 from Ref. [102]. For convenience, we repeat the corollary
here.

Corollary (Area laws and matrix-product states). An eigenvector |k) of a localising Hamiltonian can be approx-
imated by an MPS with fidelity |(KIMPSp)| > 1 — €, where the bond dimension D for a sufficiently large system is
given as follows.

a If the Hamiltonian shows strong dynamical localisation and has non-degenerate energies and locally indepen-
dent gaps, then the statement holds for all eigenvectors |k) and, for some constant C > 0, the approximation
has a bond dimension

16
D = C(L/e)beae .

b If the Hamiltonian has an information mobility edge at energy Ty, and has non-degenerate energies and non-
symmetric gaps, then the statement holds for all eigenvectors below this energy Ep.q1, and the bond dimension
is given by

D =poly (©(Ey +«),L) ,
for any fixed « which enters in the precise form of the polynomial.

Proof. As a first step of the proof, we reformulate our clustering of correlation results (see Thm. 12) in
terms of a correlation length according to Ref. [102]. For this, we need a decay of the correlator of the
form 2-4(AB)/& yd(A, B) > 1y and start by rewriting our bound as

| (kI ABIk) — (k| A [k)(k| Bk} | < Ce™Hd(AB) (F.0.6)
— Cz—ulogz e d(A,B) )
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Figure E1: Taken from Ref. [4]. MPS description of an eigenstate |Ey )(Ex|. Theorem 1 in Ref. [102] allows to bound
the bond dimension across cuts by providing an upper bound to the smooth max entropy. The reduced state of the
suitably normalised matrix product state is p = UD?UT.

Next we split the decaying term and use one part to get rid of the constant prefactor C and the other to
preserve an exponential decay with a correlation length & := 2/(plog, e). This yields

| (k| AB k) — (k| A [k)XK| B [k) | < 279(AB)/E yd(A,B) > 1o,

where 1o = £/(log, C). Following Ref. [102], we use the exponential clustering to obtain a description of
the eigenvector |k) in terms of MPS (see also Fig. F.1). This is based on the so called smooth max entropy.
For this quantity, rather than evaluating the entropy for the state itself, an optimisation over some §-ball
in state space is performed [57]

H? = min log,(rank(p ,
max (PX) bxeBelox) gz( (px))
with 1
Bs(px) == 1{px : EHPX*(’XH] < &}

being a ball of density matrices around px (see appendix A of Ref. [102] for details). According to theorem
1 in Ref. [102], we can obtain an upper bound for the smooth max entropy for any bipartite cut, as long as
the system size L is larger than Ccutlo/& with a constant Ceye > 0. Picking the approximation parameter
in the smooth max entropy to be 5(1) = 2-V/(8&) then Ref. [102] provides a bound of the form

Hom < ¢/lo&SE 41, (Fo.7)

for all 1 > 8¢ with constants ¢,¢’ > 0. In the following, we make corollary 3 in Ref. [102] explicit,
by deriving concrete bounds on the bond dimension of the matrix-product state chosen to approximate
lk). Naturally, the first step for this is to express |k) as a matrix-product state vector with, a priori,
exponentially large bond dimension (see Fig. F.1). For simplicity, we restrict the proof here to a linear
system with open boundary conditions, but it can equivalently be reformulated for a periodic system on a
ring [102]. The bond dimension of the matrix-product state is bounded by truncating at each cut explicitly.
For this, we start at one end of the chain and look at each cut separately. In each step, we apply a singular
value decomposition (see also Fig. F.1). Since we are truncating spectral values in each step, the positive
operators are no longer normalised to unit trace and are states only up to normalisation. This results in
a reduction on the left side of the cut of p = UD?UT, with U being unitary and D diagonal. The goal is
now to truncate the diagonal matrix D to a fixed bond dimension D while creating only a small discarded
weight [41]. Following lemma 14 in appendix B of Ref. [102], for any v > 0, we can choose the bond
dimension as

D= ZHr\rl’lax(p) ,
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and create a discarded weight

21_
Z Ak < 3v,
D-+1

where Ay are the eigenvalues of p or equivalently of D2. Each time we create discarded weight, the
fidelity with our original pure quantum state potentially is reduced by the discarded weight [177], upper
bounded by 3v. The truncation results in a subnormalised state. Renormalising, however, only increases
the fidelity, allowing us to obtain a normalised MPS approximation. Thus, in total, the fidelity of our MPS
approximation with bond dimension D = 2Hmax(P) is bounded by

(WIMPSD)| < 1—13v,

where L is the size of the linear 1D system. For a fixed global error € > 0, we therefore obtain an allowed
local error

€

We now fix v to take the role of 5(1) in (F.o.7). Plugging this bound into Eq. (F.0.7) and using 6(1) =
2-Y/(88) we obtain

€ 3L
Hatx < ¢/1o&°5 + 8Elog, -

and thus obtain an approximation with

8
D :2c’lo‘5°‘E <3L) y )
€

Coming back to our original clustering assumption in Eq. (F.0.6), this yields
D = ce'& ! (_%L)sa
€ 4

with & = 2/(unlog, e). Thus, we finally have a polynomial scaling in the constant C > 0 as well as the in
the system size and in the inverse error of the approximation 1/e. The rest of the proof follows directly
by inserting the constants from theorem 12. O



EXPERIMENTALLY CROSSING THE MOTT-SUPERFLUID TRANSITION

The following chapter is based on Ref. [1]. We sincerely thank Simon Braun, Sean S. Hodgman, Michael Schreiber,
Jens P. Ronzheimer, Arnau Riera, Marco del Rey, Immanuel Bloch, Jens Eisert, and Ulrich Schneider for the success-
ful collaboration.

In this appendix, we present the details of the experimental study discussed in chapter 10. We begin
with the extraction of the correlation length from the experimental data.

Extraction of the correlation length

In this section, we describe the read-out of our quantum simulation, namely the extraction of the correla-
tion length. First, it is first important to note that, as described in section 8.3.1, this information is directly
contained in the time of flight image

mrfitrd)

(Wi(r, tw(r,t |ZZelk TR (bl by )

where the left hand side is the particle distribution that is measured and W (k)|2 is the Fourier transform
of the Wannier function that can easily be calculated (see section 8.2.1). In order to define a correlation

length, an exponential decay has to be assumed. Taking the local densities (n; 1) into account, we use a fit

(blby) ~ \/: \/I (G.0.1)

where ¢ is the correlation length.
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Figure G.x1: Taken from Ref. [1]. Shown are the experimentally obtained density profiles (blue dots) and fits in terms of
a Gaussian (red lines) for different total ramp durations Tramp. Positions x are measured in the natural lattice distance
djat of the system, while the density is presented in arbitrary units, as only the relative shape is of interest.

The experimental study described here was carried out in a 3D trap. Thus all extracted correlations are
always averaged over the imaging direction, which leads to a 2D image (see Fig. 10.1). A small central
cross section along the x axis of these image is taken and averaged over. The resulting 1D profile can then
be fitted according to Eq. (G.o.1). We approach this extraction of the averaged density by experimentally
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taking images of the density profile (see Fig. G.1). Due to a saturation of the camera in the center of the
cloud, only the tails could be experimentally measured. This required a fit to access the full profile, which
was performed using a Gaussian function, which fits the experimentally observed tails nicely. Using the
fitted experimental density profile, we obtain

(ny) =T/ (R,

where 1y is the position corresponding to index k and R is the fitted cloud radius. With this, Eq. G.0.1 can
be used to extract the correlation length from time of flight images in a robust fashion. We now turn to a
discussion of the influence of the trap for the dynamical crossing of the Mott-superfluid transition.

Influence of the trap

Without the trap, the system size hardly matters (see Fig. 10.3), but starts to play a crucial role in trapped
models (see Fig. G.2). For the 1D experiments discussed here, the 3D cloud of atoms is decoupled into
1D tubes. Due to the elliptical shape of the harmonic trap, these 1D tubes all contain different particle
numbers, while they are all confined in the same trap profile [1, 32]. Thus, the experimental images are
an average over these configurations. As demonstrated in Fig. G.2, these different particle numbers give
different correlation length behaviour. For each particle number, the correlation length starts to decrease
at some point and the experimental decrease is the result of the average over the different 1D tubes.

In order to obtain an intuitive understanding for the decrease of the correlation length fitted in terms of
a real exponentially decaying function, let us analyse the trapped system in more depth. The first physical
intuition one connects with a trapped model is the inhomogeneous density profile. One might expect that
the change of the correlation length connects to the redistribution of atoms within the trap. This turns
out not to be true. As demonstrated in Fig G.2, the density profile is hardly changed on the time scales
investigated here. Thus, the effect of the trap is more subtle than a simple redistribution of particles.

By looking at the full correlation function within the trap (see Fig. G.3), we notice that the correlator is
only real for short evolution times. For longer times, the imaginary part starts to grow. In a system with
mirror symmetry and translational invariance, this can never take place as

(al ar) = (alay) = (alax 1)

= <a$a17k> = <0Tkat> ,

which means that the trap is needed to cause an imaginary part. What is more, since the Hamiltonian
including the trap is real, all static thermal states are completely real, leading to a vanishing imaginary
part of the correlator, independent of the presence of a trap. Thus, the imaginary part of the correlator
is a clear signature of the out of equilibrium dynamics caused by the trap. This directly gives us an
underlying reason, why the correlation length decreases for long ramp times. More and more of the
correlations become imaginary, which is simply not included in our fit in terms of a real exponential
decay. A further investigation of these out of equilibrium signatures of correlation dynamics in trapped
systems would surely constitute interesting research for the near future, but is not immediately connected
to the dynamics of quantum phase transitions discussed here.

While we are having a closer look at the correlation behaviour, it is instructive to also look at the real part
in more detail (see Fig. G.3). The ramp starts in the ground state, which is expected to have an exponential
decay of correlations [62]. For longer ramps, this exponential fit does not work as well. Still, it seems
the only obvious way to define a correlation length without in-depth knowledge of the actual functional
behaviour of the correlator.
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Figure G.2: Taken from Ref. [1]. a Plotted is the behaviour of the correlation length & for different particles numbers N
in the same harmonic trap. The experimentally observed data (blue dots) are necessary an average over the 1D tubes
with different particle numbers. The numerical simulation of those systems using t-DMRG (blue lines) shows a strong
dependence on this particle number. This explains the decrease of the experimentally observed correlation length for
long ramp times in the trapped system. b Shown is the density profile given by the site occupation corresponding to
the number of particles on a site, as calculated with t-DMRG depending on the lattice position x. For the different
ramp times Tramp, we find that this profile hardly changes and is significantly different from the profile of a superfluid
corresponding to an infinitely slow evolution. This demonstrates that the influence of the trap in our setup is not a
redistribution of particles.
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Figure G.3: Taken from Ref. [1]. a These plots show the t-DMRG calculation for the correlator in the trapped model,
separated into real and imaginary part for different ramp times Tramp. The non-zero imaginary part is a signature
of the out of equilibrium dynamics caused by the trap. b Presented is the real part of those correlator as dots. The
lines show the best exponential fit, demonstrating that the exponential decaying function fits well, but becomes less
accurate for longer ramp times.
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SUMMARY OF RESULTS

This thesis investigates quantum-many body systems out of equilibrium in a variety of physically relevant
and intriguing settings. It provides an overview of the recent developments in this field and based on the

author’s recent review [3] illuminates many interesting connections and summarises open questions.

In this general framework, the various results of the author are embedded. While they often rely on
advanced mathematics, great care is taken to present them in an intuitive way and most technical material
is discussed separately in appendices. In the context of equilibration, work created as part of this thesis
[6] is able to capture the Gaussification of correlated initial states for a large class of free models. This
allows to significantly extend equilibration results of free models, which are of crucial importance, as they
provide reasonable relaxation time scales and immediately connect to our physical intuition in terms of

ballistic spreading.

Building on two surprising connections between static and dynamic features of Hamiltonians, which
in general are hard to obtain, the results of this thesis further greatly contribute to the recent debate on
the true nature of quantum many-body localisation. For those interacting models, we derive the localised
structure of eigenstates from a dynamical suppression of information propagation on the low-energy
sector [4]. Further, we show how a non-degenerate spectrum, indicating the presence of interactions, and
the existence of an approximately local constant of motion are sufficient to show information propagation,

if arbitrary energies are allowed [5].

In the context of quantum phase transitions, we continue such connections between static and dynamic
features. We specifically investigate the Mott-superfluid transition of the Bose-Hubbard model and ask
to what extent it has a universal dynamical signature. In a joint experimental, numerical and analytical
effort, complex behaviour of these dynamics is uncovered, thus challenging the common believe that the

Kibble-Zurek mechanism is sufficient to fully capture such transitions [1].

We embed such experimental investigation in the recent debate on quantum simulators, which give the
exciting perspective of solving notoriously and even provably hard problems efficiently in the laboratory.
For such devices, we argue that the final read-out of the results is an important out-standing problem
to be solved. We approach this issue in the case of a continuous quantum field, in which the notion
of reconstructing the quantum state is even conceptually unclear. Based on tensor network methods,
we demonstrate that in an experiment of ultra-cold atoms in a continuous setup, states can nevertheless

efficiently be obtained [2].

Thus, this thesis constitutes not only an important review of the field of quantum many-body systems
out of equilibrium, but, using advanced mathematical and numerical tools, has significantly contributed

to our understanding of various important out-standing questions in interacting many-body systems.
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GERMAN SUMMARY OF RESULTS

In dieser Doktorarbeit werden Quantenvielteilchensysteme aufierhalb des Equilibriums in verschiedenem
physikalischen Kontext untersucht. Aufbauend auf einem Ubersichtsartikel [3] zu diesem Feld, an dem
der Autor dieser Arbeit beteiligt war, werden wichtige Entwicklungen dargestellt, wesentliche Querverbin-
dungen gezogen und offene Fragen prasentiert. In diesen Rahmen sind die analytischen und numerischen
Arbeiten des Autors eingebettet. Trotz ihrer teils tiefgehend mathematischen Natur wurde grofser Wert
darauf gelegt, diese auf intuitive Weise zu prasentieren. Technische Details werden daher separat in

Anhéngen diskutiert.

Im Bereich der Equilibrierung gelang es zu zeigen, dass korrelierte Anfangszustiande durch die Ent-
wicklung unter freien fermionischen Modellen lokal gegen einen Gaufischen Zustand streben [6]. Damit
konnen Gaufische Equilibrierungsergebnisse verallgemeinert werden, woraus sich wichtige Intuition fiir

den wechselwirkenden Fall ableiten l4sst.

Aufbauend auf zwei unerwarteten Verbindungen zwischen statischen und dynamischen Eigenschaften
von Hamiltonoperatoren, welche im Allgemeinen schwer zu etablieren sind, trdgt diese Arbeit signifi-
kant zur Debatte bei, wie Vielteilchenlokalisierung zu fassen ist. Es wird gezeigt, dass Lokalisierungsei-
genschaften von Eigenzustdnden aus einer dynamischen Lokalisierung unterhalb einer Energieschranke
hergeleitet werden konnen [4]. Dartiber hinaus wird hergeleitet, dass die Anwesenheit einer lokalen
Erhaltunsgrofle zusammen mit einem nichtentarteten Spektrum ausreicht, um dynamische Ausbreitung

von Information zu garantieren [5].

Im Bereich der Quantenphaseniibergidnge wird der Zusammenhang von dynamischen und statischen
Eigenschaften wechselwirkender Modelle tiefergehend untersucht. In einer vereinten experimentellen,
analytischen und numerischen Arbeit wird die Dynamik des Phasentibergangs des Bose-Hubbard Mo-
dells analysiert. Hierbei tritt komplexes Verhalten zu Tage, das bisher weder durch den Kibble-Zurek
Mechanismus, noch durch andere Theorien erkldrt werden kann [1]. Diese experimentelle Untersuchung
wird in den weiter gefassten Rahmen von Quantensimulatoren eingebettet. Solche Simulatoren zeigen eine
Perspektive auf, harte quantenmechanische Probleme im Labor effizient zu 16sen. Der finale Schritt einer
solchen Quantensimulation ist die Rekonstruktion der Simulationsergebnisse. Wir untersuchen diesen
fiir ultrakalte Atome in einer kontinuierlichen Falle. Ausgehend von Tensornetzwerkmethoden zeigen
wir, dass (trotz der Schwierigkeiten kontinuierlicher Architekturen) effiziente Quantenfeldtomographie

durchgefiihrt werden kann und wir demonstrieren diese dartiber hinaus auch direkt experimentell [2].

Zusammenfassend gibt diese Arbeit nicht nur einen umfassenden Uberblick tiber Quantenvielteilchen-
systeme auflerhalb des Gleichgewichts, sondern nutzt dartiber hinaus elaborierte mathematische Metho-
den und numerische Simulationen, um unser Verstiandnis von Vielteilchensystemen signifikant zu erwei-

tern.
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