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Introduction 

 Functional imaging tools have greatly contributed to our understanding of many 

biological systems. The development of dyes, which are sensitive to voltage changes, 

changes in the calcium concentration, pH or glutamate and the possibility to genetically 

express them in selected cell populations allow for insights into physiological processes 

undreamt of until recently. One drawback, though, is the large amount of data generated. 

The evaluation of this data is a painstakingly time consuming process, which often takes 

much longer than the actual experiments. Additionally, in most of the cases it is only a 

necessary step before the real data analysis and interpretation can start. I have developed 

a computer program, which enhances the speed of imaging data evaluation and facilitates 

this process. This increased evaluation speed enables scientists to record and evaluate 

more data or to spend more time on the final data analysis.   

 

 

Starting point 

Several competing computer programs for bio imaging exist. While many 

programs are exclusively sold along with the imaging hardware, others like Metamorph 

(Universal Imaging Corporation) can be acquired separately. These programs offer a 

wide range of features, ranging from device drivers for scan tables and CCD cameras to 

actual image analysis and even image deconvolution. These features make the programs 

very versatile, but also expensive. Additionally, no commercially available product 

contains all features necessary for the analysis of imaging data based on odor evoked 

glomerular activity. Therefore in our laboratory data evaluation was done with a series of 

self written scripts, which I will subsequently call the View scripts. 

 

View scripts 

These scripts are implemented using the programming language IDL (RSI, 

Boulder, CO). They originate from the late nineties, when calcium imaging was 

established in the institute by Jasdan Joerges and others. Further on they were maintained 
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and extended by Giovanni Galizia. Growing over time, these scripts have proven to be 

extremely flexible and powerful, allowing for data evaluation and manipulation in many 

different ways. One major drawback, though, is that a lot of programming expertise is 

needed to use them and that data evaluation with the View scripts is time consuming.  

Subsequently,  I will outline the different steps necessary for data analysis with 

the View scripts: 

1) Data acquisition using TILLVision software 

The term data acquisition describes the actual recording of the measurements. In our 

laboratory this is done using the TILLVision software (Till Photonics; Martinsried, 

Germany). In addition to controlling different devices, like the monochromator and the 

shutter, a protocol editor allows for the adjustment of the different experimental 

parameters. TILLVison saves the measurements grabbed by the CCD camera to the hard 

disk. Measurements from each experiment (animal) are saved in the form of a vision 

workspace file (*.vws) containing most of the experimental parameters and a folder 

(*.pst) which contains the actual recordings.    

 

2) Generation of a log file from the TILLVision workspace 

The TILLVision workspace is saved in proprietary format whose specifications are 

unknown. To access the different experimental parameters for the subsequent data 

analysis, the information contained in the *.vws files has to be transferred to text files. 

This can be done from within TILLVision, using a macro. The resulting text file is called 

log file. log files contain the list of measurements recorded from one animal, together 

with the recording parameters. Among others, these parameters include the names of the 

measurements, their pixel sizes, the wavelengths used for the recordings and the time 

point at which the single frames were recorded, saved in Coordinated Universal Time 

(UTC). 

   

3) Generation of a list file from the log file 

The above mentioned log files still do not contain all information necessary for further 

data evaluation. For example the on- and offset and the identity of the odor stimulus are 

unknown to TILLVision and therefore have to be added manually. As the structure of the 
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log files makes them unsuited for efficient manual editing, the information contained in 

log file has to be transferred into another tab separated text file, the so called list file. This 

is done using an IDL routine, called log2list_block.pro. With some preliminary 

knowledge of IDL programming, and more sophisticated knowledge of the script itself, 

recurrent features like stimulus on and offset can be encoded in the log2list_block.pro 

routine. This reduces the amount of manual editing necessary afterwards. 

 

4) Manually editing the list file  

Some information, like the used odors or form of the treatment in cases where 

pharmacological reagents or a sucrose reward were applied, must be entered manually 

into the list files. The tab delimited nature of the list files facilitates such editing in 

spreadsheet programs like Microsoft Excel. 

 

5) Creation of GR_  and master programs 

With all information about the measurements accessible via the list files, the View scripts 

now have to be set to evaluate the data. This is done by creating so called GR_ programs, 

one for each experiment to evaluate. This process is rather fast, as conveniently enough, 

the list file created by log2list_block.pro, contains all necessary information. This is 

copied into an empty file and saved. Then the master program has to be created. In the 

master program the parameters for the data analysis have to be set. These parameters 

include the location of the data on the harddrive, the filter settings, how signals have to be 

calculated (for example for ratiometric data), and the output format of the data (e.g. as 

false color coded images, avi files, or as tif stack for shift correction).   

 

 Once the GR_ and master programs are generated, further data analysis consists 

of repetitive execution of the master program with changed parameters for data output.  

 

6) Shift correction 

Since animals often move during the recording period different measurements obtained 

from the same animal have to be aligned. This is done using the shift correction. For the 

shift correction the output parameter in the master file is set to return a tiff stack for each 
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experiment containing one raw fluorescence image per measurement. These stacks can 

manually aligned one by one, using a script called CompareSlicesAndShiftThem.pro.  

After manual alignment, this script returns a tab delimited text file containing two 

columns of integers representing the X and Y shifts for each measurement. These can be 

copied into the list file and subsequent executions of the master program, with the 

according parameter for the shift correction set, will result in corrected data.  

 

7) Region of interest (ROI) selection 

There are two possible ways of selecting ROIs: View, a front end of the View scripts, 

supplies the user with a graphical user interface (GUI). With this user interface, single 

measurements can be loaded and a false color coded image is created. Mouse movements 

on top of the image result in on line traces, showing the fluorescence values of the 

underlying pixel over time, as well as the pixel position in X and Y. These pixel positions 

have to be manually entered into another tab delimited text file, the *.coor file. 

 The second possibility to select morphological structures in the data is based on 

afterstainings. These additional stainings are applied after the measurement and delineate 

the glomerular borders. These borders can be extracted using image editing programs like 

Adobe Photoshop and are saved in a *.tif file 

 

8) Traces generation 

After setting the parameters in the master file for the location of the ROI files and the 

appropriate output type, the master program is executed a last time. Now for each animal 

and measurement listed in the master program and for each ROI, the pixel values over 

time (traces) are calculated and saved into one tab delimited text file, called 

*.gloDataMix, per animal. The gloDataMix files are the basis for all quantitative and 

statistical analyses. 

 

 

Development goals  

As mentioned before, the View Scripts are extremely powerful and flexible. 

Nevertheless they have several limitations, like the lengthy evaluation process and, even 
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more important, the high degree of expertise necessary for a proper use. Another 

limitation is of a more historical nature. The development of the View scripts started in 

the nineties. Then the computers had less processing power and memory, but at the same 

time the CCD chips of the recording cameras already had a reasonable number of pixels. 

One measurement, recorded at the lowest resolution could already have a size of half a 

megabyte, while an expansive workstation would have 16 megabytes of main memory. 

Therefore the Scripts were designed to evaluate the measurements one after the other, 

which made online comparisons between measurements impossible. The enormous 

increase in processor power and main memory size during the recent years now allows 

for all measurements of several experiments to be at the same time in memory. This 

implicates a profound change in the program design which was not feasible via small 

changes in the View Scripts. Therefore, instead of modifying them, I decided to write an 

entirely new program. 

Subsequently I will line out the development goals for this program and the 

strategies applied to achieve them:  

 

Ease of use 

The program should be easy to use, even without much knowledge of the 

underlying computing steps. Therefore I designed a user interface which can be 

completely operated by mouse. 

 

Compatibility with the View scripts 

The View scripts contain a large number of well written routines. In order to make 

use of some of them, I implemented the program in IDL. This also allows for a 

combination of both the View scripts and the new program during data evaluation. 

Additionally, the results of all intermediate steps of data evaluation, for example the 

movement correction or region of interest (ROI) selection, can be saved and later be used 

in the View scripts. 

 

Correction of movement within measurements 
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In the View scripts, only shifts between measurements could be corrected. The 

new program should also allow for the correction of movement within measurements. 

Therefore I implemented an algorithm for automatic movement correction. Additionally, 

I based the movement correction window on the CompareSlicesAndShiftThem.pro and 

added some features to further facilitate its use. 

 

Online comparison between measurements 

The program should allow for many different measurements of different 

experiments to be online at the same time. The fundament of the new program was to be 

based on one large array, containing an arbitrary number of measurements. An 

accompanying list should contain all experimental parameters. Only the size of the main 

memory should limit the number of measurements to be visualized and evaluated at the 

same time. 

 

Glomerulus identification 

The program should facilitate glomerulus identification. The regions of interest (ROIs), 

which mark the position of a glomerulus, should be easy to choose. In the program this 

should be accomplished by simple mouse button clicks. 

 

Speed of data evaluation  

The program should speed up the overall evaluation time. This should be achieved by a 

combination of strategies. The generation of list files, GR_ and master programs, as 

described above, should not be needed any more. Additionally all processing steps, like 

the movement correction, glomerulus identification and traces generation should be 

facilitated and done online, without reloading the data for each step.   

 

 

The structure of the program 

 

IDL 
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In order guarantee the interoperability between the program and the IDL scripts, I 

decided to implement the program in IDL. IDL (Interactive data language) is a high level 

computing environment. It consists of an integrated development environment (IDE), a 

complete array-oriented programming language and large amount of routines and 

libraries for data analysis, graphical presentation and statistical evaluation.  

The IDL language, like other high level computer languages like Java or Python, 

is interpreted. This means that upon compilation, IDL code is not directly transferred into 

machine code, but into an intermediate code. A run time compiler (RTC) translates this 

intermediate code into machine code during the execution of the program. In the case of 

IDL, this has several advantages. Variable declaration is not necessary for most 

situations. Also the memory management is fully under control of the RTC, thereby 

preventing buffer overflows. A so called garbage collector constantly scans the computer 

memory for variables which have become obsolete which it deletes. This prevents 

memory leaks, a common cause for program or even operating system instability.  

Another advantage of IDL and interpreted languages in general is that 

programming is fast. The syntax is easy to understand and write. A function written in 

IDL has generally one quarter of the number of lines as the same function written in a 

lower level language like C or C++ would have. This increases the programming speed 

considerably. Additionally, the first compilation step is very fast. Therefore new 

functions or routines can be tested immediately.  

The disadvantage is that programs written in interpreted languages tend to be 

slower than their machine code counterparts. The RTC translates the program into 

machine code during run time and this translation needs time. In recent years, due to the 

ever faster computer processors and faster RTCs, program execution speed has ceased to 

be an issue for most applications. In IDL, calculation intensive routines are written in C 

and linked into the applications as libraries. The result is that the execution time of IDL 

code is fast enough for most applications, while its development time is very short. 

 

The user interface 

The user interface consists of seven different windows. Each window was 

specifically designed to fulfill one or several of the development goals. I will briefly 
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introduce the different windows. To remain concise, I will only explain their most 

prominent functions and leave out those functions, which are not important for a general 

understanding of how the program manages the evaluation of imaging data. 

 

 

Parameters window 

The Parameters window is the main window of the program. Through a dropdown 

menu in this window, all other windows can be accessed. Additionally it fulfils several 

other functions. log files created by TILLVision can be read and all measurements 

contained therein can directly be loaded in this window. The direct access  to data makes 

the generation of list files, as well as master and GR_ programs obsolete. Data can be 

evaluated as soon as the log file is generated, e.g. within seconds after measuring the 

data. Loadable and loaded measurements are shown in two different tree structures. 

Selected measurements can be loaded, or in case they are already in memory, deleted. 

The parameters of loaded measurements can also be edited in this window. These 

changes can be saved, tagged to the measurements, and are automatically loaded 

whenever the measurements are loaded again.  

 In addition to the TILLVision imaging data, the program now also supports image 

series in the tif format, an export method supported by all confocal and 2-photon 

microscopes.  



 

 

  IX 

 

 

A1) The parameters window 

 GetCoors window 

The GetCoors window used to be the main window in previous program versions. 

Therefore it houses a great part of the functionality of the program. Its main task is the 

selection of different regions of interest (ROIs). Additionally, it provides different ways 

of data visualization. These visualizations can then be exported for later use in 

publications or presentations. Existing export methods are tiff images for the false color 

coded images as well as mpeg for movies of the measurements. All measurements 

contained in memory are shown as representative false color coded images in the 

GetCoors main window. The parameters according to which these images are calculated 

can be adjusted here. Single measurements can be watched as time series, and moving the 

mouse over the false color coded images returns the fluorescence value over time of the 

subjacent region. Pressing the left mouse button over such a region marks it as ROI. As 

these ROIs are considered to mark morphological features, such as olfactory glomeruli, 

they are transferred to all measurements from the same animal. Up to date ROI sets of up 

to 40 animals can be edited at the same time. In addition to manually selecting ROIs, a 

special algorithm allows for automatic selection of the active glomeruli.  
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MovementCorrect window  

The MovementCorrect window, as its name relates, mediates the steps necessary 

for movement correction. As the movement correction has to be done on morphological 

data, this window allows the loading of raw, unprocessed imaging data via a tree 

structure. The general way to do the movement correction is to first correct for 

movements within each measurement and then correct for shifts between measurements. 

All corrections for shifts between measurements are also directly applied to the false 

color coded images in the GetCoors window. An algorithm for automatic movement 

correction can be used to correct for movement both within and between measurements.  

This algorithm will be explained in more detail in the algorithms section. 

 

 

 

A2) The GetCoors window 
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A3) The MovementCorrect window 

 

 

 

 

Correlations window 

The correlations window is the interface to a simple, but efficient algorithm. The 

result of the algorithm is an image outlining the physiologically active structures in the 

data, in our case of the glomeruli. When it comes to ROI selection, this window has a 

similar functionality as the GetCoors window. ROIs can be set, removed or moved on the 

window. Therefore this window is very helpful for the task of glomerulus identification.  

The algorithm will be explained in more detail in the algorithms section.  
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A4) The Correlations window 

 

 

Traces window 

In the Traces window, the change in fluorescence is plotted over time for each 

ROI in each measurement e. Different measurements and ROIs can be selected or 

deselected for plotting. As an additional feature, an extra graph shows the mean and 

standard errors of the ROIs, averaged across all selected data.  

While one task of this window is to visualize the behavior of ROIs over time, the 

so called traces, its most important task is to allow for the export of these traces. Up to 

now, traces can be exported in two formats. One format is the so called gloDataMix 

format. This is the same format as generated by the View scripts described previously. It 

is a tab delimited text file which is readable by Microsoft Excel and for whose further 

evaluation many different IDL scripts exist. The second format is also text based, but 

here the data is arranged in a way which is ideal for loading it into relational databases 

like MySQL or PostGreSQL or statistical programs. 

All graphs can be directly copied into the Windows clipboard and then pasted into 

other applications like Microsoft Powerpoint or Word. One drawback of this method is 

that all graphs are exported as bitmaps, which makes them unsuited fir further editing. 



 

 

  XIII 

Therefore I have started to implement additional export functions, like a direct vector 

based PDF and WMF export of the graphs. These features will be included in future 

versions of the program. 

 

 

A5) The traces window 

 

Additional windows 

Two other windows exist, which mediate special cases of calcium imaging 

analysis. One is allows for the generation of data masks, which can be overlaid over the 

data. The second is for glomerulus interpolation. As both are not of immediate 

importance for successful data evaluation, I will not explain them in further detail. 
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Algorithms 

In this part I will introduce some of the algorithms used in the computer program. 

Most of the algorithms used in this program were not developed by me but were taken 

from libraries. These algorithms, like the digital filters, data sorting algorithms or data 

import and export routines, contribute greatly to the functionality and complexity of the 

program. Nevertheless, I will limit myself to introducing two of the algorithms, which at 

least partly were developed by myself. These algorithms are of special importance for the 

functionality of the program: A) the movement correction, B) the correlation algorithm. 

 

Movement correction 

I) Theoretical background 

In vivo imaging has the advantage of delivering data from living animals. This 

can be considered as a big advantage, as the experimentators aim is to obtain his data 

under the most natural circumstances as possible. On the other hand several 

inconveniences come along. One of the biggest problems is that living animals move. As 

the regions of interest selected in imaging measurements are defined by their position in 

the images, these movement artifacts have to be corrected.     

Correcting data for movements is a problem which can be separated into two 

parts. While the first part is the definition of an error function, the second part is finding 

the minimal error as defined by such an error function. 

 

 

1) The error function 

In the case of the movement correction, the task of the error function can be 

defined as follows: a) It has to return an error value for all possible shifts of one image 

relative to the other and b) this error value has to be minimal when the images are 

optimally aligned. A common choice for an error function is the sum of the pixel wise 

differences (SPD): 

∑ −= ijij yxerr  
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Where err is the error value and i, j depict the position of the pixel in the two images x 

and y. Imagine two identical images perfectly aligned on top of each other. In this case 

the SPD error will be zero. A shift of either image will result in an increase in the SPD 

error. The sum of the absolute pixel differences is chosen in order to avoid situations in 

which an increase in the difference between some pixels could be compensated by a 

decrease below zero in other pixels. Another common way to achieve this is to use the 

quadratic pixel wise difference:  

  ( )∑ −= 2

ijij yxerr  

This error function has the additional advantage that the gradients within the error 

function increase.  

 By systematically shifting one image on top of the other and calculating the error 

value for each shift, the error function defines an error surface. Examples of such error 

surfaces can be seen in figure A6). 

It is obvious, that the quality of the movement correction directly depends on whether the 

error function is at its unambiguous minimum when the images to be corrected are 

optimally aligned. This may not be the case when images are blurred or have little 

contrast, which was often the case in the raw data of measurements conducted with 

calcium green AM, for example. Most movements occur along all three spatial axes, also 

including movement in and out of focus, the images to be aligned can vary considerably. 

To enhance the performance of the error function, I tried several preprocessing steps. 

These preprocessing steps included algorithms for contrast enhancement and edge 

detection, which were applied to the images before calculating the 
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A6) Movement Correction. A) Sample images from two different measurements and the error surface 

calculated by systematically shifting one image on top of the other and calculating the absolute pixel wise 

difference. B) The same two images and the error surface after contrast enhancement. C) The two images 

and the error surface after applying a Sobel edge detection filter. 

 

error values. For the contrast enhancement, each pixel in the image was treated as 

follows: 

     4

ijij valval =  

Where valij represents the pixel values. The operators for edge detection were the 

commonly used Sobel and Roberts filters. The Sobel filter can be approximated by 

convolving the images with the following masks: 
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The masks used for the Roberts filter are very similar: 
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Figure A6) shows the example of two raw images as well as the same images after 

contrast enhancement and edge detection. Below are the error surfaces of the three 

approaches as defined by the absolute pixel wise differences between the two images, 

shifted against each other for -10 to 10 pixels along both axes. 

 

2) Finding the minimum defined by the error function 

The second part of the movement correction procedure is an algorithm with the 

task of finding the minimum defined by the error function. Several standard algorithms 

can be used here and some will be explained in more detail.  

 

a) The brute force approach  

In this approach, one image is shifted on top of the other in all possible positions. 

After each shift, the error value is calculated and the result is stored in a temporary 

variable together with the shifts which led to this result. After all shifts have been 

accomplished and all error values have been calculated, the minimum error value depicts 

the best correction. This procedure has the advantage that it always finds the global 

minimum. The obvious disadvantage is that it finds it in a very inefficient way, by testing 

all possible combinations. This may still be feasible in cases where only a limited number 

of images have to be corrected for movement. In most cases the brute force method will 

be too slow to be practicable. 

 

b) The gradient descent  

The gradient descent only calculates the error values for the shifts to the eight 

neighboring pixels, then choosing the smallest one of them. This is done iteratively, until 

any further shift would lead to a higher error value, e.g. a minimum is found. The 

advantage of this algorithm is that it strongly reduces the processing time, as instead of 
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all possible, only a small and defined set of error values have to be calculated. The 

disadvantage is that it is sensitive to local minima and may remain there without finding 

the global minimum. Several enhancements to the gradient descent therefore have tried to 

circumvent this problem, with differing success. 

 

c) Simulated annealing  

The original algorithm, developed in 1953 by Nicolas Metropolis et al., is such an 

improved version of the gradient descent. As explained above, the problem of the 

gradient descent is that it exclusively steps down the error gradient, and therefore gets 

trapped in local minima. Simulated annealing includes a perturbation into the calculation, 

thereby endowing the algorithm with flexibility. The probability that such a perturbation 

occurs depends on the energy state of the system, which in our case is the found error 

value. While the error value is high, the probability for perturbations is high, too. After a 

predefined number of iterations the algorithm stops.  

In the case of the movement correction, three parameters have to be defined. First, 

what form does this perturbation have and how strong is it? Second, how does the 

algorithm know how high the relative error value is, e.g. how high is the probability for 

the perturbation? And third, how many iterations have to be used?  

i) I implemented the perturbation as a jump to a randomly chosen pixel on the rim of a 

square of 5x5 pixels, whose center defined the actual position.  

ii) The probability for the occurrence of such a perturbation was set to: 

 err

errerr

pert

t

eyprobabilit ∆

−

=
0

 

Where ∆err is the change in the error value between iterations, err0 is the error value at 

time point zero (before starting the correction) and errt the actual error value. Mark that 

with an increasing value of (errt-err0)/∆err the probability for a permutation to occur 

decreases. 

iii) In the absence of knowledge about the global minimal error value, I decided for a 

number of 200 iterations 
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II) Implementation 

Trying to find the optimal algorithm for an automatic movement correction, I 

implemented and compared the preprocessing steps and the algorithms for finding the 

minimum of the error function. As error function, I tested both the absolute and quadratic 

pixel wise errors described above.  

Subsequently I will describe my observations and conclusions: 

1) There was no difference in the performance of the automatic movement 

correction between the error functions using the quadratic and the absolute pixel wise 

difference.  

2) None of the approaches I tested resulted in a performance of the algorithm to a 

extent that would allow for unsupervised movement correction. While the general 

performance was good for all approaches, further manual corrections were often 

necessary. The use of the Sobel edge detection algorithm resulted in error surfaces with a 

more defined, unique minimum, and in many cases performed slightly better than when 

the error function was calculated on the base of the contrast enhanced or the untreated 

images. Additionally it is a fast algorithm and did not significantly increase the time 

needed for movement correction. Therefore I included it as standard feature into the 

program.   

3) As expected, the brute force algorithm for finding the minima had the best 

performance, but was rather slow. The gradient descent was much faster and in many 

cases worked optimally on the smooth error surfaces defined by the untreated and 

contrast enhanced images. Its performance with images to which the Sobel edge detection 

algorithm had been applied, in turn, was very bad. This was due to the ragged surfaces 

described by the error function, which had many local minima. Though the performance 

of the simulated annealing algorithm in this case was better, it was very slow, in some 

cases even slower than the brute force algorithm. I did not find out whether this was 

because the algorithm is not suited for the task of fast movement correction or whether 

my implementation was faulty. Also more precise calculation of the number of iterations 

to go through might have resulted in a faster performance.  

As most of the movement artifacts to be corrected reflected shifts of less than 5 

pixels, I decided to implement a truncated version of the brute force algorithm. Now the 
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algorithm did not calculate all possible shifts, but only those of a distance of up to 10 

pixels. As a result, the algorithm was now fast enough to correct even large image stacks, 

without sacrificing much of its performance. 

 

III) Result 

As I did not succeed in implementing an algorithm for fully unsupervised 

movement correction, I included several features which facilitate the manual correction 

for movement. Together with the implemented algorithms, these features allow for a 

rather fast correction of movement.  

 

 

Correlation algorithm 

I) Theoretical background 

The selection of regions of interest (ROIs) is one of the crucial steps in functional 

imaging. In some cases, like single cell imaging, this task is rather straightforward. This 

is not the case for AL or MB recordings, where the same dye stains several distinct 

structures, which have to be told apart. The task of the correlation algorithm is to deliver 

a template to help with the selection of ROIs. This algorithm helps especially in cases 

where the raw fluorescence does not allow for a differentiation of the underlying 

structures, for example when data was obtained using bath-applied Calcium green AM or 

GCamp stainings of Drosophila projection neurons.  

 This procedure is not based on the raw fluorescence data but on the calculated 

signals, for example after calculating the ratios between the frames measured at two 

different wavelengths and subtracting the background fluorescence. The algorithm 

calculates the average degree of correlation between each pixel and its neighbors using 

the Pearson’s moment product correlation coefficient. The rationale behind this is that 

glomeruli act as functional units (Wachowiak et al., 2004). Therefore all pixels belonging 

to the same glomerulus should be active or inactive at the same time, resulting in high 

correlation values. Pixels belonging to different glomeruli in turn should be uncorrelated. 

It is obvious that this procedure can only work well on data which has been corrected for 
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movement, because only then do the pixel positions in different frames represent the 

same morphological structure. 

For the algorithm the fluorescence values of a pixel at different time points (the 

frames of the measurement) constitute the elements of a vector. Then the correlation 

between the vectors of neighboring pixels x and y is calculated as follows: 
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Where n is the length and x , y are the mean values of the two vectors x and y. The 

correlation coefficient may take any value between -1.0 and 1.0. A value of 1 shows that 

a linear equation describes the relationship between x and y perfectly and positively, with 

all data points lying on the same line and with y increasing with x. A score of −1 shows 

that all data points lie on a single line but that y increases as x decreases. A value of 0 

shows that there is no linear relationship between the variables. 
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A7) Correlation algorithm. Ai-Ci) Schematic representation of three measurements recorded in the same 

animal, based on a low quality Fura-2 dextran staining. Aii-Cii) Resulting correlation image when applying 

the algorithm on each measurement separately. Di) Schematic concatenation of the three measurements. 

Dii) Correlation image of the three concatenated measurements. Diii) Correlation image after concatenating 

all 27 measurements recorded in this animal. Ei) Raw fluorescence image of the two antennal lobes in 

Drosophila with stained projection neurons (GH-146:Gal4-UAS:6GCamp). Eii) Resulting correlation 

image for this animal. 

 

II) Implementation 

 For each pixel in a measurement, the correlation is calculated for each 

neighboring pixel and the resulting correlation values are averaged. The algorithm returns 

a correlation image in which all pixels have a value between -1 and 1. When applied to 

single measurements, the quality of the resulting images is often poor. This can be 

explained by the fact that changes in fluorescence in non active glomeruli are dominated 

by noise. As noise is always uncorrelated, pixels belonging to these glomeruli are 

uncorrelated, too. Therefore only those glomeruli which had been strongly active during 

the measurement can be discriminated in these correlation images. 

 To circumvent this problem the algorithm concatenates all measurements of 

responses to various odors obtained from the same animal as shown in Figure A7). The 

quality of the resulting correlation image is a direct result of the number of concatenated 

measurements and of the number of different odors measured.  

 

III) Result 

 Though often helpful, this algorithm is only one of several tools in the program to 

facilitate the selection of ROIs. Other algorithms like the automatic selection of activity 

spots in the images representing the measurements via adaptive thresholds and tools 

which allow for manually choosing, moving and deleting ROIs complete the repertoire of 

the program and allow for a fast and convenient selection of ROIs.  

  

 

 

 




