Elektrochemisch initiierte Strukturbildung durch Phasenübergänge, untersucht mit dem Rastertunnelmikroskop

DISSERTATION

zur Erlangung des Doktorgrades der Freien Universität Berlin Fachbereich Chemie, Biologie, Pharmazie

> vorgelegt von Dominik Thron aus Berlin

> > 2004

Die vorliegende Arbeit wurde von September 2001 bis Juli 2004 unter der Betreuung von Prof. Dr. Gerhard Ertl und Dr. habil. Rolf Schuster am Fritz-Haber-Institut der Max-Planck-Gesellschaft in Berlin-Dahlem angefertigt.

Erstgutachter:	Prof. Dr. Rolf Schuster
Zweitgutachter:	Prof. Dr. Helmut Baumgärtel
Tag der mündlichen Prüfung:	29. November 2004

Kurzfassung

In der natürlichen Welt sind Strukturen mit unterschiedlichsten Formen und Farben allgegenwärtig. Ein Weg, der zu interessanten Strukturen führt, ist die Strukturbildung durch Phasenübergänge. So werden beispielsweise Schneeflocken durch den Phasenübergang von flüssigem Wasser zu Eis gebildet.

Im Rahmen dieser Arbeit wurden labyrinthische, Nanometer große Goldstrukturen in der obersten Monolage eines Goldkristalls mit dem Rastertunnelmikroskop (STM) untersucht. Diese Strukturen entstanden durch die schnelle elektrochemische Auslösung von Atomen aus der obersten Monolage einer Gold(111)-Elektrode während eines Mikrosekunden langen Spannungspulses zwischen der Tunnelspitze des STM und der Elektrode. Die auf der Oberfläche verbleibenden Atome können als thermodynamisch instabiles, zwei-dimensionales Gold-Gittergas interpretiert werden, das einen Phasenübergang via Spinodale Entmischung durchführt. Die resultierenden labyrinthischen Strukturen wiesen einen vorherrschenden Abstand auf, der mit der Cahn-Hilliard(CH)-Theorie durch die dominante Wellenlänge λ_m beschrieben werden kann. Die experimentell bestimmte Wellenlänge von $\lambda_m \approx 4 nm$ stimmt im Rahmen modellbedingter Abweichungen sehr gut mit dem Wert der CH-Theorie überein, der für die Spinodale Entmischung eines Gold-Gittergases bei Raumtemperatur berechnet wurde.

Durch die Veränderung der Pulsparameter konnte die Bedeckung der Strukturen auf der Goldelektrode zwischen 0.45 und 0.9 Monolagen variiert werden. Die gemessenen dominanten Wellenlängen blieben dabei, wie in der CH-Theorie erwartet, konstant. Sowohl die Form der Strukturen als auch λ_m konnten mit einer Monte Carlo(MC)-Simulation des experimentellen Systems reproduziert werden.

Bei Verringerung der Auslösegeschwindigkeit der Goldatome wurden im Experiment, übereinstimmend mit der MC-Simulation, runde und kompakte Strukturen beobachtet, die für einen Phasenübergang via Keimbildung und Wachstum typisch sind. Der Übergang dieser Strukturen zu den labyrinthischen, für Spinodale Entmischung typischen Strukturen erfolgte fließend mit steigender Auslösegeschwindigkeit.

Das Wachstum der durch den Phasenübergang gebildeten, labyrinthischen Strukturen mit der Zeit wurde *in situ* mit dem STM beobachtet. Dabei hing die Wachstumsgeschwindigkeit stark vom elektrischen Potential der Gold-Elektrode ab. Die Auswertung der STM-Bilder nach verschiedenen Reifungszeiten zeigte übereinstimmend mit der MC-Simulation, dass die Strukturen im beobachteten Zeitraum selbstähnlich wachsen. Die Auswertung des Verlaufs der Strukturbreiten mit der Zeit ergab für kurze Reifungszeiten einen dominanten Massentransport entlang den Stufenkanten. Für lange Reifungszeiten dominierte der Massentransport über die Terrasse. Hierbei bestimmt die Diffusionsgeschwindigkeit der Adatome die Reifungsgeschwindigkeit.

Abstract

Structures with different forms and colors are very common in nature. One way leading to these interesting structures is the structure formation via phase transitions. The formation of snow crystals, for example, proceeds via a phase transition of fluid water to ice.

In the present work, labyrinthine nanometer sized gold structures in the topmost monolayer of a gold crystal were observed with a scanning tunneling microscope (STM). The structures were formed by the fast electrochemical dissolution of atoms out of the topmost monolayer of a gold(111)electrode by applying a microsecond long voltage pulse between the STM tip and the electrode. The atoms remaining on the surface can be interpreted as a thermodynamically unstable, two-dimensional gold lattice gas, which undergoes a phase transition via spinodal decomposition. The resulting labyrinthine structures showed a predominant distance, which can be described with the Cahn-Hilliard(CH) theory in terms of a dominant wavelength λ_m . The experimentally measured wavelength of $\lambda_m \approx 4 nm$ agrees within the accuracy of the model very well with the value given by the CH theory, calculated for the spinodal decomposition of a gold lattice gas at room temperature.

The coverage of the structures on the gold electrode could be varied between 0.45 and 0.9 monolayers by changing the pulse parameters. As expected from the CH theory, the measured dominant wavelengths stayed constant. The shape of the structures as well as λ_m could be reproduced by a Monte Carlo(MC) simulation of the experimental system. By slowing down the gold dissolution rate, round and compact structures, typical for nucleation and growth, were formed in the experiments, consistent with the MC simulation. The transition of the structures, produced by a small dissolution rate, to the labyrinthine structures, typical for spinodal decomposition, occurred smoothly with increasing dissolution rate.

The growth of the labyrinthine structures formed by the phase transition with time was observed *in situ* with the STM. Thereby a strong dependence of the growth rate on the electrical potential of the gold electrode was found. The evaluation of the STM images after different ripening times showed, in accordance with the MC simulation, a self similar growth during the observed period. The evaluation of the dependence of the width of the structures with time resulted in a dominant mass transport along the step edges for short ripening times, while for longer ripening times the mass transport across the terrace became dominant. The ripening rate is thereby limited by the diffusion rate of the adatoms.

Veröffentlichung

"Two-dimensional nanoscale self-assembly on a gold surface by spinodal decomposition", R. Schuster, D. Thron, M. Binetti, X. H. Xia und G. Ertl, Physical Review Letters **91** (2003), 066101-1-4.

Inhaltsverzeichnis

1	Einf	ührung	in die Thematik	1
2	Die	Die Idee: Phasenübergänge durch Elektrochemie		
	2.1	Von M	lischungen und Entmischungen	5
		2.1.1	Das Phasendiagramm einer binären Mischung	6
		2.1.2	Keimbildung und Wachstum versus Spinodale Entmischung	7
		2.1.3	Stabil, metastabil oder instabil - das ist hier die Frage	8
		2.1.4	Die Geschwindigkeit der Zustandsänderung bestimmt den Mecha-	
			nismus	10
		2.1.5	Modelle zur Spinodalen Entmischung	11
	2.2	Einfüh	rung in die elektrochemischen Grundlagen	14
		2.2.1	Die elektrochemische Doppelschicht	15
		2.2.2	"Schnelle Elektrochemie" durch Nanometer-Elekroden abstände $\ .$.	17
		2.2.3	Die elektrochemische (EC) Zelle in der Drei-Elektroden-Anordnung	18
		2.2.4	Charakterisierung der WE durch zyklische Voltammetrie $\ .\ .$.	19
3	Exp	eriment	telle Umgebung	21
	3.1	Das El	lektrochemie-Rastertunnelmikroskop	21
		3.1.1	Schematischer Aufbau	22
		3.1.2	Modifizierung des EC-STM für die Durchführung "schneller Elek-	
			${\rm trochemie}`` \cdot $	23
		3.1.3	Kalibrierung des EC-STMs anhand der Rekonstruktion der	
			$\operatorname{Gold}(111)$ Oberfläche	23
	3.2	Bearbo	eitung und Auswertung der STM-Bilder	24
		3.2.1	Korrektur der Höhendrift	24
		3.2.2	Quantitative Auswertung der STM-Bilder	25
		3.2.3	Identifizierung von Clustern	28
	3.3	Herste	llung der Tunnelspitzen	29
	3.4	Präpa	ration der STM-Proben	30

	3.5	Verme	eidung von Kontamination	30
4	Spir	nodale	Entmischung auf Metalloberflächen	32
	4.1	Exper	imente zur Spinodalen Entmischung - ein Blick auf die Literatur	32
	4.2	Spinoo	dale Entmischung und Keimbildung und Wachstum auf $\operatorname{Gold}(111)$.	35
		4.2.1	Die Elektrochemie einer Au (111)-Arbeitselektrode in $2M$ KCl $$. .	35
		4.2.2	Bildung eines Gold-Adatom gases durch "schnelle Elektrochemie" .	38
		4.2.3	Monoatomar hohe, labyr inthische Goldstrukturen auf Au (111) $$. $$.	40
		4.2.4	Die Anwendung der Cahn-Hilliard-Theorie für eine hexagonale	
			Oberfläche	44
		4.2.5	Vergleich der CH-Theorie mit experimentellen Werten	47
		4.2.6	Variation der Bedeckung der Strukturen	49
		4.2.7	Übergang von Spinodaler Entmischung zu Keimbildung und	
			Wachstum	53
		4.2.8	Nachweis statistischer Goldauflösung	56
	4.3	Phase	nübergänge durch De-Alloying	58
		4.3.1	Die Bildung von Oberflächenlegierungen	59
		4.3.2	De-Alloying einer Blei–Gold Oberflächenlegierung	60
		4.3.3	De-Alloying einer Silber–Gold-Legierung	61
		4.3.4	Auflösung der $Ag - Au$ -Legierung	63
	4.4	Zusam	nmenfassung	64
5	Reif	ung ve	rnetzter Strukturen	66
	5.1	Theor	etische Beschreibung des Reifungsprozesses	67
		5.1.1	Der Ansatz des selbstähnlichen Wachstums	67
		5.1.2	Zeitgesetze für das Strukturwachstum	68
		5.1.3	Atomistische Betrachtung des Massentransports	70
	5.2	In der	Literatur beschriebene Reifungsexperimente	71
	5.3	Potent	tialabhängigkeit der Reifung vernetzter Goldinseln auf $Au(111)$.	72
		5.3.1	In situ-STM-Bilder des Reifungsprozesses	73
		5.3.2	Wachstum anhand der Autokorrelationsfunktion	75
		5.3.3	Bestimmung der Potentialabhängigkeit der Aktivierungsenergie .	76
		5.3.4	Kontrolle der Reifungsgeschwindigkeit	78
	5.4	Wachs	stum vernetzter Strukturen	79
		5.4.1	Selbstähnliches Wachstum vernetzter Strukturen	79
		5.4.2	Bestimmung des vorherrschenden Reifungsmechanismus	81
		5.4.3	Bestimmung des Wachstumsexponenten n für $t \to \infty$	83
	5.5	Wachs	stum von Fehlstellen-Clustern	84

		5.5.1	Verhalten der Morphologie zu frühen Wachstumsstadien	85
		5.5.2	Spätes Wachstumsstadium von Fehlstellen-Clustern	87
		5.5.3	Wachstumsfunktion für Reifung von Fehlstellen-Clustern	89
	5.6	Inselw	rachstum bei nicht konstanter Bedeckung	90
		5.6.1	Verhalten der Wachstumsfunktion	90
	5.7	Zusan	nmenfassung der Ergebnisse	91
6	Mor	nte Car	lo-Simulationen zu Phasenübergängen	93
	6.1	Möglie	chkeiten zur Computersimulation des Reifungsprozesses	94
	6.2	Die G	rundlagen der Monte Carlo-Simulation	95
		6.2.1	Das zwei-dimensionale Ising-Modell	96
		6.2.2	Aufbau des Algorithmus für die MC-Simulation	97
		6.2.3	Modifikation des Algorithmus für das Gold-System $\ . \ . \ . \ .$	98
		6.2.4	Spezifikation und Geschwindigkeit des Programmes $\ . \ . \ . \ .$	99
	6.3	Betrac	chtung des Phasenübergangs und der Reifung bei 50% Bedeckung .	101
	6.4	Strukt	tur und Wellenlänge bei unterschiedlichen Bedeckungen	103
		6.4.1	Vergleich der MC-Simulation mit dem Experiment	104
		6.4.2	Vergleich der MC-Simulationen mit der CH-Theorie	106
	6.5	Einflu	ss der Temperatur auf die Morphologie	107
		6.5.1	Morphologie der MC-Bilder bei unterschiedlichen Temperaturen .	107
		6.5.2	Dominante Wellenlänge der Strukturen und Form der Korrelati-	
			onsfunktion	108
	6.6	.6 Einfluss endlicher Sprunggeschwindigkeit auf den Phasenübergang $\ .$.		110
		6.6.1	Ordnungszustand der Strukturen für verschiedene Auslösege-	
			schwindigkeiten	111
		6.6.2	Vergleich MC-Simulation und Experiment mit verschiedenen Aus-	
			lösegeschwindigkeiten	113
		6.6.3	Bildung vernetzter Strukturen durch Cluster-Verschmelzung	114
	6.7	MC-Si	imulation zur Reifung vernetzter Strukturen	116
		6.7.1	Reifung der Strukturen in den MC-Bildern während des Reifungs-	
			prozesses bei $300 K$	117
		6.7.2	Bestimmung des Wachstumsmechanismus für Reifung bei $300 K$	
			und $600 K$	118
		6.7.3	Die Bestimmung des effektiven Wachstumsexponenten	120
	6.8	Zusan	nmenfassung der Ergebnisse	121

7 Zusammenfassung

124

Verwendete Abkürzungen und Symbole

Häufig verwendete Abkürzungen

- ACF Autokorrelationsfunktion (auto correlation function)
- BW Bragg Williams
- CE Gegenelektrode (counter electrode)
- CH Cahn-Hilliard
- CV Zyklovoltammogramm (cyclic voltammogram)
- EC Elektrochemie
- $\mathrm{MC} \quad \mathbf{M} \mathrm{onte} \ \mathbf{C} \mathrm{arlo}$
- ML Monolage
- NN Nächster Nachbar
- pzc Nullladungspunkt (**p**oint of **z**ero **c**harge)
- RE Referenzelektrode (reference electrode)
- STM Rastertunnelmikroskop (scanning tunneling microscope)
- UPD Unter-Potential-Abscheidung (under-potential-deposition)
- WE Arbeitselektrode (working electrode)

Häufig verwendete Symbole

- A Geschwindigkeitskonstante des Reifungsprozesses
- e Elementarladung
- D Diffusionskonstante
- F Freie Energie
- G Wert der Autokorrelationsfunktion
- *H* Wert der zeitunabhängigen *Scaling-Funktion*
- k_B Boltzmann-Konstante
- *n* Wachstumsexponent
- N Avogadro-Zahl
- q Ladung
- r Korrelationsabstand
- t Zeit
- T Temperatur
- W Halbwertsbreite
- Z Anzahl nächster Nachbarn
- λ_m dominante Wellenlänge
- ϕ Potential
- θ Bedeckung
- ϖ Paar-Wechselwirkungsenergie

Lebenslauf Dominik Thron

Persönliche Angaben

NationalitätdeutschFamilienstandverheiratet mit Nadine ThronKinderkeine

Schulbildung

September 1990 - Juni 1995 Friedrich-Schiller-Gymnasium Königs Wusterhausen Abschluss: Abitur

Zivildienst

Juli 1995 - August 1996 Volkssolidarität Königs Wusterhausen

Studium

Oktober 1996 - Oktober 2000	Friedrich-Schiller-Universität Jena
	Fachrichtung: Chemie
November 2000 - August 2001	Diplomarbeit:
	Größenabhängige Effekte im System Festkörper - Lösung
	untersucht am Beispiel von Kieselsäure
	Abschluss: Diplom

Promotion

September 2001 -	Fritz-Haber-Institut der Max-Planck-Gesellschaft in Berlin
Juli 2004	Fachbereich: Physikalische Chemie
	Betreuung: Dr. Rolf Schuster