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1
Introduction

„All models are wrong, but some are useful.

— George Box

Research Professor of Statistics

Models are idealized, simplified representations of phenomena and are used in a wide

range of disciplines, from architecture and engineering to mathematics and biology,

where e.g. a physical model is a scaled design of a building, mathematical models

are built to optimize flows through machines, and a mouse as a model organism

that is genetically modified to simulate human diseases and their treatment. In

general, constructing a model requires the simplification of the system s.t. main

characteristics are preserved. Then, model building itself as well as an analysis of

the model can lead to new useful insights about the original system.

In systems biology, mathematical modeling of biological processes was shown to

be valuable to increase their understanding [105]. With the availability of high-

throughput genomic and proteomic data, the focus of research is shifting from

grasping the function of individual proteins to unraveling how the many proteins

interact together in a complex web of signaling, regulatory, structural and metabolic

pathways in the cell [46].

Overview of different modeling approaches In order to understand and predict the

behavior of a cell, we require a system level of understanding of the wiring of the

pathways of the cell [51]. For this aim, modeling methods from different disciplines,

such as engineering and computer sciences, are applied to biological systems to

represent different facets. Figure 1.1 visualizes a selection of modeling approaches

in systems biology ordered by their level of detail.

At the lowest level of detail, basic information about the wiring between components

and their connections is gathered from correlations by statistical data-mining. More

detail can be added by applying Bayesian statistics, which account for conditional

dependencies between components. Thus, connections can have different weights

indicating the influence of the components on each other [46]. These statistical
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approaches are commonly used for top-down modeling, which means that the model

is directly inferred from the data set with the aim of finding the simplest model that

is accurate. An issue of these approaches is that they tend to ignore prior knowledge

from the literature, and thus causal information of the system. An advantage is that

the statistical approaches can account for uncertainties in the system and are able to

deal with large systems.

Fig. 1.1. Selected modeling approaches in systems biology. Different modeling approaches are listed
from detailed, physically based approaches to abstract, statistical approaches. The detailed
approaches usually build models in bottom-up fashion whereas abstract approaches mostly
derive a model from data in a top-down manner. Figure adapted from [46]

At a high level of detail, systems of differential equations, most commonly ordinary

differential equations (ODE), model dynamical processes such as diffusion or bio-

chemical reactions, simulating the location or concentration of each component in

the system over time. For this aim, very detailed information about kinetic constants,

binding coefficients or transport rates as parameters are required. Less detailed

information is necessary for Markov chain models where the production, loss and

conversion of molecular species are probabilistic processes [46]. These detailed

approaches are physically based and built in a bottom-up manner. This means

that the models are built from prior knowledge about molecular processes such as

binding or transport in the cell. The aim is to find one model that fits observed data

and thereby is validated. These modeling approaches hardly are able to include

uncertainty towards the topology and the regulatory mechanisms into their analysis,

since they have to deal with unknown parameter values. Thus, all mechanical

aspects are predefined and only the uncertainty in parameters is usually estimated

by sensitivity analysis [66]. However, for uncertainties in the wiring of the system, a

comprehensive analysis would be too exhaustive at this level of detail.

The medium level of abstraction is represented by the Boolean/logical formalism,

which models the wiring of the system as a set of components with qualitative
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on/off levels, called states, and the molecular interactions between them as connec-

tions [48]. Moreover, the functional relationships between components are defined

as logical rules without requiring quantitative parameters. The simulation of the

qualitative dynamics of the system can then link input combinations to output de-

cisions such as cell-fate, which was shown to deliver valuable results for signaling

processes [105, 57, 35]. Despite the fact that logical models are mostly built in

bottom-up manner, there are also Probabilistic Boolean networks that infer the

models from data [83]. Here, I want to use an integrative approach that is based on

prior knowledge from literature, but accounts for uncertainties in the wiring and the

functional relationships between the components (see Fig. 1.1).

Modeling cellular signaling In this thesis, I am especially interested in exploring

signaling pathways, which form a complex molecular machinery in the cell to sense

inputs and react with the appropriate output (see Fig. 1.2). For this purpose, the cell

has a variety of sensors called receptors that specifically recognize stimuli and pass

the signal to a protein network, which functions as an information processor [59].

The outcome influences the cellular machinery by producing new proteins through

gene expression, secreting new stimuli, causing changes in the cytoskeleton or even

triggering cell fates like growth or death.

Fig. 1.2. Scheme of signal propagation in cells. Environmental stimuli activate receptors on the cell
surface to trigger a reaction of the cellular machinery. The signaling network processes
the different input combination to decide for the appropriate output (adapted from [59],
network designed by Harryarts-Freepik.com)

For modeling signaling networks, three principles are important: modularity, ro-

bustness, and use of recurring circuit elements [3]. Modularity means that each

pathway as a unit is designed for a certain purpose. Robustness can be realized by

3



having parallel mechanisms that control a certain function in order to compensate

for malfunctions. This is realized through interconnections between the pathways,

called crosstalk. Finally, recurring circuit elements are motifs that compose a unit,

which encode functionalities such as feedbacks.

Traditionally, signaling networks are investigated based on the principle of modu-

larity, which means that individual pathways connect a receptor through a chain

reaction with a specific set of target genes. Thus, these individual pathways are

relatively well described. In contrast, the principle of robustness through crosstalk

is less well understood [1], and therefore often uncertain. However, cancer cells

often use these crosstalk connections to escape treatment, therefore including for

robustness is of interest [77].

Logical modeling of uncertain systems The wiring of cellular signaling in human

cells is still far from understood. Especially in cancer cells this problem is enhanced

by mutations [74]. When modeling an uncertain system, one option is to build a

model based on assumptions. However, another option is to build every possible

model that arise from the uncertainty and compare their performance. Depending

on the modeling formalism, building every possible model can become computa-

tionally challenging, e.g. finding parameters for one ODE model is already a hard

problem usually also rife with uncertainty. Our group developed a logical modeling

workflow [98] to create and analyze many possible topologies and mechanisms of

biological systems (Fig. 1.3) using efficient software [53, 90].

In our approach, we use a bottom-up model building to include all available infor-

mation about the system and categorize them as certain or uncertain information.

Here, uncertainty means that there are controversial results in the literature on

the topology and/or on the regulatory mechanisms. Then, all possible topologies

and mechanisms are enumerated to a generic model pool. In the second step, we

compare the dynamics of the models in the pool with new data and thereby reduce

the number of models in a top-down fashion to determine specific subpools (see

Fig. 1.3). With this approach, we can analyze tens of thousands of models efficiently.

Fig. 1.3. Workflow for the modeling approach used here. First a generic model pool is created from
all available information including uncertainty. Then, the pool is filtered for data to find
specific subpools, which can be analyzed for new information.
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Other logical modeling approaches that incorporate uncertainty are available, e.g.

CellNetOpt or an Answer Set Programing based approach by Videla et al. being

similar to our approach [96, 102]. These tools differ in a number of aspects from

our approach, in particular, they train models according to an optimality criteria

rather then considering the full set of consistent models. Also, these tools focus on

steady state responses, which poses a problem in signaling systems. These systems

often contain negative feedbacks that hamper the measurement of steady states

and cause non stable behavior in the model dynamics. For this reason, CellNetOpt

splits the model dynamics into an early and late steady state, where the first one

excludes the feedback and the second one includes it. However, this separation

requires detailed information about the time-scales of the modeled system, which

we do not presuppose. Other related work was done by Martin et al., where Boolean

dynamics of genetic regulatory networks were inferred from data, but this is a purely

top-down approach without including prior knowledge [67].

Aims and structure of the thesis In this thesis, I expanded the workflow (Fig. 1.3)

to a toolbox, focusing on the interface between biology and mathematics. Here,

the formalization of biological information and objectives as well as the biological

interpretation of the outcome of the method are the focus of this work. In Chapter

2, I first describe the theoretical background for logical modeling, introduce the

concept of model pools and the method model checking for comparing these pools

to data. I used two different model checking tools in this thesis, which are described

briefly in the last section of Chapter 2.

The main methodical work is presented in Chapter 3, where I describe how the

general workflow is expanded to a comprehensive toolbox for evaluating uncertainty

in biological systems. Since the workflow has only been applied to toy systems

before, my aim was to explore which kind of biological systems are interesting to

analyze, what kind of questions can be addressed and how these questions can

be formalized? Since the focus is the application to cellular signaling processes

in cancer cells, three interesting objectives were identified that can be analyzed

with the workflow: investigating crosstalk between models, finding mutations, and

testing the effect of drugs. In order to analyze these systems for data in the next step,

experimental measurements need to be formalized, which includes discretization

of quantitative data, interpretation of temporal information such as steady state

assumptions and consideration of qualitative information such as mutations. The

last section in Chapter 3 then deals with the question of, given a statistical and exact

analysis tool, how can the results of a model pool analysis be interpreted to extract
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biological information? Then, Chapter 4 gives a short introduction, on how to model

this toolbox in one of the model checking software Tremppi.

In the following Chapters 5 to 7, the toolbox is applied to four different case studies

(three of them published [92, 98, 97]). Here, the biological system I investigated

were two prominent cancer signaling pathways, but each case study investigates a

different aspect of the system. In Chapter 5, I tested and compared the approach to a

published study, where the signaling network of 6 cancer cell lines was investigated

in a rich data set. Here, the cell line specific wiring of the network was explored for

different temporal constraints to determine the impact of these constraints on the

results.

Chapter 6 investigates the crosstalk between two well-known signaling pathways

systematically. According to the methodology described in the toolbox, I aimed to

introduce crosstalk while preserving validated behaviors of the single pathways. The

first study in the chapter is based on literature information and models the healthy

system. The results then form the basis for the second study for two renal cancer

cell lines. Here, the crosstalk as well as the effect of a cancer drug on the signaling

system is explored using data from our collaboration partners and analyzed with

focus on possible drug targets and crosstalk combinations.

In the last chapter, the workflow is applied to a small signaling network, where

the wiring of one specific component is uncertain with conflicting studies in the

literature. Here, we systemically collected all proposed hypotheses and supporting

data from the literature to unravel the conflicting information. Chapter 7 also shows

how our approach can be used for experimental design to propose further studies

that could clarify the control of that component.
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2
Theoretical Background

In Chapter 2, the theoretical background on logical modeling is given. The generation

of a model pool is described formally, which is required for the modeling process

suggested in the workflow in Figure 1.3. The formal description is based on the

definitions in the dissertation of Hannes Klarner [53]. Moreover, in order to compare

experimental observations with discrete simulations of the models, a formalization of

data as temporal logics is presented. Finally, model checking software to efficiently

apply these formulas is introduced.

2.1 Topology of the model

In logical modeling, the topology of a biological system is represented as a di-

rected graph R = (V,E, l), called interaction graph (IG). This graph contains nodes

V = {1, ..., n}, which represent the components of the system. These components are

biologically functional entities from single genes or proteins, to complete cells or or-

gans, depending on the desired level of abstraction. The activity of this functionality

is encoded in discrete values N0 = {0, 1, 2, . . .}, called activity levels, depending on

how many different functionalities of the component are measurable and relevant.

In case, only one functionality is assigned to all components of the system and a

Boolean network (BN) with B = {0, 1} is given, where 0 means the functionality

inactive and 1 stands for active. The further definitions are given for BNs.

By assigning activity levels to every component of the network, the state of the

system s is defined by s : V → {0, 1},∀v ∈ V : s(v) ∈ B. Here, the notation of a

state is specified as a sequence in the order of V . For example, if the model has

four components V = {v1, v2, v3, v4} with Boolean activity levels, a possible state

would be s = 1001, meaning that s(v1) = 1, s(v2) = 0, s(v3) = 0, and s(v4) = 1. The

combination of every activity level of each component gives rise to the state space

S =
∏

v∈V B.

In the interaction graph, an edge e ∈ E ⊆ V × V is called interaction and represents

a regulation of one component by another. The nature of this regulation is described
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by the edge label l : E → {+,−}. If, e.g. a protein A is physically binding another

protein B and thereby activating it (Fig. 2.1), then A is called regulator of B and

the influence is translated into an activating edge from A to B with the label +. An

activation means that an active state of A causes at some point an increase in the

activity level of B. The second possible influence is inhibition, where an active state

in the regulator causes at some point a decrease in the activity level of the target

component. In a network that is not Boolean, each interaction is active for certain

ranges of values θ(u, v) ⊆ [1..Max(u)] where Max(u) ∈ N0 is the maximum activity

level of u.

2.2 Regulatory mechanisms

Though the interaction graph provides information about the wiring of a network, it

is not sufficient to describe the mechanical processes behind the interactions. Often

a component is affected by more than one regulator, e.g. having two activating

influences. These influences might act independently or are both necessary to

activate the target, thus for representing the biological mechanism it is crucial

to express these dependencies. There are two common ways of describing the

regulatory mechanisms of the components, either by giving the logical formula or

parametrization function.

The conditions under which a component is active can be expressed as conjunction

and disjunction of the regulators. For a full description of the network, a formula f

for every component v ∈ V is required to define every state of the system. These

formulas are constructed as expression as follows:

f ::= 0 | 1 | u | ¬f | f1 ∨ f2 | f1 ∧ f2

where u ∈ V describes a component, ¬f the negation of f , f1 ∨ f2 the disjunc-

tion and f1 ∧ f2 the conjunction of the expressions f, f1, f2. For sparse networks,

these formulas are intuitive to understand and already give information about the

underlying mechanisms, e.g. for the toy model in Fig. 2.1.

An alternative way to define the regulatory mechanism is to enumerate every possible

regulatory context of a component and to assign the corresponding effects in terms

of activity values. This assignment is called parametrization and is equivalent to

generating a truth table for each component as can be seen for the toy example in
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Figure 2.1 c. Here, the formal definition of the regulatory mechanism for each v ∈ V
by its regulators v− = {u ∈ V | (u, v) ∈ E} is the partial parametrization

Kv : 2v− → B = {0, 1}.

Here, an element U ∈ 2v− corresponds to the row in the truth table in which each

u ∈ U is active and all others are inactive. The value assigned to that row is Kv(u).
U is sometimes called a regulatory context of v. A special case are so-called input

nodes where v ∈ V is defined as a node that only has itself as a predecessor v− = {v}
with an activating self-regulation.

Having Kv specified for every component, the full parametrization of the system

K = (Kv)v∈V is given.

2.3 Dynamical behavior of a model

With a parametrization K or the logical formulas F , the dynamical behavior of

the network R can be described. For this aim, the transition of the model from

one state to another as a simulation generates its behavior over discrete time steps.

These state transitions are described by→⊆ S × S applying the logical formulas or

parametrization functions as an update of the system’s state.

2.3.1 Update strategy

There exist different update strategies, the main ones are synchronous, asynchronous,

and sequential update. Sequential update creates transitions according to a pre-

defined sequence of components, which usually is based on information about the

timing or order of events from the biological system. Therefore, it requires specific

prior knowledge about the dynamical behavior. The synchronous update assumes

that all components in the system change to their next state, before any component

can evolve further in time. Therefore it cannot account for fast and slow processes

in one model. However, it is biologically unrealistic that all components work

completely synchronized, especially since the components can have different level

of abstraction. Still this update strategy is the most commonly used, because the

dynamics are relatively simple and computationally manageable even for larger

networks. The reason for simplicity is that both sequential and synchronous update

produce deterministic dynamics, that is, each state has only one possible transition

to the next state.

2.3 Dynamical behavior of a model 9



An alternative update strategy was proposed by Thomas et al., where they em-

ploy asynchronous update of the state [99]. Here, only one component can

change its value at a time. For a state s = (s1, . . . , sv, . . . , sn) denote with sv =
(s1, . . . ,¬sv, . . . , sn) the state which differs from s in the value of the component v.

The transition relation is then defined by s→ sv ⇐⇒ Kv({u ∈ v− | su = 1}) 6= sv.

This update schedule produces every possible trajectory emerging from a state

by changing one value, thus the dynamics are non-deterministic and therefore

more challenging in terms of computation and interpretation. More precisely, asyn-

chronous dynamics can contain trajectories that are not predictive for biological

behavior.

Fig. 2.1. Definition and visualization of the toy model. a IG of three components A, B, and C with
edges and corresponding edges labels. b Logical functions for each component describe
the regulatory context. c Alternative definition of the connected components is given by
parametrization. d STG of the model splits in two distinct graphs depending on the state of
component A. For A=1 all trajectories end in a cyclic attractor, where components B and C
switch between states 0 and 1. For A=0 the system has a fixpoint with all components being
inactive.

However, the dynamics often yield more realistic trajectories than synchronous

update, since the assumption that every component changes its value at a different

time point, even if the difference is very small, is biologically reasonable. For

example, a system might contain signaling processes that are direct and usually fast

as well as processes that require a translocation to a cell organelle, which takes more

time, or even de novo synthesis of the protein via gene regulation processes are

slow relative to direct activation. Since this information is often not given or not

to the extend that a sequential update can be derived from this knowledge, every

combination of sequences is produced. This issue is very important in this modeling
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framework, since Boolean modeling is widely seen as formalism of choice when

dealing with very large networks containing various processes.

2.3.2 Characteristics of dynamics

The complete dynamical behavior can be described as a state transition graph (STG)

R(K) = (S,→). This is again a directed graph, where the node set is given by the

state space and the edges are determined by applying the logical equations according

to the update strategy. The STG and its characteristics form the basis for the analysis

of qualitative models.

The trajectories of the system are contained in the STG as paths, denoted as

Path = Path(S,→) (notation adapted from [53]). Here, a path π ∈ Path(S,→)
is a sequence (s0, s1, . . . ) of si ∈ S such that si → si+1 for all 0 ≤ i. In case the

path is finite, the sequence (s0, s1, . . . , sk) is restricted to 0 ≤ i < k, where k ∈ N
indicates the length of the path by the number of transitions. Then, the existence of

a path from x to s is described as x s. According to the square bracket notation

from [4], the ith state in a path π is described as π[i] := πi and a fragment as

π[j...k] := (πj , . . . , πk). In the application to biological systems, these paths are

compared to sequences of measurements of the system, where often the initial state

or a set of initial states is known. Therefore, paths with a given initial state s ∈ S or

a set of initial states IS ⊆ S are noted as

Path(s) := {π ∈ Path | π[0] = s}

Path(IS) := {π ∈ Path | π[0] ∈ IS}.

Regions in the state space that are highly connected are of special interest, because

trajectories may stay for a long time in these regions, which means that these

dynamics are likely to be an observable behavior of the system. A strongly connected

component (SCC) is an inclusion-wise maximal subset X ⊆ S that satisfies x y

for all x, y ∈ X. This means that there exists a path between every state in this

region of the STG. In the STG, a SCC that cannot be left by any trajectory is called

an attractor. In case this set consists of a single state, we call it a fixpoint or steady

state, otherwise a cyclic attractor. Each attractor separates the STG into basins of

attraction, which contain all states that evolve into the respective attractor.

An example of a STG is given in Figure 2.1 d where two graphs are shown that

describe the two basins of attraction. These basins are two distinct sets of states,

since the component A is an input node and the state of A governs the behavior of
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the system. Therefore it cannot change its state and for A=1 the attractor (marked

green) is a cyclic attractor and for A=0 a fixpoint.

2.4 Model pool

When building a model, often one has to deal with sparse information about the

biological system. For example, if the regulation of multiple genes is of interest,

but the respective information about each individual gene is only available from

different cell types or even species. In these cases, the logical equations or even the

presence of a regulation is uncertain. Here, we address this problem by including

this information into the modeling procedure by extending the set of possible edge

labels to {+,−,¬+,¬−}. Here, the labels {+,−} are assigned to edges of known

interaction from literature either with an activating or inhibiting effect, respectively.

These interactions are called observable meaning that the edge is present in every

model, whereas edges that are not present are also called not observable. The labels

{¬+,¬−} are assigned to uncertain edges, which are controversial in the literature

or hypothesized to be present. Here, ¬+ means that the edge is not activating, i.e. it

is either not observable or inhibiting, and ¬i means that the edge is not inhibiting,

i.e. it is either not observable or activating.

For defining the model pool, every solution of Kv for the edge labeling is calculated,

s.t. l(u, v) evaluates to true for each u ∈ v−. More specific, we say that Kv is a

solution of the edge labeling iff

l =



+ : ∀ω ⊆ v− : Kv(ω) ≥ Kv(ω − {u})∧

∃ω′ ⊆ v− : Kv(ω′) > Kv(ω′ − {u}),

− : ∀ω ⊆ v− : Kv(ω) ≤ Kv(ω − {u})∧

∃ω′ ⊆ v− : Kv(ω′) < Kv(ω′ − {u}),

¬+ : ∀ω ⊆ v− : Kv(ω) ≤ Kv(ω − {u}),

¬− : ∀ω ⊆ v− : Kv(ω) ≥ Kv(ω − {u}).

The parametrization K = (Kv)v∈V is a solution to l if Kv is a solution to l for each

v ∈ V [98].

In case there is information about the regulatory mechanism of a component avail-

able, we want to define an update function directly. This logical equation f is

required to be consistent with the edge labels. The set of all K that are solution to

l and f is called the model pool, denoted K(V,E, l, f) where each model contains
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one unique parameter for every component. Thus, the model pool arises from the

uncertain wiring and unknown regulatory mechanisms of a system.

Fig. 2.2. Building the model pool for expanded toy model. a IG of the system with additional
component D is activated by A and an optional edge from D to C is labeled as not inhibiting.
The logical equations can be defined for components A, B and D, but not for C. b Two
different topologies result from the graph, where in the bottom graph edge between D and
C is present with two different logical equations possible, namely an AND or OR gate. In the
upper graph the model does not contain the edge from D to C, thus B is the only regulator of
C. Finally, the resulting model pool contains 3 models.

2.5 Data processing

In order to incorporate experimental data into the mathematical analysis, it needs to

be processed depending on the type of data and the technology used for measure-

ment. Often background noise needs to be filtered, big data sets require normaliza-

tion and statistical evaluation before applying them to analysis methods. Since all

data used in this thesis was already processed, we do not address this part of data

processing any further. Any preprocessing we applied to data in our case studies will

be explained within the case study later. However, in order to compare experimental

data to discrete trajectories, we do need to discretize this data to match the logical

formalism. Since we are only interested in basic dynamics such as finding a trajectory

where a component switches on/off or oscillates, the discretization needs to preserve

the information we are interested in for our analysis.
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2.5.1 Discretization

The discretization process transforms quantitative into qualitative data, e.g. protein

concentrations are assigned to a finite number of intervals resulting in distinct

partitions of the continuous information [29]. Although the method comes with

a loss of information especially for quantitative data, it also provides advantages

for inferring knowledge from data. Discrete values are easier to use since the

data is less complex and therefore learning algorithms can process this information

faster and more efficiently [29]. Moreover, the amount of noise in the biological

data can be reduced by discretization, as shown by Dimitrova et al., where time-

series data was more robust to noise when compared to continuous values [25].

Finally, the interpretation of discrete values is often more intuitive, since biological

experiments often have discrete characteristics like knockout of genes or stimulation

of a receptor.

When discretizing data, an important decision is to choose the levels of discretization.

That is, how many meaningful levels can be assigned to a functionality that corre-

sponds to different states in the model. In the simplest case, the binary discretization

{0, 1} is used, where ’1’ represents an upregulation or activation and ’0’ represents a

downregulation or inhibition. For discretizing data points into two states, a threshold

needs to be defined. Here, different methods can be applied to find a threshold, such

as mean or median [25].

Using a threshold for discretization causes every component to switch from 0 to 1

(or vice versa), no matter how small the variation in the activity is. Thereby, minor

fluctuations of an active component can be discretized to an oscillatory behavior. To

overcome this issue, an alternative widely used scheme is the ternary discretization,

where three levels are considered {−1, 0, 1} describing downregulation, no change

and upregulation, respectively. In this scheme, an upper and lower threshold are

set to define a region that is considered to not functionally show a specific activity.

A common application is calculating the fold-change (fc) of measurements and

defining a threshold of fc = 2 and fc = −0.5, which means that the activity needs to

be doubled or halved to be up- and downregulated, respectively.

In theory it is possible to define an arbitrary high number of levels, called multivalue

discretization. In case a component has a certain functionality at a low concentration

and gains an additional functionality at a high concentration, this can be captured

by assigning {0, 1, 2} for inactive, low and high concentration, respectively. Again,

a threshold between every level needs to be defined. With an increasing number
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of levels the complexity of the data for analysis and interpretation increases, thus

the choice of discretization is always a trade-off between level of detail and cost of

complexity [29].

In this work, both binary and ternary discretization is used depending on the

biological system that is modeled and the available experimental data. Specifically,

we faced two different kinds of data sets, quantitative data having continuous

measurement values and qualitative data. For quantitative data sets, the former

procedure of discretizing by calculating thresholds is applied. For qualitative data

sets such as western blots, only visual information is available. Here, measurements

are usually interpreted relative to a control measurement. If a measurement is

judged as ambiguous, it is excluded from the study.

Finally, the last processing step is assigning the discretized values to model com-

ponents. More specific, we investigate the behavior of signaling processes, where

kinases activate their target by phosphorylation. Thus, we define the presence of

target phosphorylation as readout of the activity of a component, rather than the

phosphorylation of the component itself.

2.5.2 Temporal logic

After discretizing the data to logical states, we also want to include information

about transitions between states from the data to the model. In order to compare

transitions in the STG with data, the measurements need to be interpreted in the STG

by encoding this behavior as temporal logics. In general, temporal logics describe

an ordering or a sequence of events in time with two different concepts: linear

time logic (LTL) and computation tree logic (CTL), which describe deterministic and

non-deterministic sequences of events, respectively. For our analysis, two different

tools were employed. Either we explicitly defined CTL queries from our discretized

data or we used a software which provides an interface to enter the data and then

builds the temporal logic autonomously. Note that LTL formulas are incomparable

to CTL formulas and since we do not formulate LTL queries ourselves in this work,

no formal definition is given. However, most of the dynamics we consider can be

described by an equivalent LTL formula.

Computational tree logic Computation tree logic is a branching time logic intro-

duced by Clarke [17], designed for systems that at each point have many possible

futures. Here, beginning in any state s ∈ S evolving in time is represented as

alternative paths in trees and sub-trees of possible future states. CTL formulas

2.5 Data processing 15



consist of atomic propositions (AP), which are combined using Boolean operators

and temporal operators. Along with definitions in [53], the syntax of CTL formulas

is divided into a state formula and path formula. The state formula ψ is defined over

a set of AP by the following grammar:

ψ ::= true | a | ψ1 ∧ ψ2 | ¬ψ | Aϕ | Eϕ

where a ∈ AP and ϕ is a CTL path formula formed according to the grammar:

ϕ ::= Xψ | Fψ | Gψ | ψ1Uψ2

where ψ, ψ1 and ψ2 are CTL state formulas.

There are two kinds of temporal operators, the first one quantifies over paths {A,E},
where A means the formula is valid, if ϕ holds on all paths starting from the current

state. The operator E means the formula is valid, if there exists at least one path

starting from the current state where ϕ holds. These operators can be interpreted

as the strictness for applying the path formula. The operators {X, F,G,U} are

path-specific with the following semantics.

X: Next: ψ has to hold at the next state.

G: Globally: ψ has to hold for the entire sub-

sequent path including the current state.

F: Finally: ψ has to hold somewhere on the

subsequent path.

U: Until: ψ1 has to hold at least until ψ2,

which holds at the current or a future posi-

tion.

Usually there are two different kinds of temporal behavior observed in experiments:

time-series measurements or steady state measurements. In logical modeling, we

interpret time-series as trajectories in the STG and steady states as fixpoints of the

system. Using the path operators, time-series are encoded as a sequence of states,

where the ordering of events is preserved. In Figure 2.3 an example for the data

processing of time-series data is given. Here the CTL formulas consist of series of

states that should exist at some point in the future. For both formulas a state is not

required to hold until the next state is reached and also we do not require the next

measurement to hold at the next state. Therefore, EF(ψ1 & EF(ψ2 & . . .EF(ψn))) is

the structure we employ for encoding time-series measurements. Note that in the

CTL formulas we use the symbol & for ∧.
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For attractors, the path operator G can be used if a longterm behavior of a component

is known. For example, if we would have the information that components B, C, and

D in the toy example stay inactive when A is off, we could include this in our CTL

as EF(AG(A = 0 &B = 0 &C = 0 &D = 0)). This formula describes an attractor,

since all components are specified to stay at a certain value. In case only a subset of

the components of the system are assigned to a state all other component would be

allowed to change, which would be a cyclic attractor.

Fig. 2.3. Discretization and formal encoding of toy data. a Two experiments with time series mea-
surements over four time points observed the activity of components B, C and D denoted
as a(B) etc. The green line represents the threshold for binary discretization. b The tables
show the discretized data for each component and each time point. c CTL formulas derived
from tables b are shown for each experiment.

2.6 Model checking

Model checking is a formal method from computer science that has been shown to

be a powerful tool for analyzing biological problems [71, 6, 11]. Different kinds of

temporal information from the biological systems or data is checked for agreement

with a mathematical model. After encoding the observed information as temporal

logics, powerful algorithms are used to compare the model with the formula.

Given a model and its STG, model checking is able to decide whether or not a

temporal logic specification is satisfied by the model dynamics. For this purpose, a

Kripke structure is used, which describes a transition system (TS) based on a finite set
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of states, a set of initial states, a transition relation, a set of atomic propositions, and

a labeling function. For an STG, the TS = (S,→, IS, L) with L being the labeling

function from states to atomic propositions (for more details see [4]). For a path in

the TS, the satisfaction relation s |= ψ which defines whether a state s ∈ S satisfies

a CTL state formula ψ is given by

s |= true

s |= a iff a ∈ L(s)
s |= ¬ψ iff not s |= ψ

s |= ψ1 ∧ ψ2 iff s |= ψ1 and s |= ψ2

s |= Eϕ iff ∃π ∈ Path(s) : π |= ϕ

s |= Aϕ iff ∀π ∈ Path(s) : π |= ϕ.

If we extend the satisfaction relation from paths to transition system TS, we want

to quantify the satisfaction by either having one s ∈ IS ⊇ S or every initial state as

condition [53]. Then TS |= ψ iff

∃s ∈ IS : s |= ψ called ForSome
∀s ∈ IS : s |= ψ called ForAll.

The satisfaction relation for π |= ψ for paths π ∈ Path(s) describing the CTL path

formula is given by

π |= Xψ iff π[1] |= ψ

π |= Fψ iff ∃0 ≤ i : π[i] |= ψ

π |= Gψ iff ∀0 ≤ i : π[i] |= ψ

π |= ψUψ iff ∃0 ≤ j : σ[j] |= ψ2 and ∀0 ≤ i < j : σ[i] |= ψ1.

For our toy example, two CTL formulas from Figure 2.3 c are checked on the STGs of

the three models from Figure 2.2. In Figure 2.4 this process is visualized by marking

the matched states. Here only data for components B, C, and D is given, thus the

CTL formulas are checked for two different initial states. Applying the formulas

with the quantification option ForSome shows that experiment 1 must have been

observed with active component A, since only that part of the STG was able to match

CTL1 for some models, vice versa for experiment 2. Applying the formulas with

quantification option ForAll would lead to no match for both experiments.
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Fig. 2.4. Model checking for CTL1 and CTL2 reveals only model (3) is valid for both data sets. The
STGs of all three models from the model pool (see Fig. 2.2) are shown represented by their
logical formula of component C. Each STG is split into two distinct graphs since component
A cannot change its value. Each STG was checked for both CTLs, but only some dynamics
with active A were able to match CTL1 and some dynamics with inactive A matched CTL2.
Mover, only models (1) and (3) are in agreement with CTL1 and model (3) with CTL2,
where each matched state is marked green and models matching all four states are marked
with checkmark.

2.7 Software

In the field of systems biology, there are many tools for mathematical modeling of

biological systems. For example, CellNetAnalyzer provides a graphical user interface

and various computational methods and algorithms for exploring structural and

functional properties of metabolic, signaling, and regulatory networks [52]. It

incorporates methods for functional network analysis like characterizing functional

states, detecting functional dependencies, identifying intervention strategies, or

giving qualitative predictions on the effects of perturbations. A specialized tool for

logical modeling is GINsim, which allows to build a logical model, build and visualize

the STG for both synchronous and asynchronous update and simulates knock-outs

in components [72]. However, there is no specific tool for building pools of logical

models and testing them for data. In our group, two different tools were developed

to allow for such an analysis: TomClass and Tremppi. The tools and applications

were published [53, 90, 92, 98]. In the following a short description of the tools is

given.
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2.7.1 TomClass

The first software I used for my analysis is a Python based model checking tool called

TomClass developed by Hannes Klarner, which builds and analyzes model pools [53].

The tool can be divided into two parts: model instantiation as well as annotation

and model pool analysis.

Model instantiation and annotation The first step is to define the topology of the

system. As input all prior knowledge on components v ∈ V , including their maximal

activities and names, and their interactions e ∈ E is entered, together with a

threshold function θ. The prior information on the regulations of the components

are entered either as logical equations for components that have known parameter

values or as edge labels for uncertain regulatory contexts. For enumerating all models

arising from the input, the expressions are translated into a constraint satisfaction

problem (CSP) and solved using the CSP solver Python-constraint, see [53].

The resulting model pool is stored by the database engine SQLite. The database

consists of a single table and each model of the pool is stored in a single row.

Further information is added in dedicated columns which is done in the annotation

step. During the annotation phase models are tested typically by model checking or

other properties that require exploring the state transition graph [53]. According to

Klarner, a test is any algorithm that computes a label for a model. Here, annotation

scripts require a property name under which the annotation is stored as a column in

the database and the model pool that is tested. There is also the option to test only a

subset of models in case testing the full pool would be computationally challenging,

but this option is not used in our analysis.

For performing model checking on a model pool, TomClass employs NuSMV [15, 14],

which is based on Symbolic Model Verifier (SMV) that was developed by E. M. Clarke

et al. [16]. NuSMV is able to efficiently verify LTL and CTL specifications for fi-

nite transition systems. A model is first translated into the NuSMV language and

then passed to the software together with a LTL or CTL specification for verifica-

tion [53].

There are three annotation options available in the script: annotate_reachability,

annotate_attractors and annotate_crosstalk. Here, reachability means testing whether

the transition system of a model is able to satisfy a CTL or LTL formula and its

constraints, which is called property. For this aim, the property is defined in the

script with the following parameters:
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• pname: is the name for the label of the property for annotation in the SQL

database.

• ψ: is the CTL formula as described in Section 2.5.

• Delta: describes the delta constraint, which defines whether a component is

required to decrease or increase its value or not. Delta=1 means the compo-

nent must change its value in the future and Delta=0 means that no change is

possible, i.e. we are in a steady state.

• v=b: where v ∈ V, b ∈ B states that value of a component v is set to b.

• Initial state: is a list of Boolean constraints on the values of the compo-

nents. A state is considered initial, if all the constraints are satisfied.

• Verification_type: can opt between the satisfaction conditions ForAll and

ForSome.

• Fixed component: constrains the listed components to the assigned values for

the whole path. This parameter allows for modeling knock-outs and stimuli.

There is also an option to passing a matrix of values together with a vector of the

component names to the program, which then generates a time-series CTL formula

automatically. The first row of measurements, meaning the first time point, is used

as initial state and the last time point can be set as fixpoint by another parameter,

i.e. Fixpoint can be set to true or false.

The algorithm annotate_attractors requires a declaration of the input nodes and their

initial states. Then, the attractors for every combination of the given initial states are

calculated and added to the database as properties, where every combination results

in a new column. For specifying the attractor, all components that are stable are

listed with their respective value. Thus, if every component of the system is listed

the input results in a fixpoint.

For annotate_crosstalk or in general optional edges, all edges of interest are listed

in a vector. These edges are then tested in every model of the pool to be functional

or not. This information is added to the database as a new column having 1 for an

observable edge and 0 for non-observable.

Model analysis In the tool, the model pool is analyzed by classification, where

the models are grouped into classes according to the annotated properties in the
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database by the algorithm analyse_classes. Either all properties can be used as a

classifier or a list of properties are defined in the parameter Classes. For example,

we want to group the models according to their status of an annotated CTL formula.

Also we can restrict the pool to a subpool using the parameter Restriction, where

we can select models for their property, e.g. only including all models that satisfy a

CTL formula or carry an optional edge. Mathematically, the analysis finds subsets of

models that have a non-empty intersection and computes the cardinalities of these

sets [53]. For this aim, an SQL query is generated using statements of the form

SELECT DISTINCT Classes FROM models WHERE Restriction

where SELECT DISTINCT computes all combinations of labels, i.e. subsets, of the se-

lected Classes in the database models, possibly restricted using WHERE. Additionally,

COUNT is used to determine the cardinality of each subset, i.e. the number of models

in a class later denoted as size of a class. It is possible that classes are empty if there

exists no model in the pool with a particular label combination. The script prints

only all non-empty classes and their cardinalities to a CSV file [53].

For the analysis of the toy example, all properties were selected, which is the

optional edge from D to C and the CTL formulas CTL1 and CTL2 . The resulting

classification in Table 2.1 shows that every model is grouped in a separate class,

since the labeling of the properties is different for each model. Thus, the size of

every class is one, which is 33,3% of models per class of the pool. The labels of the

classes agree with the observation in Figure 2.4, showing that the model without the

optional edge from D to C cannot satisfy CTL1 and only one of the two possible

models containing the edge is able to satisfy CTL1 and CTL2 . However, from the

classification it is not possible to determine which logical function is necessary to

satisfy the formula.

Tab. 2.1. Output table of analyse_classes in TomClass for classifying the model pool of the toy example
for the optional edge from D to C and the CTL formula CTL1 and CTL2 .

Properties
D → C CTL1 CTL2 Size

0 1 0 1 33.3%
1 0 0 1 33.3%
1 1 1 1 33.3%

This issue can be solved by another algorithm implemented in TomClass called

annotate_controls, which calculates and returns logical formulas for every component

in the pool. Applying this annotation to the full pool gives a list of every possible
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logical equation for each component and a count for how many models carry

this equation across the pool. However, this algorithm also uses the parameter

Restriction, thus the composition of regulations can be determined to a resolution

of a single class. In case a class contains a single model, the logical equations of

that model are given. Accordingly, for a Restriction: CTL1 = 1 and CTL2 = 1 the

output is: CompD ∧ CompB. This result matches the observation in Figure 2.4.

2.7.2 Tremppi

The second software I used for building and analyzing model pools is called Tremppi

(Toolkit for Reverse Engineering of Molecular Pathways via Parameter Identification)

and was developed by Adam Streck [90]. The tool was built with the goal to provide

a platform that allows to incorporate as much information as possible about the

biological system and use this information to optimize the modeling and analysis

process. The workflow (Fig. 2.5) is similar to TomClass. First, all possible models

are enumerated according to the constraints given and stored in a SQL database.

Then, these models are evaluated and labeled for properties like dynamical behavior.

Next, a subset of these models can be selected, analyzed using various tools and

compared to other selections. Finally, the selection or analysis can then be refined

based on the newly gained knowledge [90]. Each of these step will be explained in

the following.

Fig. 2.5. Workflow implemented in Tremppi (picture taken from [90]), with a five step process for
enumerating, labeling, selecting, analyzing and comparing models in the model pool.

Enumerate In contrast to TomClass, the prior knowledge on the model topology

and logical equations is not implemented as a script but through a user interface.

The components and interactions are build as a graph and the edge labels are

selected from a list, which consists of optional and fixed labels. For our applications

we used a subset of possible labels, for more information see [90]. Fixed labels

are {Activating Only, Inhibiting Only}, which means that the edge is always

present and activating or inhibiting, respectively. Thus, they are the same for

every model in the resulting pool. Optional edges are {Not Inhibiting, Not

Activating, Observable}, which means that they are optional, but if they are

present they are activating, inhibiting or any, respectively. These edges lead to

differences in the topology of the models in the pool. Moreover, constraints on
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the regulatory context of a component can be added. Once the regulatory graph

R = (V,E, l) and possibly constraints are entered, all models fitting the network are

enumerated building the model pool K and stored in an SQL-database.

Label In order to further restrict the model pool and to apply biological information

to the pool, labels can be added to the models in the database (not to confuse with

edge labels). Here is a list of possible labels adapted from the website1:

• Kv(v−) ∈ [0,Max(v)] is the parameter value for the component v in its prede-

cessors v−. The symbol Max(v) denotes the maximum activity of v.

• bias(v) ∈ [0.0, 1.0] denotes how much the component v has a tendency to-

wards the lower or higher activity levels. It calculates an average activity value

of a component across all parametrizations, where high values indicate a high

influence of that component.

• impact(u, t, v) ∈ [−1.0, 1.0] denotes how prominent the regulation (u, t, v) is.

Values close to -1.0 denote a strong inhibition, the ones close to 0.0 denote

weak effect, and the ones close to 1.0 denote a strong activation. More details

are given in the Analyze paragraph.

• sign(e) ∈ {0,+,−, 1} is the sign of the edge. The value 0 denotes no effect,

the value + activation, the value - inhibition, and the value 1 activation and

inhibition at once.

• cost(property) ∈ [0, !0] denotes how many simulation steps it takes to satisfy

the property. Low numbers indicate a short path and therefore easier agree-

ment, however the special value 0 means it is not possible at all. For our appli-

cations, we only consider the options satisfiable (!0) and non-satisfiable (0).

Here, cost is a label calculated for a property, which is an encoded observation that

is tested on the model pool. Since we are working with biological systems, these

properties are usually experimental data which was discretized as described before.

In contrast to TomClass, Tremppi does not use CTL formulas for model checking,

but Büchi Automata. In general, Büchi Automata based model checking is used for

properties described using the Linear Temporal Logic (LTL), but, as described by

Streck [90], the tool is implemented to build properties as the more expressive Büchi

Automata directly.

1http://dibimath.github.io/TREMPPI/ version TREMPPI 1.1.0, date 05.9.2016
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In Tremppi, each data set is translated into a property P = (−→M,
−→
D,End,Exp) where

−→
M is a sequence of measurements,

−→
D is a sequence of delta constraints, End is an

ending, and Exp is an experiment [90]. In the following list, these elements are

described in short (adapted from and for more details see [90]).

• Sequence of measurements: A single discretized measurement is described

by a vector M =
∏

v∈V mv where mv ⊆ [0,Max(v)] a product of threshold

values for a subset of components. These thresholds correspond to states of

the components in the transition system or a set of states, if only a subset of

components is measured. A sequence of measurements is then described by a

vector
−→
M = (M1, . . . ,Mn) for some n ∈ N1. A path in the transition system

matches the measurements, if there exists a sequence of states that matches

the measurements in the given order.

• Sequence of delta constraints: With this constraint we can restrict the behavior

of the components between the measurements, e.g. to enforce monotonicity in

the sequence. Thus, an additional constraint assigned to each measurement

is defined called component delta D ∈
∏

v∈V {up, down, stay,none} where up
means the component can not decrease its value, down means the component

can not increase its value, stay means the component can not change its value,

and none means the component is not constrained.

• Ending: For each measurements sequence
−→
M the ending is defined as a log-

ical variable End ∈ {open, stable, cyclic}. Here, open means that there is no

restriction on the dynamics after the last measurement. The option stable
means that we assume the last measurement to be a steady state. The option

cyclic encodes that after the last measurement the system returns to the first

measurement in the sequence and thereby forming a cyclic attractor.

• Experimental setup: Often experiments include manipulations of the system

which affect the model, e.g. often components are inhibited which affects their

influence on other components.These manipulations can either restrict the

state space or change the parametrization of the model. Then, the experimental

setup for component v is denoted as Expv ∈ {[i, j] | 0 ≤ i,Max(v) ≥ j}) and

the experimental setup of the whole network is Exp = (Expv)v∈V [90].

Select For every assigned label or set of labels, a selection can be created in

Tremppi. These selections are used to filter the model pool for those models that

are in agreement with the labels in the selection. Depending on the label, different
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constraints for selecting labels can be entered in the software, from intervals of

floating numbers to logical expressions. Here, I only used the restriction that can

be applied to all labels, which is denoting !0 for the label being fulfilled and 0 for

the label not being fulfilled. A selection is the conjunction of all labels, thus models

have to meet all labels within one selection to be chosen. However, each selection

itself is independent and applied in disjunction, which means that a model rejected

by one selection is still checked for other selections.

Analyze Each selection creates a model pool, which can be analyzed with different

tools, the so-called reports in Tremppi. There are two reports to summarize different

characteristics across the pool: the qualitative and the quantitative report. The

quantitative report provides the basic quantitative information about the selected

model pool by giving a summary about numerical values in a table. In particular,

there are 5 measures given: Label shows the label and its parameters for this row,

Count shows how often the label has a non-zero value, Min and Max give the minimal

and maximal value in the selection, and Mean gives the mean of the selection. The

qualitative report gives a summary on all assigned labels and its parameters with

the number of distinct values with the symbol # and the proportion of each value in

the pool as Elements.

The report used throughout this work is called regulations report, which is a

graph-based report which re-creates the network made in the editor. It visualizes

the statistical analysis of the model pool and was introduced in [98]. First, the

correlations between the states of the system and kinetic parameters of the individ-

ual component are computed to evaluate the effect of regulations. Note that the

parametrization function describes a causal relationship—the dynamical behavior of

a component is implied by the state of the system. Thus, for each pair (u, v) ∈ E and

a parametrization K we therefore compute the impact of u on v as the correlation

between the current value of u and Kv. Formally, for each K ∈ K the impact function

impK : E → [−1, 1] ⊂ R is defined as impK(u, v) = corr((su){s∈S}, (Kv(s)){s∈S})
where corr is the Pearson product-moment correlation coefficient. This notion is

extended to parametrization sets by employing the mean. Formally, an extended

impact function impK : E → [−1, 1] as impK(u, v) =
∑

K∈K impK(u,v)
|K| is created. Note

that impK(u, v) = 0 is equivalent with l(u, v) = (¬+) ∧ (¬−), meaning the edge is

non-functional. However, in case an edge is labeled with l(u, v) = (+ ∨ −), both

negative and positive edges can appear within one pool and theoretically could lead

to impK(u, v) = 0 as well. In the case studies, I do not include edges with ambiguous

labels, thus the issue does not affect my analysis. Another issue of the impact value

is that it is always split upon all predecessors and therefore results in lower impact
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values for edges that influence components with many incoming edges. Thus, also

low impact values must be considered in the analysis.

Lastly, the second measure for the regulations report is how often an edge is func-

tional in the resulting set, which is described by the frequency function freqK : E →
[0, 1] defined as freqK(u, v) = |{K∈K|impK(u,v)6=0}|

|K| . In the report, the mean impact

in the selection is projected to the color of the regulation, while the width of a

regulation is obtained from its frequency (i.e. how often it takes on a non-zero

value). Moreover, a comparison between two regulations reports of the same system

can be created, where the statistical measures are subtracted from the reference.

Again the impact is illustrated using colors and the frequency as thickness of lines,

where non-positive frequency can occur as dashed lines and the 0 value is displayed

as dotted lines. Moreover, one can opt for the relative representation of the statistics,

where the values are normalized in the current report to the boundaries.

There are three more reports available, which are not used in this study. The

correlations report visualizes the values of the bias label of a component and

the correlation between bias. The group report creates mutually disjoint sets of

parametrizations that match on selected features, thus classifies groups or models

with common labels. The witness report provides a statistic on paths in the transition

system called witnesses. It visualizes those with the minimal cost, for all the

properties selected at once. For more details on the reports see [90].

Compare In the last step of Tremppi’s workflow, it is possible to compare the

analysis of different selections. Within each report, the difference between two

selections can be calculated in order to evaluate the effect of the different selections

on the model pool. In general, the most suited report strongly depends on the pool

structure and size.

Even after incorporating numerous properties, the resulting pool K may be too large

for manual analysis. In that case the regulations report can capture the nature of the

selection. Here, a possible comparison would be the unfiltered pool and the selected

pool to visualize the impact of the selected labels on the pool. Another example is to

use the quantitative report to compare the parametrizations of two selections.
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3
Toolbox for evaluating uncertainty

in biological systems

Mathematical methods are artificial constructs used to help understanding biological

processes. In order to receive meaningful results from a modeling study, the biology

needs to be transfered into mathematics and the results need to be interpreted from

a biological perspective, which is not straight-forward. Here, we address this task of

incorporating biological information into the formalism presented in Chapter 2 in a

four-step workflow: system initialization, objective formalization and adaptation,

data formalization, and pool analysis.

When modeling a biological system, there are very different requirements and issues

to address depending on the structure and the aim of the study. The workflow in

Figure 3.1 gives a general approach for building logical models for problems I came

across in my studies as a toolbox of methods. At first, the process of bottom-up model

building formalizes the biological phenomena into the prior knowledge network,

which we call system initialization. Here, the regulatory graph and the logical

equations are derived from literature information. Then, the objective formalization

includes the aim of the study into the model setup, e.g. by adding extra components

or changing the labels of edges. After generating the model pool, the top-down

filtering process uses biological data that needs to be encoded into temporal logics,

the data formalization. Finally, the pool analysis gives two options to examine the

specific pool for new biological insight. Although the workflow was developed for

signaling networks, the approach can be applied to any related modeling problem.

3.1 System initialization

The first level of incorporating biological information into the model is the model

building process itself. Here, literature information is gathered and interpreted to

build the prior knowledge network, which forms the basis for the analysis. Depending

on the aim and available information of the system, very different models can be

build even if the same system is examined and the same data is used. The model
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Fig. 3.1. Toolbox for evaluating uncertainty in biological systems as a workflow. For building the prior
knowledge network and defining the uncertainties of the system, the system initialization
and objective formalization is necessary. The filtering process from the generic model pool
to the specific model pool requires data formalization and the interpretation of the final pool
is done by pool analysis.

building process is decisive for the later outcome of the analysis and needs to be

done with care, still this aspect of modeling is often underrated. Since there is no

clear ruling on how model building should be done, I will present my approach here

and compare it with the literature.

3.1.1 Model boundaries & resolution of entities

The first decision that needs to be made for model building is to define the scope of

the model. Since it is only possible to model a fraction of the highly complex biologi-

cal system, those elements that are necessary for understanding and representing

the biological phenomena should be included. In the cell biological scale this means

that signaling processes are usually obtained in the enclosed pathway [78], gene

regulatory processes examine the transcription factors, genes and feedbacks [68],

and metabolic processes are represented by enzymes, nutrients and metabolites in-

volved [84]. However, these processes do not work in isolation of the cell, therefore

the boundaries for the model need to be set with care and the interpretation of

results need to be done in awareness of the biological context.
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For my studies, I consider signaling pathways where the structure is often a receptor

as input and a subsequent cascade of kinases, phosphatases and other proteins. Often

a signaling pathway regulates one or more transcription factors and thereby genes

and cellular reactions. I set the model boundary at the last measured component in

the cascade (unless a component further downstream influences a feedback) and do

not include transcription or cellular reactions such as apoptosis into models, since

there are too many possible influences from outside the model boundaries.

There are many different ways to translate a system with its components and

interactions to a model as defined in Section 2.1 depending on the focus, the

available data and the aim of the study. Models can be built for various aims, e.g. to

be biologically descriptive, to illustrate specific mechanisms of the system, or to be

minimal to measures like number components or interactions [3].

To illustrate this issue, Figure 3.2 shows a toy example of a signaling process,

where A is the receptor which phosphorylates B and D. Phosphorylated B acts as a

transcription factor for gene c and causes the production of protein C. This protein C

becomes phosphorylated by active (phosphorylated) D, which is then able to bind

the unphosphorylated form of B and thereby prevents its activation by A. From a

modeling perspective, there are essential and non-essential elements in this system.

The receptor A is necessarily the input of the model, and B is important as activator

of C and recipient of the negative feedback from C. Then C integrates the signals

from B and D and triggers the negative feedback on B. These processes determine

the behavior of the system, but nodes that simply receive and pass a signal are

not essential. The component D is such a node, therefore if one aims to build the

minimal model this component is left out, see Fig. 3.2 a. A chain of these nodes is

called cascade and is often simplified in models without continuous time, but also in

discrete time models they can be included, e.g. to observe delays. However, since

we are not interested in such delays, we consider cascades as non-essential.

It is common that genes and their proteins are modeled in one component, but

this simplification is a strong assumption. In the toy example, information about

the influence of B on the gene c and of D on the protein C at two different phases,

pre- and post-transcriptional, is lost in model Figure 3.2 a. Therefore, it can be

beneficial to distinguish between these components to make it more descriptive and

better resolve the temporal actions of B and D (see Fig. 3.2 b). Another possible

step of refinement is to add a node for the bound components B and C as a complex.

This step illustrates the biological mechanism by which the inhibition of C on B

is working, shown in Figure 3.2 c. Then the complex inhibits B from activating c.
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Fig. 3.2. Resolution of entities in the same toy system gives different models. a Original toy model
build with lowest resolution. b Gene c is separated from its protein C. c The complex
BC is modeled explicitly. d Proteins and phosphorylated proteins are modeled as distinct
components.

However, the models in Figure 3.2 a-c do not illustrate whether an interaction acts

on the phosphorylated or unphosphorylated form of the protein. Especially, when the

modeler wants to emphasize that both forms can be present at the same time, each

form is modeled as its own component. For the toy example, this results in at least

three extra components (the receptor could activate itself by autophosphorylation

leading to another component). In this model, the information about pC binding B

and not pB is added (Fig. 3.2 d).

Finally, it is possible to combine these different resolution levels to receive very

descriptive models, but every additional component increases the complexity of

the system and its analysis. Here, the smallest model describing the toy example

contains three components A, B, and C resulting in a state space of 23, 8, states. The

most comprehensive model, including the separation of c and C, the complex BC

and adding the phosphorylated forms of the protein leads to a model with eight

components and a state space 28, 256, states. Thus the resolution of the entities and

along with that the complexity of the model is a trade-off between being biologically

descriptive and complexity in form of computational costs and interpretability.
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I choose the resolution based on the functionality of a component and the data

available. In the toy example, a distinction between gene c and its protein C were

included if there were measurements of both the transcription, e.g. mRNA of c,

and the protein activity, e.g. phosphorylation of C. Otherwise, c simply passes the

activation from B to its successor C, thus deleting this node does not change the

sequence of events between B and C. Adding a complex built from two other present

components to the model, can aid understanding the biological mechanisms of a

system. In the toy model, the inhibition of C on B by binding is not visible without

the complex. However, even if there is data of the complex present, the existence

could also be interpreted as active C, which leads to the same dynamics than with the

complex. Also, splitting a component to its phosphorylated and unphosphorylated

form is only applied, if both forms give distinct functions and both are directly or

indirectly measurable.

As a result of choosing the model boundaries and the resolution for every entity

within these bounds, the set of components V is defined.

3.1.2 Activity levels

Not only the resolution in terms of biological entities is an important step when

building a model. Also, the decision of the level of abstraction in terms of the

functionality of a single component itself, the activity levels, needs to be deduced

from biology. As described in Section 2.1, logical modeling requires components

to have discrete levels of activity. In case a component is only modeled for one

functionality the Boolean description is sufficient, with 0 being inactive and 1 for

expressing that functionality, which is the most common form of logical models.

Otherwise a multilevel representation can be used to express that a component is

e.g. not present (0), present (1), and active (2) or has a low, medium and high

concentration. Of course, there is no limit in the number of levels, but similar

to the number of components the complexity increases with the number of levels.

Especially, the thresholds distinguishing the activity levels are additional parameters

of the system that need to be determined from data.

In general, multilevel representation of a component is meaningful, if the effect is

linear in the activity of the component. For example, in Figure 3.3 a the behavior

of B in the diagram is linear, meaning that it activates D at a medium activity (1)

and additionally acts on C for high activity (2). Then the oscillations caused by

the negative feedback on B does not affect the regulation of D. However, if the

measurement of B would be an overlay of two signals, B and pB, as shown in the
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Fig. 3.3. Activity levels of a component and the thresholds of the outgoing edges affect the dynamical
behavior. a Toy model with component B having three levels according to behavior in
the diagram below. Thresholds θ1 and θ2 separate low, medium, and high activity of B. b
Toy model with component B having three levels derived from the behavior in the second
diagram. c Toy model with two separate components B and pB with two levels each, where
θ1 distinguishes low and high activity of B and θ2 distinguishes low and high activity of pB.

diagram in Figure 3.3 b, the assignment of the thresholds to the components would

need to be switched to capture the oscillations in Bp. The resulting interaction graph

in b cannot reproduce the dynamics in the data, since the inhibition from C on B

prevents B to pass the second threshold for activating D. In this case, the component

B should be split into two components B and Bp, shown in Figure 3.3 c.

In this step, for each component v ∈ V the number of levels and for target u the

respective threshold θ(u, v) is set. In case none of the component has more than two

levels, the system is a Boolean network and all thresholds are 1.

3.1.3 Interactions and labels

Determining the interactions of the components within a network is a hard problem.

This is due to the fact that the majority of the methods for obtaining data only

record the activity of components, but cannot capture the interaction itself. For this

reason, network inference is a very active field of research, where algorithms try to

infer interactions from data based on correlation by using unsupervised or (semi-)
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supervised learning approaches. Although high-throughput experiments deliver

more and more data with increasing resolution, these methods still struggle as the

number of interactions that can be inferred exceeds the number of independent

measurements resulting in an underdetermined problem [24].

Here, I only look at models with a relatively small number of components, where

it is possible to scan the literature for prior knowledge and data to construct the

network. When trying to find an interaction between two components, one has to

distinguish between direct or indirect effects. For example, in Figure 3.4 component

A is activating both B and C, and it is known that B is directly activated by A. Whether

or not A or B then activate C is uncertain, which can expressed as edge labels on the

connection. An alternative would be to simplify the model to A and C, in case the

wiring between them is not of interest.

Fig. 3.4. Direct and indirect interactions of A and B on C. In a both A and B show direct interactions
on C, in b only B directly activates C and in c only A acts on C. This uncertainty can be
denoted in the graph d using edge labels.

The decision, whether a correlation in the data is a direct or indirect effect needs to

be evaluated for every interaction. Experiments that show binding of components,

such as pull-down experiments, are helpful to prove direct physical interaction,

e.g. for scaffold proteins or complex formation. For other interactions such as

modifications like phosphorylation it is often not possible to prove a direct effect. In

that case, I either rely on a broad body of literature, simplify the model to a level

where the indirect effect is a sufficient level of detail or mark this connection as

uncertain using the edge labels introduced in Section 2.4.

Adding the interactions E and their labels l to the selected components V , I define

the regulatory graph of the system R = (V,E, l).
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3.1.4 Regulation constraints

In logical modeling, the regulation of each component by its predecessors is defined

by logical equations. In case a component only has one predecessor, the logical

equation either copies the predecessor’s value for an activation, or is defined as its

negation for an inhibition. However, if a component has more than one predecessor,

the logical equation needs to be derived from biological knowledge.

There were methods developed to infer these equations automatically especially for

large networks, where literature research would be too exhaustive or in case no

biological information is present. An example is the activation-inhibition function

by Martin et al. [67], where edges with the same sign are connected with the OR

operator and edges with different signs are connected with the AND operator. For

large datasets it is possible to use inference algorithms such as REVEAL, where

unsupervised learning using support-vector machines fit the logical rules to the

data [58]. The aim of these methods is to find one model that fits the data, but they

do not account for uncertainty and prior knowledge. Also, they do not enumerate

alternative models that fit the data equally well.

Here, I do not want to make assumptions but explore the uncertainty that is present

in the data. Thus, I only create logical rules if they can be derived from biological

information. A rule of thumb is given by Albert et al. [2]. It says that regulators

that act independently are connected by the OR operator, whereas conditionally

dependent regulators are connected by the AND operator. An example for dependent

regulators would be a dual phosphorylation of two distinct kinases for full activation

of a protein. An OR connection could be a binding site of a protein, for which

two regulators compete. In general, the majority of entities in biological systems

are strictly controlled by the interplay of activators and inhibitors, i.e. in signaling

processes mainly by kinases and phosphatases [50]. Thus, a generalization to one

rule that applies to all components can lead to biologically incorrect mechanisms

and it is important to make use of available molecular biological information to

derive the logical rule of regulation.

The result of this step is the definition of the logical functions f or constraints on

parameters, which determines the parametrizations K of the system.

36 Chapter 3 Toolbox for evaluating uncertainty in biological systems



3.2 Objective formalization and system adaptation

In this section, the biological objective of the study is incorporated into the modeling

process. A model can be used for different aims, which influence the PKN built

before, e.g. by adding further components or edges. For example, I present a

workflow to integrate two models into one and then add crosstalk to the system, see

Thobe et al. [98]. There are other interesting questions to be studied, like finding

driver mutations or testing the influence of drugs on a network (Fig. 3.5). As shown

in Figure 3.1, this step adapts the PKN and results in the generic model pool K.

3.2.1 Investigating crosstalk between models

With rapidly growing technical progress and more accessibility of experimental data,

more and more models are built to decipher the mechanisms that control cellular

processes. However, in order to obtain a more global understanding, techniques for

integrating validated models to more comprehensive systems are of interest [88].

Therefore, one objective in the toolbox is to couple two existing models and take

uncertainties concerning the crosstalk into account, which was published in [98]

and passages were adopted from the paper. The approach was developed to model

coupling with different requirements in mind. First, the method should allow to

decide which characteristics of the original models should be preserved in the

integrated model. Second, the method should to be able to handle uncertainty w.r.t.

to the crosstalk connections between the original models. Lastly, the constraints

posed by the original characteristics as well as experimental observations pertaining

the integrated system should be exploited to obtain a clearer understanding of the

crosstalk, possibly linking particular edges to specific functionalities of the integrated

system. While here the case of coupling two models is presented, an extension for

several models is straightforward.

Model Integration Given two networks R1 = (V 1, E1, l1) and R2 = (V 2, E2, l2)
with their parametrizations K1 and K2, that are assumed to be validated and

analyzed w.r.t. some features of interest. For each model, a set P1,2 of properties is

required to be preserved by an integrated model. Here, both structural properties,

such as involvement of components in feedback circuits, and dynamical properties,

such as attractor characteristics or input-output behavior, can be considered. In

application, these properties should describe experimentally validated behavior or

characteristics of the systems that should not be lost when combining the models.
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Model integration is accomplished in two steps: first, the regulatory graphs are

combined to one network by merging identical components and adding crosstalk

edges, and in a second step the model pool comprising all possible parametrizations

consistent with this network is generated.

The coupled network R = (V,E, l) is defined in the following way. The component

set V is given by V 1 ∪ V 2, where it is assumed that vertices that represent the same

biological component coincide in both original models, i.e., they are merged within

the integrated model. Dependencies and regulations within the single networks

are kept and additionally new regulations between components of the uncoupled

networks are introduced, so E = E1 ∪ E2 ∪ Enew with Enew ⊆ V ×V \ ((V 1×V 1)∪
(V 2 × V 2)) the so-called crosstalk. Lastly, denote lnew the labeling of the edges from

Enew. The labeling of the integrated network is defined as:

l(u, v) =



¬+ if (u, v) ∈ E1 ∩ E2 and l1(u, v) = ¬+ ∧ l2(u, v) = −,

¬− if (u, v) ∈ E1 ∩ E2 and l1(u, v) = ¬ − ∧ l2(u, v) = +,

l1(u, v) if (u, v) ∈ E1 \ E2,

l2(u, v) if (u, v) ∈ E2 \ E1,

lnew(u, v) otherwise.

For edges that appeared in R1 and R2 a new label is created. In case the edge labels

are the same, the new label is adapted from the single models. In case the edge

labels differ, the less restrictive label is used as shown above. Here, we assume

that the nature of the signs are the same in both models, meaning that the same

component A and B cannot be connected by an activating edge in one model and by

an inhibiting edge in the other model. This would raise a conflict and the modeling

process should be reconsidered.

To generate the model pool, the parametrizations Kv of the single models are kept

for those components v that are not influenced by new edges or new edge labels as

a result of the model integration or crosstalk inclusion. For all other components all

parametrizations in agreement with the edge constraints are considered.

3.2.2 Finding driver mutations

The abnormal behavior of cancer cells is caused by mutations in the cell. Due to

extensive sequencing of various cancer types it is known that mutations accumulate

in the development of tumors often resulting in hundreds of mutations in a single
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Fig. 3.5. Toy examples illustrate the different objectives of the toolbox. In a two pathways are
connected with uncertain crosstalk, in b component B carries a mutation with uncertain
effect on the upstream and downstream connections and in c the drug D is added to the
network as an additional input of the system. Uncertain edges are marked green.

cell [13]. However, many of these mutations are not functional, so-called passenger

mutations, whereas a few mutations trigger the disease, the so-called driver mu-

tations [34]. These mutations cause over-activation and insensitivity to inhibitory

regulators. Therefore, the proteins (called oncoproteins) are locked in an active

state making them independent of its upstream regulations. Also, a loss-of-function

mutation can occur in proteins that act as repressors of signaling processes, these

protein are characterized as tumor-suppressors. Although many of these driver

mutations have been described in general, it is often unclear which mutations govern

a specific tumor cell [34].

In this approach, I account for mutations in components of a model with uncertain

effect by setting all incoming and outgoing edges to optional even if these connections

are textbook knowledge (e.g. see Fig. 3.5 b). Then, the network R = (V,E, l) is

defined in the following way. The set of mutated components is given by V m ⊆ V
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with edges Em = {(u, v) ∈ E | v ∈ V m ∨ u ∈ V m}. The labeling lm of edges in Em

is set to:

lm(u, v) =

¬+ if (u, v) ∈ Em and l(u, v) = −

¬− if (u, v) ∈ Em and l(u, v) = +
.

Thus, all incoming and outgoing edges are allowed to loose their function. In

case an incoming edge is not observable in any model of the pool, the mutated

component becomes independent from its inputs and the function of the component

can either be set to 0 or 1 indicating a loss-of-function or constitutively active

mutation, respectively. A change in the effects on the downstream targets of the

mutated component can indicate a mutation in the protein structure and thereby

affect its binding properties or a mutation in their active site pockets that leads to a

dysfunctional protein.

However, I do not include the option for a gain-of-function by mutation, leading

to new connections or a change in the sign of an edge. This is due to the fact that

a gain-of-function would require to add optional edges from every component to

the mutated component as well as an edge from the mutated component to every

other node. This would lead to a dramatic increase in the size of the model pool. In

order to keep the complexity as low as possible and considering that gain-of-function

mutation are assumed to be rare, this option is excluded. An application for finding

a driver mutation is illustrated in a case study in Chapter 5.

3.2.3 Testing the effect of drugs

With increasing knowledge and accessibility of detailed information on tumors, the

treatment of cancer is changing. Besides standard treatment such as chemotherapy

or radiation which do not account for tissue or tumor specific properties, drugs

are designed to target the molecular causes of the disease [39]. This approach,

called personalized medicine, is still in the early stages of development, since it

requires detailed information about the regulatory processes in the cell and the

effect of mutations on these [33]. In general, biological systems are structured to

be robust towards perturbations, meaning that important events such as cell death

or proliferation are controlled by multiple parallel pathways [51]. Tumors often

acquire resistances towards the newly designed drugs by rewiring the signaling and

thereby circumventing the blocked process [74]. Thus, combining two or more

drugs has become a popular strategy to address the problem of resistances [103],

but combinational therapy requires knowledge about the wiring of the network.
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Here, the effects of drugs can be tested in combination on pools of models, without

knowledge of the true network. For this approach, I introduce the drugs as additional

input nodes to a PKN and connect them with an inhibitory edge to their target (e.g.

see Fig. 3.5 c). For the network R′ = (V ′, E′, l′) with f ′ as given logical equations, a

set of components V is given by V ′ ∪ V D with vD ∈ V D is a set of drug components.

The interactions of the network are given by E = E′ ∪ED where new edges ED are

added, which contain the edge for self-activation to create the drug as input and an

inhibitory edge from vD to its target u, since the drug suppresses the function of its

target. Similarly, the set of labels is composed of the labels of the original network

and the additional labels for the drug components.

Usually drugs are especially designed to be a dominant influence on the target,

meaning that it binds or modifies the target in such a way that it cannot interact

with its former regulators or targets. In case the logical equation of a drug target

is known, we can directly translate this dominant effect on the target u in a new

logical equation:

fu = f ′u ∧ ¬vD.

If the drug is not dominant, which means that we are not sure about the mechanism

with other regulators, the logical equation of the target is not defined and all possible

regulations are generated in the pool. Moreover, it is possible that a drug affects

off-target components in the system, then an edge from the drug to the potential

off-target component is set to ¬+ and any regulatory context for that component is

allowed.

In cancerous systems, one is usually interested in shifting the cell fate from survival to

apoptosis, which can be a shift from an active steady state to an inactive for a specific

set of inputs [35]. For our approach this means we want to assign the attractors of

different input combinations to the model pool and investigate which models in the

pool change to the desired attractor for which drug combination. In the analysis, the

resulting subpools then represent groups of models that show the same asymptotic

behavior for a certain drug combination, which could identify a biomarker for a drug

combination. Also, the testing of drugs simulates perturbation experiments that can

aid understanding the structure and finding properties that discriminate between

subpools for experimental design. These experiments were shown to give valuable

insights for complex signaling networks in cancer therapy [63].
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3.3 Data formalization

In order to apply quantitative biological data to logical models, the data needs to

be processed and encoded into temporal logics or other discrete formats. Originally,

temporal logics were designed for electrical engineering, for man-made systems

of known complexity and properties. Here, this method is applied to biological

systems that carry a lot of uncertainty which is not straight forward and requires

individual adjustments of the discretization, encoding and model checking process.

Since the model checking process comes with high computational costs, all available

information is incorporated to reduce the complexity of the problem.

Therefore in addition to the encoding of the data itself, the experimental setup

and artifacts of the modeling formalism need to be considered. This information

is encoded as at set of properties denoted by P that are tested to satisfy models of

the network R = (V,E, l) and formally create the refined model pool K(V,E, l,P)
where K ∈ K(V,E, l,P) ⇐⇒ ∀P ∈ P : TS(K) |= P .

3.3.1 Incorporating genotype information

Often processes in cells with changes in the genotype are of interest, since they

cause abnormal behavior that lead to diseases, such as cancer. Furthermore, due to

a lack of information generic rather than cell line specific models are built. Under

the assumption that specific models are derived from generic models by adapting

node parameter values or edge labels, genotype information can be incorporated

into the analysis for two scenarios.

Component mutations resulting in knock-outs or over-expression, can be modeled

by requiring their value to remain constantly at 0 resp. 1 along all considered

system trajectories. This can be phrased as additional constraints when encoding the

experimental data used for filtering. In TomClass, the Fixed constraint is used to

set a component to a certain value, whereas in Tremppi the user interface provides

a setting called experimental setup. Consequently, this procedure ensures that the

observed behavior is tested under the conditions imposed by the mutation.

Mutations can also alter the character of interactions, i.e., affecting the edges in the

model. In case an optional edge is targeted by a mutation, we can find this as a result

of the analysis provided that there is meaningful data. However, if a permanent edge

is lost or a new edge is gained, the information must be directly included on the

level of the edge constraints in the model definition.
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3.3.2 Steady state assumption

Often, biological experiments are designed to measure the steady state of a system,

which means that the system shows a stable behavior that is not expected to change

without external influences. In general, this procedure is expected to yield more ro-

bust and reproducible results and is also prerequisite for other modeling formalisms

or analysis methods, e.g. Modular response analysis [54] and Flux balance analy-

sis [73]. Here, steady state data can be included into the analysis by interpreting it

as a fixpoint of the model.

A fixpoint in logical modeling is an attractor of the system, which means that the

system evolves to a single state which it cannot leave. In TomClass, fixpoints can

be encoded in CTL formulas by using the delta constraint, see Section 2.7.1. For

a fixpoint, the constraint Delta=0 and the value of all components V need to be

set. For example, to test whether there exists a fixpoint for the model K = (V,E, l)
with two components v1 and v2 being inactive, the formula EF(Delta=0 & v_1=0 &

v_2=0) is used. In case, we want every state or a set of initial states to evolve to this

fixpoint, we additionally use the globally operator G and apply it to all trajectories

using A. However, usually not all components of the system are measured, thus in

TomClass, we can also test the stability of single components in the STG by only

including a subset of components in the CTL formula.

In Tremppi, are two different levels to restrict the stability of a component. The first

level is called Ending where we can only opt among {stable, open, cyclic} as

described in the previous chapter. Thus, for testing a steady state, we select stable.

In order to restrict the behavior of single components, the second level provides

the options {up, down, stay} called delta constraints, which is assigned to every

measurement and can be set to stay for stability of a component (see Sec. 2.7.2).

Applying steady state data as filter on a system requires caution, especially for

systems with a negative feedback. First, steady state measurements are assumed

to show the resting system, but there is no standard for how long a system needs

to be untouched before it can be assumed to be in steady state. Moreover, an

oscillatory structure usually does not lead to sustained oscillatory behavior in the

biological system, but rather damped dynamics that can be interpreted as a fixpoint

or look like a steady state in the measurements due to the resolution. However,

negative feedbacks are a common motive especially in signaling processes and have

an important function for terminating a signal or controlling the intensity.
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In logical modeling, a negative feedback often leads to an oscillatory behavior.

These cyclic attractors may conflict with fixpoint measurements and can lead to an

under-representation of oscillatory systems in the model pool after filtering. Thus,

the choice of testing a fixpoint on an oscillatory system must be taken with care.

For example, in the time series data Experiment 1 (Fig. 2.3) of the toy example in

Figure 2.2, the last measurement could represent a late time point where the system

is assumed to have reached a steady state. In this case, it would be applied as a

fixpoint constraint on the model pool. This procedure yields an empty pool, since

none of the models is able to produce both an oscillatory transient behavior and a

fixpoint.

3.3.3 Choice of strictness

When building a CTL formula from a data set, there are two levels where we decide

how strict the formula is applied: the state formula and the satisfaction relation,

Section 2.5. The satisfaction relations ForSome and ForAll are defined to determine

whether only one initial state is required to be valid for the CTL formula or all initial

states. Additionally, we can define whether an initial state fulfills the formula if

one path is in agreement (exists operator E) or we require all paths to agree (forall

operator A).

I refer these two levels as the strictness and their choice is not straight forward. This

is due to the fact that biological information gained from experiments is incomplete,

which means that not all components in the models are measured and not every

transition is captured. Since we employ asynchronous updates to simulate the

dynamical behavior of models, each state branches to all possible paths that result

from the logical equations. In case we apply a CTL formula with high strictness using

A(ϕ), it is only satisfied if every branch is valid for the CTL, although some branches

might not be biologically realistic. This problem increases when components are not

captured in the measurements and therefore are not restricted in the CTL formula.

In the toy example (Fig. 2.3), component A is not measured, thus applying the time

series with high strictness would mean that for Experiment 1 the data would only be

satisfied if from the states 1100 and 0100 every path satisfies the data. However,

since A is the only activator of D, inactive A cannot produce these dynamics. In

contrast, applying a CTL with a weak strictness, E(ϕ), means it is satisfied if only

one branch from the initial state is valid for the CTL formula. This variant is more

conservative, since only those models are rejected that fail to match the data with

weakest constraints.

44 Chapter 3 Toolbox for evaluating uncertainty in biological systems



The choice of strictness for the initial states, ForSome and ForAll, is hard since

we often only measure a subset of components. Since we generate every possible

initial state in the STG, there might be a state which is not biologically feasible and

could conflict with the CTL formula. However, most measurements are taken from

cell populations and not single cells, showing the observed behavior for varying

initial states. Thus, the high strictness can reflect a robust behavior of the biological

system.

In practice, there is no rule to decide, which level of strictness is suited for a specific

system and dataset. Often testing both options and exploit the resulting pool gives

intuition about, whether a high or low strictness is more fitting. This testing also

provides information about the system, in terms of how challenging it is to fit the

data or other words how robust the system can produce certain dynamics.

3.3.4 Monotonicity of data

A further constraint that can be included for time series data is the assumption

of monotonicity. This assumption implies that between two subsequent measured

states the change is monotone, e.g. a component which is inactive in both states is

not allowed to be active along the path between them. Without the monotonicity

constraint there is no restriction on how and how often components change their

value in the path that is satisfied.

In case there is a high resolution in time points of measurements, we can add the

monotonicity constraint to a CTL to effectively reduce the pool to models with

very specific dynamics. However, the disadvantage of enforcing monotonicity is

that measurement errors cannot be compensated by the dynamics. Similar to the

level of strictness, there is no strict rule for when to enforce monotonicity. Also

testing monotone as well as non monotone versions of the CTL formulas can give

information about the dynamical properties and robustness of the models.

3.3.5 Qualitative observations

Besides experimental data, general qualitative observations or information can be

included as properties. Often basic behavior can be derived from the purpose of the

modeled system, e.g. the quiescence state of the system. We argue that a signaling

process is supposed to be inactive in the long term without any signals, since this is

the general understanding of the biological function of signaling processes. In such

kind of systems, we can include a so-called trivial fixpoint in our studies, where we
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assume that the system should reach a fixpoint with inactive output if all inputs are

inactive.

Another example for qualitative observations are oscillatory systems such as the cell

cycle or the MAPK pathway. These system were exhaustively studied and proven to

show a cyclic activation and inactivation of its output upon stable activation of the

input [50]. Thus, even though we might not have explicit data at hand, we include

such observations into our study as additional CTL formulas.

3.3.6 Transfer properties to a higher dimension

A special case is given for the objective to analyze the crosstalk between two existing

models R1, R2 by integrating them into one system R. Here, the integrated model

will have a higher dimensional state space than either single model. In order to

interpret the properties P within this new context, we may have to translate them

into this new setting. This might not necessarily be straightforward.

For example, consider that an attractor A1 of the model R1 should be preserved.

One possibility would be to demand that A1 is the projection of some attractor of

the integrated model. A weaker condition would be that A1 is an attractor of the

state transition graph derived from projection from the state transition graph of R.

Also it is important to consider whether a property is an observed behavior for the

elements of the single model in context of the joint system or might be an artifact of

the isolated model. In application, the decision on how to translate the properties

might be supported by biological knowledge or reasonable assumptions.

3.4 Model pool analysis

After filtering the generic pool for the data encoded as properties a reduced pool is

determined, which can contain up to hundreds or thousands of models depending

on the study. If the number of model in the so-called specific pool is very small,

the analysis can be done by hand. However, often the number of models is too

high to to be analyzed by hand, but require customized tools to extract interesting

information. I evaluate the specific model pool by employing two different analysis

tools, a statistical analysis and an exact analysis. Depending on the aim and the pool

size, either or both analyses can give new insights into the biological processes.
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3.4.1 Statistical analysis

The statistical analysis explores the difference between the generic pool and the

specific pool, since this difference is strongly implied by the data. Here, both the

reduced and the initial pools are evaluated statistically using Tremppi [91], as

described in Section 2.7.2. Here, edges that are enriched or under-represented in

the filtered pool in comparison to the initial pool are identified, as presented in a

former study [98]. The visualization using Tremppi‘s regulations report provides

an overview of the changes in the pool. General trends can be identified aiding the

further analysis process. Especially large model pools can be compared easily as

presented in the case study in Chapter 5.

Also, one can derive the most likely model from the analysis, which means that

edges that are over-represented in frequency and impact are included and under-

represented edges are discarded. Another result is to identify potential edges to

be used for experimental design. For example, connections that have a medium

frequency split the specific pool in two groups: those having the edges and those

lacking the edge. Thus, testing the presence of this edge in experiments can reduce

the pools size further.

3.4.2 Exact analysis

While the statistical analysis gives an overview about more and less frequent edges

and their overall impact across the pool, it does not provide information about the

topology and the mechanisms of single models. Often, not only the most likely

model is interesting for us, also the minimal model as well as other features, for

example the mutual appearance of edges in specific models.

A second analysis can evaluate the model pool by classifying the models according

to features we select. Here this classification is called exact analysis, since the

output give us information about the distinct models in the pool instead of a statistic

across the pool. There are two options to implement this analysis. Either the model

checking software TomClass presented in Section 2.7.1 is used or the database

created by Tremppi can be analyzed using SQL queries directly. In case, one is

only interested to do an exact analysis for a model pool, the workflow from model

building to analysis can be implemented in TomClass. However, both analyses are of
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interest, the model can be implemented into Tremppi and then the following SQL

query to create the classification equivalent to TomClass:

SELECT features COUNT(*) FROM Parametrizations

WHERE datasets >0 GROUP BY features

where SELECT features defines the selected attributes we are interested in. Here,

these attributes mean everything that is assigned to a model in the database

Parametrizations created by Tremppi, i.e. K, P, the impact impK(u, v) (see

Section 2.7.2), the edge label l, and the indegree of each component. COUNT is used

to determine the cardinality of each subset. The option WHERE datasets >0 (which

is equivalent to cost=!0 in Tremppi) restricts the selection to models that are in

agreement with the properties derived from data and GROUP BY features creates

the classification. For the analysis I used the SQLite Manager1.

The results of this analysis strongly depends on the features selected for the clas-

sification. For example, the model with the lowest number of optional edges to

fulfill a certain set of properties can be determined, or edges identified that are

necessary to be present in every model of the selection. Also models that cannot

fulfill a certain property can be explored by setting WHERE datasets =0. Examples

for the application will be given in the case studies.

1https://github.com/lazierthanthou/sqlite-manager
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4
Implementation in Tremppi

In this Chapter, the implementation of my workflow from Figure 3.1 in the software

Tremppi is illustrated for the toy example used in Chapter 2 (Fig. 2.1). The software

was developed by Adam Streck [91] and is available through the github platform.

The user interface of the software is build in Javascript, thus it uses the browser.

Fig. 4.1. Screenshot of Tremppi software showing the structure of the user interface with active tools
section, where the calculations are being triggered.

Software description The interface has a menu on the left, where the first section

PROJECTS lists all studies of the user and one can switch between them by simply

clicking on the name, see Figure 4.1. Within each project, the menu section WIDGETS

includes the options to build the model, enter data and observe results of different
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analysis options as described in Section 2.7.2. Since we are not using all options in

my studies, I will focus on those used in the case studies in the following chapters.

Before we present how the model is edited and analyzed, the main section for

performing calculations is shown, the tools section. Here, operations concerning the

whole project like cloning, renaming or deleting the project, updating the software

and running commands on the models are triggered. The different commands are

grouped in different categories as shown in Figure 4.1. The specific commands will

be explained with their application in the following.

4.1 System initiation & objective formalization as PKN

In the presented pipeline, the system initiation and the objective formalization result

in the prior knowledge network. In order to implement this network into Tremppi,

the decisions on model boundaries, activity levels etc. as well as the question of

interest must have been made before.

Then, the first step for implementing a study is to create a new project by clicking on

the button in the upper left corner of the interface and name the project, e.g. in this

case “Toy”. In the Index environment, a description of the project can be given.

Model building in editor For defining the logical model or the pool of models, all

components v ∈ V are added in the editor by first clicking on the +Add button and

then clicking at the desired position in the grey window. Then the components can

be renamed, a maximum activity value assigned and repositioned within the window.

Additionally, the logical function can be added as Constraint, where we enter the

known parametrizations of the component. For the toy example, components A and

D only have one regulator each where the respective edge label is always observable.

Therefore, the logical equation is already specified. Component B is supposed to

have the logical equation fB = A ∧ ¬C, thus we enter the parametrization:

A : 0, C : 0 = 0 & A : 1, C : 0 = 1 & A : 1, C : 1 = 0,

where the known regulatory context for B is defined.For example, the first expression

means that B = 0 if A is 0 and C is 0. For component C the regulation is uncertain,

hence we do not define the regulatory context.

In the next step, the edges E ⊆ V ×V are drawn between the components by clicking

on +Add then clicking on the source and subsequently on the target component in
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Fig. 4.2. The regulatory graph is defined in the editor by adding components and connecting them
with edges.

the window (Fig. 4.3). To each edge a value is assigned, which represents the

threshold for its activity. The default is 1, but the value can be changed by clicking

on the respective edge. Figure 4.3 shows the option to change the threshold and

additionally the edge label is selected in a drop-down menu. The default setting is

Free, thus allows for any sign and presence. After defining the components, edges

and edge labels, the graph needs to be saved by clicking on the button.

4.2 Data formalization for filtering the generic model
pool

After entering the graph in the editor, the PKN is defined. For building the generic

model pool, we need to go to the tools section and click on spawn. The command

line located in the grey box in the center of the page shows the progress while the

program is calculating all possible parametrizations based on the graph. The output

of the program is presented in the white area at the bottom of the page, where details
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Fig. 4.3. Each edge need to be assigned with an edge label in the editor. The selected edge has a
blue marked threshold value.

of the spawn function are reported. As shown in Figure 4.1, the tool enumerates

the networks, generates the dynamics and stores the model in a database file. Also,

in the same output is declared how many parametrizations were created, thus how

many models are in the model pool. For our toy model, the generic model pool

contains three parametrizations.

Data encoding in properties In the next step, we want to test the models for

dynamics observed in experiments in order to find those models that are able to

reproduce the biological behavior. For this purpose, the data needs to be preprocessed

depending on the kind of experiment performed (see Sec. 2.5). After processing

and discretizing the data, we implement each experiment as a property P in the

properties section shown in Figure 4.4.

In Section 2.7.2, I explained that Tremppi translates a data set into a property

by defining four elements: the sequence of measurements, the sequence of delta

constraints, the ending and the experimental setup. In the user interface, the

properties screen is split in two areas. In the upper area, a property is introduced

by clicking on the +Add button or an existing property can be duplicated. Then
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Fig. 4.4. In the properties section experimental data can be defined as a property. The upper table
gives an overview on the different properties created with its global parameters. By clicking
on a property, the details are shown in the lower table. Here, measurements and delta
constraints can be assigned.

the global settings of this property like Name, Ending and experimental setup are

defined. In the area below, the sequence of measurements for this property is

defined as a table with two columns for each component to set the value and the

delta constraint to the next measurement. A measurement is created by adding a

new row to the table.

In Figure 4.4, the measurements from Figure 2.3 are used to illustrate the implemen-

tation in Tremppi. For each of the two experiments, every combination of ending

and monotonicity constraints are tested. Thus, we get a non monotone and transient,

non monotone and stable, non monotone and cyclic property and the same with

monotonicity between the measurements. The monotonicity constraint is entered

with every measurement as shown for property Exp1mon in Figure 4.4 where either

up, down or stay can be selected.

For testing these properties on the model pool using model checking, the properties

need to be marked by a checkmark and saved. Then, the model checking process

is initialized in the tool section using cost, which assigns a cost value (described
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in Sec. 2.7.2) to each property to every model. In case there exists a path in the

transition system of a model that satisfies the property, a positive value is assigned

in the database. Otherwise, the value 0 is assigned.

4.3 Analysis of the specific model pool

So far, we created the generic model pool and assigned experimental data as prop-

erties to each model. For creating and analyzing a specific model pool, we need to

select which property or properties should be valid for the models in the specific

pool. For example, we could investigate the same system in two different cell lines

with multiple experiments each. Then we would create two specific model pools

with different properties.

In Tremppi, the selection section is structured as a table, where each label an-

notated in the database has one column and the selections are added as rows. As

described in Section 2.7.2, there are many different labels that can be assigned,

whereas the parameter value for each component is annotated by default. After

calculating the cost, the properties are added to the table as shown in Figure 4.5 for

the toy example. Another default setting is the selection all shown in the first row

of the table, which is the selection of all models in the pool, without a restriction on

any label.

Fig. 4.5. In the selection section the specific model pools are defined by opting for a combination
of properties.
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For creating a new selection, the +Add button or a duplicate of an existing selection

can be used. The new selection then can be named and labels can be restricted

according to the rules presented in Section 2.7.2. Here, we only select for the

satisfaction of a property by entering !0 in the respective field, meaning we select

all models that agree with that property. In the example, we create a selection for

each property, by marking those we want to analyze in the next step and finish by

saving.

Statistical analysis in regulations The analysis of a selection is created in the

tools section as reports. As described in Section 2.7.2, there are different kinds of

reports available in Tremppi, here we focus on the regulations report. In order

to create this report, the statistics of the selected model pool need to be calculated

by running the static labels impact and sign in the tools section. After that the

regulations report creates a file for each selection in the regulations section

shown in Figure 4.6. In the example, we analyzed the selections all, Exp1 and

Exp2.

Fig. 4.6. Regulations report in Tremppi. On the left, the files for visualization can be selected, where
two files can be compared with each other. The window gives a graph for both selected files
and the difference between them.

The results are visualized as a graph when clicking on one of the files. The graph

shows two different statistics of the pool: the impact and the frequency of an edge

(formal definition in Sec. 2.7.2). The impact is presented as the color of an edge,

ranging from red for inhibiting edges (maximum is -1) to green for activating edges

(maximum is 1). The impact describes the correlation between the components

connected by an edge, thus if the value is 1 it is fully correlated. This value is only

possible if there is only one incoming edge on the target (e.g. in Fig. 4.6 component
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D). The average frequency of an interaction in the pool is visualized by the thickness

of the edge.

Above the graph, there is the option to show either All, Left, Mid, Right which

defines how many windows are visible. The reason for these option is that one

can either look at one selection only or compare two selections with each other

by calculating the difference between them. This comparison is made by clicking

on one file with the right mouse button and on the other file with the left mouse

bottom. In the example, we chose the all selection for the left and the Exp2 for

the right side. In case, we only want to look at either one of them, we could switch

the view in the menu above the graph. The graph in the middle is the difference in

both impact and frequency between the two selections. Here, the frequency can also

be negative, which is indicated by dashed lines. The dotted lines in the difference

graph show edges that are identical in frequency and impact in both model pools.

Fig. 4.7. Screenshot of Tremppi software showing the quantitative report for Exp2. In the table, the
parameters for every component are listed and the resulting minimal, maximal and mean
state of the component.

The text under the graph gives additional information about the date of analysis,

the size of the specific model pool and the selection condition. For the specific
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model pool Exp2 we find that the pool only consists of one model which contains the

optional edge from D to C. Thus, this analysis is in agreement with the observation

from Figure 2.4.

However, we cannot determine the logical equation from the statistical analysis,

therefore the quantitative report is necessary. It is generated again in the tools

selection and creates a file for Exp2 in the quantitative section. The result is shown

in Figure 4.7, where the parametrizations of the models in the pool are listed. Since

we only have one model left in the pool, it gives exactly the parametrization of this

final model. Here, component C can only reach an active state if both B and D are

active, listed in the row with label KC{B{1}, D{1}}.
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5
Investigating cell line specific

EGFR signaling

The first application of the toolbox is published work that was done in cooperation

with Adam Streck [92, 93]. In the paper, the focus was less on the workflow, but

more on testing and comparing the performance of an improved version of Tremppi

on a large data set [91]. The software and theory was done by Adam Streck shown

in [92], whereas my work was the implementation of the model and interpretation

of the results.

In this chapter, a broad background on the biological application we are regarding

for all case studies is given. Then, in the second part an expanded version of the

case study from [92] is presented.

5.1 Signaling in cancerous cells

Homeostasis is the ability of an organism to maintain stability in spite of changes

in the environment through permanent self-regulation. Each cell is regulated by

signaling pathways, which are the means to sense the environment, process the

information and trigger the appropriate reaction of the cell. In order to turn a healthy

cell into a cancer cell, Hanahan and Weinberg defined ten hallmarks describing

necessary dysregulations of central signaling processes, such as resisting cell death,

inducing angiogenesis or sustaining proliferative signaling [40, 41].

These dysregulations are caused by abnormal levels or formations of proteins result-

ing in loss-of-function or reduced activity for tumor suppressors or gain-of-function

or overactivation for oncogenes. These abnormalities originate in changes in the pro-

teinbiosynthesis of these proteins, which can occur in the genome due to mutations

of the encoding gene [89], in the epigenome due to changes in modifications of DNA

and histones [81] or in the transcriptome due to errors in the RNA regulation [20].

How these abnormalities orchestrate tumors is far from being understood, where

the large variety in cancer types, the patient specific differences and heterogeneity
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within one tumor is a major challenge in cancer treatment. One strategy is to identify

dysregulated signaling processes and their drivers in oder to use targeted treatment

to trigger apoptosis in the tumor cells.

The so-called personalized medicine aims to predict the best treatment accounting

for the genotype of a patient showing first successful applications, e.g. B-Raf

mutation V600E [13]. However, not all oncogenes are druggable and often tumors

are resistant or develop resistances during treatment. The reason lies in the robust

and redundant wiring of signaling processes, thus targeting a single component can

be circumvented [47]. In order to develop more effective therapeutic strategies, the

wiring of the signaling and the effect of mutations need to be understood.

5.1.1 MAPK pathway

The mitogen-activated protein kinase (MAPK) cascade is an important pathway for

cell survival, proliferation and resistance to drug therapy in cancer [23]. There are

four independent MAPK pathways consisting of four different signaling mechanisms:

the MAPK/Erk family or canonical pathway, and Big MAP kinase-1 (BMK-1), c-Jun

N-terminal kinase (JNK), and p38 signaling families [9]. The canonical MAPK/Erk

(extracellular signal regulated kinase) pathway integrates various internal stimuli,

such as metabolic stress, DNA damage, and altered protein concentrations, as well

as external signals like growth factors, hormones and chemokines [113].

Growth-factor signaling of MAPK/Erk The activation of the signaling cascade is

triggered by tyrosine receptor kinases (RTK) such as the epidermal growth factor

receptor (EGFR) upon binding of the ligand on the cell surface. The activation

of the receptor causes an autophosphorylation of the intracellular domain of the

receptor. Here, phosphorylated tyrosine-residues serve as docking sites for proteins

containing Src homology 2 (SH2) or phosphotyrosine binding (PTB) domains, such

as the adaptor protein growth factor receptor-bound protein 2 (GRB2) [82]. As

visualized in Figure 5.1 a, the adaptor protein then recruits the guanine-nucleotide

exchange factor son of sevenless (SOS), which then promotes a nucleotide exchange

of GDP for GTP in Ras proteins [82].

GTP bound Ras has various downstream targets, one of them being the Raf protein

family (A-Raf, B-Raf, c-Raf), which can be bound in a complex to further activate

MAPK/Erk kinases (Mek1/2) by dual phosphorylation. Finally, these dual-specificity

kinases recognize and activate the MAP kinases (Erk1/2) [23]. The activation of Erk

regulates a wide range of downstream effectors involving both cytosolic proteins
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and transcription factors to promote cycle progression and survival. Moreover, Erk

terminates its own activation through negative feedback on Raf by causing the

dissociation of GRB2 and SOS complex for Ras activation. Also, Erk regulates the

activity of RTKs by inhibitory phosphorylation and diminished expression level of

RTKs through transcriptional or post-transcriptional processes [94]. Thereby, Erk

causes experimentally observed oscillations in the pathway [42].

MAPK in cancer The MAPK pathway is a very frequently dysregulated pathway in

cancer cells, where it commonly acts pro-oncogenic but was found to function as a

tumor suppressor as well [9]. Different members of the RTK family were shown to

carry oncogenic mutations in cancer, e.g. EGFR in breast cancer. Ras was the first

oncogene found in this pathway, but so far it was not possible to develop a drug for

treatment. The more recent finding was an activating mutations in one of the Raf

isoforms, B-Raf, which is very common in malignant melanoma (27%–70%) and

also appears in colon, thyroid and lung tumors [31].

Fig. 5.1. Scheme of cellular signaling processes of a MAPK and b PI3K pathways.

5.1.2 PI3K pathway

The Phosphatidylinositol 3-kinase (PI3K) is a family of intracellular lipid kinases that

regulate diverse cellular functions, such as cell growth, proliferation, differentiation,

motility, survival and intracellular trafficking [27]. There are three classes (I-III)

of PI3Ks, which are grouped according to their substrate preferences and distinct

lipid products. In general, PI3Ks activate intracellular signaling processes by phos-
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phorylating the 3’OH group of phosphatidylinositols, where each class is specific for

different processes [19]. Class I PI3Ks are subdivided into two groups, according

to their upstream regulation. Class IA PI3Ks are activated by RTKs, whereas class

IB PI3Ks are activated by G-protein-coupled receptors [19]. So far, only class IA

PI3K signaling has been shown to be involved in cancers, therefore we focus on this

specific class [82].

Class IA PI3K signaling Class IA PI3K is a heterodimer which is composed of a

p110 catalytic unit and a p85 regulatory unit. Upon stimulation, some RTKs either

activate PI3K directly, others like insulin and insulin-like growth factor receptors

(IGFR) act through the adaptor protein insulin receptor substrate 1 (IRS-1) which

then recruits and activates PI3K at the plasma membrane. Here, the p85 unit is

crucial for binding to the phosphorylated RTK or IRS-1, which releases the inhibition

of the p110 subunit [27] .

PI3K then activates PdtIns(4,5)P2 (PIP2) to PdtIns(3,4,5)P3 (PIP3), which can be

reversed by the phosphatase Pten. PIP3 then recruits the multi-functional protein

serine/threonine kinases of the Akt family (Akt1, Akt2, Akt3) and PDK1 to the

plasma membrane [19]. Here, PDK1 phosphorylates Akt at T308, see Figure 5.1,

and a second kinase mTORC2 phosphorylates Akt at S473, which will be the focus

of Chapter 7. The phosphorylation at T308 is sufficient to activate Akt for its

inhibition of the tuberous sclerosis complex 1/2 (Tsc) [75]. This process releases

the suppression of the G protein Rheb, which then activates the mammalian target

of rapamycin complex 1 (mTORC1) [64]. One main target of mTORC1 is p70S6K

(S6K), which is able to phosphorylate IRS-1. Thereby the binding of IRS-1 to PI3K is

disrupted and PI3K becomes inactive, thus creating a negative feedback [44].

PI3K in cancer There are estimates suggesting that mutations in one of the PI3K

pathway components account for up to 30% of all human cancers [82]. Here, muta-

tions and amplifications in one of p110 genes PIK3CA is very prominent oncogene,

whereas a mutation of the p85 subunit is rare. Also PI3K’s direct antagonist Pten is a

well known tumor suppressor, which appears to be mutated in many tumors [82].

Further downstream in the pathway, Akt often is amplified in cancer cells. Since Akt

controls cell survival, cell cycle, cell growth and metabolism through a number of

substrates, it is thought of as a key player in tumorigenesis [27]. Along with Akt,

mTORC1 has become focus in drug development for its role in inhibiting autophagy,

increasing angiogenesis, and promoting the transcription of oncogenes [116].
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5.2 EGFR signaling pathway study

This section presents a case study published with Adam Streck and Heike Siebert

as conference and journal papers [92, 93]. In these papers, Tremppi and its im-

plemented methods to effectively study biological systems were demonstrated. In

the following, my contribution to these papers is presented where passages were

adopted from the original paper and additional work is shown.

5.2.1 Motivation

In this section, we aimed at finding the cell lines specific wiring of signaling processes

of the epidermal growth factor receptor (EGFR) motivated by a study by Klinger

et al. [54]. This aim represents the basic objective of investigating an uncertain

topology and mechanisms using the toolbox from Chapter 3, where the system

initialization, data formalization and pool analysis are applied.

As described before, the receptor drives cell proliferation and cell growth, but is also

involved in the regulation of cell death and is found to carry prominent mutations in

cancer cells (B-Raf, PIK3CA). However, the exact topology of this regulatory system

is not completely clear, not least since mutations can cause major changes in the

inner regulations. Klinger et al. presented a combined experimental and theoretical

approach to identify the cell line specific topology of the network starting from a

literature model aggregating information from various sources. To this end, human

colorectal cancer cell lines were treated with stimuli and inhibitors to produce a rich

data set, where the experimental setup is outlined in Figure 5.2.

Experimental set up of perturbation experiments In detail, Klinger et al. used six

cancer cell lines LIM1215, SW304, SW480, HCT116, HT29, and RKO to perform

perturbation experiments with two stimuli, TGFa and IGF1, and four inhibitors: the

Mek inhibitor AZD6244, the PI3K inhibitor LY294002, the GSK3 inhibitor SB216763,

and the IKK inhibitor BMS345541. Each sample was pre-incubated with one inhibitor

or DMSO for 60 minutes and then stimulated with one of the stimuli or BSA (Bovine

serum albumin). The phosphorylation levels of multiple kinases in the EGFR pathway

were measured 30 minutes after stimulation [54].

Within their study, several measurements were excluded from their analysis. The

IKK inhibitor showed unspecific effects on Erk, also IKK and IkBa were excluded.

Moreover, the cell line RKO showed a very different behavior than all other cell lines,
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Fig. 5.2. Scheme of biological system and experimental setup in the study from Klinger et al. (figure
adapted from [54]).

thus it was excluded [54]. For our model, we further reduced the data set by not

considering all samples using the GSK3 inhibitors, since there is no downstream

target measured to have a read-out for its effect.

Comparison of two modeling approaches and exploration of analysis options of our
method In Klinger et al., the EGFR signaling system was investigated using a

semi-quantitative modeling approach, called modular response analysis (MRA). This

approach was developed by Bruggeman et al. to calculate the response of a linear

approximation of an ordinary differential equation model to a perturbation [8].

Klinger et al. created an algorithm that is able to include multiple perturbations and

unobserved nodes. This algorithm starts with a literature-based network similar to

our PKN and eliminates non-identifiable nodes. Next, the parameters of the system

are calculated using MRA-based maximum likelihood to determine the weights

of the edges. Subsequently, edges with a weight below a certain threshold are

deleted [54]. The result is a reduced weighted graph for each data set they tested.

The limitations of this approach are that it necessitates a steady state assumption for

the data points, which can be seen as problematic due to the interplay of various
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feedback effects [77]. In addition, while quite comprehensive, the method still relies

on parameter estimation steps and statistical cut-offs.

We used the comprehensive data set provided by Klinger et al. in [54] to elucidate

the underlying network structure of the pathway. For this aim, we generated and

analyzed comprehensive model pools for the different cell lines and compared

the results to the original publication. Thus, to maintain a maximum level of

comparability, a steady state assumption for the data points was added. However,

going beyond the study by Klinger et al., we additionally investigated the results for

relaxed steady state or transient temporal constraints. A comparative analysis of the

model pools was done, where the differences between cell lines was evaluated in

not only network topology but also regulatory mechanisms generated by different

genotypes.

5.2.2 Model building and data formalization

System initialization Based on the model of [54] we constructed a BN, depicted in

Figure 5.3. We kept the original components and regulations, with a few exceptions.

As the IGF1 stimulus is the only regulator of IGFIR we know that IGFIR copies

its value and therefore we modeled the stimulation directly on IGFIR, removing

IGF1 completely. Additionally, p70S6K is depicted as activator of IRS-1, however

based on [95] we modeled it as an inhibition. The same for Akt which is known

to repress IRS-1 indirectly through mTORC1 [95]. Note that these changes are

to regulations of IRS-1 only, which is an output component and therefore can not

affect the upstream feedback loops. Any resulting inconsistencies with [54] should

therefore be localized to IRS-1. Since the data originates from cancer cells, we

accounted for possible disruptions in the network due to mutations by not requiring

regulations to be functional, i.e. activations are labeled as ¬− and inhibitions as

¬+. However, stimuli and inhibitions as well as components with a single regulator

(Mek, Akt) were set as always functional.

Objective formalization In the data there are two stimuli, TGFa and IGF1, and

two effective inhibitors, Mek inhibitor AZD6244 and the PI3K inhibitor LY294002.

There are two more inhibitors in the original data set on GSK3 and IKK, which were

found to be non-effective and therefore neglected here. In our model, we define the

inputs as fT GF a = TGFa, which is set to 1 if the cell is stimulated with TGFa and

0 otherwise. IGFIR is set to 1 if the cell is treated with IGF and 0 otherwise. The

inhibitors do not remove the targets from the system, only prohibit their effect on the

downstream components. We therefore added them as additional input components
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Fig. 5.3. Regulatory graph of the EGFR model in Tremppi. Solid lines mean that these edges are
essential, whereas dashed lines show optional edges. Green an red color show activating
and inhibiting effect, respectively.

LY and AZD, and modeled them analogously to stimuli. Additionally we set the

regulatory functions fErk = Mek ∧ ¬AZD and fAkt = PI3K ∧ ¬LY to enforce the

correct inhibition semantics.

Data formalization In their experiments, Klinger et al. used a high-throughput im-

munoblotting method, called Luminex assay, which measures intensities of labeled

antibodies that bind the phosphorylated components, showing their activity (for a

detailed description see [54]). Here, we used a reduced data set containing experi-

ments on five human colorectal cancer cell lines. Each of the cell lines was treated

with each pairwise combination of one stimulus (TGFa, IGF, no stimulus) and one

inhibitor (AZD, LY, no inhibitor), which were then compared to the measurements

before treatment. Here, the configuration without any stimulus and inhibitor is not

expected to change and is used as control sample. In the study of Klinger et al., the

data is presented as a heat map for fold changes, comparing each measurement to

the control sample (see Fig. 5.4).

Prior to their usage, the data needed to be processed to fit the Boolean formalism.

The original data was kindly supplied by the authors, thus we were able to process
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Fig. 5.4. Reduced heat map from Klinger et al. showing the fold change data of the perturbation
experiments for the different cell lines (figure adapted from [54]).

the data ourselves. For some experiments multiple measurements were available,

where the arithmetical mean was used. For the discretization we used ternary

levels (see Sec. 2.5), since some of the values almost do not change between

measurements in the data set being e.g. at a plateau and therefore should not be

assigned with different states. To avoid this separation and in order to maintain a

level of comparability with the original study, we focused on the fold change as a

measure for discretization.

Here, we rely on an assumption that a fold change of value two or more is significant,

which is to the best of our knowledge a common practice and in our case seems to

produce a good separation. Since the focus of this study was to evaluate the effect of

regulatory influences, we assigned Boolean values to the component measurements

consistent with the nature of the fold changes found in the data. If we observed an

increase by a factor of at least two, we assigned the value 0 to the measurement

before and 1 after the treatment. Analogously, we encoded a decrease by a factor

of at least two. If the change factor is less than two, we did not specify the value,

but required the component to be stable, meaning that it either is constantly 0 or 1

throughout the measurement (for more details see [92]).

In this approach, the interpretation of qualitative dynamics heavily focuses on the

component changes indicating actively regulated behavior, as was our intention.
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Note that this approach therefore differs from the often employed interpretation of

the Boolean component values as an abstraction for ranges of quantitative values.

In our approach, the same quantitative value might be assigned different Boolean

counterparts depending on the observed component behavior in the respective

experiments. In our opinion, this does not pose a problem, since we are focusing

on the qualitative dynamics and thus the values 0 and 1 can be viewed as labels

of qualitative change, rather than ranges of quantitative values. Presumably, if a

component can undergo both a significant increase or decrease in its activity, such

mechanics should be allowed by the network without contradicting the effects of the

regulations.

Tab. 5.1. Data set for cell line LIM1215 for the reduced set of treatments.

LIM1215
Stimulator Inhibitor Type Akt Erk GSK3 IRS-1 Mek p70-S6K

0,1% BSA DMSO c 143 380 206 86 992 351
IGF 1 DMSO t 7989 312 747 105 671 1277
TGFa DMSO t 2793 2806 983 104 3416 2708
0,1% BSA AZD 6244 t 398 152 262 95 789 323
IGF 1 AZD 6244 t 6313 121 593 95 347 874
0,1% BSA LY294002 t 168 518 471 94 1362 373
TGFa LY294002 t 163 2863 1048 96 3596 1829

0,1% BSA DMSO c 0 -1 0 -1 -1 0
IGF 1 DMSO t 1 -1 1 -1 -1 1
0,1% BSA DMSO c 0 0 0 -1 0 0
TGFa DMSO t 1 1 1 -1 1 1
0,1% BSA DMSO c 0 1 -1 -1 -1 -1
0,1% BSA AZD 6244 t 1 0 -1 -1 -1 -1
0,1% BSA DMSO c 0 1 0 -1 1 0
IGF 1 AZD 6244 t 1 0 1 -1 0 1
0,1% BSA DMSO c -1 -1 0 -1 -1 -1
0,1% BSA LY294002 t -1 -1 1 -1 -1 -1
0,1% BSA DMSO c -1 0 0 -1 0 0
TGFa LY294002 t -1 1 1 -1 1 1

The preprocessed absolute data is shown at the top and the discretized data in the bottom
table. Note that the control sample is identical and repeated for the discretized data, since
each treated and control sample are interpreted as a pair.

An example of the discretization is illustrated in Table 5.1 for the cell line LIM1215.

The upper part of the table, shows the preprocessed data in absolute values, whereas

in the lower part, the rows show the control (BSA, DMSO) and a treated sample

in turns as discretized values. Since we always compare each treated sample to

the control, the discretize values of the control sample differ. Note, that there are

entries with -1, which encodes no change in this table and are later translated as
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delta constraint stay. For this reason, -1 entries always come as a control-treatment

pair. The full data sets are listed in the Appendix, see Figures A.1 to A.5.

5.2.3 Filtering and analyzing the cell line specific pools

After having resolved all the edge constraints, we obtained a model pool Kl with

259, 200 models using Tremppi. Note that as the inhibitors and stimuli are fixed

components, they do not contribute to the size of the state space, which then only

has 29 = 512 states instead of 213. In the following steps, we filter this generic model

pool for each data set separately in order to find cell line specific model pools.

Tab. 5.2. Results of applying data sets to the generic model pool.

a Experiments b Pool size
Cell line TGFa IGFIR AZD LY transient partially stable stable

LIM1215 1 0 1 0 180000 6100 40
LIM1215 0 1 0 1
HCT116 0 1 0 1 129600 5580 2
SW403 0 1 0 1 180000 111000 840
SW480 0 1 0 1 136800 74670 36
HT29 1 0 1 0 163800 101010 216

a Some experimental set ups cause logical inconsistencies after discretization. b Sizes of a
parametrization sets that match the data from all the consistent experiments for each cell.
Monotone property sets are not listed as monotonicity did not cause any further reduction.

Discretization of data with different temporal constraints As we considered eight

treatments for five cell lines, we obtained altogether 40 measurement pairs. In [54]

the authors argue that at the time of the measurements the system is expected

to reach a stable plateau. However, Figure S1 in [54] shows that the kinetics of

some components have an unstable behavior after the time point of measurement.

To investigate the impact of the steady state assumption, we created a stable and

transient (i.e. not required to be stable) version of each time series.

Additionally, we were interested in effects of monotonicity constraints on the results.

We therefore also considered for each property a version where all the components

that are measured and not stable are required to be monotonous in their behavior.

By combining the treatments, cell lines, and constraints we obtained 160 properties1.

However, we found that adding a monotonicity does not affect the restrictive effect

of a measurement pair on the resulting model pool. Therefore, we focused on the

stability constraint.

1http://dibimath.github.io/CMSB_2015/properties.html
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Initially, we found that each of the cell lines shows inconsistencies in at least one

measurement pair, listed in Table 5.2 a. In each of these, the experimental set

up requires a component whose activator was inhibited to undergo an activation,

which is logically inconsistent. For example, cell line SW403 shows with IGF1

stimulus an over 4-fold increase in activity of Akt under inhibition of PI3K, its only

activator. This is still comparably lower than the about 12-fold increase without

the inhibition showing that the inhibitor is working, but the dose is not sufficient

to lower the activity of Akt to the threshold of being inactive after discretizing.

Since dose-dependent processes are not considered in this formalism, we removed

the respective experiments from the testing set. After the removal, the number of

sets of measurement pairs for each cell line reduced to seven except for LIM1215

where there were only six. Therefore, only 34 measurement pairs were used in the

further analysis, yielding 136 properties when combined with the different temporal

constraints. In Table 5.2 column transient shows how many members of Kl fit all

the measurements for each respective time series, which represents the weakest

assumption concerning the stability of the system. Note that each set remains more

than one half in size compared to the set of models consistent with the constraints

derived from the network structure, suggesting that the topology itself already

strongly determines the dynamics.

Tab. 5.3. Comparison of occurrence of different regulatory functions between the stable pools.

Target Must Klinger et al. May Match

HT29

EGFR TGFa TGFa, Erk TGFa, Erk yes
Raf ∅ EGFR, IGFIR EGFR, IGFIR yes
PI3K ∅ EGFR, IGFIR EGFR, IGFIR yes
GSK3 ∅ Akt Erk, Akt yes
p70S6K ∅ Erk, Akt Erk, Akt yes
IRS-1 Erk Erk Erk, Akt, p70S6K yes

SW480

EGFR TGFa TGFa, Erk TGFa no
Raf ∅ EGFR, IGFIR, Erk EGFR, IGFIR no
PI3K EGFR, IGFIR EGFR, IGFIR EGFR, IGFIR total
GSK3 ∅ Akt Erk, Akt yes
p70S6K Erk, Akt Erk, Akt Erk, Akt total
IRS-1 Erk p70S6K Erk, Akt, p70S6K no

The Must column contains the set of edges that are functional in all parametrizations fitting
the data. The Klinger et al. column contains the ones reported in [54]. The May column
contains the edges that are functional in at least one parametrization fitting the data. If May
includes edges of [54], Match is set to yes. If Must and May are identical and match Klinger
et al., Match is set to total.
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Comparison of cell line specific model pools to results of Klinger et al. In [54]

the modular response analysis (MRA) method was used to identify non-functional

connections in the network for the different cell lines. Here, we aimed to compare

the topologies of their resulting networks with the topologies that occur in our

model pools. To improve comparability, we used a stability requirement for the

measurements in each cell line to account for the steady state assumption in the MRA

approach. The sizes of the parametrization sets are listed in Table 5.2-stable. Note

that there is a much stronger reduction than in the transient case, suggesting that the

stability requirement is indeed very strong for this network, presumably due to the

negative feedback mediated by Erk. However, each of the resulting parametrization

sets is non-empty, therefore we can compare which edges are required/allowed to

be functional.

The results for two examples, SW480 and HT29, are shown in Table 5.3, where for

HT29 the functions in the pool fit well to the results of Klinger et al. This means

that in the pool for HT29 for every component there is a model which matches the

regulation of the original paper. Although this seems to imply that there could be

one model which matches Klinger et al. in all components, this was not true. For all

other cell lines such as SW480 our results match [54] only in part. This is likely to be

caused by negative feedback from Erk which is a source of instability in the Boolean

framework, but in the real system may lead to damped oscillation and consequently

to a quasi-stability. Additionally, the effect of Erk on IRS-1 creates an incoherent

feed-forward motif, which was not captured in [54] as there the semantics of the

regulations of IRS-1 are different.

Tab. 5.4. Presence of regulators in the individual cell lines.

Target a: LIM1215-HCT116 b: HCT116-SW480 c: SW403-HT29

EGFR differences in frequency almost the same no difference
Raf LIM allows for 15 (out of 20)

functions, HCT only for y = 1
HCT allows only for y =
1, SW for 15 functions

no difference

PI3K strong increase in y = 1 differences in frequency no difference
GSK3 strong increase in y = 1 no difference almost the same
p70S6K y = 1 appears almost the same almost the same
IRS-1 no difference almost the same almost the same

For each pair the difference of the first member when compared with the second member is
described. The notation y = 1 is a shorthand for Kv(s) = 1 for any s ∈ S where v ∈ V is the
target. For most of the cases, the same set of functions was present, but the frequency of
their occurrence in the set differed.

Analysis of partially stable model pools As our method allows for testing transient

states, and the time series measurement in Figure S1 of [54] illustrates that Akt and
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Erk may not be in steady state at the time point of measurement, we also created a

partially stable selection. Here, only experiments without stimulation were assumed

to be in steady state, since their last treatment with an inhibitor was 90 minutes

before measurement. Stimulated samples were allowed to be in a transient state

since they were measured only 30 minutes after treatment. In our opinion, this

scenario is a good compromise between being more biologically realistic than the

stable constraint, but still observing a much stronger model pool reduction than

the transient constraint (see Table 5.2), in order to be able to observe statistical

effects. Thus, we used the partially stable constraint as the basis for the subsequent

analysis.

Fig. 5.5. Visualization of the statistical analysis of the model pool of HCT116_ps compared to the
initial model pool. The incoming edges of Raf are strongly under-represented and their
correlation for activating edges is negative, the negative edge from Erk shows a positive
correlation.

Focusing on a comparison of the cell lines carrying different genotypes we expected to

find topological and functional differences between the pools causing the observed

variations in the measurements. The pools of all five cell lines were compared,

resulting in ten different tables. We selected three comparisons in Table 5.4 to

exemplary show the most deviating pair in a, the most similar pair in c, and an

intermediate pair in b. Table 5.4 a shows the comparison of the pools corresponding
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to LIM1215 and HCT116, where major differences can be seen. The most striking

variation is the function for Raf, which is always active in all models for HCT116,

meaning that the component is completely independent from the receptors and their

stimulation.

This observation can be visualized in the statistical analysis of the specific pool

HCT116_ps using Tremppi’s tool regulations. When comparing the specific pool

with the generic pool, the differences implied by the data can be identified. Figure 5.5

depicts this difference in a graph, where the lacking influence on Raf by its regulators

EGFR, IGFR and Erk is shown. All three edges are under-represented with a frequency

of 0.7, where a maximum value of 1 means that all models in the reference would

contain that edge and in the subtracted pool none. Since the reference pool contains

these edges too, this value is high and explained in the function Raf = 1 shown in

Table 5.4 a. Moreover, the impact of regulators with 0.36 is high, since the maximum

impact of 1 is always split among all regulators. This observation can be explained

by considering the genotype of HCT116 listed in Table 1 in [54] where mutations in

KRAS, RTK and PI3K are noted. KRAS is a member of the RAS family of GTP-binding

proteins, which activates Raf and PI3K and is regulated by RTK. This mutation may

lead to constant activation of Raf in this cell line.

Similarly, PI3K is constantly 1 in more than 70% of models of LIM1215, which again

can be attributed to a mutation in KRAS present in this cell line. Note that the

KRAS mutations differ between these cell lines and therefore could cause deviating

effects. HCT116 though does not show a specific tendency in the regulation of PI3K,

although it carries a mutation in this component.

Not all the comparisons are showing such clear differences between the pools.

Table 5.4 b and c compare the pools of HCT116 with SW480 as well as SW403

with HT29 without resulting in any clear variations. For cell lines HCT116 and

SW480 this could be explained by looking again at the genotypes, which show many

commonly shared mutations (see Table 1 in [54]). SW403 and HT29 in c have the

most similar pools of all ten comparisons, without sharing any mutation concerning

components in our model. This result means that either the model is lacking a

connection or a component which influences the behavior of these cell lines.

Again, we used the statistical analysis to further examine the observations from

Table 5.4 c illustrated in Figure 5.6. Here, we directly computed the difference

of the statistics of SW403_ps and HT29_ps represented as difference graph. As a

result, the pools are exactly identical in the statistical frequency and impact of edges
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upstream of Erk and Akt, although the sizes of the pools differ. Downstream of Akt

and Erk there are differences, but with a very low significance in both frequency and

impact.

It is interesting to note that the model pools of SW403_ps and HT29_ps are very

similar, although the data sets differ in every formula but one. Thus, despite

differences in genotype and measured behavior they result in very similar model

pools. However, they do share an identical mutation in p53, which is a prominent

tumor suppressor [104] and might govern the behavior in these cell lines.

Fig. 5.6. Visualization of the statistical analysis of the differences between model pools SW403_ps and
HT29_ps. The yellow dotted lines indicate that there is no difference between the statistics
of the pools, meaning frequency and impact is 0.

5.2.4 Discussion

The generation and analysis of model pools using constraints that encode the

available knowledge for a given system allows us to evaluate data uncertainty

and guides the step from generic to more specific models. Here, we used this

approach to investigate cell line specific properties of the EGFR signaling pathway.

Motivated by a study of Klinger et al. [54], we first aimed at a comparison of our fully
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qualitative approach with the semi-quantitative method employed in the original

study. While obtaining good agreement of the results in some cases, others did not

match very well. We expect that this emerges mainly from the semantics of the edge

labels required by the approach.

Going beyond the results of the original study, we dropped the stability requirement

for several components based on the available experimental data. By comparing the

resulting model pools, we tried to find differences between cell lines and to examine

whether variations in the measurements can be connected with the topology or even

the genotype. Interesting insights can be derived for the cell lines LIM1215 and

HCT116, where the valid regulatory functions of PI3K in LIM1215 and of Raf in

HCT116 could indicate an activating mutation in that component or upstream, in

these cases probably KRAS.

Observations like these are very interesting for therapeutic strategies. Often, cancer

cells carry hundreds to thousands of mutations, where only few of them are causing

the cancer. It is a big challenge to identify dominant players, like KRAS here, in order

to decide on the most effective treatment. Here, the analysis of HCT116 cells clearly

shows a cancerous rewiring of the EGFR signaling, where the component Raf is no

longer dependent on growth-factor activated receptors to be activated and became

insensitive to the negative feedback from Erk to terminate the signaling process.

Other comparisons, e.g. of cell lines SW403 and HT29, show only slight differences,

although they do not share a mutation in components of the pathway. However, a

shared mutation can be detected in the tumor suppressor p53. This protein is not

directly linked to the EGFR pathway, but nevertheless might govern the behavior

of these cells indirectly. For example, it was shown to influence the transcription

of Pten [104], which is an inhibitor of PI3K signaling, see Figure 5.1. Also a study

of Feng et al. suggests that upon stress p53 affects MAPK and PI3K signaling [28].

Thus, a model expansion by adding p53 and new p53 measurement data could help

to clarify this result.
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6
Crosstalk analysis between

MAPK and PI3K signaling

In this chapter, I present an application of the crosstalk objective of the toolbox,

described in Section 3.2. I was motivated to study the connections between the

MAPK and the PI3K pathway by our cooperation with Christina Kuznia and Christine

Sers at Charité, who investigated the treatment of renal cancer cells with the drug

Sorafenib, a Raf inhibitor. They observed a different reaction upon drug treatment

in different cell lines and hypothesized that the crosstalk in the cells might differ

causing these variances.

For this aim, I first present the biological background on the crosstalk between MAPK

and PI3K signaling. Then, the possible crosstalk in healthy cells is investigated

based on literature. We published this study in [98] and present it with corrected

and expanded results here, which show fairly different pool sizes, however, the

interpretation is unchanged. Finally, I expanded this study adding Sorafenib to the

model and analyzed the resulting models for data from renal cancer cells provided

by our cooperation partner.

6.0.1 Biological background

Signaling processes orchestrate the behavior of cells, where hundreds of signals

propagate through the pathways to determine its fate. Although many of these

pathways have been studied extensively, the integration of these signals is less

well understood [1]. Often the cell-fate depends on a whole range of signals,

e.g. proliferation requires nutrients as well as growth signals, also other cell-

fates overpower inputs, e.g. induction of cell death. Here, crosstalk enables a

spatiotemporal control of pathways in order to integrate extracellular stimuli to

distinct fates [1].

Crosstalk in cellular signaling There are four different kinds of crosstalk: negative

feedback, cross-activation, cross-inhibition, and pathway convergence [69]. In detail,

a negative feedback means that a component inhibits an upstream component of
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its own pathway. Cross-inhibition (-activation) means that a component inhibits

(activates) an upstream component of a different pathway. Lastly, pathway conver-

gence describes the instance when two components of different pathways influence

a common target [69].

In general, information on crosstalks is sparse. Since targeted therapy becomes more

and more popular, this lack of knowledge poses a problem. Crosstalk can lead to

resistances by redirecting the signaling to another pathway and thereby bypassing

the drug target. This effect is most commonly described in the MAPK and PI3K

signaling, where combined therapy approaches are often used to efficiently block

the signaling [87, 77, 23].

Fig. 6.1. Scheme of the MAPK and PI3K signaling cascades with crosstalk indicated by white arrows.

Crosstalk between the MAPK and PI3K pathways Based on the review of Menzoda

et al., I investigated the crosstalk between MAPK and PI3K signaling. Figure 6.1

shows both pathways and potential crosstalks present in the literature. I included the

cross-inhibition of Akt on Raf, of Erk on PI3K, of Erk on Tsc and the cross-activation

of Erk on mTORC1 from the review [69].

In detail, strongly activated MAPK signaling was found to cross-activate PI3K sig-

naling. Erk was observed to phosphorylate Tsc2 and thereby activate mTORC1

signaling similarly to Akt [76, 108]. Also, cells with constitutively active Ras showed

phosphorylation of the mTORC1 subunit Raptor by Erk leading to an activation

of the complex [10]. A cross-inhibition from Akt on Raf through phosphorylation

was observed upon strong IGF stimulation [70], and cross-inhibition from Erk to

PI3K was found after treatment with Mek inhibitors showing an increase in Akt
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activity [114]. Additionally to the crosstalk reported in the review, I added the

cross-activation from PI3K on Raf. In the study of Will et al., they found that PI3K

inhibition, but not AKT inhibition, causes rapid decrease in wild type Ras activity and

in Raf/Mek/Erk signaling concluding that PI3K cross-activates the MAPK cascade

upstream of Ras [107].

6.1 Crosstalk analysis using literature data

In this section, I applied the objective of crosstalk analysis presented in Section 3.2

to systemically explore the interplay of the MAPK and PI3K pathway. Since this

study was published [98], passages from the original paper were adopted and some

additional work is shown.

Motivation As described before, both pathways are known to be connected via

crosstalk, but the exact information about interactions is sparse and unclear [69].

Mutations in these pathways are very prominent in tumors, motivating research

for medical purposes. Several comprehensive logical models are available and

were used for studying input-output behavior [35, 80]. Since we aim at a more

complex analysis under uncertainty w.r.t. the crosstalk connections, we focus for

our illustration on a very much reduced representation of both MAPK and mTOR

networks which is still able to reproduce the essential pathway behavior.

For this aim, I employed the workflow of the toolbox presented in Chapter 3 with

the objective of crosstalk analysis. As described in Section 3.2, I started by analyzing

two single models describing each pathway separately and subsequently construct

an integrated model by introducing crosstalk interactions between components

belonging to different isolated models. The crosstalk was labeled according to

the available data. A pool of models in agreement with these constraints was then

generated and further reduced to obtain model that satisfy a list of desired properties.

First, I filtered for the models that preserve the validated behavior of the isolated

models. Second, I incorporated new experimental data pertaining to the integrated

models and analyze the model pool for commonalities and differences between the

remaining models in the pool.

6.1.1 Model building and integration

System initiation The single models were built based on literature information.

The MAPK model was extracted from Kholodenko et al. [49], where each compo-
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nent has two states, the unphosphorylated protein is assumed to be inactive and

therefore assigned to the state 0. The active, phosphorylated form is assigned to

the state 1. Besides Raf, every component is regulated by only one predecessor (see

Fig. 6.2 a), thus the logical function only contains one component and the sign of

the connecting edge (Fig. 6.2 d). Raf is activated by RTK and inactivated by Erk

through a negative feedback which terminates the signal, therefore we choose a

logical AND connection.

d

MAPK: fRT K = RTK,

fRaf = RTK ∧ ¬ Erk,

fMek = Raf , fErk = Mek

mTOR: fRT K = RTK,

fmT ORC1 = ¬ Tsc,
fP I3K = RTK ∧ ¬ mTORC1,

fAkt = PI3K, fT sc = ¬ Akt

e

PI3K activates Raf [107]

Akt inhibits Raf [70]

Erk inhibits PI3K [69]

Erk inhibits Tsc [76]

Erk activates mTORC1 [10]

Fig. 6.2. Model setup for crosstalk analysis. a and b show the PKN of MAPK and PI3K signaling,
respectively. c Network structure of MAPK and PI3K in black and crosstalk edges in dashed
green lines with RTK as merged component. d Logical rules for regulations of components
in single models. e List of crosstalk edges added to the single pathways.

The PI3K model was derived from Engelman et al. [19], where again each component

is Boolean and the active state is either determined by presence of phophorylations

or the activity of a target (Fig. 6.2 b). Along with the MAPK model, the logical

equations were directly determined by the predecessor and the connecting edge for
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one regulator except for PI3K, where an AND gate defines the connection between

the activation of RTK and the negative feedback by mTORC1 (Fig. 6.2 d). Finally,

the logical rules immediately implied the edge constraints and parametrization of

the components resulting in KMAP K and KmT OR.

Single Model Analysis Both systems exhibit a fixpoint representing a quiescent

stable state and a cyclic attractor. Oscillations in agreement with the cyclic attractors

were experimentally shown for the components Erk and Akt in [42], the quiescent

stable state represents the behavior of the inactive pathway. Both are biologically

relevant and the corresponding behavior should be preserved in an integrated model.

The following properties thus make up the set P:

P1: ∃ fixpoint in SMAP K with (RTK=0, Raf=0, Mek=0, Erk=0)

P2: ∃ attractor in SMAP K with RTK=1, s.t. Raf, Mek and Erk oscillate

P3: ∃ fixpoint in SmT OR with (RTK=0, PI3K=0, Akt=0, Tsc=1, mTORC1=0)

P4: ∃ attractor in SmT OR with RTK=1, s.t. Akt and mTORC1 oscillate

6.1.2 Crosstalk analysis

After defining the single model and the properties, both were integrated into one

system and subsequently analyzed for literature data.

Model integration According to the second step of the crosstalk objective in Sec-

tion 3.2, I integrated the MAPK and PI3K model by combining components and edges

of both models (Fig. 6.2 c). Here, the component RTK featuring in both models was

merged to one component, since both pathways are activated by this receptor. Lastly,

the crosstalk edges were added. I selected 5 possible crosstalk connections from the

literature, which are given in Figure 6.2 d. Here, the cross-activation by PI3K on Ras

was transferred to Raf since Ras was not included explicitly. Based on the available

biological information, they were labeled with ¬+ or ¬−, which translates to edges

being either inhibiting resp. activating or not functional.

The parametrizations of components not targeted by any crosstalk edge were deter-

mined by the single models. The other components, namely RTK, Raf, PI3K, Tsc and

mTORC1, have new regulatory contexts. For them, I considered all parametrizations

in agreement with the edge labels, as defined in Section 2.4, leading to a model pool

of size 13,266.
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In the next step, the properties P1 − P4 observed in the single models needed to be

transferred to the dimension of the coupled system.

• P1 and P3 both characterize the steady state without stimulus and are fused

to one property: FP1: ∃ fixpoint in S with (RTK=0, Raf=0, Mek=0, Erk=0).

• P2 and P4 both describe cyclic attractors, assumed to be preserved in MAPK

and mTOR components as 2 distinct attractors in the state space:

P2 → Cyc.MAPK: ∃ attractor in S where Raf, Mek and Erk oscillate,

P4 → Cyc.mTOR: ∃ attractor in S where Akt and mTORC1 oscillate.

To obtain the set K of parametrizations satisfying the properties in P we used Tom-

Class. The exact specification is given in Table 6.1 b.

Tab. 6.1. CTL formulas for filtering model pool derived from properties of the single models and
experimental data.

a BAY MK2206

Time [h] 0 0.5 2 0 0.5 2 8 read-out

P-Akt 1 0 0 1 0 0 0 Akt
P-S6 1 1 0 1 1 0 1 mTORC1
P-Erk 1 0 1 1 1 1 1 Erk

b
FP1: EF(Delta=0&Raf=0&Mek=0&Erk=0&mTORC1=0) IS:RTK=0

Cyc.MAPK: EF(AG(EF(deltaErk!=0))) IS:RTK=1

Cyc.mTOR: EF(AG(EF(deltamTORC1!=0)&EF(deltaAkt!=0))) IS:RTK=1

FP2: EF(Delta=0&Erk=1&Akt=1) IS:/ Fixed:RTK=1,PI3K=1

MK: EF(mTORC1=1&Erk=1&EF(mTORC1=0&Erk=1&EF(mTORC1=1&Erk=1)))
IS:mTORC1=1,Erk=1 Fixed:Akt=0,RTK=1,PI3K=1

BAY: EF(Akt=0&mTORC1=1&Erk=0&EF(Akt=0&mTORC1=0&Erk=1))
IS:Akt=1,mTORC1=1,Erk=1 Fixed:RTK=1,PI3K=0

a Table with discretized western blot data from Will et al. [107] for PI3K inhibitor BAY
80-6946 and Akt inhibitor MK2206. b CTL formulas for properties FP1, Cyc.MAPK, and
Cyc.mTOR as well as FP2, MK, and BAY derived from western blot data.

Data formalization To reduce the pool further, experimental data from literature

containing information about the integrated system was used. A study from Will et al.

investigated the effect of Akt and PI3K inhibitors in connection with MAPK signaling

in a breast cancer cell line [107]. The genotype of the cell line needs to be considered

when exploiting cancer data. This specific cell line (BT-474) carries an amplification

in HER2, which belongs to the RTK family and a mutation in PI3K (PIK3CA) which

causes increased levels of activity. As described in Section 3.3, we added the

genotype information which amounts to adding the fixed component constraint

to the properties derived from the corresponding experimental observations, fixing
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RTK and PI3K to value 1 unless explicitly indicated otherwise in the experimental

set up.

In the paper, time series experiments without inhibitor were performed (see Fig. S2 B

in [107]), indicating that the quiescence state shows active Akt (P-Akt) and active

Erk (P-Erk). In contrast to FP1 the mutations cause a different quiescence state

than in the wild type, thus there is no conflict between these obervations. The data

was translated into a CTL formula FP2 shown in Table 6.1 c. Moreover, Will et al.

performed measurements perturbing with Akt inhibitor MK2206 and PI3K inhibitor

BAY 80-694 hypothesizing that PI3K is upstream of MAPK and blocking this kinase

should affect Erk activity. I used these western blots (shown in Fig. 2 in [107]) to

further refine the model pool. In order to avoid discretization errors, time points

with unambiguously active or inactive states were chosen, discretized and collected

in Table 6.1 a. The table shows the states of Akt, Erk and P-S6, which is a kinase

dependent on mTORC1 and therefore used as its read-out. For the PI3K inhibitor

three measurements and for the Akt inhibitor four measurements were implemented

as CTL formulas BAY and MK, listed in Table 6.1 c.

Choice of strictness The model checker TomClass has parameters for how strict a

CTL formula can be applied, as described in Sections 2.7 and 3.3. In order to explore

the influence of this parameter of the filtering effect on the pool, I tested every

formula with both options for initial states: ForAll and ForSome (see Table 6.2). As

a result, a general difference for CTL formulas encoding an attractor such as FP1,

Cyc.MAPK, Cyc.mTor, and FP2, where all model pools were identical except for

FP1 showing a slightly smaller pool size for the parameter ForSome.

This observation can be explained looking at the structure of the models, where RTK

is the only input to the system. We know that the number of attractors is limited

by the number of inputs, except for systems with positive feedbacks which can lead

to multistatonarity [100]. Here, the single models contain one negative feedback

each, but no positive. Also, adding the crosstalk to the system only adds negative

edges, which in combination with existing negative feedbacks rarely lead to positive

feedbacks in this system. Using the annotate_attractors function in TomClass

(see Sec. 2.7.1), I determined how many models have multistatonarity for RTK = 0
and RTK = 1, which was 114 in each case. This means that less than 1% of the

models express multistatonarity. Thus, most models have a maximum of 2 attractors,

one for RTK = 0 and one for RTK = 1.
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Tab. 6.2. Filtering the generic pool for properties and data sets

FP1 Cyc.MAPK Cyc.mTor FP2 MK BAY

ForSome 4489 7062 5886 6633 10318 13266
ForAll 4396 7062 5886 6633 770 10318

Specific pool sizes filtering for CTL formulas each show the effects of the strictness parameter.
The formulas testing attractors are less sensitive to this parameter showing the same or
similar pool sizes. For time series measurements strong variations are observed.

The cyclic attractors Cyc.MAPK and Cyc.mTor both show the same pool size for

each parameter setting, see Table 6.2. By annotating the attractors I observed

that multistatonary models do not show cyclic attractors. The positive cycle, which

requires an edge from Akt to Raf and a pairwise combination of the edges {(Erk, Tsc),

(Erk, mTORC1), (Erk, PI3K)} seems to interfere with the capability to show a cyclic

attractor, although there are intact negative cycles present. The measured fixpoint

FP2 also does not show any models with positive cycles, thus all initial states reach

the same steady state and there is no difference between the parameter settings.

However, the trivial fixpoint FP1 poses an exception, where some models are valid

for ForSome but not for ForAll, because the CTL formula is valid for models that

carry a positive cycle having two fixpoints. In such a case, ForSome is true if one

fixpoint is valid and ForAll require both fixpoints to agree with the formula. Since

this fixpoint represents the inactive state of the signaling system, which should be

inactive without an active receptor, we want to exclude multistatonarity and choose

the parameter ForAll for FP1 for our further analysis,

The time series data sets MK and BAY show a clear difference in the pool size

(Tab. 6.2). Especially the CTL formula MK shows more than 10 times more models

for the low strictness. This fact is surprising, since in the data set five out of eight

components are defined in the initial state, which is the highest number over all

formulas. Therefore, the difference in the set of states between ForSome and ForAll

should be the smallest. Moreover, the strict version of MK is in conflict with FP2

leading to an empty pool for intersection. In conclusion, for the time series data we

choose the low strictness.

Model Pool Analysis After filtering, the resulting pool contains 554 models that

are in agreement with the properties derived from the single networks and the

experimentally observed behavior. I employed the statistical analysis approach

presented in Section 3.2 to investigate the topological characteristics of the integrated

models. For identifying important influences and structures in the model pool, the
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Fig. 6.3. Visualization of the statistical analysis of the model pool. The edge width represents the
frequency of occurrence in the pool and the heads show the sign. A illustrates the refined
pool KR, and C the reference pool Kref . In B the difference graph is shown, where the edge
signs has been dropped, solid lines are drawn for connections more frequent on average in
KR than in Kref and dashed lines for lower frequency in the refined pool. Figures generated
using Cytoscape (http : //www.cytoscape.org/).

frequency of the edges and correlations between the components is calculated. In

Figure 6.3 the statistical analysis of the refined model pool KR resulting after the

filtering as well as a reference pool Kref , and the difference between the two is

visualized. The reference pool contains all models of the originally generated pool

that have been discarded in the filtering process.

The result for KR is shown in Figure 6.3 A, where the crosstalk edge from PI3K to

Raf has a frequency of 1. Thus, in every model in the pool this edge is functional. In

order to evaluate possible enrichments of other edges, we need information about

Kref , shown in Figure 6.3 C. Here, the frequency and correlation is given by the edge

constraints and the arising combinations of parametrizations. Finally, the difference

between the filtered and the reference pool is depicted in B. Again, the connection

PI3K and Raf is shown to be more prominent and highly correlated comparing the

filtered models to all possible models. This result is in line with findings of Will et

al., where it was concluded that PI3K is upstream of the MAPK cascade [107]. The

crosstalk from Erk to PI3K is less frequent in KR, which is reasonable since in the

data PI3K is a fixed component and therefore this edge cannot be functional here.

Moreover, the influence of Erk on Tsc and mTORC1 is strongly enriched in the

selected model pool. Applying an exact analysis by classification of the pool (see
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Tab. 6.3. Classification for crosstalk edges and CTL formulas

Crosstalk (PI3K, Raf) (Akt, Raf) (Erk, mTOR) (Erk, Tsc) (Erk, PI3K) Size

2 1 0 0 1 0 3
2 1 0 1 0 0 6
3 1 0 0 1 1 6
3 1 0 1 0 1 17
3 1 0 1 1 0 12
3 1 1 0 1 0 9
3 1 1 1 0 0 27
4 1 0 1 1 1 39
4 1 1 0 1 1 18
4 1 1 1 0 1 123
4 1 1 1 1 0 45
5 1 1 1 1 1 249

Classification of KR shows the essential edge from PI3K to Raf and an essential influence
from Erk to mTORC1 either directly or via Tsc. Crosstalk counts the number of present
crosstalk edges and Size gives the number of models in the class.

Section 2.7), showed that every model in KR contains at least one of these edges

shown in Table 6.3. Here, the crosstalk edges and the CTL formulas were used as

features to group models. These groups only differ in their parametrizations, but

show the same behavior towards the tested data.

Interestingly, the analysis shows that a minimum of 2 edges are required to explain

the data. Moreover, none of the edges is rejected by the data, but the connection

from Akt to Raf and Erk to PI3K are only possible in combination with the essential

edges.

6.1.3 Discussion

Biological processes do not work isolated, but in concert with other cellular mecha-

nisms. For many of these processes there exist validated models, but their interac-

tions among each other are often unclear. Here, I applied the workflow presented in

Chapter 3 with the objective to investigate crosstalk. This workflow first investigates

the properties of the single models that are required to be preserved in the inte-

grated system. As validation that model integration does not change the dynamics of

both pathways, I found that the uncoupled system, where all crosstalks are absent,

is in agreement with all properties from the single models FP1, Cyc.MAPK and

Cyc.mTOR.
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In the next step, I reduced the pool as much as possible and performed the pool

analysis. Another possibility would be to add constraints stepwise and perform

analysis after each step. This may allow to link specific network characteristics to

the properties and functionalities encoded in each constraint. However, I was able

to extract two essential crosstalks where the connection from PI3K to Raf is already

known in the literature. The influence from Erk to mTORC1 directly or through

Tsc is more interesting and an experiment to dissect these parallel influences would

further restrict the pool.

The analysis using different levels of strictness revealed that the influence of ForSome
and ForAll differs among the data sets. Attractors showed almost no difference in

the model pool sizes, whereas the time-series data was much more affected. One

explanation is that most models only have one attractor for each input state, thus

if one trajectory is valid, all of them are. The time-series data also contained more

constraints on components by having a sequence of states, which might be harder to

fulfill than reaching an attractor.

6.2 Signaling in RCC cells: role of Sorafenib and
crosstalk

This study is a collaboration project with Christine Sers and Christina Kuznia from

the institute of pathology at Charité Berlin. In her PhD studies, Christina Kuznia

investigated the signaling processes in several renal cell carcinoma (RCC) cell

lines, where these supposedly similar cancer cells behaved very differently towards

stimulation and drug treatment [55]. As a consequence, the signaling processes

involved in the cell fate decisions, such as survival or apoptosis, were examined and

analyzed.

One focus of these studies were the MAPK and PI3K pathway as well as their crosstalk.

Since these processes incorporate uncertain mechanisms such as the crosstalk and

the effect of mutations within the pathway, I wanted to apply our modeling approach

to support the investigation. This study includes all three objectives formulated

in Chapter 3: a crosstalk analysis, testing of a drug, and examining the effect of a

mutation.

Sorafenib Sorafenib is a cancer drug developed to inhibit pathways controlling

proliferation and cell survival like MAPK and PI3K cascades with anti tumor activity in

colon, breast and non-small lung cancer [106]. The multikinase inhibitor Sorafenib
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was developed to suppress the MAPK pathway, since this pathway described in

function of both a tumor suppressor as well as pro-oncogenic [9]. Though it was

initially found to target Raf, Sorafenib influences a wide variety of receptor tyrosine

kinases (RTKs) [106]. Very recently, Sorafenib was also shown to inhibit the IGFR in

vitro [111].

Applying Sorafenib in experiments to different RCC cell lines, we observed that these

cells undergo apoptosis, but the cell lines reacted on very different time scales and

with variations in their signaling behavior [55]. For clarifying these differences,

Kuznia et al. performed more experiments using inhibitors that are assumed to act

on the same targets, but these inhibitors were not able to induce apoptosis. So far it

is not completely clear how Sorafenib acts on the MAPK and PI3K pathways.

6.2.1 Model definition and objective formalization

System initialization For the investigation of the different RCC cell lines, the

crosstalk between MAPK and PI3K as described in the previous section is of in-

terest. Additionally, I wanted to test whether Sorafenib acts on its designated target

Raf or whether it might act through EGFR or IGFR in these cells. For this aim, I

split the component RTK into two components with distinct activators, their ligands

EGF and IGF respectively. MAPK is the canonical pathway activated by EGFR and

PI3K signaling is the main effect of IGFR activation. Although the receptor was split,

the ability of cross-activation of the non-canonical pathway is preserved for IGFR

on MAPK through the crosstalk from PI3K on Raf. For the crosstalk of EGFR on

PI3K signaling there is a possible cross-activation through Ras which is downstream

of EGFR and upstream of Raf [109] (see Fig. 6.1). We added this interaction as

additional crosstalk edge from EGFR on PI3K.

For the analysis, biological information from prior experiments about the RCC cells

was incorporated. First, in one cell line mTOR was found to carry a mutation, whose

effect is unknown. To account for this mutation all outgoing edges of mTORC1

were set to optional in the PKN, which affects the feedback from mTORC1 to IGFR.

Secondly, the VEGFR was not included in the model, since it was found to not

be expressed in the later described experiment, although it is a major target of

Sorafenib.

Finally, the results of the previous study on crosstalk between MAPK and PI3K in

healthy cells [98] were included into the PKN of this model. In detail, the candidate

edges from Akt to Raf and Erk to PI3K were excluded, since they were under-
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a
fEGF = EGF , fIGF = IGF ,
fSora = Sora, fErk = Raf
fAkt = PI3K

b
PI3K activates Raf [107]
Erk activates mTORC1 [69]
EGFR activates PI3K [109]
mTORC1 inhibits PI3K (mut)
Sora inhibits Raf [60]
Sora inhibits IGFR [111]
Sora inhibits EGFR (hypo)

Fig. 6.4. Interaction graph of the MAPK (left hand side) and PI3K (right hand side) model marked
with solid lines and optional influence of Sorafenib and crosstalk marked with dashed lines.
a Predefined logical rules for regulations of components without optional incoming edges. b
List of optional edges added to the network with references.

represented in the results. The essential influences were preserved as optional edges,

with PI3K as Raf activator and Erk as mTORC1 activator summarizing both the direct

edge and the indirect influence via Tsc. Since we had no data to further clarify this

influence, this simplification reduced the complexity of the study without changing

the logical structure of the model.

Moreover, components that were neither measured nor perturbed are excluded from

the model to reduce the complexity. Here, Mek and Tsc were not considered in the

model, since both were lined up in a cascade as components with single input and

output, thus deleting them does not pose problems for the model dynamics.

Cell line specific crosstalk analysis After presenting a systematic approach to in-

tegrate the MAPK and PI3K pathway via crosstalk for healthy cells in the previous

section, I wanted to explore the cell line specific crosstalk and the effect of Sorafenib

in this study. For this aim, the model was fit to the new data and Sorafenib is

added as additional input to the system, where I wanted to test Raf, EGFR and

IGFR as possible targets. Moreover, one cell line, MZ1851RC carries a mutation in

mTOR with unknown effect for mTORC1, thus the outgoing edge to IGFR was set

to optional. Therefore, this study combines all three presented objectives described
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in Section 3.2: the crosstalk analysis, identifying driver mutations and testing the

effect of drugs.

6.2.2 Data processing & formalization

Our collaboration partner examined the signaling mechanisms of renal cancer cell

lines MZ1257RC, MZ1851RC and MZ1795RC. The work was based on the observa-

tion that some cells were sensitive to a treatment with Sorafenib while others were

resistant [55]. For our investigation, we used two different data sets: Western blot

measurements of mTORC1 activity over time and a high throughput assay. Here, we

restrict the analysis to two cell lines MZ1257RC and MZ1851RC, since there was no

assay for cell line MZ1795RC available.

Western blot measurements of mTORC1 targets In the western blot measurements

done by Christina Kuznia, the activity of mTORC1 was measured by its targets

p70S6K (S6K), S6RP, and 4E-BP1 in MZ1257RC and MZ1851RC cells (see Fig. 6.5).

Here, the cells were either treated with DMSO or Sorafenib and the phosphorylation

of the mTORC1 target was measured over time. Regarding the measurements until

12 hr, MZ1257RC cells showed a significant decrease in phosphorylation levels

for S6K and S6RP. However, MZ1851RC cells only showed a reduction in S6RP

phosphorylation for later time points, but the phosphorylation of S6K remained high.

I did not consider the 24 h time point, since we are only interested in signaling

effects and this measurement is likely to be influenced by transcriptional effects.

The phosphorylation of the mTORC1 target 4E-BP1 is on the same level for both

cell lines, for the treated and the untreated control sample. Since our model only

represents mTORC1 in the function as inhibitor of IGFR by the negative feedback

through S6K, I did not consider the measurements of 4E-BP for our study. Instead,

S6K was used as the read-out for the mTORC1 activity in the formal encoding of the

Western blot data as CTL formulas DMSO, Sora1257 and Sora1851 in Table 6.5.

Here, both cell lines show active mTORC1 for DMSO treatment throughout the

measurements, thus a steady state was assumed. For Sorafenib treatment, cell line

MZ1257RC shows a steady state with decreased S6K phosphorylation, thus mTORC1

was set to 0. In contrast, cell line MZ1851RC has stable S6K phosphorylation, thus

mTORC1 was set to 1.

Bio-Plex® experiments for a more detailed view on pathways After observing differ-

ences in the activity of mTORC1 in the Western blots towards Sorafenib treatment, we

wanted to investigate where the differences in the upstream regulation of mTORC1
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Fig. 6.5. mTORC1 activity was inhibited in MZ1257RC cells due to Sorafenib as indicated by a
decrease in phosphorylation level of S6K and S6RP, but phosphorylated 4E-BP1 remained
stable. MZ1851RC analysis revealed only a weak inhibition of S6RP phosphorylation, but
not of p70S6K. Figure courtesy of [55].

originate from. For this aim, a throughput approach using the Bio-Plex® system

was applied [55], which is a Luminex assay as described in Chapter 5. Here, the

cells were unstimulated and not starved but treated with Sorafenib or DMSO and

measured at different time points over a total period of 36 hours. The experiments,

measurements and preprocessing of the data was done by Christina Kuznia [55].

In detail, the activity of the PI3K/mTORC1 signaling pathway was measured by

the phosphorylation of Akt, mTOR, p70S6K, S6RP, and Pten. The MAPK activity

was determined through the phosphorylation of Erk and p90RSK. Moreover, the

receptors EGFR, IGFR and VEGFR were included into the experiment, since we were

interested which receptor is targeted by Sorafenib and to account for the feedback

processes. The complete dataset provided by [55] is listed in the Supplement (Fig.

A.6).

For the analysis, the first preprocessing step was a reduction of the data set, shown

in Table 6.4. The components that are not present in the model were not considered

in our analysis (p90RSK and Pten). The measurements of the VEGFR showed
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very low levels with only very small deviations, suggesting that this receptor is not

expressed in the cells. The antibody for S6RB delivered poor results, same accounts

for Akt pT308 antibody, thus only the results for Akt pS473 was used. Moreover,

the mTOR phosphorylation site is not specific for its activity [65], thus I used the

phosphorylation of the component p70S6K as readout for mTORC1.

In the next step, I discretized the data by defining a threshold for each component.

For this aim, the arithmetic mean of every component within one cell line but for

both treatments was calculated. Since the cells were cultivated in parallel and

treated in one experiment, I expected the phosphorylated levels for both treatments

to be comparable. Thus, the mean value for e.g. Erk has the same mean value

under both Sorafenib and DMSO treatment. Moreover, the standard deviation for

each component was calculated in order to avoid the problem of discretizing a data

set, where components do not change over time. By looking at small standard

deviations relative to the mean, I identified the IGFR measurements in MZ1257RC

as a problematic component (see Table 6.4). Comparing the IGFR levels between

the cell lines, we decided to exclude the data for this component in the cell line

MZ1257RC, since the measurments suggest a constant behavior of the receptor.

Since we are interested in the signaling processes, I only included measurements until

8 hours. The resulting CTL formulas are listed in Table 6.5, where for Bp1851Sora,

Bp1851DMSO, and Bp1257Sora each measurement was encoded as transient state

and Bp1257DMSO was encoded as steady state, since there was no change in the

discretized data over time (see Table 6.4 MZ1257RC-DMSO). Moreover, as choice of

strictness I chose the most relaxed option ForSome.

6.2.3 Analysis of cell line specific model pools

The model pool resulting from combinations of optional edges contains 19,404

models. In order to find biologically relevant models, I filtered this pool for those

models that are able to simulate experimentally observed behavior. Unlike the

crosstalk study in Section 6.1, I dropped the condition of a quiescence state and

oscillations in MAPK and PI3K as general properties, since we are looking at cancer

cells.

Cell line specific model pools Each CTL formula has a non-zero pool size and

is therefore feasible for our analysis (see Table 6.5). To determine the cell line

specific models, I calculated the intersection of the different subpools as described in

Table 6.5 for cell line MZ1257RC as Rp.1257 and for cell line MZ1851RC as Rp.1851.
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Tab. 6.4. Reduced data set of Bio-Plex® experiments for the cell lines MZ1851RC and MZ1257RC

MZ1851RC-Sora MZ1851RC-DMSO
Erk EGFR S6K Akt IGFR Erk EGFR S6K Akt IGFR

20m 307.5 118 230 540.5 176 737 223 498.5 2468.5 221
40m 460.5 169 344 1941 210 664 223 449.5 2572 227.5
1h 518 200 386.5 2504 247 601 161 328 1850.5 178
1.5h 452 160 327.5 2289 195.5 508 202 329 1658 202
2h 455.5 146 319 1861 223 439 156 296 1552 162
4h 255 101 205 820 181.5 350 127 236 874 135
8h 232 84 161 517.5 181 221.5 102.5 185 476 137
12h 200.5 70 152 623.5 139 217 91.5 184 600 117
24h 22 42 16 39 59 84 60 80 879.5 90
36h 23.5 40.5 15 38 52 61 53 72 286 125
con 65 48 70 200 165 65 48 70 200 165

Mean 315 119 225 1127 163 315 119 225 1127 163
StD 217 61 139 873 53 217 61 139 873 53

20m 0 0 1 0 1 1 1 1 1 1
40m 1 1 1 1 1 1 1 1 1 1
1h 1 1 1 1 1 1 1 1 1 1
1.5h 1 1 1 1 1 1 1 1 1 0
2h 1 1 1 1 1 1 1 1 1 0
4h 0 0 0 0 1 1 1 1 0 0
8h 0 0 0 0 1 0 0 0 0 0

MZ1257RC-Sora MZ1257RC-DMSO
Erk EGFR S6K Akt IGFR Erk EGFR S6K Akt IGFR

20m 353.5 136 278 569 48 491 178.5 355 659 58
40m 157 81 149 444.5 49 383.5 143.5 305 787 51
1h 160.5 83 142 365 44 386 138.5 308 665 49
1.5h 204 128 231 430 50 387 155 350 817.5 48
2h 253 160 290 557 46 379 152.5 357.5 847 51
4h 196 139 205 411 44 446.5 188.5 424 973 49
8h 288.5 224 335 434 55 346 153.5 313 468 56
12h 67 67 94.5 115 51 264 137.5 279 449.5 48
24h 73 67 84 345.5 53 168 103 176 411 44
36h 39.5 56 49 82 48 156 127 214.5 169.5 42
con 92 54 117.5 86.5 45 92 54 117.5 86.5 45

Mean 233 121 230 453 48 233 121 230 453 48
StD 136 47 106 259 4 136 47 106 259 4

20m 1 1 1 1 1 1 1 1
40m 0 0 0 0 1 1 1 1
1h 0 0 0 0 1 1 1 1
1.5h 0 1 1 0 1 1 1 1
2h 1 1 1 1 1 1 1 1
4h 0 1 0 0 1 1 1 1
8h 1 1 1 0 1 1 1 1

Time series measurements for both cell lines with DMSO or Sorafenib treatment are shown
from 20 minutes (m) to 36 hours (h) and an untreated control sample (con). For the
calculating the arithmetic mean and standard deviation (StD), the data from both treatments
within each cell lines was processed together and all time points were considered. The data
is discretized using the mean as threshold value.
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Tab. 6.5. Filtering model pool using model checking.

CTL formula Pool size

DMSO: EF(AG(mTORC1=1)) IS:Sora=0 15,026

Sora1257: EF(AG(mTORC1=0)) IS:Sora=1 15,026

Sora1851: EF(AG(mTORC1=1)) IS:Sora=1 5,902

Bp1851Sora: EF(mTor=1&Akt=0&EGFR=0&Erk=0&IGFR=0&
EF(mTor=1&Akt=1&EGFR=1&Erk=1&IGFR=1&
EF(mTor=0&Akt=0&EGFR=0&Erk=0&IGFR=1)))
IS:Sora=1

9,624

Bp1851DMSO: EF(mTor=1&Akt=1&EGFR=1&Erk=1&IGFR=1&
EF(mTor=1&Akt=1&EGFR=1&Erk=1&IGFR=0&
EF(mTor=1&Akt=0&EGFR=1&Erk=1&IGFR=0&
EF(mTor=0&Akt=0&EGFR=0&Erk=0&IGFR=0))))
IS:Sora=0

10,080

Bp1257Sora: EF(mTor=1&Akt=1&EGFR=1&Erk=1&
EF(mTor=01&Akt=0&EGFR=0&Erk=0&
EF(mTor=1&Akt=0&EGFR=1&Erk=0&
EF(mTor=1&Akt=1&EGFR=1&Erk=1&
EF(mTor=0&Akt=0&EGFR=1&Erk=0&
EF(mTor=1&Akt=0&EGFR=1&Erk=1)))))) IS:Sora=1

9,984

Bp1257DMSO: EF(Delta=0&mTor=1&Akt=1&EGFR=1&Erk=1)
IS:Sora=0

12,096

Rp.1257 = DMSO ∩ Sora1257 ∩ Bp1257Sora ∩ Bp1257DMSO 3,658
Rp.1851 = DMSO ∩ Sora1851 ∩ Bp1851Sora ∩ Bp1851DMSO 881

CTL formulas derived from Western blot and Bio-Plex® experiments and pool size gives the
number of models in agreement. Rp.1257 and Rp.1851 are the cell line specific pools as the
intersection of the respective data sets.

Note that both pools are required to fulfill DMSO, since this dataset was identical

for both cell lines.

Although the single CTL formulas resulted in relatively large pools, most containing

around 10,000 models or more, the intersection for the cell line specific pools shows

a strong reduction with 3,658 models for Rp.1257 and 881 models for Rp.1851.

Thus, there exists a cell line specific pool for each cell line, which was analyzed

for information on crosstalk and Sorafenib targets by classifying both pools for the

optional edges. The full tables are given in the Supplement in Figures A.7 and A.8

for MZ1257RC and Figures A.9 and A.10 for MZ1851RC.

In general, for both specific pools there are no rejected or essential edges, since

each edge appears in some model but not in all of them. Here, both pools contain

at least one crosstalk edge, but interestingly both pools have valid models without

94 Chapter 6 Crosstalk analysis between MAPK and PI3K signaling



any influence of Sorafenib. However, no Sorafenib target was rejected for both cell

lines.

Exact analysis shows minimal mechanisms Since we are interested in possible

Sorafenib targets in the system, I analyzed the cell line specific pools for two features:

the number of Sorafenib targets and possible target-crosstalk mechanisms. Due to

the large number of models in the pools, I separated the pool for three scenarios:

no influence of Sorafenib, meaning that all three optional outgoing edges of Sora

are not present, Sorafenib has one target only, Sorafenib has exactly two targets

and Sorafenib has exactly three targets. In Table 6.6, the minimal models according

to these scenarios for the pool Rp.1257 and in Table 6.7 for the pool Rp.1851 are

listed.

The specific pool for MZ1257RC shows five models without any connections of Sora

to the signaling pathways. Here, the minimal models contain either the crosstalk

(EGFR, PI3K) or a connection (Erk, mTORC1) and (PI3K, Raf) (see Tab. 6.6 a). All

further models are combinations of these edges. Furthermore, none of the models

contains the feedback from mTORC1 to IGFR. Also more complex models with more

than two crosstalk edges are not present in the pool, which is surprising since models

with more edges tend to fit data more easily.

In case Sorafenib only affects one target in the model, 174 models were filtered

from Rp.1257. Here, all three targets are possible with at least one extra edge. The

minimal models are listed in Table 6.6 b, where IGFR as Sorafenib target either

requires the feedback from mTORC1 or the crosstalk (EGFR, PI3K). For EGFR as

target, an influence on mTORC1 either through crosstalk by (EGFR, PI3K) or by

(ERK, mTORC1) directly is necessary. Lastly, for Raf as Sorafenib target only one

mechanism with one crosstalk edge is possible, which contains an edge from EGFR on

PI3K. In the presented minimal models, the edge (PI3K, Raf) is not present, however,

this edge only appears in combination with the minimal models (see Supplement

Fig. A.7 and A.8).

In the third scenario, Sorafenib has two functional outgoing edges and represents

the largest group of models in Rp.1257 with 1,350 models. Here, every combination

of the targets EGFR, IGFR and Raf is present, but only in combination with crosstalk

edges. For the combination EGFR/IGFR, a minimal model with each optional edge

exists except for the cross-activation from PI3K on Raf (Table 6.6 c). The combination

Raf/IGFR requires either the feedback (mTORC1, IGFR) or the activation through

(PI3K, EGFR) is required. Lastly, the combination Raf/EGFR requires either the
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Tab. 6.6. Classification for crosstalk edges and CTL formulas for Rp.1257

Sora targets (EGFR, PI3K) (Erk, mTORC1) (mTor, IGFR) (PI3K, Raf)

a None 1 0 0 0
0 1 0 1

b IGFR 0 0 1 0
1 0 0 0

EGFR 0 1 0 0
1 0 0 0

Raf 1 0 0 0

c IGFR/EGFR 0 0 1 0
0 1 0 0
1 0 0 0

IGFR/Raf 0 0 1 0
1 0 0 0

EGFR/Raf 0 1 0 0
1 0 0 0

d All 0 0 1 0
0 1 0 0
1 0 0 0

Minimal models after classification of Rp.1257 for a no Sorafenib targets, b exactly one
target, c exactly two targets, and d all three possible targets are affected.

crosstalk (EGFR, PI3K) or (Erk, mTORC1). Along with the minimal models for one

target, the crosstalk from PI3K to Raf is only present in combination with minimal

models.

Finally, for the case that Sorafenib affects all three targets IGFR, EGFR and Raf, there

are 1,220 model in in Rp.1257. Similarly to the minimal models with less targets,

the crosstalk edge from PI3K to Raf is not present, but there are models for all other

optional edges present (Tab. 6.6 d).

The second cell line MZ1851RC yielded a much smaller pool Rp.1851 than Rp.1257

with 881 models. However, the proportion of models without Sorafenib influence

is much higher with more than 7% in comparison to around 0.1%. The minimal

models shown in Table 6.7 a, require either the feedback from mTORC1 to IGFR or

the crosstalk from EGFR to PI3K to be present. The other crosstalk edges appear as

combinations with either of them or both.

In the scenario of Sorafenib affecting one target, all three options are possible.

Looking at the minimal models, EGFR and Raf only require a single additional edge

to be present, while IGFR requires two (Tab. 6.7 b). Here, for models having EGFR

96 Chapter 6 Crosstalk analysis between MAPK and PI3K signaling



Tab. 6.7. Classification for crosstalk edges and CTL formulas for Rp.1851

Sora targets (EGFR, PI3K) (Erk, mTORC1) (mTor, IGFR) (PI3K, Raf)

a None 0 0 1 0
1 0 0 0

b IGFR 0 1 1 0
1 0 1 0
1 1 0 0

EGFR 0 0 1 0
Raf 0 0 1 0

1 0 0 0

c IGFR/EGFR
IGFR/Raf 0 1 1 0

1 0 1 0
1 1 0 0

EGFR/Raf 0 0 1 0
1 0 0 0

d All 1 0 1 0

Minimal models after classification of Rp.1851 for a no Sorafenib targets, b exactly one
target, c exactly two targets, and d all three possible targets are affected.

as Sora target the negative feedback from mTORC1 on PI3K is essential. Models with

Raf as target either contain the cross-activation from EGFR on PI3K or the feedback.

For IGFR, any pairwise combination of optional edges except for (PI3K, Raf) appears.

Like in cell line MZ1257RC, this edge is not required to be present, but can be active

in combination with other edges.

In case Sorafenib acts on two targets, 417 models in Rp.1851 are filtered. Surpris-

ingly, not every combination is possible in this selection since there is no model

with IGFR and EGFR as Sora targets. The combination Raf/EGFR requires one

additional edge to be functional, which are the same as for Raf only (Tab. 6.7 c). For

the combination IGFR/Raf two additional edges are necessary, which in this case

matches the edges from IGFR only.

Finally, if we expect Sorafenib to act on all three targets, only 96 models are valid.

These models all require at least two crosstalk edges to be present, which are the

negative feedback and the cross-activation by EGFR on PI3K. All other edges appear

in combinations with the minimal model shown in Table 6.7 d.
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6.2.4 Discussion

Two RCC cell lines, MZ1257RC and MZ1851RC, were observed to behave differently

upon Sorafenib treatment. The project was supposed to examine possible targets

of Sorafenib in the MAPK and PI3K signaling and also investigate the uncertain

crosstalk between these pathways by testing a generic model for data from both cell

lines. Although there was a substantial reduction from the initial pool with 19,404

to 3,658 for MZ1257RC and even 881 for MZ1851RC, the analysis showed no clear

trend, since the results are complex and hard to interpret.

mTOR mutation is likely to be non-functional or activating One of the questions I

wanted to answer was whether the mutation in mTORC1 in cell line MZ1851RC is

a knock-out or non-functional. In the specific pool Rp.1851 the negative feedback

from mTORC1 on IGFR was enriched with approx. 93% of the models requiring

this edge to be functional, even if we only consider models with a maximum of

5 optional edges the number is still high with 90%. I therefore conclude that the

mutation is likely to not interrupt the negative feedback on IGFR.

On the contrary, the frequency of the feedback in Rp.1257 only reaches a level

approx. 75% for the full set of optional edges and only about 55% for models with

a maximum of 5 crosstalk edges. Since this cell line does not carry a mutation in

mTORC1, the comparison of the frequency suggests that the mutation of mTOR in

MZ1851RC could increase the activity towards IGFR.

Minimal models show required influences and counteract overfitting In order to

increase the interpretability of the results of the classification in the exact analysis,

I structured and reduced the table for the number of Sorafenib targets and only

regarded the minimal models for each target (Tables 6.6 and 6.7). For both cell lines,

there were models from no Sorafenib target to three targets present. Thus, I cannot

make any statements about whether Sorafenib acts on IGFR, EGFR, Raf, or any

combinations of those except that almost all options are possible in our results.

However, the analysis does allow to make structural comparisons between the cell

lines, since there are differences for sparse models observable. Moreover, I focused

on the minimal models to avoid the problem of overfitting, since the more edges

a model has the easier it is to produce complex dynamics (for more details see

Discussion in Chapter 8).
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The minimal models give an overview about how the system could compensate the

influence of the inhibitor to fit the data for different levels of influence. For this

aspect the cell lines show similarities and differences in their model structures. First,

for both cell lines the minimal number of required crosstalk edges stays the same

independent on the number of Sorafenib targets. Although each target requires

different crosstalk edges to be present, the total number remains the same, which is

one edge for all targets in Rp.1257 and in Rp.1851 one crosstalk is required for the

targets EGFR and Raf, and two for IGFR as Sora target.

For minimal models of MZ1257RC the crosstalk edges for multiple Sorafenib targets

are the combinations of the single target models. For example, IGFR as only target

requires either the feedback EGFR, PI3K) to be present and EGFR as single target

also (EGFR, PI3K) or (Erk, mTORC1) see Table 6.6 b. Then the minimal models

for Sorafenib targeting IGFR and EGFR are possible with either one of the three

edges. This observation suggests that increasing the number of drug targets does

not apply more pressure on the systems structure and that the structure of the

system for combinatorial targets in this case can be predicted from the single target

topologies.

For the cell line specific pool Rp.1851 this does not hold. The most striking conflict

with this theory is shown in Table 6.7 c, where the combination of IGFR and EGFR

as targets is absent in the pool although the single targets are present in b. Also,

looking at models with all three targets affected, there are topologies lost from the

single and dual target models. Thus, for this cell line we cannot find a general rule

for combining the drug targets.

Crosstalk from MAPK on PI3K is often required, not vice versa Next, I wanted to

take a closer look at the crosstalk edges in the minimal models of both cell lines.

Excluding the models without Sorafenib targets, we find that none of the models

contain the cross-activation from PI3K on Raf. This is surprising, since PI3K on Raf

was found to be essential in the crosstalk study in first section and is well described

by the literature.

From a more general perspective, the crosstalk edge (PI3K, Raf) is the only influence

from the PI3K pathway on MAPK. On the other hand, many models contain a

crosstalk from MAPK on PI3K through EGFR or Erk and only a few models are valid

with active feedback only. For Rp.1257, these models all have IGFR as Sorafenib

target and in Rp.1857 the feedback is present in most models. Thus, in the cell

line MZ1257RC there seems to be a trend that either the PI3K pathway is directly
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affected by Sora or, if the Sorafenib targets MAPK only, crosstalk from MAPK on PI3K

is necessary. Again, for cell line MZ1851RC the results are not clear except that the

cell line is strongly dependent on the feedback.

General questions and future studies One main issue of the analysis is the inter-

pretation of the models without a Sorafenib target. Since the data clearly shows

an effect of the drug on components in this pathway, I expected all models to have

at least one target of Sorafenib to be influenced. In fact, the number of “no-target”

models is relatively low in both cell lines. On one hand this is due to the fact

that there are less combinations possible with only 5 out of 8 optional edges, but

especially the pool Rp.1257 shows a very small number of models for this scenario.

This result matches our expectations and the few models left could be artifacts of the

formalism or biologically not feasible with the consequence of excluding them.

Other possible interpretations could be that the real target is in the model, but we

are not looking at the right one or only partially, meaning that Sorafenib might act

on one of the proposed targets plus another one which was not considered.

Another general question is, whether we assume Sorafenib to have the same targets

in both cell lines. From a molecular biological view this should be the case, since

the cell lines are very similar and therefore the mechanism should be the same. A

possible exception would be that one receptor is not expressed in one cell line or a

target is mutated in one cell line, however, this is not the case in this study. Even

if we include the assumption that Sorafenib should have the same targets in both

cell lines into our analysis, the results are still not expressive enough to make any

statements about the effect of Sorafenib.

In order to overcome this lack of expressiveness, our collaborators are in the process

of performing more experiments with these cell lines and Sorafenib. As a next

step, the cell lines are stimulated with either EGF or IGF and then treated with the

inhibitor (and vice versa) in order to dissect the effect of the MAPK pathway from

the PI3K pathway. Moreover, this data should provide more insight in the regulatory

mechanisms of EGFR and IGFR with Sorafenib and hopefully clarify which receptor

is affected by the drug.
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7
Unraveling the regulation of

mTORC2

This chapter is a study on the uncertain regulation of mTORC2 by applying the

workflow from Chapter 3. This work was published recently and passages of that

paper were adopted here [97].

For this study, I identified 5 hypotheses from the literature for the regulation of

mTORC2, where each was supported by a set of experiments. Here, I translated these

hypotheses to uncertain edges on mTORC2 and analyzed the model pool for data

from the original studies. Moreover, the formalism allows for easy implementation

of in silico experiments, which in turn can be exploited for experimental design. I

used the experimental design to further analyze the structure and properties of the

model pool and finally, discussed the results in context of the original studies and

further literature.

7.1 Biological background

The mammalian target of rapamycin (mTOR) is a highly conserved kinase across

species, from yeast to humans, playing a central role in coordinating cell growth,

metabolism and survival of the cell [56]. In the cell, mTOR acts as a signal integrator

through two distinct complexes, mTORC1 and mTORC2, each phosphorylating

distinct sets of substrates upon stimulation by growth factors, nutrients, hormones,

stress, and other stimuli [116]. Dysregulation in these processes was found to be

present in many cancer types, therefore understanding the structure and dynamics

of mTOR regulation is of high interest [19]. Although mTORC1 was the main

focus of most studies so far, recent studies found mTORC2 playing an important

role in cancer development, e.g. in HER2/PIK3CA-hyperactive breast cancer [12].

The development of novel mTOR kinase inhibitors has already yielded interesting

findings on mTORC1 and mTORC2, but in order to successfully apply these drugs in

combined therapy, a detailed understanding of the signaling processes is essential

and not yet achieved [26, 47].

101



Fig. 7.1. Scheme of the PI3K pathway with candidate regulators of mTORC2 colored in green. Insulin
and growth-factors activate RTK signaling through PI3K and the well-known regulation of
mTORC1 with negative feedback on IRS-1. The regulation of mTORC2 is unclear.

Besides the catalytic mTOR subunit, both complexes contain mLST8, while Rictor

and SIN1 are specific for mTORC2 and Raptor and Pras40 are specific for mTORC1.

Upon stimulation with growth factors, mTORC1 is activated by PI3K signaling as

described in Section 5.1 and mTORC2 activates AGC kinases (protein kinase A,

G, and C), in particular it phosphorylates Akt at S473 [37]. Moreover, mTORC2

was reported to phosphorylate Akt at T450 at the mitochondrial membrane as a

protein stabilizing post-translation modification. Since this process is growth-factor

independent, it is not considered here.

7.1.1 Conflicting studies on mTORC2 regulation

In contrast to mTORC1, the processes that control mTORC2 are uncertain [32].

There are multiple studies investigating the influence of various kinases from the

PI3K pathway on mTORC2 or components of its complex (see Fig. 7.1). Each of these

studies was used as one hypothesis in our investigations: feedback independent

regulation via RTK [22], activation by PI3K [30], positive feedback from Akt on

mTORC2 [112], Tsc dependent regulation [43], and inhibition by mTORC1 [62].

Hypothesis 1: Feedback independent activation A feedback independent activation

of mTORC2 was proposed by Dalle Pezze et al. [22], where they presented a data-

driven ODE modeling approach investigating three different models: one model

having Tsc as activator, a second model with only PI3K as activator and a third model

where mTORC2 is regulated by an unknown kinase, which is independent from
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the negative feedback on PI3K [22]. Here, the authors used experimental design

based on simulations of the models to find perturbation experiments that are able to

distinguish between the different hypotheses. Thereby, the group was able to extract

their final model as a feedback independent activation of mTORC2.

Hypothesis 2: Direct activation by PI3K An activation of mTORC2 by PI3K was

proposed by two different groups. Gan et al. [30] claimed that it is known that

PI3K via PIP3 has two effects on Akt. First, it recruits the kinase to the plasma

membrane and phosphorylates the protein at T308. Secondly, it regulates the S473

phosphorylation of Akt via mTORC2, but whether or not it directly interacts with the

complex is unknown [30]. Therefore, they created an Akt mutant which is constantly

bound to the plasma membrane and thereby dissecting the recruiting effect from

PIP3 from its potential activation of mTORC2. Although they were able to show

that the regulation via the Akt mutant is still sensitive to PI3K inhibitors, the exact

mechanism could not be clarified [30].

In a recent work by Liu et al. (2015) a regulation of mTORC2 by PI3K was claimed,

where they observed molecular interactions between SIN1, Akt and PIP3 [61]. Liu et

al. (2015) suggested that SIN1 might act as gate-keeper in mTORC2, therefore they

investigated its mechanistic interaction with mTOR. As a result, the experiments

showed that an interaction of SIN1-PH domain with the kinase domain of mTOR

leads to a suppressed mTOR activity [61]. Since PH domains are characterized

by their ability to bind PdtInsPns, Liu et al. (2015) tested binding properties of

different PdtInsPns to SIN1-PH. They showed that PIP3 binds to the SIN1-PH domain.

Moreover, PIP3 and SIN1 were shown to compete for binding with the kinetic domain

of mTOR. Therefore Liu et al. (2015) claim that SIN1 binds mTORC2 blocking its

activity and PIP3 then binds SIN1 to release the inhibition on mTORC2, then Akt can

bind to be phosphorylated.

Hypothesis 3: Akt directly activates mTORC2 causing a positive feedback Another

member of the PI3K pathway, Akt, was proposed to regulate mTORC2 by two studies

from the James lab [45, 112]. First, Humphrey et al. presented a quantitative

analysis of the insulin signaling network in adipocytes using mass spectrometry-

based proteomics [45]. In particular, they suggested that SIN1 phosphorylation at

T86 is insulin sensitive and that this regulation acts through Akt, due to its timing

and Akt inhibitor response. Moreover, a recent paper from the same lab by Yang et

al. showed the same effect on a molecular level in various cell types [112]. Here,

they examined SIN1 phosphorylation at T86 upon Akt, mTORC1 and S6K inhibition,

showing a reduced phosphorylation level only for Akt inhibition but not mTORC1 or
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S6K inhibition. They conclude that the activation of mTORC2 follows activation of

Akt by T308 phosphorylation, then Akt phosphorylates SIN1 activating mTORC2,

which itself then phosphorylates Akt at S473 for its full activation [112].

Hypothesis 4: Activation by Tsc2 Huang et al. [43] found that Tsc2, a component

of Tsc, is required for mTORC2 activity by performing experiments with Tsc2 knock-

out Mouse Embryonic Fibroblast (MEFs). For various stimuli they showed that in

these cells the phosphorylation of Akt at S473 is lacking, but can be recovered adding

a vector that expresses human Tsc2 [43]. Due to the negative feedback of mTORC1

on PI3K, a decreased activity of mTORC2 in Tsc2 knock-out cells can also result from

constantly active mTORC1. In the paper, Huang et al. argue that the effect of the

Tsc2 knock-out can be separated from the feedback by looking at experiments with

mTORC1 inhibition.

Hypothesis 5: Integrity of mTORC2 is regulated by mTORC1 via SIN1 phosphoryla-
tion In direct contradiction with the findings of Humphrey and Yang et al., Liu

et al. (2013) claimed in an earlier paper that S6K or Akt phosphorylates SIN1 not

only at T86 but also at T398 and thereby causes a dissociation of the mTORC2

complex resulting in its inhibition [62]. In this paper, HeLa cells and MEF cells were

stimulated with either insulin or EGF and treated with various inhibitors, mostly

rapamycin but also S6K and Akt inhibitors. Moreover, SIN1 mutants with T96A and

T398A genotype were used to mimic permanently non-phosphorylated SIN1 variants

as well as knock outs.

7.2 Results

The results section follows the general workflow presented in Figure 3.1, where first

the system is initialized, then the model pool is built, data sets are formalized, and

the specific pool is analyzed using both the statistical and the exact analysis.

7.2.1 Model building from literature

For building a model of the mTORC2 regulation by signaling processes, I only in-

cluded studies investigating direct interactions with the complex, excluding metabolic

effects. I reduced the biological system to those components that are measured or

perturbed in the studies we examined. The interactions between these components

and their labels were also deduced from literature, where interactions that are

widely accepted to be common knowledge were set to mandatory and uncertain
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a Logical formula

fRT K = RTK
fP I3K = RTK ∧ ¬IRS − 1
fAkt = PI3K ∨ mTORC2
fT sc = ¬Akt
fmT ORC1 = ¬Tsc
fIRS−1 = mTORC1

b mTORC2 regulator

1: RTK [22]
2: PI3K [30, 61]
3: Akt [45, 112]
4: Tsc [43]
5: mTORC1 [62]

Fig. 7.2. Interaction graph and overview of hypothesis for mTORC2 regulation. Black lines indicate
edges that are mandatory and green lines have edge labels allowing for uncertainty annotated
with their respective edge label. a List of logical functions for components with known
regulation, where the notation signifies a logical AND as ∧, OR as ∨ and negation as ¬. b
List of candidate regulators for mTORC2 in the literature.

interactions as optional. Here, the regulations within the PI3K pathway and the

negative feedback were assumed to be known. However, the regulation of mTORC2

is unclear, thus all candidate interactions from RTK, PI3K, Akt, Tsc and mTORC1

were set as optional.

The regulations of the components were defined as functions according to the edge

labels. For components that only have one regulator, the function can be directly

derived from the edge label. For PI3K and Akt, the logical connection between

the regulators needed to be deduced from biological knowledge. PI3K is activated

by RTK and inhibited by IRS-1, where IRS-1 binds and thereby blocks PI3K from

interaction with other components including RTK. Thus, the logical connection is

AND, since PI3K can only be active if RTK is active and IRS-1 is not. The interactions

from PI3K and mTORC2 on AKT are connected with a logical OR, because both are

able to activate the component independently [75].

The interaction graph of the model is shown in Figure 7.2, with the logical functions

on the left side and a list of the regulators with references on the right. For the

regulation of mTORC2 various hypotheses were published, which can be summarized

as 5 candidate regulations:
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1. RTK indirectly regulates mTORC2, thus the regulation is insensitive to the

negative feedback of mTORC1 on PI3K [22]. For our model, we included an

activating edge from RTK to mTORC2 with the label not inhibiting.

2. PI3K directly activates mTORC2 [30, 61], thus we included an activating edge

from PI3K to mTORC2 labeled as not inhibiting in our model as Hypothesis 2.

3. Akt activates mTORC2 by phosphorylation of SIN1 at T86 [45, 112]. For our

model, Hypothesis 3 is a not inhibiting edge from Akt to mTORC2.

4. Tsc is required for mTORC2 activity shown in Tsc2 knock-out cells [43], there-

fore we included this observation as Hypothesis 4 as a not inhibiting edge from

Tsc to mTORC2.

5. A phosphorylation of SIN1 by S6K causes a disintegration of the complex [62],

thus we included an inhibiting edge from mTORC1 on mTORC2 with the label

not activating into our model.

In Figure 7.2, these regulations are marked as green lines, meaning that we do not

know whether or not these connections are functional. Thus, the logical function

for mTORC2 is uncertain and we wanted to explore all possible models using the

edge labels and known logical rules for the other components as constraints. For

building the model pool, every topology of possible combinations of the 5 candidate

edges was created, resulting in 32 topologies. Then, for every topology all truth

tables, representing a logical function, agreeing with the constraints were selected.

This process is computationally challenging, e.g. for a component with n optional

incoming edges the upper bound of possible truth tables is 22n
, which is then reduced

by the considered constraints. Using Tremppi, a model pool of 7581 models was

determined.

7.2.2 Data formalization

Subsequently, data from the original studies were used to filter the model pool

for those models that are in agreement with the experimental data. For this aim,

I discretized this data to match the logical formalism and encode it to make it

accessible for our software. Here, we discretized data from each study which was

included as a hypothesis for this investigation. Since the original studies have

different levels of detail and used different methods to prove their hypothesis, I

106 Chapter 7 Unraveling the regulation of mTORC2



can only include a subset of the performed experiments here (see Sec. 7.3 for more

details).

Tab. 7.1. Redundancy in experiments across different studies.

PI3K inh mTORC1 inh Tsc ko insulin

Dalle Pezze et al. Fig. 8 A Fig. 7 A Fig. 6 A,B Fig. 4 A,B
Gan et al. Fig. 2 A

Liu et al. (2015) Fig. 3 D Fig. 2 D
Humphrey et al. Fig. 6 B

Yang et al. Fig. 4 C Fig. 4 A,B Fig. 4 B
Huang et al. Fig. 3 A Fig. 1 A Fig. 3

Liu et al. (2013) Fig. 1 A Fig. S4 j

The columns show types of experiments that were done in various studies yielding in
matching qualitative behavior after discretization (data not shown).

Discretization of experiments from literature shows redundancy Even though the

papers claim different results, I found that many performed the same or similar ex-

periments from a qualitative perspective. For example, the time series measurements

upon insulin stimulation were done by five out of seven studies. The resulting dis-

cretized sequences were partially redundant with data sets of other experiments (see

Tab. 7.1). Similarly, an experiment with mTORC1 inhibition and insulin stimulation

was done by four groups, either using rapamycin or shRNA against Raptor. After

discretizing the data, all studies observed active PI3K and mTORC2 measured by Akt

phosphorylation. The effect of PI3K inhibition on mTORC2 activation was studied

by four groups, where inhibitors like Wortmannin or LY294002 were used to directly

block PI3K or the activating connection to Akt was impeded by inhibiting PDK1.

These experiments consistently led to inactive mTORC1 and mTORC2 across all

studies. Three studies investigated the activity of mTORC2 upon insulin stimulation

in Tsc knock out/down MEF cells with equivalent results.

For this study, I included the most comprehensive data set and excluded redundant

information. These comparisons reduced the number of data sets to be tested to

five different experiments shown in Table 2. Note that this observation indicates a

certain reliability of the data, since even though the experiments were performed by

different groups with different aims and setups, their qualitative interpretation is

comparable.

Time-course measurements as well as knock down experiments from the study of

Dalle Pezze et al. [22] were used. In detail, time series measurements of insulin

stimulated HeLa cells for various proteins were done (see Fig. 4 in [22]). Here, I
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included data of the following components for the filtering process: Akt-pT, Akt-pS,

IRS-1-pS, and S6K-pT (see Tab. 7.2 T_4B). The data was discretized by mean value,

then assigned to its designated readout. Here, RTK was added to the data set as a

measured component to encode the stimulation over time. Finally, the sequence was

encoded as CTL shown in Table 7.2 T_4B.

Also, data from the perturbation experiments from Dalle Pezze et al. was included,

where mTORC1 was inhibited by shRNA against Raptor in HeLa cells and the

phosphorylation levels of Akt were measured 45 and 100 minutes after insulin

stimulation (see Fig. 7 in [22]). The corresponding CTL formula in Table 7.2 T_7A

contains RTK as active in the initial state due to insulin stimulation and the knock

down of Raptor is encoded as setting the logical equation of mTORC1 to 0 as a fixed

component. Moreover, I assumed the signaling process to be in steady state, since

there is no change even after 180 minutes observable.

The effect of PI3K inhibition on mTORC2 activation was studied by treating HeLa

cells with different concentrations of the inhibitor Wortmannin, which directly blocks

PI3K (see Fig. 8 in [22]). After stimulating the cells with insulin, inactive mTORC1

and mTORC2 was measured after 30 and 50 minutes, where the effect intensified

with increasing concentration. The resulting CTL formula T_8A is shown in Table 1,

where PI3K is fixed to zero due to the inhibition and the dynamics are assumed to

be a fixpoint, since the behavior was stable over both time points.

Huang et al. used Tsc2−/− Mef cells and treated them with various stimuli for 30

minutes to measured Akt-pS as well as S6K-pT (see Fig. 1A in [43]). To encode

the knock out, Tsc was fixed to zero and the stimulation encoded as active RTK.

These experiments lead to active mTORC1 but inactive mTORC2 after e.g. insulin

stimulation, resulting in the CTL formula M_1A (see Tab. 7.2). The authors expected

this behavior to be stable over time, therefore I encoded this measurement as a

fixpoint.

Also, Huang et al. investigated the influence of the negative feedback on the signaling

process. In Fig. 3 B and C in [43], Tsc2−/− Mef cells were treated with insulin

for 15 minutes and Akt-pS, IRS-1 and its binding to PI3K was measured. In the

experiment, the phosphorylation of IRS-1 by mTORC1 was measured showing a

hyperphosphorylation due to the knock-out in the mTORC1 inhibitor Tsc. In this

hyperphosphorylated state of IRS-1 the binding with RTK and PI3K disintegrates

and PI3K becomes inactive, thus IRS-1 is fixed to 1 in the CTL formula M_3BC.

Additionally, they claimed that the impaired mTORC2 activity in Tsc2−/− Mef cells
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Tab. 7.2. Data processing for logical analysis by discretization and formal encoding as CTL formula.

Property name: T_4B CTL:
measured 0 5 10 20 30 120 readout EF(RTK=1&PI3K=1&mTORC2=1&

Akt-pT 0 1 0 1 1 0 PI3K


mTORC1=0&IRS-1=0&EF(RTK=1&PI3K=0&
Akt-pS 0 1 1 1 1 0 mTORC2 mTORC2=1&mTORC1=0&IRS-1=1&EF(RTK=1&

IRS-1-pS 0 0 1 0 1 1 IRS-1 PI3K=1&mTORC2=1&mTORC1=0&IRS-1=0&
p70S6K 0 0 0 1 1 1 mTORC1 EF(RTK=1&PI3K=1&mTORC2=1&
Insulin 1 1 1 1 1 1 RTK mTORC1=1&IRS-1=1&EF(RTK=1&PI3K=0&

mTORC2=0&mTORC1=1&IRS-1=1)))))
Initial State: RTK=1,
PI3K=0,mTORC2=0,mTORC1=0,IRS-1=0

T_7A
measured 45 100 180 readout CTL:

Akt-pT 1 1 1 PI3K


EF(mTORC2=1 & PI3K=1 & Delta=0)
Akt-pS 1 1 1 mTORC2 Initial State: RTK=1,
Insulin 1 1 1 RTK Fixed: mTORC1=0

T_8A
measured 30 50 readout CTL:

Akt-pS 0 0 mTORC2


EF(mTORC2=0 & mTORC1=0 & Delta=0)
p70-S6K 0 0 mTORC1 Initial State: RTK=1

Insulin 1 1 RTK Fixed: PI3K=0

M_1A
measured 30 readout CTL:

Akt-pS 0 mTORC2


EF(mTORC2=0 & mTORC1=1 & Delta=0)
S6K-pT 1 mTORC1 Initial State: RTK=1
Insulin 1 RTK Fixed: Tsc=0

M_3BC
measured 15 readout CTL:

Akt-pS 0 mTORC2


EF(mTORC2=0 & mTORC1=1 & Delta=0)
S6K-pT 1 mTORC1 Initial State: RTK=1
Insulin 1 RTK Fixed: Tsc=0, IRS-1=1

M_3BC2
measured 15 readout CTL:

Akt-pS 0 mTORC2


EF(mTORC2=0 & Delta=0)
S6K-pT 0 mTORC1 Initial State: RTK=1
Insulin 1 RTK Fixed: Tsc=0, mTORC1=0

The tables show measured components, time points in minutes and readout. For the CTL
formulas the settings are given, which is the measurements, the initial state and fixed
components. If no measurement at time point 0 is available, the set up of the experiment is
used, e.g. stimulation of the receptor. T_4B Time series data of selected components from
Figure 4B in [22]. The table shows measurements that were discretized by mean value.
CTL formula uses time point 0 as initial state and further data points as sequence. T_7A
Perturbation experiment with knock down of mTORC1 component Raptor leads to sustained
Akt activity, encoded as fixpoint in the CTL formula with fixed mTORC1 (Fig. 7 in [22]).
T_8A PI3K inhibition by Wortmannin causes complete inhibition of all pathway components
including Akt and mTORC1 target p70-S6K (Fig. 8 in [22]). The data in encoded as a
fixpoint with fixed PI3K. M_1A Data from Huang et al., where Tsc2-/- cells show inactive
mTORC1 and mTORC2, encoded as fixpoint with fixed Tsc (Fig. 1 in [43]). M_3BC and
M_3BC2 Combined data sets from two experiments for showing the independence of Tsc
effect on mTORC2 and negative feedback (Fig. 3 in [43]), encoded as fixpoint with Tsc and
IRS-1 fixed.
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was not caused by a constantly activated feedback through mTORC1 on PI3K [43].

They argued that the mTORC2 activity should be rescued upon mTORC1 inhibition

causing a deactivation of the feedback, if PI3K would be the only activator. To show

this, mTORC1 was knocked down using siRNA against Raptor and the cells were

stimulated with insulin for 15 minutes. In Fig. 3 B and C in [43], the binding of

IRS-1 to PI3K was restored, but the mTORC2 complex did not show any kinetic

activity. For the CTL formula M_3BC2 in Table 7.2, Tsc and mTORC1 were fixed to

zero. The data sets M_3BC/2 were examined separated from the other experiments,

because 15 minutes measurements are usually not sufficient to assume a fixpoint.

However, we are especially interested in the effect of the feedback on the dynamics

of the models.

Additionally to the experimental data, I assumed that without any stimulus the

signaling system should reach an inactive steady state. This steady state represents

the quiescence state of the biological system that is supposed to be fulfilled for the

highly regulated growth-factor signaling in healthy tissue. Formally encoded, this

means Triv_FP: EF(mTORC2=0 & Delta=0), Initial State: RTK=0.

Filtering for data reduced size of model pool Based on the data, we were able to

fully determine the regulation for every component in the model, only the regulation

of mTORC2 remains to be elucidated (Fig. 7.2). Combining all possible logical

functions from 5 optional edges under the given constraints gives rise to 7,581

models, called initial pool. In the next step, this pool is filtered by applying CTL

formulas derived from the data in Table 7.2 as restrictions on the model pool using

model checking.

Tab. 7.3. Applying CTL formulas to the pool reduced its size markedly.

CTL: Triv_Fp T_4B T_7A T_8A M_1A M_3BC M_3BC2 ExpD1 ExpD2
size: 5573 5202 7413 2008 7413 5573 168 2008 5573

is: Red.pool: 944 944 0 310 634

Red.pool is the intersection (is) of all data sets except M_3BC and M_3BC2. M_3BC shows
no further reduction on the Red.pool, whereas M_3BC2 has no shared models with the
Red.pool. On the right, the experimental design formulas are shown, which both show a
further reduction on the selected pool.

As a result, each CTL formula reduces the initial pool to subpools of various sizes

(see Tab. 7.3). Finally, the intersection of these subpools creates different reduced

pools, which contains only those models that are valid for all CTL formulas. The

main reduced pool is called Red.pool having 944 models that are true for all data sets

excluding M_3BC and M_3BC2. Applying additional CTL formulas to the Red.pool,
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the intersection with M_3BC did not result in a further reduction in the pool size

meaning that all models in the Red.pool are valid for this data set. However, the

opposite is true for M_3BC2, where no model from the Red.pool agrees with this

formula. I will discuss this point further in the following section.

7.2.3 Model pool analysis

Although filtering the model pool for the data reduced its size markedly, 944 models

are still too many to analyze them by hand. Therefore, we employ a statistical

approach first, following up with an exact analysis.

Fig. 7.3. PI3K regulation on mTORC2 is present in every filtered model, but not in original pool.
Statistical analysis of the reduced pool and initial pool was created with Tremppi and the
graph shows the difference (reduced - full) for the Red.pool. PI3K regulation of mTORC2 is
overrepresented in the reduced pool in both frequency and impact compared to the initial
pool. The regulation by RTK and Tsc is less frequent in the filtered pool than in the full
shown by dashed lines, yellow dotted lines show identical frequency and impact in both
pools.

Strong influence of PI3K regulation shown in statistical analysis In a first step, I

evaluated both the reduced and the initial pool statistically using Tremppi. The dif-

ference was calculated by subtraction and visualized as a graph shown in Figure 7.3.

The graph shows the difference between the Red.pool and the initial pool, where
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an increase in frequency and impact for the regulation of mTORC2 by PI3K can be

observed (Fig. 7.3). Moreover, the Red.pool contains less models with a regulation

by RTK and Tsc than the initial pool and the impact of these edges is reduced. Note

that the frequency and correlation differences are very small, since for frequency the

maximum value is 0.02 in possible range of [0,1] and the correlation ranges between

-0.09 and 0.17 with a possible range of [-2,2]. This means that the difference in

frequency and impact between the pools is small, which can be explained as an

artifact of the modeling process (more information in Sec. 7.3). In order to resolve

these results further, we examine the composition of the pools explicitly.

Tab. 7.4. Exact analysis shows PI3K as essential regulator of mTORC2.

Edges RTK PI3K Akt Tsc mTORC1 Size

1 0 1 0 0 0 1 0.1%
2 1 1 0 0 0 1 0.1%
2 0 1 0 0 1 1 0.1%
3 0 1 1 0 1 3 0.3%
3 0 1 1 1 0 1 0.1%
3 1 1 0 0 1 1 0.1%
3 1 1 0 1 0 1 0.1%
3 1 1 1 0 0 1 0.1%
3 0 1 0 1 1 1 0.1%
3 0 1 1 0 1 1 0.1%
3 1 1 0 0 1 1 0.1%
4 0 1 1 1 1 10 1.1%
4 1 1 0 1 1 2 0.2%
4 1 1 1 0 1 24 2.5%
4 1 1 1 1 0 12 1.3%
4 0 1 1 1 1 10 1.1%
4 1 1 0 1 1 5 0.5%
4 1 1 1 0 1 5 0.5%
5 1 1 1 1 1 577 61.1%
5 1 1 1 1 1 286 30.3%

The table shows the classification of all 994 models in the Red.pool according to the following
features: Edges in the model, the data sets, and active hypotheses. Size gives the number of
models in the class and the percentage of this class in the pool.

Minimal model corresponds to Hypothesis 2 Despite the fact that the statistical

evaluation is able to give us important information about the changes in the pool

composition, it does not give information about explicit models. Thus, we performed

an exact analysis in TomClass using as features: the number of edges, the validation

for the CTL formulas, and the present hypotheses. Then the classification groups

models that share the same topology and behavior towards the checked CTL formulas,

and only differ in their logical equation.
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Table 7.4 shows all 994 models in the Red.pool showing valid models with less than

five edges. However, adding up the size of classes with five edges, it becomes clear

that more than 90% of the models contain five edges as was expected, since the more

regulators are available the easier the model can be fitted to the data. Moreover, all

hypotheses are in agreement with the data, since every hypothesis is present in at

least one model, even when only considering the models with less than five edges.

In detail, three edges are necessary for all hypotheses to be present, for two edges

models with pairwise combinations of {(mTORC1, mTORC2), (RTK, mTORC2),

(PI3K, mTORC2)} are observed and only PI3K appears as possible single regulator.

Thus, the minimal model, meaning the lowest numbers of mTORC2 regulators,

corresponds to Hypothesis 2. Surprisingly, this edge is present in every model in

the pool and therefore seems to be essential for the model dynamics to match the

data. Thus, although all hypotheses are able to match the data, not all of them are

necessary to be present.

Analysis of additional data set causes conflict I was especially interested in a data

set by Huang et al., since they claimed to show an effect on mTORC2 that can be

separated from the feedback affecting IRS-1 and PI3K [43]. Two CTL formulas,

M_3BC and M_3BC2, were extracted from this data set and applied first as transient

measurements. As a result, both formulas were in agreement with every model in

the pool, since reaching one state is too easy for these very similar models in the

pool (data not shown). Although the measurement time point was 15 minutes and

therefore usually does not qualify for a steady state assumption, I tested the data as

hypothetical fixpoints. Then, M_3BC was met by many models in the pool and the

intersection with the Red.pool did not result in a further reduction of the pool (see

Tab. 7.3).

However, the second formula M_3BC2 led to a strong reduction in the pool size

with only 169 out of 7581 being in agreement. When calculating the intersection

with the Red.pool, the result is an empty set, caused by a direct conflict with T_7A.

Therefore, our model does not support the conclusions drawn in the original paper

(we will resolve this in more depth in the Sec. 7.3).

7.2.4 Experimental design

The idea of the experiment in Huang et al. to disrupt the feedback for dissecting

the processes in the cascade and their effect on mTORC2 led me to propose a new

experiment. For this experiment, I wanted to eliminate the negative feedback, e.g.

by mutating the target phosphorylation side in IRS-1 such that IRS-1 maintains its
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function as mediator of the signal from RTK to PI3K, but S6K cannot phosphorylate

and inhibit PI3K. In such a system, a standard experiment would be to stimulate the

receptor with insulin and measure the mTORC2 activity by AktpS levels.

From a modeling perspective, steady state measurements more effectively restrict the

pool than transient measurements, therefore AktpS should be measured at multiple

time points to ensure stability. The possible outcome of this experiment would be

active or inactive mTORC2. To test this behavior on the Red.pool, I formulated these

scenarios as CTL formulas:

ExpD1: EF(mTORC2=0 & Delta=0), Initial State: RTK=1, Fix: IRS-1=0,

ExpD2: EF(mTORC2=1 & Delta=0), Initial State: RTK=1, Fix: IRS-1=0.

Fig. 7.4. Experimental design suggests mTORC1 as second regulator of mTORC2. The graph shows
the difference of the statistical analysis of Red.ExpD1 and the initial pool, showing an
over-representation of PI3K and mTORC1 as regulators and an under-representation of RTK.

Experiments split the pool for mTORC2 behavior The CTL formulas split the initial

pool as well as the Red.pool in two groups, showing that every model reaches

a fixpoint (Tab. 7.5). In both cases, the pool for ExpD1 is roughly half the size

of ExpD2 with 310 to 634 models for the intersection with the Red.pool, called

Red.ExpD1 and Red.ExpD2 respectively.
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In order to further characterize the differences between these two pools, I analyzed

both Red.ExpD1 and Red.ExpD2 analog to the Red.pool by a statistical and exact

analysis. For Red.ExpD2, the results show no clear trend towards rejecting or

supporting another hypothesis (Tab. 7.5). The minimal model with only the essential

PI3K is in agreement with ExpD2, for two regulators only RTK is possible and for

three regulators every hypothesis is present.

Tab. 7.5. Additional filtering for ExpD1 and ExpD2 yields two distinct pools.

Edges RTK PI3K Akt Tsc mTORC1 Size

Red.ExpD1 2 0 1 0 0 1 1
3 0 1 0 1 1 1
3 0 1 1 0 1 1
3 1 1 0 0 1 1
4 0 1 1 1 1 10
4 1 1 0 1 1 5
4 1 1 1 0 1 5
5 1 1 1 1 1 286

Red.ExpD2 1 0 1 0 0 0 1
2 1 1 0 0 0 1
3 0 1 1 0 1 3
3 0 1 1 1 0 1
3 1 1 0 0 1 1
3 1 1 0 1 0 1
3 1 1 1 0 0 1
4 0 1 1 1 1 10
4 1 1 0 1 1 2
4 1 1 1 0 1 24
4 1 1 1 1 0 12
5 1 1 1 1 1 577

The model pools Red.ExpD1 and Red.ExpD2 are listed with the same classification option
than Table 7.4. Red.ExpD1 shows the 310 models from the Red.pool that are in agreement
with ExpD1, where all models contain PI3K and mTORC1 as essential regulators. In the
second part, the 634 model agreeing with ExpD2 and Red.pool do not show a clear tendency
towards a second regulator.

In contrast, the analysis of Red.ExpD1 identified mTORC1 as second essential

regulator, which is illustrated in the graph in Figure 7.4. Here, the difference

between Red.ExpD1 and the initial pool shows an increase in frequency and impact

for PI3K regulation, but it also displays a over-representation of mTORC1 inhibition

of mTORC2. Furthermore, RTK is under-represented in the difference graph and has

a negative impact (Fig. 7.4). In Red.ExpD1, the minimal model contains PI3K and

mTORC1 as dual regulators for mTORC2, for three regulators every other hypothesis
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is possible (Fig. 7.4). Thus, the data set ExpD1 identifies a dual regulation of

mTORC2 by PI3K and mTORC1 proposing an experiment to clarify this point.

7.3 Discussion

In this chapter, I applied the toolbox to investigate the uncertain regulation of

mTORC2 by PI3K signaling. I was able to show that PI3K itself is necessary for

mTORC2 activation, but the regulation is likely to be more complex. By enumerating

all possible models arising from the state of the art literature, I systematically tested

this pool of models for published data and analyzed the valid subpools. For analyzing

these subpools, I first compared the reduced pools to the initial pool statistically. I

was able to find enriched and under-represented hypotheses, but with a seemingly

rather low significance.

The explanation for this issue is given by the exact analysis, where we observed

that there is a bias towards models with many edges, i.e. more than 90% of models

in the pool have five edges. There are two reasons for this bias: combinatorics

and overfitting. When building the model pool, every possible logical expression

is generated, where the number of combinations increases with the number of

optional incoming edges. For a component with two regulators, the upper bound

of possible truth tables is 222 = 24 and for five regulators it is 225 = 236. Also, the

more regulators are allowed in a model the easier it is to produce complex dynamics,

which is a common problem of overfitting.

More than 90% of the models of the initial and the specific pools have five edges,

thus in the statistical analysis the difference for the frequency is only influenced

by a maximum of 10% of the models. The impact also is biased by these models,

since the impact automatically is split upon all regulators leading to a low impact in

models with five edges. However, having four or even five kinases regulating one

protein is unlikely. So even low values must be considered to uncover important

trends. These are then validated in the second exact analysis to explicitly look at the

minimal models of the pools.

In the exact analysis, models are grouped according to their number of optional

edges. The analysis revealed that none of the hypotheses can be rejected, but require

multiple edges to explain all data (see Fig. 7.3). On one hand this fact is surprising,

because the original studies claimed different hypotheses for the mTORC2 regulation.

On the other hand, the models are very similar and the data I used for filtering
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the pool coincided with experiments from other studies after discretizing, thus

discriminating between the models is hard.

Issue of selecting experimental data from studies I only used a subset of the per-

formed experiments, which are not necessarily the most weighty arguments in the

studies. Here, basic qualitative effects were examined, which cannot capture ob-

servations from experiments including specific manipulations of single components,

such as mutating a phosphorylation site, or dose-dependent effects. For example,

most data of Gan et al. contain an Akt mutant bound to the membrane which cannot

be represented in our system without changing the model. Moreover, the level of

detail varies among the studies, such that I selected a level of abstraction shared by

all studies, e.g. I cannot include experiments with mutated SIN1, since represent a

partial knock-down of mTORC2 cannot be represented.

The experimental setups between the studies differ, from cell types to treatments

and methods. Most experiments used insulin as stimulus whereas the other studies

used EGF. A very interesting data set from Liu et al. (2013) showed a transient deac-

tivation of mTORC2 for EGF on a small time-scale (0 to 60 mins) (Fig. 3d in [62]),

but for insulin this effect was only observable on a large-time scale (> 60 mins)

(Fig. 3b in [62]). For such long time-scales it is questionable whether the observed

effect is caused by signaling processes or might involve other processes outside the

model boundaries. Also, EGF stimulation mainly activates the MAPK cascade, which

is known to have crosstalk effects on PI3K signaling [107]. In order to maintain a

minimum level of comparability, I did not include data with EGF stimulus. Never-

theless, the redundancy in the qualitative behavior in the experiments I observed in

Table 7.1 affirms the comparability of the selected data sets.

Another data set I found to be interesting is from the study of Huang et al., which

claimed to show a PI3K-independent effect on mTORC2 [43]. Here, the setup

and the measured components fitted our model, resulting in two different CTL

formulas, M_3BC and M_3BC2 (Tab. 7.2), for two observations. However, this data

set was a single measurement after 15 minutes of stimulation, thus it is not a steady

state measurement. In general, many modeling formalisms require a steady state

assumption. Although we are able to test both transient states and fixpoints, testing

the reachability of one transient state is easy to fulfill by the models, thus every

model was valid for the transient version. For this reason, I also tested both data

sets also as hypothetical fixpoints of the system.
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Comparison to original studies The analyses in Figure 7.3 and Table 7.4 revealed

that PI3K is an essential regulator across all models in the filtered pools, which

matches the results of Hypothesis 2 by Gan et al. even though I did not use any

data from that study directly. Also, this finding supports a recent study from Yang et

al. [112], where they suggested PIP3 to act as a scaffold protein for the interaction

between mTORC2 and Akt.

Comparing our results with the paper of Dalle Pezze et al., I sought for qualitative

similarities and differences between the studies, since their investigations partially

overlap with our studies. Since I included their final model as Hypothesis 1, I can

say that our results do not rule out the existence of Hypothesis 1. In particular, the

data sets from Dalle Pezze et al. T_4B, T_7A and T_8A do not exclude Hypothesis

1, thus there is no direct contradiction between the studies. Also their data sets

have a large overlap with observations from other papers (see Tab. 7.1). However, I

only used a subset of their data, since they measured the activity of mTORC2 by the

phosphorylation of mTOR at S2481, for which there is a discussion on whether it is

a unique read-out for the activity of the complex [18, 65, 21, 85]. Also, for fitting

the models to the data, Dalle Pezze et al. added an unknown kinase which is able to

phosphorylate Akt at S473 and thereby could substitute mTORC2.

Another interesting aspect is that Dalle Pezze et al. identified a PI3K variant as

mTORC2 regulator, because it is sensitive to Wortmannin, but cannot be PI3K itself

due to insensitivity to the negative feedback [22, 86]. This insensitivity was observed

in a knock-down experiment for Raptor, where the phosphorylation of mTORC2 did

not decrease upon feedback disruption. However, Raptor knock-down deactivates

mTORC1, thus it also disrupts a potential inhibition by S6K on mTORC2. Therefore,

our results propose an alternative solution for the PI3K variant by having PI3K and

another second regulator. As a consequence, it would be very interesting to build an

ODE model to be able to directly compare our models to Dalle Pezze et al. and to

include quantitative information into the study.

Finally, the study of Huang et al. tested the behavior of mTORC2 in Tsc2−/− Mef

cells, where I selected three data sets. M_1A was the basic observation showing

an impaired mTORC2 activity for the knock out, which was in agreement with

almost all models in the initial pool (see Tab. 7.3). The data sets, M_3BC and

M_3BC2, were not included in the Red.pool, but tested separately. The first formula,

M_3BC, was in agreement with Red.pool showing that there is no more additional

information contained in that data. The second formula, M_3BC2, which was the
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main observation of Huang et al., resulted in no intersection with the Red.pool since

it directly conflicts with the formula T_7A.

In the experiment, they tested whether an inhibition of mTORC1 can recover the

activity of PI3K on mTORC2, since it deactivates the negative feedback. Huang et

al. argue that this recovery was not observed, thus they conclude that PI3K cannot

solely regulate mTORC2. For this purpose, a lot of perturbations were done, Tsc

knock out, Raptor knock down, stimulation, but all these actions directly affect a

possible regulator of mTORC2, therefore the expressiveness of the data is limited.

To address this issue, I wanted to find an experiment that does not manipulate any

of the hypothesized regulators of mTORC2, but gives more information about the

feedback independent processes.

Identification of regulatory mechanisms requires deactivation of feedback There

are two major reasons, why the exact regulation of mTORC2 by the PI3K pathway

is hard to identify: (i) the candidates are within one signaling cascade and (ii) the

negative feedback from mTORC1 on PI3K. From the first fact the problem of very

short time windows arises, where a kinase becomes active without activating its

downstream target, which is also a kinase. Producing data that is able to dissect

the activity of kinases in a chain reaction is hard. A possible solution is to block the

cascade at different levels using inhibitors as shown in Table 7.1, but due to the

negative feedback this treatment affects all components in the pathway.

For this reason, I proposed an experiment, where the target phosphorylation of

the negative feedback on IRS-1 are mutated. In detail, S302, S307 and S632 are

causing a reduced signaling through PI3K when phosphorylated [36], therefore

these serine residues would need to be substituted to e.g. alanine. When stimulating

these mutants with insulin, I predicted two different outcomes for mTORC2, which

splits the model pool in two groups for active and inactive mTORC2 in steady state.

Analyzing the resulting model pools that agree with the data from the first analysis

in the Red.pool, I found no clear pattern for Red.ExpD2 having active mTORC2

(Tab. 7.5). In contrast, Red.ExpD2 shows mTORC1 as a second essential regulator.

The edge from mTORC1 was reported by Liu et al. in form of a dual phosphorylation

at Thr 86 and Thr 398 of the mTORC2 component SIN1. Whether or not these

phosphorylations lead to mTORC2 inhibition [62] or for Thr 86 to activation by Akt

as claimed by Humphrey et al. [45] is unclear, due to conflict of data [110]. Since

Akt also regulates mTORC1, it remains to be clarified whether this effect is direct or

indirect. Also, further studies on the exact mechanism through which modifications
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of SIN1 affect the mTORC2 activity are necessary [110]. Still, the modifications of

SIN1 suggest that a regulation by PI3K alone might not be realistic.

Moreover, in a recent summary Yuan et al. [115] propose a dual regulation of

mTORC2, with PIP3 as scaffold and recruiter as well as S6K as inhibitor, which

matches our result from the experimental design pool Red.ExpD2. This finding is

also supported by a recent study in C2C12 myoblasts using ODE modeling, where a

regulation by PIP3 and S6K is proposed [7].

These considerations show that a potentially interesting next step could be to

construct more detailed models in terms of modeling formalism or resolution of

components, like mTORC2, to increase comparability and more fully exploit the

available data. Such a study could lift our qualitative results to a more quantitative

understanding of the mechanism of regulation of mTORC2.
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8
Conclusion

Computational modeling methods are applied and designed for biological systems,

but these methods only yield meaningful results if they are implemented and inter-

preted correctly. Here, I present a modular workflow for applying model checking

tools that enable us to investigate pools of logical models [53, 90]. Within this

approach, there are three steps that require a transfer of biological information into

the mathematical formalism or vice versa. First, building the model and identifying a

feasible objective requires understanding of the biological process and the formalism.

I identified three different objectives that are biologically interesting in cancer sig-

naling, and feasible in the formalism, which is crosstalk analysis, identifying driver

mutations and testing the effect of drugs (see Fig. 3.1).

In a second step, the implementation of biological data is necessary for filtering out

invalid models. Here, the encoding of the data with regard to temporal information,

genotype, choice of strictness and monotonicity is required, which was shown to

have a great impact on the results in the case studies. Finally, the third step is the

analysis of the outcome of the filtering process which needs to be interpreted for

new biological insight, where the toolbox employs a statistical and an exact analysis.

Each step contains limitations and possible expansions, which are discussed in the

following.

Technical limitations of the workflow Traditionally, logical models are used to

model large systems, but here we are limited to small networks. Since our aim is

to be able to cope with uncertainty in a system, the complexity in our approach

originates from the size of the model pool. On one hand, the number of compo-

nents is restricted, because the state space grows exponentially with the number of

components and in order to test trajectories for model checking the full state space

needs to be computed. Tremppi is able to cope with up to 35 components [90],

TomClass is restricted to less [53]. On the other hand, the number of uncertain edges

increases the number of models in the pool, which limits the analysis by run-time.

Here, the increase in model numbers depends on the edge label and the possible

parametrizations arising in combination with other edges.
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In the case studies, I investigated biological systems with varying levels of complexity,

where the number of components was relatively similar with 7 components in the

mTORC2 study up to 14 in the EGFR study. However, the number of optional edges

were very different among the case studies with a model pool of 259,200 models

in the EGFR study with 13 optional edges (see Chapter 5), 19,404 in the Sorafenib

study with 7 optional edges (see Chapter 6), and only 7,581 models in the mTORC2

study with 5 optional edges (see Chapter 7). Here, the Sorafenib and mTORC2

studies were feasible in TomClass, but the EGFR study required the optimized model

checking tool Tremppi to perform the model checking in a reasonable time.

Issue of encoding data as temporal logics One difficulty using the model checking

framework is the translation of experimental data into temporal logics. For checking

CTL formulas, for example, the choice of verification type, i.e., whether the property

needs to hold for all or only for some initial states, will impact the results. I tested this

parameter in the crosstalk study, where Table 6.2 lists the different pool sizes for this

option. In this example, there often was no difference between ForAll and ForSome,

which is due to the model topology and the tested data. The interaction graph

only has one input and most of the tested data was steady state data. Annotating

the attractors to the models, I found that only a small fraction had more than two

attractors, one for an active and one for an inactive receptor. In these models, all

initial states sharing the same value for the receptor can reach the fixpoint if one

initial state can reach it, since these models have two distinct basins of attraction

for each attractor. However, this effect was not expected to be that clear, since there

are optional feedbacks in the system which can cause multi-stationarity or cyclic

attractors [100].

Finally, a transient data set in the study demonstrates the possible impact of the

strictness parameter with a pool of more than 10,000 models for the relaxed and less

than 1,000 models for the strict application. In general, both options are not optimal

for the application to biological data. The relaxed option is too easy to be fulfilled

especially considering that the asynchronous update creates a state space with many

trajectories of which some might not be biological meaningful. Such a trajectory on

the other hand might also be the reason why the strict option rejects a model, even

if all but one trajectory are in agreement with the formula. Furthermore, biological

data is noisy and the strict option has less tolerance towards errors than the relaxed

option. For this reason, I opted for the low strictness option for all presented analysis.

A helpful extension of the strictness parameter would be a percentage measure

showing how many trajectories are valid. This measure could show how robust a

model can simulate the dynamics, which is also interesting with regard to a possible
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ranking of models within the pool. Tremppi has a measure called cost that shows

how many transition were necessary to fulfill the formula, but it can only test the

relaxed strictness parameter.

The second difficulty when encoding data into temporal logics is the decision on

whether an observation is transient or stable. This impact is stressed in the EGFR

study in Chapter 5, where Table 5.2 shows the pool sizes for different temporal

interpretations of the same data. For signaling systems the decision on whether

a measurement is at steady state or not is especially hard, since the time point

should be late enough to be considered stable, but not too late since it is likely that

non-signaling effects or influences from outside the model boundaries get involved.

Often, biological knowledge allows for well-supported decisions in these matters, e.g.

in the EGFR study we assumed experiments with stimuli as transient and without as

stable (see Sec. 5.2.3).

Similar problems arise when discretizing data, where the interpretation of a measure-

ment as active or inactive often is not clear. In this thesis, I presented two different

kinds of data which require different processing. There is qualitative information

such as Western Blots, where the intensity of a signal is interpreted relative a control,

e.g. in Fig. 6.5. For quantitative data, a threshold needs to be defined, e.g. by using

various methods [25] which can result in different thresholds. For this reason, I do

not apply these measures in a strict way, but consider information on downstream

components for the discretization process. In case the activity of a component is

just below the threshold but its target is active, the component is set to be active.

Another issue is data with very small variations where it is uncertain, whether this

variation is a functional difference or noise. In the EGFR study, we used three levels

and the fold-change as a measure to discriminate upregulation, downregulation

and no change (see example in Tab. 5.1). In the Sorafenib study, the Bio-Plex

data set contained components which showed very low intensities throughout the

experiments. For example, the receptor VEGFR was interpreted as not expressed in

the cells such that the component was deleted from the model (Fig. A.6).

Analysis of model pools and experimental design There are two different kinds

of analyses used in this thesis: a statistical and an exact analysis. The statistical

analysis in Tremppi has the advantage of identifying general trends by visualizing

the frequency and impact of a pool and the option to compare these measures

with the other pools. Thereby, the effect of the data through the filtering process

can be identified. In the case studies, this analysis revealed limitations in terms

of significance and interpretability. The low significance values, as discussed in
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Chapter 7, originate from the problem of overfitting, which means that models with

more edges more easily fit the data and make up a larger proportion in the pool.

This results in a strong bias towards complex models. A possible improvement for

the statistical analysis could be a change in the impact measure, which penalizes

redundant influences, e.g. using mutual information [101]. Here, the information

flow is split into synergistic, redundant and unique influences from all information

sources. Mutual information would increase the significance of unique influences

from logical OR connections and synergistic influences from logical AND connections,

as well as lower the significance from redundant influences.

In general, the biological systems modeled in this thesis are expected to be sparse.

In the signaling pathways, the components are single proteins or complexes, where

an interaction often describes a molecular interaction for which the component

is specialized. This means, I specifically look for models with a small number of

interactions in the analysis of model pools. For this aim, the exact analysis using

TomClass delivered meaningful results in all case studies. With the classification tool

it is possible to list models according to features like optional edges and agreement

with data. In contrast to the statistical analysis, we do not analyze the mean

properties of the pool, but look at single models. Thereby, biologically relevant

information can be identified such as edges or conflicting data sets. However,

this analysis becomes infeasible for very large pools, thus very large classification

tables. In the Sorafenib case study, the analysis was only manageable with a clearly

formulated aim and a time intensive, error-prone processing of the table.

The analysis of model pools is mainly burdened by the redundancy that results from

the enumeration of all possible models. As mentioned before, the statistical analysis

could be improved by changing the correlation measure and the exact analysis

could be eased by methods that systematically find characteristics in databases, e.g.

Logical Analysis of Data (LAD). This is a classification method that could be applied

to the database in order to learn so-called patterns of features that are true for an

observation [5]. For example, minimal patterns in LAD would correspond to the

minimal models in the thesis.

Future work and experimental design The toolbox presented in this thesis provides

a guideline to model and assess uncertainty in logic models. However, there is room

for improvements and extensions, especially considering the objectives and the pool

analysis. As possible objective, experimental design on model pools would be an

interesting aim. In the case study of mTORC2, I already used experimental design to

improve the understanding of the final model pool by creating hypothetic datasets
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that could be translated to an experiment. As an objective, experimental design

could involve systematic perturbations of drugable components to classify the pool

into “treatment groups” for experiments.

Moreover, the crosstalk between signaling pathways has become a major focus in

cancer treatment [38, 23, 42, 70, 77, 79, 82, 87, 94]. Using the crosstalk analysis,

I presented an approach to integrate existing models of single pathways into one

model, while preserving the their dynamical characteristics [98]. Hence, as much

prior knowledge as possible is used from existing studies and models, to literature

information and uncertain information or hypotheses. The resulting pool of models

can also be tested for single drug treatment or combinations. For modeling cancer

systems, a model pool might even be the more accurate description of a tumor than

one single model, since tumors are heterogeneous. Thus by finding a treatment that

affects a pool of models could be more beneficial than optimizing the treatment for a

single model, which only represents a fraction of the tumor. Here, we could aid the

development of drugs by testing which component or combination of components

would need to be inhibited to observe a desired read out in as many models as

possible in the pool.

In short, I see this toolbox as a helpful analysis approach for modeling small signaling

or gene regulatory systems before applying more detailed and often error-prone

modeling formalisms like ODE systems. Even though this approach requires a strong

simplification of biological processes, the application of the toolbox can deliver

meaningful results as shown in the mTORC2 case study in Chapter 7.
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ASupplementary data and figures

Fig. A.1. Perturbation data set from Klinger et al. [54] for cell line HCT116. A detailed description of
the experiment, see Figure A.2. Rows marked in grey are data sets that caused a conflict and
were removed.
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Fig. A.2. Perturbation data set from Klinger et al. [54] for cell line LIM1215. The cell were treated
with a stimulator, where BSA means no stimulus, and an inhibitor, where DMSO means no
inhibition. The column type signifies the control measurements with a ’c’ and the treated
measurements with a ’t’. According to Klinger et al. the Bio-Plex Protein Array System
was used to measure P-AKT (S473), P-ERK1/2 (Thr202/Tyr204/Thr185/Tyr187), P-ERK2
(Thr185/Tyr187), P-IRS1 (S636/S639), P-MEK1 (S217/S221), and P-p70S6K(Thr421/S424)
and quantified signals using Odyssey software [54]. Rows marked in grey are data sets that
caused a conflict and were removed.
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Fig. A.3. Perturbation data set from Klinger et al. [54] for cell line HCT116. A detailed description of
the experiment, see Figure A.2. Rows marked in grey are data sets that caused a conflict and
were removed.
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Fig. A.4. Perturbation data set from Klinger et al. [54] for cell line HCT116. A detailed description of
the experiment, see Figure A.2.
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Fig. A.5. Perturbation data set from Klinger et al. [54] for cell line HCT116. A detailed description of
the experiment, see Figure A.2. Rows marked in grey are data sets that caused a conflict and
were removed.
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Fig. A.6. Data set from Christina Kuznia, showing the activity of MAPK and PI3K signaling over time using the Bio-Plex® platform. Cell lines
MZ1257RC and MZ1851RC were treated with DMSO or Sorafenib and then measured from 10 minutes to 36 hours. The measurements
were discretized by the mean value. The IGF-IR measurements marked red were excluded, due to the small variation in the data.
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Fig. A.7. Classification of the full model pool of Rp.1257 for all optional edges, where a shows model without Sorafenib target, b for one target, c
for two target connections observable.145



Fig. A.8. Classification of the full model pool of Rp.1257 for all optional edges, where c shows models for two Sorafenib targets and d for all three
target connections observable.
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Fig. A.9. Classification of the full model pool of Rp.1851 for all optional edges, where a shows model without Sorafenib target, b for one target
connection observable.
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Fig. A.10. Classification of the full model pool of Rp.1851 for all optional edges, where c shows models for two Sorafenib targets and d for all three
target connections observable.
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B
Abstract

This thesis is a contribution to the field of systems biology, where complex processes

such as metabolism, gene regulation, or immune responses are formulated as math-

ematical representations to gain a comprehensive view. In order to create such a

representation, called model, main characteristics of the system need to idealized

and simplified, where different modeling formalisms require different levels of sim-

plification. This level can be seen as a trade of between loosing details and the

amount of necessary information to validate this model.

Often models are built even though there is not enough information about the

biological system available, which is circumvented by making assumptions. In this

thesis, an alternative approach is presented, where the lack of information is included

as uncertainty in the system. This uncertainty is used as constraints to create not

one but every possible model that lies within these constraints giving rise to a pool

of models.

In our group, software for building and analyzing these model pools in form of

logical models was available, thus my work focuses on the biological application

of this approach. The main task was to define how biology is translated into

the mathematical formalism, to identify which kind of biological questions can

be addressed and to interpret the mathematical results for gaining new biological

insight.

These tasks were collected in a toolbox and applied to three different signaling

systems that are interesting for cancer research. I investigated the effect of mutations

on a signaling processes, connected two pathways with uncertain crosstalk and

investigated the controversial regulation of a protein complex involved in metabolism

and cancer signaling.
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Zusammenfassung

Diese Arbeit ist ein Beitrag zur Systembiologie, welche biologische Prozesse als

mathematisches Konstrukt abstrahiert, um einen ganzheitlichen Blick von kom-

plexen Vorgängen wie des Metabolismus, der Genregulation oder der Immunant-

wort zu erfassen. Diese sogenannten Modelle sind idealisierte und vereinfachte

Darstellungen des ursprünglichen Systems mit dem Ziel, die Hauptcharakteristika

zu erhalten. Dabei gibt es unterschiedliche mathematische Modellformalismen,

welche es erlauben verschiedene Details der Biologie darzustellen, allerdings auch

dementsprechend viele Informationen und Daten benötigen. Die Wahl des For-

malismus ist also eine Abwägung zwischen Detailreichtum des Modells und der

vorhandenen Datenlage.

Oft werden Modelle gebaut, obwohl nicht genügend Informationen vorhanden

sind. In diesem Fall müssen Annahmen für die Unsicherheiten gemacht werden.

Eine mögliche Alternative wird in dieser Doktorarbeit präsentiert, bei der diese

Unsicherheiten als Bedingungen in das Modell integriert werden. Dadurch wird

nicht nur ein Modell gebildet, sondern alle möglichen Modelle innerhalb dieser

Bedingungen, so dass sich ein Modellpool ergibt.

In unserer Arbeitsgruppe wurde Software zur Generierung und Analyse für solche

Pools von logischen Modellen entwickelt. In dieser Doktorarbeit wird dargestellt, wie

biologische Information in diese Methodik eingebracht, verarbeitet und schließlich

aus den Ergebnissen wieder extrahiert wird. Konkret wird untersucht, wie biol-

ogische Prozesse in den mathematischen Formalismus übersetzt werden, welche

Fragestellungen mithilfe des Modellpools sinnvoll erörtert werden können und

wie die mathematischen Ergebnisse dieser Methode als biologische Information

interpretiert werden.

Diese drei Anwendungsbereiche werden in einer Toolbox zusammengetragen und

auf verschiedene biologische Fragestellungen im Rahmen von Signalwegen in Kreb-

szellen angewendet. Einerseits wurden mögliche Mutationen anhand von Hochdurch-

satzdaten identifiziert, das Zusammenspiel von zwei einflussreichen Signalwegen in

Nierenkrebszellen untersucht und die widersprüchliche Regulation eines Proteinkom-

plexes aufgeschlüsselt.
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