Aus dem Institut für Vegetative Anatomie der Medizinischen Fakultät der Charité – Universitätsmedizin Berlin

DISSERTATION

Rolle des Tamm-Horsfall Proteins (THP) beim renalen Konzentrierungsmechanismus. Charakterisierung einer THP-Knockout Maus.

Zur Erlangung des akademischen Grades
Doctor medicinae

vorgelegt der Medizinischen Fakultät der Charité – Universitätsmedizin Berlin

von

Kerim Mutig

aus Semipalatinsk (Kasachstan)

Gutachter: 1. Prof. Dr. med. Karlhans Endlich

2. Prof. Dr. med. Ernst Tamm

3. Prof. Dr. Sebastian Bachmann

Datum der Promotion: 16.10.2006

Abstract

The Tamm-Horsfall protein (THP; uromodulin), the dominant protein in normal urine, is produced exclusively in the thick ascending limb of Henle's loop. THP mutations are associated with disease; however, the physiological role of THP remains obscure. We generated THP gene-deficient mice (THP -/-) and compared them with wild-type (WT) mice. THP -/- mice displayed anatomically normal kidneys. Steady-state electrolyte handling was not different between strains. Creatinine clearance was 63% lower in THP -/- than in WT mice (P < 0.05). Sucrose loading induced no changes between strains. However, water deprivation for 24 h decreased urine volume from 58 ± 9 to 28 ± 4 µl·g body wt⁻¹·24 h⁻¹ in WT mice (P < 0.05), whereas in THP -/- mice this decrease was less pronounced (57 \pm 4 to 41 \pm 5 μ l·g body wt⁻¹·24 h⁻¹; P < 0.05), revealing significant interstrain difference (P < 0.05). We further used RT-PCR, Western blotting, and histochemistry to study renal transporters, channels, and regulatory systems under steady-state conditions. We found that major distal transporters were upregulated in THP -/- mice, whereas juxtaglomerular immunoreactive cyclooxygenase-2 (COX-2) and renin mRNA expression were both decreased in THP -/- compared with WT mice. These observations suggest that THP influences transporters in Henle's loop. The decreased COX-2 and renin levels may be related to an altered tubular salt load at the macula densa, whereas the increased expression of distal transporters may reflect compensatory mechanisms. Our data raise the hypothesis that THP plays an important regulatory role in the kidney.

Keywords:

Tamm-Horsfall protein, uromodulin, gene-disrupted mice, thick ascending limb, renal concentrating mechanism

Schlagwörter:

Tamm-Horsfall Protein, Uromodulin, Knockout-Maus, dicke aufsteigende Henle-Schleife, renaler Konzentrierungsmechanismus

Inhaltsverzeichnis

Abkür	zungsverzeichnis	1
1	Einleitung	9
1.1	Organisation des Nephrons	9
1.2	Ionen- und Wassertransport in Segmenten des Nephrons - Übersicht	9
1.3	Struktur der dicken aufsteigenden Henle-Schleife	11
1.4	Funktion der dicken aufsteigenden Henle-Schleife	11
1.4.1	Ionentransport in der dicken aufsteigenden Henle-Schleife	13
1.4.2	Beteiligung der dicken aufsteigenden Henle-Schleife am Harnkonzentrierungsmechanismus	13
1.4.3	Regulation des Ionentransports in der dicken aufsteigenden Henle-Schleife	14
1.4.4	Polarität und Proteinsortierung in Zellen der dicken aufsteigenden Henle-Schleife	15
1.5	Biosynthese und Lokalisation des Tamm-Horsfall Proteins	16
1.6	Proteinstruktur und Eigenschaften des Tamm-Horsfall Proteins	20
1.7	Funktion und klinische Relevanz des Tamm-Horsfall Proteins	21
1.7.1	Tamm-Horsfall Protein im Zusammenhang mit der Funktion der dicken aufsteigenden Henle-Schleife	21
1.7.2	Mutationen des THP (UMOD)-Gens: MCKD2 und FJHN	22
1.7.3	Beteiligung des Tamm-Horsfall Proteins an pathologischen Prozessen in der Niere	23
1.7.4	Tamm-Horsfall Protein als Schutzfaktor gegen Harnwegsinfektionen	25
2	Zielsetzung der Arbeit	27
3	Material und Methoden	28
3.1	Versuchstiere	28
3.2	Prinzip der Geninaktivierung	28
3.3	Vorarbeiten zur Uromodulin (THP)-Geninaktivierung in Mäusen	29
3.4	Generierung der THP-Knockout Mäuse	32
3.5	Wasserbilanz, Volumenbelastung und Durstversuch	33
3.6	Creatinin-Clearance	34
3.7	Bestimmung der Plasma-Reninaktivität	34

3.8	Präparation der Nierenhomogenate	35
3.9	Proteinbestimmung	35
3.10	SDS-PAGE und Immunoblotting	35
3.11	Perfusionsfixierung und Gewebeprozessierung	37
3.12	Immunohistochemie	38
3.12.1	Antikörperinkubation und Antikörperdetektion	38
3.12.2	Verwendete Primärantikörper	39
3.13	In-situ-Hybridisierung	39
3.13.1	Präparation der cDNS	39
3.13.2	In vitro-Transkription zur Herstellung Digoxigenin-markierter Riboproben	40
3.13.3	Hybridisierung Digoxigenin-markierter Riboproben	40
3.13.4	Waschschritte zur Entfernung nicht hybridisierter Riboproben	42
3.13.5	Detektion der hybridisierten Riboproben	42
3.14	Elektronenmikroskopie und Immunelektronenmikroskopie	43
3.15	Semiquantitative Auswertung der JGA Parameter	43
3.15.1	Quantifizierung von COX-2, NOS1 und Renin	43
3.15.2	Quantifizierung der NADPH-Diaphorase Reaktion	44
3.16	Semiquantitative PCR	44
3.17	Statistische Auswertung	46
4	Ergebnisse	47
4.1	Histologische Charakterisierung des Mausmodells	47
4.1.1	Verifizieren des THP-Knockout Modells	47
4.1.2	Ultrastrukturelle Untersuchung der THP-/- vs. wt Mäuse	47
4.2	Physiologische Untersuchung der THP-/- vs. wt Mäuse	50
4.2.1	Kontrollzustand	50
4.2.2	Durstversuch	50
4.2.3	Volumenbelastung	50
4.2.4	Creatinin-Clearance	52
4.2.5	Reninaktivität im Plasma	52
4.3	Expression der Ionentransporter unter Kontrollbedingungen	52
4.3.1	RT-PCR	52

4.3.2	Western blot	53
4.4	Juxtaglomeruläre parakrine Parameter	58
5	Diskussion	61
6	Zusammenfassung	68
7	Literaturverzeichnis	70

Abkürzungsverzeichnis

Amp Ampicillin

ATL Dünner aufsteigender Schenkel der Henle-Schleife

AQP Aquaporin

BSA Bovines Serumalbumin

cAMP cyclisches Adenosinmonophosphat

CD Sammelrohr

CCD Kortikales Sammelrohr

CLC-K2 Chlorid-Kanal Typ 2

CNT Verbindungstubulus

COX-2 Cyclooxigenase-2

DCT Distales konvolutes Segment

DTL Dünner absteigender Schenkel der Henle-Schleife

EDTA Äthylendiamintetraessigsäure

ENaC Amilorid-sensitiver epithelialer Na⁺ Kanal

FJHN Familiäre Juvenile Hyperurikämische Nephropathie

GFR Glomeruläre Filtrationsrate

HRP Horse Radish Peroxidase

IHC Immunohistochemie

IM Inneres Mark

IMCD Inner-medulläres Sammelrohr

ISH In-situ-Hybridisierung

MCD Medulläres Sammelrohr

MCKD2 Medulläre Zystische Nierenerkrankung Typ 2

NaPi-lla Na⁺/PO₄⁻-Kotransporter Typ IIa

NCC Thiazid-sensitiver Na⁺,Cl⁻-Transporter

NHE3 Na⁺/H⁺ Austauscher Typ 3

NKA Na⁺,K⁺-ATP-ase

NKCC2 Furosemid-sensitiver Na⁺,K⁺,2Cl⁻-Kotransporter

NOS Stickstoffmonoxid-Synthase

OM Äußeres Nierenmark

PBS Phosphat-gepufferte Salzlösung

PCR Polymerase Kettenreaktion

PRA Plasma-Reninaktivität

ROMK K⁺-Kanal (Rat outer medullary K⁺ channel)

SDS Natriumdodecylsulfat

TAL Dicker aufsteigender Schenkel der Henle-Schleife

THP Tamm-Horsfall Protein

THP-/- Tamm-Horsfall Protein-Knockout

TIN Tubulointerstitielle Nephritis

Tris Tris(hydroxymethyl)-aminomethan ($C_4H_{11}NO_3$)

Umod Uromodulin

WB Western blot

wt Genotyp Wildtyp; Kontrolltiere

Lebenslauf

Mein Lebenslauf wird aus Datenschutzgründen in der elektronischen Version meiner Arbeit nicht mit veröffentlicht.

Publikationsliste

Publikationen in Erstautorschaft:

Bei dieser Publikation haben zwei Autoren (S. Bachmann und K. Mutig) gleichwertig beigetragen

1) Bachmann S, Mutig K, Bates J, Welker P, Geist B, Gross V, Luft FC, Alenina N, Bader M, Thiele BJ, Prasadan K, Raffi HS, Kumar S. Renal effects of Tamm-Horsfall protein (uromodulin) deficiency in mice. *Am J Physiol Renal Physiol. 2005 Mar;288(3):F559-67. Epub 2004 Nov 2.*

Publikationen in Co-Autorschaft:

- Gerlach JC, Mutig K, Sauer IM, Schrade P, Efimova E, Mieder T, Naumann G, Grunwald A, Pless G, Mas A, Bachmann S, Neuhaus P, Zeilinger K. Use of primary human liver cells originating from discarded grafts in a bioreactor for liver support therapy and the prospects of culturing adult liver stem cells in bioreactors: a morphologic study.
 - Transplantation. 2003 Sep 15:76(5):781-6.
- 2) Bachmann S, Schlichting U, Geist B, Mutig K, Petsch T, Basic D, Wagner CA, Kaissling B, Biber J, Murer H, Wilnow TE. **Kidney-specific inactivation of the megalin gene impairs trafficking of renal inorganic sodium phosphate cotransporter (NaPi-Ila).** *J Am Soc Nephrol.* 2004 Apr;15(4):892-900.
- 3) Schmitt R, Kahl T, Mutig K, Bachmann S. **Selectively reduced** expression of thick ascending limb Tamm-Horsfall protein in hypothyroid kidneys.

Histochem Cell Biol. 2004 Apr;121(4):319-27. Epub 2004 Mar 9.

Widmung

Für meine Großväter Omar Baizaurow und Josef Mutig und meine Mutter Rimma Mutig.

Danksagung

Mein herzlicher Dank gilt an erster Stelle Herrn Professor Dr. Sebastian Bachmann für seine fördernde Unterstützung meiner wissenschaftlichen Arbeit sowie für die kontinuierliche Beratung und kritische Durchsicht des Manuskripts.

Darüber hinaus gilt mein besonderer Dank der Laborleiterin Frau Dr. Pia Welker für Ihre Unterstützung, meinen Arbeitskollegen Alexandra Böhlick und Juliane Gadau für die kritische Durchsicht des Manuskripts sowie den TA-Kräften Kerstin Riskowski, Frauke Serowka, Petra Schrade und Petra Landmann für die exzellente technische Assistenz bei der Fertigstellung einiger der in dieser Schrift vorgestellten Untersuchungen.

Nicht zuletzt gebührt mein herzlichster Dank meiner Tante Emma Baizaurova, meiner Frau Tatyana Mutig, meinem Vater Valentin Mutig, meinem Bruder Alex Mutig und seiner Frau Julia Mutig für ihre liebevolle und verständnisvolle Unterstützung und konstruktive Kritik im Laufe des Vorhabens.

Ε	r	k	Ιä	r	u	n	q
_	•	••			•	••	3

Ich, Kerim Mutig, erkläre, dass ich die vorgelegte Dissertationsschrift mit dem Thema: "Rolle des Tamm-Horsfall Proteins (THP) beim renalen Konzentrierungsmechanismus. Charakterisierung einer THP-Knockout Maus" selbst verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt, ohne die (unzulässige) Hilfe Dritter verfasst und auch in Teilen keine Kopien anderer Arbeiten dargestellt habe."

Datum Unterschrift