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1 Introduction

Chemical physics is an interdisciplinary field in which physicists study chemical sys-
tems and reactions, i.e, atoms, molecules, and their interactions. Like in other discipli-
nes of physics, theory and experiment are closely linked: theoretical physicists derive
mathematical models to explain experimentally observed phenomena and to predict
new properties and mechanisms; vice versa, experimentalists use theoretical models to
interpret their results and inspire further experiments to put these models to the test.
But even though this cooperation between theory and experminent is very successful
for small chemical systems, e.g., the theoretical modeling of pair-wise interactions and
spectroscopy experiments with atomistic resolution, the situation is more complicated
for realistic systems which come easily in the order of 102–106 atoms. From the theore-
tical point of view, the understanding of pair-wise interactions does not automatically
enable the prediction of interaction phenomena of many-body systems, and even de-
ceptively simple molecular assemblies like two water molecules are already too complex
for an analytical treatment. Experimentalists, on the other hand, often measure pheno-
menological effects and statistical averages instead of the atomistic picture; hence, the
actually studied mechanisms are not directly observable and theoretical models are nee-
ded to interpret the results.

At this point, computational methods can act as a bridge between theory and expe-
riment. In particular, many chemical systems that are too large and too complicated for
analytical treatment can still be simulated on the basis of the theoretical model of the
pair-wise interactions; thus, theoretical predictions for experimentally accessible obser-
vables can be computed in numerical experiments on the computer. The theoretical le-
vel of the modeling itself ranges from point particles with semiempirical force laws to
an atomistic picture with a quantum mechanical description of the electronic structure.
This ansatz has the additional feature of a high resolution (depending on the theoretical
level of the modeling) and the studied mechanisms can actually be visualized.

The computational ansatz in chemical physics, however, replaces one problem with
another: even though it is now possible to compute theorectical predictions for large
and complex chemical systems, the appropriate simulation of such systems is, not sur-
pringsingly, quite difficult for various reasons. While simple interaction models are easy
to implement and computationally cheap, they in general have very limited applicability
and predicitive quality. Chemically realistic processes, e.g., reactions with breaking and
forming of covalent bonds, require a sophisticated approach on the basis of quantum
mechanics, which usually comes with a high computational cost; and even then, various
approximations are necessary in the derivation of the modeling. Thus, the accurate si-
mulation of realistic chemical processes is still far from being a routine problem, despite
decades of development of algorithms and computational infrastucture.

A case in point is the simulation of proton conduction processes in fuel cell membra-
nes which is the main topic of the present thesis. Such membrane materials are usually
large-scale systems with a great deal of disorder, and the calculation of statistically con-
verged observables also requires large time scales. The proton transfer events, i.e., the
breaking and formation of covalent bonds, are central to any proton conduction mecha-
nism and require a high level of theory in the modeling of the interatomic interaction.
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However, such large-scale simulations also require large-scale methods whose develop-
ment constitute a more theoretical part of my thesis.

In the scope of my work, which I present here in cumulative∗ form, I addressed in
particular the following issues: the connection between structural properties and spec-
troscopic parameters in hydrogen bonded networks (Section 3.1); the development of a
method to increase the accuracy of hybrid quantum-classical calculations which incre-
ases the applicability of spectroscopic calculations for large scale systems (Section 3.2);
the development of a swarm intelligence-based stochastic scheme for the optimization
of the geometry of atomic/molecular clusters (Section 3.3); and application of computa-
tional electronic structure methods to unravel the proton conduction mechanism in the
dense hydrogen bond network in a promising fuel cell membrane material (Section 3.4).

This thesis is organized as follows: in Section 2, I will continue the introduction to
my work by describing the fundamental framework of computational chemical physics,
and I will sketch the applied methods. Section 3 introduces the individual projects that
I addressed in my work and proceeds with a review of the acquired results. Finally, I
conclude my findings in Section 4 of this document.

∗The involved articles are listed in full in Appendix B.
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2 Theoretical framework

2.1 Computational chemical physics

The computational approach in chemical physics aims at the simulation of chemical
systems, processes, and reactions on the computer, i.e., performing numerical experi-
ments based on theoretical models. Thus, it acts as a conceptual bridge between theory
and experiment where an exact analytical treatment of the studied system is not possible
anymore. Note that, in chemical physics, this is already the case for systems as simple as
a single water (or even a hydrogen) molecule.

In this chapter, I will outline the basic framework of computational chemical physics.
I will describe how we can

• represent atoms/molecules on the computer (Section 2.2),

• model the interactions between atoms and molecules (Sections 2.3 and 2.4), and

• simulate dynamical processes based on the model of the atomic/molecular inter-
action (Section 2.5).

2.2 An atomic/molecular representation on the computer

To adequately model a chemical system on the computer, we need a representation that
includes all relevant degrees of freedom. In general, this means that an atom is repre-
sented as a point particle at the spatial position r and, likewise, a set of N atoms is re-
presented by a set of their spatial vectors {r1, . . . ,rN }. Note that, in some cases, the atom
representation can carry additional properties, e.g., an electric charge or a spin. In other
cases, a large structure of atoms can be approximated as a single object, e.g., as a sphere
or an ellipsoid.

For now, we assume that an atom or a molecule is given by its position r and that
they are subject to an interaction potential V that depends on their relative positions.
Thus, the spatial arrangement of N atoms/molecules can be characterized via a potential
energy expression

Epot =V (r1, . . . ,rN ) . (1)

With this, we can compute forces between the individual atoms/molecules via the
derivative of the potential energy with respect to the specific atom/molecule:

Fi =− ∂

∂ri
V (r1, . . . ,rN ) . (2)

Quite often, the interaction is given by a pair potential; in this case, the potential
energy of a system of N atoms/molecules is simply the sum of all pairs:

V (r1, . . . ,rN ) =
N−1∑
i=1

N∑
j=i+1

Vpair
(
ri ,r j

)
. (3)
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Likewise, there also are potentials with a three-body-term. This is the case when the
potential depends not only on the distances between the particles, but also on their spa-
tial arrangment, e.g., in many crystalline materials.

2.3 Modeling inter- and intramolecular interactions

2.3.1 Early semiempiric expressions

In contemporary physics, we understand that the nature of all inter- and intramole-
cular interaction is essentially electrostatic, or, as the theorem1 of Hellman and Feyn-
man states: the forces between atoms/molecules can be computed from the electronic
ground state density n(r) on the basis of classical electrostatics. But before the deve-
lopment of quantum mechanics, scholars described the various types of experimantally
observed interaction phenomena with semiempirical expressions. A case in point is the
state equation of van der Waals (1873),(

P + a

V 2

)
(V −b) = RT, (4)

that describes the behavior of gases and liquids, or the interaction potential proposed by
Mie (1903),

V (r ) =− A

r n
+ B

r m
, (5)

which, for the first time, combined attraction and repulsion in a single interaction ex-
pression.2 A special case of Mie’s potential∗ is known as the Lennard-Jones potential3

(see Figure 1):

V (r ) = 4ε

(
σ12

r 12
− σ6

r 6

)
. (6)

The parameters ε and σ are the depth of the potential well and the zero-crossing of the
potential. The Lennard-Jones (LJ) potential is, despite its simple expression, a good ap-
proximation for the interaction of unpolar atoms and molecules, and it finds further ap-
plication in more elaborated interaction models to account for dispersion forces.

For the description of intramolecular interactions, in particular for diatomic mole-
cules, Morse (1929) proposed the following potential:

V (r ) = Dr eϕ(1−r /req)
(
eϕ(1−r /req)−2

)
, (7)

with potential well depth Dr , atomic equilibrium distance req, and a dimensionless ran-
ge parameter ϕ, which relates to the width of the potential well. Note that the Morse
potential (see Figure 1) has the interesting feature that it allows for the anaylytical soluti-
on of the Schrödinger equation. It also leads to a better description of vibrational states
than the quantum mechanical harmonic oscillator.4

∗with the choice n = 6 and m = 12
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Figure 1: Examples of semiempiric distance-based pair potentials: the Lennard-Jones
potential (black) and the Morse potential (red, with Dr = ε, req = 6

p
2σ, and ϕ= 6).

2.3.2 Classical force fields

The modeling of more realistic systems, like water molecules, also requires more com-
plicated models for the interaction that account for internal structure and polarization.
A case in point is the TIPnP potential.5–7 This model treats a water molecule as a collec-
tion of n = 3, 4, or 5 point charges with a rigid geometry. This intermolecular interaction
potential is defined as a mixture of Coulomb and van der Waals type; in particular, the
potential energy of two water molecules A and B is given by

Vinter (A,B) = 1

4πε0

on A∑
i

on B∑
j

qi q j

ri j
+4ε

(
σ12

r 12
OO

− σ6

r 6
OO

)
, (8)

where qi and q j are point charges at distances ri j (Coulomb interaction) and rOO is the
separation of the oxygen atoms (van der Waals interaction).

The next step towards an even more realistic model is to include, besides the internal
structure, also internal degrees of freedom, i.e., a variable molecular geometry; therefore,
the interaction potential needs additional (intramolecular) terms for the “self-energy” of
the molecules. A prominent example for this is, again for the case of water, the flexible
TIP4P potential:8

V (A,B) =Vinter (A,B)+Vintra (A)+Vintra (B) . (9)

The intermolecular potential is given by Equation (8); the intramolecular potential uses
a quartic expansion of the Morse potential to account for the O–H bond stretching (rOH)
and a harmonic potential for the H–O–H angle (θHOH):
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Vintra

(
r (1)

OH,r (2)
OH,θHOH

)
= VOH

(
r (1)

OH

)
+VOH

(
r (2)

OH

)
+ (
θHOH −θeq

)2 (10)

VOH(r ) = Dr

(
α2

r

(
r − req

)2 −α3
r

(
r − req

)3 + 7

12
α4

r

(
r − req

)4
)

, (11)

where req and θeq are the equilibrium O–H bond length and H–O–H angle.
The interaction potentials described by the Equations (5)–(11) are generally referred

to as “force fields”∗ and, over the years, many scholars have proposed similar expressi-
ons for more complex molecular structures than water. Some widely used examples of
such force fields are CHARMM9,10 (1983), OPLS11 (1988), and AMBER12,13 (1995); each
one has its merits for specific systems (the molecular setup) and physical properties (e.g.,
vibrational modes). In practice, it depends on the experience of the researcher to chose
the appropriate force field for a specific simulation. Note that, in general, a force field
not only defines a mathematical expression for the inter- and intramolecular interacti-
on, but also provides a catalogue of numerical parameters for different types of mole-
cules; this includes point charges, bond stretching, angles, dihedrals, and van der Waals
interactions.

Force fields are a computationally cheap and quite accurate tool. They find wide ap-
plication for the simulation of large and complex supramolecular assemblies, e.g., prote-
ines in solution. However, by construction they have the disadvantage that the chemical
bonding is fixed from the start, i.e., the user has to provide the chemical bonding pattern
between the simulated atoms. This means that the force field cannot be used to deter-
mine the actual bonding pattern or to simulate the breaking and formation of covalent
bonds.

2.3.3 Electronic structure calculations

The particular challenge of determining the covalent bonding between atoms is such
that it involes the quantum mechanical nature of electrons: the interaction between
atoms and molecules has its origin in the electronic structure of the atoms† which re-
quires the solution of the (stationary, non-relativistic) Schrödinger equation for the elec-
tronic degrees of freedom,

Ĥelec |Ψ〉 = E |Ψ〉 , (12)

with the (electronic) Hamiltonian in atomic units,14

Ĥelec =−∑
i

1

2
∇2

i −
∑
i ,A

ZA

|ri −RA|
+ 1

2

∑
i , j 6=i

1∣∣ri − r j
∣∣ , (13)

which includes the kinetic energy of the electrons, the Coulomb attraction between elec-
trons (ri ) and nuclei (at positions RA and with charges ZA), and the Coulomb repulsion

∗They are also called classical force fields, because they model the intra-/intermolecular interaction on
the level of classical physics.

†See the Hellman-Feynman-theorem at the beginning of this section.
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between the electrons. In short, the electronic Hamiltonian can be expressed as a sum-
mation over single-particle Hamiltonians ĥi and the electronic interactions,

Ĥelec =
∑

i

(
ĥi + 1

2

∑
j 6=i

r−1
i j

)
, (14)

with ri j =
∣∣ri j

∣∣ = ∣∣ri − r j
∣∣. Note that expressions (12)–(14) are correct only within the li-

mit of the Born-Oppenheimer approximation,15,16 i.e., the Hamiltonian, the wave func-
tions, and the electronic energy depend parametrically on the positions of the nuclei,
and the coupling between the motion of the nuclei and the electronic states is comple-
tely ignored. Unfortunately, an analytic solution of the eigenvalue problem (12) has only
been found for the very simple case of a single hydrogen (or hydrogen-like) atom; in mo-
re complicated systems the electronic correlation also obstructs the numerical solution
and further approximations are necessary.

There are many established methods in the field of theoretical physics and chemistry
to perform such ab initio (or first-principles) electronic structure calculations, i.e., sol-
ving the electronic Schrödinger equation with sole usage of fundamental constants, and
a full discussion of these methods is beyond the scope of this thesis. However, as a rough
guide and because the basic ideas are still applied in modern methods, I will outline the
historic development of electronic structure calculations. The method of choice for this
thesis, density functional theory (DFT), will be addressed in Section 2.4 in more detail.
The remainder of the present section will follow closely the review article by Jones &
Gunnarsson17 (1989) and the book of Szabo & Ostlund18 (1996).

The basic approach to determine the ground state electronic structure is based on
the Rayleigh-Ritz principle:19 the electronic energy E is expressed as a functional of the
electronic wave function |Ψ〉 and obeys the inequality

E [Ψ] = 〈Ψ| Ĥelec |Ψ〉
〈Ψ|Ψ〉 ≥ E [Ψ0] = E0. (15)

The ground state energy E0 and the corresponding ground state electronic wave func-
tion |Ψ0〉 can be determined by variational minimization with, for practical reasons, a
fixed functional form of |Ψ〉. One of the first attempts dates back to 1928, when Har-
tree14 proposed to treat the full electronic wave function as a product of uncorrelated
single-electron wave functions

∣∣ψi
〉

, the Hartree product:

|Ψ〉 = ∣∣ψ1
〉∣∣ψ2

〉∣∣ψ3
〉

. . . (16)

Substituting the Hartree product into Equation (15) and assuming orthonormality of the
single-electron wave functions, which are also called spin orbitals, yields

E
[
ψ1,ψ2, . . .

]=∑
i

(〈
ψi

∣∣ ĥi
∣∣ψi

〉+ 1

2

∑
j 6=i

〈
ψi

∣∣〈ψ j
∣∣r−1

i j

∣∣ψ j
〉∣∣ψi

〉)
. (17)

Now, we take the functional derivative with respect to
〈
ψm

∣∣ under the constraint of nor-
malized spin orbitals, i.e.,
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δ

δ
〈
ψm

∣∣
(

E
[
ψ1,ψ2, . . .

]+∑
i

Ei
(
1−〈

ψi
∣∣ψi

〉))= 0, (18)

which leads to a single-particle Schrödinger equation,(
ĥm + ∑

j 6=m

〈
ψ j

∣∣r−1
m j

∣∣ψ j
〉)∣∣ψm

〉= Em
∣∣ψm

〉
. (19)

This equation contains an averaged Coulomb interaction instead of the explicit electron-
electron repulsion; Em denotes the eigenvalue of the mth spin orbital. It is not trivial to
assign a specific physical meaning to the spin orbital energies Em in terms of classical
analogies as has been extensively discussed in the literature; for a given system, however,
the highest energy eigenvalue among the occupied spin orbitals is a good approximation
for the ionization energy.20

Note that the Hamiltonian in Equation (19) depends on the single-electron wave
functions

∣∣ψ j 6=m
〉

which, in turn, are to be determined by solving this eigenvalue pro-
blem. Therefore, Hartree proposed an iterative solution:

1. Start with an initial guess for
∣∣ψ1

〉∣∣ψ2
〉

. . . .

2. Compute the Hartree operators from the actual guess for
∣∣ψ1

〉∣∣ψ2
〉

. . . .

3. Solve the eigenvalue problem for
∣∣ψ̃1

〉∣∣ψ̃2
〉

. . . .

4. Repeat steps 2 and 3 until the eigenfunctions are self-consistent∗ with the actual
guess, i.e.,

∣∣ψ̃i
〉≈ ∣∣ψi

〉
, i = 1,2, . . .

Shortly after Hartree proposed his approximation and the SCF method, Fock (1930)
changed the approach such that Fermi statistics is satisfied by expressing the full wave
function |Ψ〉 as a Slater determinant:21

|Ψ〉 = 1p
N !

∣∣∣∣∣∣∣
ψ1 (1) · · · ψN (1)

...
. . .

...
ψ1 (N) · · · ψN (N)

∣∣∣∣∣∣∣ . (20)

The notation ψi
(
j
)

marks that the spin orbital
∣∣ψi

〉
is occupied by the j th electron; N is

the number of electrons. This functional form ensures that |Ψ〉 is antisymmetric. In this
case, application of the variational principle yields a similar single-particle Schrödinger
equation,

f̂
∣∣ψm

〉= Em
∣∣ψm

〉
, (21)

the famous Hartree-Fock22,23 (HF) equation. The Fock operator f̂ , which depends like
the Hartree operator† on the spin orbitals

∣∣ψ j
〉

, is given by

∗Because of the self-consistency condition in the last step, the name “self-consistent field” (SCF) me-
thod was coined for this iterative solution, which is still applied in modern electronic structure methods.

†In contast to Hartree’s formulation in Equation (19), which requires a specific operator for each spin
orbital, the Hartree-Fock approach allows for a single operator that depends on all spin orbitals simulta-
neously.
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f̂ = ĥ +∑
j

(
Ĵ j −K̂ j

)
. (22)

The Hartree-Fock operator f̂ includes the single-particle Hamiltonian ĥ, the Cou-
lomb operator which we already know from Hartree’s approach,

Ĵ j =
〈
ψ j

∣∣r−1
m j

∣∣ψ j
〉

, (23)

and a new term, the exchange operator:

K̂ j =
∣∣ψ j

〉〈
ψ j

∣∣r−1
m j . (24)

The origin of the exchange operator lies in the indistinguishability of the electrons, and,
in a Slater determinant, every electron can occupy every spin orbital. The characteristics
of the exchange operator can be seen by its action on a spin orbital,

K̂ j
∣∣ψm

〉= (〈
ψ j

∣∣r−1
m j

∣∣ψm
〉)∣∣ψ j

〉
, (25)

where K̂ j exchanges the electrons from spin orbitals
∣∣ψm

〉
and

∣∣ψ j
〉

.
This general formulation of the Hartree and Hartree-Fock equations was the founda-

tion of electronic structure calculations with the spin orbital as central variable.

2.3.4 A remark on spin treatment

In principle, we can write a spin orbital as a product of a spatial orbital and a spin func-
tion, ∣∣ψi

〉= ∣∣χi
〉∣∣σi

〉
, (26)

where the spin is either |σi 〉 = |+〉 or |σi 〉 = |−〉; we assume that these spin functions are
orthonormal, i.e.,

〈+|+〉 = 〈−|−〉 = 1 (27)

and

〈+|−〉 = 〈−|+〉 = 0. (28)

With this, we can reformulate the Hartree and Hartree-Fock equations to obey spe-
cific restrictions for the spin arrangement; for example, if we assume in a HF calculation
that each spatial orbital is occupied by exactly two electrons,

∣∣ψ2i−1
〉 = ∣∣χi

〉∣∣+〉
(29)∣∣ψ2i

〉 = ∣∣χi
〉∣∣−〉

, (30)

and integrate over the spin degrees of freedom, we find the “restricted closed shell” for-
mulation∗ of the Hartree-Fock operator,

∗The corresponding “unrestricted open shell” formulation is extensively discussed in the literature. 18
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f̂ = ĥ +∑
j

(
2Ĵ j −K̂ j ,

)
(31)

which acts on the spatial orbitals:

f̂
∣∣χm

〉= Em
∣∣χm

〉
. (32)

2.3.5 The numerical approach to electronic structure

Two decades after the Hartree-Fock approach, Roothaan & Hall (1951) proposed a fur-
ther modification which enabled the efficient numerical treatment of the Hartree-Fock
method:24,25 while the initial HF method determined the functional form of the orbitals∣∣χm

〉
analytically, Roothaan and Hall expanded the spatial orbital functions in a given set

of basis functions
∣∣φµ〉: ∣∣χi

〉=∑
j

Cµm
∣∣φ j

〉
, (33)

with (complex) expansion coefficients Cµm . This expansion, substituted into Equation (32),
yields ∑

µ

Cµm f̂
∣∣φµ〉= Em

∑
µ

Cµm
∣∣φµ〉 . (34)

From there, we multiply with
〈
φν

∣∣ from the left side,∑
µ

Cµm
〈
φν

∣∣ f̂
∣∣φµ〉= Em

∑
µ

Cµm
〈
φν

∣∣φµ〉 , (35)

and identify Fνµ =
〈
φν

∣∣ f̂
∣∣φµ〉 and Sνµ =

〈
φν

∣∣φµ〉 as matrix elements of the Fock operator
and an overlap∗ matrix. Thus, the Hartree-Fock method can be formulated as a single
matrix equation,

F C = SC E , (36)

where F is the matrix of the Fock operator, S is the overlap between the individual ba-
sis functions, and E is a diagonal matrix of the orbital energies (E1,E2, . . . ). The unkown
expansion coefficients in matrix C can now be obtained using numerical methods from
linear algebra.

2.4 Density functional theory

The density functional approach† is conceptually very different from the previously de-
scribed Hartree and Hartree-Fock methods. The idea to base a method on the electro-
nic density instead of the wave function dates back to Thomas (1927) and Fermi (1928).
However, the important breakthrough came with the Hohenberg-Kohn27 theorems‡ in

∗In general, the basis functions
∣∣φ1

〉
,
∣∣φ2

〉
, . . . are not orthogonal.

†The outline in this section will follow the review of Jones & Gunnarsson 17 and the book of Martin. 26

‡Here, I will follow the more general formulation from Percus 28 (1978) and Levy 29 (1979).
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1964. Assume that the energy of a collection of N electrons can be written as a functional
F of the electronic density n(r):

F [n] = min
Ψ→n

〈Ψ|(T̂ +Û
) |Ψ〉 . (37)

The operator T̂ and Û denote the kinetic energy and the electon-electron interaction;
the minimization is performed over all wave functions |Ψ〉 that lead to the density n.
Note that this formulation is indepentend of the actual system, i.e., it does not include
any external potential or nucluei.17 With this, the two theorems of DFT read:

E [n] = F [n]+
∫

d3r Vext(r) n(r) ≥ E0 (38)

E [n0] = F [n0]+
∫

d3r Vext(r) n0(r) = E0, (39)

where E [n] is the total electronic energy and Vext(r) denotes an arbitrary external poten-
tial, for example due to the presence of the atomic nuclei. The ground state energy and
the corresponding ground state density are given by E0 and n0.

2.4.1 Kohn-Sham equations

The ansatz of Kohn and Sham (1965) replaces the problem to minimize the Hohenberg-
Kohn energy for a many-body system by the auxiliary problem for independent elec-
trons.30 In particular, the Kohn-Sham (KS) ansatz proposed a new expression for the
energy,

EKS [n] = T0 [n]+Exc [n]+EH [n]+
∫

d3r Vext(r) n(r), (40)

that decouples the kinetic energy contribution of the independent electrons (T0 [n]) from
the electrostatic part, and allows the approximation of correlation and exchange (Exc) as
a functional of the density.

Contemporary, we have a wide choice of different exchange and correlation (XC)
functionals at hand, and each functional has its specific merits and weak points. The
quest for better and more general XC functionals is a field of intense research. For my
work, I have used the exchange31 and correlation32 functional by Becke, Lee, Yang, and
Parr (BLYP).

In the Kohn-Sham ansatz, the electronic density is given as a sum of single-particle
spin orbitals:

n(r) =∑
i

〈
ψi

∣∣r〉〈
r
∣∣ψi

〉=∑
i

∣∣ψi (r)
∣∣2 (41)

The so-called Hartree energy,

EH [n] = 1

2

∫
d3r

∫
d3r̃

n(r)n(r̃)

|r− r̃| , (42)

gives the electronic contribution to the Coulomb energy.
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We apply the Rayleigh-Ritz principle to minimize the Kohn-Sham energy given by
Equation (40):

δEKS [n]

δψ∗
k (r)

= δT0 [n]

δψ∗
k (r)

+
(
δExc

δn(r)
+ 1

2

∫
d 3r̃

n(r̃)

|r− r̃| +Vext(r)

)
δn(r)

δψ∗
k (r)

!= 0. (43)

Under the constraint that the spin orbitals are orthonormal, we find the single-particle
Kohn-Sham equation, (

−1

2
∇2 +VKS (r)

)
ψk (r) = Ekψk (r) , (44)

with the Kohn-Sham potential

VKS(r) = δExc

δn
+ 1

2

∫
d3r̃

n(r̃)

|r− r̃| +Vext(r). (45)

Like wave function-based electronic structure methods, the explicit treatment of the
electron spin in a restricted closed shell picture allows to reformulate the Kohn-Sham
equation in a spatial form, (

−1

2
∇2 +VKS (r)

)
χk (r) = Ekχk (r) , (46)

with the spatial Kohn-Sham oribtals χk (r). Note that this notation requires a slightly mo-
dified expression of the electronic density:

n(r) =∑
i

fi
〈
χi

∣∣r〉〈
r
∣∣χi

〉=∑
i

fi
∣∣χi (r)

∣∣2 . (47)

The new parameter fi that appears in Equation (47) corresponds to the actual occupati-
on of the i th spatial orbital.∗ If we expand the Kohn-Sham orbitals and the density in an
appropriate basis, the Kohn-Sham equation can be cast into matrix form,

KC = SC E , (48)

where K denotes the matrix of the Kohn-Sham Hamiltonian; the other matrices are, like
in the Hartree-Fock approach, the overlap matrix S, the diagonal matrix of the orbital
energies E , and the matrix of the to-be-determined expansion coefficients C .

2.4.2 Effective core potentials

Effective core potentials (ECPs) are an important tool to increase the efficiency of elec-
tronic structure methods. The idea is to replace the Coulomb potential of the atomic
nuclei with an effective ionic potential such that the shielding effect of the core electrons
on the valence electrons is included in the ECP. Hence, the tightly bound core electrons
can be ignored in electronic structure calculations which significantly reduces the com-
putational cost. Furthermore, ECPs are much smoother in the core region than the exact
Coulomb potential which allows to use a smaller basis set.

∗Similar to the HF method, it is also possible to derive an unrestricted open shell expression for the
electron spin. In this case, the electronic density n(r) is split up into two spin densities n↑(r),n↓(r).
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Even though it seems a very drastic move to remove the core electrons from the elec-
tronic structure, the usage of ECPs is quite easily justifiable: the chemical properties of
an atom are mostly determined by its valence electrons. The tightly bound core electrons
act effectivly as a shield between the core charge and the valence electrons, and the or-
bital structure of the core electrons remains unchanged in most chemical reactions.

ECPs come in various forms and shapes of which I want to highlight especially the
norm-conserving33 analytical variant by Goedecker, Teter, and Hutter34,35 (GTH). The
GTH potential consists of a local part,

Vloc (r) =−Zion

r
erf

(
rp

2rloc

)
+exp

(
− r 2

2r 2
loc

)
×

4∑
i=1

Ci

(
r

rloc

)2(i−1)

, (49)

and several non-local contributions (angular momentum channels),

V` (r, r̃) =
3∑

i=1

3∑
j=1

∑̀
m=−`

Y`,m (r/r ) p`
i (r )h`

i , j p`
j (r̃ )Y ∗

`,m (r̃/r̃ ) . (50)

In the local part, rloc and the Ci are numerical parameters, i.e., for the range of the local
potential and polynomial coefficients; Zion denotes the valence charge of the nucleus.
The non-local contributions are based on spherical harmonics Y`,m and projector func-
tions:

p`
i (r ) =

p
2r `+2(i−1) exp

(
− r 2

2r 2
`

)
r `+(4i−1)/2
`

√
Γ

(
`+ 4i−1

2

) . (51)

The motivation of this form is to shift the overlap of the wave function with certain hy-
drogen-like atomic orbitals (given by the projectors and spherical harmonics) in energy
to penalize the core electron states during the energy minimization; the actual shift is
given by the parameter h`

i , j in Equation (50).

2.4.3 The GPW approach

Considering the expansion of orbitals in a specific basis, plane waves are the natural
choice for systems with a periodic potential:

φµ(r) = 1p
Ω

exp
(
i GT

µ r
)

or
∣∣φµ〉= ∣∣Gµ

〉
, (52)

here with the volume of the periodic cellΩ and the reciprocal lattice vector Gµ.
Plane waves form a complete basis and enable the derivation of an efficient nume-

rical form of the Kohn-Sham equation. According to the Bloch theorem, the (spatial)
Kohn-Sham orbitals χ j of a periodic system can be written as a product of a periodic
function u j and a plane wave:

χ j (r,k) = u j (r,k) exp
(
i kT r

)
. (53)

Here, k is the wave vector. We expand u j in a basis of plane waves and find:
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χ j (r,k) = 1p
Ω

∑
µ

C j ,µ(k)exp
(
i
(
Gµ+k

)T r
)
=∑

µ

C j ,µ(k)φµ (r,k) , (54)

with the expansion coefficients C j ,µ(k). In the bra-ket notation, Equation (54) reads:∣∣χ j (k)
〉=∑

µ

C j ,µ(k)
∣∣Gµ+k

〉
. (55)

To derive the matrix expression of the Kohn-Sham equation in the plane wave basis,
we apply the Kohn-Sham operator on a spatial orbital and multiply with 〈Gν+k|:〈

Gν+k
∣∣ĤKS

∣∣χ j (k)
〉= E j

〈
Gν+k

∣∣χ j (k)
〉

. (56)

This expression expands to

∑
µ

C j ,µ(k)

(
−1

2

〈
Gν+k

∣∣∇2
∣∣Gµ+k

〉+〈
Gν+k

∣∣V̂KS
∣∣Gµ+k

〉)= E j C j ,ν(k). (57)

The kinetic energy term is easily evaluated:

−1

2

〈
Gν+k

∣∣∇2
∣∣Gµ+k

〉= 1

2

∣∣Gµ+k
∣∣2 〈

Gν+k
∣∣Gµ+k

〉= 1

2

∣∣Gµ+k
∣∣2
δν,µ. (58)

Matters complicate for the Kohn-Sham potential. However, if we expand this potential
in a Fourier series,

VKS(r) =∑
η

ṼKS
(
Gη

)
exp

(
−i GT

η r
)

, (59)

where ṼKS denotes the Fourier transform of the Kohn-Sham potential, we find:〈
Gν+k

∣∣VKS
∣∣Gµ+k

〉=∑
η

ṼKS
(
Gη

)〈
Gν+Gη

∣∣Gµ

〉= ṼKS
(
Gµ−Gν

)
. (60)

We substitute Equations (58) and (60) in Equation (57) and find the Kohn-Sham ma-
trix equation in Fourier space:

KC =C E , (61)

with the Kohn-Sham matrix

Kν,µ = 1

2

∣∣Gµ+k
∣∣2
δν,µ+ ṼKS

(
Gµ−Gν

)
. (62)

Note that the plane wave basis is by construction infinite and must be truncated for
practical use; this is usually done via an energetic cutoff:

1

2

∣∣k+Gµ

∣∣2 ≤ Ecut. (63)

While it is very efficient to solve the Kohn-Sham equation in Fourier space, the cal-
culation of the density in Fourier space scales quadratically with the (usually very lar-
ge) number of basis functions and becomes very expensive for large systems. To solve
this problem, we can make use of grids: if the Bloch states can be mapped on a grid
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in real space, the calculation of the density follows by a simple squaring and summati-
on over the individual grid points. Thus, with the help of Fast Fourier Transform (FFT)
algorithms, the Kohn-Sham equation is solved in Fourier space, while the density is eva-
luated in real space.

The second basis set that I want to introduce in this section are (Gaussian type) loca-
lized atom-centered orbitals:

φµ(r) = exp
(
−ζµ

∣∣r−Rµ

∣∣2
)

Y`µ,mµ (r/r ) , (64)

where ζµ is a numerical range parameter, Rµ denotes the (to the index µ corresponding)
atomic position, and Y`,m is a spherical harmonic. In contrast to plane waves, atom-
centered orbitals offer a very intuitive interpretation of the electronic structure. The pa-
rameters of this basis must be chosen for the specific molecular environment which re-
sults in loss of generality. In pratice, we employ libraries with parameters for individual
elements and different levels of flexibility, i.e., the number of Gaussians in each angu-
lar momentum channel and additional angular momentum channels which allow for
polarization effects.

The most important feature of the Gaussian-based atomic-centered orbital basis is
that all matrix elements of the Kohn-Sham operator can be evaluated analytically; this is
mostly because of the mathematical feature that the product of two Gaussians conserves
the Gaussian shape:

exp
(−ζ1 |r−R1|2

)∗exp
(−ζ2 |r−R2|2

)= A1,2 exp
(
−ζ1,2

∣∣r−R1,2
∣∣2

)
(65)

with

ζ1,2 = ζ1 +ζ2, (66)

R1,2 = ζ−1
1,2 (ζ1R1 +ζ2R2) , (67)

and

A1,2 = exp
(−ζ1ζ2ζ

−1
1,2 |R1 −R2|2

)
. (68)

Note that Gaussian functions themself might differ greatly from atomic orbitals; con-
tracted gaussians (also called Slater type orbitals) are a modification of the original basis
ansatz that retains all the advantages of Gaussian functions: instead of using a single
Gaussian as radial function, we can use a linear combination of Gaussians with constant
coefficients. Such a linear combination can easily be constructed in a way that it mimics
the shape of an actual atomic orbital.

The atom-centered ansatz, however, has the downside that the dependence of the
basis functions on the atomic positions gives rise to artificial forces (Pulay forces) upon
displacement of the atoms if the basis set is not complete; plane waves are independent
of the atomic positions and, thus, prevent this effect.

Modern electronic structure codes like CP2K36–39 often employ a mixture of both ba-
sis schemes. The Gaussian Plane Wave40 (GPW) ansatz uses two representations of the
electronic density: an atom-centered representation,
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nAC(r) =∑
µ,ν

Pµ,νφµ(r)φν(r), (69)

that is expanded in a basis of contracted Gaussians φµ, P denotes the density matrix
(expansion coefficients), and a second representation,

nPW(r) = 1

Ω

∑
G

ñ(G)exp
(
i GT r

)
, (70)

that uses an auxiliary basis of plane waves; the coefficients ñ(G) are such that

nPW(r) = nAC(r). (71)

The efficient conversion from one density representation into the other is achieved via
FFT algorithms.

The GPW approach allows to use the efficient analytical expressions of Gaussians for
thecalculation of the kinetic energy of the electrons and their interaction with the nuclei
(via ECPs), and it employs the plane wave representation to calculate the Hartree and
exchange-correlation energies.

2.5 Molecular dynamics

In the previous sections, I have described how a chemical system can be represented on
the computer (Section 2.2) and how the interactions between the atoms and molecu-
les can be modeled on various levels of theory (Sections 2.3–2.4). Here, I will introduce
the concept of molecular dynamics (MD) which allows to simulate the dynamics of ato-
mic/molecular systems.∗

2.5.1 Statistical mechanics

The systems that we study in chemical physics usually are too large and complex for an
analytical treatment, even though the pair-wise interaction is often quite well-under-
stood. The framework of statistical mechanics offers tools to determine static and dyna-
mic properties of such complex systems, and the concept of state functions is used to
describe the macroscopic behavior based on the system’s microstates. A case in point
with great importance in the field of chemistry is the entropy S(N ,V ,E) which descri-
bes the number of microstates (positions and momenta of the individual particles) that
correspond to a macroscopic state (with N particles, volume V and energy E).

Particularly useful is the differential expression of the entropy,

dS =
(
∂S

∂E

)
N ,V

dE +
(
∂S

∂V

)
N ,E

dV +
(
∂S

∂N

)
V ,E

d N , (72)

as it relates properties like temperature (T ), pressure (p), and chemical potential (µ) to
the energy, the volume, and the particle number of the system via the partial derivatives:

∗Section 2.5 will closely follow Mark Tuckerman’s book on statistical mechanics, 41 in particular chap-
ters 2–4.
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(
∂S

∂E

)
N ,V

= 1

T
(73)(

∂S

∂V

)
N ,E

= p

T
(74)(

∂S

∂N

)
V ,E

= −µ
T

. (75)

The entropy itself is linked to the number of microstates within a given energy hy-
persurface,

S (N ,V ,E) = kB ln(Γ (N ,V ,E)) , (76)

which, in the Hamilton formalism, is given by the phase space volume

Γ (N ,V ,E) =N

∫
d6Nx δ (H (x)−E) . (77)

The phase space vector x = (r1,p1, . . . ,rN ,pN ) denotes the 6N degrees of freedom (spatial
and momentum) of a system of N particles, N is a normalization factor, and H is the
Hamiltonian of the system; the δ-distribution restricts the integral to the hypersurface
with constant energy E .∗ The factor kB in Equation (76) is Boltzmann’s constant.

In a statistical sense, any observable Ω can now be computed as an averaged value
over the (normalized) phase space volume,

〈Ω〉 =
∫

d6Nx Ω(x) δ(H (x)−E)∫
d6Nx δ(H (x)−E)

, (78)

i.e., as an ensemble average over all microstates x within the hypersurface.

2.5.2 Integration of Hamilton’s equations of motion

In the general case, the integrals in Equations (77) and (78) cannot be evaluated analy-
tically and one has to resort to approximations or a numerical treatment. The first step
towards the latter is to find an alternative to the ensemble averge: according to the Er-
godicity hypothesis, we can replace the evaluation of the phase space integral by a suffi-
ciently long time integral:

〈Ω〉 =
∫

d6Nx Ω(x) δ(H (x)−E)∫
d6Nx δ(H (x)−E)

= lim
τ→∞

1

τ

τ∫
0

dt Ω (x(t )) . (79)

Note that, in the microcanonical ensemble, the trajectory x(t ) is restricted to its initial
hypersurface. The time evolution of the phase space vector x(t ) is given by the Hamilton
formalism:

∗In the microcanonical ensemble, the system is isolated and cannot exchange energy or particles with
its environment.
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ṙi = ∂H

∂pi
, (80)

ṗi = −∂H
∂ri

. (81)

Furthermore, we switch from continuous time t to a discrete representation,

t → tk = t0 +k∆t, (82)

with discrete time steps of length ∆t, k = 0,1, . . . , and an arbitrary time offset t0. The
statistical average of an obervableΩ can then be computed over NT discrete time steps,

〈Ω〉 ≈ 1

NT

NT∑
k=1

Ω(x(tk )), (83)

using a suitable integration scheme to propagate the phase space vector x(t ) appropria-
tely.

2.5.3 Velocity Verlet algorithm

To evaluate Equation (83) for a specific observable, we need a numerical integration
scheme to propagate the phase space vector x(t ) from a given initial state x(0). For this
aim, we model the dynamics (of particle i ) via finite differences in time and do a Taylor
expansion to the quadratic order:

ri (t +∆t) =
∞∑

n=0

∆n
t

n!

∂n

∂t n
ri (t ) ≈ ri (t )+∆tṙi (t )+ ∆

2
t

2
r̈i (t ). (84)

We identify the first time derivative as a velocity (vi = ṙi ); the second derivative relates to
an acceleration (ai = r̈i ) and in combination with Newton’s second law to a force (ai =
Fi /mi ). With this, we find:

ri (t +∆t) ≈ ri (t )+∆tvi (t )+ ∆2
t

2mi
Fi (t ). (85)

In the same way, we can derive the time-inverted expression:

ri (t −∆t) ≈ ri (t )−∆tvi (t )+ ∆2
t

2mi
Fi (t ). (86)

By adding Equations (85) and (86) and solving for ri (t +∆t), we find the famous Verlet
algorithm,42

ri (t +∆t) ≈ 2ri (t )− ri (t −∆t)+
∆2

t

mi
Fi (t ), (87)

which allows for the numerical integration of the equations of motion (EOMs).
Note that this integration scheme is independent from the velocities of the partic-

les. It is still possible to compute the missing velocities from the spatial trajectory via a
simple finite differences expression,
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vi (t ) ≈ ri (t +∆t)− ri (t −∆t)

2∆t
. (88)

Yet, the velocity independence of the Verlet algorithm comes with the huge drawback
that the Hamiltonian is not conserved by this integration scheme. This means that a tra-
jectory x̃(t ) which is determined by the Verlet integrator diverges from the true trajectory
x(t ).

To include the velocities again in our integration scheme, we make a time shift (t →
t +∆t) in Equation (86) and substitute for ri (t ) in Equation (85):

ri (t +∆t) ≈ ri (t +∆t)−∆tvi (t +∆t)+
∆2

t

2mi
Fi (t +∆t)+∆tvi (t )+ ∆2

t

2mi
Fi (t ). (89)

Now, we eliminate the spatial dependency and solve for vi (t +∆t):

vi (t +∆t) ≈ vi (t )+ ∆t

2mi
(Fi (t +∆t)+Fi (t )) . (90)

The combination from Equations (85) and (90), known as the Velocity Verlet43 algo-
rithm, is a case in point for simplectic integrators. The Velocity Verlet (VV) algorithm
does not conserve the Hamiltonian H (x) itself; however, it can be shown that a simplec-
tic integrator conserves a “shadow Hamiltonian” H̃ (x,∆t) which converges towards the
exact Hamiltonian as the time step approaches zero:

H (x) = lim
∆t→0

H̃ (x,∆t). (91)

As a consequence, the trajectory x̃(t ) determined by a simplectic integrator is always
bound to the exact trajectory x(t ) as long as the time step is sufficiently small.

2.5.4 Canonical ensemble

The Velocity Verlet algorithm enables to integrate the equations of motion for a mole-
cular system in the microcanonical ensemble, i.e. with constant values for the number
of particles, the volume, and the energy. A realistic experiment, however, is rarely per-
formed completely isolated. A more appropriate description would need to allow for a
coupling of the simulated system with its environment, e.g., with a heat bath.

In the canonical ensemble, the system is in thermal contact with its environment
and can exchange energy; hence, a simulation in the canonical ensemble must be per-
formed for constant temperature rather than constant energy. Considering the statistical
description, we have to use a different state function to describe the macroscopic states
in the canonical ensemble than in the microcanonical ensemble. For this aim, we take
the differential expression of the microcanonical energy,

dE = T dS −p dV +µ d N , (92)

and perform a Legendre transformation to exchange the entropy for the temperature as
state variable:

F (N ,V ,T ) = E(N ,V ,S(N ,V ,T ))−T S(N ,V ,T ). (93)
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This state function is called Helmholtz free energy; its change relates to the performed
work when a system changes its state along a reversible path. The differential form of the
Helmholtz free energy is:

dF =µ d N −p dV −S dT. (94)

The Helmholtz free energy can be related to the distribution of microstates via

F (N ,V ,T ) =−kBT ln(Z (N ,V ,T )) , (95)

where kB denotes Boltzmann’s constant and Z (N ,V ,T ) is the (canonical) partition func-
tion:

Z (N ,V ,T ) =∑
j

exp

(
−E(x j )

kBT

)
. (96)

Here, x j denotes a microstate and E j = E(x j ) is its energy. The exponential term is called
a Boltzmann factor and relates to the statistical probability of the microstate x j when the
system is at thermal equilibrium with a heat bath at temperatur T . Hence, the partition
function Z is the sum of all possible microstates which are weighted by their Boltzmann
factors.

In an actual molecular dynamics simulation, we use thermostat algorithms to en-
force a constant temperature. The velocity-rescaling approach is a very straightforward
ansatz that uses the rescaling of the particle velocities by a factor αVR at each MD step.
This factor is chosen such that the average kinetic energy per degree of freedom yields
the desired temperature. Unfortunately, this simple approach does not sample the ca-
nonical distribution correctly, as realistic systems show energy fluctuations due to the
thermal coupling.

Several elaborate thermostats have been proposed to account for these energy fluc-
tuations; among them are the stochastic Andersen thermostat,44 the velocity-rescaling-
based Berendsen thermostat,45 and Nosé-Hoover chains.46,47

An interesting ansatz by Bussi, Donadio, and Parrinello seizes upon the Berendsen
thermostat. Their “canonical sampling through velocity rescaling” (CSVR) algorithm fol-
lows the idea to rescale the atomic velocites with a factor αVR; this factor, however, is
taken from an auxiliary continuous stochastic dynamics in such a way that the canoni-
cal distribution is sampled correctly.48

2.5.5 A remark on ab initio molecular dynamics

The term molecular dynamics (MD) relates to the numerical integration of the equations
of motion of a system of interacting bodies∗ in general. Many researchers, however, un-
derstand MD simulations as strictly classical simulations, i.e., the interaction is modeled
on the classical level.† To avoid confusion, I will follow the notion that the term classical

∗This is not restricted to atoms and molecules; the MD technique is also applied outside of chemical
physics, e.g. in the simulation of celestial bodies in astrophysics.

†See Sections 2.3.2 and 2.3.3 for the classical and the first-principles (quantum mechanical) approach
to model atomic/molecular interactions.

28



MD relates to an MD simulation using force fields; hence, ab initio (or first-principles)
MD denotes that the inter-/intramolecular interaction is based on electronic structure
theory, and the forces are calculated from the electronic ground state density according
to the Hellmann-Feynman-theorem.

The classical and quantum mechanical approaches differ greatly in the computatio-
nal effort and scalability. With force fields, it is easily possible to simulate systems on the
order of 105 particles on the nano second time scale. Electronic structure calculations
on the level of density functional theory scale well for much smaller systems in the ran-
ge of 10–1000 atoms. The ground state electronic structure depends parametrically on
the atomic positions; hence, the electronic ground state has to be determined in each ab
initio MD step. This renders molecular dynamics simulations from first-principles very
expensive and such simulations are usually performed over the range of 10–100 ps.
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3 Review of the content of this thesis

The simulation of large and complex molecular systems is a very challenging task, espe-
cially under realistic conditions. The particular topic addressed in my work is proton
conduction in fuel cell membranes. The computational modeling of this transport phe-
nomenon is still far from being a routine problem, despite the fast development of com-
putational infrastructure.

The phenomenon of ion conduction in condensed matter in general consists of a
multitude of facets. In this thesis, I address several aspects of this problem which co-
ver large-scale electronic structure calculations and the development of large-scale me-
thods. In particular, this work focuses on four relevant subprojects:

1. Hydrogen bonds represent one of the most common driving forces behind the
formation of supramolecular structures and they determine structural as well as
dynamical properties of numerous functional materials. I discuss how ab initio
spectroscopy calculations help to understand structural motifs of hydrogen bond
networks in condensed phases, and I emphasize in particular the importance of
the dynamical properties of hydrogen bond networks for proton transport. [ Pu-
blication P1]

2. Hybrid quantum-classical (QM/MM) calculations combine the ability of classical
methods to treat large molecular systems with the advantage of quantum methods
to model chemical processes within smaller fragments of the system. Here, I have
developed an approach to increase the accuracy of QM/MM calculations with a
particular emphasis on spectroscopic parameters; this approach aims at exten-
ding the applicability of first-principles spectroscopy calculations to large-scale
systems. [P2,P3]

3. Molecular structure prediction by means of numerical calculations is one of the
evergreen problems but also one of the most difficult challenges in chemical phy-
sics. Specifically the determination of the global minimum structure is a field of
intense research. For this aim, I have developed a stochastic, swarm intelligence-
based optimization algorithm to the problem of global geometry optimization. [P4]

4. On the application level, I have performed large-scale atomistic simulations with
electronic structure methods to elucidate the proton conduction mechanism of an
organic compound that is a promising material for proton exchange membranes
for fuel cells. This study specifically targets the direct motion of individual protons
in the dynamically fluctuating hydrogen bond network topology. [P5]

3.1 Structure-property-relationships: spectroscopic fingerprints of hy-
drogen bond networks

When we consider the interaction between atoms and molecules, we observe different
types of bonding and forces: there are, among others, covalent and ionic bonds, hydro-
phobic effects, and van der Waals forces. We know from the Hellman-Feynman theo-
rem1 that all these interactions are different manifestations of the same basic interaction

31



which is in its essence of electrostatic nature. Yet, it is useful to regard all these manifes-
tations individually in the description of molecular structure and dynamics as they act
on very specific ranges, energy scales, and life times.

O O

H

H

H

H

Figure 2: Sketch of a hydrogen
bond (dotted line) between two
water molecules.

One of the most common fundamental driving
forces behind the formation of supramolecular struc-
ture are hydrogen bonds, i.e., the attraction between
polar molecules or polar regions of a single molecule
(see Figure 2). Hydrogen bonds, for example, play an
important role in the stabilization of secondary struc-
ture patterns in proteins.

Molecular structure is one of the most basic obser-
vables in numerical calculations. The potential energy
surface (PES) that such a calculation is based on exhi-
bits in general many local minima at which the system
is effectively void of atomic forces; hence, the PES is lo-
cally quadratic close to equilibrium geometries which

results in a strong effect of small perturbative forces.
Spectroscopic observables on the other hand often exhibit a different behaviour clo-

se to equilibrium geometries, and even small strutural variations can lead to conside-
rable changes in the computed (or experimentally observed) spectra. Thus, it is often
much more helpful to characterize molecular structure based on spectroscopic obser-
vables than on the corresponding potential energy.

Unfortunately, the energetics of hydrogen bonding and other comparably weak in-
teractions like van der Waals forces are not very well described by density functional
theory (DFT) methods. In case of liquid water, for example, DFT-based constant pres-
sure molecular dynamics simulations have a tendency to overstructure the liquid and
yield a density that is considerably below the experimental one; this, however, can be
corrected on the semiempirical level.49

With appropriate care, the first-principles calculation of spectroscopic observables
can be used to characterize local packing motifs in condensed phases; bulk nuclear ma-
gnetic resonance (NMR) chemical shifts, for example, describe the change in an NMR
resonance of a molecule due to crystallization and, hence, can be used to identify accu-
rately individual spectroscopic signatures of packing effects.50

Matters complicate for systems without a homogeneous morphology, e.g., polymers
which include loops and density variations, and a DFT-based approach cannot take in-
to account the full structural complexity. Still, the microscopic picture can be modeled
accurately on local length scales. A case in point is poly-viny-phosphonic acid (PVPA)
which is a promising material for application in proton conducting fuel cell membra-
nes, see Figure 3 (left). PVPA is a polymer that has been functionalized with phosphonic
acids, and a strong hydrogen bond network connects the individual acidic groups and
intercalating water molecules.

In regard to proton conduction, we also have to consider the dynamical properties of
the hydrogen bond network in PVPA.∗ The intrinsic time scales of the hydrogen bonds

∗An earlier first-principles molecular dynamics study revealed that the proton conduction mechanism
is a combined Grotthuss and vesicle mechanism, and the hydrogen bonds are the primary transfer paths
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Figure 3: The local hydrogen bond network of poly-vinyl-phosphonic acid (PVPA) in-
volves intra- and intermolecular bonds between the phosphonic acids and intercalated
water molecules51 (left); the hydrogen bond autocorrelation function η characterizes the
evolution of the local hydrogen bond network of PVPA (right).

can be characterized via a hydrogen bond network correlation function ηhbn(t ) that gives
the average number of hydrogen bonds of the network at an arbitrary time t0 which still
exist at a time t + t0. This correlation function is defined as

ηhbn(t ) =
〈

NH∑
k=1

δ̃H hbn
k (t0+t ),H hbn

k (t0)

〉
t0

, (97)

where H hbn
k gives the bonding partners of the kth hydrogen at time t0 (respective t + t0);

hence, δ̃ equals 1 if the partners are identical at both times and 0 if they differ. Figure 3
(right) shows this hydrogen bond correlation function at different temperatures. While
there is no qualitative difference with the range 400–600 K, we observe a faster decay at
higher temperatures; in all cases, the correlation function reaches a plateau after roughly
10–20 ps which illustrates the special character of the hydrogen bond network as impo-
sed by the polymer’s superstructure.

3.2 Improvement of hybrid quantum-classical (QM/MM) methods

When it comes to electronc structure calculations, DFT is a very powerful and widely
used tool. It is fairly accurate and scales well up to roughly 103 atoms. This, however,
straitens its applicability to biomolecular systems which often consist of 104 – 106 atoms;
at this scale, force field molecular dynamics simulations have to be used. However, there
are difficulties to simulate chemical reactions that involve breaking and formation of
covalent bonds on the level of classical force fields.

Hybrid quantum-classical (QM/MM) methods offer a way to combine the advanta-
ges from both, classical and quantum mechanical methods. In the quantum-classical
framework,52 the molecular system is repartitioned into a QM fragment that is mode-

for protons between the acidic groups and intercalating water molecules.
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led at the quantum mechanical level, and that is embedded in the usally much larger
remainder of the system which is treated on the classsical level (the MM fragment).
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N
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N
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N

O

NH

O

Figure 4: QM/MM repartitio-
ning scheme.

In some cases, however, a covalent bond might
cross the quantum-classical boundary and is broken
as a consequence of the repartitioning; this situation is
sketched in Figure 4. Within the QM region, this results
in a dangling bond with an unpaired electron which
has to be saturated somehow.

To solve the saturation problem at the bond clea-
vage site, several conceptually different methods have
been established. Among the most common approa-
ches are usage of hydrogen53 or flourine54 link atoms,
frozen atomic orbitals,55,56 generalized hybrid orbi-
tals,57–59 quantum capping potentials,60–63 and desi-
gned heptavalent capping potentials.64

The method that I have used in my work is concep-
tually close to the hydrogen link atom approach53 and
is based on an earlier project.65–67 In particular, this
method uses analytical effective core potentials34,35

(ECPs) to saturate the dangling bonds at the quantum-
classical boundary in such a way, that the electronic
structure in the QM region is as close as possible to a
full quantum reference.

A “penalty” functional P is used to characterize the quality of such a capping poten-
tial Vcap: this functional measures how good the capping potential reproduces the ori-
ginal electronic density (from the full quantum reference) and the forces on the nuclei
Fi :

P
[
Vcap

] = ωn ∆n0 +ωF ∆F (98)

∆n0 =
∫
Ω

d3r
(
n(ref)

0 (r)−n(cap)
0 (r)

)2
(99)

∆F = ∑
k

∣∣∣F(ref)
k −F(cap)

k

∣∣∣2
(100)

The scalarsωn andωF in Equation (98) are weighting factors for the density and force
contribution to the total penalty. In Equation (99), the integration areaΩ is usually cho-
sen as spheres around the atoms within the QM region and explicit exclusion of spheres
around the link atoms. The force penalty in Equation (100) is important to enforce che-
mical stability of the capping bonds.

With this penalty functional, we are able to quantify the repartitioning error for a
given capping potential, and variational minimization of this penalty with respect to Vcap

leads to a capping potential with optimal saturation capability.
The corrugated shape of the penalty functional’s hypersurface, however, complica-

tes the minimization process: numerous local minima prevent a straight forward mini-
mization path and a global optimization approach is needed to prevent local minima
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trapping. To tackle this particluar problem, I have chosen a stochastic, gradient-free op-
timization algorithm from the field of swarm intelligence68–70 and implemented a mo-
dified version into the DFT program package CPMD.71

Figure 5: QM/MM repartitioning for sever-
al polar and charged biomolecular groups.

In a first study [P2], I could show that
this capping potential optimization ap-
proach leads to a better repartitioning er-
ror than the common hydrogen link atom
approach, especially when we consider the
calculation of spectroscopic parameters,
e.g., NMR chemical shifts which are very
sensitive to the electronic structure.

In a second study [P3], we examined
the influence of particular charged or po-
lar groups (Figure 5 shows all the addres-
sed polar and charged groups and the cor-
responding repartitioning) in the close pro-
ximity of the cleavage site; such situations
appear quite frequently in the simulation
of biomolecular systems, e.g., photorecep-
tor proteins.72–78 The results showed that
the optimization of capping potentials for
specific cleavage situations (the proximity
of specific charged/polar groups) is favor-
able over a generalized capping potential.

3.3 Development of a stochastic geometry optimizer

In the methodological improvement in the aforementioned project (section 3.2), the op-
timization of capping potentials for QM/MM calculations, I have employed a stochastic
optimization algorithm from the field of swarm intelligence. This algorithm, known as
the Artficial Bee Colony68–70 (ABC) algorithm, mimicks the foraging behaviour of honey
bees and had, at that time, already been recognized in enigneering79–82 and computer
science.83–86 In physics and chemistry, however, this approach was virtually unkown.

The successful application of the ABC algorithm to the optimization of capping po-
tentials has led us to transfer this algorithm to other global optimization problems in
computational chemical physics: the optimization of molecular geometry (see Figure 6).

Finding the optmial conformation of a molecule or a supramolecular assembly is,
despite the conceptual simplicity, a highly non-trivial task and far from being a routi-
ne problem. Based on the type of intra-/intermolecular interaction, the potential energy
surface (PES) of the system exhibits a large number of local minima with (usually) high
energetic barriers between the metastable conformations. The common approach for
molecular geometry optimization employs in general a very efficient local minimization
strategy like conjugated gradients (CG) or a Broyden-Fletcher (BFGS) method; however,
this approach leads straight to the next local minimum structure in which the optimiza-
tion process becomes trapped.
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Figure 6: Two examples of molecular clusters: six rigid water molecules (left) in the boo-
klet structure and the energetically more favorable hexagonal structure; 20 carbon atoms
(right) showing the open bowl and the cage structure.
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Figure 7: Schematic description of the artificical bee colony algorithm.

More elaborated global optimization techniques, e.g., basin hopping87–91 (BH), mi-
nima hopping92–96 (MH), or (gradient) tabu search,97–100 employ combinations of lo-
cal minimization algorithms and escaping strategies to leave local minima; such can be
short molecular dynamics runs or steered moves in direction of smooth ascend of the
PES. Additionally, genetic algorithms101–109 (GA) combining gradient-based local mini-
mization and a global search pattern have proven to be very efficient. While there are
several different global optimization approaches available, many researchers agree that
there is up to date no “best” technique and every algorithm has its particular merits and
frailties.

In Reference [P4], I have presented a version of the ABC algorithm (see Figure 7) that
has been modified for the optimization of molecular cluster structures without employ-
ing gradient or symmetry information from the underlying interaction potential. The
performance of the algorithm has been studied using highly relevant classical intermole-
cular potentials, namely the distance-based Morse4 and Lennard-Jones3 potentials (rare
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gases) and TIP5P7 (rigid water molecules); the resulting global minima structures were
then compared with reference structures from the Cambridge Cluster Database.110 The
results showed that the modified ABC algorithm is able to reproduce the a priori known
global minima for conceptually different interaction potentials with a single, generalized
setting and without knowledge of any symmetries or gradient information of the PES.

3.4 Proton conduction in fuel cell membranes

Hydrogen has a high potential as energy carrier in the field of renewable and clean ener-
gy. The conversion of chemical energy into electrical energy can be performed in a fuel
cell (FC). Such a fuel cell uses the released energy from a chemical reaction and trans-
forms it into electric energy. The most common setup is the proton exchange fuel cell
(PEMFC) which employs the highly exothermic redoxreaction of hydrogen and oxygen
to water:

H2 → 2H++2e− (101)
1

2
O2 +2H++2e− → H2O (102)

This type of fuel cell consists of three parts: a catalyst at the andode side (hydrogen is split
up into protons and electrons), another catalyst at the cathode side (where the oxygen is
added), and a proton conducting membrane that separates the two sides.

In general, fuel cells have a very low environmental impact due to the simple by-
product (water) and frugal fuel (hydrogen). Unfortunately, state-of-the-art membrane
materials like Nafion® also have a low operating efficiency and therefore a very limited
applicability. The efficiency depends on the catalytic dissociation of hydrogen and oxy-
gen; hence, it depends on the operation temperature and the amount of catalyst which is
usually platinum-based. As a consequence, the search for high-temperature membrane
or separator materials is a field of intense research.
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Figure 8: Molecular structure of hexakis(p-phosphonatophenyl)benzene (left); supra-
molecular structure of 160 hexakis(p-phosphonatophenyl)benzene molecules that ap-
peared after 10 ns during a classical equilibration in the NPT ensemble: top view (midd-
le) and side view (right).
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In the progress of this search, experimentalists suggested to exploit the amphoteric
properties of phosphonic acids111,112 which are known to have one of the highest proton
conductivities in their liquid state. A particular example that employs phosphonic acids
is PVPA51,113 (see Section 3.1).

Figure 9: Formation of quasi-
one-dimensional nanochan-
nels in p-6 PA-HPB: trajectories
of far travelling protons along
the columnar axis.

This final part of my thesis addresses an organic
compound hexakis(p-phosphonatophenyl)benzene (p-
6 PA-HPB), a disk-shaped, self-organizing material
functionalized with phosponic acids, and also a pro-
mising candidate material for high-temperature and
low-humidity membranes; the molecular structure is
sketched in Figure 8 (left). In particular, I use large-
scale atomistic molecular dynamics simulations on
the level of density functional theory to identify the lo-
cal packing motifs, the hydrogen bond network, and
the proton diffusion.

The initial molecular superstructure for the ab
initio MD is a representative fragment from a pre-
liminary classical constant pressure MD simulation
which, in turn, is based on 2D X-ray scattering ex-
periments.114,115 The classical equilibration yielded,
in good agreement with the experimental results, a
columnar arrangement on a hexagonal lattice with a
dense but nonetheless very flexible hydrogen bond
network between the phosphonic acid groups, see Fi-
gure 8. Note that the small tilt of the conjugated cores
of the individual disks is a direct result of the equilibra-
tion molecular dynamics simulation.

The ab initio simulation showed a strong inter-
molecular hydrogen bond network: each phosphonic
acid group is typically bonded to two of four possi-
ble groups from the two directly neigbouring stacks.
An analysis of the hydrogen bond autocorrelation (see
Equation (97) in Section 3.1) indicated two distinct
components, a fast (200 fs) and a slow process (3–
12 ps), in the dynamics of the hydrogen bond network

which correspond to the reversible switching of a hydrogen bond between neighboring
acceptor oxygens from different groups and the rotational motion of the phosphonic
acids.

The most interesting observation in these simulations was the formation of quasi-
one-dimension channels in the interstice between adjacent supramolecular stacks. The
tracking of far traveling protons in the unbiased ab initio MD simulations showed that
the diffusion is most pronounced in these channels; this situation is depicted for the
trajectories of two protons in Figure 9 (blue and green).
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4 Conclusion

Ion conduction in condensed matter in general is a phenomenon with a multitude of
facets. In this thesis, I have addressed several of these aspects with focus on proton con-
duction in fuel cell membranes. Fuel cells play an important role in the quest for clean
and renewable energy. The technical development of efficiently operating fuel cells pro-
fits from the understanding of the conduction mechanism of the involved membrane
material. For this aim, I have performed large-scale atomistic simulations to elucidate
the proton conduction mechanism in hexakis(p-phosphonatophenyl)benzene (p-6 PA-
HPB). This organic compound is a promising material for fuel cell membranes.

Hexakis(p-phosphonatophenyl)benzene is a disk-shaped molecule that is functiona-
lized with phosphonic acids, and it tends to self-organize in supramolecular stacks in a
hexagonal pattern. The computational modeling shows the formation of a dense and dy-
namically fluctuating intermolecular hydrogen bond network. Hydrogen bonds are one
of the most common and fundamental driving forces for supramolecular structure for-
mation. In p-6 PA-HPB, the hydrogen bond network connects the individual phosphonic
acid groups and provides pathways for proton transfer events. The structural investiga-
tion of the computed supramolecular assembly yields that the typical phosphonic acid
group is hydrogen-bonded to two of the four possible neighboring groups from adjacent
stacks.

The strong point of the computational modeling lies in the atomistic resolution: the
motion of individual protons in the dynamically fluctuating hydrogen bond network is
directly observable. My simulations show that the hydrogen bond network forms quasi-
one-dimensional channels in the interstice region between adjacent columnar stacks;
the orientation of the channels is parallel to the columnar axis. Furthermore, the simu-
lations show that the proton diffusion is most pronounced in these channels.

The computational modeling of proton conduction in p-6 PA-HPB is a case in point
for large-scale atomistic simulations. The appropriate modeling of such large and com-
plex chemical systems is a delicate and intricate task; the simulation under realistic en-
vironmental conditions is particularly challenging. The implementation of such large-
scale simulations is supported by a range of suitable large-scale methods. The fusion
of force fields with electronic structure methods is a particularly useful ansatz. The hy-
brid quantum-classical (QM/MM) method allows to model a small fragment of a large
molecular system on the quantum level, while the remaining molecular environment is
modeled on the classical level.

In the methodological part of this thesis, I have developed a numerical scheme to in-
crease the accuracy of the QM/MM method. In detail, I use suitably optimized effective
core potentials to solve the link atom problem that emerges during the QM/MM repar-
titioning at the quantum-classical boundary. In the design of these capping potentials,
I consider especially the calculation of spectroscopic parameters from first-principles.
Spectroscopic observables are a very important tool to probe and to characterize mole-
cular structure with high precision. The evaluation of NMR chemical shifts and structu-
ral parameters shows that the optimized capping potentials outperform the commonly
used hydrogen link atom approach.

A second methodological subproject addresses the numerical prediction of molecu-
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lar structure, an evergreen problem in computational chemical physics but also a fun-
damental challenge. The determination of the global minimum structure is particularly
difficult, despite the apparent simplicity of the task. For this aim, I have developed a
stochastic, swarm intelligence-based algorithm to the global optimization of molecu-
lar geometry, and I have applied this algorithm to the optimization of molecular cluster
structures with several highly relevant classical interaction potentials. The results show
that this optimization algorithm is able to locate the global minimum on different po-
tential energy surfaces.
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A Abstract/Kurzzusammenfassung

Abstract

The simulation of large and complex molecular systems is a very challenging task, espe-
cially under realistic conditions. A case in point is the phenomenon of proton conducti-
on in fuel cell membranes which is the main topic addressed in this work. The computa-
tional modeling of this transport phenomenon is still far from being a routine problem,
despite the fast development of computational infrastructure.

The general phenomenon of ion conduction in condensed matter consists of a mul-
titude of facets. In this thesis, I address several aspects of this phenomenon for the spe-
cific case of the proton transport in hexakis(p-phosphonatophenyl)benzene, an organic
compound that is a promising material for high-temperature fuel cell membranes.

I have performed large-scale atomistic simulations with electronic structure methods
to elucidate the proton conduction mechanism in this material. The simulations show
that this compound self-organizes in supramolecular columnar stacks with a tight in-
termolecular/interstack hydrogen bond network, which is in good agreement with ex-
perimental results. In particular, the simulations show the direct motion of individual
protons in the dynamically fluctuating hydrogen bond network.

Interestingly, the hydrogen bond network forms quasi-one-dimensional channels in
the interstice of adjacent supramolecular stacks and parallel to the columnar axis. The
observed motion of the protons shows that the diffusion is most pronounced in these
channels.

The applied part of my work is a case in point for large-scale simulations under reali-
stic conditions. Such large-scale simulations, however, also require large-scale methods.
The second and more methodologically oriented part of my thesis addresses the deve-
lopment of such large-scale methods, specifically, for quantum-classical calculations.

Hybrid quantum-classical (QM/MM) methods combine the ability of classical me-
thods to treat large molecular systems with the advantage of quantum methods to mo-
del chemical processes within smaller fragments of the system. I have developed an
approach to increase the accuracy of QM/MM calculations with a particular emphasis
on spectroscopic parameters; this approach aims at extending the applicability of first-
principles spectroscopy calculations to large-scale systems.

The second development subproject targets molecular structure prediction by means
of numerical calculations. This is one of the evergreen problems in chemical physics but
also one of the most difficult challenges. Specifically the determination of the global mi-
nimum structure is a field of intense research. For this aim, I have developed a stochastic,
swarm intelligence-based optimization algorithm to the problem of global geometry op-
timization.
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Kurzzusammenfassung

Die Simulation von großskaligen und komplexen molekularen Systemen ist eine große
Herausforderung, insbesondere, wenn die Simulation unter realistischen Bedingungen
durchgeführt werden soll. Das zentrale Thema dieser Dissertation ist die Protonenlei-
tung in Brennstoffzellenmembranen und ein typisches Beispiel für solch eine Simulati-
on. Die numerische Modellierung dieses Transportphänomens ist allerdings ausgespro-
chen aufwendig, trotz der rasanten Leistungsfähigkeitssteigerung modernen Computer.

Das allgemeine Phänomen der Ionenleitung in kondensierter Materie hat viele Fa-
cetten. Im Rahmen dieser Dissertation untersuche ich einige dieser Aspekte für den spe-
ziellen Fall von Protonenleitung in Hexakis(p-phosphonatophenyl)benzene, einer orga-
nischen Verbindung mit großem Potential für die Anwendung in Brennstoffzellenmem-
branen.

In meiner Arbeit habe ich großskalige, atomistische Simulationen auf Basis der Elek-
tronenstrukturtheorie durchgeführt, um den Leitungsmechanismus in diesem Material
zu untersuchen. Die Simulationen zeigen, dass sich dieses Material selbst in supramole-
kularen Stapeln anordnet und ein dichtes intermolekulares Netzwerk aus Wasserstoff-
brücken ausbildet; diese Resultate stimmen gut mit experimentellen Beobachtungen
überein. Inbesondere erlauben die Simulationen, die Bewegung der einzelnen Protonen
im dynamisch fluktuierenden Wasserstoffbrückennetzwerk direkt zu beobachten.

Interessanterweise bildet das Wasserstoffbrückennetzwerk quasi-eindimensionale
Kanäle im Zwischenraum benachbarter Stapel, die parallel zu den Stapelachsen ange-
ordnet sind. Die Analyse der direkten Protonenbewegung zeigt, dass die Protonendiffu-
sion innerhalb dieser Kanäle besonders ausgeprägt ist.

Dieses anwendungsorientierte Projekt meiner Arbeit ist ein typisches Beispiel für
großskalige Simulationen unter realistischen Umgebungsbedingungen. Solch großska-
lige Simulationen stützen sich allerdings auch auf großskalige Simulationemethoden,
deren Entwicklung den zweiten, methodisch orientierten Teil dieser Dissertation aus-
machen:

Hybrid-quantenmechanisch/klassische (QM/MM) Simulationsmethoden erlauben
es, die Vorteile klassischer und quantenmechanischer Methoden zu kombinieren. Dabei
wird ein großskaliges System klassisch modelliert und nur ein Fragment auf Basis der
Elektronenstrukturtheorie behandelt. Hierfür habe ich ein Verfahren zur Verbesserung
der Genauigkeit dieser Methode entwickelt, die insbesondere die Qualität von spektro-
skopischen Berechnungen erhöht. Dieses Teilprojekt hat zum Ziel, die Anwendbarkeit
von Spektroskopieberechnungen auf großskalige Systeme auzudehnen.

Das zweite Teilprojekt betrifft die Vorhersage molekularer Struktur mittels numeri-
scher Rechnungen. Dies stellt eine der zentralen Fragestellungen im Feld der chemi-
schen Physik dar und ist gleichzeitig eine der größten Herausforderungen. Insbesondere
die Bestimmung des globalen Minimums ist ein vielbeachtetes Feld. Für dieses Problem
habe ich einen stochastischen Algorithmus aus dem Feld der Schwarmintelligenz adap-
tiert und daraus einen globalen Optimierer für molekulare Geometrien entwickelt.
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Different hydrogen bonding networks, same principle: hydro-

gen bonds are the most common fundamental structural driving

forces, which determine structural and dynamical properties

of numerous functional materials. First-principles calculations

of spectroscopic parameters can help to understand local

geometric motifs, but also more complex processes such as

hydrogen bond lifetimes and ion transport processes in

condensed phases. In this feature article, we review the

relevance of structure–spectroscopy-relationships, we discuss

recent ab initio calculations eludicating the structure of

supramolecular assemblies, and highlight the importance

of incorporating atomic and molecular mobility by means of

molecular dynamics (MD) simulations.
Complex hydrogen bonding networks: vinyl-phosphonic acid

polymers (left) and aqueous hydrochloric acid (right).

� 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Sensitivity of spectroscopic signatures to
structure Any simulation of a molecular system is based
on the computed potential energy surface (PES). This surface,
however, is not directly experimentally accessible. One of the
first actual observables in a numerical calculation is the atomic
structure, be it at equilibrium or as an ensemble average. As a
consequence, approximations and errors in the calculation of
the PESpropagate immediately to structural parameters. Even
a highly corrugated landscape is full of local energy minima,
at which the atomic forces vanish; hence, the PES is locally
quadratic in all coordinates at those points. This in turn results
in a strong effect of small perturbative forces on computed
geometries near equilibrium.

It turns out that many spectroscopic observables exhibit
a very different behavior close to the equilibrium geometry:
small structural variations can lead to considerable changes

in (experimental as well as computed) spectra. As an
example from nuclear magnetic resonance spectroscopy
(NMR), the 1H NMR chemical shift calculated for the
H-bonding proton in an imidazole dimer is shown in Fig. 1
(top). The slope of dH at equilibrium (indicated by the dashed
line) is about 8 ppm/Å; assuming a conservative estimate for
the theoretical/experimental resolution of 0.1 ppm, this
corresponds to a spectroscopic distance resolution of almost
0.01 Å [1]. In comparison to this, the energetic resolution of a
standard ab initio calculation (assuming a systematic error of
1 kcal/mol and a typical H-bond strength) is roughly 0.1 Å.
It is not feasible to reliably compute the energy differences
due to small geometric changes more accurately than
this, except by means of very resource-intensive quantum-
chemical reference methods. Hence, the variation of the
NMR chemical shift considerably magnifies alterations of

Phys. Status Solidi B 249, No. 2, 368–375 (2012) / DOI 10.1002/pssb.201100556
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the underlying geometry. An even stronger amplification can
be observed for weak van-der-Waals-complexes such as the
methane–benzene dimer (shown in Fig. 1, bottom). Here, the
relative orientation of a methane molecule to a neighboring
benzene leads to significant changes in the 1H NMR
chemical shifts.

When performing calculations of spectroscopic obser-
vables within density functional theory (DFT), the question
arises how much the computed observables depend on the
computational setup, e.g., on the choice of the basis set,
xc-functional, and other computational parameters.
Calculations of 1H NMR chemical shifts in liquid water
(under full periodic boundary conditions) reveal only a small
direct impact of the chosen functional on the computed
shifts. However, a more important indirect effect is observed
via the dependence of the underlying molecular dynamics
(MD) trajectories on the xc-functional and the accuracy of
the effective core potential [2].

This illustrates the high sensitivity of spectroscopic
parameters to molecular structure, combined with a strong
robustness towards the computational setup – provided that
the underlying structural data is generated with adequate
rigor. In particular, this includes the accurate inclusion
of non-covalent interactions within the PES. The most
prominent example of such non-covalent effects are
hydrogen bonds; however, also van-der-Waals interactions
play an important role in the process of structure formation
for supramolecular systems [3, 4]. Unfortunately, the
energetics of this type of molecular interaction is not
efficiently described by mean-field theories such as DFT
[5–13]. Specifically in the case of liquid water, constant-
pressure first-principles MD simulations at the level of DFT
yield a density considerably below the experimental one,
combinedwith a tendency to overstructure the liquid. In turn,
the semiemperical incorporation of the van der Waals
interaction leads to the correct density of this complex fluid
[14], which is very important for the accurate description of
compound systems with internal interfaces [6, 8, 9, 15, 16].

Another physical phenomenon that is difficult to model
accurately is the quantum nature of light nuclei (in particular
protons). The classical treatment of nuclei (as point charges)
is the standard approach within the framework of DFT and
usually sufficient formany applications; however, it does not
take into account any nuclear quantum effects. A case in
point are hydrogen/deuterium isotope effects, which often
leave a characteristic fingerprint in spectroscopic observa-
bles such as NMR chemical shifts [17]. The effect can be
observed experimentally and has recently attracted interest
in both the fields of materials science [18–20] and
biophysical chemistry [21–23].

Several techniques are known to incorporate the
quantum nature of nuclei within first-principles calculations,
in particular the path integral approach. It relies on the
isomorphism between the quantum description of a system
and the corresponding statistical ensemble of coupled
classical systems [24–30]; its application to liquid water
and ice revealed a distinctive impact of the protons’ quantum
behavior on structure and dynamics of the underlying HBN
[31–36]. An upcoming alternative description of quantum
effects is the use of thermostats which mimick the
increased delocalization of the quantum particle via random
forces; this technique is known as a colored-noise-
thermostat [37–41].

2 Complex hydrogen bond networks in
condensed phases Many condensed-phase systems
(both solids and liquids) exhibit a strong hydrogen bond
network (HBN), which contributes significantly to the
structural driving forces responsible for supramolecular
packing. In solids, this packing structure is static, which
leads to very pronounced signatures in spectroscopic
parameters.

A particular example are ‘‘bulk’’ NMR chemical shifts,
which describe the change in an NMR resonance of a
molecule due to crystallization. First-principles calculations

Phys. Status Solidi B 249, No. 2 (2012) 369
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Figure 1 (online color at: www.pss-b.com) Top: The dependence
of 1HNMRchemical shift on the hydrogen bond geometry (here: on
the inter-nitrogen distance dNN) of a hydrogen-bonded imidazole
dimer. Bottom: The dependence of the 1H NMR chemical shift of a
methane proton on the molecular position (here: lateral and vertical
distances d and h) relative to a benzene molecule.
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of bulk NMR chemical shifts can identify accurately the
individual spectroscopic signatures of packing effects. This
effect was systematically studied recently for a representa-
tive set of amino acids [42]; their characteristic hydrogen
bonding patterns in the condensed phase are illustrated in
Fig. 2 [42].

Matters complicate for systems which exhibit a greater
deal of disorder and a distribution of conformations rather
than a homogeneous morphology, such as polymers.
Naturally, a first-principles approach cannot take into
account the total structural complexity of a polymer, i.e.,
loops and density variations. However, on local length-
scales, the microscopic picture of polymer conformations
can be represented surprisingly accurately.

In this context, proton conducting polymers have
recently attracted increasing interest in view of potential
applications in fuel cells [46–51]. A combined study ofNMR
MAS experiments and numerical simulations on poly[vinyl

phosphonic acid] (PVPA, see Fig. 3), which is a promising
candidate from the aforementioned field, revealed the
correlation between spectra and morphological details, in
particular chemical defects within the polymer. It could be
shown that the so-called ‘‘condensation defects,’’ which tend
to be traps for Hþ conduction, have a unique 31P NMR signal
that allows a quantitative estimate of their density [52].
In addition, the computed distribution of hydrogen bond
orientations could be compared against experiment bymeans
of variable-temperature NMR spectroscopy [45].

Turning to the field of liquids, the question of ion
solvation and its structural consequences for the aqueous
HBN persists. A case in point are acidic solutions, for
instance hydrochloric acid, HCl(aq). A snapshot from a Car–
Parrinello MD simulation of this acid is shown in Fig. 4. The
first-principles calculation of NMR chemical shifts reveals
that the hydrogen bonding strength is modified only little in
the vicinity of the Cl� anions. In contrast to this, the solvated
protons have a dramatic effect on the NMR chemical
shifts [53].

In such complex liquids, the interaction strength between
cations and anions in protic and aprotic ionic liquids can be
related to low frequency vibrational bands, which, in turn,
can be measured by far FTIR spectroscopy. Hybrid
functional calculations within the framework of DFT show
that these interactions are described by characteristic ratios
between Coulomb forces and hydrogen bonds [56].

In complex disordered systems, it is often interesting to
probe the specific chemical environment of a given
functional group or a molecular fragment. In this case,
electron spin resonance (ESR or EPR) is a viable alternative
to NMR spectroscopy. While NMR probes all nuclei of a
given type on equal footing, electron paramagnetic reson-
ance (EPR) probes the spin of an unpaired electron. Thus,
EPR requires the presence of a radical, but, as a consequence
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Figure 2 (online color at: www.pss-b.com) A set of amino acids
(top to bottom: histidine, alanine/adenine, tyrosine) with their char-
acteristic hydrogen bonding motifs. The 1H MAS NMR spectra on
the top show the corresponding bulk NMR chemical shifts (bottom:
isolated, center: computed crystal, top: experimental). The bottom
right plot shows the nucleus independent chemical shiftmap [43] of
tyrosine.

Figure 3 (online color at: www.pss-b.com) Poly-vinyl-
phosphonic acid (PVPA) and its local hydrogen bonding network
[44, 45]. There are both inter- and intra-chain hydrogen bonds
between phosphonic acid groups, as well as intercalated water
molecules which can bridge small interstitial gaps of the network.
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of the hyperfine coupling between the unpaired spin with
surrounding nuclear spins, EPR probes the very local
chemical environment around the radical. A spin probe
which is commonly used as counterion for polyelectrolytes is
the paramagnetic nitrosodisulfonate anion ON(SO3)2, also
known as Fremy’s salt. When placed in a water–methanol
mixture, combined classical and first principles modeling
reveals that the hydrogen bonding pattern is surprisingly
selective: the sulfonate groups are almost exclusivly solvated
by water molecules, while the nitroxy group is dominantly
surrounded by methanol. This selective hydrogen bonding
situation is confirmend by theoretical aswell as experimental
EPR spectroscopy [57].

One of the intrinsic limitations of first-principles MD
simulations is the restricted size of the simulation box.While
this finite-size problem is known to have only very little
influence on structural properties of liquid water, it was
recently shown in a large-scale Car–Parrinello MD simu-
lation that dynamical aspects are influenced in a considerably
stronger manner [58, 59]. With present-day numerical
resources, it is not possible to converge first-principles
simulations in the system size dimension; only extrapolation
schemes are able to reach the limit of effectively infinite
systems.Apotential route out of this dilemma aremulti-scale
simulation methods, in particular if a smooth transition of
particles between the simulation levels is implemented. A
recent development in this field are adaptive multi-scale
methods [60]. Presently, they cover only force-field based
calculations, but there exists an interesting prospect of an
extension towards ab initio methods.

When it comes to modeling surfaces and interfaces,
numerous studies deal with hard surfaces with individual
adsorbingwatermolecules [61, 62] andwith extendedmono-

or multilayers of adsorbed water [63–68]. In contrast to such
hard confinements, the interface between liquid water and
vacuum (or water vapor) is very soft. This geometric
flexibility makes a straightforward simulation more challen-
ging, and only a few very recent projects aim at a consistent
first-principles simulation of structural features of these
water–vapor interfaces [69]. Nevertheless, this very challen-
ging new field represents a rich area with very promising
physical and chemical questions to address. The first
results indicate that the structure of water at this interface
tends to that of bulk liquid water within less than four
monolayers [70].

3 Picosecond dynamics of hydrogen bond
networks While the determination of structural features
at the molecular and supramolecular level is of paramount
importance for many areas in physics and chemistry, it
represents only ‘‘half’’ the actual reality. At least of equal
importance are dynamical characteristics of molecular
processes, since dynamical aspects (kinetics) determine
whether a given structure is actually accessible for a system
or not. Hence, the first-principles based simulation of MD
has emerged as one of the striking justifications for the utility
of computational approaches to physics and chemistry.
Again, the combination with computational spectroscopy
creates a bridge towards real systems, which are character-
ized by spectroscopic experiments.

One of the most common spectroscopic parameters from
atomisticMD simulations aremolecular and supramolecular
vibrations, which lead to changes in molecular dipoles and
thus to the absorption of light. The frequency of these
vibrations is located in the infrared domain, i.e., from about
100 up to 3500 cm�1. The exact frequency of a given
vibrational mode depends strongly on the chemical environ-
ment. A case in point are hydrogen bonds, which tend to
make the vibrational energy curvemore anharmonic and thus
result in a red-shift of the absorption mode. In this way, the
HBN structure and its fluctuations are coupled to direct
observables.

A prominent example is the tetrahedral HBN of liquid
water and ice. It yields distinct peaks in the far IR spectrum,
in which a particular anisotropic translational peak (at
200 cm�1) has recently gained specific interest. This peak
had turned out to be difficult to interpret in earlier studies,
both experimentally and computationally [71]; recently, it
could be shown that it reflects a coupling of a given water
molecule to its tetrahedral solvation cage [72–74].

The IR spectrum represents the oscillations of chemical
bonds, to which hydrogen bonds have an influence via the
anharmonicity that they induce. In turn, a direct measure of
the dynamics of the HBN is possible by looking at nuclear
spin relaxation processes, in particular the spin-lattice
relaxation time T1. For nuclear spins with I� 1, this
relaxation dynamics is mainly determined by nuclear
quadrupole interactions to the electric field gradient which
is experienced by the spin. The latter is readily (and
accurately) available in a first-principles MD simulation,
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Figure 4 (online color at: www.pss-b.com) Aqueous solution of
HCl [53, 54], with Cl� ions (pink color) and solvated protons
(hydronium and Zundel ions, marked in yellow). Hydrogen bonds,
defined via a purely geometric criterion [55] (dotted lines), are also
sketched for illustration.
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and the resulting NMR relaxation times for deuterated liquid
water have been found to be in good agreement with
experimental values [75]. It could also be shown that the
correlation functions, which are relevant for this spin-lattice
relaxation, decay smoothlywithin less than 30 ps (see Fig. 5),
which corresponds well to the timescales accessible to ab
initio MD simulations.

This result was obtained for purewater, but it encourages
the interpretation of more complex aqueous environments
[59, 61–63, 67, 70]. It should be noted, that similarly good
results have been obtained earlier based on force-field MD
simulations of binary mixtures [76].

A challenging extension of the computational spectro-
scopic characterization of HBNs is the application to
structurally more complex systems. A first step is the MD
simulations of HBNs around amino acids in dilute aqueous
solution. In this kind of systems, it could be shown that
hydrophilic hydrogen bond donors slow down the time scale
of fluctuations in the HBN [77].

The internal dynamics of HBNs is also crucial for
functional polymers such as the proton conducting PVPA
(see Fig. 3) that has already been mentioned above. In this
system, the phosphonic acid groups are spatially fixed to the
polymer backbone, which reduces the flexibility of the
topology of the HBN. In order to analyze the intrinsic
timescales of the hydrogen bonds, we can define a HBN
correlation function h(t) via:

hðtÞ ¼
X
k

~dHkðtþt0Þ;Hkðt0Þ

* +
t0

; (1)

where ~dHkðtþt0Þ;Hkðt0Þ ¼ 1 if the acidic proton k is at both
times hydrogen-bonded to the same oxygen, and 0 otherwise
[44]. Hence, h(t) is the average number of H-bonds of the

original network (at time t0) that are still conserved after a
simulation time t.

Figure 6 shows the hydrogen bond correlation h(t) for a
specific PVPA model at different temperatures. While the
decay is clearly faster at higher temperatures, there is no
qualitative difference within the range of T¼ 400–600K. In
all cases, a plateau is reached after 10–20 ps, which
illustrates the very special character of the HBN due to the
confinement created by the polymer superstructure [44].

4 Methodological improvements in hybrid
quantum–classical (QM/MM) schemes In the previous
sections,we have illustrated the high range of applicability of
large-scale ab initio MD simulations and computational
spectroscopy. Unfortunately, there are limits both in
simulation time and in system size; the latter is typically
reached at about 500–1000 independent atoms in a unit cell.
Biochemical macromolecules, however, cross this boundary
easily and thus cannot be treated fully on the level of DFT.
Instead, one has to restrict the quantummechanicalmodeling
to specific subunits and cover the remaining part with
conventional molecular modeling methods (hybrid QM/
MM) [78–80]. The field of mixed QM/MM simulations is
very large and merits a review of its own; several good
overview papers can be found in literature [81–88].

Besides the accuracy of the respective QM and MM
approaches, the quality of a QM/MM calculation depends in
particular on the realization of the quantum-classical inter-
face. Each covalent bond that crosses this boundary is
cleaved and has to be saturated on the quantum side. Several
techniques are known for this purpose; the most common are
hydrogen atoms, frozen orbitals [89], generalized hybrid
orbitals [90], or suitably optimized capping potentials [91,
92]. The quality of the saturation determines the strength and
reach of the bond-cleavage-induced perturbation of the
electronic structure inside the QM region.

The termination of the QM region is particularly
important for spectroscopic calculations, which are
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Figure 5 (online color at:www.pss-b.com)Decay of the dominant
components of the electric field gradient autocorrelation function of
17O in liquid water (red/black: real parts; green/blue: imaginary
parts) [75]. The inlet shows the corresponding spectral densities for
different starting points in the trajectory.
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Figure 6 (online color at: www.pss-b.com) The hydrogen bond
correlation function h(t) according to Eq. (1) characterizes the
evolution of the local hydrogen bond network. Here, h(t) is depicted
for wet PVPA [44, 45] at different temperatures. The initial decay
during the first picosecond is magnified in the inset.
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extremely sensitive to changes in the electronic structure.
Furthermore, there are often charged functional groups close
to the QM/MM transition that have to be treated with even
more care [23, 93–97]. A case in point is the rhodopsin
protein (see Fig. 7), which has several aspartate and
glutamate bases in the direct vicinity of its chromophore
which are known to influence the absorption wavelength.
The photoisomerization initiates a chain of complex
reorientation processes in the protein, which eventually lead
to the release of a proton at the outer hull. The specific
protonation state of the acidic groups in the direct
environment of the chromophore are still a matter of debate;
recent results from computational spectroscopy have
illustrated the importance of a more accurate modeling [98].

To increase the level of accuracy in QM/MM calcu-
lations, we have recently developed a numerical scheme for
optimization of analytical capping potentials. We character-
ize the bond-cleavage-induced perturbations by means of a
suitable penalty functional andminimize these perturbations
by varying the shape of this potential using an optimization
algorithm based on swarm intelligence. This approach
provided a capping potential for homoatomic C–C bond
cleavage situations with considerably improved spectro-
scopic results, compared to the common hydrogen capping;
and although the accuracy that can be achieved with capping
potentials does not reach that of frozen density embedding
schemes, the central advantage of the capping potential
approach lies in its simplicity [92].

5 Conclusion This set of examples summarized in this
article demostrates the predictive quality of computational

spectroscopy in combination with large-scale first-principle
MD simulations for the quantitative characterization of
complex HBNs in supramolecular assemblies.
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ABSTRACT: We present an algorithmic extension of a numerical optimization scheme for analytic capping potentials for use in
mixed quantumÀclassical (quantum mechanical/molecular mechanical, QM/MM) ab initio calculations. Our goal is to minimize
bond-cleavage-induced perturbations in the electronic structure, measured by means of a suitable penalty functional. The
optimization algorithm—a variant of the artificial bee colony (ABC) algorithm, which relies on swarm intelligence—couples
deterministic (downhill gradient) and stochastic elements to avoid local minimum trapping. The ABC algorithm outperforms the
conventional downhill gradient approach, if the penalty hypersurface exhibits wiggles that prevent a straight minimization pathway.
We characterize the optimized capping potentials by computing NMR chemical shifts. This approach will increase the accuracy of
QM/MM calculations of complex biomolecules.

1. INTRODUCTION

Accurate simulation of structural and dynamical phenomena
of complex biomolecular systems by means of first-principles
molecular dynamics simulation techniques is still a challenge for
modern physics and chemistry. Despite enormous progress in
recent decades, predictive modeling of the interplay of intramo-
lecular and intermolecular interactions is still far from being a
routine problem. For determination of structural data in biophy-
sics and biochemistry, the combination of spectroscopic experi-
ments with advanced theoretical predictions and computer
simulations is becoming increasingly popular, because this
combination often yields a predictive power above the sum of
the individual approaches.1À9 Nevertheless, the first-principles
prediction of noncovalent packing effects and the ab initio
prediction of experimentally observable spectra is not possible
for regular biosystems because of their inherent complexity
and, last but not least, their sheer size. Thus, one has to resort
either to the modeling of elementary subunits10À14 or alterna-
tively to hybrid quantum-mechanical þ mechanical modeling
(QM/MM) approaches.15À31 One of the difficulties of such a
hybrid approach is the interface region between the two different
regions. If one of the atoms is located in the quantum (QM)
region and the other in the classical (MM) part, then a chemical
bond is “broken” as a consequence. This situation is sketched
in Figure 1. Similar problems arise when MM atoms are located
near a QM region, because the QM and MM descriptions are
not genuinely compatible. Thus, a suitable interface has to be
used, which can mutually couple the two schemes in a
realistic way.

There are several well-established methods to tackle the bond
saturation problem, in particular hydrogen32 or fluorine33 atoms,
precomputed (frozen) atomic orbitals,34,35 generalized hybrid
orbitals,36À38 quantum capping potentials,39À42 or designed hep-
tavalent capping potentials.43 Complementary, effective fragment
potentials44,45 and field-adapted adjustable density matrix
assembler46À48 approach the repartiotioning problem itself. Our

approach is conceptually simpler thanmost of the former ones; we
aim at designing a fictitious capping atom to saturate the QM
subsystem, which is realized by a regular atomic pseudopotential.

Specifically,wewant to improve amethod that has beendeveloped
recently49 in view of more complex bond-cleavage situations. This
approach is based on analytical effective core potentials (pseudo-
potentials) of GoedeckerÀTeterÀHutter (GTH) type,50,51 in line
with previous QM/MM studies.14,23,52 Our goal is to optimize the
pseudopotential parameters in such a way that the change of
electronic density in the quantum part of a QM/MM calculation is
minimal with respect to a “full-QM” calculation.

In this way, we also ensure that structural parameters and
spectroscopic properties in the direct neighborhood of a QM/
MM bond cleavage are modeled with a high degree of reliability.

To achieve this aim, we define a penalty functional that
quantifies the deviation of the electronic density in a molecular
fragment from the corresponding density in the complete
molecule, while simultaneously penalizing changes in the equi-
librium bond distance and frequency. The penalty functional is
minimized iteratively by varying the coefficients of the capping
potential placed at the bond-cleavage site.

However, a straightforward mimization approach like steepest
descent53,54 or a simplex method55 carries the risk of getting stuck
in localminima. To avoid this pitfall, we aim for global optimization
including stochastic elements by means of a swarm intelligence-
based algorithm. In recent years, biology-inspired algorithms56,57

turned out to be more effective than conventional algorithms.58

In this work, we employ a variation of the artificial bee colony
algorithm59À61 (ABC), which mimicks the foraging behavior of
honeybees for function minimization. We are especially inter-
ested in proving the usablility for optimizations within electronic
structure calculations and studying the performance of the
algorithm. The optimized capping potentials are intended to

Received: December 10, 2010
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saturate the quantum region in hybrid QM/MM calculations. In
most cases, this saturation affects a single CÀC bond and can
therefore be done bymeans of a hydrogenoid atom; however, the
properties of this hydrogenoid atom should resemble as much as
possible the characteristics of the carbon atom that has been “cut”
out from the quantum calculation. Hence, we need a fictitious
atom that is monovalent but behaves like a (four-valent) carbon
atom in terms of bond distance, potential energy curve(s), and
electronic structure.

We further characterize the perturbative effect of bond cleavage
by means of NMR chemical shifts, which are known to be
particularly sensitive to both intramolecular electronic structure
and intermolecular effects such as hydrogen bonding.62À66Hence,
we can not only gauge the direct perturbing effect of the cleaved
bond on the electronic structure of the remaining part of a
molecule but also quantitatively describe how strongly its response
properties are tainted by the QM/MM bond cleavage.

2. OPTIMIZATION APPROACH

InQM/MMcalculations, the dummyatomhas to saturate the last
covalent bond in the quantum region of the molecule, that is, the
bond that is cleaved by QM/MM repartitioning. The true character
of the bond, however, cannot be easily reproduced by a simple
terminal atom. It is therefore necessary to tune the dummy’s
properties in a way that the resulting deviation in the quantum
region’s electronic structure is minimal. To do so, one has to find a
capping potential that equips the dummywith the desired properties.
2.1. Definition of Penalty Functional. Our optimization

scheme aims to find a capping potential Vcap that gives rise to
an electronic density in the quantum region (F[Vcap]) that
deviates only in a minimal manner from the reference electron
density (Fref), that is, the density when the whole molecule is
quantum-mechanically treated. Further, we want to preserve the
equilibrium bond length and vibrational properties of the bond
that is cleaved to allow for an easy coupling of the first classical
MM atom and to avoid the need for additional geometric
constraints (see Komin and Sebastiani49 and von Lilienfeld-Toal
et al.67 for a more detailed description).
Therefore, we define a functional that penalizes deviations of

these properties from their target values obtained in a full-QM
calculation:

P ½Vcap� ¼ ωF ∑
Ngeo

j¼ 1

Z

Ω
d3r jFjref ðrÞ À Fj½Vcap�ðrÞj2 þωf ∑

Ngeo

j¼ 1
jFjref

À Fj½Vcap�j2 þωe ∑
Ngeo

j¼ 2
jðEjref À E1

ref Þ À ðEj½Vcap�À E1½Vcap�Þj2

ð1Þ

The integration volume Ω is restricted to an area where
penalization is meaningful, that is, the union of spheres around
all QM atoms except the dummywith radii rcov

spc, where rcov
spc is

the covalent radius of the atom species (spc). F denotes the force
acting on the dummy (with respect to its uncapped counterpart)
and E is the total energy.ωF,ωf, andωe are weighting factors that
ensure an adequate relative importance between density, force,
and energy penalization. Finally, the penalty is evaluated for
Ngeo = 3molecular geometries, which correspond to variations of
the cleaving bond length.
We note at this point that we have replaced a multielectron

group (e.g., methyl) with a fictitious monovalent atom, which
changes the total number of electrons in the system. Hence, the
integration of a direct density difference can never vanish
completely, unless the affected regions are entirely excluded
from the integration. This also leads to the effect that the penalty
functional will in general never reach zero during a capping
potential optimization.
2.2. GTH Pseudopotentials. We assume that an optimal

capping potential can be expressed as an analytical GTH
potential:50,51

Vcapðr, r0Þ ¼ VlocðrÞ þ ∑
lmax

l¼ 0
Vlðr, r0Þ ð2Þ

consisting of a local component Vloc, eq 3, and 0À3 (lmax)
nonlocal components Vl, eq 4, with the form

VlocðrÞ ¼ ÀZion

r
erf

rffiffiffi
2
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þ exp À1
2

r
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∑
4

j¼ 1
Cj

r
rloc
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Zion is a valence charge, Yl,m are spherical harmonics, and hi,j
l are

scalars that define the energetic weighting of projectors pi/j
l , eq 5,

in each angular momentum channel l.
A potential of this type is fully defined via the set of Nσ

parameters:

frloc,C1,C2,C3,C4, r0, h
0
1, 1, h

0
2, 2, h

0
3, 3, r1, h

1
1, 1, :::, r2, h

2
1, 1, :::g ð6Þ

In the following, we use {σ} as simplified notation for this set.
From physical considerations, we impose an allowed interval

for each parameter. Thus, the optimization takes place in an Nσ

dimensional orthorhombic manifold in RNσ.
2.3. Artificial Bee Colony (ABC). The actual optimization

algorithm is taken from the field of swarm intelligence and as
such is inspired by nature itself. It mimicks the foraging behavior
of honeybees to sample a scalar function defined on an Nσ-
dimensional unit cube (Uσ) in an efficient manner. We use a set
of linear transformations to rescale and shift the allowed para-
meter space into the unit cube.
We define a population as a set of Npop agents, each represent-

ing a configuration {σ}a ∈ Uσ and the corresponding penalty

Figure 1. General QM/MM repartioning principle in which the CÀR2
bond crosses the QM/MM border and is cleaved. The CH2 group is
replaced by a capping potential associated with a fictitious particle D,
saturating the CÀR1 bond and hence terminating the QM region.
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P [{σ}a]. This artificial bee colony (ABC) algorithm distiguishes
three types of agents which, like honeybees in nature, fulfill
simple but different tasks:
• Scout-type agents have the biggest exploration tendency of
the three types. A scout chooses in every cycle a random
point {σ} from uniform distribution in Uσ and moves
unconditionally to that spot (global sampling).

• Employee-type agents have an additional local sampling
component. An employee type starts like a scout but
examines in each cycle a random spot {σ}0 from a uniform
distribution in a sphere of radius rs around its present
position {σ}. The agent moves only ifP [{σ}0] < P [{σ}].
Furthermore, if the agent cannot move for Na successive
cycles, it abandons its present position and restarts the search
again from a fully random spot in Uσ.

• Onlooker-type agents act, from the point of view of the
entire agent population, as feedback and amplify the ex-
ploitation of promising areas in Uσ that have been found by
other agents. Equipped with knowledge of all agents’ posi-
tions and penalties, an onlooker type randomly choses
another agent’s parameter set {σ}, inversely weighted by
the penalties. Then it chooses a spot {σ}0 from a uniform
distribution in a sphere of radius rs around {σ} and moves if
P [{σ}0] is smaller than its original penalty. Thus, this type
depends on the other agents’ results and ensures that good
parameter regions are not lost during an employee-type
resetting.

A more detailed description of employee- and onlooker-type
agents and their “interactions” is given in the flowcharts in
Figure 2.
Optimization starts with initialization of the population. In this

phase, every agent, regardless of its type, is randomly placed in
Uσ. Afterward, the ABC algorithm performs Ncycle cycles, each a
sequence of three steps:
1. Send the employee- and onlooker-type agents to their

destinations and evaluate the penalties.
2. Place the scout-type agents and the employee-type agents

that abandoned their positions randomly in Uσ.
3. Store the pseudopotential parameter set {σ} with the

lowest penalty in the present population.
Thus, the interaction of the three types of agents, determined

by the ABC algorithm, successivly searches for the global
minimum P [{σ}min] of the penalty functional.
The pseudocode of the ABC algorithm is given in Chart 1.

2.4. Evolution and Convergence of Optimization. We
define a combined index for the evolution of all agents:

τ :¼ i 3Npop ð7Þ

where 0 e i e Ncycle denotes the current optimization cycle.
Thus, τ corresponds to the computational cost under the
assumption that determination of the penalty P [{σ}] has a
fixed computational cost for all choices of {σ}. As this assump-
tion cannot be enforced formally, we limit the number of self-
consistent-field (SCF) iterations during the wave function
optimization for each penalty evaluation to 30. With this
combined index we can describe the evolution of the ensemble
of agents during one optimization run via

P ðτ ¼ 0Þ :¼ min
j¼ 1, :::,Npop

fP ½fσgj, i¼ 0�g

P ðτ > 0Þ :¼ min P ðτÀNpopÞ, min
j¼ 1, :::,Npop

fP ½fσgj, i 6¼0�g
� �

ð8Þ
where {σ}j,i are the pseudopotential parameters of agent j in the
ith optmization cycle (the case i = 0 denotes the initialization
phase). Hence, (τ) and {σ}(τ) refer to the minimal penalty after
an optimization time τ and the corresponding pseudopotential
parameter set.
To account for the stochastic nature of the optimization

process, we run Ntrial independent optimizations for each set of
control parameters (i.e., the number of employee- and onlooker-
type agents as well as the radius of the neighborhood sphere rs).
This enables us to describe the convergence behavior in statistical
terms. We distinguish between different optimization runs by a
new superscript 1 e k e Ntrial:

P minðτÞ ¼ min
k¼ 1, :::,Ntrial

fP kðτÞg ð9Þ

P maxðτÞ ¼ max
k¼ 1, :::,Ntrial

fP kðτÞg ð10Þ

Equations 9 and 10 describe a window in which all P k(τ) are
located for a fixed setting of control parameters (best- and worst-
case scenarios).
2.5. Computational Details. We perform all calculations

within density functional theory68À70 using the BLYP71,72 exchan-
geÀcorrelation functional, as implemented in theCPMDpackage.73,74

Figure 2. Employee-type (top) and onlooker-type (bottom) agents.
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We use standard norm-conserving pseudopotentials50,51 and an
energy cutoff of 70 Ry for the plane-wave expansion of the
KohnÀSham orbitals.
Calculation of spectroscopic parameters, for example, NMR

chemical shifts, is done within density functional perturbation
theory as implemented in the linear response package of
CPMD.75À77

3. RESULTS

3.1. Stochastic Optimization of Capping Potentials. We
have applied the ABC algorithm to the optimization of GTH-type
cappingpotentialsVcap for hybridQM/MMcalculationswithinDFT.
In particular, we have examined the influence of control parameters
of the ABC algorithm (i.e., the number of employee and onlooker
type agents and the radius of the neighborhood sphere rs) on the
optimization process. For this purpose, we benchmarked a series of
capping potential optimizations for an isolated ethane molecule
(C2H6) inwhich onemethyl group is replaced by a capping potential,
with respect to a dummy particle D, as shown in Figure 3.
We begin the presentation of our optimization benchmarks

with the effect of number of employee- (E) and onlooker- (O)
type agents on evolution of the ensemble of agents for different
population sizes. For the initial benchmarks, a fixed value of
rs = 0.2 is used.Na is set to 10 and the penalty weights areωF = 1,
ωf = 0.01, andωe = 2 (arbitrary units).We initialize the first agent
in each optimization run with the standard carbon GTH pseudo-
potential. To allow for a higher level of flexibility of the capping
potential, we add an angular momentum channel (l = 1) with one
projector, which leads to a 7-dimensional parameter space.
Figures 4À6 show penalty minimization over an optimization

time 0e τe 800 forNpop = 4, 12, and 20, respectively. Each figure
shows the penalty evolution window as described by eqs 9 and 10
for different population setups Eþ O =Npop. The number of trial
runs is Ntrial = 5 for each choice of E/O. An employee-type agent
abandons its position after Na = 10 unsuccessful cycles.
We observe in Figure 4 (Npop = 4) a fast decrease of the lower

penalty boundaryP min(τ) during τe 100 for allE/O combinations.

This boundary remains practically unchanged for the remaining
optimization. On the other hand, the upper penalty boundary
P max(τ) shows a decay comparable to that of the lower penalty
boundary but only for combinations with no or few employee-type
agents. For equal numbers of employee/onlooker-type agents or a
higher amout of employee types, the upper penalty boundary
decreases on a much slower time scale with practically no conver-
gence in the all-employee-type case (E = Npop).
Very similar behavior of the lower penalty boundary is observed

for Npop = 12 (Figure 5). The decrease of the upper penalty
boundary is similar for combinations from 0 to 6 employee-type
agents, and significantly slower for higher numbers of E. The
decrease of P max(τ) happens on a slightly longer time scale
compared to the optimization benchmarks with Npop = 4.
This trend remains valid forNpop = 20 (Figure 6). The decrease

of the penalty window (i.e., the interval [P min(τ),P max(τ)]) is
significantly slower compared to smaller populations.
As an extreme case of employee/onlooker combinations, we

show in Figure 7 the upper and lower penalty boundaries for a
series ofNtrial = 5 optimization runs with a population consisting
of only one agent of employee type and Na > Ncycle The lower
penalty boundary reaches its minimum after an optimization
time of τ ≈ 230. The upper penalty boundary needs nearly τ ≈
800 to approach the value of the lower boundary.
The second control parameter of the optimization algorithm is

the size of the neighborhood sphere rs. Again, we run a series of
independent optimizations with a fixed population setup of 3
employee and 9 onlooker types, with Na = 10, ωσ = 1, ωf = 0.01,
and ωe = 2. We show in Figure 8 the upper penalty boundary
P max(τ) and lower penalty boundaryP min(τ) for different radii
rs, with Ntrial = 5 runs each.
We observe a steady (but slow) minimization behavior for

small radii rse 0.01. Intermediate radii (rs = 0.1 and 0.2) lead to a
fast decrease of the penalty window ([P min(τ),P max(τ)]).

Chart 1. Pseudocode of the ABC Algorithm

initialize population randomly
for i = 1...N_cycles do

run employee types
run onlooker types
run scout types
abandon solutions
update best solution

done

Figure 3. Ethane (C2H6) as test system for benchmarking. One methyl
group is replaced by a capping potential (green particle), which saturates
the remaining methyl group.

Figure 4. Population size/setup benchmarks: upper penalty boundary
P max(τ) and lower penalty boundaryP min(τ) with EþO = 4, rs = 0.2,
and Ntrial = 5.
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Bigger radii lead to a comparable decrease in the lower penalty
boundary. The upper penalty boundary, however, decreases
quite slowly and unsteadily.
The optimizations presented so far have all used the conven-

tional carbon GTH pseudopotential as starting point. While this
appears adequate for the particular situation of homolytic CÀC

bond capping, we aim at designing capping potentials for more
complex settings. In order to test the performance of our ABC
algorithm in more difficult circumstances, we repeat the optimi-
zation of our CÀC capping potential from a starting point with
randomized capping parameters.
For a population of E þ O = 12, Na = 10, rs = 0.2, ωF = 1,

ωf = 0.01, andωe = 2, we perform Ntrial = 5 independent optimi-
zations with varying combinations for E/O. The evolution for
this unfavorable initialization of agents is shown in Figure 9.
The behavior of the lower penalty boundary is nearly identical

for small to intermediate numbers of employee types. It decreases
more slowly for a higher amount of employee types. The upper
penalty boundary shows a similar pattern for all E/O combina-
tions, but an equal amount of employee and onlooker types shows
the best performance in an early stage of the optimization.
Regarding the combination of employee and onlooker agents,

it turns out that the optimal ratio depends strongly on whether
the present set of agents is “in direct view” of the final minimum,

Figure 5. Population size/setup benchmarks: upper penalty boundary
P max(τ) and lower penalty boundaryP min(τ) with EþO = 12, rs = 0.2,
and Ntrial = 5.

Figure 7. Single employee-type agent: lower penalty boundary P min-
(τ) and upper penalty boundaryP max(τ) with E =Npop = 1, rs = 0.2, and
Ntrial = 5.

Figure 6. Population size/setup benchmarks: upper penalty boundary
P max(τ) and lower penalty boundaryP min(τ) with EþO = 20, rs = 0.2,
and Ntrial = 5.

Figure 8. Sphere radius rs benchmarks: upper penalty boundaryP max-
(τ) and lower penalty boundary P min(τ) with Npop = 12, E/O = 3/9,
and Ntrial = 5.
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that is, in its proximity and without additional barriers on the way.
For a good starting point of the optimization, for example, the
feedback process inherent to onlooker agents leads to a speedup
of the optimization, and zero agents of employee type are best.
On the other hand, a nonoptimal starting point (as obtained via
the randomized initialization) requires a certain number of
agents with explorative character, that is, employee (or scout)
type agents. Hence, it might eventually be useful to switch the
distribution of employee versus onlooker types during the
progress of the optimization. Investigation of this effect, however,
exceeds the scope of the present paper.
As for the sphere radius rs, we find that a small value leads to a

slow “speed” of the agents in parameter space. A large value, on
the other hand, allows for large moves. However, the plateaus in
the evolution ofP max (Figure 8) for rsg 0.4 illustrate that a large
neigborhood area leads to a high rejection rate for the proposed
moves of the agents. We find that an intermediate choice of 0.1e
rse 0.2 leads to the fastest decay of the penalty window, due to a
trade-off between the “speed” of the agents in parameter space
and their rejection rate. We believe that this behavior indicates a
rich structure of the penalty surface, even for this simple case of
homolytic CÀC bond capping.
3.2. Initial Benchmark of Optimized Capping Potentials.

To examine the quality of optimized capping potentials obtained
during our benchmarks, we compute electronic linear response
properties for a linear alkane molecule (hexane) in which the
terminal methyl group is replaced by a capping potential. In
particular, we compute spectroscopic properties that involve
both the occupied and excited manifold of electronic orbitals.
These parameters measure the performance of our capping
potential beyond the scope that is accessible by the penalty
functional (eq 1) because the latter is based only on the ground-
state density.

We have chosen 13C NMR chemical shifts δ for the character-
ization of our capping potentials. These chemical shifts are the
result of a complex interplay of occupied and excited electronic
states. Nevertheless, they are relatively short-sighted, which
means that a perturbation in the electronic spectrum reaches
no further than a few covalent bonds. Hence, they allow us to
monitor the range in which the QM/MM-induced bond cleavage
perturbs the electronic subsystem.
Specifically, we compute the distribution of deviations of the

trace of the nuclear shielding tensor σRβ for a capped molecule
with respect to a full calculation:

Δδ ¼ TrðσRβ½full-QM�À σRβ½QM=MM�Þ ð11Þ

This is done (1) in the optimized geometry of the full hexane
molecule and (2) in a geometry that has been optimized by use of
Vcap. In both cases, we obtain an ensemble of chemical shift
values from the ensemble of independent optimization runs.
Figure 10 shows the distribution of Δδ of carbon atoms Ci,

where C1 is the direct neighbor of Vcap. For both geometries, we
observe a similar picture: Δδ of the direct neighbor of Vcap has a
broad distribution with a clustering between À3 and À2 ppm.
The distribution for next two carbon atoms (C2 and C3) have
distinct peaks at À2 and 4 ppm, respectively. As for the last two
carbons, we find only minor deviations, far below 1 ppm, from
the reference NMR signature.
3.3. Application to Octane. While the main focus in this

article is on the algorithmic performance of the ABC algorithm in
the QM/MM context, we have nevertheless applied the ABC/
capping potential algorithm to CÀC bond cleavage in a larger
molecule, specifically octane. Here, a butane fragment has been
replaced by a capping potential; see Figure 11.

Figure 10. Distribution n(Δδ) of the isotropic NMR chemical shiftΔδ
of carbon atoms in hexane with Vcap bound to C1 for an ensemble of 75
capping potentials obtained from independent optimizations: (top)
hexane geometry; (bottom) optimized geometry for Vcap.

Figure 9. Population setup benchmarks: upper penalty boundaryP max

(τ) and lower penalty boundaryP min(τ) with Eþ O = 12, rs = 0.2, and
Ntrial = 5 with fully random initialization.
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The optimization is performed over 500 cycles with E = 4 and
O = 6, a neigborhood sphere radius of rs = 0.1, and an integration
volume for the density difference consisting of spheres of size 1.5Â
covalent radius around each atom exceptVcap. The penaltyweighting
factors areωF =ωf =ωe = 1. See Table 1 for the initial guess (regular
carbon) and optimized capping potential parameters (Vcap).
All geometric parameters (shown in Table 2) of the capped

octane molecule are in excellent agreement with the full octane
reference. This agreement holds for our new optimized potential
as well as for a previous version,49 and to some degree even for
the simpler hydrogen and fluorine cappings. While the hydrogen
termination looks like an accurate way of capping when theHÀC
bond distance is ignored, it has a strong effect on the properties of
the subsequent CÀC bond. This is shown in the potential energy
curve (Figure 12) of the C8ÀC11 bond: when hydrogen capping
is applied, the equilibrium distance is shortened by about 0.1 Å
and its frequency is considerably blue-shifted.
When the NMR chemical shift deviations (shown in Table 3)

are examined, a more heterogeneous picture arises. The conven-
tional H- and F-based cappings are only in very rough agreement
with the reference system, while both capping potentials yield
satisfactory results. When the latter two are compared, it turns
out that in our presently optimized capping potential (Vcap), the
first (C11) and third (C5) carbon atoms exhibit somewhat larger
deviations than the potential from ref 49, while the intermediate
carbon (C8) and most of the hydrogens show better agreement.
It is not clear at present what is the specific reason for these

deviations in terms of the capping parameters (given numerically
in Table 1). It is obvious, however, that the two capping
potentials have very different characteristics in terms of the range
of their local and nonlocal parts; in particular, the radius of the
local part (rloc) differs by a factor of more than 3, as does r1.
Nevertheless, this result clearly illustrates that the ABC algo-

rithm with its stochastic elements has the very important ability

Figure 11. Reference system octane and its capped counterpart: (top)
bond-capping scheme and (bottom) atom numbering.

Table 1. GTH Parameters for Regular Carbon and
Optimized CÀC Capping Potential Vcap

rloc C1 C2 r0 h1,1
0 r1 h1,1

1

regular C 0.3376 À9.1285 1.4251 0.3025 9.6507

Vcap 0.2101 À13.1925 3.4867 0.2416 6.2451 0.3125 9.7340

ref 49 0.7221 9.9086 À2.5466 0.5120 À3.5081 1.4664 0.2316

Table 2. Optimized Bond Lengths, Angles, and Dihedrals of
the Octane Reference Molecule and Its Capped Counterpart

reference Vcap hydrogen fluorine ref 49

C1ÀC5 (Å) 1.54 1.55 1.55 1.54 1.55

C5ÀC8 (Å) 1.55 1.55 1.55 1.55 1.55

C8ÀC11 (Å) 1.55 1.54 1.55 1.53 1.55

C11ÀVcap (Å) 1.55 1.62 1.10 1.47 1.55

C1ÀC5ÀC8 (deg) 113.4 113.5 113.6 113.1 113.7

C5ÀC8ÀC11(deg) 113.6 113.5 113.6 111.7 113.4

C8ÀC11ÀVcap (deg) 114.0 113.7 111.3 110.2 116.2

C1ÀC5ÀC8ÀC11 (deg) À179.3 À179.9 179.8 À179.6 À177.2

C5ÀC8ÀC11ÀVcap (deg) À179.5 À178.2 À179.3 179.6 179.7

Figure 12. Potential energy curve of the C8ÀC11 bond.

Table 3. 1H and 13C NMR Chemical Shift Changes of the
Capped Octane Molecule with Respect to Its Octane Refer-
ence, Δδ = σcap À σref

chemical shift change (ppm)

Δδ Vcap hydrogen fluorine ref 49

C1 0.16 À0.08 0.56 0.56

H2 0.03 0.01 À0.02 0.02

H3 0.04 0.01 À0.06 0.03

H4 0.04 0.02 À0.05 0.02

C5 À5.03 À1.56 6.77 À1.12

H6 0.12 0.07 0.14 0.14

H7 0.13 0.07 0.15 0.22

C8 À0.02 5.52 0.81 À0.32

H9 À0.40 À0.07 À0.47 À0.34

H10 À0.41 À0.06 À0.48 À0.41

C11 12.08 18.01 À52.08 À2.44

H12 À0.23 0.37 À3.49 À0.18

H13 À0.24 0.36 À3.47 À0.15
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to discover new regions of parameter space, which a downhill
algorithm (e.g., conjugate gradients) would never explore. In
order to obtain better capping potentials in terms of spectro-
scopic parameters, the optimization can now be adjusted by
means of weighting factors and the exact definition of penalty
integration volume. However, this is beyond the scope of the
present work and will be highlighted in a forthcoming article.

4. CONCLUSION

In this work, we have presented an algorithmic extension of a
numerical optimization scheme for capping potentials that can be
used for mixed quantumÀclassical (QM/MM) ab initio calcula-
tions. The new algorithm mixes deterministic (downhill
gradient) techniques with stochastic (Monte Carlo-like) moves,
which are applied to an analytic potential such that the electronic
structure in the quantum region is preserved as well as possible
with respect to a reference (full-QM) calculation. Deviations
from the ideal electronic (and geometric) structure are charac-
terized by a suitably designed penalty functional, which repre-
sents the target quantity that is minimized with respect to the
parameters of the capping potential.

Our algorithm is a variant of the artificial bee colony (ABC)
approach, which has certain analogies to the foraging behavior of
honeybees in nature. From a computational view, it bears simila-
rities to the ideas used in parallel tempering schemes. The stochastic
elements that are incorporated into the ABC optimization avoid
trapping in local minima of the penalty functional hypersurface. For
the benchmark molecule (ethane) used in this work, this surface is
still relatively smooth; however, as soon asmore complexmolecules
are targeted, the stochastic components of the ABC algorithm are
very important due to the presence of numerous wiggles in this
surface. This could be shown by using a randomized starting point
for the capping potential optimization. For such more
complex situations, several control parameters of the ABC scheme
can be adjusted in order to improve the convergence behavior.

The properties of the resulting capping potentials have been
characterized in terms of the deviations of carbon NMR chemical
shift values with respect to a reference calculation. For our
homolytic cleavage of a Csp3ÀCsp3 bond, the properties resemble
those of the optimized capping potentials that were obtained
previously by the deterministic simplex minimization approach.49

In turn, our new algorithm has found a considerably different set
of values of the capping parameters, mainly because of the use of
a slightly different set of weighting parameters within the penalty
functional. This illustrates that the penalty surface has indeed a
rich substructure, even in a very simple case such as the homolytic
capping of ethane.

We believe that the new ABC optimization scheme will help
generating better capping potentials for more complex situations
in which special care is necessary. In particular, we are presently
applying the algorithm to heterolytic bond cleavage (i.e., CÀN
and CÀO bonds), as well as the capping of highly polar and
charged groups (i.e., COOH and COOÀ), which are of crucial
importance for most biophysical QM/MM simulations.
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ABSTRACT: We elucidate the proton conduction mechanism in self-assembling stacks of
phosphonic-acid-functionalized molecules (hexakis(p-phosphonatophenyl)benzene) at
different temperatures (400−600 K) and at zero humidity conditions. We employ first-
principles molecular dynamics simulations in combination with large-scale force-field
simulations, forming a specific arrangement of the molecules in the columnar stacks. This
arrangement leaves space for quasi-one-dimensional hydrogen bond nanowires along which
protons are transported. We observe spontaneous autodissociation of the phosphonic acid
groups, leading to proton displacements of up to 10 Å along the nanowires. Our simulations
show that there is a fast (200 fs) and a slow (3−12 ps) component in the dynamics of the
hydrogen bond network, corresponding to orientation fluctuations of the hydrogen bonds
and persistent long-range proton transport, respectively. Our results support the hypothesis
that significant proton conduction is possible in this compound at fully dehydrated
conditions and at high temperatures. In such circumstances, the material may outperform
the common Nafion polymer as membrane materials for proton exchange fuel cells.

1. INTRODUCTION

Hydrogen has a potential to become an alternative energy carrier,
radically changing our lifestyles and global economies.1 As any
energy carrier, hydrogen has to be produced, stored, and
converted into (in this case) electrical energy. The conversion is
normally performed in a hydrogen fuel cell, the core component
of which is a proton exchange membrane. This membrane has to
be chemically stable, durable, and proton conducting.2 Nafion is
a state-of-art material for such membranes.3,4 Its remarkable
proton conductivity relies on the formation of hydrophilic
domains forming a network of water channels, where efficient
proton transfer takes place, similar to pure water.5 This, however,
limits the membrane operation temperature by the boiling point
of water, imposing costly requirements on catalysts and
hydrogen purity.
To extend the operational temperature range, one can

exchange water channels with proton-conductive liquids with a
higher boiling point, e.g., imidazole derivatives,6 or synthesize
new polymeric materials with intrinsic proton conductivity,7 for
example, by using functionalized phosphonic acid groups.8−11

The concentration of these groups should, however, be high
enough to ensure efficient proton transport.12−15 Finally, the
spatial arrangement of these functional groups should form
percolating pathways for protons moving through the mem-
brane. Both issues can be addressed by using self-organizing
supramolecular assemblies, such as recently proposed organic
phosphonated molecules.16−19 Some of them, such as tris(p-
phosphonatophenyl)benzene (p-3 PA-HPB) and hexakis(p-
phosphonatophenyl)benzene (p-6 PA-HPB, see Figure 1),

form columnar structures with molecules stacked on top of
each other (see Figure 2), as has been demonstrated by XRD
measurements. While p-3 PA-HPB decomposes at 120 °C, p-6
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Figure 1. Molecular structure of p-6 PA-HPB.
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PA-HPB remains stable far beyond, and its proton conductivity
exceeds that of Nafion at 160 °C; the conductivity of Nafion
decreases rapidly due to loss of water in the water channels.20−22

In addition to the poor understanding of the microscopic
mechanism of proton transfer and transport in suchmaterials, the
formulation of qualitative structure−property relations, that is,
links between the chemical structure and the (macroscopic)
value of proton conductivity, is a formidable task because of
difficulties in characterizing experimentally and predicting
theoretically their (mesoscopic) molecular ordering. In this
work, we use a multiscale simulation approach in order to
formulate such structure−property relations for p-6 PA-HPB, the
chemical structure of which is shown in Figure 1.
Considerable efforts are reported in recent literature for the

rational design of hydrogen-bonded molecular crystals based on
this type of compound.23 Although the vision behind this is the
design of water-free proton conductors, it is established that
really crystalline domains are not always optimal for proton
conduction,24,25 and that residual water molecules indeed play an
important role in the conduction process.26−29

A complementary topic of high relevance is the determination
of the impact of the pKa value of the system

30 and its interaction
with the topology of the hydrogen bond network.31 In the case of
self-assembled p-6 PA-HPB aggregates, the isotropic character of
compounds such as Nafion is lost; instead, a preferred direction
exists along the columnar stacks, in analogy to biomolecular
systems such as one-dimensional ion-conducting channels in
proteins.32

It has recently been suggested that even purely coordination-
type compounds can support long-range proton transport if
adequate proton acceptor/donor groups are included.33

Similarly, suitably filled MOFs have been shown to be capable
of proton conduction,34 even under very low humidity
conditions.35

In the present work, we investigate the structural packingmotif
of supramolecular assemblies of p-6 PA-HPB and the structural
and dynamical properties of the emerging hydrogen bond
network by means of classical and quantum mechanical
molecular dynamics simulations. These simulations help to
understand the microscopic proton conduction mechanism
under dry conditions that has been measured experimentally.

2. RESULTS AND DISCUSSION

2.1. Molecular Dynamics Simulations. In order to better
understand the packing motifs of p-6PA-HPB, we first performed
classical molecular dynamics (MD) simulations of its columnar
arrangement using an OPLS all-atom force-field.36 The force-
field parameters are available in the Supporting Information. The
starting configuration was inspired by the interpretation of X-ray
diffraction measurements:18,19 16 columns were arranged on a 4
× 4 hexagonal lattice, with ten p-6PA-HPB molecules in each
column. After a 10 nsMD run in anNPT ensemble (T = 350 K, P
= 1 atm) using the Berendsen barostat37 and the canonical
velocity rescaling thermostat,38 the molecules in the columns
rearrange as shown in Figure 2a,b.
Already a visual inspection of the hexagonal stacks indicates

that the computationally observed supramolecular packing yields
a highly optimized space-filling arrangement. The phosphonic
acid groups are located in positions that allow a particularly high
degree of intercolumnar hydrogen bonding. The stacking
distance of roughly 6 Å does not, however, enable direct
intracolumnar hydrogen bonding.
From an equilibrated supercell, we have devised a model of the

supramolecular arrangement, which is shown in Figure 2c. The
molecular stacks are arranged on a hexagonal lattice with
neighboring columns shifted along the columnar axis (this
increases the density of intercolumnar hydrogen bonds). Note
that the conjugated cores of p-6 PA-HPB are slightly tilted with
respect to the columnar axis. This small tilt is not accounted for in
the model arrangement; that is, we assume that the columnar
axes are perpendicular to the conjugated π-systems of the p-6 PA-
HPB molecules.
We used a representative packing motif that has been extracted

from the classical MD trajectory as starting point for our ab initio
MD simulations. The latter were performed on the level of
Kohn−Sham density functional theory39−41 (DFT) using the
electronic structure code CP2K42−45 with a computational setup
according to Table 1.
Our system consists of eight p-6 PA-HPB molecules in an

orthorhombic, periodic box of volume V = 29.122 × 25.354 ×
12.363 Å3. We have adopted zero humidity conditions; that is, no
explicit water molecules are present in our setup. The simulations
were carried out at temperatures T = 400, 500, and 600 K.
Experimental evidence suggested that p-6 PA-HPB is chemically

Figure 2. (a, b) Simulation snapshot of 4 × 4 columns arranged on a hexagonal lattice with ten p-6 PA-HPB molecules in each column. The snapshot is
taken after 10 ns equilibration. (c) Schematic mutual arrangement of the p-6 PA-HPB molecules in the columnar stacks found after extensive
equilibration of the supramolecular arrangement.
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stable at intermediate temperatures, shows self-condensation of
the acidic groups around 550 K, and shows decomposition of the
hydrophobic core above 720 K.18,19

2.2. Radial Distribution Functions. We have computed
radial distribution functions (RDFs) for hydrogen−oxygen and
phosphorus−phosphorus at 400 K, 500 K, and 600 K; the RDFs
were averaged over 30 ps each.
The RDF for hydrogen−oxygen (gHO) is shown in Figure 3.

The general shape is nearly identical for all temperatures. We

observe that the amplitude of the hydrogen bonding peak at 1.5−
1.7 Å is somewhat reduced (from 3.6 to 3.2 and 2.9) upon raising
the temperature from 400 to 500 and 600 K. Further, we find an
additional broad peak starting at an H−O distance of 2.9 Å,
which ends in a more narrow peak between 3.2 and 3.7 Å. This
peak is perfectly identical for all temperatures and has an
amplitude of 3 for 400 and 500 K and a reduced amplitude of 2.9
at 600 K.
We computed the average number of oxygen atoms under the

broad peak and the more narrow peak and found nbroad = 7
oxygens in the range 2.3−4.3 Å and nnarrow = 2 oxygens in the
range 3.25−3.6 Å. These observations can be explained as
follows: every hydrogen atom is part of one acidic group and has
two more acidic groups from adjacent stacks in its close
proximity, which adds up to nine oxygen atoms in this area. The
hydrogen is covalently bonded to one oxygen of its own acidic
group and forms a hydrogen bond with an oxygen of an adjacent
acidic group; this explains why we find nbroad = 7 oxygens under
the broad peak. Further, we found that the nnarrow = 2 oxygens
under the narrow peak split up into one oxygen from the own
acidic group of the hydrogen and one oxygen from the acidic
group to which the hydrogen is connected via its hydrogen bond.
For the analysis of the structural relation between phosphorus

atoms, we use a modified definition of the radial distribution
function that takes into account the number of hydrogen bonds
that connect the acidic groups. Figure 4a−c shows the RDFs for

phosphorus−phosphorus at 400, 500, and 600 K. In particular in
Figure 4, panel a shows the non-hydrogen-bonded contribution,
panel b the single-bonded contribution, and panel c the double-
bonded contribution to the total gPP(r). Further, we fit each curve
with a single Gaussian,

μ
σ

= − −⎛
⎝⎜

⎞
⎠⎟f r a

r
( ) exp

( )
2g

2

2
(1)

to determine the amplitudes a, the centers of the peaks μ, and the
standard deviations σ. With these parameters, we can compute
the coordination numbers n of the individual features:

∫π ρ=
∞

n r r f r4 d ( )
0

2
g (2)

where ρ is the average phosphorus density in our simulation box.
The resulting parameters are shown in Table 2.
We find that each acidic group has four different groups with a

distance of 4.8 ± 0.5 Å between their phosphorus atoms and
shares hydrogen bonds with two of its neigbors. Occasionally,

Table 1. Computational Setup of the ab Initio Molecular
Dynamics Simulations

functional BLYP46,47

basis set TZVP-GTH (GPW)48,49

pseudopotential GTH50,51

AIMD time step 0.4 fs
dispersion correction Grimme52

thermostat type CSVR38

thermostat time constant 400 fs
AIMD equilibration time 10 ps
AIMD production time 30 ps

Figure 3. Radial distribution function gHO(r) for hydrogen−oxygen at
400 K (black/full), 500 K (gray/full), and 600 K (black/dashed).

Figure 4. (a−c) Partial phosphorus−phosphorus radial distribution
functions gPP(r) at 400 K (black/full), 500 K (gray/full), and 600 K
(black/dashed) for phosphonic acids with no mutual hydrogen bond
(a), those with one single hydrogen bond between them (b), and those
with doubly hydrogen-bonded phosphonic acid pairs (c).

Table 2. Centers and Standard Deviations, μ± σ, of Gaussian
Fits fg(r) of the gPP(r) According to Eq 1 and Coordination
Numbers n Computed from Eq 2

400 K 500 K 600 K

nonbonded [Å] 4.9 ± 0.4 4.8 ± 0.5 4.8 ± 0.4
single-bonded [Å] 4.7 ± 0.4 4.7 ± 0.4 4.7 ± 0.4
double-bonded [Å] 4.2 ± 0.2 4.2 ± 0.2 4.2 ± 0.2
nonbonded [1] 2.0 2.0 2.0
single-bonded [1] 2.6 2.5 2.2
double-bonded [1] 0.1 0.1 0.1
coordination [1] 4.7 4.6 4.3
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two acidic groups share two hydrogen bonds, which coincides
with a much shorter P−P distance of 4.2 ± 0.2 Å. The average
coordination of the phosporus atoms is 4.7 at 400 K and
decreases to 4.6 and 4.3 when the temperature is raised to 500
and 600 K. A frame-wise inspection of the MD trajectories yields
that the hydrogen bonding occurs in 99.98% of all cases on the
intermolecular level.
2.3. Hydrogen Bond Network. In order to analyze the

characteristic time scales of the hydrogen bond network, we
define a hydrogen bond correlation function via27,29,53

∑η δ= ⟨ ̃ ⟩+t( )
k

H t t H t thbn ( ), ( )k k
hbn

0
hbn

0 0
(3)

Here, δ̃Hk
hbn
(t+t0),Hk

hbn
(t0) = 1 if the acidic proton k forms at both

times t and t + t0 a hydrogen bond with the same pair of acceptor
oxygens and 0 otherwise. To be counted as a hydrogen bond, the
proton must be covalently bonded to the nearest of the oxygens
(rOH < 1.3 Å), the distance between the proton and the other
oxygen must be rÕH < 2.2 Å, and the angle between the covalent
O−H axis and the hydrogen-bonded H−O axis must be α < 60°.
Hence, the hydrogen bond correlation function ηhbn(t) counts
the number of hydrogen bonds at time t that have already existed
at the initial time t0. Figure 5 shows the hydrogen bond
correlation function for different temperatures.

We fit the bond correlation functions with a bimodal
exponential decay and a constant term:

∑= +η
τ

=

−f t a a( ) e
i

i
t

0
1

2
/ i

(4)

The resulting parameters of this fit function are shown in Table 3.
We observe that the decay of the HBN is governed by two

distinct time scales: the fast process on a time scale of roughly τfast
≤ 0.3 ps and the comparably slow process on a time scale of τslow
≈ 3−12 ps.

The fast process corresponds to the reversible forth-and-back
switching of a hydrogen bond between two acceptor oxygens
from neighboring acid groups. The slow process is caused by
rotational motion of the individual phosphonic groups.

2.4. Proton Mobility. The motion of protons through the
slab of p-6 PA-HPB molecules is intrinsically connected to the
breaking and formation of covalent O−H bonds in the
phosphonic acids. To estimate the amount of broken bonds
over time, we defined a covalent bond correlation function
similar to eq 3,

∑η δ= ⟨ ̃ ⟩+t( )
k

H t t H t tcov ( ), ( )k k
cov

0
cov

0 0
(5)

where, δH̃k
cov
(t+t0),Hk

cov
(t0) = 1 if the acidic proton k is at both times

covalently bonded to the same oxygen and 0 otherwise. To be
counted as a covalent bonded pair, the O−H distance, rOH, must
be rOH < 1.3 Å. Thus, ηcov(t) is the average number of covalent
O−H bonds in the original HBN (at time t0) that are still
conserved after simulation time t.
The covalent bond correlation function, ηcov(t), is shown in

Figure 6 (top). We observe that 5−10 O−H bonds are lost
within 1 ps and that the decay reaches a plateau with a total loss of
15−30 covalent O−H bonds.

To further gauge the mobility of the acidic protons, we
computed the distribution of the total proton displacements after
30 ps, which is shown in Figure 6 (bottom). We observe that for
all temperatures, most of the 96 acidic protons in the system did
move less than 2 Å, which roughly corresponds to the distance of
a transfer from one phosphonic acid group to one of its direct
neighbors, followed by a local reorientation. In the simulation at
T = 400K, no proton diffuses further than 4 Å, and atT = 500K, a
single proton reaches a displacement of 5 Å. However, the MD
simulation atT = 600 K yields six proton translations of about 6 Å

Figure 5. The hydrogen bond correlation function ηhbn(t) according to
eq 3 characterizes the evolution of the local hydrogen bond network.

Table 3. Parameters for a Fit with Eq 4 of the Hydrogen Bond
Correlation Function ηhbn(t)

parameter 400 K 500 K 600 K

a2 (fast) [1] 6.5 10.5 11.9
τ2 (fast) [ps] 0.2 0.3 0.1
a1 (slow) [1] 15.7 20.0 21.0
τ1 (slow) [ps] 8.5 11.7 3.0
a0 (asymptotic) [1] 40.9 32.7 27.7

Figure 6. The covalent O−H bond correlation function, ηcov(t),
according to eq 5 (top) and the displacement of the acidic hydrogen
atoms after Δt = 30 ps (bottom) at 400 K (●), 500 K (×), and 600 K
(+).
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and one of 10 Å. While these numbers are certainly not
converged in the statistical sense, they nevertheless illustrate the
onset of fast long-range diffusion processes at increased
temperatures.
It should be mentioned that this diffusive transport would

correspond to a remarkably high current density on the order of 2
A/mm2, roughly estimated from the average displacement of the
protons that travel further than 5 Å and under the assumption
that all protons move in the same direction.
We tracked themovement of those protons that autodissociate

and diffuse over larger distances in the trajectory at 600 K. We
observe that the protons travel within the interstice where three
columns adjoin each other and that it is parallel to the columnar
axis. This situation is sketched for two protons in Figure 7.

3. CONCLUSIONS

We have modeled the local packing structure of self-assembling
disk-shaped hexakis(p-phosphonatophenyl)benzene molecules
in a hexagonal pattern of supramolecular stacks in fully
dehydrated conditions. The packing gives rise to a tight
interstack hydrogen bond network. Our first-principles molec-
ular dynamics simulations show that there is a specific region at
the geometric centers of every triplet of stacks, which features
quasi-one-dimensional proton conducting channels. Our simu-
lations detect spontaneous autodissociation of the phosphonic
acid groups, leading to a considerable charge carrier diffusion
mainly parallel to the stacks. Remarkably, both the autodisso-
ciation and the proton diffusion are observed in the absence of
any water molecule. This feeds hope that high-temperature low-
humindity proton exchange membrane materials are getting in
reach, which would significantly enhance the efficiency of the
corresponding hydrogen fuel cell systems.
Our structural investigation shows that at all temperatures the

typical phosphonic acid group is hydrogen-bonded to two of the
four adjacent acid groups from two dif ferent stacks; intra-
columnar hydrogen bonding was not observed. This represents
clear evidence for a properly percolating hydrogen bond network
in the p-6 PA-HPB stacks, which will support sustained long-
range proton conduction.
The duration of our ab initioMD simulations is presently still

too short to cover the time scale required for a quantitative
determination of proton diffusion. Nevertheless, the trend in the
maximum displacement (as reported in Figure 6, bottom) is
obvious: the number of protons with displacements larger than 3
Å is seven (at T = 400 K), eleven (at T = 500 K), and more than
twenty (at T = 600 K). In the latter case, around 20% of all acidic
protons travel this far within our 30 ps simulation. This illustrates
the high sensitivity of the proton mobility on temperature and
confirms that compounds based on phosphonic acid groups

represent indeed a highly promising candidate for “dry” fuel cell
membrane materials.
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Klapper, M.; Müllen, K. Phosphonated Hexaphenylbenzene: A
Crystalline Proton Conductor. Angew. Chem., Int. Ed. 2009, 48,
9951−9953.
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