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INTRODUCTION 
 

 

 

Motivation 
 

Discoveries in the last decade have shown that small RNAs (such as microRNAs) perform a 

number of important functions, including post-transcriptional gene regulation, transposon 

silencing, DNA methylation, chromatin modifications and chromosome segregation, e.g.1-6. The 

ability of the new deep sequencing technologies to sequence millions of short RNAs in a few 

hours have made them the method of choice for simultaneous discovery and profilingi of small 

RNAs7, 8. However, when the sequenced RNAs are mapped to the reference genome, they 

typically locate to millions of distinct loci, only a few of which are loci that produce regulatory 

small RNAs. To distinguish the few loci that produce regulatory small RNAs from the many loci 

that are sources of other short RNAs like degradation products is a non-trivial computational 

challenge. In my doctorate work, I have attempted formalize knowledge of small RNA biology 

into computational models that can be used to discover and profile deep sequenced small RNAs. 

 

 

Animal and plant small RNAs 
 

There is emerging evidence that regulatory small RNAs are present in bacteria as well as in 

eukaryotes9, 10. However, the full ensemble of small RNA interacting proteins that enacts 

canonical RNA interference is found only in the eukaryotic clades animals, plants and fungi. It is 

possible that RNA interference has developed in early eukaryotes as a defense mechanism that 

cleaves double-stranded RNA viruses into harmless short RNAs11. Later in evolution, this defense 

mechanism may have been adapted to also cleave endogenous double-stranded RNA for various 

regulatory uses12. Consistent with the hypothesis that regulatory small RNAs have largely 

emerged in animals and plants through convergent evolution, animal and plant small RNAs 

display different characteristics13. The scope of this thesis is limited to the animal small RNAs. 

More specifically, it will focus on the two most studied classes of animal small RNAs: miRNAs 

(microRNAs) and piRNAs. 

 

 

 

                                                 
i ‘Profiling’ includes expression profiling, but also other small RNA readouts that can be obtained from 
sequencing such as length distributions, variations in 5’ ends and 3’ ends etc. 
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miRNAs 
 

 

miRNAs are regulatory small RNAs ~22 nts in length that are bound by the miRNP protein 

complex14, 15. miRNAs guide the complex to target sites in the 3’UTRs or, rarely, the coding 

sequence of mRNAs, causing mRNA degradation or translational to be inhibited1, 16-20. Thus, 

miRNAs reduce and/or buffer the expression of protein coding genes. All metazoan animals 

investigated have miRNA genes, ranging in number from ~40 (sea anemone) to ~700 (humans)21, 

22. miRNA genes appear to be constantly gained throughout evolution, thus some are deeply 

conserved and some are species-specific 23-26. Many miRNAs target hundreds of mRNAs, and it is 

estimated that between 30% and 60% of all metazoan protein coding genes are regulated by 

miRNAs in one or more cellular contexts27, 28. While miRNAs have been shown to be involved in 

most biological pathways or processes that are studied, they appear to be especially important in 

differentiation and in forming cell identity 29-31. Consistent with this, many miRNAs appear to be 

expressed in distinct patterns in tissues in the metazoan body32. There are many examples of 

individual miRNAs that have strong impacts on development and phenotype, examples include 

the role of lin-4 in nematode embryogenesis1, 14, 33, the role of miR-430 in purging maternal 

transcripts from the zebrafish embryo20 and even an example where a point mutation generates a 

miR-1 target site in the 3’UTR of the myostatin mRNA, causing a strain of especially muscular 

sheep34. 

 

 

Biogenesis 
 

Drosha cleavage and nuclear export 

 

Most miRNAs are transcribed by RNA polymerase II as long primary transcripts (pri-miRNAs) 

that are capped and polyadenylated and can be several kilobases in length35, 36. Each pri-miRNA 

contains one or more hairpin structures that are recognized and cleaved by the Microprocessor 

complex while the transcript is still in the nucleus37 (se figure 1). This complex consists of the 

Drosha endonuclease and the DGCR8 dsRNA binding protein, which is necessary for recognizing 

the hairpin structure38-41. After the hairpin, also called the precursor miRNA (pre-miRNA), has 

been released from the pri-miRNA, it is exported to the cytosol by the Exportin5 nuclear export 

protein42, 43. 
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Figure 1: miRNA biogenesis. 

 

Dicer cleavage 

 

In the cytosol, the miRNA precursor hairpin is further recognized and cleaved by the 

endonuclease Dicer in complex with the TRBP dsRNA binding protein44-48. The characteristics of 

the hairpin before and after this cleavage is of importance for this thesis and will be described in 

detail here. Before the Dicer cleavage, the pre-miRNA hairpin is ~70 nucleotides (nts) long and 

consists of a terminal loop flanked by two arms that form a stem. The stem does not contain 

bifurcations, but typically 20% of the nucleotides in the stem are not base paired and form bulges 

(unpublished results). The entire hairpin is energetically stable compared with other non-coding 

RNAs of comparable length, like rRNAs and tRNAs49. After the Dicer cleavage, three products 

are released: The loop and the two strands of the stem50. The loop is typically of length 10-40 nts 

and is presumably rapidly degraded by exonuclease action. The two strands of the stem, both ~22 

nts in length, remain bound to each other. Due to the endonuclease action, the two strands are 

offset thus that the duplex has 3’ overhangs two nucleotides in length in both ends of the duplex.  

 

Incorporation into the miRNP effector complex 

 

The duplex in then unwound, and typically one of the strands is selectively bound to the 

Argonaute protein in the miRNP effector complex while the other strand is degraded. The strand 

that is less tightly base paired in the 5’end is more often incorporated into the effector complex51, 

52. By definition, the strand that is more often incorporated is referred to as the ‘mature’ miRNA, 

while the strand that is more often degraded is the ‘star’ miRNA (sometimes these are referred to 

as the ‘guide’ and ‘passenger’ strands). In practice, the distinction between the mature and star 

strands is blurry. For instance, the ratios of incorporated mature vs. star strands can change during 

development in a given organism53, and the ratios can change over evolutionary time, causing a 

reversal of the dominant strand54. Further, there is strong evidence that many miRNAs have 

mature and star sequences that are incorporated into the effector complex in comparable 

abundances and are both functional53. 
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Alternative routes into the miRNA pathways 

 

Many miRNAs are derived from the introns of protein coding genes and may be co-transcribed 

with host genes55. However, the expression of these miRNAs do not always correlate with the 

expression of the host genes54, suggesting that the miRNAs are themselves post-transcriptionally 

regulated. Recent studies show that some short ~70 nts introns can undergo Dicer processing and 

enter the miRNA pathway without previous Drosha processing (‘mirtrons’56-58). Further, we have 

recently shown that some snoRNAs with hairpin structures can enter the miRNA pathway and 

produce miRNA-like transcripts that can reduce expression of endogenous genes (see attached 

article59). 

 

 

Target specificity 
 

The miRNA ‘seed’ 

 

Once the miRNA is incorporated into the miRNP effector complex, it can direct the complex to 

target sites in the 3’UTRs of mRNAs to degrade the mRNA or inhibit its translation. Unlike plant 

miRNAs which are thought to bind to mRNA target sites with almost full complementarity60, 

animal miRNAs have only partial complementarity to their target sites. It was noticed early that 

especially the 5’ end of miRNAs is important for the binding61, in particular nucleotides 2-7 or 2-8 

from the 5’ end, sometimes referred to as the ‘seed’ or the ‘nucleus’62. 

 

Computational target prediction 

 

Although it is possible to identify likely miRNA targets by perturbing miRNA abundances in a 

model system and noting changes at the mRNA or protein level29, 63-65, this has not until recently 

been performed for more than a few miRNAs. Thus the field of miRNA target identification has 

been dominated by computational prediction algorithms. The more accurate algorithms, like Pictar 

and TargetScan27, 66, 67, identify miRNA target sites by searching 3’UTRs for occurrences of the 

sequence complementary to the seed of the miRNA. The confidence of the predictions is then 

increased by considering only sequence occurrences that are conserved in a number of species and 

by combining evidence from multiple occurrences in a given 3’ UTR27, 66, 67. While for instance 

conservation scoring substantially improves the prediction accuracy, it also illustrates that we yet 

do not understand why some sequence occurrences are bound and others not (obviously the 

conservation information is not present in the given cell where the interactions take place). 

However, emerging technologies like CLIP-seq (see section on deep sequencing68-71) can 
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empirically identify binding sites for argonaute proteins and for RNA binding proteins that 

interact with the miRNP complex and may thus yield more of the missing pieces of the puzzle. 

 

 

Mechanisms of miRNA-mediated repression 
 

inhibition of translation 

 

The early notion that miRNAs can have impact on protein abundances that cannot be explained 

purely by mRNA degradation has recently been validated by high-throughput proteomic studies63, 

64. However, it is still hotly debated if this inhibition of translation is effected at the initiation of 

translation or at a post-initiation stage72. One model which favors inhibition at the initiation stage 

proposes that argonaute proteins inhibit binding of the eIF4E factor to the 5’ cap, either by directly 

competing for binding or by recruiting other factors that compete73. Another model which favors 

the initiation stage proposes that the miRNP complex blocks association of the 60S subunit with 

the 40S pre-initiation complex74. In contrast, the models that favor inhibition at the post-initiation 

stage propose that the miRNP complex causes ribosomes to stall at or fall off the mRNA during 

elongation75-77. To complicate matters, these apparently contradictory models are all supported by 

evidence from various biochemical in vitro and in vivo studies in different model systems. A 

recent study has however shown that the GW182 protein, a core component of miRNP and of P-

bodies (see below) contains three domains that are each sufficient to inhibit translation in tethering 

experiments78. Thus the possibility that these domains inhibit translation through different 

mechanisms may reconcile the apparently contradictory observations. 

 

mRNA destabilization 

 

It is well established that the miRNP complex can also destabilize mRNAs, causing their 

degradation18, 20, 29. A recent study indicates that inhibition of translation and deadenylation 

precedes the destabilization79. Since Argonaute, GW182 and de-capping enzymes are required for 

miRNA mediated destabilization19, the next step is likely de-capping of the mRNA followed by 

degradation by exonuclease action. It is not yet clear what causes some miRNA-mRNA 

interactions to favor inhibition and others to favor destabilization, but it has been suggested that 

the number and positions of bulges in the miRNA-mRNA duplex play a role80, 81. 

 

localization to P-bodies 

 

The P-bodies are cytoplasmic foci that are involved in mRNA degradation and storage82-84. It has 

been shown that argonaute proteins, miRNAs and their mRNA targets are enriched in P-bodies 
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and that there is a correlation between miRNA-mediated translational repression and the 

accumulation of mRNAs in the foci85-88. Depletion of proteins in the miRNA pathway causes a 

dispersal of the P-bodies89, 90. Reversely, depletion of proteins that form the scaffold of the P-

bodies also cause dispersal of the foci, but has no effect on miRNA-mediated repression89, 91. Thus 

it appears that P-bodies are a possible effect rather than a cause of the miRNA function. 

 

 

Functions 
 

A description of miRNA biogenesis and mechanism of regulation does not confer what functions 

miRNAs have at the level of the cell, organism or evolution. Given that metazoans typically have 

hundreds of miRNA genes that together regulate 30-60% of all protein coding genes, and given 

the range of regulatory mechanisms available, it is difficult to make generalizations. However, a 

number of themes emerge from the literature, including: 

 

miRNAs as switches 

 

There are a number of examples where miRNAs work to purge cells of transcripts from earlier 

development programs, thus enforcing a clean switch from one developmental stage to the next. In 

C. elegans the heterochronic gene lin-14 encodes a protein that is needed for the completion of the 

first larval stage (L1). However, unless the LIN-14 protein is depleted as the larva enters the 

second larval stage (L2), the first stage will be re-iterated92. The first miRNA to be described in 

any animal, lin-4, begins getting transcribed in the L1 to L2 transition and inhibits translation of 

the lin-14 mRNA by binding to seven target sites in the 3’UTR1, 14. The switch function is clear: 

before the transition, lin-4 miRNA is absent and the LIN-14 protein is present; after the transition 

the reverse is true. In zebrafish, miR-430 begins getting transcribed as the zygote transits from 

maternal to zygotic transcription. The miRNA accelerates the degradation of hundreds of maternal 

transcripts, thus delineating the transition20. This can be regarded as a switch function, since the 

effect of miR-430 is to reduce target expression to zero. Zebrafish Dicer mutants have several 

defects during gastrulation and brain morphogenesis. Interestingly, injection of mature miR-430 

rescues these brain defects93. 

 

miRNAs as tuners 

 

Recent high-throughput proteomic studies support the notion that many miRNA targets are only 

slightly down-regulated63, 64. This also holds for many target sites that are conserved, and therefore 

likely under positive selection. A possible explanation for this observation is that miRNAs can 

serve as an extra layer of post-transcriptional regulation, thus fine-tuning the output from the 
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transcriptional machinery. Mouse immunology can serve as a proof of principle that fine-tuning of 

protein output can have a strong phenotypic effect. In mouse lymphocytes, miR-150 modulates the 

expression of c-Myb, which promotes B cell survival94. Ectopic expression of miR-150 has subtle 

effects on the levels of c-Myb protein (30% reduction). This modest reduction, however, has a 

dramatic impact on the number of B cells in the mouse (more than four-fold reduction). However, 

miRNAs need not have single strong phenotypic effects to be important. For instance, when miR-

1 (a miRNA expressed in muscles) is ectopically expressed in HeLa cells, the entire 

transcriptional profile changes to resemble that of muscle cells more29. Thus miRNAs can also 

impact the transcriptome through numerous ‘soft’ effects. 

 

miRNAs as buffers 

 

The switch function refers to miRNAs that either turn off gene expression or accelerate the turning 

off. The tuning function refers to miRNAs that reduce the mean gene expression. The buffering 

function refers to miRNAs that reduce the variance rather than the mean of gene expression. This 

function could theoretically help to make the expression of protein coding genes more robust and 

stable against stochastic fluctuations in transcription and translation efficiency and also against 

environmental influences. Such buffering could increase the connection between genotype and 

phenotype, and thus increase heritability95-97. The miRNA buffering function finds theoretical 

support from network models, in which many miRNAs are predicted to interact with transcription 

factors and target genes in regulatory networks that would stabilize gene expression (reviewed by 

Hornstein et al.95). However, there is yet little solid evidence to support that miRNAs functions as 

buffers (but see Wu et al.96). One problem is that laboratory experiments are designed to the 

minimize environmental influences that miRNAs should stabilize. Thus, experiments that simulate 

the stressful environment of nature might reveal more differences between say, wild-type animals 

and Dicer knockout animals. It might also be interesting to use real-time single cell imaging to 

investigate if Dicer knock-out cells have more individual variance in protein output than do 

control cells. 

 

 

 

piRNAs: 
 

 

In contrast with miRNAs which appear to be expressed in all animal tissues, piRNAs have only 

been detected in germline cells98-106, in somatic cells of fly ovaries107, 108 and in neoblast stem cells 

of planarian flatworms109, 110. piRNAs interact with Piwi proteins, a subgroup of the argonaute 

proteins which is essential for germline development and fertility103, 111-116. The primary function 

 12



of piRNAs is believed to be the silencing of transposable elements in the germline, although there 

is evidence that the piRNA pathway has also been adapted for other purposes, like post-

transcriptional gene regulation115. The silencing is effected through slicing of transposon mRNA 

or through DNA methylation of the transposon genes2, 117, 118. Unlike miRNAs, the piRNA 

populations have high variation, consisting of millions of molecules of different sequence. These 

populations are mutable, and can change completely over a few days (mouse testes)119 or between 

adjacent cells (fly ovaries)107, 108, 117. The first piRNAs were recently discovered (in 2006) and 

although piRNAs have now been detected in several species21, 103-106, 109, they have only been 

systematically studied in mouse testes and in fly ovaries. In the following I will present the models 

that have been put forward to explain observations made in these two systems. 

 

 

piRNAs in fly ovaries 
 

piRNA populations have been investigated in fly follicle cells, which are somatic cells that 

support the fly germline cells, and in the fly oocytes. 

 

 

piRNAs in fly follicle cells 

 

Fly piRNAs are transcribed as long primary transcripts from hundreds of genomic clusters which 

typically have a high content of inactive transposons117. In the follicle cells, the primary transcripts 

are sliced into piRNA fragments and bound by the nuclear Piwi protein107, 108. These ‘primary’ 

piRNAs are characterized by being 24-30 nts in length and having a uracil in the 5’end. A large 

fraction of the piRNAs will have a sequence that is antisense to a transposable element. If the 

transcript of such an element if bound by sequence complementarity to the piRNA, the transcript 

will be sliced by the Piwi protein. The flamenco piRNA cluster, which is necessary for silencing 

gypsy elements120, is highly expressed in the follicle cells. Interestingly, gypsy retrotransposons 

have their reproductive cycle in the follicle cells and then make virus particles to infect the germ 

line121-123. This is possibly a way for the gypsy elements to avoid the more elaborate defenses of 

the germ line cells (see below), and the flamenco cluster expression in the follicle cells may be an 

evolutionary response to this. 
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Figure 2. The ‘ping-pong’ model of piRNA biogenesis and slicing of transposons in A) fly oocytes and B) mouse pre-

pachytene testes. From Aravin et al.119 

 

 

piRNAs in fly oocytes 

 

In the fly oocytes, Piwi performs a similar nuclear function as in the follicle cells. In addition two 

more proteins from the Piwi family, Aubergine and Ago3, are located in the cytoplasm, primarily 

in the ‘nuage’ perinuclear foci117. Aubergine, like Piwi, slices piRNA fragments from the piRNA 

cluster transcripts. When an Aubergine interacting piRNA binds to a transposon transcript it will 

slice it, and a fragment of the transposon transcript will be loaded to Ago3. When this Ago3 

interacting piRNA binds a cluster transcript it will slice it, and a fragment of the cluster transcript 

will be loaded to Aubergine (see figure 2A). In this manner, transposon transcripts and cluster 

transcripts are iteratively sliced and loaded into the two Piwi family members, causing a depletion 

of both types of transcripts117, 118. This model is referred to as the ‘ping-pong’ amplification loop 

and is supported by two observations. First, piRNAs that associate with Aubergine and Ago3 tend 

to overlap in the 5’ ends by exactly ten nucleotides, as would be expected if they were iteratively 

generated by activity of a slicer protein domain117, 118. Second, while piRNAs that bind to 

Aubergine typically has a uracil in the 5’ end, the piRNAs that bind to Ago3 typically has an 

adenosine at position ten, as expected if the piRNAs were defined by being base-paired with the 

Aubergine piRNAs by ten nucleotides. In flies, the initiating or ‘primary’ piRNAs, bound to 

Aubergine, are sliced from the piRNA cluster transcripts and are therefore typically antisense in 

sequence to transposons. The ‘secondary’ piRNAs, bound to Ago3, are sliced from transposon 

transcripts and therefore contain transposon sense sequences. The piRNA pathway constitutes a 

transposon defense with both static and adaptable components. The defense is static since the 

amplification loop is only initiated if a transposon with sequence complementary to a piRNA 

cluster is encountered. On the other hand the defense is adaptable since active transposons can 

insert into clusters and thus enter the ‘memory’ of the pathway117. This is consistent with 
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observations that fly transposon defense is mounted after a variable number of novel transposon 

copies have inserted into the genome120. 

 

 

piRNAs in mouse testes 
 

Mouse gametes loose most of their methylation patterns after fertilization124. Around seven days 

after fertilization spermatogenesis begins in the mouse male embryo as the primordial germ cells 

migrate into the gonadal compartments and expand through mitotic division125. This division stops 

around 15 days after fertilization as DNA methylation of transposable elements and imprinted loci 

is re-established (see figure 3). Mitotic division resumes three days after birth and around ten days 

after birth the meiotic divisions begin that will produce the mature sperm. The meiosis can be 

divided into (1) the leptotene in which duplicated chromosomes condense, (2) the zygotene in 

which extensive pairing and formation of synaptonemal complexes occur, (3) the pachytene in 

which crossing over occurs, (4) the diplotene in which homologs begin to separate and (5) the 

diakinesis in which the chromosomes move apart. In mouse embryonic testes, piRNA biology has 

been investigated just before birth as DNA re-methylation occurs (pre-natal), ten days after birth 

as meiosis initiates (post-natal pre-pachytene) and in adult mice (pachytene). 

 

 
 
Figure 3. Mouse spermatogenesis and Piwi protein expression. dpc, days after fertilization, ddp, days after birth. 

From Aravin et al.119 

 

 

Pre-natal piRNAs 

 

In the mouse embryonic testes just before birth, the cytoplasmic Piwi family MILI protein cleaves 

primary piRNA fragments from transposon mRNAs (in particular LINE-1 and IAP elements 

which are particularly active at this time point)119. These piRNAs then bind to piRNA cluster 

transcripts that are anti-sense to transposon sequence, causing them to be sliced and loaded into 

the mostly nuclear Piwi family MIWI2 protein. As the MIWI2 interacting cluster fragments then 
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bind to transposon transcripts, a ping-pong amplification cycle initiates119. However, the cycle is 

reversed compared to fly, as the initiating primary piRNAs are sliced from transposon transcripts 

and the secondary piRNAs are sliced from cluster transcripts (see figure 2B). This is also reflected 

in piRNA sequence characteristics as the mouse primary piRNAs have a beginning uracil and are 

sense to transposon sequence while the secondary piRNAs have an adenosine at position ten and 

are antisense to transposon sequence. It is believed that the interaction between the cytoplasmic 

MILI and the nuclear MIWI2 takes place in perinuclear structures that resemble the fly nuage. 

MIWI2 then shuttles to the nucleus and initiates transposon re-methylation119. This is supported by 

observations that the germline cells of MILI or MIWI2 mutants display loss of LINE-1 and IAP 

transposon methylation, have increased transcript levels of these transposons, show evidence of 

double-stranded DNA breaks indicative of novel transposon insertions, and arrest during meiosis2, 

111, 116, 126. These mutants cannot complete spermatogenesis and are sterile111, 116. It is not known 

how MIWI2 initiates the re-methylation, but there is evidence that the protein does not directly 

interact with DNA methyltransferases119. 

 

Post-natal pre-pachytene piRNAs 

 

After the genome has been re-methylated and as meiosis initiates in the germ line, MILI is the 

only Piwi family protein that is expressed in the testes of the mouse pup119. MILI continues the 

ping-pong cycle alone, as evidenced from sequence characteristics and the typical ten nucleotide 

overlap of piRNAs. The piRNA clusters that are expressed at this stage are different from those 

just before birth, meaning that the piRNA populations are also almost completely distinct2, 119. 

Also, fewer LINE-1 and IAP derived piRNAs are observed, while more piRNAs from SINEs and 

from mRNA exons are present. This probably reflects changes in abundances of transcripts that 

are available for slicing. Since primary mouse piRNAs are directly sliced from transposon mRNA, 

the piRNA clusters appear to be less important than in fly, where cluster piRNAs initiate the 

defense117. This reversal of the amplification loop may reflect a more flexible response to 

expansion of transposable elements in mammals. On the other hand, it pushes forward the 

question how the MILI protein can distinguish mRNAs from transposable elements from those of 

the host. Given that many piRNAs are derived from mRNAs of host protein coding genes, it 

appears that the MILI does in fact sample the transcriptome to some degree119. 

 

Pachytene piRNAs 

 

In the adult testes, MILI is still expressed as is now the MIWI protein115, 119. Again the piRNA 

clusters are different from those in the mouse pup. The piRNAs no longer show evidence of ping-

pong amplification and are strongly depleted in transposon sequence, suggesting that the primary 

role of piRNAs in the adult testes is not transposon silencing99. Consistent with this, the MIWI 
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protein is necessary for germ line maintenance and fertility, but there is no evidence that the 

protein is involved in transposon silencing115, 127. However, MIWI has been shown to associate 

with piRNAs and mRNAs in RNPs and in polysomes128. Further MIWI is necessary for the 

expression of some mRNA transcripts, suggesting that it is involved in post-transcriptional 

regulation of host genes115. However, this regulation has not been studied further. 

 

 

Nematode 21U-RNAs 
 

In the C. elegans, the Piwi homologs Prg-1 and Prg-2 bind to small RNAs that have a beginning 

uracil and that are 21 nts in length. These 21U-RNAs are expressed in the nematode germ line and 

are necessary for fertility129-131. While this constitutes strong evidence that the 21U-RNAs are the 

piRNAs of nematodes, the biogenesis appear to be quite different. The 21U-RNAs are described 

from ~20.000 distinct loci that each have an characteristic upstream motif, suggesting that they are 

individually transcribed50. They also do not display the ten nts overlap that is indicative of ping-

pong amplification. Further, while there is evidence that some 21U-RNAs silence Tc3 

transposons130, 131, the function of the majority of these small RNAs remain unknown. Like the 

mouse pachytene piRNAs they are as a population depleted in transposon sequence, suggesting 

that 21U-RNAs might perform functions other than transposon silence, such as mRNA regulation. 

 

 

piRNA summary  
 

The models of piRNA biology in mouse testes and fly ovaries demonstrate that piRNA 

populations and their functions can change dramatically over a few days or even between adjacent 

cells. It will be interesting to see if more systematic studies of piRNAs will bring forth unifying 

themes or if the complexity of piRNA biology will increase linearly with the amount of data 

produced. 
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Deep sequencing: 
 

 

Deep sequencing is an emerging high-throughput technology (the first deep sequencing machines 

became commercially available in 2005). The technology allows sequencing of DNA, cDNA or 

small RNAs ligated to DNA adapters. Common to the available deep sequencing platforms is 

miniaturization and massive parallelization which allows for the simultaneous sequencing of 

millions of DNA or RNA molecules132. This means that one machine can sequence literally 

billions of nucleotides in a few days, which represents several orders of magnitude improvement 

over the previous generation of capillary Sanger sequencers. Deep sequencing has numerous 

applications, which include but are not limited to: 

 

-genome re-sequencing. This is a term for the re-sequencing of genomes that have previously been 

sequenced and assembled. This is a useful applications for population genetics, studies linking 

genotypes to phenotypes and potentially even for personalized medicine. The Life Sciences / 

Roche company recently sequenced the genome of Dr. James Watson for less than 1.5 million 

dollars using only the 454 deep sequencing platform133. 

 

-de novo genome sequencing. Novel genomes can be deep sequenced, but given that the 

sequencing reads produced by deep sequencing are shorter than those produced by Sanger 

sequencing (table 1), assembly remains a challenge. None the less, the oil palm tree genome was 

recently sequenced and assembled using only the 454 deep sequencing platform (not yet 

published).  

 

-genome bisulfite sequencing. This is a method to selectively sequence the parts of the genome 

that are DNA methylated. It is one way in which deep sequencing can survey epigenetic 

information (reviewed in Pomraning et al.134) 

 

-RNA-seq. Deep sequencing of mRNAs generates several levels of information. First, the number 

of times a mRNA is sequenced correlates well with transcript abundances as estimated from 

qPCR135. Compared with arrays, this ‘digital gene expression’ is unbiased since it does not depend 

on pre-spotted probes on an array. Second, when exon-exon junctions are sequenced, information 

on splice variants is also yielded. Third, sequence information such as SNPs or RNA editing can 

also be obtained (reviewed in Wang et al.136). 

 

-CHIP-seq. This method uses immunoprecipitation to pull-down transcription factors and 

sequence the DNA that they bind to (reviewed in Park137). 
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-CLIP-seq. Similar to CHIP-seq, but the method uses pull-down of RNA binding proteins cross-

linked to RNA68-71. 

 

-small RNA sequencing. Deep sequencing allows for the sequencing of millions of small RNAs in 

a sample. This has made it possible to discover small RNAs that were previously below detection 

limits and to do high-throughput small RNA digital gene expression. It has also made possible the 

study of small RNA populations that have a high degree of sequence diversity, like the piRNAs. 

 

 

 

Currently three deep sequencing platforms are commercially available and wide used: the 454 / 

Life Sciences platform, the Solexa / Illumina platform and the ABI SOLiD platform. The 

platforms differ in the technology used as well as in the performance statistics: 

 

 454 FLX titanium Illumina GA IIx ABI SOLiD 3 

Total output 0.5 billion nts 5 billion nts 15 billion nts 

Read length 400 nts 35 nts 50 nts 

Number of reads >1 million 150 million 300 million 

Time to prepare library 2-3 days 2-3 days 2 weeks 

Time per sequencing run 10 hours 2 days 7 days 

Cost per sequencing run 10.000 € 5.000 € 5.000 € 

 
Table 1. Summary of deep sequencing platforms. The statistics shown here are for small RNA sequencing – the 

statistics may vary slightly when the platforms are used for other applications. 

 

 

454 / Life Sciences 
 

technology: First adapters are ligated to the fragmented DNA or cDNA, or to the small RNAs. 

Then the ligation products are bound to micrometer beads under conditions that favor the binding 

of one product per bead. The beads are captured in droplets of oil that contain enzymes for 

emulsion PCR reaction. Inside every droplet a PCR reaction occurs, resulting in each bead being 

covered by millions of identical copies of the captured ligation product. Subsequently the beads 

are deposited into 1.6 million micrometer wells on a fibreoptic slide, one bead per well. The slide 

is mounted in a flow chamber through which sequencing reagents flow, and pyrosequencing takes 

place in each well. Every time a given nucleotide is incorporated, light of a given wave length is 

emitted. The light emissions are detected and translated into nucleotide sequences (www.454.com 

and Shendure and Ji132). 
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pros: The main advantage of the 454 platform is that long (~400 nts) DNA or cDNA molecules 

can be sequenced. This makes any kind of sequence assembly much easier. This may be especially 

important for studies on transcript splice variants and genome de novo sequencing. 

 

cons: The disadvantages of the 454 platform include a) the number of molecules sequenced in a 

single run is relatively low (~1 million)  b) the number of nucleotides sequenced in comparably 

low (~0.5 billion nts)  c) the platform has difficulties in determining the number of nucleotides in 

homonucleotide stretches (e.g. poly-As). Further, the light signal emitted from such stretches can 

spill over into nearby wells, causing further sequencing errors (personal communication, Azra 

Krek). Last, the reagents for a 454 sequencing run are approximately twice as costly as those 

consumed by the other two platforms (table 1). 

 

 

Solexa / Illumina 
 

technology: First adapters are ligated to the fragmented DNA or cDNA, or to small RNAs. The 

ligation products are attached to the surface of a flow cell, to which PCR enzymes and nucleotides 

are added. Aside from the ligation products the flow cell is also covered by a dense lawn of 

primers that are complementary in sequence to the adapters. The adapters will bind to these, 

making each ligation products form a bridge over which amplification occurs. After numerous 

rounds of bridge amplification, the flow cell will be covered by millions of clusters that each 

contains thousands of copies of one ligation product. Last, enzymes and fluorescently labeled 

nucleotides are added and sequencing by synthesis takes place in each cluster on the flow cell. A 

laser excites the nucleotides that in incorporated in each cycle in each cluster, and the light 

emissions are translated into nucleotide sequences (www.illumina.com and Shendure and Li132). 

 

pros: A single flow cell produces ~150 million sequencing reads of short length (table 1), making 

it an ideal platform for small RNA sequencing. Consistent with this, most (67/97) small RNA 

studies with dataset depositions  at the GEO (Gene Expression Omnibus) database have been 

undertaken using the Solexa platform. 

 

cons: The rate of sequencing errors increase towards the end of the deep sequencing reads. This 

can in some cases make it difficult to map the reads full-length to the genome or to 

computationally remove the 3’ adapters from deep sequenced small RNAs. 
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ABI SOLiD 
 

technology: Adapters are ligated to the fragmented DNA or cDNA, or to small RNAs. Similar to 

the 454 platform, the ligation products are bound to beads and emulsion PCR reaction takes place 

in microreactors, such that each bead gets covered in millions of copies of the same ligation 

product. The resulting copies are then covalently bound to a glass slide, such that identical copies 

from one bead locate to one cluster on the slide. Then primers complementary to the adapter 

sequence are added and extended with di-base probes that compete for ligation to the primer. The 

di-base probes are fluorescently labeled and indicate the sequence of di-nucleotides of each cluster 

of identical ligation products on the glass slide. After the di-base probes have extended the primer 

to the length of the ligation product template, the primer and the probes are removed and a new 

primer, offset by one nucleotide, is added along with di-base probes. This is repeated five times, 

such that each nucleotide of a given ligation product is interrogated by multiple di-base probes 

(www.appliedbiosystems.com and Shendure and Li 132). 

 

pros: A single SOLiD run can produce more than 300 million reads. Further, the di-base color 

encoding makes it easier to discern sequencing errors from nucleotides that differ from the 

reference sequence due to SNPs or RNA editing. This may make the platform particularly suitable 

for genome re-sequencing, where identification of SNPs may be particularly important. 

 

cons: Importantly, it is time-consuming to prepare samples for SOLiD sequencing. Further, the di-

base color encoding makes it necessary to have dedicated computational tools for most 

downstream analysis. 
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Analyzing small RNA deep sequencing data 
 

miRNAs 
 

The legacy of conventional cloning and Sanger sequencing 

 

Since the first systematic studies to identify new miRNAs, sequencing has been the method of 

choice for miRNA discovery24-26. Before deep sequencing, researchers would using conventional 

cloning and Sanger sequencing for this purpose. The resulting sequences were then mapped back 

to the reference genome to identify which loci they were transcribed from. It was soon recognized 

that many sequence mapped to rRNA, tRNA and protein coding genes and were likely short 

RNAii degradation products. To identify the miRNA fraction, researchers discarded all sequences 

that mapped to these annotations. Further, if a given sequence is a sequenced mature miRNA, then 

it will be expected that the sequence has been cleaved out of either arm of a miRNA precursor 

hairpin. Therefore, the researchers required that the flanking genomic sequence of a miRNA 

candidate should be predicted to form a hairpin when folded with an RNA structure prediction 

algorithm. If the candidate miRNA star sequence was also detected, it was seen as confounding 

evidence24-26. 

 

Early miRNA deep sequencing analysis 

 

Deep sequencing of small RNAs and the downstream analysis of these is a direct continuation of 

this tradition. The extra sequencing depth opens up new possibilities, like the identification of very 

lowly expressed miRNAs. At the same time, it gives new challenges. For instance, while a set of 

Sanger sequenced small RNAs might map to thousands of genomic loci that each need to be 

analyzed, a set of deep sequenced small RNAs typically map to millions of loci. Further, even the 

deep sequenced RNAs that map to miRNA loci do not all correspond to canonical Drosha/Dicer 

products (see Discussion section). These challenges demand more sophisticated algorithms. When 

I in the beginning of my Ph.D. first set out to identify novel miRNAs in deep sequencing data, 

there were no publicly available algorithms for this purpose. In fact, there were even no tools 

specialized for mapping short RNAs against a reference genome, meaning that even this initial 

step was non-trivial (such tools however emerged, e.g. Berninger et al.7). There were a few studies 

reporting novel miRNAs from deep sequencing data. One of these studies employed elaborate 

comparative genomics to identify conserved hairpin structures138. One other study used a rules-

based approach but was not described in enough detail that it could be implemented from the 

manuscript50. These two algorithms were not publicly available. 

                                                 
ii The term ‘short RNAs’ is here denotes all cellular transcripts of length <40 nts. This includes 
regulatory small RNAs and degradation products of longer transcripts like mRNAs, rRNAs, tRNAs etc. 
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Our contribution 

 

Supervised by Nikolaus Rajewsky I developed miRDeep, an algorithm for identifying known and 

novel miRNAs in deep sequencing data. Using this algorithm we have discovered hundreds of 

novel miRNA genes in a dozen species110, 139, 140 (and unpublished results). The algorithm is 

publicly available and has also been used by several research groups to identify more novel 

miRNAs141-145. 

 

Later miRNA deep sequencing analysis 

 

Since miRDeep was published, two new algorithms for identifying miRNAs in deep sequencing 

data have become publicly available. mirCat146 is specialized for plant data, while miRanalyzer147 

is specialized for animal data. miRanalyzer recovers known miRNAs in unseen data with a 

sensitivity comparable to miRDeep, but has a false positive rate that is approximately two orders 

of magnitude higher than miRDeep110, 147. There also exists a number of miRNA gene finding 

tools that are not specialized for deep sequencing data (reviewed in Mendes et al.148) 

 

 

 

piRNAs 
 

Because piRNA populations consist of vast numbers of distinct sequences, the systematic study of 

them was not possible before deep sequencing became available. When I first analyzed planarian 

piRNA data, there were a number of studies on the subject which all carefully described the 

computational analysis performed (e.g. 2, 106, 117). This analysis includes mapping sequenced 

piRNAs to the genome, identifying the ones that can be mapped to a single genomic locus, and 

using these unambiguous mappers to identify the piRNA clusters. The analysis also included an 

investigation of sequence and length biases in the subpopulations of piRNAs. However, the 

piRNAs had in these studies all been isolated by immunoprecipitation or other purification of 

different Piwi proteins, meaning that they were piRNAs by definition (piwi interacting RNAs). 

The planarian small RNA data I analyzed was from total RNA, meaning that the initial challenge 

was to computationally isolate the piRNA fraction. I also made a partly successful attempt to 

further divide the piRNA fraction into subpopulations using computation. There does not exist any 

publicly available algorithm for piRNA analysis. 
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The capacity of highly parallel sequencing technologies to 
detect small RNAs at unprecedented depth suggests their 
value in systematically identifying microRNAs (miRNAs). 
However, the identification of miRNAs from the large pool 
of sequenced transcripts from a single deep sequencing run 
remains a major challenge. Here, we present an algorithm, 
miRDeep, which uses a probabilistic model of miRNA 
biogenesis to score compatibility of the position and frequency 
of sequenced RNA with the secondary structure of the miRNA 
precursor. We demonstrate its accuracy and robustness using 
published Caenorhabditis elegans data and data we generated 
by deep sequencing human and dog RNAs. miRDeep reports 
altogether ~230 previously unannotated miRNAs, of which four 
novel C. elegans miRNAs are validated by northern blot analysis.

Animal genomes harbor numerous small, noncoding miRNA genes 
believed to post-transcriptionally regulate many protein-coding genes 
to influence processes ranging from metabolism, development and 
regulation of the nervous and immune systems to the onset of can-
cer1. Despite concerted efforts to discover and profile miRNAs, even the 
number of miRNAs in the human genome remains controversial, with 
estimates ranging from a few hundred2 to tens of thousands3. Traditional 
experimental approaches to miRNA discovery have relied on cloning 
and Sanger sequencing protocols4 and human and murine miRNAs have 
been profiled in hundreds of cDNA libraries from dozens of tissues5.

However, the vast dynamic range of miRNA expression (from tens 
of thousands to a few molecules per cell) complicates profiling of  
miRNAs expressed in low numbers. A complementary approach, 
involving miRNA discovery by computational predictions that analyze 
genomic DNA for structures that resemble known miRNA precursors6, 
is compromised by sensitivity problems and substantial numbers of 
false positives6. Therefore, purely computational approaches require 
experimental follow-ups, which are again difficult for miRNAs with 
low expression levels in the sample.

‘Deep-sequencing’ technologies have opened the door to detecting and 
profiling known and novel miRNAs at unprecedented sensitivity. Next 
generation sequencing platforms, such as those from Solexa/Illumina 

and 454 Life Sciences/Roche, can sequence DNA orders of magnitude 
faster and at lower cost than Sanger sequencing and are evolving so 
rapidly that increases in sequencing speed by at least another order of 
magnitude seem likely over the next few years. Although the Solexa/
Illumina system can produce ~32 million sequencing reads in one run, 
read length is currently limited to 35 bp. In contrast, the current 454 
platform yields reads up to 200 bases each, although the number of reads 
is an order of magnitude less than that of Solexa/Illumina. The nature 
of sequencing errors also contributes further to the different output 
characteristics of the two approaches.

Despite the ability of both technologies to sequence—and thus 
to detect—miRNAs at previously unmatched throughput, deep 
sequencing presents formidable computational challenges and suf-
fers from biases such as those arising from the preparation of small 
RNA libraries. Even mapping deep-sequencing reads to the genome 
is itself not trivial, as no animal genome besides that of C. elegans, 
has been sequenced completely. Moreover, sequencing errors and 
polymorphisms, as well as RNA editing and splicing are but some of 
the factors that contribute to ambiguity. Although currently almost 
all of these problems remain mostly unsolved, deep sequencing can 
successfully survey the small RNA contents of animal genomes with 
unmatched sensitivity7–15.

When profiling small RNAs with deep-sequencing technology, 
separating miRNAs from the pool of other sequenced small RNAs or 
degradation products is a central problem that is often not described 
or only partially addressed8,9. Furthermore, despite a growing need to 
analyze deep-sequencing data, there is no publicly available algorithm 
to detect miRNAs in these data.

miRDeep, our publicly available software package, can be used to 
solve this problem at least in part. Importantly, it also includes stringent 
statistical controls to estimate the false positive rate and the sensitivity 
of miRDeep predictions. Therefore, users can not only run miRDeep on 
their own deep-sequencing data to detect known and novel miRNAs, 
but can also estimate the quality of their results. At the heart of miR- 
Deep is the idea of detecting miRNAs by analyzing how sequenced RNAs 
are compatible with how miRNA precursors are processed in the cell. 
As deep sequencing permits statistical analysis of this model, one can 
assign a score of the likelihood that a detected RNA is indeed a mature 
miRNA. Therefore, the foreseeable advances in sequencing capacity of 
deep-sequencing technologies should further boost the power of miR- 
Deep. In order to address an ongoing discussion about the importance 
of nonconserved miRNAs16 and to be as unbiased as possible, we 
designed miRDeep to detect miRNAs without cross-species compari-
sons. Finally, given the rapid evolution of deep-sequencing technology, 
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we designed miRDeep to be as flexible as possible and tested it using 
both Solexa- and 454-derived data from human, the domestic dog 
and C.elegans—animals from the two main branches of Bilateria, 
representing very different genomic complexity.

RESULTS
miRDeep scores according to a model of miRNA biogenesis
Metazoan miRNA genes are transcribed either as single genes, or in 
clusters, or intronically as part of protein-coding transcripts2. Hairpins 
within the primary miRNA gene transcript are typically, but not always, 
recognized and cut by the endonuclease Drosha in the cell nucleus to pro-
duce miRNA precursors. These are then exported to the cytosol, where 
the hairpin structure is cut by the endonuclease Dicer at relatively fixed 
positions17–19. The hairpin processing by Dicer releases three products 
of largely invariant lengths (Fig. 1). One of these is the loop of the hair-
pin, which is degraded as a by-product. The two other products form a 
duplex, which is subsequently unwound by helicase activity. One of the 
strands in the duplex, the so-called star strand, is typically degraded, 
whereas the mature miRNA strand is taken up into the microribonucleo-
protein complex (miRNP)19. The mature miRNA sequence functions by 
guiding miRNP to target mRNAs by partial sequence complementarity. 
The approximately six nucleotides starting at position two from the 5′ 
end of the mature sequence are particularly important for target recogni-
tion20. miRNP regulates the mRNA transcript by inhibiting translation 
or decreasing its stability19.

An overview of the miRDeep algorithm is shown in Figure 2. Briefly, 
after the sequencing reads are aligned to the genome, the algorithm 
excises genomic DNA bracketing these alignments and computes their 
secondary RNA structure. Plausible miRNA precursor sequences are 
then identified and, in the core part of the miRDeep algorithm, scored 
for their likelihood to be real miRNA precursors. The output is therefore 
a scored list of known and novel miRNA precursors and mature miRNAs 
in the deep-sequencing sample, as well as estimates for the number of 
false positives.

In more detail, miRDeep initially investigates the secondary structure 
of each potential precursor as well as the positions of the reads that 
align to it. Next, a filtering step discards potential precursors that are 
grossly inconsistent with miRNA biogenesis. For the remaining (typi-
cally thousands of) potential precursors, miRDeep then probabilisti-
cally integrates deep-sequencing information based on a simple model 
for miRNA precursor processing by Dicer (Fig. 1a,b). If a sequence is 
an actual miRNA precursor that is expressed in the deep-sequencing 
sample, then one expects that one or more deep-sequencing reads cor-
respond to one or more of the three products—the mature miRNA 
sequence, the star sequence and the loop (Fig. 1a)—released when the 
precursor is cut by Dicer8. Further, it is expected that only very few, if any, 
reads do not correspond to these three products. Reads originating from 
miRNA Dicer products have relatively invariant lengths and relative 
positions, and therefore high information contents. If an miRNA precur-
sor candidate is part of an actual transcript, but not a Dicer substrate, 
then deep-sequencing reads will not fit into this model of processing. 
Often, the reads will originate from staggered degradation products of 
stochastic lengths and positions (Fig. 1b).

The miRDeep core algorithm scores each potential miRNA precur-
sor for the combined compatibility of energetic stability, positions 
and frequencies of reads with Dicer processing. A number of features 
contribute to the score. In general, the greater the number of deep-
sequencing reads corresponding to the mature or star products, the more 
likely the sequence is to be an miRNA precursor. The presence of one or 
more reads corresponding to the star sequence, taking into account the 
short 3′ duplex overhangs characteristic of Drosha/Dicer processing, adds 
to the score separately. As miRNA precursors are more stable than nonpre-
cursor hairpins21, both the relative and absolute stabilities of the structure 
also contribute to the score. Finally, the 5′ ends of mature miRNAs are 
often conserved across vast phylogenetic distances22,23. If the 5′ end of the 
potential mature sequence is identical to that of a known mature sequence, 
the score can optionally be increased. The probabilities of all features con-
tributing to the score are estimated by parameter fitting to known and 
background miRNA precursors. These parameter fits were stable when 
separately analyzing data sets from animals spanning large phylogenetic 
distances, strongly suggesting that miRDeep does not overfit. In sum, 
the algorithm assigns each sequence a log-odds score, which indicates 
the probability that the sequence is a true miRNA precursor instead of a 
background hairpin. In what follows, we refer to the number and relative 
position of reads in a potential miRNA precursor as the ‘signature’.

Statistical evaluation of miRDeep results
As many genomes contain large numbers of sequences that could fold 
into hairpin structures if transcribed (for instance, the human genome 
contains at least 11 million hairpins6) and most deep-sequencing reads 
originate from loci that are not miRNA genes (unpublished results), 
any algorithm that predicts miRNAs by intersecting deep sequencing 
data with secondary structure information risks producing vast num-
bers of false positives. We thus employed several stringent controls to 
estimate the sensitivity and the number of false positives per genome-
wide analysis.

Dicer cleavage Deep sequencing

miRNA 
precursor

Mature 
miRNA

Star sequence

Loop

Sequencing reads

Deep sequencing

Non-miRNA 
local hairpin

Non-miRNA products

Non-Dicer processing
or degradation

Sequencing reads

a

b

5´

3´

Figure 1  Analyzing the compatibility of sequenced RNAs with miRNA 
biogenesis. (a) Each of the RNA products generated after a stable miRNA 
precursor is cleaved by Dicer—the mature miRNA sequence, the star 
sequence and the loop2—has a certain probability of being sequenced. When 
miRDeep maps the sequenced RNAs (‘reads’) to the genome and to the 
corresponding predicted miRNA precursor hairpin structure, read sequences 
map to the positions reminiscent of the three Dicer products. However, the 
mature sequences are generally more abundant in the cell and are therefore 
also sequenced more frequently than the loop and star sequence RNAs. 
Thus, the statistics of the read positions and frequencies of the reads within 
the stable hairpin (the ‘signature’) are highly characteristic for miRNAs 
and are scored by miRDeep. The power of miRNA discovery by miRDeep is 
proportional to the depth of sequencing. (b) Large numbers of hairpins that 
are not processed by Dicer are also transcribed from metazoan genomes. 
These hairpins can also produce short RNAs, either through non-Dicer 
processing or through degradation. However, when the reads that originate 
from such sources are mapped back to the secondary structure, they will 
likely map in a manner that is inconsistent with Dicer processing.
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We estimated the sensitivity as the fraction of known mature miRNA 
sequences (from miRBase version 10.0 (ref. 24)) represented by at least 
one read in the raw deep-sequencing data sets recovered in the final 
predictions. Simple sequence matching is used to find known miRNAs 
in the data sets. As sequencing reads representing miRNA sequences 
often have untemplated nucleotides in the 3′ end8,25, mismatches in the 
last three nucleotides are tolerated.

miRDeep scores each potential precursor by analyzing its read signa-
ture and its structure. We estimated the false-positive rate by running 
miRDeep on our input set of structures and signatures as usual, except 
that we randomly permuted the signature and structure pairings in the 
input data set. For example, if a read in a potential miRNA precursor A 
resides at relative position five (from the 5′ end), then it will be assigned 
to another potential miRNA precursor B, also at position five. All reads 
in A will be mapped to B in this manner. This control precisely tests our 
model hypothesis that for true miRNAs, the structure (the hairpin) is 
recognized by Dicer and therefore causes the signature. By permuting 
the structure and signature pairings, we thus simulate the null hypoth-
esis that the two are independent. Analysis of multiple independent 
permutation runs furthermore yields the s.d. of the estimated mean 
number of false positives.

Our test is conservative in that it tends to overestimate the number of 
false positives. Many of the actual miRNA precursors have a large number 
of reads that map consistently with our model of miRNA processing by 
Dicer. When the signatures of these precursors are combined with unstable 
background hairpins, the large score contribution of the signature causes 
the overall score to exceed the cut-off. In other words, a significant fraction 
of the estimated false positives are caused by actual miRNA signatures 
through a ‘hitchhiking effect’. Therefore, our false-positive estimates are 
likely an upper limit to the true number of false positives.

miRDeep handles heterogeneous input data robustly
Deep-sequencing data sets are very heterogeneous. Different genomes 
have different transcription profiles and long transcripts may be 
sequenced at the ends only, or represented by sequences of their degra-
dation products. Some genomes transcribe short functional noncoding 
transcripts, such as endogenous small interfering RNAs or repeat-
associated interfering RNAs12,26. Owing to their similar lengths, these 
can be particularly difficult to distinguish from miRNAs. Moreover, bias 
can be introduced during sample preparation where small RNAs are iso-
lated and ligated with specific adapters. Finally, sequencing technologies 
vary in the frequency and types of sequencing errors, in the maximum 
length of the sequence reads and in the number of reads produced.

We have implemented miRDeep in a flexible, probabilistic manner 
such that miRNA precursors with single noncharacteristic features can 
be recovered if they display other characteristics. Besides testing the abil-
ity of miRDeep to detect known and novel miRNAs, we also wanted to 
assess how robustly miRDeep handles heterogeneous data. We therefore 
obtained C. elegans deep-sequencing data from the GEO database, and 
produced two more data sets ourselves by deep sequencing a dog lym-
phocyte sample and a human cell line. Together, these data sets represent 
Protostomes and Deuterostomes with very different genome sizes and 
transcriptional profiles. Further, the data sets were produced by dif-
ferent laboratories, using 454 sequencing or Solexa sequencing. The 
core miRDeep algorithm was run on the three data sets with identical 
parameter settings, except for the score cut-off parameter.

miRDeep detects novel miRNAs in previously mined data
The relatively small (~100 Mb) genome of C. elegans—the organism 
in which miRNAs were first discovered27,28—has been intensively 
mined for miRNA genes using both computational and experimental 

methods29,30. Specific detection of miRNAs in C. elegans is difficult, as 
the transcriptome has a large fraction of small RNAs, such as endog-
enous small interfering RNAs and 21U-RNAs8 that can potentially cause 
many false positives. Our first data set comprised pooled reads from 
several 454 sequencing runs on C. elegans mixed-population small RNA 
samples8,12, obtained from the GEO database.

The deep-sequencing reads were aligned to the C. elegans genome. 
Reads that aligned to more than five genomic positions, or to 
University of California Santa Cruz (UCSC) annotations of rRNA, 
small cytoplasmic RNA (scRNA), small nuclear RNA (snRNA), small 
nucleolar RNA (snoRNA), tRNA or protein coding regions were dis-
carded. Reads corresponding to annotated 21U-RNAs8 were also dis-
carded. The remaining aligned reads were then used as guidelines for 
excising potential miRNA precursor sequences from the genome. Each 
of these potential precursor sequences were input to the miRDeep 
algorithm as described above. Scoring of sequences that passed the 
initial filtering (Fig. 3) revealed that 116 sequences passed the cut-off 
of 1 (all blue, Fig. 3a). Of these, 103 were known miRNA precursors 
(dark blue), corresponding to 102 unique known mature sequences, 
whereas 13 represented new candidate miRNA precursors, previously 
unannotated in this species (light blue). Of the 135 known C. elegans 
mature miRNA sequences at miRBase, 115 were present in the data set 
(Fig. 4). Of these, 102 (89%) were successfully recovered by miRDeep 
(Fig. 4a). The total estimated number of false positives was 8 ± 3 
(s.d.), corresponding to a signal-to-noise ratio of 15:1 (Fig. 4b). The 
estimated number of false positives for the new predictions was 6.5 
± 2 (s.d.), corresponding to a signal-to-noise ratio of 2:1 (Fig. 4c). 

Discard reads that map
to many genomic loci

Optional: discard reads that
map to rRNAs, tRNAs, etc.

 Use sequence reads 
  to excise potential
  miRNA precursors
   from the genome

 Discard unlikely
miRNA precursors

miRDeep core algorithm:
 probabilistic scoring of
 structure and signature

 Deep sequencing reads
 mapped to the genome

Optional:
genome annotation

     Known and new
mature and precursor
           miRNAs

          Optional:
estimate the number
   of false positives

Figure 2  Flowchart diagram representing the miRDeep software package.
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Only two more predictions resulted from doing predictions with-
out first discarding reads aligning to known annotations (including 
21U-RNAs). This shows that the annotation is not crucial for the 
prediction accuracy.

The mature and precursor sequences of the 13 novel candidates can be 
found in the Supplementary Sequences online. Eight of the novel mi- 
RNAs had 3′ overhangs characteristic of Dicer processing on both hairpin 
arms (Supplementary Fig. 1 online). Further, some of the novel miRNA 
genes had conservation patterns typical for miRNAs (Supplementary 
Fig. 2a,b online). Northern blotting confirmed four of the five candi-
dates tested (Fig. 5).

These results show, first, that miRDeep can successfully recover known 
miRNAs with high (89%) sensitivity, second, that miRDeep can success-
fully discriminate between miRNAs and other types of small RNAs, and 
finally, that although the data sets used have already been specifically 
mined for small RNA species8,12, miRDeep still predicts ten likely novel 
miRNA genes, while recovering 13 out of 18 precursor candidates pre-
dicted previously8.

A single miRDeep run recovers 28% of known human miRNAs
To produce the second data set, we used the Solexa technology to 
sequence the small RNA fraction of a human HeLa cell sample. The 
human genome (~3 Gb) is larger than that of C. elegans and has also 
already been mined extensively for miRNA sequences by conventional 
cloning of small transcripts, as well as by computational searches and 
deep sequencing (see, for instance, refs. 5,9,31).

miRNA predictions were made as for the C. elegans data set, and 
reads aligning to annotated rRNA, scRNA, snRNA, snoRNA and tRNA 

were discarded. In total, 173 sequences passed the cut-off of 1 (all blue, 
Fig. 3b). Of these, 163 were known precursors (dark blue; corresponding 
to 154 unique known mature miRNA sequences), whereas 10 repre-
sented new candidate miRNA precursors (light blue). Sequences of novel 
candidates are provided in the Supplementary Sequences. Further, some 
of the novel miRNA genes had conservation patterns typical for miRNAs 
(Supplementary Fig. 2c,d). Of the 555 known human mature miRNA 
sequences, 213 were present in the data set. Of these, 154 (72%) were 
successfully recovered by miRDeep (Fig. 4d). The total estimated num-
ber of false positives was 6 ± 2 (s.d.), corresponding to a signal-to-noise 
ratio of 29:1 (Fig. 4e). The estimated number of false-positive rates for 
the new predictions were 5 ± 2 (s.d.), corresponding to a signal-to-noise 
ratio of 2:1 (Fig. 4f).

Thus, despite years of research effort to clone small RNAs in dozens 
of human tissues, miRDeep recovers 156 (28%) of all known human 
mature miRNA sequences when analyzing deep-sequencing reads from a 
single HeLa sample. Perhaps surprisingly, we also found that 213 (~40%) 
of all known human mature miRNAs can be detected in in our HeLa 
sample, although roughly half of these are represented by <10 reads.

To summarize, after ~106 nonredundant loci were input to miRDeep, 
the algorithm recovered the majority of the known miRNAs present 
in the sample, reported ten novel miRNAs and produced only six 
false positives.

miRDeep discovers >200 dog miRNAs
The third data set was produced by Solexa sequencing the small RNA 
fraction of a domestic dog lymphocyte sample. Domestic dogs are 
emerging as an important model system for human disease32, and are 
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Figure 3  Discovery of known and novel miRNAs by miRDeep. (a–c) Histograms of miRDeep scores are shown for C. elegans (a), human (b) and dog (c) data. 
The inserts are close-ups. Known miRNA precursors are colored dark blue. False negatives (known miRNA precursors that do not exceed the cut-off of 1 for 
C. elegans and human, or 3 for dog) are plotted in red. Data above the score cut-off are likely novel miRNAs and colored light blue. All other data points are 
plotted in orange. (d–f) The statistical controls for C. elegans (d), human (e) and dog (f) are shown. Scores exceeding the cut-off are colored in blue (false 
positives), everything else in orange. These controls show that miRDeep correctly classifies the vast majority of potential miRNA precursors into true miRNAs 
and likely non-miRNAs, according to our simple model of miRNA biogenesis. The appearance of some false positives with very high scores results from the 
conservative nature of the statistical controls (‘hitchhiking’ effect).
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appealing for miRNA profiling as only six dog miRNA genes are anno-
tated in miRBase24. miRNA predictions were made as before, except no 
reads were discarded based on the annotation. In total, 206 passed the 
cut-off of 3 (Fig. 3c). Of these, 203 represented previously unknown dog 
candidate miRNA genes (light blue), whereas three represented previously 
known dog miRNAs (dark blue). As only four known miRNAs are present 
in the data set, the sensivity is 75% (Fig. 4g). The estimated number of 
false positives both for the total and for the new predictions was 6 ± 2 
(s.d.) corresponding to a signal-to-noise ratio of 30:1 (Fig. 4h,i). Of the 
novel miRNAs, 90% had a conserved nucleus sequence (Supplementary 
Table 1 online and Supplementary Sequences) and 58% had the 3′ 
overhangs characteristic of Dicer processing. When the novel precur-
sors were compared with known rRNA, scRNA, snRNA, snoRNA, tRNA 
consensus sequences, only two had any similarity.

Thus, miRDeep can reveal numerous miRNA genes when analyzing 
data from genomes previously unmined for small RNAs.

Availability of the miRDeep software package
The miRDeep package can be downloaded at http://www.mdc-berlin.
de/rajewsky/miRDeep and consists of several specialized Perl scripts 
that in combination perform the computations described in this study. 
Beside Perl (available at http://www.perl.com/), the Vienna package33 
(available at http://www.tbi.univie.ac.at/RNA) and the Randfold appli-
cation21 (http://bioinformatics.psb.ugent.be/
software/details/Randfold) are required depen-
dencies. Also needed is a nucleotide sequence 
alignment tool such as the NCBI BLAST pack-
age34 (http://www.ncbi.nlm.nih.gov/Ftp/). All 
of these packages are portable and freely avail-
able. As the miRDeep core parameters work 
independent of species and data sets, no com-
plicated estimation processes are needed. The 
cut-off can be varied with a single command 
line argument for custom trade-offs between 
sensitivity and specificity. The user can choose 
which potential precursor sequences to input 
to the core algorithm. These can be either 
sequences excised from the genome by miRD-
eep using the aligned reads as guidelines, or 
custom sequences. After aligning reads to the 
genome, only a few hours on a standard Linux 
box are needed for genome-wide prediction 
using miRDeep.

DISCUSSION
By using a simple model for miRNA precur-
sor processing by Dicer, miRDeep is capable 
of both recovering the majority of known  
miRNAs present in heterogeneous deep-
sequencing samples and reporting novel 
miRNAs with high confidence. Estimating 
the reliability of results by predicting false-
positive rates before follow-up experiments 
is important for most practical applications. 
Such statistical tests always depend on certain 
assumptions, but our approach has the virtue 
of relying on the biological model of miRNA 
precursor processing by Dicer, which is pre-
cisely at the heart of the miRDeep algorithm. 
Another general limitation of algorithms 
for miRNA discovery is their reliance on 

parameters learned from known miRNAs, which introduces bias towards 
accurate recovery of known miRNAs, but less reliability or sensitivity in 
discovering novel miRNAs (‘overtraining’). However, whereas miRDeep 
parameters were derived from only a subset of miRNAs, they produce 
the overall same quality of results when run on very different data sets. 
Thus, we believe that miRDeep is not overtrained and that it is a widely 
applicable and flexible tool for researchers wanting to identify known and 
novel miRNAs in metazoan deep-sequencing samples.

However, to test an extreme case, we ran miRDeep on deep-sequencing 
data from a planarian sample (unpublished data). Planaria are metazoans, 
but have roughly equal phylogenetic distance to human and C. elegans and 
reside altogether in a comparatively unexplored branch of the meta-
zoan phylogenetic tree. Sixty-one mature miRNAs had been cloned and 
sequenced in planaria previously35. miRDeep rediscovered 86% of these, 
while reporting 39 novel miRNAs. Importantly, no genomic annota-
tion information was used. We have validated 16 of 19 tested miRNAs 
by northern blot analysis (unpublished data). At least 7 out of these 16 
miRNAs have not been reported in any other animal, adding confidence 
to miRDeep results, even in situations where only a minimum of con-
servation or annotation information is available.

Ruby et al.8 also predicted miRNAs from deep-sequencing data 
in C. elegans, but did not estimate the sensitivity and the false-posi-
tive rate of the prediction approach. Although the approach is neither 
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Figure 4  Accuracy of the miRDeep algorithm. (a–i) The three rows show sensitivity and false-positive 
estimates for miRDeep results from C. elegans (a–c), human (d–f) and dog (g–i). In a, d and g, the total 
number of mature miRNA sequences known in each species is shown in purple, the total number of 
mature sequences present in each deep-sequencing data set that matched any of the known mature 
sequences (allowing for mismatches in the 3′ end) is shown in green and the number of mature 
sequences recovered in the final set of miRDeep predictions is shown in orange. By this measure, the 
sensitivity of miRDeep ranges from 72–89%. The false-positive estimations are shown in each data 
set separately for the total number of miRNA precursor predictions (b,e,h) and for the novel miRNA 
predictions only (c,f,i). miRNA precursors reported by miRDeep are shown in purple. The estimated 
number of false positives is shown in green, with error bars indicating the s.d. The signal-to-noise 
ratios (ratio of the heights of purple and green bars) for total miRNAs range from 15:1 to 30:1. For 
novel miRNAs, the dog data set has the best quality (signal-to-noise ratio 30:1), as this genome has 
previously not been mined heavily for miRNAs.
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available as a software package nor described in enough detail to allow 
us to test their approach on other data sets, running miRDeep on the 
exact same deep-sequencing data used by Ruby et al. recovered 13 out of 
the 18 novel miRNA precursors predicted by Ruby et al., while reporting 
12 additional novel miRNAs. The inclusion of the C. elegans deep-
sequencing data from Pak et al.12 yielded another novel miRDeep-
predicted miRNA.

Berezikov et al.9 described an algorithm that predicts hundreds 
of novel human miRNA candidates from deep-sequencing data. 
However, it is difficult to determine how many of these are genuine, 
as they are typically expressed at extremely low levels. The majority 
of these candidates are represented only by a single read, making it 
difficult to decide whether they are genuine miRNAs or degradation 
products from non-miRNA transcripts. Whereas Berezikov et al. esti-
mate that their algorithm predicts one false-positive miRNA for an 
input of ~100 nonredundant read sequences, miRDeep has several 
orders-of-magnitude fewer false positives (one false-positive miRNA 
for every ~25,000 nonredundant read sequences). However, the two 
algorithms were designed with very different objectives. Whereas the 
algorithm of Berezikov et al. takes the deep-sequencing technology 
to the limit in terms of sensitivity and seeks to report an exhaustive 

list of miRNA candidates, miRDeep is designed to recover a large set 
of real miRNAs in a deep-sequencing sample, while minimizing the 
number of false positives. It will be interesting to run miRDeep on 
the data used by Berezikov et al. once they are publicly available.

In this study, the potential miRNA precursors that were input to 
miRDeep were excised from the genomes using the deep-sequencing 
reads as guidelines, and further filtered by very basic characteristics. We 
alternatively tried to use candidate miRNA precursor sequences pre-
dicted by several advanced miRNA detection algorithms that predict 
miRNA genes by using support vector machine or other types of learn-
ing algorithms based on much more detailed features of miRNA pre-
cursor structures (data not shown). However, we found that in all cases 
this severely compromised the sensitivity of miRDeep without lowering 
the false-positive rate. Of course, a number of existing miRNA gene-
prediction programs have proven to be useful6. Therefore, our results 
suggest that many of these algorithms could potentially be significantly 
improved by incorporating deep-sequencing data.

METHODS
Preparation of total RNA. Peripheral blood samples were drawn from a male 
dog (race “Griechischer Laufhund”, eleven years old) using a heparin-coated 
syringe. Following a selective hypotonic lysis of erythrocytes36, residual white 
blood cells were collected by centrifugation (500g, 5 min, 20 °C), suspended in 
PBS and immediately used for RNA isolation. Dog total RNA was prepared using 
the mirVana Isolation Kit (Ambion) according to the manufacturer’s protocol. 
The quality and quantity of resulting total RNA samples was checked using the 
NanoDrop Spectrometer (ND-1000 Spectrophotometer, Peqlab) as well as the 
Agilent 2100 Bioanalyzer (RNA Nano Chip, Agilent).

Total RNA was isolated from mixed-stage C.elegans population (N2 strain) 
using TRIZOL reagent (Invitrogen) following the manufacturer’s protocol37. 
Total RNA from HeLa cells was also isolated using the TRIZOL protocol.

Northern blots. Validation of miRDeep candidates was done by northern blot 
analysis as described earlier38. Briefly, 90 µg total RNA per lane and a RNA lad-
der (Decade marker, Ambion) were resolved side by side on a 15% denaturing 
polyacrylamide gel and transferred onto Hybond-N+ membrane (Amersham, 
GE Life Sciences). Hybridization and wash steps were performed at 43 °C. The 
5′ 32P-radiolabeled oligodeoxynucleotide probes were:

5′-AATAGAGAAATTCCAATGGTTG-3′ for miRDeep-cel-2,
5′-CATGATAGAGAAGACATTGGCTA-3′ for miRDeep-cel-3,
5′-TACAACCATCTAGAAGATCGCTT-3′ for miRDeep-cel-4,
5′-TACAACCATCTTGAATTTCGCTT-3′ for miRDeep-cel-5 and
5′-AGAGTTTTTCTGAGGGCAGCTC-3′ for miRDeep-cel-8.

Solexa sequencing of human and dog small RNAs. Small RNAs from the 
human and dog total RNA samples were prepared for Solexa sequencing as 
follows: ~10 µg total RNA were size-fractionated by Novex 15% TBE-Urea gel 
(Invitrogen) and RNA fragments of length between 20 and 30 bases were iso-
lated. The purified small RNAs were then ligated with 5′ adapter (Illumina). To 
remove unligated adapters, the ligation products (40–60 bases in length) were 
gel purified on Novex 15% TBE-Urea gel. Subsequently, the RNA fragments 
with the adapter at the 5′ end were ligated with 3′ adapters (Illumina). After gel 
purification on Novex 10% TBE-Urea gel (Invitrogen), RNA fragments with 
the adapters at both ends (70–90 bases in length) were reverse transcribed and 
the resulting cDNA was subjected to 15 PCR cycles. The amplification products 
were loaded on Novex 6% TBE gel (Invitrogen) and the gel band containing 
90- to 100-bp fragments was excised. The purified DNA fragments were used 
directly for cluster generation and 27 (human) or 36 (dog) cycles of sequencing 
analysis using the Illumina Cluster Station and 1G Genome Analyzer following 
manufacturer’s protocols. Sequencing reads were extracted from the image files 
generated by Illumina 1G Genome Analyzer using the open source Firecrest and 
Bustard applications (Illumina).

Obtaining C. elegans small RNA 454 sequencing reads. Two published C. elegans 
454 deep-sequencing data sets were obtained from the GEO database at NCBI. 
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Figure 5  Validating miRDeep candidates by northern blot analysis. Northern 
blot analysis of five of the novel C. elegans miRDeep miRNAs revealed bands 
corresponding to the mature miRNA product in four out of five candidates 
(lanes 2–5). The nucleotide length of the mature products as indicated by 
the RNA marker lanes are consistent with the predicted mature miRNA 
length in all four cases. The predicted secondary structure of each precursor 
is provided below. Black vertical bars represent the consensus positions of 
sequencing reads that mapped to the predicted precursors and numbers 
indicate the total number of these reads. The gray circles indicate small 3′ 
overhangs which are known to be typical for Dicer processing.
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The first had been produced by sequencing a sample of mixed-stage C. elegans 
fed bacteria that produced double-stranded RNA (accession no. GSE6282). The 
other had been produced by combining five sequencing reactions of five different 
mixed-stage samples (accession no. GSE5990).

Aligning the deep-sequencing reads. The deep-sequencing reads of the two 
C. elegans 454 deep-sequencing sets were combined and aligned to the genome 
(C. elegans version ce2, obtained from the UCSC genome database http://genome.
ucsc.edu/) using NCBI megablast (BLAST version 2.2.14) with the following 
options: -W 12 -p 100. Only perfect alignments were retained (full length, 100% 
identity).

The HeLa cell Solexa data set was aligned to the human genome (Homo 
sapiens version hg18, from UCSC) using megablast, as above. As this data set 
included adapter sequences, these were subsequently removed using the follow-
ing approach: alignments were kept that had perfect alignment from nucleotides 
1–18, and these alignments were extended until the first mismatch. Any unaligned 
ends of these reads were assumed to be adapters and were discarded. For each 
read, alignments of suboptimal length were discarded (if the best alignment was 
22 nt, all shorter alignments were discarded).

Adapters were removed from the dog lymphocyte Solexa data set by use of a 
custom suffix-based mapping tool. First, the adapter sequences were identified 
in the deep-sequencing reads. We required the presence of minimum 10 nucleo-
tides (nt) of the 5′ adapter sequence with a maximum of three edits (mismatches 
and/or insertions/deletions). Reads that contained an identified adapter sequence 
had the adapter removed and were retained, the rest were discarded. The retained 
reads were mapped to the dog genome (Canis familiaris version canFam2, from 
UCSC) using the custom mapping tool, allowing for up to two edits. For each 
read, mappings of suboptimal edit distance were discarded (if the best mapping 
was edit distance 1, all edit distance 2 mappings were discarded).

Excising potential miRNA precursors from the genome using deep-sequencing 
reads as guidelines. Before excising the potential precursors from the genome 
using the aligned reads as guidelines, the miRDeep package discards a number 
of reads unlikely to represent mature miRNA sequences. These reads are only 
disregarded for purposes of the potential precursor excision, since the total set 
of reads is used to score the potential precursors (see the next section). More pre-
cisely, we discarded reads that aligned to more than five positions in the genome. 
The vast amount of known mature miRNA reads align to five positions or less 
(unpublished results), and by discarding reads that align ubiquitously, vast num-
bers of alignments can be disregarded. Further, C. elegans and human reads that 
overlapped with positions (on either strand) annotated by the UCSC database39 
as rRNA, scRNA, snRNA, snoRNA or tRNA were discarded, as were reads that 
had perfect alignments to these types of noncoding RNA in the Rfam database40. 
Since it is known that C. elegans encodes endogenous small interfering RNAs and 
21U-RNAs, all reads overlapping with annotated positions of protein coding 
sequence or 21U-RNAs8 were discarded.

The remaining aligned reads were used as guidelines to excise potential pre-
cursor sequences from the genome. In the cases where reads aligned to the same 
strand within 30 nucleotides of each other, they were assumed to represent Dicer 
products of the same putative miRNA precursor, and were clustered. In these 
cases, a single sequence, consisting of the clustered region and 25-nucleotide 
flanks were excised. If such a potential precursor was longer than 140 nucleotides, 
it was discarded. In the cases where reads aligned more than 30 nucleotides from 
any other aligned reads on the same strand, two potential precursor sequences 
of length 110 nt were excised, corresponding to the reads being processed from 
the right or left arm of a potential precursor sequence.

Probabilistic scoring of the potential miRNA precursors. At this point, potential 
precursors that did not fold into a hairpin, or that had reads aligning to it in a way 
that was inconsistent with Dicer processing, were discarded. This was done by a 
combinatorial investigation of structure and signature. The details are as follows. 
First, the position of the potential mature miRNA sequence was defined as the 
position of the most abundant read sequence aligning to the potential precursor 
sequence. Second, the potential star sequence was defined as the sequence base 
pairing to the potential mature sequence, correcting for the 2-nt 3′ overhangs. 
Third, the loop was defined as the sequence between the potential mature and star 
sequence. Fourth, the potential mature-loop-star structure should form an unbi-
furcated hairpin, with a minimum of 14 base pairings between the mature and the 

star sequence. Fifth, for each read it was tested whether it aligned to the potential 
precursor in consistence with the signature expected from Dicer processing. More 
precisely, a read is in consistence if it aligns with the potential mature, loop or 
star, allowing the read to stretch two nucleotides beyond the expected position in 
the 5′ end or up to five nucleotides in the 3′ end. In the cases where >10% of the 
reads aligning to a potential precursor were inconsistent with this signature, the 
potential precursor was discarded. These liberal consistency rules were used to add 
robustness to the detection of fuzzy endonuclease processing.

Each potential precursor sequence that passed the initial filtering was then scored 
probabilistically. Our score is the log-odds probability of a sequence being a genuine 
miRNA precursor versus the probability that it is a background hairpin, given the 
evidence from the data:

1. score = log (P(pre | data) / P(bgr | data)
The probability of the sequence being a precursor is given by Bayes’ theorem:

2. P(pre | data) = P(data | pre) P(pre) / P(data)
3.  P(pre | data) = P(abs | pre) P(rel | pre) P(sig | pre) P(star | pre) P(nuc | pre) 

P(pre) / P(data)
The same holds for the probability of the sequence being a background hairpin:

4. P(bgr | data) = P(data | bgr) P(bgr) / P(data)
5.  P(bgr | data) = P(abs | bgr) P(rel | bgr) P(sig | bgr) P(star | bgr) P(nuc | bgr) 

P(bgr) / P(data)

P(pre) is the prior probability that a potential precursor is actually a miRNA 
precursor.

P(bgr) is the prior probability that a potential precursor is non-miRNA back-
ground hairpin and equal to 1-P(pre).

abs is the estimated minimum free energy of the potential precursor.
P(abs|pre) is the probability that a real miRNA precursor would have the 

value abs.
P(abs|bgr) is the probability that a non-miRNA background hairpin would 

have the value abs.
rel is equal to 1 if the potential precursor sequence is energetically stable, 

0 otherwise.
P(rel|pre) is the probability that a real miRNA precursor has the value rel.
P(rel|bgr) is the probability that a background precursor has the value rel.
sig is the number of reads in the deep-sequencing sample that align to the poten-

tial precursor sequence in consistence with Dicer processing (see above).
P(sig|pre) is the probability that a real miRNA precursor has the value sig in the 

deep-sequencing sample.
P(sig|bgr) is the probability that a background hairpin has the value sig in the 

deep-sequencing sample.
star is equal to 0 if the potential precursor sequence has no reads that represent 

a putative star sequence, and 1 otherwise.
P(star|pre) is the probability that a real miRNA precursor has the value star in 

the deep-sequencing sample.
P(star|bgr) is the probability that a background hairpin has the value of star in 

the deep-sequencing sample.
nuc is an (optional) binary variable. It is 0 if the nt 2–8 from the 5′ end of 

the putative mature miRNA are not conserved in any other metazoan, and 
1 otherwise.

P(nuc|pre) is the probability that a real miRNA precursor has the value 
of nuc.

P(nuc|bgr) is the probability that a background hairpin has the value of nuc.
In the above, we are assuming independence between abs, rel, sig, star 

and nuc.

Parameter estimation. All parameters were first estimated using C. elegans 
data only:

pre and brg are by default set to P = 0.5, but can be changed based on the 
expected miRNA contents in the deep-sequencing samples.

sig. To generate a set of background hairpins, we took the sequences excised 
from the C. elegans genome and discarded the ones that corresponded to known 
miRNA precursors or that did not have a hairpin structure. The number of 
remaining hairpins was ~2,000. For each background hairpin, we found the 
number of reads that aligned perfectly to it. The distribution of these numbers 
was approximately geometric. The parameter of the geometric distribution 
(used to model sig) was estimated using the mean of the numbers. The same 
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procedure was used for known C. elegans miRNAs to estimate a geometric dis-
tribution for real miRNA precursors.

abs. For each background hairpin, the absolute value of the minimum free energy 
was predicted using RNAfold. The distribution of these values was found to approx-
imate the Gumbel distribution. The parameters for the Gumbel distribution 
(used to model abs) were as estimated in ref. 41. As the Gumbel distribution 
is a continuous distribution, probabilities were calculated within windows 
of 1 kcal/mol. The same procedure was used for known C. elegans miRNAs to 
estimate the Gumbel distribution for real miRNA precursors.

rel. A potential precursor was defined to be energetically stable if it had a Randfold 
P < 0.05 (mononucleotide shuffling, 999 permutations). Since it is computationally 
demanding to produce this large a number of permutations, the contribution of the 
relative stability to the overall score is only calculated if it can make the difference 
between the overall score exceeding the cut-off or not. This is the cause of the ‘valley’ 
in the score distributions between score 0 and 1 in Figure 3.

star is set to 1 if the majority of star reads have a 5′ end that is within one 
nucleotide of the position expected from Dicer processing (taking into account 
3′ overhangs).

For both true precursor hairpins and background hairpins, the probabilities 
for rel, star and nuc were set according to raw relative frequencies. If, for instance, 
1% of the background hairpins had a conserved nucleus, P(nuc|bgr) would be 
set to 0.01.

In some samples, we observed that many known small RNAs other than  
miRNAs are transcribed in large numbers from a single locus from one strand 
only. Therefore, we limited the contribution of sig to the total score to 0 unless 
the star sequence is represented by at least one read. In practice this means that 
the structure scoring of abs and rel becomes more important when the deep-
sequencing data are ambiguous.

The entire parameter estimation procedure was repeated in planaria, using the 
known precursors of the planarian Schmidtea mediterranea (also from miRBase) 
and unpublished planarian 454 data. Although C. elegans and planarians are 
separated by a large phylogenetic distance, the parameter estimates were similar, 
suggesting that the estimation process is largely species-independent. The pooled 
training sets of these two species have been used to estimate the final parameter 
set for the current study.

Controls. The number of known mature miRNA sequences present in the 
data sets was estimated by finding how many mature sequences aligned per-
fectly to the deep-sequencing reads, allowing for mismatches in the last three 
nucleotides of the mature sequences. This was done on the raw deep-sequencing 
data sets, just after adapters had been removed. The number of known mature 
miRNA sequences in the predictions was estimated by finding how many mature 
sequences aligned perfectly to the final set of predicted miRNA precursors. The 
sensitivity was estimated as the ‘number of mature miRNA sequences recovered’ 
divided by the ‘number of mature sequences present in the data set’. Both when 
making the controls and when making the actual predictions, special care was 
taken to ensure that no miRNAs were scored higher because the sequence of the 
miRNA was included in the conservation set (circular inference).

The false-positive rate was estimated using a permutation approach. For each 
potential precursor sequence, the protocol generates a secondary structure pre-
diction and a processing signature containing information on the positions and 
frequencies of aligned reads. The controls were made such that all structures and 
signatures were maintained, but the structure and signature pairings were per-
muted. In all other respects, the runs were performed as described above. For each 
estimation of the false-positive rate, 100 independent permutations were used.

Comparing novel dog miRNA precursors to Rfam sequences. The set of novel 
dog miRNA precursor candidates were aligned against the full set of noncoding 
sequences obtained at Rfam using NCBI blastn with the following options: -F F 
–e 1e-5. Only two of the candidates had any similarity to non-miRNA sequences 
(these were snoRNA sequences).

Contribution of scored features to overall accuracy. To assess the contribution 
of the scored features to the accuracy, we ran miRDeep on the human data, sys-
tematically omitting parts of the algorithm. In some cases it is not transparent 
if changes in sensitivity and false-positive rate actually improve or worsen the 
algorithm (for instance, when both sensitivity and false-positive rate go up). 

Therefore the score cut-off was varied in each run such that the sensitivity 
remained constant (at 72%). We then recorded the change in false positives. 
Each run was repeated ten times and the mean number of false positives noted. 
For example, we found that omitting the hairpin stability scoring with Randfold 
boosted the false-positive rate on average by a factor of 1.9. We found in all 
cases that the elimination of a score feature increased the number of false posi-
tives (minimum free energy 2.2, star sequence 3, conservation 3). Omitting all 
four score features increased the number of false positives by a factor of 17. 
Additionally allowing nonhairpins boosted the number of false positives by a 
factor of 42.

This shows that all features scored by miRDeep significantly contribute to 
the accuracy. Individual score features can in most cases be omitted, since an 
increase by a factor of two or three in the false-positive rate can often be toler-
ated. This means, for instance, that the computational speed of miRDeep can be 
substantially increased through omission of the Randfold scoring. It also means 
that conservation scoring can be omitted. However, when miRDeep is run on 
already mined data, or in genomes that have been heavily mined for small RNAs, 
we recommend that all parts are included to get the highest possible signal-to-
noise ratio for the novel predictions.

The miRDeep software package. The miRDeep software package consists of seven 
documented Perl scripts that should be run sequentially by the user. miRDeep can 
be run on Linux or Windows platforms or any other system that supports Perl.
1.  blastoutparse.pl is used to parse standard NCBI BLAST output format into a 

custom tabular separated format (‘blastparsed’).
2.  blastparselect.pl cleans the output from blastoutparse.pl.
3.  filter_alignments.pl filters the alignments of deep-sequencing reads to a 

genome. It filters when only a limited part of a read is aligned. It can also filter 
reads that are aligning multiple times (user-specified) to the genome. The basic 
input is a file in blastparsed format.

4.  overlap.pl can be used (user specified) to remove reads that align to the genome 
in positions that overlap with selected annotation tracks provided by the user 
(e.g., known rRNAs, tRNAs). The basic input is a file in blastparsed format and 
an annotation file in standard gff format.

5.  excise_candidate.pl cuts out potential precursor sequences from a genome 
using aligned reads as guidelines. The basic input is a file in blastparsed format 
and a genome FASTA file. The basic output is also FASTA format.

6.  mirdeep.pl is the core algorithm. Several files are given as input. The first is a 
file in blastparsed format giving information on reads aligning to the potential 
precursors. The second is an RNAfold output file giving information on the 
sequence, structure and absolute stability of the potential precursors. Several 
command line options are available. One option inputs a FASTA file con-
taining known mature miRNA sequences to allow for conservation scoring. 
Another option allows for a sensitive run optimized for Sanger sequences 
obtained through conventional small RNA cloning. Another option evalu-
ates Drosha stem recognition by scoring the number of base pairings formed 
by the sequences immediately flanking the potential precursor sequence. A 
further option uses the Randfold algorithm to score the relative stability of 
potential precursors that have a score close to the set cut-off. Basic output of 
the algorithm is the total information on the predicted miRNA precursors, 
including structure prediction, minimum free energy, signature and the scoring 
contributions of all evaluated features.

7.  permute_structure.pl permutes the id and sequence/structure combinations 
of an RNAfold output file. This is used to do the permutation controls.

Accession codes. NCBI Gene Expression Omnibus (GEO). Data sets have been 
deposited with accession codes GSE10825 and GSE10829.

Note: Supplementary information is available on the Nature Biotechnology website.
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Freshwater planarian flatworms possess uncanny regenerative ca-
pacities mediated by abundant and collectively totipotent adult stem
cells. Key functions of these cells during regeneration and tissue
homeostasis have been shown to depend on PIWI, a molecule re-
quired for Piwi-interacting RNA (piRNA) expression in planarians.
Nevertheless, the full complement of piRNAs and microRNAs (miR-
NAs) in this organism has yet to be defined. Here we report on the
large-scale cloning and sequencing of small RNAs from the planarian
Schmidtea mediterranea, yielding altogether millions of sequenced,
unique small RNAs. We show that piRNAs are in part organized in
genomic clusters and that they share characteristic features with
mammalian and fly piRNAs. We further identify 61 novel miRNA
genes and thus double the number of known planarian miRNAs.
Sequencing, as well as quantitative PCR of small RNAs, uncovered 10
miRNAs enriched in planarian stem cells. These miRNAs are down-
regulated in animals in which stem cells have been abrogated by
irradiation, and thus constitute miRNAs likely associated with specific
stem-cell functions. Altogether, we present the first comprehensive
small RNA analysis in animals belonging to the third animal super-
phylum, the Lophotrochozoa, and single out a number of miRNAs
that may function in regeneration. Several of these miRNAs are
deeply conserved in animals.

microRNAs � miRNAs � piRNAs � regeneration � stem cells

P lanarians have become a molecularly tractable model system in
which to study regeneration, tissue homeostasis, and stem-cell

biology (1). Planaria are free-living, triploblastic flatworms of the
phylum Platyhelminthes, which is presently considered to belong to
the superphylum Lophotrochozoa. Model systems for modern
molecular and developmental biology have almost exclusively fo-
cused on the other 2 superphyla, i.e., the Deuterostomes (which
includes vertebrates) and the Ecdysozoa (e.g., Caenorhabditis el-
egans and Drosophila melanogaster). Unlike these model systems,
planarians possess remarkable regeneration abilities. Decapitation,
for example, results in the complete regeneration of the head within
7 days after amputation. Such robust restoration of missing body
parts is mediated by adult stem cells known as neoblasts (2). Of the
thousands of known planarian species, Schmidtea mediterranea is
arguably the species of choice for modern molecular biology and
high-throughput, genome-wide approaches because it is diploid, it
exists in sexual and asexual strains, and its genome has recently been
sequenced and annotated (3). The size of its genome is roughly a
third of the human genome, and �80% of the �20,000 annotated
planarian genes have orthologs in humans. Moreover, by morphol-
ogy alone, neoblasts and their immediate division progeny comprise
�25% of all cells in the adult animal (4). In addition, RNAi screens
have identified hundreds of genes specifically linked to planarian
regeneration and stem-cell biology (5). Many of these genes are
conserved in humans, and thus understanding planarian regener-
ation promises to yield important insights into human regeneration
and stem cell biology.

In recent years, small, noncoding RNAs have emerged as essen-
tial players in almost all biological processes. Many different animal
small-RNA species have by now been identified, although the
biological functions of these species remain largely unclear (6, 7).
Important exceptions are microRNAs (miRNAs) and Piwi-
interacting RNAs (piRNAs). miRNAs have been shown to play
important roles in many differentiation processes, including regen-
eration (8), whereas at least one function of piRNAs has been
shown to be in maintaining the integrity of the germ line (6). PIWI
proteins are essential for the biogenesis and function of piRNAs,
and they appear to have undergone an expansion in the planarian
genome. We have identified at least 7 likely planarian PIWI genes,
of which 3 (SMEDWI-1–3) have been in part functionally charac-
terized (9, 10). For example, depletion of SMEDWI-2 has been
shown to generate specific defects in stem-cell-mediated regener-
ation and homeostasis (9). Because neoblasts can give rise to
germ-line cells in planaria, it is perhaps not surprising that at least
SMEDWI-1 and SMEDWI-2 proteins are specifically expressed in
neoblasts, and that depletion of SMEDWI-2 or SMEDWI-3 re-
duces piRNA production and both are required for neoblast
function and regeneration (10).

Given the importance of miRNAs and piRNAs for planarian and
stem-cell biology, it is essential to identify and classify small RNAs
in S. mediterranea. Presently, 63 planarian miRNA genes encoding
for 61 unique, mature miRNAs have been identified (11) and
attempts have been made to describe their expression mainly by in
situ hybridization of primary miRNA transcripts (12). However,
mature miRNA expression can be highly regulated (13). Therefore,
to determine the definitive spatial distribution of miRNAs, expres-
sion patterns of primary transcripts have to be complemented by
mature miRNA expression data. Additionally, all known planarian
miRNAs have been identified by classic cloning and Sanger se-
quencing, and it is highly likely that the true number of planarian
miRNAs is much higher. A recent study (10) has further identified
a few thousand piRNAs, which is also almost certainly a vast
underestimate of the true number of planarian piRNAs (14).

We thus used massive, next-generation sequencing methods to
define the full complement of small RNAs present in neoblasts,
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animals depleted of neoblasts, and whole animals. Altogether, we
cloned, sequenced, mapped, and annotated millions of small RNAs.
Extensive computational, qPCR, and Northern analyses allowed us
to double the number of known planarian miRNAs, quantify their
expression, and identify a number of mature miRNAs likely to be
involved in stem-cell biology. Furthermore, we were able to study
the expression, genomic organization, and biogenesis features of
planarian piRNAs at a resolution orders of magnitude higher than
any previous studies. Our dataset allowed us to compare planarian
piRNA characteristics with known piRNA features in mammals
and ecdysozoans. Altogether, our work brings the characterization
and annotation of small RNAs in planarians to a depth that is at par
with other model systems such as C. elegans.

Results
Comprehensive and Quantitative Deep Sequencing of Planarian Small
RNAs. To profile expression differences of small RNAs, we wished
to compare neoblasts, intact animals, and animals devoid of neo-
blasts with each other. Therefore, RNA was obtained from the
clonal asexual strain CIW4 of S. mediterranea from FACS-purified
neoblasts, intact animals, and irradiated animals in which neoblasts
were eliminated by radiation (1). Each of the 3 samples was
sequenced with 2 different methods. Solexa (Illumina) technology
was used to profile all species of small RNAs (size selection: 18–40
nt). Furthermore, we used the 454 Life Sciences (Roche) technol-
ogy to specifically profile Dicer products (such as miRNAs) by using
a more narrow size selection of 18–25 nt. By using a stringent
mapping procedure (see SI Text), we matched a total of �4.2
million sequencing reads to �6.7 million loci in the planarian
genome. Table 1 gives an overview of the 6 deep-sequencing
datasets. We next assessed the samples’ quality by 3 criteria:
coverage, reproducibility, and accuracy of expression quantitation.

Coverage. To estimate the coverage of planarian small RNAs by the
sequenced RNAs, we computed the overlap of our mapped reads
with known planarian miRNAs and piRNAs. Previously identified
miRNAs were detected by conventional cloning and sequencing
small RNAs from S. mediterranea whole-body samples with a
median miRNA count of 4 (11). We found all of these miRNAs in
our pooled datasets, with a median of �9,000 counts (Table S1).
Furthermore, our data contain the lowly expressed ‘‘star’’ miRNAs
for 62 of the 63 miRNA genes. Another recent study reported
�4,800 planarian piRNAs deep-sequenced from whole-body sam-
ples of planarians (10). We found 38% of these piRNAs in our data.
Considering that animal piRNA populations are estimated to
consist of hundreds of thousands of unique sequences (14), it is not
surprising that our sequencing of piRNAs is not fully saturated.

Reproducibility. We compared 2 Solexa datasets obtained by se-
quencing biological replicate planarian samples. For each planarian
miRNA in miRBase, we plotted the number of times the miRNA
was sequenced in one sample vs. the other sample (Fig. 1A). The

correlation was almost perfect (Pearson’s correlation � 0.996),
indicating high reproducibility.

Accuracy of Expression Quantitation. We investigated whether our
deep-sequencing data can accurately quantify differential miRNA
expression. We measured expression fold-changes between intact
and irradiated samples for 35 planarian miRNAs by using our
Solexa data and quantitative PCR in samples from independent
biological replicates (Taqman assay; Methods). We found a strong
correlation between the deep-sequencing data and the qPCR
measurements (Fig. 1B, Pearson’s correlation � 0.93). We con-
clude that our data are comprehensive, reproducible, and can be
used to quantify miRNA expression across samples.

Planarian Small RNAs Are Predominantly miRNAs and piRNAs. We
next identified the types of small RNAs present in planarians and
quantified their expression in neoblast vs. whole-body extracts. We
hypothesized that the comparison of neoblasts with an untreated
whole-body sample should identify small RNA species up-regulated
in the planarian adult stem cells. If such species are in fact specific
to neoblasts, we would further expect them to have reduced
expression in the irradiated whole-body sample compared with the
samples from the intact, unirradiated animals. Moreover, these
comparisons would allow us to detect artifacts, i.e., highly expressed
small RNAs, that may have arisen as a result of cell dissociation
and/or cell sorting.

Small RNAs in the untreated sample showed a bimodal length
distribution with 2 distinct peaks at nucleotides 22 and 32 (Fig. 2A).
We first selected reads that mapped to known planarian miRNAs
from miRBase as well as our novel miRNAs (see below). The length
distribution of these reads had a single peak at nucleotide 22, typical
for miRNAs (Fig. 2B). In fact, these 122 miRNAs (known and
novel) account for the entire 22-nt peak in Fig. 2A, suggesting that
few miRNAs remain to be discovered in S. mediterranea. When
subtracting all reads mapping to annotated miRNAs, rRNAs and
tRNAs, and coding exons, the length distribution forms a distinct
peak at nucleotide 32 (Fig. 2C). We tentatively refer to these
sequences as piRNAs, and will present further evidence for this
classification in the next section on piRNAs. Reads mapping to anno-
tated coding exons display a clear peak approximately at nucleotide 32
(Fig. 2D). However, this is likely an artifact caused by ambiguous
read-mappings and the genome annotation (for discussion see SI Text
and Table S2).

We next estimated the relative abundance of different classes of
small RNAs across the 3 sample types (Fig. 2 E–G, pie charts). The
intergenic piRNA fraction is predominant in sorted neoblasts
(82%), intermediate in the untreated sample (61%), and low in the
irradiated sample (25%). The increased fractions of rRNA and

Table 1. The 6 deep-sequencing datasets derived from untreated
and irradiated planarians and isolated neoblasts

Datasets
Sequencing

platform
Sample

type

Number of
unique mapped

reads
Number of

mapped reads
Number
of loci

1 454 Neoblast 25,256 63,278 95,951

2 454 Untreated 27,461 93,412 104,769

3 454 Irradiated 21,163 61,391 85,051

4 Solexa Neoblast 86,063 91,371 417,646

5 Solexa Untreated 984,459 1,784,859 4,064,381

6 Solexa Irradiated 767,496 2,050,669 3,018,709

All All All 1,507,162 4,144,980 6,700,894
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short piRNAs in the irradiated sample could be a result of degra-
dation. In contrast, the miRNA fraction is low in the neoblast
sample (4%), intermediate in the untreated sample (30%), and
larger in the irradiated sample (46%).

Comparing the abundance of each class of small RNAs across
different samples requires normalizing contents to a stably ex-
pressed endogenous control. We used miR-71c for library normal-
ization because we observed that this miRNA is robustly and
constantly expressed across our 3 samples based on a quantitative
Taqman assay (SI Text and Fig. 3). By normalizing the total read
counts of miRNAs and piRNAs to the read count of miR-71c, we
were able to estimate the relative expression of small RNAs across
samples (Fig. 2 E–G, bar graphs). Intergenic piRNAs have very
high expression in neoblasts (�10-fold higher than in untreated
whole-body planarians) and low expression in irradiated planarians
(4-fold lower than in untreated planarians), consistent with the idea
that piRNAs may be up-regulated in neoblasts and their division
progeny, i.e., where PIWI proteins are specifically expressed (10).
In contrast, total miRNA contents appeared roughly constant over
the 3 samples, although the abundances of individual miRNAs
varied. We independently repeated this analysis with 2 other
miRNAs (miR-36 and miR-36c) that appeared roughly constant
and obtained comparable results (see Table S3).

Planarian piRNAs Share Key Features with Mammalian and Fly piRNAs.
To characterize planarian piRNAs, we analyzed deep-sequencing
reads that did not map to annotated miRNAs, rRNAs, tRNAs, or
coding sequences (Fig. 2C). These reads display 2 of the defining
features of mammalian and fly piRNAs (reviewed in ref. 14): a
length distribution peaking approximately at nucleotide 30 and a
diverse population (�1.2 million unique sequences in our Solexa
data). Northern blots validated size and expression of 3 planarian
piRNAs (Fig. 4A).

Planarian piRNAs Display a Clear Tendency to Overlap by 10 Nucleo-
tides. The current model of biogenesis proposes that piRNAs are
generated through iterative PIWI-mediated cleavage of transcripts
with complementary sequence [the ‘‘ping-pong’’ amplification
mechanism (15, 16)]. According to this model, piRNAs that map to
opposite genomic strands tend to overlap by 10 nt. We investigated
whether this signature is conserved in planarians. However, this is
difficult because many piRNAs map to numerous genomic loci. For
instance, if 2 reads map to the same 100 loci, their overlap would
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be counted 100 times. Thus, to avoid potentially inflated counts, we
assigned ‘‘intensities’’ to mappings that were inverse to the number
of mappings for the read. For example, a read mapping to 10 loci
would be assigned an intensity of 0.1. Summing overlap intensities over
each of our datasets, yielded major peaks with an overlap of exactly 10
nt in the neoblast and the untreated sample (Fig. 4B), whereas the peak
for the irradiated sample was greatly reduced (Fig. S1).

Planarian Primary piRNAs Map Antisense to Transposons. An impor-
tant function of mammalian and fly piRNAs is to silence trans-
posons. In mouse testes, PIWI proteins cleave transposon mRNA
to generate primary piRNAs, with a uracil in the 5� end (17).
Primary piRNAs base pair with long transcripts that contain
complementary sequence to cleave out secondary piRNAs, which
thus typically have an adenosine at position 10. In fly testes, this is
reversed. Primary piRNAs are cleaved from transcripts antisense to
transposons, and the secondary piRNAs are cleaved from the
transposon mRNA (15, 16).

We found that 32% of the planarian piRNAs map to annotated
transposons (SI Text). piRNAs mapping antisense to transposons
have a clear tendency for a beginning uracil and no other sequence
biases (Fig. 4C), indicating that these are primary piRNAs. piRNAs
mapping in the sense orientation to transposons have a bias toward
a beginning uracil and an adenosine at position 10.

Planarian piRNAs Locate to Transposons as much as Mouse Pre-
pachytene piRNAs. Mammalian and fly piRNAs differ on the
fraction of the population that is transcribed from transposons.
Mouse pachytene piRNAs have no reported role in transposon
silencing, and map to mouse transposons less than would be
expected from the transposon genome coverage. In contrast, mouse
prepachytene piRNAs and fly piRNAs have reported roles in
transposon silencing (reviewed in ref. 18). These map to trans-
posons as much (mouse prepachytene) or more (fly) than would be
expected from the transposon genomic coverage.

Planarian transposons cover 31% of the genome and 32% of the
piRNAs. These numbers resemble mouse prepachytene piRNAs.
However, planarian piRNAs do display biases toward particular
classes of transposons. For instance, Mariner elements, active in
planarians (19), have 1.8 times more piRNAs mapping than would
be expected by chance, whereas PiggyBac have half the number of
mapping piRNAs as would be expected (Table S4). These findings
are significant (P � 0; see SI Text). piRNA transposon association
changes little across the 3 samples.

Planarian piRNA Clusters Display Strand Expression Bias but Seem Not
to Resemble Master Loci. We observed that planarian piRNAs,
similar to those of mammals and flies, tend to map to discrete

regions. To annotate these piRNA clusters, we located 10-kb
regions of the genome to which 100 or more long piRNAs can be
unambiguously traced and where instances of 10-nt overlaps be-
tween such piRNAs occur. This yielded 119 piRNA cluster candi-
dates to which 6% of all planarian piRNAs in the untreated sample
can be traced (Table S5). These clusters are thus highly (and
significantly; see SI Text) enriched in piRNAs, given that they only
constitute about one thousandth of the planarian genome.

The majority (92%) of planarian piRNA clusters displayed a
strong strand bias, with piRNA mapping intensities 10 times or
higher on one strand (see Fig. S2). piRNAs originating from highly
expressed cluster strands, like primary piRNAs in mouse and fly,
have a strong bias for a 5� uracil, whereas the ones from the lowly
expressed cluster strands, like secondary piRNAs, have a strong
tendency for an adenosine at position 10 (see Fig. 4D). Similar strand
expression biases are observed in the fly ‘‘master loci’’, which are
piRNA clusters densely packed with nonfunctional transposons. How-
ever, we did not identify any master loci in the planarian genome, as
none of the piRNA clusters contained large numbers of transposons.

Discovery and Validation of Novel Planarian miRNAs. To discover
novel miRNAs, we used miRDeep, an algorithm to detect and score
Dicer hairpin products such as miRNAs in deep-sequencing data
(20). Varying score cut-offs allow trade-offs between sensitivity and
specificity. Sensitivity is computed as the fraction of known miR-
NAs recovered, whereas false positives are estimated by stringent
statistical controls (20).

We separately searched the 454 and Solexa data (SI Text). With
the default cut-off we recovered miRNAs with high sensitivity and
specificity (Fig. 5 A and B). miRDeep identified 70 novel potential
miRNAs, which were further curated (see SI Text). We thus report
a subset of 61 high-confidence miRNAs (Table S6).

We subjected 20 miRNA candidates to Northern blot analysis
and successfully validated 13 of them (see Fig. 5C). Candidates not
observed by Northern blotting may be below detection threshold. In
support of this, a more sensitive Taqman assay was used to validate
11 of 11 novel candidates tested (Fig. 3), 4 of which had also been
validated by Northern blot analysis (Fig. 5C). In total, 20 novel
candidates were validated.

The phylogenetic analysis of planarian miRNAs may be partic-
ularly informative as planarians are an outgroup relative to animal
model systems used by the majority of researchers. miRNAs can be
grouped into families based on sequence similarity at their 5� end
(7). Our novel miRNAs increase the number of planarian miRNA
families from 37 to 79 (Fig. S3). The planarian miRNAs share 22
families with mammals and 33 with flies and with nematodes. Thus,
we find planaria to resemble Ecdysozoa (flies, nematodes) more
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than mammals from the miRNA phylogeny. Interestingly, the
majority (45 of 79) of planarian miRNA families do not show
sequence similarity to known miRNAs. The presence of the miR-
1992 family (21) combined with the absence of the miR-1994 family
gives evidence to the hypothesis that flatworms are the sister group
to the other lophotrochozoans.

More than a Dozen miRNAs Are Likely Linked to Neoblast Biology. To
identify miRNAs up-regulated in neoblasts, we calculated the
miRNA expression fold-change between the untreated whole worm
and isolated neoblast deep-sequencing datasets (SI Text and Table S7).
13 miRNAs were up-regulated by �2-fold in the neoblast sample. As
an independent control, we used qPCR to profile the expression of
these miRNAs in filtered cells enriched in neoblasts vs. untreated
planarians. These were all up-regulated by �30% in the isolated
neoblasts, whereas a number of other profiled miRNAs did not change.

To rule out that miRNA up-regulation may have been caused by
cell dissociation or cell sorting, we used qPCR in independently
obtained samples to calculate miRNA expression fold-changes
between untreated and irradiated animals. We found 10 of 13 of the
miRNAs of interest to be �25% down-regulated in the irradiated
sample (see Table 2 and Fig. 3). These data suggest that a small
subset of miRNAs is significantly up-regulated in neoblasts. Nota-
bly, miRNA genes comprised in clusters (miR-2d, miR-13, miR-
71b, miR-752 and let-7b, miR-36b) as well as the miRNAs belonging
to the same families (let-7, miR-2/miR-13) show a similar differ-
ential expression (Fig. 3).

Interestingly, most of the up-regulated miRNAs in neoblasts
belong to conserved families. The let-7 family has previously been
associated with stem-cell identity. However, previous studies indi-
cate that let-7 is down-regulated posttranscriptionally in stem cells
(22). In flies, miR-2 and miR-13 target the proapoptotic genes grim,
reaper, and sickle (23). We find that all 4 miRNAs in genomic cluster
containing the planarian miR-2 and miR-13 are up-regulated in
neoblasts, suggesting that these miRNAs are important for neoblast

maintenance or neoblast-related function. Additionally, miRNAs
that are typically expressed in specific somatic tissues such as
miR-124 (brain tissues) and miR-1 and miR-133 (muscle tissues)
were down-regulated in neoblasts.

Discussion
By using massive quantitative deep sequencing, we have anno-
tated small RNA species in S. mediterranea. We have doubled the
number of planarian miRNAs, and have validated a large
fraction of our novel miRNAs. We find that the small RNA-
length peak at nucleotide 22 disappears completely when
miRNAs are removed (Fig. 2), suggesting that a diminishing
number of miRNAs or other Dicer products remain to be
discovered in S. mediterranea. We were also unable to detect
evidence for phased processing of longer transcripts by Dicer.
Moreover, we annotated more than one-million unique piRNA
sequences that locate to genomic clusters. piRNAs have previ-
ously been well-described in Deuterostomes and ecdysozoans
(15, 16, 24–26). We report �1.2 million unique planarian
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Table 2. Ten miRNAs up-regulated in neoblasts

miRNAs

Fold change
neo/untr

(454)

Fold change
untr/irr
(qPCR)

Fold change
untr/irr
(Solexa)

let-7a 2.4 3.3 5.1

let-7b, miR-36b 2.1, 3.8 2.5, 2.0 2.1, 0.9

miR-2a 3.7 1.4 1.0

miR-2d, miR-13,
miR-71b,
miR-752

3.4, 4.9, 3.0, 7.0 2.0, 3.3, 2.5, 6.5 1.9, 5.5, 2.3, 6.2

miR-756 2.0 1.4 1.6

miR-2160 5.0 2.0 1.9

miRNAs listed in the same field locate to the same genomic cluster. Neo,
neoblast sample; untr, untreated sample; irr, irradiated sample.
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piRNAs locating to more than 100 genomic clusters, and thus
give a first comprehensive description of piRNAs in lophotro-
chozoans. We find that piRNA features characteristic for piRNA
biogenesis (sequence biases, 10-nt overlap) are shared in all 3
metazoan superphylae. Planarian piRNAs also share specific
characteristics with either mammalian or fly piRNAs. Planarian
primary piRNAs, like those in the fly, tend to map antisense to
transposable elements, suggesting that planaria may defend their
genome against transposons similarly to flies. However, from a
different point of view, planarian piRNA biology resembles that
of the mouse more than the fly. First, f latworm piRNAs
associate with transposons as much as mouse prepachytene
piRNAs. Second, the expression of planarian piRNAs is dis-
persed between numerous clusters, similar to what has recently
been observed in the mouse (17). Third, we find no planarian
clusters containing many transposon fragments akin to the
characteristic f ly master loci. Together, our data indicate that the
piRNA pathway has undergone complex evolution.

We find that at least 10 miRNAs are up-regulated in neoblast
samples. Deep sequencing and qPCR controls show that these are
down-regulated in the irradiated samples depleted of neoblasts,
indicating that they may be specific to neoblast biology. These
miRNAs include all 4 miRNAs from a genomic cluster that
contains miR-2 and miR-13, miRNAs known to inhibit proapo-
ptotic genes in fly (23). We also find that at least 2 members (let-7a
and let-7b) of the highly conserved let-7 family are up-regulated in
neoblasts. Up-regulation of let-7 in neoblast samples was paralleled
by let-7 down-regulation in irradiated samples. These findings are
surprising because let-7 and its family members are known to be
depleted in mammalian stem cells (22, 27) and have been shown in
numerous species to repress cell proliferation and promote differ-
entiation (reviewed in ref. 28). However, recent studies have shown
that cells with the morphological appearance of neoblasts can be
resolved into subtypes, and planarian stem cells may maintain
proliferative activity after commitment (4, 29). Thus, high let-7
levels in neoblast samples may be derived from neoblasts that are
exiting the stem-cell state and committing to a differentiation lineage.
Further let-7 expression analyses, therefore, may help elucidate the
specification of neoblast lineages.

Although planarian stem cells are collectively totipotent be-
cause they can give rise to both the somatic and germ lineages in the
adult, our analyses indicate that planarians harbor only 1 miRNA

(miR-92) known to be highly expressed in mammalian embryonic
stem cells (30). However, we found no evidence that its 2 family
members are up-regulated in neoblasts. Taken together, expression
of miRNAs in planarian neoblasts share little if any similarity with
mammalian embryonic stem cells, which may reflect both the adult
nature of planarian stem cells as well as the inherent in vitro versus
in vivo differences between these 2 populations of animal stem cells.

Finally, the small RNA profile of neoblasts resemble mouse and
fly germ-line stem cells in being dominated by piRNAs. Because the
genomic contents of germ-line cells and neoblasts are potentially
immortal, both cell types need to strictly control their genome
integrity during transmission to future generations, and particularly,
to protect it against the uncontrolled propagation of mobile genetic
elements. piRNAs have been shown selectively to silence trans-
posons in the fly and mouse genomes (reviewed in ref. 18) and it
is likely that piRNAs play such a role in planaria. Further studies are
needed to determine whether planarian piRNAs also play a critical
role in epigenetic silencing through DNA/chromatin methylation
like their germ-line homologs (17).

Methods
Sample Preparation and Sequencing. Planarians from the clonal, asexual CIW4
strain of S. mediterranea were starved for 1 week before all experiments. Pla-
narian total RNA was isolated by using TRIzol (Invitrogen). Planarians for the
irradiated samples were exposed to 60 Gy and RNA was extracted 8 days after
irradiation. FACS sorting was performed as described in SI Text. Solexa and 454
sequencing was performed by using the manufacturer’s protocol.

miRNA Identification. Detection of novel miRNAs was performed as in ref. 20. For
more details, see SI Text.

Northern Blot Analysis and qPCR. Validation of miRNA and piRNA candidates was
performed by Northern blot analysis ( Table S8) as described previously (31). qPCR
(Taqman miRNA custom assays, ABI) was used to quantify the expression fold-
change of 35 miRNAs. cDNA was synthesized from 50 ng of total RNA from either
irradiated or untreated animals. Samples without reverse transcriptase served as
anegativecontrol template.Eachmeasurementwasperformed intriplicate.Two
biological replicates were used. Threshold cycle values are relative to expression
detected for the ubiquitously expressed control mRNA ura4 (SI Text). Relative
expression of miRNAs is given as log2 of 2���Ct values.
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SUMMARY

Small noncoding RNAs function in concert with Argo-
naute (Ago) proteins to regulate gene expression at
the level of transcription, mRNA stability, or transla-
tion. Ago proteins bind small RNAs and form the
core of silencing complexes. Here, we report the anal-
ysis of small RNAs associated with human Ago1 and
Ago2 revealed by immunoprecipitation and deep
sequencing. Among the reads, we find small RNAs
originating from the small nucleolar RNA (snoRNA)
ACA45. Moreover, processing of ACA45 requires
Dicer activity but is independent of Drosha/DGCR8.
Using bioinformatic prediction algorithms and lucif-
erase reporter assays, we uncover the mediator sub-
unit CDC2L6 as one potential mRNA target of ACA45
small RNAs, suggesting a role for ACA45-processing
products in posttranscriptional gene silencing. We
further identify a number of human snoRNAs with
microRNA (miRNA)-like processing signatures. We
have, therefore, identified a class of small RNAs in
human cells that originate from snoRNAs and can
function like miRNAs.

INTRODUCTION

Small noncoding RNAs, including microRNAs (miRNAs), short

interfering RNAs (siRNAs), and Piwi-interacting RNAs (piRNAs),

are important regulators of gene expression (Filipowicz et al.,

2005; Meister and Tuschl, 2004; Seto et al., 2007). miRNAs and

siRNAs guide sequence-specific cleavage, deadenylation, or

translational repression of target mRNAs (Chen and Rajewsky,

2007; Pillai et al., 2007). piRNAs are specifically expressed in

testes (Seto et al., 2007) and control retrotransposition in the

mammalian germ line (Aravin et al., 2007).

In many gene-silencing pathways, small RNAs are generated

from double-stranded RNA (dsRNA) molecules by distinct pro-

cessing steps (Tomari and Zamore, 2005). miRNA genes are tran-

scribed by RNA polymerases II or III as primary miRNAs that are

further processed to hairpin-structured miRNA precursors
Mole
(pre-miRNAs) by the nuclear microprocessor complex containing

the RNase III enzyme Drosha and its cofactor DGCR8 (Borchert

et al., 2006; Denli et al., 2004; Gregory et al., 2004; Landthaler

et al., 2004; Lee et al., 2003, 2004). Pre-miRNAs are transported

to the cytoplasm, where the RNase III enzyme Dicer cleaves off

the loop of the miRNA hairpin, thereby generating a short dsRNA

of about 20–25 nucleotides (nt) in length (Bohnsack et al., 2004;

Grishok et al., 2001; Hutvágner et al., 2001; Lund et al., 2004).

Such dsRNA intermediates are subsequently unwound, and the

single-stranded mature miRNA is incorporated into effector

complexes often referred to as miRNPs (Mourelatos et al.,

2002). In the siRNA pathway or RNA interference (RNAi), long

dsRNA is processed by Dicer as well (Bernstein et al., 2001).

The mature siRNA is incorporated into the RNA-induced silencing

complex (RISC). The biogenesis of piRNAs is only poorly under-

stood and probably does not require the function of Drosha or

Dicer.

Argonaute (Ago) proteins are the cellular binding partners of

small RNAs and form the core of gene silencing effector com-

plexes (Parker and Barford, 2006; Peters and Meister, 2007). In

humans, eight different Argonaute genes exist, which can be

phylogenetically divided into four Ago and four Piwi subfamily

members (Peters and Meister, 2007; Tolia and Joshua-Tor,

2007). Whereas Piwi proteins interact with piRNAs in the germ

line (Seto et al., 2007), Ago subfamily members associate with

miRNAs in somatic cells. Argonaute proteins are generally char-

acterized by Piwi-Argonaute-Zwille (PAZ) and PIWI domains

(Parker and Barford, 2006; Peters and Meister, 2007). A third

domain, termed MID domain, anchors the 50 end of the small

RNA (Ma et al., 2005; Parker et al., 2005). The PAZ domain binds

the 30 end of the small RNA, and the PIWI domain, which is struc-

turally similar to RNase H, cleaves the complementary target

RNA (Parker and Barford, 2006; Patel et al., 2006; Tolia and

Joshua-Tor, 2007). However, not all Argonaute proteins are en-

donucleases, although critical residues within the PIWI domain

are conserved. In mammals, only Ago2 has been shown to act

as endonuclease in RNAi (Liu et al., 2004; Meister et al., 2004).

Argonaute proteins with endonuclease activity are often referred

to as Slicers. Although Ago subfamily members have been exten-

sively studied in the past, only little is known about their individual

small RNA-binding specificities. It has been reported that all

Ago proteins bind miRNAs or siRNAs indiscriminately of their
cular Cell 32, 519–528, November 21, 2008 ª2008 Elsevier Inc. 519

mailto:rajewsky@mdc-berlin.de
mailto:meister@biochem.mpg.de


Molecular Cell

Identification of Argonaute-Associated Small RNAs
sequence (Liu et al., 2004; Meister et al., 2004). However, a recent

study analyzed small RNAs that are associated with human Ago2

and Ago3 and suggested that Ago proteins might have

preferences for individual miRNA species, although all miRNAs

that have been investigated bind to both Ago2 and Ago3

(Azuma-Mukai et al., 2008).

Here, we report the characterization of small RNAs associated

with human Ago1 and Ago2 by immunoprecipitation and deep

sequencing. We find that Ago1 and Ago2 bind to similar sets of

miRNAs, although some miRNAs are more prominent in Ago2

libraries and vice versa. More importantly, we find small RNAs

that originate from small nucleolar RNAs (snoRNAs). snoRNAs

are nucleolar noncoding RNAs, which have important functions

in the maturation of other noncoding RNAs such as ribosomal

RNAs (rRNAs) or small nuclear RNAs (snRNAs) (Matera et al.,

2007). We demonstrate that the bona fide snoRNA ACA45 is

processed to small 20- to 25-nt-long RNAs that stably associate

with Ago proteins. Processing is independent of the Drosha/

DGCR8 complex but requires Dicer. Finally, we identify a cellular

target mRNA that is regulated by the ACA45-derived small RNA,

indicating that snoRNA-derived small RNAs can function like

miRNAs.

Figure 1. Small RNAs Associated with Ago1 and Ago2

Complexes

(A) Characterization of monoclonal anti-Ago1 and anti-Ago2 anti-

bodies. FLAG/HA-tagged Ago1 through 4 were subjected to immuno-

precipitations using anti-Ago1(4B8) (lanes 1–4), anti-Ago2(11A9)

(lanes 5–8), and anti-FLAG (lanes 9–12). Immunoprecipitated FLAG/

HA-Ago proteins were analyzed by western blotting using anti-HA

antibodies.

(B) Endogenous Ago1 (lane 1) and Ago2 (lane 5) complexes were im-

munoprecipitated using the specific monoclonal antibodies described

in (A). An anti-FLAG (lane 2) or an anti-GST antibody (lane 6) served as

controls. Coimmunoprecipitated RNAs were extracted, cloned, and

sequenced. Cloned PCR products containing 50 adaptors, poly(A)

tails, and 30 adaptor sequences were loaded onto an agarose gel

and visualized by ethidium bromide staining.

(C) Summary of the sequencing data obtained from deep sequencing

of human Ago1 and Ago2 associated small RNAs.

(D and E) Schematic representation of individual small RNA classes

that are associated with human Ago1 or Ago2 complexes.

RESULTS

Small RNAs Associated with Human
Ago1 and Ago2
Different Ago proteins associate with the same miRNA

species regardless of their sequence (Azuma-Mukai

et al., 2008; Meister et al., 2004). However, the spectrum

of Ago-associated small RNAs in human somatic cells is

presently not known. Therefore, we used monoclonal an-

tibodies specific to human Ago1 (Ago1 [4B8]) (Beitzinger

et al., 2007) and Ago2 (Ago2 [11A9]) (Rudel et al., 2008)

for Ago isolation from total HEK293 cell lysates (Figure 1A).

Coimmunoprecipitated RNAs were extracted and cloned

without size fractionation (Figure 1B). Using 454 deep

sequencing, we obtained 20448 reads from the Ago1-

associated and 42604 reads from the Ago2-associated

small RNA libraries (Figures 1C–1E). Using a Dicer substrate iden-

tification algorithm (Friedländer et al., 2008), the presence of 166

known miRNAs in the combined Ago1 and Ago2 libraries was

confirmed. We next investigated whether miRNAs are differen-

tially bound to Ago1 or Ago2 in HEK293 cells (Table S1 available

online). All miRNAs that are present in the libraries bind to Ago1 as

well as Ago2. Similarly to the published data on Ago2 and Ago3

miRNA association (Azuma-Mukai et al., 2008), some miRNAs

are more highly represented in one or the other library, suggesting

a preferential Ago binding.

Processing of Functional Small RNAs from the Bona Fide
snoRNA ACA45
In the Ago-associated RNA libraries, we have identified small

RNAs with a length of about 20–22 nt that originate from snoRNAs

particularly from ACA45 (Figure 2A). Notably, the sequenced

reads derive only from the hairpin formed by the 30 half of

ACA45. The found reads are conserved in mammals (Figure 2B),

suggesting that they are, indeed, specific processing products.

Although ACA45 was identified in a screen for functional

snoRNAs (Kiss et al., 2004), it is conceivable that it represents

a miRNA gene that has been misannotated as snoRNA. Due to
520 Molecular Cell 32, 519–528, November 21, 2008 ª2008 Elsevier Inc.
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Figure 2. snoRNA ACA45 Is Processed to Small RNAs

(A) Sequence reads found in Ago1 and/or Ago2 libraries are high-

lighted in orange and blue. Numbers of individual sequences are

shown in parentheses.

(B) Specific ACA45-processing products are conserved across spe-

cies. The ACA45 sequences for Homo sapiens, Rattus norvegicus,

Mus musculus, and Canis familiaris are shown by sequence and struc-

ture. Independent deep sequencing data from each species have

been obtained and mapped against the corresponding homolog

(data sets referenced in Experimental Procedures). The bars indicate

the positions of mapped reads; consensus positions are shown where

small variations exist. The blue bars represent putative ‘‘mature’’ Dicer

products, while the red bars represent putative ‘‘star’’ products. The

numbers above the bars indicate the number of reads.

(C) ACA45 associates with the snoRNP component GAR-1. HEK293

lysates were immunoprecipitated using anti-GAR-1 (lane 3) or control

antibodies (lane 4). Coimmunoprecipitated RNA was extracted and

analyzed by northern blotting using a probe specific to ACA45. Lane

2 shows total RNA extracted from 10% of the input lysate, and lane

1 shows a size marker.

(D) Total RNA from HEK293 cells (30 mg) was blotted, and the

membrane was incubated with a probe complementary to nt 65–85

(lane 2) of ACA45. A size marker is shown in lane 1.

(E) Endogenous Ago1 (lane 2) or Ago2 (lane 4) were immunoprecipi-

tated from HEK293 lysates, and the coimmunoprecipitated RNAs

were extracted and analyzed by northern blotting using the probe

described in (D). Lane 1 shows 10% of the extracts used for the immu-

noprecipitations, and lane 3 shows a control immunoprecipitation.
Molecular Cell 32, 519–528, November 21, 2008 ª2008 Elsevier Inc. 521
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their specific structures and functions, snoRNAs can be grouped

in H/ACA and Box C/D class snoRNAs. snoRNAs associate with

specific protein components such as GAR-1 (H/ACA) or fibrillarin

(Box C/D) to form functional snoRNPs (Matera et al., 2007). In

order to prove that ACA45 is, indeed, a functional snoRNA, we

analyzed GAR-1 binding to ACA45 (Figure 2C). Endogenous

GAR-1 was immunoprecipitated using anti-GAR-1 antibodies.

Associated RNAs were extracted and further analyzed by north-

ern blotting using the probe specific to ACA45. Indeed, full-length

ACA45 was readily detectable in the anti-GAR-1 (lane 2), but not

in control immunoprecipitates (lane 3). Our data, therefore,

confirm that ACA45 represents a functional snoRNA.

We next validated the processing of ACA45 to small RNAs by

northern blotting (Figure 2D). A probe complementary to the 50

arm (Figure 2A, indicated in blue) detected the full-length ACA45

snoRNA as well as a band of �22–23 nt in total RNA, indicating

that a portion of the cellular ACA45 pool is, indeed, processed

to small RNAs. Using quantitative northern blotting, we analyzed

ACA45 sRNA molecule numbers per cell (data not shown). We

find that less than 1000 molecules are present per cell, which is

similar to a low abundant miRNA (Lim et al., 2003). Since only a

minor portion of ACA45 is processed to small RNAs, we next

investigated whether ACA45 processing products are specifi-

cally enriched in Ago protein complexes (Figure 2E). Endogenous

Ago1 (lane 2) or Ago2 (lane 4) were immunoprecipitated, and

associated RNAs were analyzed by northern blotting against

ACA45-processing products. Consistent with the cloning data,

the small RNA derived from ACA45 was enriched in Ago1 as

well as Ago2 immunoprecipitates, indicating that ACA45-pro-

cessing products specifically associate with Ago proteins. There-

fore, we refer to this functional small RNA as ACA45 small RNA

(ACA45 sRNA).

ACA45 Small RNAs Can Function Like miRNAs
The striking similarity of ACA45-processing products to miRNA

precursors prompted us to investigate whether ACA45 sRNAs

are functionally similar to miRNAs. We generated a luciferase

reporter construct containing a complementary binding site for

the abundant 50 arm of the snoRNA precursor (Figure 3A). Lucif-

erase activity was strongly increased when the endogenous

ACA45-derived small RNAs were inhibited using 20-O-methyl-

ated (20-OMe) antisense inhibitors (Figure 3A). Moreover, lucifer-

ase activity was also increased when the RNAi endonuclease

Ago2 was depleted (Figure 3B), indicating that small RNAs that

are processed from ACA45 can function like miRNAs.

ACA45 Processing Is Independent of the Drosha/DGCR8
Complex but Requires Dicer
The cleavage signature of the stem-loop-structured processing

intermediate is different than the typical 2 nt 30 overhangs gener-

ated by Drosha. Therefore, we analyzed whether ACA45 pro-

cessing requires activity of the Drosha/DGCR8 complex using

in vitro as well as in vivo approaches (Figures 3B and 3C).

FLAG/HA(FH)-tagged DGCR8 was immunoprecipitated, and

the immunoprecipitate was incubated with either a 32P-labeled

primary miR-27a transcript or ACA45. A specific cleavage prod-

uct representing pre-miR-27a was observed in the anti-DGCR8

immunoprecipitates, whereas no signal was observed when
522 Molecular Cell 32, 519–528, November 21, 2008 ª2008 Elsevier
ACA45 was used as substrate. We further investigated Drosha

requirements using the luciferase reporter construct described

above (Figure 3B). Indeed, we did not observe elevated lucifer-

ase activity upon Drosha depletion (siRNAs have been validated

in Landthaler et al. [2004]), whereas luciferase activity of a

miR-19b-responsive reporter was significantly increased. Taken

together, our results suggest that ACA45 processing is indepen-

dent of the Drosha/DGCR8 complex.

Next, we investigated Dicer requirements for ACA45 process-

ing. It has been demonstrated that Ago proteins form a stable

complex with Dicer, and Dicer activity can be coimmunoprecipi-

tated with antibodies against Ago proteins (Gregory et al., 2005;

Maniataki and Mourelatos, 2005; Meister et al., 2005). Therefore,

FH-tagged Ago proteins, as well as FH-Dicer, was immunopre-

cipitated from HEK293 lysates and incubated with 32P-labeled

pre-miR-27a or full-length ACA45 (Figure 3D). As expected, both

FH-Ago2 and FH-Dicer immunoprecipitates efficiently pro-

cessed the miR-27a precursor (Figure 3D, left panel). Further-

more, FH-Ago1, FH-Ago2, and FH-Dicer immunoprecipitates

processed the 32P-labeled full-length ACA45 as well (Figure 3D,

right panel), suggesting that Dicer is required for the generation

of ACA45 small RNAs. To further investigate Dicer’s function in

ACA45 processing, we analyzed whether Dicer alone is sufficient

for ACA45 processing in vitro. 32P-labeled ACA45 was incubated

with increasing amounts of recombinant Dicer, and cleavage

products were analyzed by RNA-PAGE (Figure 3E). Indeed,

recombinant Dicer produced small RNAs from the full-length

ACA45 in a concentration-dependent manner, suggesting that

Dicer alone is sufficient for ACA45 processing. Notably, Dicer

generates longer RNAs as well, which might represent process-

ing intermediates (see asterisk in Figure 3D). Finally, we analyzed

the role of Dicer in ACA45 processing in vivo. Total RNA from

mouse embryonic stem (ES) cells carrying homozygous or

heterozygous Dicer deletions (Murchison et al., 2005) was ana-

lyzed for the presence of ACA45 small RNAs by semiquantitative

real-time PCR (qRT-PCR) (Figure 3F). Strikingly, no PCR product

was detectable in the Dicer�/� cells, whereas a PCR product

originating from the ACA45 small RNA was readily detectable

in Dicer+/� cells. Notably, the full-length ACA45 was present in

both Dicer�/� and Dicer+/� cells. Similar results were obtained

when total RNA from Dicer�/� and Dicer+/� cells was analyzed

by northern blotting using a probe complementary to the ACA45

small RNA (Figure 3G). In summary, our data indicate that Dicer

processes ACA45 to small RNAs independently of the Drosha-

containing microprocessor complex.

Validation of an Endogenous ACA45-Derived
Small RNA Target
It is thought that complementary Watson-Crick base pairing of

the seed (nucleotides 2–8 counted from the 50 end) is a key

feature of miRNA:mRNA target recognition. It is also known

that highly conserved 7-mers in 30UTRs are often complemen-

tary to seed sequences of known miRNAs (Chen and Rajewsky,

2007). Remarkably, the seed of ACA45 22-nt-long processing

product is perfectly complementary to a significantly conserved

30UTR motif (top 3% of all possible seed sites). Using the miRNA

target prediction algorithm PicTar (Krek et al., 2005), we have

predicted target mRNAs for the ACA45-derived small RNA
Inc.
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Figure 3. ACA45 Processing Requires Dicer but Is Indepen-

dent of Drosha

(A) A luciferase reporter construct containing a perfectly comple-

mentary binding site for the ACA45 sRNA or the empty vector was

cotransfected with 20-O-methylated antisense inhibitors directed

against the ACA45 sRNA.

(B) The luciferase reporter described in (A), the empty vector, and

a luciferase reporter containing a complementary binding site to

miR-19b were transfected into HEK293 cells that have been pre-

transfected with control siRNAs, siRNAs directed against Drosha,

and siRNAs against Ago2. Firefly luciferase activity was normalized

to Renilla activity. Error bars are derived from four individual

experiments.

(C) FH-DGCR8 or untreated cells were immunoprecipitated using

anti-FLAG antibodies. Immunoprecipitates were incubated with
32P-labeled pri-miRNA-27a (lanes 2 and 3) or ACA45 (lanes 4 and

5). Lane 1 represents a size marker, and lanes 6 and 7 represent

the protein input.

(D) FH-Ago2 (lanes 4 and 10), FH-Ago1 (lanes 3 and 9), and FH-Dicer

(lanes 5 and 11) were incubated with 32P-labeled pre-miR-27a (lanes

2–6) or ACA45 (lanes 8–12) and analyzed by RNA PAGE. In lanes 6

and 12, lysate from untransfected HEK293 cells was used. Lanes

13–15 show anti-HA western blots of the protein input. Lanes 1

and 7 show size markers.

(E) 32P-labeled pre-miR-27a (lanes 1–3) or ACA45 (lanes 5–7) were

incubated with increasing amounts of recombinant Dicer. Cleavage

products were analyzed by RNA PAGE. Lane 4 shows a size marker.

A putative processing intermediate is indicated by an asterisk.

(F) Total RNA from Dicer�/+ (lane 2) or Dicer�/� cells was analyzed by

semi-qRT-PCR using primers specific for the ACA45 sRNA (upper

panel), miR-125b (middle panel), and 7SK RNA (lower panel). The

origin of the PCR products indicated as A and B are highlighted in

bold below the figure.

(G) Total RNA from Dicer+/� (lane 1) or Dicer�/� (lane 2) cells was

analyzed by northern blotting using probes specific for the ACA45

small RNA described above. Lane 3 shows a size marker.
Molecular Cell 32, 519–528, November 21, 2008 ª2008 Elsevier Inc. 523



Molecular Cell

Identification of Argonaute-Associated Small RNAs
(data not shown). For experimental validation, we fused a number

of 30UTRs that we selected from the predicted target mRNAs to

a luciferase reporter gene. Luciferase reporter constructs were

cotransfected with 20-OMe oligonucleotides antisense to the

ACA45 small RNA. Many of the tested 30UTRs, however, did

not respond to the 20-OMe inhibitors, suggesting that the small

RNA does not target these mRNAs or that small RNA-target

mRNA interactions are not relevant in the cell line that has

been used (Figure 4A and data not shown). Strikingly, we found

that activity of the luciferase reporter fused to the CDC2L6

(CDK11) 30UTR is increased when the endogenous ACA45 small

RNA is inhibited. The CDC2L6 gene product is a component of

the mediator complex and, therefore, important for transcription

(Conaway et al., 2005). For further validation of ACA45 sRNA

Figure 4. ACA45-Derived Small RNAs Regulated CDC2L6 Expres-

sion

(A) Luciferase reporter constructs containing the 30UTR of CDC2L6 or BAP-1

(no target) or the empty vector were cotransfected with increasing concentra-

tions of 20-OMe inhibitors against the ACA45 sRNA. Firefly luciferase activity

was normalized to Renilla activity. Error bars are derived from four individual

experiments.

(B) Luciferase reporter constructs containing the 30UTR of CDC2L6 or the

CDC2L6 30UTR with mutated ACA45 sRNA-binding sites were cotransfected

with 20-OMe inhibitors against the ACA45 sRNA. Firefly luciferase activity

was normalized to Renilla activity. Error bars are derived from four individual

experiments.
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effects on CDC2L6 expression, we mutated all predicted

ACA45 sRNA-binding sites in the CDC2L6 30UTR (Figures 4B

and S1). Indeed, a luciferase reporter containing the mutated

CDC2L6 30UTR was not upregulated when endogenous ACA45

sRNA was inhibited (Figure 4B), indicating that ACA45 sRNA

seed sequence matches are important for CDC2L6 expression.

In summary, our data demonstrate that ACA45 is processed to

a small RNA that can function like a miRNA on the endogenous

target CDC2L6, identifying the ACA45 sRNA as a potential

transcriptional regulator in human cells.

Cellular snoRNAs with miRNA Processing Signatures
The intriguing finding that ACA45 can function like a miRNA

prompted us to analyze processing of other snoRNAs. We gener-

ated small RNA libraries from human Ago1–4 complexes and

mapped the sequence reads to snoRNAs (the detailed composi-

tion of the Ago1–4 libraries are currently analyzed and will be

published elsewhere). We find reads originating from stem-loop

structures within the snoRNAs ACA47, ACA36b, U92, HBI-100,

ACA56, ACA3, and ACA50 (Figure 6). Both arms of the individual

stems are present in the libraries, and the sequence with the

lower abundance is indicated as ‘‘star’’ sequences in Table S1

(see also Tables S2 and S3 for individual snoRNA-derived

sequence reads and read lengths). Our data obtained from larger

sequencing data sets suggest that processing of snoRNAs to

functional small RNAs is not unique to ACA45 and can be

observed for other snoRNAs as well.

DISCUSSION

snoRNAs form a highly abundant class of noncoding RNAs in

many different organisms. snoRNAs localize to the nucleolus

and guide specific modifications of rRNAs or snRNAs (Matera

et al., 2007). Moreover, snoRNAs have also been implicated in

alternative splicing events (Kishore and Stamm, 2006). Here,

we show that the snoRNA ACA45 is processed to a small RNA

that can function like a miRNA. ACA45 processing is independent

of the Drosha-containing microprocessor complex but requires

Dicer. At least in vitro, Dicer can process the full-length ACA45,

although it does not structurally represent a classical Dicer sub-

strate. In northern blots, however, the strongest signal originates

from the full-length ACA45, and only a minor portion is processed

to a small miRNA-like RNA. This observation is consistent with

the finding that ACA45 exists as a functional snoRNA that forms

snoRNPs with the protein factor GAR-1 (Matera et al., 2007).

Therefore, we propose a model in which ACA45 is transcribed

and functions in the nucleolus of human cells (Figure 5). However,

a minor portion is transported to the cytoplasm by a so far un-

known export receptor. In the cytoplasm, Dicer immediately

processes the full-length snoRNA to a miRNA-like small RNA

that functions in gene silencing. This hypothesis is supported

by our finding that recombinant Dicer, as well as Dicer-containing

Ago protein complexes, are capable of generating ACA45 small

RNAs in vitro. However, it cannot be excluded that other nucle-

ases contribute to ACA45 processing in the cytoplasm. Alterna-

tively, ACA45 is cleaved in the nucleus already, and one half is

recognized as miRNA precursor by the miRNA pathway. How-

ever, such a scenario might be unlikely because a nuclear
Inc.
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cleavage activity might cleave the majority of the ACA45 pool,

which is needed for classical snoRNA functions. Moreover, only

one half of ACA45 would be exported by this model, although

the other half folds like a typical miRNA precursor as well. Alter-

natively, a potential nuclear snoRNA cleavage activity could be

physically separated from the snoRNAs as well. Further experi-

ments aiming at the identification of specific snoRNA export

pathways will help to elucidate the biogenesis pathways of small

RNAs derived form snoRNAs.

Many small RNA cloning and sequencing projects have been

carried out, but small RNAs derived from snoRNAs or other non-

coding RNAs have not been reported. Here, we have immunopre-

cipitated endogenous Ago complexes, and it is very likely that

small RNAs that associate with Ago proteins are functional RNA

molecules rather than just degradation products. Most published

cloning approaches size fractioned total RNA before cloning and,

therefore, all unspecific degradation products are present in the

libraries and it is difficult to find classes of functional small

RNAs. Therefore, we suggest that cloning projects aiming at

the identification of new classes of Ago-associated small

noncoding RNAs of about 18–35 nt in length should be carried

out from anti-Ago immunoprecipitations.

Using cloning and sequencing approaches, a variety of differ-

ent snoRNA genes have been identified in the past (Bachellerie

et al., 2002). However, many of these snoRNA candidates have

not been characterized in detail, and it is unknown whether or

Figure 5. Model for ACA45 Processing and ACA45 sRNA Function in

Human Cells

ACA45 snoRNA is transcribed in the nucleus, and the majority localizes to the

nucleolus where it fulfills its specific functions by modifying other noncoding

RNAs. However, a minor portion of ACA45 is exported to the cytoplasm, where

Dicer, probably with the help of other nucleases, processes it to small RNAs

that are specifically loaded into Ago protein-containing complexes. The

ACA45-derived small RNA guides Ago protein complexes to partially comple-

mentary binding sites in the 30UTR of target genes and represses its expres-

sion. AAAA, poly(A) tail.
Molec
not these candidates represent functional snoRNAs. Therefore,

it is tempting to speculate that more snoRNAs are specifically

processed to functional small RNAs. Indeed, by analyzing larger

data sets, we find several small RNAs with miRNA-like process-

ing signatures that originate from snoRNAs (Figure 6). These

candidate sRNAs are derived from a subset of snoRNAs

comprised of H/ACA snoRNAs and small Cajal body RNAs

(scaRNAs), whose secondary structure is characterized by two

hairpins linked by a hinge similar to ACA45 (Figure 2A). These

findings support our hypothesis that a considerable number of

snoRNAs are natural precursors for functional small RNAs.

Moreover, we add another so far unrecognized function in post-

transcriptional gene silencing to the list of snoRNA functions. A

detailed functional characterization of all mammalian snoRNAs

will help to elucidate the impact of snoRNA processing in

RNA-guided gene silencing.

EXPERIMENTAL PROCEDURES

Ago Complex Purification

HEK293 cells were lysed in buffer containing 20 mM Tris HCl (pH 7.5), 150 mM

NaCl, 0.25% NP-40, and 1.5 mM MgCl2 and centrifuged at 10,000 3 g for

10 min at 4�C.

For immunoprecipitation of endogenous Ago complexes, 100 ml protein G

Sepharose (GE Healthcare) was washed with phosphate-buffered saline

(PBS) and incubated with 10 ml anti-Ago1-4B8, anti-Ago2-11A9, anti-FLAG-

3H3, or anti-GST at 4�C with gentle agitation overnight. After washes with

PBS, beads were incubated with HEK293 cell lysate of 6 3 15 cm plates for

3 hr. Anti-Ago1-coated beads were extensively washed with 300 mM NaCl,

2.5 mM MgCl2, 0.5% NP40, and 20 mM Tris-HCl (pH 7.5) followed by

a wash with PBS. Anti-Ago2-coated beads were washed five times using

RIPA buffer (50 mM Tris-HCl, 500 mM NaCl, 1% Nonidet P-40, 0.5% sodium

deoxycholate, 0.1% SDS). RNA was isolated with 40 mg Proteinase K in 200 ml

Proteinase K buffer (300 mM NaCl, 25 mM EDTA, 2% SDS, 200 mM Tris

HCl [pH 7.5]) followed by Phenol/Chloroform extraction and Ethanol

precipitation.

For immunoprecipitation of FLAG/HA-tagged Ago complexes, cell lysate

from two 15 cm dishes were incubated with 20 ml FLAG M2 agarose beads

(Sigma) for 2 hr at 4�C with rotation. Beads were extensively washed, and

coimmunoprecipitated RNA was extracted as described above.

Small RNA Cloning

Small RNA cloning was carried out by Vertis Biotechnology (Weihenstephan,

Germany) and has been described earlier (Tarasov et al., 2007). Without any

size fractionation, extracted Ago-associated RNAs were poly(A)-tailed using

poly(A) polymerase, and an adaptor was ligated to the 50 phosphate of the

miRNAs: (50 end adaptor [43 nucleotides]: 50-GCCTCCCTCGCGCCATCAG

CTNNNNGACCTTGGCTGTCACTCA-30). NNNN represents a ‘‘barcode’’ se-

quence. Next, first-strand cDNA synthesis was performed using an oligo(dT)-

linker primer and M-MLV-RNase H reverse transcriptase (30 end oligo [dT] linker

primer [61 bases]: 50-GCCTTGCCAGCCCGCTCAGACGAGACATCGCCCCG

C[T]25-30). The resulting cDNAs were PCR amplified in 22 cycles using the

high-fidelity Phusion polymerase (Finnzymes). The 120–135 bp amplification

products were confirmed by polyacrylamide gel electrophoresis (PAGE) analy-

sis. Both cDNAs pools were mixed in equal amounts and subjected to gel

fractionation. The 120–135 bp fraction was electroeluted from 6% PAA-gels.

After isolation with Nucleospin Extract II (Macherey and Nagel), cDNA pools

were dissolved in 5 mM Tris/HCl (pH 8.5) with a concentration of 10 ng/ml and

used in single-molecule sequencing. Massively parallel sequencing was

performed by 454 Life Sciences (Branford, USA) using the Genome Sequencer

20 system as well as MWG Biotech (Germany). The complete sequencing data

is available at the Gene Expression Omnibus (GEO, Accession number:

GSE13370.)
ular Cell 32, 519–528, November 21, 2008 ª2008 Elsevier Inc. 525
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RNA Cleavage Experiments

In vitro transcribed pri-27a substrate used in this study was described

previously in Landthaler et al. (2004) and Meister et al. (2005). The template

for pre-27a transcription was created by annealing the following primers: 50-T

TAATACGACTCACTATAGCTGAGGAGCAGGGCTTAGCTGCTTGTGAGCAG

GGTCCACACCAAGTCGTGTTCACAGTGGCTAAGTTCCGCCCCCCAGC and

50-GCTGGGGGGCGGAACTTAGCCACTGTGAACACGACTTGGTGTGGACCC

TGCTCACAAGCAGCTAAGCCCTGCTCCTCAGCTATAGTGAGTCGTATTAA.

ACA45 was cloned from genomic DNA using the primers 50-ACGAGCTCCTGG

AGACTAAGAAAATAGAGTCCTTGA and 50-ACGGTACCTGCTGTTGGTAGAT

AAGTAGGTCTTGAA, digested with SacI and KpnI, and inserted into the SacI

and KpnI restriction sites of the pBluescript. Plasmid was linearized using the

KpnI restriction site and in vitro transcribed as described in Landthaler et al.

(2004). The construction of human FLAG/HA-Ago1, FLAG/HA-Ago2, and

FLAG/HA-Dicer was reported earlier (Meister et al., 2005). FLAG/HA-DGCR8

was purchased from Addgene.

Figure 6. Several Human snoRNAs Show

miRNA-Like Processing Signatures

(A) Small RNA reads originating from human snoRNAs

that have been found in large sequencing data sets

from Ago immunoprecipitates. The more abundant

read is indicated as ‘‘mature,’’ and the complementary

strand is indicated as ‘‘star’’ read. All reads that have

been found for individual snoRNAs are indicated as

‘‘total reads.’’

*The official genomic sequence is tctgatcgttcccctcc

gta, but all of the reads mapping to this position

have a mismatch, and all have ‘‘a’’ at position 18 and

there is an annotated SNP at this position.

**The ACA36b sRNA candidate is identical to the

annotated miRNA miR-664.

(B) Schematic representation of the secondary struc-

ture of full-length snoRNAs. Ago-associated reads

are highlighted in purple and yellow.

Immunoprecipitations were performed as described

above. For cleavage activity assays, 10 ml of Ago or

Dicer complex-containing anti-FLAG beads were incu-

bated in 20 ml PBS containing 5 mM ATP, 7.5 mM

MgCl2, 10 U/ml RNasin (Promega), and about 100

counts (�50 fmol) of internally labeled RNA for 1 hr at

37�C. The reaction was stopped by adding 200 ml pro-

teinase K buffer (300 mM NaCl, 25 mM EDTA, 2% SDS,

200 mM Tris HCl [pH 7.5]) containing proteinase

K (0.2 mg/ml). RNA was isolated with Phenol/Chloro-

form and analyzed by 8% or 12% denaturing RNA

PAGE. Signals were detected by autoradiography.

Northern Blotting and Semiquantitative

RT-PCR

Immunoprecipitated RNA and 30 mg total RNA isolated

from HEK293 cells using Trifast (Peqlab) was sepa-

rated by 12% denaturing RNA PAGE and transferred

to a nylon membrane (GE Healthcare) by semidry elec-

troblotting. Membranes were crosslinked by 1-ethyl-3-

(3-dimethylaminopropyl) carbodiimide (EDC) chemical

crosslink incubating for 1 hr at 50�C, prehybridized for

1 hr, and hybridized overnight at 50�C with probes

complementary to snoRNA ACA45 or tRNA. The fol-

lowing probes have been used: 50-AAGACCTGTTCTA

TCTACCT complementary to snoRNA ACA45 and 50-C

TGATGCTCTACCGACTGAGCTATCCGGGC comple-

mentary to lysine tRNA. After hybridization, mem-

branes were washed twice 10 min with 5 3 SSC and

once 10 min with 1 3 SSC. Radioactive signals were detected by exposure

of BioMax MS film (Kodak) using an intensifying screen (GE Healthcare).

For semiquantitative RT-PCR, extracted RNA was modified by addition of

poly(A) tail using poly(A) tailing kit from Ambion. Reverse transcription was per-

formed using the cDNA synthesis kit (Fermentas) with the universal RT primer 50

AACGAGACGACGACAGACTTTTTTTTTTTTTTT (described in Hurteau et al.

[2006]). DNA was amplified using Mesa Green qPCR MasterMix Plus (Eurogen-

tec), a universal reverse primer identical to the 18 bp tag added during the RT

step and the following specific primers: 50-AAGGUAGAUAGAACAGGUCUUG

for ACA45, 50-TCCCTGAGACCCTAACTTGTGA for miR-125b, and 50-ACA

CATCCAAATGAGGCG for 7SK. The PCR products were analyzed by 4% aga-

rose gel electrophoresis.

Conserved Processing of ACA45

The human ACA45 sequence was obtained at the snoRNABase (http://

www-snorna.biotoul.fr/). The ACA45 mouse, rat, and dog homologs were
526 Molecular Cell 32, 519–528, November 21, 2008 ª2008 Elsevier Inc.
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identified by mapping the human sequence against each genome, retaining

only unambiguous matches. Subsequently, a number of deep sequencing

data sets were mapped to the ACA45 homologs. Each data set was mapped

to the homolog of the species from which the data set originated, and only

perfect matches were retained. The human data consisted of the data sets

produced for this study using the 454 Life Sciences technology, as well as

a data set produced by deep sequencing the small RNA fraction of HeLa cells

using the Solexa/Illumina technology (GEO accession number GSE10829)

(Friedländer et al., 2008). The mouse data sets were produced by deep

sequencing small RNAs from mouse brain and kidney tissues using the 454

technology (unpublished data). The rat data set was produced by deep se-

quencing column-purified small RNAs from testes extracts using the 454 tech-

nology (GEO accession number GSE5026) (Lau et al., 2006). The dog data set

was produced by sequencing small RNAs from dog lymphocytes using the Sol-

exa technology (GEO accession number GSE10825) (Friedlander et al., 2008).

Computational Methods

A total of 64733 reads was obtained by deep sequencing the RNA that immu-

noprecipitated with Ago1 and Ago2. Of this, 20834 belonged to the Ago1 set

and 43899 to the Ago2 set. Upon removal of adapters, the sequences shorter

than 17 nt were discarded, resulting in 20448 and 42604 reads in Ago1 and

Ago2 sets, respectively. These reads were mapped to human genome

(hg 18, UCSC database [Karolchik et al., 2003]) using NCBI blastn (Altschul

et al., 1990) with the minimum word length set to 7. The mapping with the

best E value was associated with each read. The only mismatches allowed

were the first nt at the 50 end or the last three nt at the 30 end of the read. In

case a read mapped with the same E value to several locations, they were all

taken into consideration. The genomic loci of best matches were annotated us-

ing the tables from UCSC database (Karolchik et al., 2003). A read was anno-

tated as a DNA repeat (including LINE, SINE, LTR) only if the genomic locus it

mapped to had no other annotation.

For purposes of identification of known and novel miRNAs, reads from the

Ago1 and Ago2 libraries were combined and mapped to the human genome us-

ing NCBI megablast with the following options: �W 12 �p 100. Only perfect

mappings (full length, 100% identity) were retained. These were used as input

to miRDeep, an algorithm designed for the discovery of Dicer substrates such

as miRNAs from deep sequencing data (Friedländer et al., 2008). The algorithm

intersects the mappings with local genomic sequence to identify potential Dicer

hairpin substrates. These are then scored according to the distribution of posi-

tionsand frequenciesof the reads mapped to the individual hairpin, using Bayes-

ian statistics. The energetics and stability of the hairpins and the cross-species

conservation of the seed sequence also contribute to the score. Human snoRNA

sequences were downloaded from snoRNABase (Lestrade and Weber, 2006).

To map the total of 17362367 sequence reads obtained by sequencing

Ago1–4 IP using Solexa technology to the genome, we used the locally devel-

oped suffix array-based tool (to be published elsewhere). Candidate snoRNAs

with miRNA-like processing were selected (Table S1) if the combined Ago1–4

data set contained reads mapping to both strands of a hairpin and if these

reads represented more than 85% of all reads mapping to a given snoRNA.

SUPPLEMENTAL DATA

The Supplemental Data include Supplemental Experimental Procedures, one

figure, and three tables and can be found with this article at http://www.

molecule.org/supplemental/S1097-2765(08)00733-8.
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Caenorhabditis elegans is one of the most prominent model 
systems for embryogenesis, but collecting many precisely 
staged embryos has been impractical. Thus, early C. elegans 
embryogenesis has not been amenable to most high-throughput 
genomics or biochemistry assays. To overcome this problem, 
we devised a method to collect staged C. elegans embryos 
by fluorescence-activated cell sorting (eFACS). In a proof-
of-principle experiment, we found that a single eFACS run 
routinely yielded tens of thousands of almost perfectly staged 
1-cell stage embryos. As the earliest embryonic events are 
driven by posttranscriptional regulation, we combined eFACS 
with second-generation sequencing to profile the embryonic 
expression of small, noncoding RNAs. We discovered complex 
and orchestrated changes in the expression between and within 
almost all classes of small RNAs, including microRNAs and  
26G-RNAs, during embryogenesis.

The nematode Caenorhabditis elegans is one of the best-explored 
model organisms for developmental biology. The mechanistic basis 
of embryogenesis in C. elegans has been dissected by describing  
the entire cell lineage1 and by performing many molecular and 
genetic analyses. Various key proteins involved in early cell divi-
sion as well as hundreds of essential genes required for early 
embryogenesis and their knockdown phenotypes have been 
described2–8. However, a true understanding of embryogenesis 
will require the knowledge of stage-specific gene expression. 
Modern high-throughput technologies such as deep sequencing, 
proteomics and their many applications can be used, for example, 
to identify and quantify the transcriptome, protein amounts and 
protein-protein interactions on a genome-wide scale. Prerequisite 
to the study of embryogenesis progression with many of these 
methods are large amounts of precisely staged embryos to yield 
enough RNA or other material. However, this is currently not 
possible. Isolated embryos are mixtures of embryos at develop-
mental stages ranging from the early 1-cell zygote to the almost 
hatching worm larvae with approximately 600 cells. To date, staged 
embryos are usually obtained by manual sorting using a mouth 
pipette, making it impractical to apply large-scale techniques 

that require tens of thousands of embryos. Alternatively, one 
can obtain many semi-synchronized embryos by blocking their 
development with fluorodeoxyuridine9, or one can isolate young 
embryos from hermaphrodites that have just begun to produce 
mature oocytes10. Although these methods can yield reasonable 
quantities of young embryos, the collected embryos are not syn-
chronous, and these approaches cannot be used to investigate 
specific developmental stages.

Here we describe a method to collect many precisely staged 
embryos by fluorescence-activated cell sorting (eFACS). As  
C. elegans embryos have the same size throughout development, 
eFACS can in principle be applied to any embryonic stage in which 
a specific fluorescent marker protein can be stably expressed. Thus, 
eFACS allows the resolution of embryonic stages with sufficient 
yield of embryos for high-throughput analyses that require large 
amounts of starting material.

In C. elegans embryos, some zygote-specific transcription 
is initiated at the 4-cell stage, although pharmacological 
and genetic experiments have suggested that zygotic genes 
are not required until later in embryogenesis11,12. Maternal 
components seem sufficient to direct the embryo through 
the initial cleavage rounds up to approximately the onset of  
gastrulation. Interference with key enzymes involved in the 
RNA interference (RNAi) pathway lead to numerous defects 
including embryonic lethality, suggesting functional roles for 
noncoding RNAs in embryogenesis13–15. It is unknown which  
of the previously described small RNA populations in  
C. elegans16–19 such as microRNAs (miRNAs), endogenous small 
interfering RNAs (siRNAs), 21U-RNAs (thought to be germline-
specific and characterized by a length of 21 nucleotides (nt), 
a strong bias for 5′ uracils and their interaction with PIWI 
proteins) and the virtually uncharacterized class of 26G-RNAs 
(26 nt length and strong bias for a 5′ guanine) are present in 
the early embryo, and it is unclear how the complexity and  
composition of the small RNA transcriptome changes during 
the very first cell cycles16–19. We thus set out to use eFACS 
in combination with deep sequencing to profile small RNA 
expression during early embryogenesis.
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RESULTS
eFACS yields large samples of 1-cell stage embryos
The strain we used for eFACS experiments expresses an oocyte 
maturation factor 1 fused to GFP (OMA-1–GFP) under control of 
the oma-1 promoter20. The OMA-1–GFP fluorescence is detected 
in developing oocytes and the 1-cell stage embryo. The GFP signal 
rapidly decreases in the two-cell embryo and is too weak to be 
detected in the embryo after the 4-cell stage20. These character-
istics make the strain useful for selecting 1-cell stage embryos by 
fluorescence.

We collected a mixed-stage embryo population from gravid 
hermaphrodites of the OMA-1GFP strain by standard meth-
ods21. We analyzed these embryos by flow cytometry, and 3–7% 
of the embryos had high GFP signal (Fig. 1a). Selecting this popu-
lation for sorting in a fluorescence-activated cell sorting (FACS)  
machine yielded a sample of ~70% 1-cell stage embryos contami-
nated with older embryos (Fig. 1b). We investigated whether we 
could sort twice (hereafter referred to as resorting) to obtain an 
even higher enrichment in 1-cell stage embryos. The first embry-
onic cleavages progress rapidly and allow a time window of only 
40 min for sorting living embryos1. After this time, a mixed-stage 
embryo population is depleted of 1-cell stage embryos. Even with 
extensive cooling to delay cell division, we were unable to achieve 
additional enrichment. However, methanol fixation of embryos 
allowed additional enrichment of the desired population (Fig. 1b) 
and routinely yielded ~60,000 almost pure (>98%) 1-cell stage 

embryos (Fig. 1c–e). Most of those resorted 1-cell stage embryos 
were in the pronuclear migration and pseudocleavage part of the 
first cell cycle (Fig. 1c,e). Selecting a population with a lower GFP 
signal during eFACS and resorting this population yielded a mixture 
of 2–4-cell stage embryos with some contamination of 15% 1-cell, 
5% 8-cell and <2% older stages (Supplementary Fig. 1).
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Figure 1 | eFACS yielded tens of thousands of staged 1-cell stage embryos with at least 98% purity. (a) Scatter plot of green fluorescence signal versus 
autofluorescence signal obtained by passing a mixed-stage population of embryos expressing an OMA-1–GFP fusion protein through a flow cytometer; 
10,000 embryos are shown. Sorting 1-cell stage embryos with a high GFP signal (green; 3–7% of the initial population, *) yielded a sample enriched in 
1-cell stage embryos (~70%). (b) Resorting this high GFP-positive population (green; 70% of the once-sorted population; **) yielded a virtually pure 
(>98%) 1-cell stage embryo sample; 2,000 embryos are shown. (c) Microscopy analysis of a randomly picked eFACS sample of 96 resorted 1-cell stage 
embryos. DAPI-stained pronuclei appear black. Images are grouped by embryo progression through the first cell cycle. Scale bars, 25 µm.  
(d) RT-PCR analysis of once-sorted embryos, resorted embryos and a mixed-stage embryo population before sorting. In resorted embryos, the 1-cell stage 
embryo–specific marker genes oma-1 and oma-2 but not early zygotic (4–8-cell stage) genes med-1 and end-1 were amplified. In once-sorted embryos 
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Six samples covering different developmental stages
To study the composition and dynamics of small RNAs in early 
embryogenesis, we obtained six samples of embryos covering 
developmental stages from 1-cell stage to post-gastrulation 
embryos (Fig. 2). We generated 1-cell stage embryo samples 
from living and methanol-fixed embryos by eFACS with 70% 
and >98% purity, respectively (Fig. 1). We obtained a 2–4-cell 
stage embryo sample by eFACS of fixed embryos enriching for 
2–4-cell stage embryos (Supplementary Fig. 1). We generated 
the two older embryo populations by (i) eFACS selecting the 
GFP-negative population of the OMA-1GFP strain, which 
represents a mixed-stage embryo population depleted in early 
embryos, and by (ii) collecting post-gastrulation embryos by 
allowing isolated embryos to develop for 3 h at 20 °C. Finally, 
we also obtained an unsynchronized mixed-stage embryo 
population. We generated and deep sequenced small RNA lib
raries from all samples. Using our mapping pipeline (Online 
Methods), we mapped 52–83% of reads to the genome (Fig. 2 
and Supplementary Table 1).

Comparing fixed and living embryos obtained by eFACS
To first test whether methanol fixation altered miRNA expression, 
we compared expression profiles for 11 miRNAs between fixed 
and nonfixed embryos by quantitative reverse transcription–PCR 
(qRT-PCRs) (Supplementary Fig. 2). Relative expression of these 
miRNAs was unaffected by fixation. To compare the expression 
profile of fixed and living embryos after sorting, we examined 
sequencing-based estimates of miRNA expression between these 
samples. We expect some differences because we know that con-
trary to the fixed resorted eFACS sample, the living, once sorted, 
sample is contaminated by ~30% mixed-stage embryos.

We found that miRNA expression was overall highly correlated 
between these samples (Fig. 3a; Pearson correlation coefficient of 
log expression of 0.86), although we observed substantial scat-
ter and some miRNAs that were absent in the fixed and resorted 
sample. We suspected that these miRNAs are expressed only in 

older embryos and were therefore not detected in the virtually 
pure fixed-resorted 1-cell stage embryo sample. To test this hypo
thesis, we first measured miRNA expression in an independently 
obtained, mixed-stage embryo sample (Fig. 2). We then sub-
tracted miRNA expression values (Online Methods) of this 
mixed-stage embryo sample from miRNA expression values from 
both sorted samples (Fig. 3b). The expression values (estimated 
from sequencing data) of the small remaining set of miRNAs 
had (i) strongly reduced scatter between both sorted samples, 
(ii) correlated almost perfectly between these samples (Pearson 
correlation coefficient of log expression of 0.94), and (iii) were 
higher in the fixed sample. Thus, these miRNAs are likely 1-cell 
stage embryo–specific. Together, these data indicate that miRNA 
expression changes during embryonic development quantified by 
eFACS and deep sequencing can accurately reflect in vivo expres-
sion changes. However, because of sequencing biases, it is difficult 
to use sequencing-based estimates of miRNA expression to com-
pare absolute in vivo expression between different miRNAs. We 
thus set out to analyze and validate miRNA expression using fold 
changes, in which sequencing biases largely cancel out.
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in c) were performed to assay miRNA expression fold changes on living, 
hand-picked embryos. Expression fold changes obtained by sequencing 
were plotted versus expression fold changes obtained by qRT-PCRs. 
Coordinated expression fold changes were observed in miRNA clusters 
miR-35 and miRNA-42. Error bars, s.d. (n = 3).
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Dynamics of miRNA expression in early development
eFACS revealed that ~60% of all known miRNAs are expressed 
in the 1-cell stage embryo (Fig. 3a and Supplementary Table 2). 
We selected 16 miRNAs with read counts covering three orders 
of magnitude for independent validation by qRT-PCR (Fig. 3c) 
on hand-picked, living 1-cell stage embryos and confirmed the 

expression of all of them (Supplementary 
Table 3). We then computed fold changes 
of miRNA expression from sequencing 
data between 1-cell stage embryos and 
our post-gastrulation sample according 
to a logistic model (Online Methods). We 
also directly assayed these miRNA expres-
sion fold changes by qRT-PCR for the 16 
miRNAs on independently hand-picked, 
living embryos from corresponding deve
lopmental stages. miRNA expression fold 
changes determined by sequencing and 
qRT-PCR were well correlated (Fig. 3d 
and Supplementary Fig. 3; Pearson corre
lation coefficient (r) = 0.85). However, 
there were marked differences for some 
miRNAs (see Discussion). We next exam-
ined expression changes of all miRNAs 
between 1-cell stage, 2–4-cell stage and 
post-gastrulation embryo samples. 
The least amount of change was visible 
across the first cell divisions (1-cell stage 
to 2–4-cell stage embryos). However, 
miR-48 seemed to decrease greater 
than fivefold from 1-cell stage to 2– 
4-cell stage embryos (Supplementary  
Fig. 4a). We observed the strongest miRNA 
expression changes upon gastrulation, 
when several miRNAs were for the first 
time highly expressed (Supplementary  
Fig. 4b). Nevertheless, we also observed 
miRNAs that peaked in expression in 
the early embryo, including the miR-35  
cluster (miR-35-41), the miR-61 cluster 
(miR-61 and miR-250) and miRNA-
1829b/c. As noted above, we already 
observed these miRNAs to be enriched  
in the 1-cell stage embryo (Fig. 3b),  
and we conclude that these miRNAs are 
markers for very early embryogenesis.

Identification of new miRNAs and 
21U-RNAs
To discover potentially new miRNAs, we 
mined our pooled datasets with miRDeep, 
an algorithm that identifies Dicer hair-
pin products such as miRNAs in deep-
sequencing data22. miRDeep reported 19 
new miRNAs (Supplementary Table 4); 
16 were supported by detected star 
strands. Precursors of two new miRNAs 
fell exactly between adjacent coding 
exons, strongly suggesting that they 

are mirtrons. We observed expression from 7,506 of 15,341 
known 21U-RNA loci (Supplementary Tables 5,6). Reads 
mapping to known 21U-RNA loci derived almost exclu-
sively from the sense strand, had almost always a 5′ uracil, 
and their length distribution sharply peaked at 21 nt. We  
discovered 389 new 21U-RNAs (Supplementary Table 7). 
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Figure 5 | Small RNA length distribution at different developmental stages. Stacked barplots show 
the number of reads of a given length mapping to the indicated feature categories.
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Their genomic distribution followed the published pattern19,23 
with additional dispersed genomic loci.

Differential expression across and within small RNA classes
We next compared the expression of all known classes of small 
RNAs during embryogenesis. However, we note that we most 
likely only observed small RNAs with a 5′ monophosphate owing 
to the cloning protocol. Overall, we observed strong, orchestrated 
changes in the composition of small RNAs between the sequenced 
samples (Figs. 4,5). Older embryos were dominated by miRNAs 
whereas in very early stages we observed additional small RNA 
classes. Those include mitochondrial tRNA as well as a sizable 
fraction of rRNA. The rRNA- and tRNA-derived fractions in all 
samples had a uniform length distribution and thus were likely to 
be degradation products. The 21U-RNAs were highly expressed 
in early embryos but difficult to detect in older embryos. We also 
observed differential expression of endo-siRNAs and 26G-RNAs. 
The relative abundance of small RNAs in mixed-stage embryo 
samples convoluted specific changes in small RNA expression 
during embryogenesis (Figs. 4,5).

Endogenous siRNAs are observed in the 1-cell stage embryo
The length distribution of reads mapping sense or antisense to 
exons or introns of mRNA transcripts varied distinctly (Fig. 5). 
Sense reads were distributed uniformly, suggesting that they 
originated from degraded mRNAs. Antisense reads mapping to 
exons were dominated by 22-nt and 26-nt reads with a strong 
bias for a 5′ uracil or guanine, respectively (consistent with previ-
ous reports16,19). We will refer to the corresponding small RNAs 
as endogenous siRNAs (endo-siRNAs). Most 1-cell stage embryo 
endo-siRNAs mapped to mitochondrial enzymes. The majority 
of these mRNAs are known to be upregulated in RNAi pathway 
defects (rrf-1, eri-1, rde-3 and dcr-1 mutants), which suggests that 
they are under control of small RNAs (Supplementary Table 8). 
We also consistently observed possible degradation products of 
mitochondrial tRNAs in the early embryo but not in other samples 
(Fig. 5). Notably, we found more ~22-nt endo-siRNA in the 1-cell 
stage and 2–4-cell stage embryos, whereas ~26-nt endo-siRNAs 
dominated in the older samples. Additionally, we observed in older 
embryos a twofold enrichment of antisense reads mapping to 3′ 
untranslated regions (UTRs) (27–32%) when compared to 1-cell 
or 2–4-cell stages (15%).

Genomic organization and expression of 26G-RNAs
After removing known RNA classes, we studied the set of remain-
ing reads. The length distribution of these RNAs peaked at 26 nt 
and were most highly expressed in the older embryonic stages. 
These 26-mers did not map to any annotated loci and had a strong 
5′ guanine bias (75.7%). Hereafter, we refer to 26-nt reads with 
a 5′ guanine as 26G-RNAs24. Although these 26G-RNAs were 
present only in low numbers in early embryos, we observed high 
26G-RNA expression in older embryos. Computational analyses 
revealed that 26G-RNAs mapped to several clusters in intergenic 
regions on different chromosomes (Fig. 6a). We validated five 
(out of five tested) 26G-RNAs from two clusters (Fig. 6b).

DISCUSSION
In principle, eFACS can be used to extract large samples of 
embryos enriched in any desired embryonic stage. Thus, eFACS 
opens the door to many modern high-throughput technologies 
to assay embryonic stage–specific gene expression. Several of such 
investigations are already ongoing. A limitation of eFACS is that 
it depends on the availability of a good fluorescent marker gene 
for the desired embryonic stage. State-of-the-art flow cytometry 
analysis allows the simultaneous usage of up to eight fluorescence 
channels. Thus, strains expressing different fluorescent fusion 
proteins with temporally overlapping changes in gene expression 
could be combined, and thus it should be possible to use eFACS 
in situations in which a single optimal marker gene is not avail-
able. Moreover, protein stability could be tuned by engineering 
degradation at a specific time and in a specific cell type25.

We sorted live embryos to obtain staged samples at a purity of 
~70%. However, one technical constraint in eFACS is that the large 
size of the embryos forced us to sort at very low speeds of ~400 
embryos per second. We cooled embryos (15 °C) to delay cell divi-
sions but were still unable to resort living embryos. We also experi-
mented with lower temperature settings (4–10 °C). However, these 
settings reduced viability (<60%) after sorting and still resulted 
in relatively low purity. It is entirely possible that more advanced 
flow cytometers will allow sorting at higher speeds comparable to 
that of standard cell sorting (>20,000 embryos per second). In this 
case, one could sort and even resort to obtain samples of the same 
size and purity as our fixed embryo eFACS runs. Fixation could 
be omitted and eFACS just with the OMA-1GFP strain could be 
used to obtain thousands of staged living embryos that could be 
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allowed to develop synchronously to the embryonic stage of interest. 
Improvements to this approach might also be achieved by careful 
staging of worms10 before eFACS.

We used methanol fixation before resorting embryos, and meth-
anol fixation did not alter miRNA expression (Supplementary  
Fig. 2) or mRNA expression (data not shown). Nevertheless, we 
cannot rule out that methanol fixation or sorting does induce 
some artifacts when using eFACS for other purposes.

We observed some differences in miRNA expression fold 
changes determined by sequencing after eFACS or qRT-PCRs 
in hand-picked living embryos, including an outstanding dis-
crepancy for miR-58. We believe that this discrepancy can be in 
part explained by saturation effects in the library preparation for 
sequencing because miR-58 is by far the most highly expressed 
miRNA. This problem and biases in sequencing in general may 
also be responsible for other discrepancies. Overall, we observed 
increased expression fold changes by qRT-PCR. An inherent prob-
lem when comparing sequencing and qRT-PCR data is that both 
methods require normalization. We normalized sequencing data 
under the assumption that net expression fold changes were close 
to zero whereas we normalized qRT-PCR results to an internal 
standard. Although both assumptions have their problems, differ-
ent normalization procedures only shift the baseline of expression 
fold changes and do not influence the relative expression fold 
changes to each other and thus do not influence any conclusions 
presented in this study.

Previous large-scale studies of small RNA expression had 
used samples composed of mixed-stage embryos. These studies 
could not detect the orchestrated and dynamic changes between 
and within different classes of small RNAs that we observed 
when comparing the 1-cell stage embryos to later stages. First, 
the majority of miRNAs is already expressed in the 1-cell stage 
embryo, suggesting that they are maternally deposited. The rea-
son remains to be determined. Second, we showed that miRNAs 
from the miR-35 cluster are likely early embryo–specific. Genetic 
knockouts and mutations for 95 miRNAs have been published26. 
Notably, the miR-35 cluster is the only known miRNA cluster with 
an embryonic lethal knockout phenotype. Third, we observed 
many small RNAs of uniform length mapping sense to rRNAs 
in 1-cell stage embryos (live-sorted or methanol-fixed), with 
decreased expression in 2–4-cell embryos, but virtually absent in 
samples from older stages. Thus, although we do not have inde-
pendent validation, it seems unlikely that the observed rRNA 
expression is an experimental artifact. rRNAs, unlike mRNAs, 
are already transcribed in the 1-cell stage embryo12. One may 
speculate about a turnover of maternally and paternally provided 
rRNAs to zygotically transcribed rRNAs upon fertilization dur-
ing very early embryogenesis. Finally, we found consistent evi-
dence for a turnover of mitochondrial components in the 1-cell 
stage embryo. We observed degradation products of mitochon-
drial tRNAs in the early embryo as well as many siRNAs directed 
against mitochondrial enzymes. Thus, it is tempting to speculate 
about mechanisms that selectively degrade paternal mitochondria 
in early zygotes, as described in vertebrates27.

Our data allowed us to study as yet virtually undescribed 
classes of small RNAs such as 26G-RNAs. Observations of small 
RNAs, in particular ~26-nt-long with a 5′ guanine bias have been 
reported earlier16,19 and were recently dubbed 26G-RNAs24. We 
found that 26G-RNAs are dynamically expressed and that they 

cluster in several intergenic regions. Northern blot analysis sug-
gested that they may be initially generated with heterogenous 
lengths or post-transcriptionally modified such that they appear 
as having different sizes on the northern blot. In addition to an 
increase in expression of 26G-RNAs in older embryos, we also 
observed increased expression of 26-nt endo-siRNAs mapping 
to the antisense strand of coding mRNAs. We did not computa-
tionally detect a ‘ping pong’ biogenesis mechanism28,29 between 
26G-RNAs and 26-nt endo-siRNAs.

Our eFACS data and analyses raise many more questions. 
However, altogether we are tempted to conclude that the complex-
ity of small RNA expression dynamics in very early embryogen-
esis is comparable to the expression dynamics of protein-coding 
genes, and that the use of eFACS will contribute to a more com-
plete understanding of gene regulatory networks during early 
animal development.

METHODS
Methods and any associated references are available in the online 
version of the paper at http://www.nature.com/naturemethods/.

Accession codes. Gene Expression Omnibus (GEO): GSE17153.

Note: Supplementary information is available on the Nature Methods website.
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ONLINE METHODS
Strains. We used wild-type C. elegans (N2) and the TX189(P(oma-1) 
oma-1gfp) strain for sorting early embryos. Strains were 
maintained using standard methods21 on OP50-seeded NGM 
plates at 20 °C unless otherwise noted.

Liquid culture. Liquid culture of C. elegans was modified from 
previous protocols30. Worms were cultivated in S-Basal medium 
(100 mM NaCl, 6 mM K2HPO4, 44 mM KH2PO4 and 5 mg  
l−1 cholesterol) supplemented with 3 mM MgCl2, 3 mM CaCl2 
and 10 mM K-citrate (pH 6) on a rotary shaker at 180 r.p.m. 
The liquid culture medium (S-medium) had a pH of ~ 6 and an 
osmolarity of around 370 mOsmol kg−1.

Detailed eFACS protocol. A fluorescent protein fusion strain is 
needed for this procedure, which expresses the fluorophore at the 
desired cell stage of interest. The required fluorescence intensity 
for sorting is only limited by the lowest concentration neces-
sary to distinguish between labeled and unlabeled populations. 
Differences below 10% in GFP signal level are still picked up by 
a sorter because of the photomultipliers, which increase the sen-
sitivity of the flow cytometer by several orders of magnitude31. 
We still obtained successful sorts when picking gates such that we 
had only a ~50% difference in GFP signal levels.

The strain we used for sorting expressed an OMA-1–GFP 
fusion protein under the control of the oma-1 promoter20. The 
GFP fluorescence was detected in the developing oocytes and the  
1-cell stage embryo, decreased below 10% in the 2-cell embryo 
and was too weak to be detected in the embryo after the 4-cell 
stage20. These characteristics made the strain very useful for 
selection of 1-cell-stage embryos by fluorescence.

Millions of worms were needed for this procedure. Synchronized 
worms should optimally be grown in liquid culture to reduce 
the amount of space needed for growth. We routinely clean our 
worms on Ficoll 400 (1.077 g ml−1) (PAA Laboratories) from 
bacteria and precipitate in the liquid culture. Embryos should 
be extracted from young adults to minimize the amount of older 
embryos in the population. Embryos have to be isolated under 
cooled conditions (4 °C M9 buffer and centrifuge) and as fast as 
possible. Embryos were extracted as described previously21 with 
higher percentage sodium hypochloride bleach (12%) (Carl Roth) 
to ensure faster release of eggs. This bleaching protocol does not 
alter viability of embryos but reduces bleaching time and con-
tamination with worm debris. Worms were monitored under the 
dissecting microscope during the bleaching procedure, and the 
procedure was stopped as soon as most worms were dissolved in 
the bleach. The eggs and debris were then washed (310g for 30 s) 
twice in cold M9 and filtered through a 40-µm nylon mesh (Cell 
strainer; Falcon) to clean embryos from worm debris. Eggs were 
then resuspended in cold PBS (pH 7.4) and pelleted (310g for 
30 s). The supernatant was discarded and embryos were fixed by 
resuspending them in −20 °C methanol (80%). The tube was then 
placed on an overhead rotator at 4 °C for at least 1 h.

The fixed embryos were pelleted (310g for 1 min) and 
resuspended in cold cell-culture grade PBS. Embryos were  
cleaned from large embryo aggregates and worm debris by  
passing the embryos through a 40-µm nylon mesh. Embryos 
have to be kept on ice in the tube and aliquots are sorted  
stepwise. Embryos tend to aggregate. Shortly before sorting 

they should be vortexed vigorously and passed though  
a 40-µm nylon mesh into a flow cytometer tube.

Fixed embryos were sorted on a FACSVantage SE (Becton 
Dickinson Inc.) using the 100 µm nozzle with a pressure of  
8 p.s.i. and 14,600 Hz frequency. GFP was excited with an 
argon-ion laser (488 nm) and detected using the FL1 parameter 
(emission filter: 530 ± 15 nm) in comparison to the FL2 parameter 
(emission filter 585 ± 21 nm). Debris in the sample was excluded 
from the sort by gating for intact embryos using the forward 
and side scatter. Nonfluorescent wild-type (N2) embryos were 
included as control. Data were analyzed using 10,000 events per 
sample for the first sort and 2,000 events per sample for the resort 
using CellQuest Software (BD Biosciences) (Fig. 1a,b).

To prevent embryos from aggregating in the flow cytometer 
tube during the run, we introduced a magnet stirrer on the bot-
tom of the tube, which was triggered by a remote-controlled 
magnetic stirring device (Variomag; Thermo Electron). Embryo 
aggregates will clog the nozzle of the flow cytometer. The stirrer 
also prevents embryos from settling at the bottom of the tube, 
which ensures a constant distribution of embryos in the suspen-
sion. We had best results at a sorting speed between 400–500 
events (embryos) per second; increasing sorting speed decreases 
efficiency. Embryos were sorted into a siliconized dish filled with 
PBS. Embryos should be sorted twice (hereafter referred to as 
‘resorted’) to ensure a sufficiently high purity. In the resort, the 
embryos were sorted directly into a dish of Trizol LS (Invitrogen). 
Optionally embryos can be sorted into PBS and collected by cen-
trifugation before the desired downstream application.

During the second flow cytometer run, we prepared several 
microscope slides by dropping at least 200 embryos onto each 
slide. Slides were covered with mounting medium containing 
DAPI nuclear stain (Vectashield; Vector Laboratories). This 
allowed examination of the purity of the resorted embryo sample 
by microscopy. Additionally the purity was determined by PCR-
amplifying maternal 1-cell stage (oma-1 and oma-2) and zygotic 
>4–8-cell stage (end-1 and med-1) marker genes.

eFACS was used in this study to isolate 1-cell stage embryos 
(high GFP-positive population; Fig. 1), 2–4-cell stage embryos 
(intermediate GFP-positive population; Supplementary Fig. 1) 
and older embryos (GFP-negative population).

Isolation of post-gastrulation embryos. Gravid wild-type (N2) 
adults were treated with sodium hypochloride bleach to extract 
embryos as described previously30. In C. elegans, gastrulation is 
initiated at approximately the 25-cell stage. Embryos were allowed 
to develop in S-medium at 20 °C for 3 h. At this time all embryos 
have gastrulated, which we confirmed under a dissecting micro-
scope. Hatched L1 larvae were removed by a second round of 
sodium hypochloride bleach treatment. We allowed 100 embryos 
to hatch on NGM plates overnight to determine viability.

RNA extraction.  RNA was isolated from all samples by two 
rounds of freeze-thaw lyses of the embryos in Trizol LS reagent 
(Invitrogen). RNA was precipitated with Glycoblue (Ambion) 
overnight at −20 °C or for 30 min at −80 °C.

Deep sequencing (‘Illumina’).  Library preparation as well as 
cluster generation and deep sequencing were performed accord-
ing to the 5′ ligation–dependent (5′ monophosphate–dependent) 
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manufacturer’s protocol (Digital Gene Expression for small RNA; 
Illumina). Roughly 60,000 embryos (~10 µg total RNA) were 
used for small RNA library preparation. Small RNAs were size-
selected between 18 and 40 nt according to the single-stranded 
DNA marker in the small RNA sequencing kit (Illumina). Small 
RNA libraries from the early embryo samples (1-cell stage and 
2–4-cell stage) as well as the mixed embryos and older sorted 
embryos were sequenced on the Genome Analyzer 1 (Illumina), 
and the libraries generated from post-gastrulation embryos were 
sequenced on the Genome Analyzer 2 (Illumina).

Mapping. Mapping was performed using an in-house developed 
pipeline (J.M. et al., unpublished data). This pipeline consists of 
an initial 3′ adaptor removal step, low-complexity read filtering, 
a mapping routine using a suffix-array based alignment program 
and a 3′ adaptor identification refinement phase.

Briefly, initial adaptor removal was performed by using dynamic 
programming to find in each read the suffix that best matched 
to a prefix of the 3′ adaptor. For this, all alignments of adaptor 
prefixes to suffixes of the read sequence were considered. In addi-
tion, occurrences of the full adaptor sequence anywhere in the 
read sequence were considered. Among these alignments, the best 
alignment was determined according to a simple one-parameter 
model p(alignment | Θ) = Θn (1 − Θ)n − k, where n is the length 
of the alignment, k is the edit distance of the alignment, and Θ is 
a parameter describing the error rate. A Θ value of 0.9 was heu-
ristically chosen to reflect the relatively high error rate toward the 
end of Illumina reads.

The alignment program proceeds by determining all genomic 
matches to a read in edit distance k. For this application edit  
distance two was used. The alignment algorithm was imple-
mented using a suffix array of the genome against which each 
read is sought, incrementally increasing the edit distance until 
matches are found.

In the 3′ adaptor identification refinement phase, the boundary 
between transcript and adaptor parts of each read was redeter-
mined in light of the genomic context that the read was mapped 
to. This was done by computing a score S(i) = f(i) + r(i) for every 
position i of the read. f(i) is derived by aligning prefixes of the 
genomic context to prefixes of the read, from which f(i) gives the 
edit distance of the best match of the read prefix of length i to the 
genomic context. r(i), the second part of the score is determined 
from reverse alignments of the reversed read to reverse adap-
tor prefixes, that is, r(i) was the edit distance of the best match 
between the read sequence positions i + 1 to n and a adaptor pre-
fix, where n was the length of the read. The 3′ adaptor beginning 
position t was then determined so as to minimize S(t). In case of 
ties, the minimum of the tied positions was used.

For the subsequent analyses we used weighted matches, that 
is, reads mapping to multiple loci have equal weight distributed 
across these loci (for example, a read represented by two tran-
scripts and mapping equally well to three loci had a weight of 
two-thirds assigned to each of the three loci).

Normalization of miRNA reads in between samples. Expression 
fold changes of sequencing data were determined using linear 
models of the log expression, that is, logistic expression models, 
as follows. Assume we are given expression vectors a,b ∈ RR ≥0

n
,  

where n is the number of genes and R is the set of real numbers, 

with a = (ai)i = 1..n and ai the expression of gene i. If reference  
values za, zb ∈ R are known, then the normalized expression values 
are a/za and b/zb, and the fold change fci ∈ R of gene i is given by
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Here ‘constant’ denotes an arbitrary constant determined by the 
ratio of the two unknowns ai and bi. Thus, the log fold changes are

log log log log log log log ,fc b a z z b ai i i a b i i= − + − = − +constant

which is equivalent to

log log logb a fci i i= + +constant	 (1)

Typically, the expression of a RNA species that is known to be 
constant between the two samples is used for the reference values. 
However, for the present study no such constants were known. 
We resorted to fitting a linear model of the form response =  
predictor + residual + intercept to equation 1, in which log ai is the 
predictor, log bi the response, the intercept term determines the 
ratio of normalizers, and finally the log fold changes correspond 
to the residuals. In fitting, the slope of the linear model is fixed to 
unity, essentially only fitting the intercept term. From the fitted 
models the log fold changes are found as the prediction residuals. 
Owing to the slope of unity, it is possible to trivially accumulate 
the pairwise intercept terms of a sequence of expression samples 
for a joint normalization.

The proposed normalization method is equivalent to assum-
ing that the mean log fold change is zero. The calculated fold 
changes of miRNA expression by this normalization method were 
validated by qPCRs and showed to be in good agreement (see 
below; Fig. 4).

Validation of observed miRNA expression patterns by TaqMan 
miRNA qPCR assays. The fold changes that were computed for 
16 miRNAs from the deep sequencing data between 1-cell stage 
embryos and post-gastrulation embryos were validated by TaqMan 
miRNA qRT-PCR assays (Applied Biosystems) on hand-picked  
1-cell stage embryos and older post-gastrulation embryos. 
Embryos were collected from cut gravid hermaphrodites by 
mouth pipette and washed thoroughly before lysing them in 
Trizol LS reagent. MicroRNA TaqMan PCR assays were performed 
following the recommendations of the manufacturer (Applied 
Biosystems). A TaqMan assay for the small RNA U18 and sn2343 
was used as a normalization standard.

Classification, annotation and quantification of small RNA deep 
sequencing reads. Known miRNA coordinates were retrieved 
from miRBase release 12 (ref. 32). Other noncoding RNA,  
3′ UTR, 5′ UTR, exon and intron coordinates were retrieved from 
WormBase, matching genome release WS190 (http://www.worm 
base.org; WS190). The 21U-RNA coordinates were retrieved from 
the supplementary materials of previous studies19,23. Coordinates 
of RepeatMasker annotations33 and simple repetitive sequences34 
were obtained from the UCSC genome browser35. Reads were 

http://www.wormbase.org
http://www.wormbase.org
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annotated by intersecting the mapped coordinates subsequently 
with the following sets of annotated feature coordinates and 
subtracting intersecting coordinates before proceeding with  
the next annotation set. The order in which annotation categories 
were used was: (i) miRNA, (ii) rRNA, (iii) tRNA, (iv) snRNA, 
(v) snoRNA, (vi) 21U-RNA, (vii) mRNA and (viii) repetitive 
sequences. This order roughly reflects the number of genomic 
bases represented by the different classes. For each annotated 
feature, all overlapping mapped reads were determined,  
and quantification was done by summing the overlapping 
weighted matches.

Annotating new 21U-RNAs. New 21U-RNAs were predicted 
using the motif scoring modules provided with ref. 19, which 
uses position-specific nucleotide frequency matrices of the large 
and small 21U-RNA upstream motifs, as well as a model for the 
distance between the two motifs to determine occurrences of 
21U-RNA loci. The matrices are parameterized from ungapped 
alignments of reads deriving from manually selected portions 
of the genome that are rich in 21U-RNA. The motif scoring was 
applied to the set of mapped loci that remained after remov-
ing other known noncoding RNAs (including previously known 
21U-RNA loci) in which the sequences scored consisted of the 
upstream 100 nt and the read itself. We used the same score cutoff 
of 15.5 to call loci as was used previously19.

miRDeep analysis. To guide the excision of potential miRNA 
precursors from the genome, the above read mappings were used. 
First, we identified read mappings that (i) did not overlap with 
rRNAs, tRNAs or 21U-RNAs, (ii) were perfect mappings of edit 
distance zero, (iii) were from reads no shorter than 18 nt and 
no longer than 25 nt after removal of the adaptor and (iv) were 
from reads that did not have more than five perfect matches to 
the genome. Second, we identified genomic stacks of such reads 
(‘stack’ meaning two or more reads mapping to the same 5′ and 
3′ positions). For each genomic locus, the highest read stack was 
identified and two potential precursor sequences excised, one 
spanning 20 nt upstream of the stack and 70 nt downstream of 
the stack and the other spanning 70 nt upstream and 20 nt down-
stream. This new excision algorithm will be part of the updated 
miRDeep package. Subsequently, all reads in our pooled data-
sets were remapped to these precursors using an edit distance 
of 1, and all suboptimal mappings were discarded (edit distance 
1 matches for reads that have one or more perfect match). The 
read mappings to the potential precursors and the structures of 

the precursors were input to miRDeep as described previously22. 
For purposes of seed conservation, a limited set of known mature 
miRNAs from miRBase version 11 was used. These consisted 
of miRNAs from families that are present in invertebrates or 
that are conserved between mammalian and nonmammalian  
vertebrates. miRDeep initially reported 31 candidate miRNAs. 
These were manually curated to remove redundant sequences 
or highly palindromic precursors that were unlikely to represent 
genuine miRNAs.

In summary, miRDeep maps the sequenced small RNAs to 
the structures of candidate miRNA hairpins and scores the fit 
to a simple model of miRNA biogenesis. The score cutoff can be 
adjusted for trade-offs between sensitivity and specificity.

We found that a score cutoff of 3 recovered known nematode 
miRNAs present in the data (present meaning that miRBase  
C. elegans mature sequences that map perfectly to one or more 
excised potential precursors) with high sensitivity (80%), and 
the number of false positives was computationally estimated to 
be relatively low (7 ± 2).

Northern blots.  Validation of 26G-RNA candidates was done 
by northern blot analysis as described previously36. We loaded  
100 µg of total RNA from mixed embryos per lane. Probes 
used are listed in Supplementary Table 9. As 26G-RNAs were 
seemingly lowly expressed, the imaging plates had to be exposed 
for 4 h. Pictures were obtained with an imaging plate reader and 
processed in Adobe Illustrator.

RT-PCRs. RT-PCR was performed to examine the expression of 
early embryonic marker genes. The reverse transcritpion reac-
tion was random primed. Primers for subsequent PCR are listed 
in Supplementary Table 9. We performed 35 cycles of PCR. Gel 
pictures were processed in Adobe Illustrator.
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DISCUSSION 
 

 

 

Discovery of miRNAs in deep sequencing data 
 

 

The miRDeep model 

 

The major challenge to identifying regulatory small RNAs in deep sequencing data is the 

abundances of degradation products from rRNAs, tRNAs, mRNAs or unknown sources that are 

also present in the data. We have built a model to identify known and novel miRNAs in deep 

sequencing data. The model implements current knowledge of miRNA biogenesis: the 

characteristic stable hairpin structure of the miRNA precursor; the Drosha/Dicer processing 

signature that causes miRNA products (mature, loop, star) to locate to stacks at particular 

positions in the hairpin precursors; and possible sequence conservation of the mature miRNA. To 

identify miRNA genes, we scan the genome, identifying loci that have deep sequencing reads 

mapping. Since we assume that these reads could be sequenced miRNA products, we fit the reads 

to the model. The fit to the model provides a log-odds score, reflecting the probability that a given 

locus is a genuine miRNA gene. More formally, the score is calculated from this equation: 

 

 

 
 

 

Where P(pre) is the probability that a given hairpin is a genuine miRNA precursor, P(bgr) is the 

probability that a given hairpin is a background non-miRNA hairpin, abs is the estimated absolute 

free energy (in kcal/mol) of the hairpin structure, rel equal to 1 if the potential precursor sequence 

is energetically stable, 0 otherwise, sig is the number of deep sequencing reads that are in 

consistency with Drosha/Dicer processing, star is equal to 0 if the potential precursor sequence 

has no reads that represent a putative star sequence, and 1 otherwise, nuc is equal to 1 if  

nucleotides 2–8 from the 5' end of the putative mature miRNA are not conserved in other 
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metazoans, and 1 otherwise. The | symbol denotes the Bayesian conditional probability and is read 

as ‘given’, e.g. P (abs | pre) is the probability that a hairpin would have the estimated free energy 

abs, given that it is a genuine miRNA precursor. All the parameters were estimated from C. 

elegans and S. mediterranea known miRNA hairpins and from random genomic hairpins unlikely 

to be genuine miRNA hairpins110. 

 

In these days, many classification tools are based on machine learning algorithms such as support 

vector machines. Machine learning algorithms are good choices when large amounts of training 

data are available and the designer of the algorithm does not know beforehand how important 

different biological features are to the classification. However, the disadvantage of machine 

learning is that the trained algorithm is like a ‘black box’ –  it is difficult to say exactly how the 

algorithm classifies and hence what biological features are important. In choosing to implement 

miRDeep using simple Bayesian probabilistic statistics we have made a theoretically sound and 

transparent model. We further believe that the reason why miRDeep performs well across all 

metazoan clades tested is in part because of the relative simplicity of the model. 

 

miRDeep controls 

 

When a small RNA library is sequenced, the resulting deep sequencing reads will typically locate 

to millions of loci, most of which have no connection with miRNA biology. Likewise, metazoan 

genomes have millions of loci which are predicted to produce hairpin-like transcripts if 

transcribed (for instance, the human genome is predicted to contain ~11 million of such loci149). 

As can be imagined, the chance intersection of millions of reads with millions of hairpins will 

inevitable cause any model to produce some false positives. To estimate the number of false 

positives produced in the analysis of a given dataset, the miRDeep controls ‘shuffle’ the 

combinations of read signatures and structures, thus breaking any biological connections that 

might be between read signatures and structures. When the shuffled data is input to miRDeep, the 

number of predictions produced gives an estimate of the false positive rate. 

 

miRDeep results (dog) 

 

The domestic dog (C. familiaris) is increasingly being studied as a model for system for human 

disease such as cancer150. However, when we started our investigations, only six dog miRNAs 

were annotated in the public miRBase database22. From our collaborators we obtained dog 

lymphocyte total RNA, from which we prepared and deep sequenced a small RNA library. We 

analyzed the data with miRDeep, predicting more than 200 novel dog miRNA genes. If dogs have 

a number of miRNA genes comparable to other mammals, they will likely have 500-1000 miRNA 

genes in total. This shows that deep sequencing of a limited number of cell types can yield a 
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substantial fraction of all miRNAs in a complex animal. Further, a number of the miRNAs that we 

predicted are clear homologs to human miRNAs believed to be involved in disease (e.g. miR-17 - 

miR-20, miR-92, miR-142, miR-150, miR-15594, 151-153). 

 

miRDeep results (nematode) 

 

The nematode C. elegans was the first species in which miRNAs were detected1, 14. During the last 

ten years the nematode genome has been heavily mined for miRNAs using conventional cloning 

and Sanger sequencing154, purely computational predictions155, and deep sequencing analysis50. 

When we started our studies, 135 C. elegans miRNAs were annotated in miRBase22. In one study, 

we used miRDeep to predict 13 novel nematode miRNAs from already mined data obtained from 

deep sequencing of mixed-stage nematode populations50, 110. A number of these miRNAs were 

validated by northern blot analysis (4/5 tested). In a second study, Marlon Stoeckius developed a 

method to cleanly cell sort early nematode embryos (eFACS140). With this method he obtained 

clean samples of 1-cell stage embryos, 2-4-cell stage embryos, older embryos and mixed-stage 

embryos, from which small RNA libraries were prepared and deep sequenced. We analyzed the 

pooled data with miRDeep, predicting additional 19 novel miRNA genes140. These studies show 

that novel miRNAs can be discovered even in species that have already been heavily mined for 

miRNAs, given the correct combination of cell sorting, deep sequencing and prediction. 

 

miRDeep results (planarian) 

 

The planarian S. mediterranea is an emerging model system for regeneration and stem cell 

biology156. When we first started working with planarians, 63 miRNAs from this species had been 

deposited in miRBase22. We prepared and sequenced small RNA libraries from whole-body 

untreated planarians, irradiated planarians and from cell sorted neoblast stem cells. The pooled 

data was analyzed with miRDeep, yielding 61 novel miRNA genes139. A number of these were 

validated by northern blot or qPCR analysis (20/27 tested), and some were specifically 

upregulated in neoblasts and downregulated in irradiated planarians depleted in neoblasts. This 

suggests that these miRNAs (some of which were deeply conserved) may have a role in stem cell 

maintenance or function. Interestingly, the majority of the novel planarian miRNAs (34/61) 

displayed no sequence similarity to any known miRNAs, indicating that miRDeep can identify 

miRNA families that have evolved independently from those known from common model 

systems. 
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Figure 4. miRDeep reports miRNAs with consistent high sensitivity in seven animal clades. These seven clades were 

chosen for this figure to give good coverage of the metazoan phylogenetic tree. These particular analyses were in 

fact performed be the new version of miRDeep (see later section). 

 

miRDeep results (other species) 

 

Primarily as part of collaborations, we have now used miRDeep to predict miRNAs in around ten 

other species, including chimpanzee, pig, mouse, sea urchin, fruitfly and sea anemone 

(unpublished results). Taken together, these animals give good coverage of the animal 

phylogenetic tree. We find that miRDeep sensitivity and false positive rates are comparable 

between the species, even when the exact same parameters are used (see figure 4). This suggests 

that the miRDeep model captures features of miRNA biology that are shared between animals. 

 

Prediction of non-canonical Drosha or Dicer hairpin substrates 

 

In some of our miRDeep analyses, we have discarded reads that map to annotations of rRNAs, 

tRNAs or mRNAs. In the analysis of the deep sequenced dog small RNAs no reads were 

discarded because of annotation since little annotation was available. One of the novel dog 

miRNA hairpins predicted by miRDeep, miR-1306-5p, has since been shown to be homologous to 

a hairpin that is cleaved out of the human DGCR8 mRNA. The hairpin is cleaved by the Drosha 

endonuclease, reducing DGCR8 mRNA and protein levels157. This reduction does not depend on 

Dicer function. The hairpin is conserved in sequence and structure between human and dog, 

indicating that similar mechanisms lead to the production of the dog miR-1306-5p products. 

Analyzing mouse small RNA data, we have identified further five mRNAs that appear undergo 

similar processing (unpublished results), lending evidence to recent claims that Drosha cleavage 

might be a relatively widespread post-transcriptional regulatory mechanism157, 158. 
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In a different study, we have analyzed deep sequencing reads from a library of small RNAs 

immunoprecipitated with Argonaute proteins in a human cell line59. In this study we also used 

miRDeep to predict miRNAs without first discarding reads that mapped to known annotations. 

Interestingly, one of the predicted miRNA hairpins located to the bona fide snoRNA ACA45. 

Extensive follow-up experiments performed by Christine Ender showed that the cleavage of 

ACA45 to the miRNA-like products is Dicer-dependent but Drosha-independent. Further, reporter 

assays indicated that the miRNA-like products can downregulate gene expression through 3’UTR 

base pairing59. 

 

These two examples show that miRDeep can recover Drosha/Dicer hairpin substrates that are not 

canonical miRNAs. The examples also raise the interesting question if miRDeep primarily detects 

Drosha or Dicer hairpin substrates. The cleavage of the DGCR8 hairpin is Drosha-dependent but 

Dicer-independent. Reversely, the cleavage of ACA45 is Dicer-dependent but Drosha-

independent. Probably the question is ill posed, since Drosha and Dicer have likely co-evolved to 

bind to the same hairpin structures, given that the majority of Drosha products undergo 

downstream cleavage by Dicer. 

 

 

Profiling miRNA expression using deep sequencing data 
 

Limitations: absolute quantitation 

 

While profiling small RNAs in planarians, we obtained three deep sequenced small RNA libraries 

from whole-body planarians, sequenced independently with the three major deep sequencing 

platforms: 454 / Life sciences, Solexa / Illumina and ABI SOLiD. To estimate if the platforms 

correlate in quantitating miRNA expression, we compared the normalized read counts for 

individual miRNAs between the three platforms (normalization as in Friedländer et al.139). We 

found only weak correlation (Pearson’s correlation < 0.5 in all pairwise comparisons, data not 

shown). Similarly, we compared the miRNA read counts with miRNA expression as roughly 

estimated from the qPCR RT values, and again found only weak correlations (Pearson’s 

correlation < 0.5). Our results suggest that none of the deep sequencing platforms are capable of 

precisely quantitating absolute miRNA expression. These findings have recently been 

independently validated by systematic studies using stoichiometrically controlled synthetic 

miRNAs159. The same study shows that the biases are primarily the result of ligation biases in the 

library preparation. 
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Possibilities: fold-changes 

 

We compared Solexa miRNA read counts between two biological replicates of planarian samples 

and found excellent correlation (Pearson’s correlation > 0.99) showing that at least Solexa miRNA 

deep sequencing is highly reproducible139. In addition, we found that miRNA expression fold-

changes, as quantitated by Solexa sequencing, correlated well with expression fold-changes, as 

quantitated by qPCR (Pearson’s correlation = 0.93)139. This indicates that at least Solexa 

sequencing can be used to precisely profile changes in miRNA expression across two samples. 

These results have recently been expanded to also 454 and SOLiD sequencing159. 

 

‘Blind spots’ 

 

When comparing miRNA read counts across the three platforms, we found a (low) number of 

miRNAs that were sequenced many times by two of the platforms, but only very few times by the 

third of the platforms. This suggests that the three platforms each have a (low) number of miRNAs 

that they have difficulties detecting. Further insights into this will likely require systematic 

chemical studies of biases in the ligation protocols used by the three platform. 

 

 

piRNA deep sequencing analysis 
 

Identifying piRNA populations 

 

It was the deep sequencing technology that first allowed investigation into the biology of the 

abundant piRNAs in mouse and fly. In most studies, immunoprecipitation of Piwi proteins is used 

to isolate distinct piRNA populations. Since we did not have available antibodies for the planarian 

Piwi proteins, we obtained deep sequenced libraries of total cellular small RNAs, and 

computationally separated miRNAs and degradation products of mRNA, rRNA and tRNAs. The 

remaining ~1.2 million deep sequencing reads had distinct length peak at ~32 nts, and as a 

population displayed similar piRNA sequence biases and genome clustering patterns as have been 

observed in other species. We even found that the reads mapping sense to transposable elements 

had distinct sequence biases as the reads that mapped antisense, suggesting that they might 

associate with distinct Piwi proteins. The fact that the planarian primary piRNAs, like the fly ones, 

map antisense to transposable elements suggests that this form of ping-pong loop is ancestral, 

while the mouse ‘upside-down’ ping-pong loop is likely derived. We also established a method to 

estimate total piRNA abundances in distinct samples by normalizing total piRNA read counts to 

the read counts of individual miRNAs that we observe are constantly expressed across the samples 

according to qPCR assays. In sum, our studies indicate that it is possible to identify and profile 

 30



piRNA populations and subpopulations in part without using immunoprecipitation, given the 

correct computational analysis. 

 

piRNAs in stem cells and in the germ line 

 

Planarian neoblast stem cells are the only cells not associated with the germline in which piRNAs 

have been observed. What is the function that piRNAs perform in stem cells and the germ line, 

and why are they not observed in other cells? It is currently believed that the primary function of 

piRNAs is to silence transposable elements127, 160. These are mainly active in the germ line 

consistent with the fact that only germ line cells are perpetuated to the next generations, while 

somatic cells die with each individual animal. Similarly, it is most important for the host to silence 

transposons in the germ line, where they are most active and where new copies of transposable 

elements can be perpetuated to the next generations. In asexual planarians, the neoblast stem cells 

are the cells that are perpetuated and thus important to protect from transposon activity. When the 

Piwi2 gene is knocked down in planarians, the neoblasts can undergo mitosis but are unable to 

terminally differentiate into somatic cells. This depletes the pool of neoblasts, eventually causing 

death of the planarian161. This phenotype is consistent with the role of Piwi proteins in silencing 

transposons. In Piwi2 knockdown planarians, transposons would actively re-insert into new 

genomic positions in neoblasts, causing widespread DNA damage. However, unlike the mouse 

and fly germ cells which arrest in meiosis, the planarian neoblasts would likely still be able to 

complete mitosis in spite of the DNA damage, given that the mitotic check-point control is 

generally less stringent than the meiotic check-point (personal communication, Alexei Aravin). 

However, the neoblasts might not be able to undergo terminal differentiation, given the genetic 

damage they have sustained. A simple way to test this hypothesis would be to do in situ 

hybridization of Piwi2 knockdown planarians with antibodies against protein markers of DNA 

damage. Further, our lab is currently purifying antibodies against the Piwi2 protein. This will 

hopefully allow us to perform CLIP-seq  and CHIP-seq to identify the RNA and DNA targets of 

the Piwi2 interacting small RNAs. 
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Possible improvements 
 

miRDeep2 
 

Improved work flow 

 

Since the first version of miRDeep was published, we have designed and implemented a new 

version (manuscript in preparation). miRDeep2 not only discovers known and novel miRNAs in 

deep sequencing data, but also includes a module that can process raw sequencing reads and map 

them to the reference genome (Mapper) and a module that can perform fast and exact quantitation 

of known miRNAs in a given dataset (Quantifier). The modules work complementary, e.g. output 

of Mapper can be directly input to the miRDeep2 module or the Quantifier module (figure 5). 

 

 

 
Figure 5. Flow charts for (a) the miRDeep2 module (identifies known and novel miRNAs in deep sequencing data), 

(b) the Mapper module (processes Solexa / Illumina output and maps it to the reference genome) and (c) the 

Quantifier module (sums up miRNA read counts in a deep sequencing set). For each module the input, internal work 

flow (in black borders) and output is shown. Files are presented in rectangular boxes; processes are presented in 

rounded boxes. Files and processes that are novel to miRDeep2 are in yellow, those that have been modified are in 

green and those that remain largely unchanged are in blue. Files and processes that are optional are in grey. 
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Reduced memory and time consumption 

 

Given that the number of reads output by the deep sequencing platforms have increased by a 

factor ten every two years, and given that this trend may continue, it is essential that tools that 

analyze the data are efficient in terms of memory and time consumption. While the first version of 

miRDeep could require weeks of computing on high-memory (256 GB memory) computers to 

process, map and classify ~50 million reads, miRDeep2 can perform the same analysis in six 

hours on a desktop computer with 4 GB memory. We project that run-time doubles for each ten-

fold increase in read input. Further, miRDeep2 output consists of a webpage table of all known 

and novel miRNAs in the data. This webpage links to graphical representation of all results 

produced (such as miRNA hairpin structures, read signatures, score break-downs, see figure 6) as 

well as links to public databases such as miRBase, the UCSC genome browser, NCBI blast search 

etc. 

 

Robust analysis of very deep data 

 

More importantly, the new version can analyze very deep sequencing data in a more robust 

manner, without getting distracted by non-canonical Drosha/Dicer products. When deep 

sequenced miRNAs are mapped back to their genome locus, they typically map in three piles, 

corresponding to mature, loop and star sequences. When the sequencing is deep enough, reads 

sometimes map in adjacent piles (see figure 6). These reads are likely degradation products of the 

primary transcript from which the miRNA hairpin was cut out of. In the first version of miRDeep, 

the boundary of the putative miRNA precursor on the genome was defined by the local cluster of 

reads, meaning that the adjacent piles of degradation products would be included in the precursor, 

causing a misrepresentation of the boundary. In miRDeep2, the boundary of the putative miRNA 

precursor is defined from the single highest local stack of reads, which are assumed to represent 

sequenced mature miRNAs. The boundary of the miRNA precursor is then defined as the genome 

sequence covered by the stack, plus flanking sequence corresponding to typical miRNA loop and 

star length. Since the excision is based only on the stack of reads from the mature miRNA, the 

algorithm is insensitive to adjacent stacks that can potentially disturb identification of the miRNA 

hairpin.  
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Figure 6. Novel mouse miRNA predicted by miRDeep2. Notice the two reads that locate immediately upstream of the 

miRNA precursors. This is an example of miRDeep2 graphic output. 

 

 

Integrated annotation 
 

It is trivially true that if we could correctly identify all non-miRNA reads in a deep sequencing 

dataset, we would know that the remaining were miRNA reads. But in our studies we have come 

across a number of examples where initial identification of non-miRNA reads in practice 

improves miRNA prediction: 

 

Integrated annotation of 21U-RNAs and miRNAs 

 

21U-RNAs and miRNAs both often have beginning uracils and length of ~22 nts. This can make 

them difficult to distinguish computationally. In some cases, 21U-RNAs locate to genomic 

hairpins and sometimes two 21U-RNAs locate to hairpins in positions such that they resemble 

mature and star miRNA products. However, the characteristic upstream motif makes 21U-RNAs 

easy to identify. In the nematode embryo study140, we found that it was difficult to identify novel 

miRNAs with confidence when miRDeep was run on the unfiltered data. However, prediction 

accuracy improved substantially when the upstream motif was first used to identify and filter out 

21U-RNAs. 
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Integrated annotation of piRNAs and miRNAs 

 

The planarian piRNAs are typically ~32 nts in lengths and are in most cases easy to distinguish 

from miRNAs. However, shorter and possible partly degraded piRNAs are sometimes sequenced. 

For instance, if a given piRNA is present full-length in the data in ten copies, there might be a 

single 22 nt copy as well. If only reads in the canonical miRNA length range (18-25 nts) are input 

to miRDeep, these short piRNAs can cause large numbers of false positives. Therefore we make 

sure to input reads of all length. If the consensus putative mature miRNA is longer than 26 nts, 

miRDeep will automatically flag it as a possible piRNA and will discard the candidate gene. 

 

‘Black matter’ of sequenced short RNAs 

  

These cases show that improved identification of one type of small RNAs will also improve 

identification of other sources of small RNAs. Currently, it is not well understood exactly what are 

the sources of the sequenced short RNAs that we observe in the deep sequencing data. It is 

assumed that there are a number of degradation products from rRNAs, tRNAs, mRNAs etc. along 

with the regulatory small RNAs. But recent studies indicate that even some of the ‘degradation 

products’ show regularities in terms of their length and positions in the longer transcripts162. Thus, 

also rRNAs, tRNAs, scRNAs etc. might be substrates for processing activity. More importantly, it 

is rarely possible to assign more than 90% of all deep sequencing reads to known transcripts. 

Currently we simply have no idea what are the sources of the remaining hundreds of thousands of 

reads. Eventually, as more biological knowledge of the sources of the short RNAs become 

available, it will hopefully be possible to make models to make an integrated and saturated 

identification of all short RNAs in any given deep sequencing dataset. 

 

 

Mapping one read to one locus 
 

We know from biology that each deep sequenced RNA has been transcribed from exactly one 

genome locus. However, when sequenced small RNAs are mapped to the reference genome, many 

map to more than one locus. This is in some cases because the RNA is transcribed from a gene 

with many copies in the genome, like a transposable element. In some cases it will be ‘spurious’ 

mappings, meaning that a short sequence can have chance matches to biologically unrelated 

positions in the genome, especially when the reference genome is large. 
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Discarding ambiguous mappers 

 

One method of resolving ambiguously mapping reads is to discard them. In this way, it is fairly 

certain that all reads that undergo downstream analysis have been traced to the correct genome 

sources. However, this method discards a lot of useful information. For instance, most piRNAs 

and many miRNAs map to more than locus in the genome. 

 

Retaining all mappings 

 

Another method is to retain all equally best mappings of each read. This is the method that has 

been used in the present studies. To avoid that reads with many mappings dominate the analysis, 

all read mappings can be assigned weights that are the inverse to the number of times the read 

maps (e.g. each mapping of a read that maps ten times will be assigned a weight of 0.1). The 

advantage of this method is that little information is thrown away. The disadvantages are a) we 

know that the solution is incorrect since a given read can only have one genomic source b) the 

large numbers of mappings make the downstream analysis more noisy. 

 

‘Parsimonious mapping’  

 

A solution to the problem could be to assume that most deep sequencing reads have originated 

from a relatively small number of genome loci, and attempt to map the reads such that most of 

them locate to the fewest possible number of loci. In some concrete cases this appears reasonable. 

For instance, imagine a read that maps equally well to two genome loci. One locus is a ‘read 

desert’ with no other reads mapping nearby. The other locus is an rRNA gene that has thousands 

of reads mapping. In this case, it would seem reasonable to assume that the read should be mapped 

to the rRNA locus. A ‘parsimonious’ mapping method could be implemented in a number of 

ways. One way would be first to identify all reads that can be traced to a single genome loci. 

These would serve as a mapping ‘scaffold’. Then the ambiguous mappers would be assigned to 

the positions that maximize the ‘parsimony’ of the mappings, understood as the mappings that 

would assign most of the reads to the fewest loci (by some clearly defined criteria). The 

assignment of the ambiguous mappers could be resolved with Monte Carlo simulations163. 
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The future of small RNA deep sequencing 
 

 

This last section will in a speculative manner explore the possibilities that open up if the emerging 

deep sequencing platforms will be able to increase read output by two orders of magnitude 

(hundred fold increase). This does not seem unlikely given that this is the increase that has been 

observed the last four years. The section will primarily discuss how the technology might impact 

miRNA studies, but the arguments can in most cases be extrapolated to other types of studies. 

 

 

More depth, more samples: 
 

One possible use of a hundred fold increase in sequencing depth is naturally to sequence hundred 

samples simultaneously. A ‘sample’ is here defined as collection of cells from a specific tissue 

and/or developmental stage from a given organism. It is assumed here that the samples have been 

properly prepared for sequencing (the RNA has been extracted, small RNA libraries prepared 

etc.). The existing deep sequencing platforms (454, Solexa, SOLiD) already include protocols for 

the simultaneous sequencing of multiple samples (‘multiplexing’). This is done in the following 

way: the sample libraries are prepared in series and are ligated with adapters with distinct 

sequences (barcodes). Then the samples are pooled and sequenced simultaneously. When the 

sequences are analyzed, the barcode on each read allows it to be traced back to the source sample. 

If the output of the deep sequencing platforms increases by two orders of magnitude, multiplexing 

will open up these possibilities: 

 

Expression profiling 

 

There has already been a study to make an atlas of miRNA expression in the human body32. 

However, this was a vast project given that it was undertaken with conventional cloning and 

Sanger sequencing. If the output of deep sequencing increases substantially, it might be possible to 

make an atlas of miRNA expression in hundreds of tissues in an organism in a single sequencing. 

 

Discovery 

 

Discovery of novel miRNAs is often limited by the number of miRNAs that are expressed in the 

tissue that is investigated. Typically a dozen miRNAs will be highly expressed (and thus easy to 

discover) in a given tissue, while hundreds of miRNAs will be very lowly expressed (and thus 

difficult to discover). If hundreds of tissues are sequenced simultaneously, it would be expected 

that most functional miRNAs are highly expressed in at least one tissue, thus making discovery of 
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all miRNAs easy. Alternatively, a single tissue could be interrogated across dozens of animal 

species. In this case, putative miRNAs that are very lowly expressed in all species but display 

some sequence conservation might still be confidently identified as miRNAs. 

 

Independent validation 

 

The current small RNA library preparation steps all include a PCR amplification step. This means 

that a single small RNA molecule in a sample will be present in several copies in the amplified 

library, and could also be sequenced several times. This makes it difficult for the computational 

biologist to interpret the data: does a given sequence occur multiple times in the data because it 

occurred multiple times in the sample, or because the library was PCR amplified? The distinction 

can be important, since a sequence that occurs multiple times in the sample can be taken as 

evidence that biogenesis lead to the accumulation of the specific sequence. In contrast, a sequence 

that occurs a single time in the sample is more likely a product of degradation. If, however, a 

given sequence occurs in two distinct samples, then the occurrences can truly be considered as 

independent evidence (to my knowledge, this problem has not been described in the literature). 

 

Limitations to multiplexing 

 

The practical limitations to the simultaneous sequencing of multiple samples have already been 

mentioned. The tissues have to be isolated, or cells harvested, in series. Also, with the current 

sequencing platforms the library preparation is a significant bottleneck. Since multiplexed libraries 

have to be individually fitted with barcodes they have to be prepared in series, which means that 

little work is saved. However, these problems might be alleviated in the future as protocols 

improve. 
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More depth, one sample: 
 

As an alternative to multiplexing, increased sequencing depth can be used to sequence a single 

sample to saturation. 

 

Sequencing to profile genome-wide degradation and small RNA expression 

 

A two order of magnitude increase in sequencing depth could lead to qualitative as well as 

quantitative improvements in the data. For instance, if the small RNA contents of a human cell 

line were sequenced to produce 10 billion reads of up to 50 nucleotides length, this would mean 

that every nucleotide in the reference human genome would be covered by more than 15 reads on 

average (although the reads would not distribute evenly). The number of reads covering each 

nucleotide could then be taken as a measure of expression of small RNAs and of transcripts being 

degraded to short RNAs. The data would much resemble that produced by a genome tiling array164 

in that it would show expression at high resolution genome-wide. 

 

Comparison to genome tiling arrays 

 

Deep sequencing data would however have advantages over the genome tiling array: a) tiling 

arrays only have single probe (expression readout) for every 20 nucleotide or so of the genome. In 

comparison, the deep sequencing data would have an expression readout for every nucleotide of 

the genome. b) tiling arrays do not confer any information on the length of the transcripts bound to 

each probe. The length of each read gives this information in the deep sequencing data. c) in tiling 

arrays it is assumed that the transcripts bound to each probe has (reverse complement) similarity 

to the probe. However, cross-hybridization remains an issue. In comparison, deep sequencing 

provides the exact sequence of each transcript. 

 

Distinguishing degradation products and regulatory small RNAs 

 

One use of such saturated small RNA deep sequencing would be that it is easy to distinguish 

degradation products from regulatory small RNAs genome-wide. If sequenced RNAs mapping to 

a genome locus have varying lengths and have offset begin positions (like fallen dominoes) then 

the RNAs are likely degradation products of longer transcripts. This information is also essentially 

useful. If the sequenced RNAs mapping to a locus have specific lengths and locate to stacks, then 

they are likely cleavage products of small RNA biogenesis. For instance, a miRNA locus would 

likely be characterized by three stacks of reads, with the two outer stacks consisting of reads ~22 

nucleotides in length; with one of the outer stacks consisting of the most reads (sequenced mature 

miRNAs) and the middle stack consisting of the fewest reads (sequenced miRNA loops). The 
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genome surrounding these stacks might have many reads mapping from degradation of the 

miRNA primary transcript (which is visible in genome tiling arrays158). 

 

Discovering miRNAs by counting read stacks 

 

As mentioned, the increasingly deep sequencing has demanded increasingly sophisticated 

algorithms to discern the few miRNA loci from the millions of non-miRNA loci analyzed. 

However, as the deep sequencing platforms improve, this trend might be reversed. If sequencing 

of small RNAs gets sufficiently saturated, miRNA loci might be confidently identified through 

simple stack counting, as described above. In this case, simple algorithms might outperform the 

sophisticated algorithms like miRDeep. 

 

From identification to function 

 

Ultimately, the reason why we want to identify novel small RNAs is that we want to know their 

function. We want to know how they influence human disease, development, evolution etc. 

Function can in part be unravelled through computational predictions (like miRNA target 

prediction) or through novel high-throughput technologies like CLIP-seq, CHIP-seq, RNA-seq, 

mass spectrometry or ultimately through analysis of knockout phenotypes. Such experiments will 

likely suggest that many of small RNAs that have been discovered with the help of sensitive deep 

sequencing do not have any discernable function. It is completely plausible that hundreds of say 

human hairpin transcripts undergo Drosha/Dicer cleavage and may even be incorporated into the 

miRNP effector complex, but are expressed at such low levels that they have no real impact on 

protein output in any cellular context. Such very lowly expressed Drosha/Dicer substrates might 

be tolerated because they have little detrimental effect, and may during evolution eventually be 

selected against or may develop some function165. As the sequencing gets deeper, it is likely that 

more of such very lowly expressed Drosha/Dicer substrates will be discovered. Thus in the future, 

while it will be technically and computationally easier to identify novel small RNAs, the field will 

turn in a more philosophical direction: how much function does a small RNA need to have in 

order to be a genuine regulatory small RNA? 
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SUMMARY IN ENGLISH AND GERMAN
 

 

 

Discoveries in the last decade have shown that small RNAs (such as microRNAs) perform a 

number of important functions, including post-transcriptional gene regulation, transposon 

silencing, DNA methylation, chromatin modifications and chromosome segregation. The ability of 

the new deep sequencing technologies to sequence millions of short RNAs in a few hours have 

made them the method of choice for simultaneous discovery and profiling of small RNAs. 

However, when the sequenced RNAs are mapped to the reference genome, they typically locate to 

millions of distinct loci, only a few of which are loci that produce regulatory small RNAs. To 

distinguish the few loci that produce regulatory small RNAs from the many loci that are sources of 

other short RNAs like degradation products is a non-trivial computational challenge. In my 

doctorate works I have formalized knowledge of small RNA biology and biogenesis into 

computational models that can accurately identify regulatory small RNAs of different classes in 

much larger pools of sequenced RNAs. As part of collaborations, I have used these models to 

discover hundreds of novel small RNA genes in more than ten animal species including humans, 

mice, fruit flies, nematodes and planarian flatworms. We find evidence that a number of these 

small RNA genes have roles in disease or in stem cell function. Further, some of the novel 

regulatory small RNAs are in fact cleaved bona fide snoRNAs, revealing cross-talk between two 

RNA pathways. Last, I have developed methods for precise quantitation of individual small RNAs 

as well as entire small RNA populations between deep sequencing samples. 

 

 

Die Entdeckungen des letzten Jahrzehnts haben gezeigt, dass so genannte small RNAs, wie zum 

Beispiel microRNAs, bedeutenden Einfluss auf viele Zellabläufe haben. Dazu zählen unter 

anderem  posttranskriptionelle Regulation, Chromatin Modifikationen sowie Segregation der 

Chromosomen. So genannte next generation sequencer Maschinen sind dazu in der Lage 

Millionen von kurzen RNA Molekülen innerhalb nur werniger Stunden zu sequenzieren, weshalb 

sie heutzutage das Mittel Wahl sind um sowohl neue regulatorische small RNAs zu entdecken als 

auch Expressionsprofile von diesen zu erstellen. Wenn  die sequenzierten RNAs auf das Genom 

gemappt werden gibt es normalerweise Millionen von verschieden Moeglichkeiten von dem sie 

stammen koennten, aber nur einige von Ihnen produzieren kleine regulatorische RNAs. 

Die Identifikation genau dieser wenigen Loci, von denen die kleinen regulatorischen RNA Stücke 

stammen, ist eine computertechnisch anspruchsvolle Aufgabe. In meiner Doktorarbeit habe ich 

computerbasierte Modelle auf der Grundlage von der  Biologie und Biogenese kleiner RNAs 

erstellt. Diese Modelle sind dazu in der Lage die Loci der verschiedenen kleinen regulatorischen 

RNAs zuverlaessig zu identifizieren. Während diverser Kollaborationen mit anderen 
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Arbeitsgruppe habe ich meine Modelle dazu benutzt hunderte von noch nicht detektierten kleinen 

RNA Genen in mehr als zehn verschiedenen Tierspezies zu identifizieren. Dazu zählen Menschen, 

Mäuse, Fruchtfliegen und Flachwürmer. Wir haben Evidenz dafür gefunden, dass eine Vielzahl 

dieser kleinen RNAs eine Rolle in diversen Krankheiten oder Stammzellfunktion spielen. Des 

Weiteren sind einiger dieser kleinen RNAs tatsächlich prozessierte snoRNAs sind, was auf eine 

Interaktion der verschiedenen RNA Pathways nahelegt. Als Letzes habe ich noch Methoden 

entwickelt, die eine präzise Quantifikation von einzelnen kleinen RNAs sowie gesamter 

Populationen von kleinen RNAs zwischen Proben erlauben. 
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