
 

 

Evaluation of LIDAR and Photogrammetric Elevation Data  

for Feature-based Forest Analyses 

 

 

 

Thesis  

in partial fulfillment of the requirements for  

the degree Doctor rer. nat.  

at the Department of Earth Sciences 

Freie Universität Berlin 

Germany 

 

 

submitted by 

S. Mohsen Miri 

 

Berlin  

August 2015  

 

 

  



 

 

 

 

 

 

Supervisor and 1
st
 Reviewer: Prof. Dr. rer. nat. Bernd Meissner 

Advisor: Prof. Dr.-Ing. Martin Kähler 

2
nd

 Reviewer: Prof. Dr. rer. nat. Hartmut Kenneweg 

3
rd

 Reviewer: Prof. Dr. rer. nat. Stephan van Gasselt 

 

 

Disputation on: 19.01.2016 

  



 

 

 

 

Declaration 

I declare that I have authored this thesis independently, that I have not used other than the declared sources / 

resources, and that I have explicitly marked all material which has been quoted either literally or by content from the 

used sources. 

Erklärung 

Hiermit versichere ich, die vorliegende Arbeit selbständig verfasst und nur angegebene Hilfsmittel verwendet zu 

haben. Die aus anderen Quellen übernommenen Daten und Konzepte sind unter Angabe der Quelle gekennzeichnet.  

 

S. Mohsen Miri 

 

 

Berlin, August 2015 

  



  



 

Abstract 

For qualitative and quantitative detection of forest resources, there is a demand to extract the stand parameters in 

forestry not only at stand level but also for single trees; high resolution digital surface models may be suitable for 

this aim. The dependence of most of stand features on tree height, demonstrates the importance of this element in the 

characterisation of forest stands from an environmental perspective and for the purpose of the timber industry. 

Airborne laser point clouds and photogrammetric stereo images are the two main data acquisition sources to generate 

the digital surface models for detailed and large areas of forests.  

The main aim of this research is to study these two surface models for feature extraction approaches based on height 

data. In the represented research neither the spectral information of the images nor the intensity values of the LIDAR 

data are used. For this purpose a novel concept, called eye-finger, is developed to simulate and analyze the surface 

models by touching the top levels of the tree crown with closed eyes. To translate the feeling of the human sense of 

touch into the language of machine vision, the geometric and morphological features are defined and evaluated on 

both laser-based and image-based canopy height models. Because of the high degree of noise in the laser data, a filter 

should be implemented before the comparison and the segmentation steps. The developed non-smoothing filter in 

this work removes the problematic pixels, while the roughness and the form of the trees remain unchanged. 

The work focuses on European mixed-forests, consisting of coniferous and deciduous trees. The roughness 

parameters used in the production industry are implemented to extract the surface characteristics of mixed-forests. 

The average-based parameters like Ra show the dependency of these surface evaluators on the age and tree type of 

the stand. The roughness parameters related to the standard deviation of the surface, measure the finer variations on 

the surface. An advanced roughness evaluator called Rfstd is developed in this research which captures minor height 

variations on the canopy and is independent from the mean height of the stand. 

At the single tree level an object-oriented strategy is mapped out. To extract the position of the single trees, a novel 

method, called marble-rolling is developed. The seed-objects, as the result of this process are employed for the 

supervised region-growing algorithm. Simultaneously, the shape characteristics of the growing segments are 

evaluated and optimized with morphological functions. For the characterisation of the single trees, both geometric 

features and morphological feature are implemented. The geometric feature provided better results to distinguish the 

coniferous tree-segments from the deciduous ones. The results of the segmentation are compared with a reference 

dataset. The test area, with mainly coniferous trees, is defined with a combination of terrestrial laser scanning and 

close-range photogrammetry. The evaluation of the topological relationships of the reference and target dataset 

provides high completeness and correctness results for the single tree extraction based on the airborne laser data.  



 

Zusammenfassung 

Zur qualitativen und quantitativen Erfassung der Waldressourcen gibt es den Bedarf, Parameter für Waldgebiete 

nicht nur auf der Ebene von Beständen, sondern auch für Einzelbäume zu erheben; hochauflösende 

Oberflächenmodelle können dafür zweckmäßig sein. Die Abhängigkeit der meisten Kenngrößen für Waldbestände 

von Baumhöhen zeigt, dass dieses Element der Charakterisierung von Waldbeständen sowohl für Umweltbelange als 

auch für die Holzindustrie sehr wichtig ist. Airborne Laser-Scanning und photogrammetrische Stereobilder sind die 

wichtigsten Datenerfassungsquellen, um detaillierte digitale Oberflächenmodelle für große Waldflächen zu 

generieren.  

Das Hauptziel dieser Forschungsarbeit ist die Untersuchung der beiden Oberflächenmodelle zur Merkmalsextraktion 

aus den Höhendaten. In der dargestellten Arbeit werden weder die Spektralkanäle der Luftbilder noch die 

Intensitätswerte der LIDAR-Daten verwendet. Zu diesem Zweck wird das neuartige Konzept „Eye-Finger“ 

entwickelt, um die Oberflächenmodelle durch Berühren der oberen Baumkronebenen mit geschlossenen Augen zu 

simulieren und zu analysieren. Um das „Gefühl des menschlichen Tastsinns“ in die Sprache der Bildverarbeitung zu 

übersetzen, werden die geometrischen und morphologischen Merkmale definiert und dadurch sowohl das 

laserbasierte wie auch das bildbasierte Höhenmodell bewertet. Um den Einfluss des Rauschens bei der Auswertung 

von der Laserdaten zu minimieren, muss ein Filter vor dem Vergleich und Segmentierung implementiert werden. Der 

entwickelte „Non-Smoothing“ Filter entfernt die problematischen Pixel, während die Rauheit und die Form des 

Baumes unverändert bleibt.  

Diese Arbeit konzentriert sich auf europäische Mischwälder, die aus Laub- und Nadelbäumen bestehen. Um die 

Oberflächeneigenschaften der Mischwälder zu extrahieren werden in der industriellen Fertigungstechnik entwickelte 

Rauheitsparameter implementiert. Die Parameter,  basierend auf der durchschnittlichen Höhe des Bestandes wie Ra , 

zeigen die Abhängigkeit dieser Oberflächen-Evaluatoren vom Alter und Baumtyp des Bestandes. Die 

Rauheitsparameter, bezogen auf die Standardabweichung der Oberflächen, messen die feineren Variationen auf der 

Oberfläche. Ein weiterer Rauheitsparameter, genannt Rfstd, wurde in dieser Forschungsarbeit entwickelt, um die 

kleinen Höhenunterschiede auf den Oberflächen unabhängig von der mittleren Höhe des Bestandes zu ermitteln. 

Für die Einzelbaumebene konnte eine objektorientierte Strategie entworfen werden. Um die Position der einzelnen 

Bäume zu extrahieren, wurde das neue Verfahren „Marble-Rolling“ entwickelt. Die „Seed-Objects“, als das 

Ergebnis dieses Prozesses, werden für das gesteuerte „Region-Growing“ der Baumsegmente verwendet. Gleichzeitig 

wurden die Formeigenschaften der wachsenden Segmente ausgewertet und mit morphologischen Funktionen 

optimiert. Zur Charakterisierung der Form und Oberfläche einzelner Bäume werden sowohl geometrische wie auch 

morphologische Merkmale verwendet. Die geometrischen Merkmale erwiesen sich als besser geeignet, um 

Nadelbaumsegmente von Laubbaumsegmenten zu unterscheiden. Die Ergebnisse der Segmentierung wurden mit 

einem Referenzdatensatz verglichen, der aus einer Kombination von terrestrischem Laserscanning und Nahbereichs-

Photogrammetrie aufgenommen wurde. In hauptsächlich mit Nadelbäumen bestandenem Testbereich konnte bei der 

Evaluierung der topologischen Beziehungen zwischen Referenz- und Zieldatensatz eine hohe Vollständigkeit und 

Korrektheit der Einzelbaumextraktion mit den von Flugzeug gewonnen Laserdaten festgestellt werden.   
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Introduction 

 

This chapter has an introductive 

view on the methods and 

significance of airborne height data 

in forestry applications, following 

with the motivation and the 

statements of the question. 
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1. Introduction 

1.1. Geomatics in forestry  

Forest mensuration deals with methods of qualitative and quantitative assessment of forestry 

areas in different scales. Over the last decade, these aspects have been expanded from 

determination of logs, trees and stands at a definite point and time [Laar and Akça 2007] to the 

assessment of wildlife, recreation and watershed management [Hyyppä et al. 2004]. In general, 

forest monitoring can be categorized as a long-term issue in climate protection and carbon 

preservation analyses, both at regional and national levels [Kenneweg and Weyer 2014]. Higher 

precision in forest mensuration can be used in biomass analysis and CO2 preservation 

approaches. In forest management applications, detection of forest damages with remote sensing 

data can help to control tree diseases and plan for reforestation [Meissner et al. 2004]. In the 

wood industry, according to the demand for raw materials, efficient management in transporting 

timber from the forest directly to the related manufacturing factories needs higher precision for 

measurements of the fell plans [Shan and Toth 2009]. For all of these reasons, more accurate 

qualitative and quantitative information on individual trees is requested in the base studies. 

Concluded in [Laar and Akça 2007],“the forest mensuration deals with the technical aspects of 

tree and forest stand measurements, such as:  

- Measurement of tree and stand variables, e.g. diameter, height, basal area, bark 

parameters, and volume of standing and felled trees 

- Determination of form and age of trees and forest stands 

- Determination of volume of standing and felled trees 

- Measurement of live crown and quantity of foliage 

- Estimation of biomass and biomass components of individual trees and stands 

- Estimation of the total and merchantable stand volume and its size class distribution 

- Estimation of the diameter, basal area, height, and volume growth of single trees and 

forest stands 

- Estimation of the damages and the quality of individual trees and forest stands 

Over the last decade, developments in remote sensing of the forest have changed profoundly, 

both from the technical and processing points of view, which shows the potential of 
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implementing these methods in regional and national levels for forest monitoring [Ackermann et 

al. 2014]. Especially for mixed forests, the necessity and the great interest in more detailed forest 

information systems for single tree delineation and classification based on height and spectral 

data has been noted since the last decade [Pyysalo and Hyyppa 2002; Bayer et al. 2013]. Such 

information systems require detailed three dimensional positioning and accurate attributing of 

single trees. Employing high quality digital elevation models acquired from forest areas, in 

addition to the high resolution multi-spectral information at single tree level, can provide the 

essential data for such geographical information systems.  

In geospatial applications, trees are one of the most complicated objects to survey. The 

difficulties in single tree delineation are basically due to the variety of tree types and their 

complexity of form and color. Textural changes in the tree crown occur relatively faster than its 

geometric characteristics. However, such geometric information is difficult to measure on the 

ground [Sheng et al. 2001]. In forest information systems, geometric feature extraction of single 

trees, by means of airborne data-acquisition sensors, focuses mostly on finding the trees positions 

by delineating the crown boundaries. This indicates that employing reasonable surveying sensors 

on the one hand, and appropriate tree extraction methods on the other, are the most challenging 

issues at this level of detail. Thanks to rapid developments in Airborne Laser Scanning (ALS) 

technology and High Resolution Stereo Cameras (HRSC), both from the technical [Baltsavias 

1999c] and processing points of view [Pfeifer et al. 2007], the provision of valuable geospatial 

information in forestry applications has been increasing [Leckie et al. 2003]. Using the potential 

of the recent photogrammetric sensors and the capabilities of the combined datasets are the 

current research topics in this area [Straub et al. 2013]. 

Regarding the cost-efficiency parameters, higher updating rate of the data acquisition [Straub and 

Seitz 2011] and due to the different characteristics of laser-based and optical techniques, one 

might ask whether or to what extent the digital surface models, provided with solely 

photogrammetric progresses, can meet the demands of forestry applications. Due to the different 

characteristics of high-resolution stereo images and ALS data, the demand for comparison and 

integration of these two data-acquisition methods arises to ensure automatically accurate and 

detailed single tree extraction. To achieve this goal, assessment of the strengths and weaknesses 

of each method should be taken into account [Mielonen et al. 2005; Sato 2010; Leckie et al. 
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2003; Heinzel et al. 2008; Wang et al. 2008]. This evaluation can be extended from spectral 

analysis of the data-acquisition sensors to the image-processing methods in machine vision 

algorithms. Additionally, the variety of the forest types from tropical jungles to the Scandinavian 

forest stands shows the range and diversity of research approaches in this area.   

With a particular focus on forest inventory at individual tree level in middle European mixed 

forests, this research aims at evaluating Digital Elevation Models (DEM), including Digital 

Surface Models (DSM) and Digital Terrain Models (DTM), generated from airborne laser 

scanners and high resolution aerial photogrammetric cameras. With the goal of developing an 

automatic algorithm for single tree extraction based on only DEM data and without the spectral 

channels, the challenging aspects for definition of optimized parameters are evaluated. 

1.2. Motivation 

The goals stated in the introduction are considered broadly, including the topics from forestry 

demands to the capabilities of the laser scanning and photogrammetry in this field and are 

detailed further in the next chapter. Airborne laser scanners and aerial imagery sensors are the 

most important sources for high resolution data acquisition in forestry. In the interest of 

improving the accuracy of the statistical analyses and also to save time and expenditure compared 

to traditional terrestrial forestry methods, there is a resulting increased demand for automatic 

extraction of single trees from these airborne platforms. Evaluation of acquired data focuses 

mainly on the end products, with the aim of developing computer-vision algorithms. In summary, 

the demand for optimization of accurate and detailed geospatial data in forest GIS is the 

overriding concern of this thesis. 

1.3. Statement of the question 

Single tree delineation requires 3D positional information on trees. That means the height of 

individual trees is a crucial element for biomass analysis and stem volume estimation which can 

be provided by remote sensing methods. Observing the forestry areas using high resolution 

airborne sensors has been implemented to define the position and extract the relevant attributes of 

a single tree. In this way, a dense point cloud of LIDAR data describes the complex geometry of 

the upper canopy of forest, suitable for extraction of tree height information [Pyysalo and Hyyppa 
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2002]. Along with airborne laser scanning, high resolution aerial images, as one of the basic and 

rich sources of detailed geospatial information for forest inventory, has been used for the relevant 

applications to a large extent. In contrast to airborne laser scanning, aerial images are updated 

more regularly for national or regional mapping aspects in several countries [Straub et al. 2013]. 

The problematic scope for readily generating Digital Elevation Models (DEM) from spectral 

imagery data as passive sensors on the one hand, and the shortcoming of LIDAR data in textural 

information on the other [Miri et al. 2013; Arbeitsgruppe Forstlicher Luftbildinterpreten 2012], 

illustrate the demand for evaluating the accuracy and correctness of these two data acquisition 

methods for single tree extraction. Leckie et al. (2003) achieved automated tree isolation from 

imagery data in the range of 80%-90% based on ground data. However problems occur in the 

shadowed areas, on surfaces with low contrast [Arbeitsgruppe Forstlicher Luftbildinterpreten 

2012] or homogeneous texture and in the open plots where sunlit ground vegetation exists 

[Leckie et al. 2003]. These weaknesses of optical imagery can be covered by employing the 

LIDAR data.  

From another point of view, tree isolation using only the LIDAR data has the disadvantage of 

poor delineation of the crown outline. Seamless integration with optical data is also important to 

possible savings in data acquisition and increased automation in the processing [Shan and Toth 

2009]. Several methods have been proposed and implemented to overcome these challenges. To 

succeed in an efficient single tree extraction model, synergy of imagery and LIDAR data is 

suggested [Leckie et al. 2003; Heinzel et al. 2008; Wang et al. 2008], which confers the 

advantage of the supplementary characteristics of each method onto the other. The objective of 

this research is to develop an automatic approach for evaluation of canopy height models from 

LIDAR-based and image-based sensors in order to investigate the following arguments: 

- To what extent can the digital elevation models, generated from imagery data, provide the 

required geometric data for single tree detection methods, in comparison to LIDAR data? 

- What are the characteristics of tree height models in LIDAR and photogrammetry 

elevation data and how can these specifications be measured? 

- Which parameters are to be considered for designing and developing automatic single tree 

detection methods using high density LIDAR data and high resolution aerial images? 
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To answer these questions, the potential and quality of airborne laser scanning and digital 

imagery to generate digital elevation models (DSM and DTM) needs to be evaluated. Keeping 

the characteristics of the datasets, challenging areas should be discussed and relevant parameters 

will be defined for automatic extraction of single trees. This investigation can be implemented in 

different levels, covering the sensor assessment up to the evaluation of the final products. In this 

research the focus is on the DEM products and post processing algorithms. 

1.4. Structure of the research 

After this introduction, the forestry terms related to airborne surveying as well as the technical 

characteristics and challenging aspects of imagery and LIDAR data in forest mensuration will be 

discussed in the next chapter. In chapter 3 the significant parameters in image-processing, 

affecting the relevant segmentation and classification algorithms will be indicated. Chapter 4 

deals with the definition and extraction of forest features from the LIDAR-based and 

photogrammetric surface models. In chapter 5 the proposed methodology for characterization of 

the forest stand and single tree extraction is explained in detail. The experimental results of the 

test area are discussed in chapter 6. Finally, in chapter 7 the conclusion of the research and the 

outlook for future work are discussed. The references and appendices are presented in chapters 7 

and 8.  
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 2 

Terms and Basics 

 

This chapter reviews the forestry 

terms used in airborne surveying of 

single trees, followed by the basics 

of aerial imagery and LIDAR in this 

area. The state of the art, limitations 

and advantages of both methods are 

compared focusing on forestry 

applications. 
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2. Terms and basics 

2.1. Single tree in forest mensuration 

The structure of a single tree begins at underground level, with the organs of the roots. On the 

ground, the tree bole connects the roots to the limbs of the tree trunk. In the upper parts the limbs 

are expanded into branches and twigs, forming the tree crown. This part of a tree is the most 

discussed area in biomass studies and can be observed by remote sensing methods. The tree 

crown might be covered by leaves depending on the tree type and season. The valuable limb of 

the tree in wood industry is, however, the tree trunk or bole, which is covered in bark. This part 

of the tree forms its structure to provide a support to the leaves, flowers or fruits while connecting 

them to the roots. In most cases it may not have leaves sticking out of it. In other plants, this 

connecting part is also called the stem of the plant. The term tree stem, in this research, has the 

same meaning as the tree trunk. The main goal of single tree delineation, using remote sensing 

techniques, is to extract the position of the tree stem through processing the tree crown analyses. 

2.1.1. Tree height measurement 

The tree height is defined as a parameter to determine the site class or site index of a stand for 

volume calculations [Laar and Akça 2007], which can be seen in Figure 1: 

“Total tree height is defined as the distance between the top and base of the tree, 

measured along a perpendicular, dropped from the top.” 

 

Figure 1: Tree height based on definition of [Laar and Akça 2007] 
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A detailed definition and comparison of the existing devices for measurement of tree height with 

traditional methods in forestry can be found in [Laar and Akça 2007]. In most of these methods, 

the measured tree height might differ, depending on the experimental skills of the forester and 

considering the different conditions of the forest area. Figure 2 shows one of the terrestrial 

methods, using a vertical scale and based on the inclination angles: 

  
               

           
 

 

Figure 2: Measurement of height with a vertical scale 

Using other terrestrial methods like Hypsometers
1
, the tree height can be obtained by measuring 

the horizontal distance (d) and the vertical angles: 

                ) 

In the equations above, the vertical angles have positive and negative values if they are higher or 

lower than the horizontal level. 

                                                 

1
 www.forestrytools.com.au 

http://www.forestrytools.com.au/
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2.1.2. Single tree parameters in forestry 

Geometric demonstration of the form of a tree is based on parameters defined in forest indices. 

Based on these parameters, including Diameter at Breast Height
2
 (DBH), Crown Length (CL), 

Crown Width (CW), and considering the height of the tree, new relational parameters can be 

extracted (Figure 3).  

According to [von Gadow 2005] the DBH can be used to calculate the Basal Area (BA) of the 

stand as one of the most used parameters in forest mensuration. 

    
 

 
∑      

 

 

   

 

Standwise parameters, like Stand Density Index (SDI), are related to the amount and density of 

the single trees, which can be calculated by: 

       (
 

  
)

   

 

where N is the stem quantity per hectare, n is the amount of the stems,   is a known parameter for 

the related stand and   is the average basal area which can be calculated by: 

   √
 

 
 
  

 
 

As can be seen in Figure 3, according to [Laar and Akça 2007], most of these parameters are 

related to the tree position and height. Parameters like Crown Ratio (CR), which is related to the 

age of the tree, can be obtained from its 3D extension. 

The crown ratio is defined with a logistic function [Hasenauer and Monserud 1996] using the 

linear combination of input variables and estimated coefficients (x): 

    
 

     
 

                                                 

2
 In general the breast height of the tree is 1.3m above the tree base. The parameter DBH, which is mostly used in 

stem analysis, is measured at this height of the tree. 
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Figure 3: Forest parameters based on characteristics of the tree crown 

However, in the developed models of the crown ratio, the competitive status of the subject tree 

should also be taken into account: 

                          

The variable b SIZE can be defined as a factor of tree height and DBH, whereas the factor d SITE 

depends on the environmental parameters like elevation above sea level, slope and azimuth of the 

aspect. The factor c COMP represents the competition measures, calculated by the basal area per 

hectare of the trees which are larger in diameter than the subject trees. The crown competition 

factor is calculated from the crown width for open-grown trees [Hasenauer and Monserud 1996]. 

In the case of competition, [Holdaway 1986] defines a model with the coefficients of (bi) 

extracted from: 

       (
 

     
)                 
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Assuming G is the basal area per hectare and d as the diameter of the subject tree, the coefficient 

b1 estimates the CR in the case of complete absence of competition and b2 is the rate of decrease 

of crown ratio in an increasing competition. 

In biomass estimation, the Crown Surface Area (CSA) of the tree can be defined as the covering 

surface of the live crown. Representing the crown of a coniferous in a parabolic form, the crown 

surface can be calculated as follows [Laar and Akça 2007]: 

    
   

      
       

 

 
        

As can be seen, along with the spectral properties of the tree crown, extracting the geometric 

characteristics of the crown closure (CW, CR, CSA) plays an important role to define the vital 

parameters in forestry. 

2.2. Remote sensing in forestry 

Remotely sensed methods provide techniques to observe the forest area from above and extract 

the needed parameters in relevant applications in forestry. Preparing forest maps from aerial 

photographs goes back to 1887 [Hildebrandt 1969], when an airborne balloon was used as the 

platform for photography of forest around Berlin [Laar and Akça 2007]. Since then, forest 

observation from aircraft systems has been developing in platforms, sensors, optics and 

processing algorithms. The remote sensing of forest areas ranges from satellite imagery to 

airborne data acquisition systems. The potential demand for implementation of the recent 

technologies and processing methods for countrywide forest applications has been outlined in 

[Ackermann et al. 2014]. The focus of this research is on the very high resolution aerial images 

and laser data. 

2.3. Optical imagery 

The spectral reflectance of the objects in aerial images depends on the material of the object and 

the incident rays. Depending on the tree type, the crown surface might change its texture and 

color in different seasons. Geometrically, trees do not have a regular flat shape, but rather a round 

surface. Furthermore the crown surface is covered by leaves, needles or twigs, with different 

density and scattering directions. That leads to a heterogenic surface on the tree crown. Due to 
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these two facts, the optical reflectance of the tree crowns might change in different times, 

different lighting angles and different observing views.  

2.3.1. Illumination condition in spectral images 

For a better understanding of the influence of illumination conditions on the texture of the crown, 

a 3D model of a single tree was generated from a photogrammetric digital surface model. Figure 

4 shows different reflectance of deciduous tree crown surface from top view. The lighting source 

is set artificially at the height of 45 degrees in four azimuths (0, 90, 180 and 270 degree). In this 

figure, the hill-shaded model shows that even with a unique texturing color (in this case gray) the 

texture of the surface model changes in different lighting of crown surface. 

 

Figure 4: Artificial reflectance of the crown surface, setting the light source at a height of 45 degree and azimuth of 

(from left to right) 0, 90, 180 and 270 degree 

A detailed optical modeling of the parameters, indicating different surface types and distribution 

of scattering and penetration can be found in [Larsen 1997].  

 

Figure 5: Illumination elements in spectral imagery of tree crown [Larsen 1997] 
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In the scattering model of Larsen, the passed ray of light in the direction of L through the foliage 

(Figure 5), which is also called the transmitted portion of light by the tree crown, can be gained 

by: 

            ∫∑           

    

 

where the surface of the tree crown is modeled with           and the density function of 

         ,      refers to type and density of the tree surface. This can be calculated by: 

         
∑      

             

∑           
  

          ∑         

        

  

       ∫∑                                 

    

(∑       

   

) |
  

  
|    

To practically demonstrate these parameters on a single tree surface, Figure 6 shows the effect of 

shadows on the surface model compared to the colored data. As can be seen, in multispectral 

images, the tree crown of a single tree, without surrounding objects is affected by the 

illumination condition, which changes the intensity values of the surface. 

 

Figure 6: Different texture caused from the shadows on tree surface (left) and from the tree height on the ground 

(middle) and effect of the shadows on colored data (right) 



Terms and basics   15 

 

 

The shadows in multispectral channels can be categorized in two groups. The first group is 

caused from the roughness of the tree surface. Such shadows affect the intensity value of the tree 

surface and results in heterogeneity on the texture of the tree crown. This puts the segmentation 

of the images in challenge. The second group of shadows resulted from the height of the tree, 

lead in covering the surrounding objects. This causes problems for distinguishing the crown 

boundary from the neighboring trees. In Figure 7, the segmentation of the single tree, affected by 

these two types of shadows, is represented and compared to the colored data. A multiresolution 

segmentation in eCognition (with scale parameter 100, shape 0.1 and compactness 0.5) is applied 

on shaded surfaces. Due to the additional textural information in color data, the scale parameter 

should be set to 1000 to gain a reasonable result. As a proper solution for removing shadows in 

spectral data, the vegetation indices, i.e. NDVI are applied in multispectral segmentation 

procedures. 

 

Figure 7: Multiresolution segmentation of shaded surface of a single tree with roughness shadows (left) and height 

shadows (middle) compared with spectral data (right). 

In Figure 8 the length of the shadow caused by the height of the tree is demonstrated and can be 

gained by: 

           

where,   is the angular altitude of the sun. 
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Figure 8: The length of shadows (S) in aerial images 

Additional to shadows, the occluded areas are also important to be discussed. This problem, 

which is caused by the geometry of the data acquisition and also the shape of the object, in this 

case the trees, results in no data areas in digital orthophotos. 

The occlusion problem is not only dependent on the tree height but also on the topography of the 

terrain. That means the lighting and reflectance of the trees in aerial images are also influenced 

by the terrain height variations. A detailed discussion about the influence of sunlight direction, 

topography of the ground and the geometry of the imagery on the illumination condition of the 

single trees can be found in [Adler 2001]. 
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Figure 9: Occluded areas (black) and projected surface of the tree crowns (green) in aerial images 

In [Larsen 1997] a geometric optical model is developed to extract the position of the single trees 

from aerial images with circular correlation templates. For the near-nadir parts of a stand in the 

image, more templates in different directions should be used. The radius of the templates varies, 

depending on the viewing angle, crown geometry and tree density within the stand. The image 

contrast is one of the decisive factors for effective recognition of the trees in this method. 

 

Figure 10: Different viewing angles and templates for STE from high resolution images [Larsen 1997]  

In the model of Larsen, 86%-92% of the trees were found from an even-aged stand of Norway 

spruce with 1m distance. For the delineation of the tree regions, the little shadows on the crown 

boundaries are advantageous; however these ideal shadows are not always available, especially in 

coniferous stands. 
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2.3.2. Tree measurement in aerial images 

The tree height can be measured, using the traditional methods in photogrammetry, by the 

difference of parallax in stereo images [Laar and Akça 2007] using: 

   
     

     
 

where    is tree height,    is the flight altitude above the tree base,    is the parallax difference 

of top and base of the tree and b is the base of stereo images (Figure 11). In a developed version 

of this formula for topographic areas, the tree heights can be calculated by [Laar and Akça 2007]: 

   
              

             
        

 

 

where    is the flight height above the principal point of the left image,         is the parallax 

difference between the base of the tree and the principal point of the left and right image 

respectively (Figure 11). As the element of  
       

 
 is near to zero, the approximated value can be 

gained by: 

   
              

           
 

For detection of the tree height from aerial images, the image resolution plays an important role. 

Particularly in coniferous trees, the higher the resolution, the more precise is the calculation of 

the height from stereo images. In the final steps, to reduce the loss of precision, a proper bit depth 

should be selected for the storage of height values in 2.5D raster images. 
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Figure 11: Stereoscopic measurement of tree height in flat (left) and topographic (right) areas (Laar and Akça, 2007) 

2.4. Airborne laser scanning 

The technology of laser scanning has been employed to provide a digital surface model of 

objects, both in terrestrial and airborne systems. The platform of an airborne laser scanner is a 

fixed wing aircraft or a helicopter. The principle of distance measurement with laser scanners is 

the measurement of the sent and received pulses of the laser beam considering the travel time of 

the light. The commercial Airborne Laser Scanning (ALS) systems operate at a wavelength 

between 800 and 1550 nanometer. 

 

Figure 12: Transmitted (AT) and received amplitude (AR) in time-of-flight ranging [Wehr and Lohr 1999] 

The main components of LIDAR (Light Detection And Ranging) devices consists of two 

components. First, the laser scanner to measure the distance to spotted points on the ground and 
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second the GPS/IMU units for the exact positioning and orientation of the system [Beraldin et al. 

2010]. The final result of this measurement is a huge amount of points, with 3D coordinates for 

each, called point cloud. The density of the point cloud depends on the aircraft velocity, flight 

height and the scanning rate, which varies between 0.2 and 50 points/m
2
. After timely 

synchronization between the measured points and the GPS/IMU data in a control unit, the point 

clouds will be saved in the storage unit. An operator laptop is used to set up the mission 

parameters and also for communicating with the control and recording unit. The preplanned flight 

lines are displayed for the pilot in a flight management system [Beraldin et al. 2010]. 

 

Figure 13: Left, ALS units from data acquisition to processing phases, right: Vector setup for geocoded LIDAR data 

[Shan and Toth 2009] 

2.4.1. Ranging systems 

With regard to the geometry of distance measurement, ALS systems can be classified in two 

types; light transit time and triangulation. In the former, the distance is calculated with 
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measurement of the send-receive time delay, whereas the latter calculates the distance with the 

triangular geometry created by the sent and the received pulses. Considering the ranging 

principle, the light transit time laser scanners, also known as time of flight, can be categorized in 

two systems of pulse and phase measurement systems, for discrete and continuous wave (CW) 

respectively [Shan and Toth 2009], [Beraldin et al. 2010]. 

 

Figure 14: Measuring principle of pulse (left) and continuous waves (right) [Shan and Toth 2009] 

In both systems, the ranging accuracy is affected by the signal to noise ratio (S/N) of the sensor. 

However the ranging resolution depends on the measuring precision of the travel time of the laser 

beam. Due to the principle of discrete measurement in pulse systems, the ranging resolution 

depends on the counting precision of the reflected and received pulses (   ). However in CW 

systems, the measuring precision of the phase difference (  ) determines the ranging resolution. 

Table 1 summarizes the relative equations from [Baltsavias 1999a] and [Shan and Toth 2009] for 

calculation of distance, resolution and measurement precision of these two ranging techniques.  

 Pulse Continuous Wave 

Range:   
 

 
         

 

  

 

 
   

 

 
   

 

  
   

 

  
   

Range resolution:    
 

 
          

 

  
      

Range precision:           
 

 
      

√      

      
         

      

  
 
√   

    
  

Table 1: Comparison of ranging methods in ALS systems  

In [Wehr and Lohr 1999] typical reflectivity of various diffuse reflecting materials for 900 nm 

wavelength are provided. Recently, the Full-Wave-Form (FWF) analyses of LIDAR data opens 

new aspects in recognition of the object types, based on the form of the backed pulses. 
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Figure 15: Typical reflectivity of deciduous and coniferous trees (in percent) in comparison with various diffuse 

materials for 900nm wavelength (values from Wehr and Lohr, 1999). 

To reach the optimized detection of the objects on the earth, the laser wavelength will be suited to 

the reflectivity of the object surface. As limitations, two factors of flight height and eye-safety of 

the laser beam should be specifically taken into account. An approximate equation for calculating 

the relation between transmitted (  ) and received power (  ) can be found in [Baltsavias 1999a]: 

    
     
   

    

where   is the range,     is an assumed Lambertian Bidirectional Reflectance Distribution 

Function (BRDF),    is the receiver area and   is the atmospheric transmission. 

This equation shows that, to obtain a predefined power in the receiver for a specific canopy type 

and atmospheric condition, the transmitted power should be increased in higher scanning flights. 

However, due to the eye-safety limitations during laser scanning projects, the amplitude of laser 

power should be controlled. This limitation is mostly of concern in urban areas, though is not a 

problematic issue in forests. The advantage of laser scanners as active sensors, and the better 

reflectance results during night, opens the possibility of data acquisition with higher laser power 

in forests to achieve better quality of intensity values. According to [Baltsavias 1999a] the 

minimum detectable object within the laser footprint, depends largely on its reflectivity and not 

on the object size.  

Dimension lumber, pine, clean, dry (94%) 

Snow (80-90%) 

White masonry (85%) 

Limestone, clay (up to 75%) 

Deciduous trees (typ. 60%) 

Conifereous tees (typ. 30%) 

Carbonate sand, dry  (57%) 

Carbonate sand, wet (41%) 

Beach stands, bare areas in desert (typ. 50%) 

Rough wood pallet, clean (25%) 

Concrete, smooth (24%) 

Asphalt with pebbles (17%) 

Lava (8%) 

Black neoprene, synthetic rubber (5%) 
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In addition to the atmospheric conditions and the parameters related to data acquisition procedure 

(as well as range, laser power, wavelength, laser aperture, detector sensitivity and noise level), 

the parameters caused from the object side like background irradiation, type of target reflectivity 

(defuse, specular or both), inclination and the 3D structure of the object surface, can influence the 

detection procedure of the object. 

 

Figure 16: Footprint (a, b, c) and swath width (d) in scanning geometry [Baltsavias 1999a] 

From the point of view of scanning geometry, the mentioned parameters might be affected 

regarding the position and the orientation of the single trees in scanning corridors. Furthermore 

the stand density and the surface type of the tree foliage influence the quality and quantity of the 

acquired point clouds. As the laser scanners are active sensors, the direction of the light source 

(sender) and the viewing direction of the imaging sensor (receiver) are almost the same. In this 

case the term shadow (the not illuminated areas) has the similar meaning to the occlusion (areas 

with obstacle in the viewing direction) in photogrammetric imagery. 

 

Figure 17: nDSM of a single tree from LIDAR data (left) and the shaded model of the point cloud (right). The lack of 

data at the occluded area shows where the laser beam could not reach the ground. 
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2.4.2. Noise 

As mentioned in section ‎3.2, segmentation of laser data in forest areas suffers from noise. The 

sources of the fluctuations on the Canopy Height Models (CHM) can be seen from two aspects; 

sensor-dependent or object-dependent. The former group of noises is caused from the wrong 

signals achieved or recorded by the sensor. This stems from the problems in sensor or backed 

pulses from the flying objects in the scanning direction [Shan and Toth 2009]. The second source 

of fluctuated points is the complex form of the tree crown. As laser beams can penetrate through 

the crown closure, the crown shape will contain some points under the tree crown surface and 

even on the ground. Such points remain even in the calculation of the nDSM. To overcome this 

problem, an advanced filter is needed, in which the problematic points will be first detected and 

then replaced with new values, calculated from the neighboring pixels. This should allow 

filtering of the crown closure without changing the crown shape. A comparison of neighborhood 

filters and a novel filtering method will be discussed in section ‎5.2.1. 

2.5. LIDAR-based and image-based elevation data 

As two basic and rich sources of detailed geospatial information in forest inventory, 

characteristics of photogrammetry and LIDAR have been issued and compared to a large extent 

in the literature [Baltsavias 1999b]. Airborne laser scanning showed its efficiency in forest 

mensuration in various algorithms and methods [Hyyppä et al. 2004]. Along with the LIDAR 

sensors, in recent decades, generation of digital elevation models from high resolution aerial 

images has been improving with respect to rapid developments in sensors and automatic 

matching algorithms [Haala and Wolff 2009], [Lemaire 2008], [DeVenecia et al. 2007]. However 

in optical imagery, the 3D measurement of the canopy surface models fronts with the challenges 

in stereo analysis and matching algorithms. A comparison of laser-based and image-based 

methods for acquiring the geospatial data in this area is discussed in [Miri et al. 2013]. Contrary 

to the laser data
3
, the advantage of aerial images rests on their spectral and textural contents. Such 

                                                 

3
 The current commercial laser scanners use mostly only one laser beam in a definite range of infrared 

wavelengths. Multi spectral lidar systems are developed to send multiple infrared laser beams to the canopies to 
extract more textural information from the forest surface. An exploration about a multi spectral canopy lidar 
system tested on different ages of single trees is provided by the school of Geo-Sciences at university of Edinburgh 
(www.geos.ed.ac.uk). 
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information is mostly used for delineation of tree species. Table 2 shows an overview of the 

strength and weaknesses of both data acquisition methods in extracting geospatial attributes in 

forestry.  

Capabilities and Potentials ALS Imagery 

Direct measurement of the surface   

Textural contents   

DSM generation   

DTM generation in dense forests (or in leafy season)   

DTM generation in sparse forests (or leafless season)   

Independence from illumination conditions   

Costs for repeatable measurement   

Independence from texture of the object   

Spectral information   

Table 2: Comparison of laser-based and image-based data potential for forestry applications  

(potential level: high; medium; low) [Miri et al. 2013]. 

Comparing these two sensors, the ALS data seem preferable to generate the digital elevation 

models of canopies. However, high costs of lidar projects, on the one hand, and the richness of 

information in image-based methods are the main reasons for the great interest in employing 

image-based technologies in forest mensuration.  

Due to the variations in terrain elevation, the DSM of the forest does not show the height 

variations of the trees. To eliminate the influence of the elevation changes on the ground, the 

normalized Digital Surface Model (nDSM), which is also called Canopy Height Model (CHM), 

can be calculated by subtracting the DTM from DSM. This shows the significance of both DTM 

and DSM data for more detailed information on individual trees. As a remarkable advantage, the 

capability of ALS data in capturing both surface models has been proven. Laser-based Digital 

Terrain Models (DTM) in the leafless seasons, can be used as a reference ground surface for 

generation of nDSM, because over time the terrain surface remains more unchanged than the 

crown surface [Miri et al. 2013]. 
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On the other side, image-based techniques, based on stereo matching algorithms like Semi Global 

Matching [Hirschmuller 2005], provide confidential results in DSM generation of forests. Due to 

the fact that the repetition rate of statewide coverage with airborne imagery is performed every 2-

3 years, these data represent a cost-efficient potential for forest monitoring. The complication in 

aerial imagery to reach the ground surface under the canopy, particularly in deciduous stands 

during leaved seasons is counted as a limitation of this method.  

To investigate whether or to what extent the image-based digital surface models fulfill the 

forestry requests, both laser-based and image-based DSM data are evaluated in [Miri et al. 2013]. 

This evaluation was performed over closed mixed forests in NRW province, Germany. For the 

image-based DSM, two sets of aerial images captured by UltraCam XP (Microsoft) with 8cm und 

20cm GSD of the forest area in Hoppengarten are compared.  

 

 

Figure 18: True-orthophoto of the test area Hoppengarten [Miri et al. 2013] 

For a better comparison of the tree forms in image-based and laser-based datasets, digital surface 

models are demonstrated in Figure 19. Although the laser data is filtered and free of noise and 

flying points, because of the measuring characteristics of laser scanners and the roughness of the 

tree surfaces, the DSM is represented as relatively heterogeneous. As can be seen, the SGM 

method, also results in an appropriate representation of the canopy surface, though with smoother 

surfaces, especially in 20cm resolution.  

3
0
m
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Figure 19: Test area Hoppengarten; DSM Laser 40cm, photogrammetric DSM 8cm and 20cm, RGB 8cm [Miri et al. 

2013] 

A comparison between the image-based and laser-based DSM is carried out on the 8cm and 20cm 

images in this area. To provide an independent reference dataset, the LIDAR data of this area is 

used. Both image-based DSM are subtracted separately from the DSM of LIDAR data. The 

differentiated images (Figure 20) demonstrate well-fitted results (green colors) on the ground and 

also at the highest levels of canopy elevation in both resolutions. The interpolated areas, mostly 

shows in blue colors, confirm the well-known problems of stereo matching algorithms in 

shadowed and occluded areas. This comparison shows that, although in many cases an increase in 

spatial resolution of aerial images leads to more detailed DSM, the outcome is not necessarily a 

better surface model. The red areas, which can be found for the most part along the outer 

boundary of stands, are assumed as matching faults. In this case the height value of laser data is 

more than the image-based DSM. The blue areas are mostly the no data areas where, after 

interpolation, the image-based DSM has more value. Occlusion, complexity of the texture on the 

trees, different representation of trees in overlapping areas of stereo images and inappropriate 

illumination conditions can be regarded as problematic aspects stemming from the object space 

(tree crowns) and the geometry of the imagery (see section ‎2.3), which influence the performance 

of matching algorithms. 
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Figure 20: Top: difference images with colorized height differences in decimeter; DSM_image_8cm – 

DSM_LIDAR_40cm (left), DSM_image_20cm – DSM_LIDAR_40cm (right). Bottom: True orthophotos 8cm (left) 

and 20cm (right)[Miri et al. 2013]. 

For further evaluations on the second test area, the photogrammetric images with 20cm resolution 

have been used. This dataset is representative as a standard data type, which can be provided 

using SGM or other similar matching algorithms. 

In the second test area (description in chapter ‎6) some single trees were not detected in the image-

based DSM (Figure 21). The absence of these trees, which is checked with LIDAR data (the blue 

points in the differentiated image) and also compared to existing shadows of them in the 

orthophoto of the same processed images, occurs mostly in open areas. 
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Figure 21: Existence of single trees in clearing areas: left and right; the existence of the trees through their shadows 

in the true-orthophoto and laser-based DSM, middle; the lack of the trees in image-based DSM. 
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 3 

Image Processing 

 

In this chapter, the basis for image-

processing and remote sensing in 

single tree extraction will be 

reviewed. 
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3. Image Processing 

3.1. Pixel-based vs. object-oriented image analysis 

In the classical definition of image classification, pixel based image analysis is based on both 

supervised and unsupervised methods, where the textural content of the images is used as the 

main criteria to delineate the objects of interest. Before classifying the image objects, the texture-

based criteria are used for segmentation algorithms (see section ‎3.3). In other words, in pixel-

based approaches, it is the texture of the image that defines the homogeneity criteria based on 

gray level values. The approach of Object Based Image Analysis (OBIA) facilitates spatially 

relevant management issues in a more intelligent way by exploiting the geospatial information 

from the Very High Spatial Resolution (VHSR) data  [Lang 2008]. In contrast to pixel-based 

image analysis, in OBIA, it is possible to insert some additional properties or features to 

influence the segmentation process. 

To achieve more intelligence in image interpretation of the geospatial based monitoring of the 

objects, the machine vision techniques should approach the ultimate goal of human 

comprehension. Since the last decade, the OBIA could bridge the gap between the image analysis 

software (as the producer of the geospatial information) and the geospatial information systems 

(as the analyzer of such information) via integrating different processing techniques. To solve the 

problem of complexity of the data, Lang (2008) explains the efficiency of the image analysis 

methods, considering the intelligence facets, as the way of: 

“… supervised delineation and categorization of spatial units, how implicit knowledge or 

experience is integrated and the degree, in which the output are contributing to an increase of 

knowledge and understanding of complex scene contents…” 

In [Baatz et al. 2008] an advanced approach of OBIA is discussed, which is called Object-

Oriented Image Analysis. The main idea in this context is the fact that the objects are not only 

used as information carriers but are modeled as moving from object primitives to the final stage 

of analysis with continuous extraction and accumulation of expert knowledge. This can be 

structured in modular and fractal procedures.  
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Figure 22: The generic procedure of object-oriented image analysis (left) and the fractal approach of segmentation 

and classification in a workflow [Baatz et al. 2008] 

To design such procedures, a workflow designed from some rules containing definite parameters 

can be set. In object-oriented approaches these workflows are also known as rule-sets. A simple 

example of a fractal workflow for the case of single tree delineation is demonstrated in Baatz et 

al., 2008, implementing basic segmentation
4
 and classification methods. In general, isolating the 

objects of interest (single trees) can be performed in two classification ways. In the first method, 

the focus is on extracting the objects which contain the candidates (called tree areas). Whereas in 

the second way, declassification of the other objects, where the existence probability of the target 

objects are at the lowest degree (called not tree areas) is the main task. In this research, 

integration of these two approaches will be implemented and evaluated.  

3.2. Scale-space 

Extracting the objects from the image data needs to work in an appropriate scale space. To extract 

the single trees from airborne datasets, an appropriate scale relating to the required level of detail 

(LOD) should be defined. In [Straub 2003], the problem of scale is indicated as a “chicken and 

egg” issue which means a trade-off problem. In general the problem of scale space can be 

discussed from two different points of view. In the first aspect, called data-based, the scale can 

be defined based on the level of detail of the dataset, which is interpreted as the geometric and 

spectral resolution of the image. In the 2.5D height data, the pixel size defines the LOD of the 

dataset in XY plane, whereas the radiometric resolution of gray levels demonstrates the 

                                                 

4
 The term segmentation is defined in Baatz et al., 2008 as all the procedures, those build, modify, grow, merge, cut 

or shrink objects. See section ‎3.3 for more explanation about segmentation algorithms.  
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geometric precision in the 3
rd

 dimension. In the case of LIDAR, the relevant parameters affecting 

the resolution include the flight altitude, velocity and scan rate. For photogrammetric imagery the 

flight height, the base/height ratio, sensor size and bit depth of the spectral channels play 

significant roles in precision of final DSM data. 

The other aspect for the definition of the scale space can be followed in post processing steps. 

How the dataset is stored, filtered or smoothed, which template size should be set in template-

matching algorithms and what type of segmentation is used, are the main issues in the so called 

process-based approaches. 

One solution for the problem of the scale space is to work in multiple scale-spaces. Two of the 

earliest methods of multi-scale representation of an image are the ‎3.3quad-tree partitioning (see 

section 3.4) and the pyramid space definition [Lindeberg 1993]. Using pyramid layers, the image 

is calculated and saved in different levels of detail from coarse resolution to fine. The advantage 

of scale-space representation in the pyramid spaces is the rapid calculation and demonstration of 

the image elements, which plays an important role in saving the computational memory. In 

segmentation methods, it is possible to provide such pyramids using similar methods like chess-

board segmentation, where each segment is a square with the calculated size from the required 

resolution. 

Defining         as a function for representing any signal and     , the linear form of 

scale-space representation of                 in [Lindeberg 1994] is constructed as 

follows: 

                 

where        is the Gaussian kernel: 

       
 

        
  ∑   

       
               

The standard deviation of the kernel        can be calculated by the root of the scale parameter:  

  √  
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Figure 23: Schematic 3D demonstration of the scale-space representation of a 1D signal [Lindeberg 1993] 

In 2.5D height images, Persson et al., (2002) attempts to define an appropriate scale space by 

smoothing the tree canopy with a 2D Gaussian filter in the way that each single tree has a single 

height maximum. 

       
 

√   
 
 
     

    

For this, the smoothing operation   was set in three steps from fine to coarse level with values of 

4/π, 6/π and 8/π. Thereafter, the tree positions are searched by finding the local maxima followed 

by a region growing algorithm to define the crown boundaries. 

Generally, the scale-space representation models can be equivalently defined in the form of 

diffusion equation: 

    
 

 
∑   

  

 

   

 

This form is the well-known physical equation of heat distribution over time t in a homogeneous 

medium with uniform conductivity [Lindeberg 1994]. 
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3.3. Segmentation 

Different definitions of the term segmentation can be found in the literature. In general, 

segmentation is the process of isolating objects of interest from the background (not relevant 

areas) based on partitioning the image into disjoint regions, called segments. After segmentation, 

each region is a homogeneous area with respect to some criteria such as gray value or texture 

[Roerdink and Meijster 2001],[Wah 2008]. In other words, a segmented image contains regions, 

which totally cover the entire image and are separated via specific criteria. 

Since in OBIA approaches, the image segmentation is the customary technique to extract the 

primitive units, image segments are mostly equated to image objects [Castilla and Hay 2008]. To 

obtain proper image objects, subdivision of an image varying from pixel level to larger segments 

(the whole image as the maximum segment size) is required. Due to different textural 

characteristics of objects in different images, it is not possible to define a unique segmentation 

algorithm for all image types. However, knowledge about the specificities of the objects of 

interest leads us to design the appropriate rule-set for this. 

3.3.1. Edge-based and region-based segmentation 

Based on the concepts of following the discontinuity or homogeneity properties of the image, the 

basic segmentation algorithms can be categorized in two types of edge-based or region-based 

methods [Hanbury 2008]. Considering the homogeneity criteria, the region-based methods 

partition the image by region growing (adding homogeneous pixels to a region) or region 

splitting (splitting the heterogeneous pixels that cannot satisfy the criteria). In advanced cases a 

combined method called region splitting and merging will be implemented. In region-based 

segmentation, the homogeneity value of each region will be evaluated, which is highly dependent 

on the imaging conditions and the characteristics of the objects of interest. In contrast, the edge-

based methods focus on separating the image by finding the borders of the image objects. 

3.3.2. Watershed transformation 

In image-processing, watershed transformation is a method of image segmentation, which is 

based on the combination of region-based and edge-based aspects [Wah 2008]. Recently, this 

method has been used in single tree delineation of both coniferous and deciduous stands with 
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combination of height data and spectral channels [Bayer et al. 2013]. The first attempts on 

implementation of the watershed contours in morphological analysis of images dates from the 

late 1970s by [Beucher and Lantuéjoul 1979] which is improved in the last decades for image 

partitioning algorithms [Vincent 1992; Vincent and Soille 1991; Roerdink and Meijster 2001; 

Wah 2008]. In practice, watersheds are one of the classical objects in topography [Vincent and 

Soille 1991]. A drop of water falling on the sides of watershed lines (like mountain ridges) flows 

down until it reaches a flat area, a river or other body of water. The water drops gather to shape 

the catchment basins like lakes. In image segmentation approaches, a gray scale image is 

assumed as topographical reliefs, where the gray value of each pixel stands for its height value. 

Contrary to topography, in the case of single tree delineation, this algorithm should be 

implemented on the inverted image of canopy height model, where the catchment-basins are the 

tree tops and the separating lines (watersheds) represent the crown segments. 

As can be seen in Figure 24, the concept of this method is to grow the regions around the local 

minima of an image until they reach the ridges in the grayscale values. The boundary of the 

image partitions are based on these extracted ridge lines. As well as the region-based techniques, 

this method can also be implemented in hierarchical levels of homogeneity. The difference 

between split and merge hierarchy and watershed hierarchy is the starting point. In region 

growing methods the starting points, called seed points, should be previously specified, whereas 

in watershed transformation the starting points are the local minima of the gray scale.  

 

Figure 24: Different phases of watershed segmentation by flooding on the landscape. The segment boundaries are 

demonstrated with thick lines [Wah 2008] 

A detailed explanation of watershed transformation can be found in [Vincent 1992; Vincent and 

Soille 1991; Roerdink and Meijster 2001; Wah 2008]. In 2D space with domain of     , 

assume the gray scale image   as an element in the differentiable continuous space;       . 
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The Topographical Distance between points   and   inside   is defined by the infimum
5
 of the 

path   on the surface   as followed: 

           ∫‖        ‖  
 

 

 

For this image, which has the minima {  }      for some index set I, the Catchment Basins 

       can be defined by: 

        {    |       { }                                  } 

The catchment basins are the sets of points     which are topographically closer to    than to 

any other regional minimum   . Based on these two preliminaries, the watershed transform of  , 

represented in [Roerdink and Meijster 2001] can be defined by a set of points which belong to the 

complement of the catchment basins: 

         (⋃      

   

)

 

 

In other words, the segment lines are the connected points, which do not belong to any catchment 

basins. 

The challenging aspect in watershed transformation is controlling the partitioning stages of the 

image. A solution in this case is the hierarchical partitioning of the image by synchronous 

flooding using depth parameters. In this case, the first basins, which could be connected by depth 

1, obtain the weighting value of 1. At the next flooding depth (e.g. gray scale or height depth 

value) there is no new connection in basins, whereas in depth 3, new basins could join each other. 

The new connection gets the depth value of 3. This process goes on until all image pixels are 

filled. The joining vertices (in 2D) or the ridge lines (in 3D) show the dams or segment 

boundaries. 

                                                 

5
In mathematics, infimum is the greatest lower bound of a set  , defined as a quantity   such that no member of 

the set is less than  , but if   is any positive quantity, however small, there is always one member that is less than 
    . (http://mathworld.wolfram.com/Infimum.html) 

http://mathworld.wolfram.com/Positive.html
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Figure 25: Construction of a partition hierarchy by synchronous flooding using depth function. On top of each 

diagram, the separated segment values caused from connection weights of depth are demonstrated in different gray 

values [Wah 2008] 

This progress shows the high dependence of watershed transformation on the image resolution 

and the bit depth of the image. Furthermore the contrast and the complexity of the object contours 

in the image play a decisive role in this segmentation method. For manmade objects where the 

image contours on the object have a significant contrast to each other, this method is 

recommended. However for natural objects, specifically for trees, where the separating contours 

are not even visually easy to detect, this method leads to oversegmentation in image partitioning. 

The specific characteristic of watershed transformation is that this method works only in the 

image space and not in feature space and is independent of the scale space [Straub and Heipke 

2007].  

In the discrete case, the watershed transformation confronts the problem of plateaus, i.e. regions 

with constant or non-minimum gray value [Roerdink and Meijster 2001]. In this situation the 

falling drop might not find the appropriate steepest path to the basins. This can be solved by 

calculation of the vectors called Skeleton by Influence of Zones (SKIZ). For this, the cheapest 

distance function will be calculated [Meyer 2001; Vincent 1992]. Schardt et al. (2002) and based 

on [Roerdink and Meijster 2001] a lower completion algorithm should be applied to convert such 

plateaus into hills, leading the drops to the next lower neighbor pixel. A detailed review of 

different watershed transformation algorithms can be found in [Najman and Couprie 2003].  

3.3.3. Object-oriented segmentation of single trees 

Choosing appropriate segmentation algorithm is one of the challenging aspects in object based 

image-processing, because it significantly influences the scale-space representation of the scene. 

In this way, the characteristics of some common algorithms in object-oriented image-processing 

will be reviewed in the following. To gain a better understanding, each algorithm will be 

implemented on image-based and laser-based canopy height models of a single tree using the 
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eCognition software. Note that, the RGB channels from true-orthophotos are also demonstrated 

in the background; however, they are not implemented in the segmentation procedures. 

Chessboard segmentation 

One method of changing the scale-space is to change the unit of the detail (pixel size) in the 

image space. Subdividing an image (or image object) into equally square parts (grids) can be 

performed with chess-board segmentation [eCognition 2013]. In this method of segmentation the 

pixel values or the image texture are not taken into account. The grid size defines the extend to 

which the information should be detailed in the image object space, while the pixel-based 

properties are still saved in the new cells. Figure 26 shows the segmentation of an image-based 

nDSM with 20cm pixel size, segmented in grids of 10 pixels each (2m grid size). This 

segmentation method is usually used as the first step, before any other segmentation step, to 

define the level of resolution pyramid at which we are working. This varies from pixel size 

(smallest object size in an image) to larger grid sizes (the largest size is the whole image). 

 

Figure 26: Chess-board segmentation of an image-based nDSM with grid size of 10 pixel (2m) 

Quad-tree segmentation 

In this method, the scene will be divided into square objects with sides of power two, varying 

from the pixel size to the maximum square object of   ×   for some     . Quad-tree 

segmentation is one of the earliest types of multi-scale representation of image data (Klinger, 

1974 in Lindeberg, 1994). In the first step, the scene will be divided into four objects and if the 

segment value does not exceed the threshold, the subdivision process will be continued. The 

threshold can be based on the defined measure e.g. mean value or standard deviation. 



Image Processing   41 

 

 

  

   

Figure 27: Quad-tree segmentation of image-based (top) and laser-based (bottom) nDSM of a single tree with scale 

parameter of 10, 50, 100 and 200 (left to right) 

Figure 27 shows the quad-tree segmentation of the single tree. As can be seen, the structure of the 

object is not easily detected. 

Threshold or contrast splitting segmentation 

With definition of a threshold, an image can be split into dark and bright areas (Figure 28). Based 

on the object level, the contrast splitting segmentation starts with a chessboard segmentation, 

followed by stepwise splitting of the objects or pixels [eCognition 2013]. 
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Figure 28: Contrast split segmentation with step 10, chessboard object size 10 pixels or 2m (left and top-right) and 

100 pixels (right-down) 

The number of split segments depends on the radiometric resolution of the image. In the case of 

DSM images this equates to height difference steps. As demonstrated in Figure 29, due to the 

radiometric resolution of 10 centimeter in the dataset, there is no significant difference between 

the contrast steps of 10 and 20.  

  

Figure 29: The small difference in Contrast Split with step 10 (left) and step 20 (right) with chessboard object size of 

100 (the red subset from previous figure) 
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The strength of this segmentation method lies in the delineation of the tree crown boundaries. 

However the influence of noise, especially in nDSM of LIDAR data, is a disadvantage to this 

method. Due to these two facts, a proper filter which can remove the high frequency noises 

within the tree crown and simultaneously preserve the edges on the tree boundaries needs to be 

implemented on LIDAR data, before using this segmentation method. 

Spectral difference segmentation 

This method merges the segments, according to their gray value. Spectral difference 

segmentation is basically for refining the previously segmented images with other algorithms 

[eCognition 2013]. That means using this method on small object sizes, i.e. pixel size level, 

might result in oversegmentation, which is a disadvantage to rough LIDAR data (Figure 30). To 

deal with this problem, one might determine high threshold values, however this results in losing 

more details of the image texture. Therefore, using this method needs a previously strong filtered 

dataset for laser-based CHM. 

  

   

Figure 30: Spectral difference segmentation of image-based (top) and laser-based (bottom) nDOM with maximum 

difference of 1, 5 and 10 (left to right) after a chessboard segmentation at pixel size 
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Multiresolution segmentation 

In multiresolution segmentation, the image layers can be weighted considering their significance 

and influence on the segmentation process [eCognition 2013]. Additionally, the level of details 

(LOD) on the image object can be defined with scale parameters. To define an appropriate scale 

parameter, one should consider which layers have more influence on the segmentation. As 

demonstrated in Figure 31, some objects might not change in different scales (like the large open 

air region). However, the smaller objects (e.g. the free space area) might not be recognized as a 

separated segment in lower LOD.  

  

Figure 31: CHM image segmented with multiresolution algorithm in eCognition with scale parameters 100 (left) and 

200 (right) with shape parameters 0.1 and compactness of 0.5 

It should be noted that reducing the scale parameter will increase the influence of noises in the 

dataset, which is a considerable issue in LIDAR datasets. Figure 32 shows the differences in 

segmentation of image-based and laser-based nDSM with different scale parameters.  
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Figure 32: Multiresolution segmentation of laser-based (up) and image-based (bottom) nDSM of a single tree with 

scale parameter of 10, 50, 100 and 200 (left to right) 

As can be seen, in areas where the trees are separately isolated, for example in urban areas or 

farm trees, the height differences provide a contrast between the gray scale values and the 

background (buildings or ground). This means that in bigger values of scale parameter the tree 

crown can easily be segmented in both datasets. Comparison of the multiresolution segmentation 

of both datasets at the scale parameter 10 shows that the structure of the object influences the 

final form of the segments. At this level, one can observe that in laser-based nDSM the segments 

are more or less in line with the direction of the background object (southwest to northeast on the 

plowed ground in Figure 32). However in the image-based nDSM, this structure would not affect 

the segments.  

Combination of segmentation methods 

In the software eCognition, the segmentation methods can be combined, taking account of the 

characteristics of the requested objects and the results of each algorithm. Therefore, choosing the 

order and the image object level of each algorithm plays a significant role to enhance or lose the 

initial elements of the object. In Figure 33 two segmentation results are demonstrated where the 

chessboard segmentation with a big grid size (2m) under a multiresolution segmentation (scale 

200) results in losing the edges on the boundary of the tree crowns. 
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Figure 33: Chessboard 10 pixel or 2m (the cell represented in red) under a multiresolution with scale 200 (left) and 

spectral difference segmentation (sp.diff. =100) on LIDAR nDOM after a multiresolution segmentation with scale 

100 (right). 

On the other side, with the order of multiresolution after spectral difference segmentation, the 

tree edges seem to be refined, but the gaps between trees are wrongly filled. Figure 34 shows the 

appropriate separation of the tree stands area and ground, using spectral difference segmentation 

on the nDSM data after a multiresolution segmentation. 

  

Figure 34: Spectral difference segmentation on nDOM with 10 maximum difference after a chessboard segmentation 

at pixel size 
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Compared to the color data, the stand boundaries and the gaps between the trees are enhanced 

properly, whereas the noisy characteristic of the LIDAR data caused some small dots in the 

segments. These can be easily removed with a size filter in the stand classes. It should be 

emphasized that in this thesis, all of the spectral analyses are implemented on the height data. The 

spectral channels (R,G,B and NIR) are shown for visual comparison and imagination of the 

reader and never used in the algorithms. 

To isolate the single trees in segmentation procedures, one should provide a proper object space. 

In a rule-set, the object space varies from one rule to the other. The output of one step can be the 

input of the other step. This means the features, defined in the rules, should carry the requisite 

characteristics of the target object in each level. The term segmentation level can be discussed 

from different aspects considering these parameters: 

- At which height level should the features be created? 

- Which features can represent the characteristics of the object? 

- In which scale-space (see section ‎3.2) can these features be more efficiently provided?  

As mentioned in [Miri et al. 2013], in the image-based DSM, because of the problems in the 

interpolated areas, which are caused by shadows, the most reliable segmentation level is within 

the highest parts of the nDSM. In this research, this elevation level of the canopies will be 

investigated for both image-based and laser-based datasets. In the next chapter, appropriate 

features are developed to perform this evaluation. 
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 4 

Feature Extraction 

 

This chapter will discuss the 

features; these represent the 

geometric and morphologic 

characteristics of tree crown. 
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4. Feature Extraction 

4.1. Features in single tree extraction 

In general, extractions of single trees are categorized in bottom-up or top-down methods [Maar 

1982 from Bechtel 2007], which can also be referred as data-driven and model-driven approaches 

[Straub 2003].  

 

 

 

 

 

 

 

 

Figure 35: Top-down or model-driven (up) and bottom-up or data-driven approach in tree extraction [Straub 2003] 

The main issue in the top-down strategies is how to find the single trees if a previously 

mathematic model of the trees is provided. This case is similar to template-matching algorithms. 

On the other side, the bottom-up approaches focus on the delineation of single trees with 

extraction of image objects using segmentation and classification algorithms. 

4.2. Template-matching 

Feature extraction by template matching methods is sensitive to the texture and shape of the 

object of interest. For man-made objects, these algorithms are mainly based on the spectral data. 

The key point in such algorithms is providing an appropriate level of detail considering that: 

- More spectral channels will increase the levels of textural information.  

- Higher resolution might increase the level of detail, but depending on the sensor type, 

shape and complexity of the object, and the parameters of the processing method, it might 

lead to inconsistent or inappropriate results. 

Template matching techniques for single tree detection are for the most part used in conifereous 

stands. This is because of the quasi star shape of the single trees in airborne images. It should be 
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noted that some coniferuous trees like pine do not satisfy such form and have primarily the form 

of deciduous trees. However, it is the imaging conditions, resolution and the DSM generation 

method which influence the quality of the true-orthophotos. As can be seen in Figure 36, the true 

orthophoto with higher resolution (8cm) shows more detailed parts of the tree crown, though the 

star form of the trees has lost its symmetric geometry. 

    

Figure 36: Different projection of trees in true orthophotos with resolutions of 8cm (left) and 20cm (right) 

When using the height data, the tree template can be defined with a mathematical form. As the 

single trees of even a particular stand type are different in size, a dynamic template is needed, 

which changes its size related to the forest parameters of the stand. 

In model-based approaches the trees can be defined as geometric objects. Considering the 

parameter   as the crown height data in the ellipsoidal model of [Larsen 1997], a tree can be 

modeled with: 

       

  
 
          

  
   

In a simple form, this model can be replaced with the generalized ellipsoid of revolution from 

[Pollock 1996]: 
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Figure 37: Generalized ellipsoid of revolution with         

The advantage of using the height information is that, based on the geometric parameters, the 

templates can be fitted on the crown surface. However, as the trees have different form and 

height within a stand, a single mathematical model which fits all the trees cannot be defined. 

4.3. Local maxima 

In object oriented approaches, the local maximum, as one of the commonly used features to reach 

the highest point of trees has been discussed in the literature [Solberg et al. 2006]. The local 

maximum is defined as a pixel where all the 4 connective neighborhoods have lower height 

values [Koch et al. 2006]. In the case of equal height pixels, they will be connected and form a 

plateau. Generally, local maxima are used as seed points in region growing algorithms. However, 

to avoid false seed points (local maxima on the lower vegetation), a height threshold is 

implemented at the beginning of such algorithms. Baatz et al., 2008, defined a workflow in object 

oriented image analysis to find the local maxima in ALS data (0.5 m) which is based on the 

object primitives. However, the background of the forest should be defined as non-tree area at the 

first step using a height threshold. In [Koch et al. 2006], the stand is classified into two classes of 

low trees and high trees. In this way, the basic object domain is prepared for the next processing 

steps. For extraction of the tree crowns in this method, the positions of the trees are needed as 

seed points. They are extracted in the next steps, where the segments are broken down into 

primitives of the size of one pixel (using chessboard segmentation). This step is followed with a 
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searching window to find the local maxima as probable tree positions. By comparison of the grey 

value of the current pixel with its neighboring pixels, the local maxima in tree-areas are classified 

as tree positions. Finally, the tree positions are used as seed points for a region growing 

segmentation. For analysis of the tree crown diameter, the quality of the tree shape is very 

important [Baatz et al. 2008]. That means an appropriate refinement algorithm is required for best 

fitted tree crown boundaries. 

To find the local maxima in spectral data, the most illuminated part of the tree should be searched 

for. It is to be noted that, depending on the elevation of the sun and the position of the tree in the 

image, the peak point of the tree is not necessarily the most illuminated point of the tree. This 

means, to use the RGB datasets, the topography, illumination condition, shape and inclination 

angle of the tree at the time of imagery should be taken into account (see section ‎2.3). These 

conditions should be predefined in color-based template matching algorithms to model the tree 

on the top levels. More detail about the template matching of tree models in spectral data can be 

found in [Erikson and Olofsson 2005]. 

4.4. Top hat slices 

As well as local maxima, the top slices can also be defined as seed objects. The main problem in 

finding the local maxima is the definition of the scale space. In detailed scales (i.e. higher 

resolution) the local maxima are confronted with oversegmentation. That means the number of 

local maxima are more than the number of the existing trees. In coarse scales, this results in 

undersegmentation. In the single tree detection flowchart of [Miri et al. 2013], the top hat slices 

are found as a segmentation step before finding the local maxima. In this way, the candidate 

points, as the maxima of the crown surface, will be searched in the top hat slices. The advantage 

of this workflow is that classifying the low and high trees can be undertaken in the preliminary 

steps and before classifying the low and high vegetation. As defined, extracting these segments is 

also dependent on the segmentation algorithms and their relative parameters. In other words, 

segmentation of the height data at top hat level is an advanced solution for the problem of scale 

space to find the local maxima. However, definition of appropriate top hat segments is also 

related to the characteristics of the data acquisition method and to the geometry of the tree types. 
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Figure 38: Top hat segments on an image-based nDSM with 20cm resolution (top left) using spectral difference 

segmentation (top right), multiresolution segmentation (down left) and Quadtree segmentation (down right) 

Figure 39 shows the difference in the multiresolution segmentation of image-based and laser-

based nDSM, with scale, shape and compactness parameters of 50, 0.1 and 0.5. As can be seen, 

such trade-off parameters result in slight undersegmentation in coniferous trees and a high 

oversegmentation in the deciduous tree (lower left corner of the area).  
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Figure 39: Different top hat levels (green segments) and local maxima (red pixels) in different nDSM; image-based 

(left) and laser-based (right) 

In [Miri et al. 2013], before evaluating the geometry and morphological characteristics of the 

crown model, the top level slices are extracted using the colorized contour maps, defining the 

trees in different segmentation heights. Figure 40 represents the workflow of this procedure.  

 

Figure 40: Processing workflow of the feature-based evaluation of the DSM data at the level of THS (red) [Miri et al. 

2013] 

In the first step, the nDSM is extracted from the DSM with 20cm pixel size and the laser DTM of 

one meter. Thereafter, an automatic segmentation, based on the elevation data of the nDSM is 

implemented. This step is followed by the selection of the local maxima segments on the top hat 

slices. This has the advantage that the classification of ground and not ground areas is performed 

after top hat segmentation. In later techniques, like in [Andersen et al. 2001], highest levels of 

CHM data are used to detect the tree positions using a structural element in the form of a flat disk 

[Adams 1993], [Jones and Soille 1996]. The critical point in [Andersen et al. 2001] is the 2D 

form of the structural element. To solve the problem of scale space, they used different filters 

(0.9m, 1.2m and 1.5m cell size), which meant losing the crown form of the trees.  
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This model can be improved by definition of a 3D form parameter while adding the height 

dimension to the morphological analysis and the problem of scale space can be solved by using 

different structural elements. The main idea in this part is to create a multi-layer scale-space by 

putting several hats in different size and form groups on the tree crowns. Theoretically, these hats 

are created by running 2.5D morphological features in spherical, ellipsoidal or conical forms.  

 
    

     

 

Figure 41: 2D and 3D fitness of structural elements in five scale spaces and different height sections for the hat with 

the formula of  
 

  
 

     

  
  , with     ,     

Presetting the size and shape of the hats can determine the non-linear multi-scale space of the 

model. Obviously, the type and quantity of these layers vary depending on the tree type 

(coniferous or deciduous) and the forest density. To improve the efficiency of this method, the 

most appropriate section of the structural elements on the surface model should be calculated for 

different height sections. 

4.5. Surface analysis 

Interpretation of the height data for single tree extraction requires consideration of the 

characteristics of the containing stand. The arguments which will be put forward in this section 

are relevant to the understanding of 3D surface characterization. Such analyses are rather 

important in forest stands, where estimated values for the stand height are required for the pre-

definition parameters of single tree extraction. The mean height of the stand, height of the trees 

with the basal area and mean height of the dominant trees are discussed in [Laar and Akça 2007] 

through a height profile as significant values for stand-wise analysis of forests. Such surface 
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analysis can be compared to similar cases in industrial spaces. Quality assessment of industrial 

pieces with irregular variations or analyses of ceramic, cement or other surfaces in microscopic 

dimensions give rise to similar discussions as in this area. These methods are categorized into 

mechanical (direct contacting the surface) or optical (without touching the surface) systems. 

Figure 42 shows the 1D (profile), 2D and 3D results of a light-based measurement of a concrete 

surface using coherence scanning interferometry.  

 

  

Figure 42: Results of micrometric measurement of a concrete surface using coherence scanning interferometry 

demonstrated in 2D, 3D and profile on the blue line (www.nanovea.com) 
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Figure 43: Top: True-color and false-color surface model of a mixed forest near to other flat surfaces. Down: 2D 

profile of the laser-based nDSM the rough surface (black) and the filtered surface (red) 

A detailed review of experiments in this area can be found in [Blunt and Jiang 2003]. For 

engineering production purposes, an already measured digital surface can be analyzed using 

several mathematical parameters to explain the difference from design to the final product.  

To demonstrate the texture of a surface, the so-called Birmingham 14 parameters were developed 

in the early 1990s and improved under the SURFSTAND project into the 15 S-parameter set in 

numeric forms, which are now taken up by the European and International Standard 

Organizations (CEN/TC 290 and ISO/TC 213) for 3D texture analysis of surfaces [Blunt and 

Jiang 2003]. These parameters are categorized in five types, amplitude, spacing, hybrid, fractal 

and other parameters (Table 3).  
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Table 3: The S-Parameter Set  

Depending on the surface type and the required features, the relevant parameters can be applied. 

In general, the texture of a surface can be defined as a rough, wavy or primary surface. According 

to [Blunt and Jiang 2003] the amplitude parameters focus on the height deviation, whereas the 

other ones focus on the texture and forms on the surface. For this reason, the amplitude 

parameters will be investigated for analysis of forest surface models in this research. 

Feature Value Description 

  Mean height of the profile Arithmetical average of the surface 

   Averaged roughness over the entire measured length of profile Standard deviation of the pixel values from   

   Root mean square roughness. Height between the highest peak and the mean plane 

    Skewness of the surface. Depth between the mean plane and the deepest valley 

    Kurtosis on the surface Difference between the peak and the valley point. 

Table 4: The R-Parameter Set  

Roughness can be defined as fine variations on the surface model, which are caused by the 

irregular structure of the crown surface. The strength of the roughness depends also on the data 

capturing method, including the sensor type and the (re)sampling method of the surface. In 

Amplitude 
parameters 

•Root mean 
square 
deviation - Sq 

•Skewness -Ssk 

•Kurtosis - Sku 

•Maximum 
peak/valley 
height - Sp, Sv 

•Maximum 
height - Sz 

•Arithmetical 
mean height of 
the surface - Sa 

Spacing 
parameters 

•Density of 
summits - Sds 

•Fastest decay 
auto-
correlation 
length-Sal 

•Texture aspect 
ratio - Str 

Hybrid 
parameters 

•Arithmetic 
mean peak 
curvature - Spc 

•Root mean 
square slope - 
Sdq 

•Developed 
interfacial area 
ratio - Sdr 

Fractal 
parameters 

•Fractal 
dimension - Sfd 

other 
parameters 

•Texture 
direction - Std 

•Ten point 
height of 
surface - S10z 
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general, roughness evaluators are sensitive to the signal to noise ratio of the sensor. Table 4 

shows a list of some of these parameters
6
 for a 2D profile on the surface. 

Based on the definitions in [ISO_4287 1997; ASME_B46. 1 1985] and [Blunt and Jiang 2003] 

the advanced mathematical formula of these parameters is explained below for a continuous 

surface model.  

The average roughness (  ) of surface can be calculated from: 

   
 

 
∬|        |
 

     

where A is the area and µ indicates the arithmetical mean height of the surface: 

  
 

 
∬      
 

     

The standard deviation of the surface roughness can be calculated from the distribution of the 

height data using the root mean square (  ) on the surface model: 

   √
 

 
∬                
 

 

Skewness (   ) qualifies the symmetry of the height distribution by measuring the average of the 

first derivative on the surface. A negative value of skewness indicates that the surface is made up 

of valleys and the distribution slopes to bottom, whereas positive values relate mainly to the 

occurrence of peaks and asperities. That means the distribution slopes to the top. Due to the large 

exponent used, this parameter is very sensitive to the sampling and noise of the measurement: 

    
 

  
 [
 

 
∬                
 

] 

Kurtosis (   ) qualifies the sharpness of the peaks on the height distribution and as well as 

skewness, noisy data can affect this parameter too:  

                                                 

6
 The roughness parameters are defined in the ISO 4287/1: 1997, DIN 4768 and DIN 4776. They are generally used 

in metrology of industrial and optic surfaces: www.imagemet.com, www.smt.zeiss.com. 

http://www.imagemet.com/
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In this research the surface analyses of the forests will be performed using these amplitude 

parameters. However, for the height data in raster format, the continuous form of roughness 

parameters should be transformed into discrete form. 
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 5 

Methodology 

 

 

In this chapter the existing methods 

of analyzing digital elevation models 

in forestry areas will be discussed 

and the algorithm used in this work 

will be introduced. 

 

 
  

 



Methodology   64 

 

 

5. Methodology 

5.1. Eye-finger concept 

As single tree extraction is directly related to the characteristics of the stand type, surface 

evaluation of canopy height models is required for presetting a couple of parameters in forest 

partitioning. By means of these parameters, the real form of a tree will be shaped and evaluated 

for automatic algorithms. A workflow to define and set the parameters for the relevant features in 

height data is needed to describe the methodology of this research. In terms of rule-sets, the 

fractal form of object-oriented workflows was explained in section ‎3.1. To structure an intelligent 

system, an efficient workflow should be able to transform, process and reproduce the required 

information for recognizing the object of interest. In other words, an intelligent machine should 

be able to train itself to some extent. In the approach to single tree extraction through the height 

data, the single tree detector machine can be assumed as a blind person. The sense of feeling or 

touching the forest canopy, without seeing it, will be simulated via a novel concept, called Eye-

fingers. In this concept, to extract, define and visualize the parameters, the human sense of 

touching will be simulated by machine vision techniques. Like a trained blind person, this 

algorithm attempts to recognize the forest type and find single trees. In this vision, the trees are 

imagined in very small dimensions, where, one can feel the forest with closed eyes, without any 

additional spectral information. To translate this feeling from the language of human perception 

into machine language, an object-oriented approach in image analysis of digital surface models is 

implemented. For feeling small objects, thanks to the human sense of touch, one can evaluate the 

geometry (e.g. size and shape) and morphology (e.g. roughness and texture) of surfaces to 

interpret the surface and recognize the objects of interest. In the case of designing an intelligent 

system, these parameters should be mathematically translated into machine language.  

This chapter represents a novel workflow of single tree extraction (Figure 44), categorized in five 

units. The first unit deals with Data preparation. Separating the tree and non-tree areas is 

undertaken in the next unit, entitled Tree boundaries. Thereafter, the provided layers and the tree 

boundaries are imported into the segmentation units, called Marble rolling segmentation and 

Tree crown segmentation. Finally, the delineated tree crowns are compared with the reference 

measurements in the Evaluation unit.  
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Figure 44: Object oriented workflow for single tree extraction 
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5.2. Data preparation 

To provide the appropriate layers, two-sided image-processing of height data is considered. In 

this concept, both model-based and data-based methods (top-down and bottom-up) for single tree 

extraction are implemented. As a basic layer, the nDSM of both the laser-based and image-based 

are prepared. As explained in previous chapters, the laser dataset needs to be filtered for a 

supervised reduction of the problematic points on the surface model. During the interpolation 

steps in generation of the image-based DSM, the digital surface models are rather smoothed and 

need no more filters. In the next section, a novel approach of filtering the laser dataset is 

introduced. From the filtered nDSM, the curvature images are extracted and will be used for the 

delineation of the stand boundaries. 

5.2.1. Noise and filters in processing the LIDAR data 

Due to the flying points from the false measurements and the rough surface of LIDAR data that 

arise because of the complexity of crown surfaces, an appropriate filter is needed for removing 

the outliers in the nDSM data, while keeping the form of the tree structure. To develop such 

filters, two aspects should be considered; first the positioning method of the tree and second the 

boundary of the crown region. In general, the problematic points during the segmentation of 

CHM datasets can be categorized in four groups, described below: 

1- Flying points over the tree surface, which cause false local maxima on the tree surface 

and challenge the positioning of the trees (e.g.), should be replaced with points laid on the 

crown surface. 

2- Flying points over the ground surface, which result in false peaks on the ground, should 

be replaced with the points on the ground.  

3- Ground points under the tree surface, which stem from penetration of the laser beam 

through the tree crown, lead to oversegmentation of the crown segment; they should be 

replaced with the points on the crown surface. 

4- Holes on the tree surface, which are caused from the complex structure of the crown 

surface or due to the penetration of the laser beam, should be replaced with the points on the 

crown surface. 
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Figure 45 demonstrates a side view of these outliers on tree height models in LIDAR data, coded 

with above numbers.  

 

Figure 45: The problematic points in the laser-based height data
7 

Table 5 demonstrates an overview of the existing focal filters in the software ArcGIS 10.1, with 

size of 3 pixels. Due to the high frequency of the height variations in forest surfaces, filters 

dealing with the number of pixels (variety, majority) are not recommended. Such filters search 

for unique values while the other pixels remain unchanged. This is not the appropriate solution on 

smoothing the crown surface.  

The filter minority detects values that occur least often in the neighboring cells, but will not 

remove them. The minimum filter results in shrinking the crown boundary. Whereas using the 

maximum filter the tree region grows to some pixels. Before rasterizing the point cloud datasets, 

these two filters are appropriate for generating the ground surface models (DTM) and crown 

surface models (DSM) from the last pulses and the first pulses of the laser data. 

Among the other statistical filters, Mean and SUM reduce the high frequency noises. Losing the 

sharpness of crown boundaries and smoothing the top points of the segment, are the two main 

disadvantages of such filters. The Range and STD filters enhance the high frequency changes in 

                                                 

7
 The original form of the tree symbol is from www.pngimg.com. 
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the neighborhood pixels, which can be used for a rough segmentation of the crown boundaries. 

To remove the high frequency noises, while keeping the sharpness of the crown boundary, 

Median filter shows the most satisfying results. As a weakness, this filter cannot preserve the 

upper structure of the crown surface and removes the peak points, though not as strong as Mean 

filter. 

Filter Type Description 
Filtered               

crown model 

Tree 

structure  

Tree 

boundary 

Variety the number of unique values of the cells in the 

neighborhood 

 

  

SUM total of all values of the cells in the neighborhood 

 

  

STD standard deviation of the cells in the neighborhood 

 

  

Range difference between largest and smallest value of the 

cells in the neighborhood 
 

  

Minority value that occurs least often in the neighbor cells 

 

  

Minimum smallest value of the cells in the neighborhood 

 

  

Median median of the cells in the neighborhood 

 

  

Mean average value of the cells in the neighborhood 

 

  

Maximum largest value of the cells in the neighborhood 

 

  

Majority value that occurs most often in the neighbor cells 

 

  

Table 5: Some geospatial filters in software ArcGIS 10.1 
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5.2.2. Selective or Non-smoothing filter 

To overcome this problem, a new approach in filtering the LIDAR data will be introduced in this 

section. A non-smoothing filter based on a threshold value is developed. Using this filter the 

problematic points, i.e. the flying points (above the crown surface or ground) and the holes 

(within the tree crown) are detected and replaced with relevant height values. Figure 46 shows 

the workflow of this filter in three steps.  

 

Figure 46: Non-smoothing filtering of the laser-based nDSM data 
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In the first step, after providing the nDSM dataset, a comparison surface layer is calculated using 

a smoothing statistical filter (e.g. median). The filter size depends on the resolution and the noise 

frequency of the surface model. Thereafter, the four problematic pixels (explained before) are 

detected using a differentiated image of both original and comparison surface. The quantity of 

these pixels (red in Figure 47) depends on the tree type of the stand.  

 

Figure 47: The problematic pixels in laser surface models of deciduous and coniferous trees    

Higher amounts of repaired pixels in coniferous stands show more roughness of the surface 

models for narrow-leaved trees than the deciduous ones. The strength of the filter for detecting 

such areas can be set by a threshold value. In the last step, the problematic pixels are replaced 
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with the mean or median value, calculated from the neighboring pixels. Figure 48 shows the 

nDSM of a LIDAR dataset, before and after filtering. 

  

Figure 48: Laser-based nDSM data before (left) and after (right) filter 

5.3. Boundary delineation 

A tree stand consists of outer and inner boundaries. The outer boundaries are usually defined by 

setting a threshold for sudden differences on the nDSM. Figure 49 shows such boundary lines in 

red, which separate the outer border of a stand from the neighboring ground area (or neighboring 

stand). However, the most challenging regions are the boundaries inside the stand (demonstrated 

with blue lines). 

 

Figure 49: The outer boundary (red) and some inner boundaries (blue) of the mixed Stand 1 on laser-based (left) and 

image based (right) canopy height model 
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To extract the valley regions (e.g. the gaps inside the stand), setting a unique height threshold 

might not result in proper bordering of the valleys. In the next unit of the workflow, to enhance 

the slight variation on the height data, the 2nd derivative and curvature of the stand surface are 

provided as additional image layers. For each point on a continuous surface, infinite curvature 

values can be calculated, regarding the direction of the cutting vertical plane. The curvature of a 

point on a surface can be calculated from its two principal directions, where the curvature values 

have maximum (   
 

  
) and minimum (   

 

  
). These values are called principal curvatures. 

   and    indicate the radii of the fitted circles on the curve along the principal directions. The 

angle between these two directions can be defined with     [Fuchs 2003].  

           
         

   

Using these parameters, the mean curvature value (   
     
 

) and the Gaussian curvature 

(        ) can be obtained. The Gaussian curvature determines whether the surface has a flat 

(    ) convex (                ), concave (                ) or saddle (    ) form. To extract 

the crown boundaries, the curvature along the slope direction (  ) can represent the form and 

sudden changes on the CHM data. Figure 50 shows an image-based canopy height model 

generated from SGM algorithm and the derived curvature values along the slope (ArcGIS 10.1). 

As can be seen, in addition to separating the tree areas from the ground surface, the abrupt 

changes in different tree heights can also be used recognise the tree groups in different ages.  

 

Figure 50: Image-based nDSM (left) and its curvature along the slope (right) of a mixed forest area 
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In laser-based canopy height models (Figure 51), the locally dominant trees can be recognized in 

   images although, the heterogeneity of these lines, specifically near to the boundary of tree 

groups in the same age, confirms the demand on filtering the LIDAR data, without changing the 

crown shape.  

 

Figure 51: Laser-based nDSM (left) and its curvature profile (right) of a mixed forest area 

As well as other edge-detection methods, the edge pixels do not produce continuous lines to 

partition the image [Hanbury 2008]. Due to the complexity of the geometry of the boundaries, in 

this thesis, this layer will be combined with region-based techniques. 

5.4. Morphological Analysis 

To determine the geometric structure of the canopy surface in a quantitative way, morphological 

functions can be employed. The concept of such functions is originally for 2D binary images to 

extract predefined geometric objects. According to [Andersen et al. 2001] the goal of any 

morphological operation is: 

“… to gain information relating to the geometric structure of an image by probing the 

image with another set of specified size and shape, known as a structuring element…. In 

formal terms, a morphological operation is an image transformation with the 

structuring element serving as the parameter for the transformation.” 
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Such structures can be used for 3D grayscale images, in which the gray values represent the form 

of the object in the third dimension. The four important morphological operations are dilation, 

erosion, opening and closing. According to the theory od sets, detailed mathematic terms of these 

operations are described in [Soille 2003] and [Andersen et al. 2001]. Assuming set A as the entire 

image and set B as a smaller set of structuring elements both from an Euclidian d-dimensional of 

the real space (R), the relative morphological operations are shown below:  

Dilation:     {     |                           } 

Erosion:      {     |                      } 

In image-processing, the opening and closing operations are combinations of dilation and 

erosion. With definitions of addition and subtraction operations of Minowski from [Young et al. 

2007] for   ̃  {   |    }, the 2D operation of the dilation and erosion can be defined. 

 

 

 

 

 

Commutative, non-commutative, associative, translation invariance and duality are the main 

properties of these operations which are detailed in [Young et al. 2007]. In practice, dilation and 

erosion are used together forming the opening and closing operations: 

Opening:                         

Closing:                 (   ̃)  ̃  

For example, an erosion followed by a dilation makes up the morphological operation opening. 

Figure 52 shows an object, reshaped by morphological operations.  

Addition:      ⋃           

Subtraction:      ⋂          

Dilation:            ⋃           

Erosion:            ̃  ⋂          
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Figure 52: Morphological operations on an object in a binary image space [Smith and Scientist 1999] 

In image-processing, the dilation is used for region growing, filling, and expansion of an image 

object, whereas the erosion is implemented for shrinking, reducing or thinning purposes to 

extract the skeleton of the object. For an efficient reshaping of image objects, the opening and 

closing operations can be used for the refinement of final objects with removing the irrelevant 

parts (sharp concave or convex edges, noise and holes). The standard forms of the structural 

elements are defined with 4 and 8 neighborhood objects. Additional to the two dimensional 

binary images, in the third dimension, the geometric analysis of image objects can be performed 

by the gray level values of each pixel. This means, the subset B can be defined in the 3
rd

 

dimension using the gray values as height data. 

In single tree delineation, analysis of the crown boundaries can be evaluated like the binary 

images in two dimensions, however the form of the tree crown can be analyzed with 3D 

structural elements. Looking at a profile of a tree, Figure 53 shows the effect of two 3D 

morphological operations on the 3
rd

 dimension. The dilation and erosion operations are 

implemented running a spherical structural element on the 3D model of the crown.  
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Figure 53: Profile of a tree height model (left) after dilation (middle) and erosion (right) with a spherical structural 

element 

As can be seen, these operations affect the two significant elements of the tree structure in CHM 

models; crown projection (crown width) and tree height (crown length). As a consequence, one 

can say that the morphological operations influence the scale space of the image in a non-linear 

form. In other words, an advanced erosion operator can be used for extracting the tree positions 

as seed points. As the dilation operator changes the crown boundary, a supervised workflow is 

needed, in which the opening and closing operations can control the reshaping of the crown 

structure.  

5.5. Marble-Rolling segmentation 

The main geometric assumption in 2D structuring elements is the circular form of the crown 

projection (see section ‎4.4). To model the growth form of the tree in the third dimension the 

crown model is assumed as having an elliptical shape [Pollock 1996], [Straub 2003]. In reality, 

due to the irregular form of tree crowns, defining a single model for even a particular forest type 

needs additional assumptions like vitality (e.g. vegetation indices) to be obtained from the 

spectral channels [Straub 2003]. In this way, an adequate contrast between the trees and the 

environmental objects (ground, asphalt, buildings, etc.) improves the efficiency of these methods. 
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The question is how to reach the tree positions without such information, while only using the 

height data. 

In this chapter, a novel approach, called Marble-Rolling (MR), will be introduced. This method is 

independent from the spectral information and is based only on the geometric form of the tree 

crown in digital surface models. For this, the flat circular structural element (disk) in [Andersen 

et al. 2001] will be developed in the third dimension, transforming into marble (spherical) forms 

as the morphological objects
8
. The probable positions of the trees are extracted based on the 

projection of these marbles. To aid understanding, the concept of this method will now be 

explained. Imagine an inverted grayscale image with basins as demonstrated in Figure 54. Then, 

try to roll several marbles with a unique size into the basins until they find their fixed positions.  

 

Figure 54: Profile of a tree height model with a ground threshold (left) and the inverted one (right) 

Each marble will project a circle on the XY plane from its most fitted parts to demonstrate the 

probable position of the tree peak point in this scale space. The projection image will be saved in 

a binary image layer as the first probability image of the tree positions. This step will be repeated 

with bigger marble sizes (Figure 55) to create a multi-layer scale space. The main idea in this 

method is that, the side branches of a tree can be automatically removed. If an already detected 

tree position in fine scales is not repeatedly detected by other marbles, this will not be considered 

as the tree top, but as a false neighboring branch. Therefore such positions can be automatically 

removed in the coarser scale spaces (larger marbles). The advantage of this method is that it does 

                                                 

8
 In this thesis, the extraction of marble projections layers is a function of a surface analysis tool (FEATsurf), 

developed by the author in the Graphical User Interface (GUI) of the software MATLAB (see Appendix 2 und 
Appendix 3). For this function the sphere structuring element in MATLAB is used. 
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not need a height threshold. Therefore, even very small neighboring trees in lower elevations will 

be detected. 

 

 

Figure 55: Marble rolling with different marble sizes (top and middle) and combined format 

To set the size of the marbles the linear relationship between the crown width and the DBH is 

calculated by: 

             ̅  

where  ̅ denotes an average value for DBH in the stand. According to the forest parameters, 

defined in the forest management book at the University of Goettingen in Germany [von Gadow 
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2005], the equation can be defined individually for deciduous and coniferous trees in different 

forms. For example for spruce and beech stands the following formulas can be used. 

                     ( ̅) 

                      ̅  

To design these marbles into a raster format, the round form of a sphere should be transformed 

into voxels. Depending on the resolution of the dataset and the size of the image objects the 

precision of the voxel spheres can be defined (Figure 56).  

 

Figure 56: The voxel spheres9 in 2D (left) and 3D (right) with diameters of 8 pixels (top) 20 pixels (middle) and 50 

pixels (bottom) 

After rolling the marbles (moving the voxelized spheres) on the height data, the projection layers 

will be extracted in binary images (Figure 57).   

                                                 

9
 The voxels are generated using the online tool plotz (www.plotz.co.uk). 
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Figure 57: Binary images of the 3D marbles with 2m and 3m radius in a coniferous stand 

It should be emphasized, that this method provides the seed layers (in this case they are not called 

seed points anymore) required for the region growing steps. This decision is taken because each 

peak point on the tree top might not necessarily be the highest point of the tree. To get the top 

level segment of a tree, a relative portion of the highest level from the tree crown is required 

[Miri et al. 2013]. That means the size of the marbles is dependent on the tree geometry. The 

difference in geometric characteristics of coniferous and deciduous stands leads to different 

grouping of the marbles. For coniferous stands, the workflow can start with smaller marbles than 

for deciduous ones. Furthermore, the conic form of these tree types shows more changes in 

marble images from small to bigger sizes, whereas, the deciduous stands show less necessity to 

work with different marble sizes. As a solution, based on the tree type, the projection layers are 

also weighted during the segmentation steps.  
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Figure 58: Multi-layer demonstration of the structural elements for three marble sizes 

To extract the top portion of the crown surface, the marble projection layers can be extracted and 

weighted (between 0.0-1.0) through object-oriented with multi-layer segmentation methods. In 

coniferous stands the weighting value of small marbles, as the top point of the tree, is to be set 

near to one, whereas the bigger layers get less weighting values. 

 

Figure 59: Multiresolution segmentation of marble layers of a coniferous stand in eCognition with parameters: shape 

0.1, compactness 0.5 and scales 10 (left) and 50 (right). Marble layers are weighted from 0.0 to 1.0 with 0.1 intervals 
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In the case of deciduous stands, the weighting value on the smaller marbles should be less than 

the bigger ones. This is because the deciduous trees might have more than one local maximum on 

their crown surface.  

 

Figure 60: Multiresolution segmentation of marble layers of a deciduous stand in eCognition with parameters: shape 

0.1, compactness 0.5 and scales 10 (left) and 50 (right). Marble layers have the same weighing value of one 

Figure 61 and Figure 62 show the results of multiresolution segmentation of marble layers with 

sizes from 1 to 9 pixels (radiuses between 0.2 – 1.8 m) for laser-based and image-based plot data. 

The segmentation is performed in two scales (10 and 50). Compared to the segmentation results 

in Figure 59 the tree tops are more accurately recognized than in the case using marble layers 

with 10 - 20 pixel radii. 
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Figure 61: Multiresolution segmentation of marble layers of a laser-based nDSM of a coniferous stand before (left) 

and after (right) merging the marble segments 

 

Figure 62: Multiresolution segmentation of marble layers of an image-based nDSM of a coniferous stand before 

(left) and after (right) merging the marble segments 
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A comparison between these two datasets demonstrates that the laser data distinguish the top 

level of the crown more accurately than the image-based data. As well as the black colors of the 

projection areas in the marble layers, the inverted nDSM has also lower (darker) grey values in 

higher elevations. One might decide to apply the inverted image as a weighting parameter for 

segmentation of these layers. However, this decision is dependent on the segmentation algorithm. 

Employing the nDSM values lead to small segments in the regions between the tree tops. This 

might make the refinement procedure a challenging situation (for example for merging based on 

Area).  

 

Figure 63: Multiresolution segmentation of marble layers on a laser-based nDSM of coniferous stand in eCognition. 

Inversed nDSM is involved (left) and is not involved (right) as weighting values  

Another application of the marble rolling method, specifically for coniferous stands, is to define 

the orientation of single trees such as inclination () and the azimuth of inclination (), which 

can be calculated from the position of the largest and smallest marbles (Figure 64). These 

features can be used in investigation of the influence of wind, sun and topography on the growth 

direction of the trees. However, this study is beyond the scope of this research. 
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Figure 64: Definition of amount and direction of tree inclination using marble rolling layers 

5.6. Region growing 

The importance of region growing algorithms for the estimation of different types of tree heights, 

e.g. mean height and top height, is emphasized in [Laar and Akça 2007]. By definition, region 

growing is a segmentation method to partition the image by clustering the pixels, starting from a 

limited number of pixels [Baatz and Schäpe 2000], called seed points or seed objects.  

For region growing algorithms in forestry, seed objects are the first and most challenging issue. 

In the case of the delineation of tree areas, they can be obtained from local maxima or the points 

with highest illumination (usually based on spectral data). On the other hand, the non-tree areas 

are mostly defined as the ground or low vegetation, mostly defined by a height threshold or local 

minima in valley following techniques [Gougeon 1998]. Extracting these areas in dense forests is 

a challenging approach, which can be solved by region growing techniques. In this thesis, for 

both cases, appropriate seed objects are provided to be used for growing from tree and non-tree 

regions to each other. The purpose of region growing in this methodology is to distinguish the 

tree regions and separate them from the non-tree areas. To achieve this aim, two strategies are 

implemented: 

- Growing the seed objects of the non-tree areas (boundaries), to define the stand borders 

- Growing the seed objects of the tree regions (marble projections) to the non-tree areas 
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5.6.1. Region growing of non-tree areas 

Delineation of the non-forested areas is a defining issue to border the tree stand. One of these 

methods is valley following, developed and introduced by [Gougeon 1998]. In this method, the 

gaps between trees are found by finding a local minimum and growing to reach the stand 

boundaries. The main problematic question in the method of Gougeon is the limiting value of 

region growing.  In most cases a height threshold value is defined (Figure 65). All the objects 

over the threshold value are categorized as tree areas. The further steps, e.g. region growing of 

single trees, will be implemented on these remaining island segments. The critical point is that, 

due to the complex geometry of tree crowns in forests, defining only one threshold value leads to 

classifying some small trees as low vegetation or non-tree classes. The decisive solution lies in 

recognition of the tree boundaries at the early steps. Defining such separating areas can control 

the resizing algorithm. 

In contrast to [Gougeon 1998], a new aspect in this thesis is developed which is growing the non-

tree areas from the tree boundaries. This method has an advantage to the valley following 

technique, in so far as the limiting value (stand boundary) is already equal to the seed objects.  

         

Figure 65: Definition of growing limits with setting height threshold (left) and recognition of changes in curvature 

values (right) 

For this, the curvature image of the height data is implemented (see section ‎5.3). The curvature 

profile layer, which is provided in software ArcGIS v.10.1, shows the sudden changes on the 

surface model. Figure 66 demonstrates these layers for laser and image based nDSM.  
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Figure 66: Curvature profiles of image-based and laser-based nDSM in a coniferous stand 

Due to the different characteristics of the laser and image dataset, the curvature lines differ from 

the point of view of softness and shape. With image-based surface models the curvature profiles 

are rather smoothed. Whereas in laser datasets the heterogeneity of point cloud on tree crowns 

makes it difficult to find a closed polygon. However the boundaries, separating the tree areas 

from the non-tree ones are more ambiguous in image nDSM. In laser surface models, it is easier 

to separate these two regions. The common issue in both datasets is within the sudden areas, 

where the higher contrast (the neighboring bright pixels near the dark ones) can help to define a 

rule-set for recognizing these boundaries. This feature can be defined by calculating the mean 

pixel value of the outer and the inner boundary of an image object. In software eCognition, the 

set of all pixels belonging to the inner and outer border pixels of an image object v is defined as 

followed: 

  
      {             

                
        } 

  
      {             

                
        } 

 



Methodology   88 

 

 

 

Figure 67: Definition of the inner border and the outer border of a segment 

To define the border pixels, the characteristics of the inner and outer borders of image objects can 

be used. For the pixels along the border areas, the difference between the gray values of outer and 

inner border in curvature images is more than the threshold value t.  

  
       {             

              |  
        

     |    } 

Finding these areas at pixel level might be a challenging task in laser nDSM. This is because 

even after filtering steps and due to the complex structure of the tree surface, the small points 

with high variations might be detected as border pixels (Figure 68).  

   

Figure 68: Candidate border pixels (with orange boundaries) based on curvature values before (left) and after (right) 

merging 

The border objects (classified as border in the last step) are kept as seed objects, to start the 

region growing from the neighboring pixels (inner border) into the non-tree objects (nt).  
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In this condition, a feature should be defined to possess both neighborhood and height 

comparison criteria:   

  
   {             

              | 
    

      ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ |    } 

where    is the height value at         from the nDSM, and   
      ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  is the mean height value of 

the border segment.  

  

Figure 69: Start of the region growing of the non-tree area (with yellow boundaries) at the first (left) and second 

(right) growth iteration 

From this level of classification, the   
   objects grow into the unclassified pixels towards the 

slope direction of non-tree area (Figure 70) until filling or reaching a border or tree object, 

represented as island.  

   

Figure 70: Region growing of the non-tree area (yellow-green) from the first to the last growth iteration 

After classifying the non-tree areas (yellow), the border classes (orange) are classified back into 

the tree areas.  
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5.6.2. Segmentation refinement of the stand boundary 

In segmentation procedures, some irrelevant segments might remain in the destination object 

space because they could not satisfy the distinguishing conditions. For evaluation of the 

segmentation results two problems should be taken into account, oversegmentation and 

undersegmentation, which can be solved by proper merging or splitting algorithms respectively.  

In general the oversegmentation is less problematic than the undersegmentation. In other words, a 

successful segmentation leads to little oversegmentation and no undersegmentation [Castilla and 

Hay 2008]. The term segmentation refinement can be defined as removing or reclassifying these 

segments to improve the priori results of a segmentation procedure. The refinement should be 

implemented along the segment borders to reach an exact match of the object boundaries 

[Iwanowski and Soille 2005] or inside the destination object space to remove the small islands. 

In this thesis the destination objects are the single trees, which can be found within the tree areas. 

However, the refinement of the not-tree areas, e.g. the gaps, is needed before. This is because the 

boundary of not-tree areas defines the outer limits of region growing of the single trees in the 

stand. Removing the concave gaps at the higher elevations, detection of the small segments 

enclosed by the tree and not-tree classes, as well as false edges at borders are the main tasks in 

this phase (Figure 71).  

After defining the not-tree regions, the remaining regions are to be used for marble rolling 

algorithm. It should be mentioned that the order of region growing and marble rolling is 

dependent on the user. For detection of very small trees or lower vegetation, region growing can 

be implemented after marble rolling. 
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 a  b 

 c  d 

 e  f 

a. Candidate pixels (bright red) to be refined 

b. Classifying the border classes as border as the tree areas 

c. Removing the concave gaps at the higher elevations (1), detection of the small segments enclosed by the tree and not-tree 
classes (2,3) and false edges at borders (4) 

d. Refinement of the gap (not-tree ) segments using geometric and morphological features 
e. Refinement of the borders with region growing and merging the gap segments 

f. Border refinement with shrinking at the boundary of the gap regions  

Figure 71: Segmentation refinement of the not-tree area in a laser-based nDSM 
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Figure 72: Final result of the segmentation refinement of the not-tree areas (yellow) in a laser-based nDSM of a 

coniferous stand  

5.6.3. Region growing of single trees 

Due to the smooth variation of the tree heights at the upper part of the canopy, the border of the 

tree regions in digital elevation models can be defined by reference to the changes in curvature or 

the second derivative values. For single trees in urban areas, this can arise if sudden changes in 

elevation between the tree crown surface and the manmade objects (e.g. street, yard) occur. 

Separating the trees from the objects with near height values (e.g. neighboring buildings) can be 

implemented on the basis of the sudden changes in textural characteristics of the homogeneity of 

the surface, like the standard deviation of the height values on the surfaces. In dense forests, 

setting these features is a challenging approach. 

In recent research, separating the single trees in the 3D space is based on the point cloud 

clustering, taking account of the characteristics of the implemented sensor. In hyper-spectral 

remote sensors, the reflectance characteristics are used to classify the tree regions. For LIDAR 

data, the Full-Wave-Form (FWF) analysis is one of the main approaches for classification of the 

point clouds. Based on the wave form of the return pulses, the characteristics of the target surface 
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can be analyzed to detect if it is ground, trunk, branch or leaf surface of a tree. However such 

analysis is beyond the scope of this research. 

According to [Miri et al. 2013] the most reliable part of the surface models, specifically in image 

based datasets, are the tree regions at the highest levels of elevation which should be chosen for 

region growing of the CHM data. At this level, without considering the wave form or spectral 

analysis of the tree species, the canopy surfaces are separated in regions according to the 

geometric and morphological features over the LIDAR and image-based nDSM.  

Region growing of single trees begins with seed objects, which in general are provided by 

features like local maxima [Solberg et al. 2006]. The critical issues in defining a single point (one 

pixel in raster form) as a seed point for region growing are: 

- The upper parts of the tree crown are considered as similar objects (points) with the same 

growth conditions. 

- Trees with more than one peak (local maxima), i.e. the deciduous trees, will be segmented 

in more than one tree-region, which requires additional constraints in merging steps. 

- Setting the growth conditions at the beginning of the growing algorithm, e.g. height 

variations, shape and compactness of the tree regions does not satisfy the growth 

procedure, due to the different environmental conditions for each single tree. 

In this thesis, the seed objects on the tree areas are acquired from the segments extracted from the 

marble-rolling method. Implementation of marble projection segments has the advantage of 

keeping a bigger slice of the tree top for growing. Compared to the local maxima, this increases 

the reliability of seed objects. Furthermore the growth procedure can be weighted from the 

beginning of the region growing. Seed objects, as the initial portions of the tree segment, show 

the top slices of the trees. 

In general, growing algorithms on the 2.5D space focus on the height (gray) values in the 

rasterized height images. Due to the complicated form of the tree surfaces, the regions extracted 

from only the height variations might not demonstrate the typical forms of the trees. Figure 73 

shows the region growing of the seed objects based on the absolute height changes. In 

eCognition, the comparison of the currently growing pixel value can be performed using a 

reference parameter as an absolute value or a variable feature. Predefinition of the reference 
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segment as an absolute value and its comparison with a threshold for maximum height difference, 

restricts controlling the shape of the segments during growing the regions.  

  

Figure 73: The problem of region growing based on height value of the current growing pixel as absolute reference 

comparing with the mean height of the inner border pixels (left) or the mean height of the segment (right) 

On the other side, region growing, combined with multiresolution segmentation cannot satisfy the 

geometric form of the trees (Figure 74). This is because the shape and compactness parameters of 

the segments are based on polygons with a definite geometry. These parameters can be 

considered if the texture of the objects leads the segment to grow or to stop growing. For 

example, on the top of buildings, the homogeneity of the slope value (texture-based feature) 

allows the segment to grow, whereas the sharp and straight lines along the roof edges can stop the 

growing procedure. In the form of a rule-set, these parameters can be defined by setting the 

compactness and shape settings of the segmentation at the early steps, followed by textural 

features [Haralick et al. 1973]. This solution is not applicable for the surface model of trees, 

because considering the low contrast in textural values on the CHM, there are no sharp edges to 

define the geometry of the edges. Additionally, trees do not have a predictable and fixed 

geometry.  
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Figure 74: Uncontrolled segmentation of the single trees based on extreme values of compactness (left) and shape 

(right) parameters leads to wrong region growing of the seed objects 

However, in these irregularities, there exist some rules to be set in machine-vision to define a 

segment as a tree. As a rule-set, a tree might not finally reach a definite geometry during its life in 

the forest, but it tries to stay in a balanced and stable form in the competition for growth. 

To translate this sentence into the language of machine-vision, a successful region growing 

algorithm should be able to simulate the growth procedure in an iterative process. Different 

illumination, terrain height differences, soil quality, etc. might change the growth form of the 

trees in their competitions in forest areas. Because of that, some geometric and morphologic 

parameters should be predefined to control the growing form of each segment. In [Bechtel 2007] 

some hypotheses are defined for the definition of the tree form in region growing algorithms. 

Circularity, 3D convexity, symmetry, compactness, size and distance are the basic prerequisites in 

region growing algorithms. In nature, a very single tree tries to grow in a round (circular form in 

2D horizontal profile) shape. In forest, due to the different environmental conditions, each single 

tree grows differently. This means defining a circular crown closure (an ideal form of a tree) with 

the radius obtained from the forest tables (in relation to the height, age and forestall quality 

grades of the stand) is not the best solution for extracting the tree regions. However these 
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parameters can be used to control the growth. Size, compactness (the length/width relation), 

shape index and the ecliptic fit of the segments are the main constraints, which will be 

investigated for the growth algorithms, in this research.  

At the beginning of region growing, evaluating the form parameters is not recommended. 

Because the small seed objects, which might already have just a cross form containing five 

pixels, might be removed with circular morphological elements. This means that at least two 

growth iterations with no refinements are required at the first steps. Setting the size of the 

Morphological Element (ME) is one of the challenging areas in this work. A big morphological 

element removes the smaller segments and the small MEs cannot function properly to round the 

border of the tree segment.  

To keep the stability of tree regions, morphological elements in the form of opening are used. 

The question is the optimal form and size of the morphological element. To round the unstable 

parts of a segment the circular form of crown projection is chosen. However, a fixed form and 

size cannot be predefined for all of the trees in the stand. As a solution, a morphology association 

machine in the form of a rule-set provides a set of morphological elements for different sizes and 

different growing iterations (Figure 75).  



Methodology   97 

 

 

 

Figure 75: Schema of a supervised region growing model 

For comparison, geometric parameters like Area (size) are not proper features. Because an 

unstable segment (a very long segment) might have the same area as the morphological element, 

which can be removed through the implementation of the ME. In addition, the iterative growing 

of the seed objects in eight directions leads to reshaping the current tree segments (seed objects 

for the next iteration) into rhombus forms. Another advantage of using circular MEs is to convert 

them into a stable shape with round edges. 

The optimized size of the ME should be around the maximum width of the segment. There are 

several types of segment width, depending on the calculation method of the segment shape 

parameters. In the software eCognition, this value can be calculated in two ways (Figure 76), 

called width (using the bounding box) and width on the main line. In the former method a 

bounding box is defined to calculate the smallest eigenvalues of the segment (the semi-minor of 
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the approximated ellipse). A more accurate method of defining the shape of the segment is using 

the approximate polygon, based on the skeleton lines of the image object. In this way the width 

of the segment will be calculated using the average width along the main line (longer axis) 

created from a Delaunay triangulation of the polygon [eCognition 2013].  

 

Figure 76: Definitions of the length and width of a segment based on the ellipse parameters in the bounding box 

(left) or the main line of the skeleton polygon (right) 

This value is set as the input of this association machine and classifies the seed objects based on 

their geometric extension in every growing session. Definition of width values with minimum 

interval (1 pixel) results in higher flexibility of the allocation process, though this increases the 

computation time of the morphology allocation. The maximum size of the ME can be calculated 

based on the forest parameters of the specific tree type. Figure 77 shows different morphological 

elements (in this case opening masks) defined for different segment widths with one pixel 

interval. Choosing several ME sizes results in keeping those parts of the segment which have the 

round form of a tree. If needed, the segment will be separated into more parts to be analyzed with 

fitting ME in the next iterations. 
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Figure 77: Circular opening elements among the MEs within an allocation rule-set 

 

Figure 78: Result of a supervised region growing model on LIDAR-Data (for better demonstration of the regions, the 

scale at height values is set to 0.1) 

As explained in section ‎5.6.2, the outer limits of the stand are previously delineated from the not-

tree areas. Within the stand, the regions will grow under these conditions until their borders reach 

each other. For the final segmentation results, one might be satisfied to keep working with these 

segments, leaving the small gaps between trees. Another decision can be taken if the gaps 
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between the trees should be avoided. For this, the last growing session will be performed without 

implementation of the morphological elements (Figure 79). 

 

Figure 79: Final segmentation results with the gaps between trees (left) and the extended tree regions without the 

final implementation of MEs (right) 

5.7. Feature-based classification 

Due to the different characteristics of the coniferous and deciduous trees the segmentation results 

vary, depending on the parameters used in the marble rolling procedure. For an efficient 

segmentation, it is advantageous to define the type of the stand at the initial steps of the 

segmentation. This increases the consistency of the results. In mixed forests, distinguishing the 

boundary of the coniferous and deciduous stands from the height data, at the beginning steps is 

however an impossible task. 

In this research, the separation of the tree types occurs after the region growing step. Based on the 

geometric characteristics of the tree segments, the coniferous and deciduous trees will be 

separated to improve the classification results.  
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5.8. Segment geometry 

Geometric features provide information about the form and shape of digital surface models at 

segment level. In this work, such features are mostly concentrated at single tree level. In [Miri et 

al. 2013] a geometric feature, called Inversed Quasi Flatness (IQF), is introduced which describes 

the flatness of the trees at the highest elevation of the nDSM. At this level deciduous trees are 

expected to be flatter than coniferous ones, which yield higher values in IQF. Figure 80 shows 

the color-coded results of this feature. Comparing the spectral data, the estimations on the laser 

nDSM show satisfying results for coniferous trees but relatively poor recognition of the 

deciduous ones. This is mainly due to the small segment size at the top elevation level, which 

overestimates the IQF. In contrast, the results in the photogrammetric nDSM show relatively 

good recognition of true segments in deciduous trees. 

   

Figure 80: Comparison of IQF on laser-based nDSM (left) and image-based nDSM (right) at low segmentation level 

for coniferous and deciduous tree types from [Miri et al. 2013] 

By nature, the deciduous trees might have more peak points, producing small segments after 

region growing. Figure 81, demonstrates that for the same plot size, an oversegmented deciduous 

single tree represents more tree numbers than three correctly segmented coniferous ones. 
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Figure 81: 2D and 3D demonstration of the results of region growing-comparison of the segments in a dense 

coniferous area (S1 to S3) with a deciduous tree (S4 to S7) 

One should consider that the profile of a tree segment in dense forests might not be a horizontally 

flat plane. Considering the borders of the neighboring trees, there can be an inclination on this 

surface. This affects the mean value of the height at segment level. To better demonstrate the 

segment section, Figure 82 shows the relationship of the height values of the pixel within a 

segment in a 3D form. In the projection of the height data into a 2D segment, the gray values at 

the inner border of the segment might have a maximum and minimum value (an inclined 

segment). The mean height of the cutting plane can be calculated from the average of these two 

values. The segment height is the difference between the maximum height value of the segment 

and the mean of inner border. 

Table 6 indicates some of the basic features including average height, area, peak point and valley 

points of the segment used to generate the advanced ones as well as Quasi Flatness and the Mean 

Quasi Flatness. 
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Figure 82: Geometry of the final segments in 2D and 3D space 

To obtain the actual mean height of the segment the Mean of inner border in segment should be 

used: 

MQF = ([Max. pixel value nDSM] - [Mean of inner border nDSM]) / [Segment Area] 

Feature  Value Description 

    Average height of the segment Arithmetical mean value of height in segment 

        
Average height of the filtered 

layer in the segment 

Arithmetical mean value of height in the filtered 

layer of m in the segment (F includes mean, 

median, maximum, minimum) 

  Area of the segment Sum of the number of pixel 

   
Maximum peak point in 

segment 

Height between the highest peak and the mean 

plane 

   
Minimum valley point in 

segment 

Depth between the mean plane and the deepest 

valley 

  Segment domain 
The height difference between the peak and valley 

point 

      Mean of inner border 
Mean of height values along the inner border of 

the segment 

   Quasi flatness of the segment    
 
⁄  

    
Mean quasi flatness of the 

surface 

     
    

 
 

⁄  

Table 6: The geometry-based features of a segment 
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5.9. Segment roughness 

Different tree types have different degrees of roughness (see section ‎0‎4.5). To define a proper 

feature, based on the roughness characteristics of the surface, the height variations should be 

measured. The Standard Deviation (STD) of the surface in each segment can be a candidate for 

this feature. As a similar feature, in [Miri et al. 2013] the Averaged Height Variation (AHV) is 

measured in some sample segments at the highest levels of the CHM. 

   

Figure 83: Comparison of AHV on laser-based  nDSM (left) and image-based nDSM (right) at low segmentation 

level for coniferous and deciduous tree types [Miri et al. 2013] 

The discussion on this point is the reference value, from which the deviations should be 

calculated. In the theory, the mean value of the segment (mean height) can be used. Due to the 

dependence of this feature on the elevation values, the efficiency of this parameter will be 

investigated in this research. In CHM, high elevations neighboring to lower height levels (ground 

or low vegetation) increase the STD value of the segment, which results in false representation of 

the high roughness in the segment. As can be seen in Figure 84, the high variation of the height 

values from the Mean of segment, demonstrates a very rough surface. However in reality, there 

exist both high and low degrees of surface roughness.  
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Figure 84: Roughness and height variations considering different reference values for calculating the standard 

deviation of a segment 

Furthermore, if the STD feature is used together with the geometric ones, the combined feature 

(roughness and geometric) results in correlated classification. This is because the mean height 

value contains geometric information of the tree segment, which can be calculated from the 

maximum and minimum values of the segments. To solve the correlation problem, a novel 

feature is defined, in which the height variations of the CHM are calculated from the difference 

of the raw nDSM from the filtered surface model. In this way the STD of the segment is 

normalized on the filtered surface and shows significantly more reliable results. This feature, 

which in this research is called Filter-based Standard Deviation (fSTD), is evaluated for the 

classification of the tree types to demonstrate the roughness characteristics of the CHM. This 

surface evaluator can analyze the surface model with different sensitivity (different scales) and is 

able to calculate the standard deviation of the surface in a finer moving window with an arbitrary 

size. The deviation of the height value in each pixel will be compared with the filtered (median or 

mean) value of neighboring pixels in the moving window (  ). In other word, the result is the 

standard deviation of the surface normalized on the filtered surface of the plot sample. Obviously, 

the size of the window denotes the sensitivity of the roughness evaluator. To understand the 

spread of this filter, for the minimum window size (in pixel), the mean value is equal to the pixel 

values (      ), whereas the maximum window size yields the mean height of the plot ( ). 
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The Filter-base Standard Deviation (     ) of surface can be calculated by: 

      √
 

 
∬                 
 

 

where A is the area of the segment and    indicates the height value of the pixel on the filtered 

surface (median or mean) of the nDSM: 

   
 

  
∬       
  

     

where    is the area of the moving window.  

Another application of this roughness evaluator is to find an optimized iteration number in 

filtering steps of the height data. 

           

If after some iteration number, the roughness of the surface does not change, this shows that the 

surface has reached the required smoothness. This number can be used for the dataset with the 

same stand type.  

5.10. Qualitative and quantitative evaluation 

The evaluation of the digital elevation models in the test area is performed in both qualitative and 

quantitative aspects in this thesis. The object-oriented approaches (section ‎3.1) are implemented 

for the classification of the tree types. The qualitative evaluation is mainly concentrated on the 

segmentation results of the elevation data.  

In this research, the geometric and the roughness features are investigated on the laser-based and 

image-based datasets. Additionally, in the quantitative approach, the positioning and boundary 

delineation of the single trees will be evaluated. Several methods can be implemented for the 

quantitative assessment of single tree extractors. The point to point methods focus on the 

allocation of the tree position based on the Euclidian distances. In Figure 85 three allocation areas 

with 1m, 2m and 3m buffer around the reference points are demonstrated.  
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Figure 85: Allocation areas for the automatically found tree positions (blue points) with search buffers of 1m, 2m and 

3m (green, yellow and orange lines) around the reference trees (red points) 

The main hypothesis in such methods is that the trees are considered as straight columns and the 

inclination stems are not taken into account. That means a tree position, which might be in the 

tree crown area but out of the buffer regions, will not be allocated as a truly found tree. It should 

be that the data acquisition of the reference trees is based on the positioning of the tree stems, 

whereas the automatically extracted trees are acquired from the crown surface models. This 

means that for quantitative evaluation the relations between the points and polygons should be 

defined. Topologic relations describe the relative position of two objects, without considering 

their metrics [Gerke 2006].  

According to [Egenhofer and Franzosa 1991] these relations (Ri) between two spatial regions can 

be described in terms of the boundary‎(∂)‎and‎interior‎(˚) of the sets A and B in sixteen binary 

topological specifications
10

(Table 7). 

 

                                                 

10
 Defining the closure of the set A as the smallest closed set containing A, the boundary of A is the intersection of 

the closure of A and the closure of the complement of A. The interior of A is the largest open set contained in A. 
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 ∂A∩∂B A˚∩B˚ ∂A∩B˚ A˚∩∂B Semantics of the nine region relations 
R0 0 0 0 0 A and B are disjoint 
R1 1 0 0 0 A and B touch 

Y 

R2 0 1 0 0      
R3 1 1 0 0 A equals B 
R4 0 0 1 0      
R5 1 0 1 0      
R6 0 1 1 0 A is inside of B or B contains A 
R7 1 1 1 0 A is covered by B or B covers A 
R8 0 0 0 1      
R9 1 0 0 1      
R10 0 1 0 1 A contains B or B is inside of A 
R11 1 1 0 1 A covers B or B is covered by A 
R12 0 0 1 1      
R13 1 0 1 1      
R14 0 1 1 1 A and B overlap with disjoint boundaries 

XY 

R15 1 1 1 1 A and B overlap with intersecting boundaries 

Table 7: The sixteen specifications of binary topological relations and the terminology for the nine relations (grey 

rows) between two spatial regions 

Among them, nine relations can be specifically used for polygon to polygon topology of 

neighboring regions. This combination can be defined for two polygonal datasets of reference (C 

as circles) and target trees (S as squares) with: 

∩ S˚ ∂S Sʹ 

C˚    

∂C    

Cʹ    

where‎ (˚‎ ,‎ ∂‎ ,‎ ʹ)‎ are‎ the interior, boundary and exterior of a set, respectively. In [Straub and 

Heipke 2004] and [Gerke 2006] these relations are reduced to eight situations of disjoint, touch, 

overlapped, cover, covered by, contain, contained by and equal, and are represented in Figure 86. 

 

0 0 1  0 0 1  1 1 1  1 0 0  1 1 1  1 0 0  1 1 1  1 0 0 

0 0 1  0 1 1  1 1 1  1 1 0  0 1 1  1 0 0  0 0 1  0 1 0 

1 1 1  1 1 1  1 1 1  1 1 1  0 0 1  1 1 1  0 0 1  0 0 1 

Figure 86: Topological relations between the reference dataset (red circles) and the target tree segments (blue 

squares) based on [Gerke 2006] and [Straub and Heipke 2004] 
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The overlapping strength, demonstrates the transition from disjoint to equal [Straub 2003] and 

can be calculated by Overlapping Factor [Winter 2000]: 

      
   

     | | | | 
 

          

Based on the definitions of the commission error (False Positive or FP) and the omission error 

(False Negative or FN) in [Straub 2003], the completeness (producer accuracy) and correctness 

(user accuracy) of a classification can be calculated with values between zero and one. The True 

Positive (TP) value is the overlapping area of the reference and the extracted segments. 

             
  

     
 

 
            

  

     
 

Figure 87: The explanation of completeness and correctness according to [Straub 2003] 

As can be seen in Figure 87, the reference dataset contains the false negative and the true 

positive, whereas the target segments possess the true positive and the false positive. Regarding 

the overlapping factor (OF), a target polygon is positioned exactly on the reference polygon if 

one of the last five topological relations in Figure 86 occur (OF=1). However, this factor cannot 

efficiently represent the quality of the crown delineation. Theoretically, a successful tree 

extraction algorithm has both completeness and correctness near to one. In this thesis An 

Advanced Overlapping Factor (AOF) is implemented which is calculated by multiplication of 

completeness and correctness. 

  

                                
  

   
 

          , 
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where O is the overlapping area and R and T are the areas of the reference and the target segment. 

The minimum value of this factor (zero) occurs if the segments do not overlap. The maximum 

value (one) can be seen in the last topological relation in Figure 86, where both segments cover 

each other completely. However, as both datasets are assumed identical with polygonal 

characteristics, the positional evaluation of the single trees is not considered explicitly in the 

overlapping factors. This is because the position of the single trees in reference and target 

segments might not be the same, even if both segments cover each other completely. 

Another controlling factor is the quality assessment of the segmentations results from [Rutzinger 

et al. 2009]: 

        
  

        
 

         

                   
 

The best quality in segmentation will be obtained if both reference and target segments are equal 

(    ,     ). 

For the linking of the point datasets (reference tree positions) to the polygon datasets (extracted 

tree segments) the characteristics of both identities (point-polygon) should be considered. For 

this, the topological relationships between automatically extracted trees and the buffer areas are 

required. To overcome this problem, an advanced point-polygon evaluation factor is defined, in 

which, both point-point and polygon-polygon relationships are integrated. For this, the distance 

( ) between the reference points and the target points are calculated from different features and 

are normalized on the maximum distance in the dataset (    ) to provide a factor called 

Weighting Distance (WD) for the point-point quantitative analysis.  

   
      

    
 

       

Based on the WD factor, the maximum distance (      ) represents the lowest weighting 

value (    ), whereas an exact tree positioning (   ) yields the highest precision of single 

tree positioning       . The position of the target single trees can be extracted from different 

features like the centroid of the segment or from the marble growing segments. 
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Combination of the polygon-polygon and the point-point evaluation factors yield a novel factor 

called Weighted Distance and Overlapping (WDO), which can be used for single tree delineation. 

              

        

Using this factor, a successfully delineated single tree can be defined if both reference and target 

segments have a complete overlap with an exact positioning of the trees.  
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 6 

Experimental Results 

 

 

This chapter deals with the 

experiments implemented on both 

LIDAR and photogrammetric 

datasets. The algorithms introduced 

in the last chapter will be tested and 

evaluated based on the reference 

data. 

  

 



Experimental Results   114 

 

 

6. Experimental Results 

6.1. Study area 

To evaluate the proposed methods and algorithms in this research, a mixed forest in the state of 

North Rhine-Westphalia (NRW) in Germany is investigated. The LIDAR data are acquired by 

the airborne laser scanner RIEGL LMS-Q560. The photogrammetric stereo images are captured 

by the aerial camera Z/I Imaging DMC 1. Table 8 shows the technical data of both sensors and 

the related raw datasets. A detailed comparison of the aerial cameras in forestry applications can 

be found in [Arbeitsgruppe Forstlicher Luftbildinterpreten 2012]. The packages of the datasets 

include the DSM of LIDAR data and aerial images. The photogrammetric DSM is generated with 

Semi Global Matching (SGM) provided by the Institute of Optical Sensor Systems at the German 

Aerospace Center (DLR) in Berlin (Adlershof). The pulse analysis of the Laser data has been 

performed by the Institute for Man-Machine Interaction at RWTH Aachen University. The laser 

dataset includes the first pulse and last pulse point clouds. As a very advantageous specification 

of LIDAR technology in forestry, the last pulse data can provide DTM of the forest ground under 

the canopy with relatively higher resolution. However, to perform a confidential comparison 

between LIDAR and photogrammetric DSM, the available filtered DTM with one meter 

resolution is used from the officially available DTM of the geo-database
11

 center in the state of 

NRW.  

To provide the required layers in the workflow of this research (see section ‎5.1), the First Pulse 

(FP) data is converted into a raster image with resolution of 20cm.  Due to the different resolution 

of the DSM and DTM data, to avoid the sudden changes in the nDSM data, the DTM dataset is 

interpolated and smoothed to 20cm GSD. The height data are stored in 16bit format images with 

10cm height depth resolution. The forestry information is provided with the cooperation of the 

Institute for Research and Transfer (RIF. eV.) in Dortmund and the State Enterprise for Forestry 

and Timber North Rhine-Westphalia
12

.  

 

                                                 

11
 www.geodatenzentrum.nrw.de 

12
 Landesbetrieb Wald und Holz NRW (www.wald-und-holz.nrw.de) 
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Figure 88: The study area Habichtswald in the state of NRW, Germany 

 

Airborne laser scanning Aerial photos 

Scanner: RIEGL LMS-Q560 Camera: Z/I Imaging DMC 01 

Date of scanning:   March, 20th, 2011 Date of acquisition: May, 2nd , 2011 

Flight altitude: 600m above ground Flight altitude 2000m above ground 

Point density and resolution: 1 p/m2 converted to 20cm GSD Resolution 8 cm, 20 cm GSD 

Data package: First Pulse (FP), Last Pulse (LP) Data package: RGB, NIR, raster DSM 

Range resolution on natural 

targets‎ρ≥80%‎reflectivity: 

2cm (<1500m dist.) or  

1cm (<650m dist.)  Virtual focal length 
Pan: 120 mm 

Color: 30 mm 

Data format: 2.5D raster image Data format: 2.5D raster image 

Bit depth resolution: 16 bit Bit depth resolution:  16 bit 

Height depth resolution: 10 cm Height depth resolution: 10 cm 

Scan geometry: 

Parallel lines with ±22.5 up to 

±30 deg. Field of view and 0.3m 

spot diameter at 600m dist. 

Imaging geometry: 
60% length and 40% side 

overlapping 

Table 8: Technical data for airborne sensors used for the test area Habichtswald (HBW) 
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Accuracy assessment of the DSM datasets 

To investigate the accuracy of the digital surface models of the test area, a differentiated image of 

the DSMs is provided. As Figure 89 shows, the maximum differences occur mostly around the 

edges where the sudden height differences exist (the red, yellow and blue areas). The light green 

regions are the most fitted areas. The dark blue color demonstrates where the LIDAR height 

values are over the image-based DSM (HLaser > HImage). They are the levels, where the small 

branches of the trees are measured by laser; those are smoothed during the interpolation steps in 

the SGM process. Such differences can be found around the separated single trees. Additionally, 

the flying points in the LIDAR data, which are mostly categorized as noises, can be seen in small 

blue points.  

In the yellow and the dark-red areas, the image-based DSM is superior to the laser one (HLaser < 

HImage), which is mostly related to the interpolation of the height values in the gaps between the 

trees. These problematic regions complicate the delineation of the crown boundaries in forest 

areas.  

 

Figure 89: Difference image of DSM data (LIDAR - Image) 

For quantitative comparison of the datasets, some surfaces are selected as assessment patches 

within the study area (Figure 90). Due to the weakness of the laser scanners in measurement of 
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the edges on the one hand, and the interpolation problems of the SGM method in abrupt edges, 

on the other, the evaluation areas are selected inside the boundary of the surfaces. Table 9 shows 

the statistical information of the investigated regions. The averaged mean height difference of 

about 9cm (less than one depth in gray level) shows the adequate coincidence quality of the 

selected surfaces and confirms the reliability of the DSM datasets for further analyses. 

 

Figure 90: Contribution of the assessment patches around the study area 

Patch Pixels Area 
(m

2
) 

Min. Diff. 
(m) 

Max. Diff. 
(m) 

Range 
(m) 

Mean 
Diff. (m) 

Std 
(m) 

Majority 
(m) 

Minority 
(m) 

Median 
(m) 

P1 1437 57.5 -0.3 2.1 2.4 0.03 0.17 0.0 0.9 -0.1 

P2 1047 41.9 -0.6 1.6 2.2 0.06 0.21 0.0 0.8 0.0 

P3 3933 157.3 -0.4 2.2 2.6 0.16 0.18 0.2 -0.4 0.2 

P4 1388 55.5 -0.1 2.2 2.3 0.13 0.16 0.1 0.7 0.1 

P5 5476 219.0 -0.2 2.1 2.3 0.02 0.16 0.0 1.8 0.0 

P6 3569 142.8 -0.1 2.3 2.4 0.14 0.14 0.1 2.3 0.1 

P7 2965 118.6 -0.5 2.7 3.2 0.10 0.20 0.1 -0.5 0.1 

Table 9: Statistical assessment of difference surfaces of laser-based and image-based DSM 
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6.2. Stand-wise roughness analysis 

The roughness parameters described in section ‎4.5 are used to evaluate the surface characteristics 

of forests in different stand types. However, to analyze the 2.5D digital surface models the 

roughness equations should be transformed into a discrete space (Table 10). This is because the 

height surfaces are in raster format.  

Feature Mathematic form 

Mean height   
 

  
∑∑        

   

   

   

   

 

Average roughness    
 

  
∑∑|          |

   

   

   

   

 

Root mean square roughness 
   √

 

  
∑∑             

   

   

   

   

 

Skewness     
 

    
 ∑∑             

   

   

   

   

 

Kurtosis     
 

    
 ∑∑             

   

   

   

   

 

Table 10: The sets of roughness parameters in 2D form 

For analysis of these surfaces some circular samples with radii of 25m to 50m from the deciduous 

and coniferous stands in the test area of Habichtswald are chosen based on the age and type of the 

trees (Table 11). 

Deciduous  Coniferous 

Forest 

Code 

Stand type / Age class  Forest Code Stand type / Age class 

430b1 Beech (Fagus sylvatia) >80  432a1 Spruce (Picea abies) 41-60 

437a1 Beech (Fagus sylvatia) >80  433a1 Spruce (Picea abies) 41-60 

432a3 Beech (Fagus sylvatia) >80  434a4 Spruce (Picea abies) 41-60 

436a1 Beech (Fagus sylvatia) >80  433a8 Spruce (Picea abies) 21-40 

430c2 Oak (Quercus robur) 21-40  433a6 Douglas fir (Pseudotsuga) 

 

21-40 

432b1 Beech (Fagus sylvatia) 21-40    

429a1 Beech (Fagus sylvatia) 61-80    

430a1 Beech (Fagus sylvatia) 61-80    

424h1 Oak (Quercus robur) 21-40    

Table 11: Characteristics of the sample areas in the forest region of Habichtswald 
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Figure 91 demonstrates the first three parameters which are dependent on the arithmetic average 

of the pixel values. As these parameters are closely related to the mean height of the stand, it can 

be seen that the roughness variations in the same stand types are rather similar; however, they 

vary in different stands. This indicates that the parameters µ, Ra and Rq can be used to border the 

outer boundaries for stand-wise analyses.  

 

Figure 91: Roughness parameters (in decimeter) on image-based ■ and laser-based ■ surface models based on the 

arithmetic average of different deciduous stands 
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Due to the direct relation of the parameter µ to the elevation of the stand, this parameter is almost 

in the range of the height values, but larger than Ra and Rq. As the parameters µ and Ra are 

affected from the false height in the interpolated gap areas, the higher values of Rq show more 

reliability for this parameter. Furthermore, the tree types are also better distinguished. As a result 

of the roughness parameters, which are related to the standard deviation of the surface, Figure 92 

shows little variations on the crown surfaces of the deciduous stands. Therefore they cannot 

explicitly distinguish the stand types in height models. 

 

Figure 92: Roughness parameters (in decimeter) on image-based ■ and laser-based ■ surface models based on the 

standard deviation of different deciduous stands 

Comparing the two data acquisition methods, both laser and image data show relatively similar 

roughness values in average-based parameters (Figure 93). Though, in the cases of Rsk and Rku, 

the roughness of the laser data is more than the image dataset. This is due to the characteristics of 

LIDAR in direct and detailed acquisition of crown surfaces. In contrast to the deciduous stands, 

the coniferous ones did not show a regular change in the mean height parameters (µ). For the 
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image-based nDSM, this value is more than the LIDAR one. This is because of more gap valleys 

in the coniferous surface models, where the interpolated height between the trees results in false 

height calculation. This problem does not occur in Ra and Rq. This signifies the greater reliability 

of these two parameters in the case of image-based DSM.  

 

Figure 93: Roughness parameters (in decimeter) on image-based ■ and laser-based ■ surface models based on the 

arithmetic average of different coniferous stands 
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In both coniferous and deciduous stands, the LIDAR data show more roughness values, based on 

the standard deviation parameters (Rsk and Rku). Though, the parameter Rku varies dramatically in 

the coniferous stands with different ages. This can be seen in the two last larger values (young 

coniferous stands) in Figure 94. 

 
Figure 94: Roughness parameters (in decimeter) on image-based ■ and laser-based ■ surface models based on the 

standard deviation of different coniferous stands 

These roughness measures are still dependent on the mean height of the sampled datasets. For 

instance, a young deciduous stand (lower height values), represents less roughness although it 

might have similar surface variations to a dense older stand (with higher trees).  

Single tree roughness analysis 

The influence of the mean value ( ) on the other roughness parameters shows that, they can be 

affected by the structure of the stand (deciduous, coniferous or mixed), tree height (stand age) 

and the forest density. This can be significantly seen in the coniferous stands due to the more 

peak and valley forms. To redress this weakness of the existing surface analyzers, a roughness 
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evaluator is needed to measure the surface quality in finer scales. Furthermore, there is a demand 

for segment analysis at single tree level. As explained in the previous section, the roughness 

parameters can be used as measuring instruments to describe the characteristics of forest surfaces. 

To remove the problematic points on the surface models (especially for LIDAR data), they 

should be filtered without changing the surface characteristics (see section ‎5.2.1). To set the 

optimized parameters, the filter strength in the laser-based and image-based nDSM should be 

measured using a fine roughness evaluator. 

A rough surface needs more filter iterations to be free of noises. This indicates that another way 

of defining the roughness degree of a surface is the iteration number of filtering until the surface 

does not change. In other words, comparison of the surface roughness with a filtered surface (e.g. 

mean or median) instead of the mean plane of the surface patch, gives more information about the 

fine variations on the surface. The developed roughness evaluator, introduced in section ‎5.9, is 

used to calculate the standard deviation of the surface in a finer scale. The discrete form of the 

fine standard deviation (     ) for a rasterized surface with the size of m×n can be calculated 

from: 

      √
 

   
∑ ∑(                  )

 
   

   

   

   

 

where           indicates the grey level value of the filtered image at the point        . For 

example, this value for a mean filter with square window size of i×j can be gained by: 

          
 

   
∑ ∑  (     )

     

       

     

       

 

To find an optimized iteration number in filtering the height data, the parameter       should stay 

unchanged after some iteration numbers. As expected, by implementing this surface evaluator, 

the laser data possesses more roughness on the CHM than the image-based height models. As can 

be seen in Figure 95, after 5 iterations, the laser surface is smoothed from 20cm to 12cm, whereas 

the value for the image data is almost unchanged (from 8.82cm to 8.59cm). The slight variations 
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in the image-based CHM (ca. 2cm) indicate that the SGM datasets do not need to be filtered due 

to the smoothing during the interpolation steps.  

 
Figure 95: Roughness analysis (in decimeter) over the CHM of an old beech stand using the Rfstd evaluator with 

window size of 3 pixels in different filter iterations 

A comparison of the height data for two completely different stands (a young coniferous and an 

old deciduous) is demonstrated in Figure 96. The fine roughness analysis of the filtered surface 

models demonstrates the very slight change of the image-based surface models in the iteration 

steps for both coniferous and deciduous stands, whereas the LIDAR data become smoothed after 

4 or 5 iterations. Regarding the results for each data acquisition method, the old deciduous stand 

shows more Rfstd roughness on their canopy than the young coniferous. This means, in addition to 
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the tree type, the age and density of the trees should also be considered in characterizing the 

stands with the roughness parameters.  

 

Figure 96: Roughness analysis (in decimeter) over laser (red) or image (blue) CHM of a young spruce (Con) stand 

(432a1) and an old beech (Dec) stand (437a1) using the Rfstd evaluator in eleven filter iterations 

 

Figure 97: Roughness analysis (in decimeter) over laser (La) or image (Im) CHM of a very young mixed deciduous 

stand (430c6) and a young beech stand (430c4) using the Rfstd evaluator in eleven filter iterations 
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The influence of the stand age on the characteristics of the surface is shown in Figure 97. Due to 

less competition success in younger stands, they stay in higher densities with less roughness 

value on their canopy surface. 

6.3. Reference data for single tree detection 

Preparing reliable reference data for evaluation of single tree segments is one of the most 

challenging issues in forest mensuration. The goals of terrestrial data acquisition in this thesis are 

measuring the position of the single trees and also extracting the DBH. To compare the current 

methods in traditional forestry and the surveying methods for single tree extraction in mixed 

European forests, two practical excursions, in the Tegel forest in Berlin and in the Habichtswald 

forest in North Rhine-Westphalia were organized. The advantages and disadvantages of both 

methods are described below. 

6.3.1. Traditional methods in forestry 

In the first excursion, a traditional method of single tree mensuration in forestry (see 

section ‎2.1.1), is evaluated for a test area in Tegel forests. For this, an ultrasound Hypsometer 

(Vertex) is employed. Different interpretation of the tree height and the tree positioning is for the 

most part dependent on the physical and experimental characteristics of the forester. Furthermore, 

considering the required accuracy <10cm (one bit depth) for evaluation of the aerial datasets, the 

positioning accuracy could not reach the existing surveying methods. Figure 98 shows two steps 

of measuring the distance and the diameter of the single trees at the breast height (DBH). 

However, easiness and completeness of the data in the field are the advantages of such methods. 

A detailed explanation for forest mensuration methods can be found in [Laar and Akça 2007] and 

[Nagel 2001]. 
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Figure 98: Experimenting the preparation of the reference data using traditional methods in forestry 

The problematic cases in mensuration of single trees result by nature from the wildness of the 

forest. Figure 99 shows that measuring the tree parameters at the breast height might not always 

be a simple task. The number of trees and the tree positions are the main challenging issues. This 

leads to a vast difference between the measurements of the trees under the canopy and the tree 

position from the top of the crown surface. 

   

Figure 99: Complexity of tree positioning and counting   

6.3.2. Terrestrial laser scanning and photogrammetry of single trees 

For a confidential reference dataset, the existing surveying methods are compared. To satisfy the 

completeness and the accuracy of the reference dataset, Terrestrial Laser Scanning (TLS) is used 

in combination with a Smart Station (Total Station and GPS). Employing this equipment provides 
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a 3D point cloud of the forest area under the canopy surface in a global coordinate system (Figure 

100).  

   

Figure 100: Point cloud of a TLS station in a coniferous stand with true colors (left) and height false colors (right) 

For better detection of the tree trunks in the forest, using only the point cloud data might be a 

challenging task, especially in leaved seasons, as well as in dense forests. The solution is to 

support the point cloud with color data (Figure 102Figure 100 and Figure 101), which means 

integrating a photogrammetric camera with the laser scanner
13

.  

 

 

Figure 101: Panorama view of the point cloud of a scan position with RGB information 

                                                 

13
 In Leica HDS 7000 systems, colorizing the point cloud can be performed by replacing the scanner with a camera 

to provide a cubic panorama space. Contrary to the Riegl Systems, it takes more time for registration of these scans 
and the panoramic cubes in the office. 
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Figure 102: Panorama view of the point cloud of a scan position with intensity values  

Two TLS systems, Leica HDS 7000 and Riegl LMS 620, are compared for this purpose (Figure 

103). The Riegl LMS 620 with a measurement range of 2m to 2000m for natural targets with 

reflectance of more than 80% (750m for reflectance of 10%) is chosen. The claimed registration 

accuracy of 10mm, the beam divergence of 0.15 milli-radian and the field of view of 80x360° can 

be cited as the main characteristics of this system
14

.  

  

Figure 103:  Leica HDS 7000, Riegl LMS Z620 

The advantage of the already calibrated and mounted camera on the Riegl LMS scanner 

facilitates using combined close range photogrammetric images within the point cloud data in the 

photogrammetry software PHIDAIS
15

. In this way, extracting the geometric parameters of single 

trees will be based on both the laser data and the integrated images from the metric camera Nikon 

D300, mounted on the laser scanner. This increases the measurement accuracy of the tree 

position, DBH and identification of the tree type, even more so than using colored point cloud. 

                                                 

14
 www.riegl.com 

15
 PHIDIAS is a development in area of photogrammetric evaluation systems and is implemented as an application 

on the CAD system MicroStation (www.phocad.de). 
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Figure 104: Surveying the reference points at field, required for geo-referencing the terrestrial dataset 

Along with the laser scanning, measurement of the registration targets is carried out using the 

total station Leica 1202, integrated with a smart station differential GPS. The surveying data are 

to be registered to the global coordinate system UTM (WGS84), acquired by GPS from an open 

air region within the forest and the geodetic fixed points around the test area
16

. Figure 104 shows 

the surveying of one of the fixed points. Two surveying campaigns in two different seasons are 

organized for the field data acquisition
17

. The first took place at the end of August 2012 and the 

second was undertaken in March 2013. Obviously, the August data acquisition was a rather 

problematic one. Due to the leafy time at the lower vegetation level, acquiring the DBH of the 

                                                 

16
 The geodetic fixed points are provided by the cadastral land registry office Steinfurt in North Rhine-Westphalia. 

17
 The surveying campaign was supported by the equipment and personnel of GILAN Eng. Co. (www.gilan-

survey.de) and the German Aerospace Center (DLR) in Berlin, Adlershof. 
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trees was a challenging task. However, with complementary scan positions and the aid of 

integrated photogrammetric images, the breast height levels were achieved even in this season.  

 

Figure 105: Terrestrial laser scanning of the targets in the clearing area for the global registration (right) and the 

single trees within the stand (left) 

After terrestrially scanning the under canopy of the test area, extracting the single tree positions is 

carried out with the software PHIDIAS. For this, the point cloud of the single trees with 

diameters more than 15cm will be selected exactly at the DBH level (1.3m). Using the integrated 

images and the selected point cloud, a horizontal circle will be fitted on the profile of the point 

cloud on the stem. The center of this circle is considered as the position of the tree at the DBH 

level. The DBH circles will be used later as weighting values for the simulation of the reference 

segments. As demonstrated in Figure 106, this procedure should be performed in the multi-view 

environment of the software MicroStation to achieve the completeness of the dataset and confirm 

the correctness of the tree positions in the TLS data. Based on the panorama images provided 

from the mounted camera on the laser scanner, the tree types are identified
18

. 

                                                 

18
 The identification of the tree types is performed by the forest specialists at the Institute for Research and 

Transfer (www.rif-ev.de) in Dortmund, Germany. 

http://www.rif-ev.de/
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Figure 106: Terrestrial data acquisition of the single trees with TLS and close range photogrammetry in PHIDIAS 

For acquisition of the reference data, there are several aspects to be considered: 

- The tree position can be obtained from the center of the circle at the DBH level. In 

relation to the under-canopy vegetation, choosing an appropriate season for data 

acquisition plays an important role in a time-saving process. 

- In the interests of suffice the completeness of the dataset, planning the (complementary) 

scan positions depends on the forest density. 

- For the extraction of the tree heights or the diameter circles at the upper height levels 

(required for definition of the tree inclination), leafless seasons should be used for data 

capturing. 

- To obtain the best fit of the DBH circle with the combined photogrammetric images, 

working in a multiple-view environment is recommended (Figure 106). 

- Definition of the breast height level differs depending on the terrain surface of the forest 

area. On a flat DTM, a cutting plane at breast height (1.3m from the ground) provides a 

profile of the point cloud of the trees. In a non-flat area (bumpy or slope grounds), the 
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DBH circle should be defined for each tree separately from the ground and along the 

growth direction of the tree (Figure 107).  

 

Figure 107: Multiple-views for provision of the reference data. Top-left: the DBH circles (blue) and the 1.3m breast 

height (red lines); Top-right: the test area (marked with orange dashed lines). Below: colored point clouds. 

6.4. Stand-wise qualitative evaluation of the CHM 

To analyze the characteristics of the surface models in mixed forests, the laser-based and image-

based nDSM data are evaluated by the features developed in this research (see section ‎5.7). The 

geometric feature of Mean Quasi Flatness (MQF) and the roughness feature of Normalized 

Height Variation (NHV) are implemented to classify the test area into deciduous and coniferous 

areas. For the laser-based surface models, the normalized roughness of the surface is calculated. 

This process is performed for each segment on the filtered surface. For evaluation of the surface 

models at different heights, the segmentation results are not filtered by segment size and segment 

height. 

6.4.1. Analysis of height variations 

To avoid the influence of noise in laser data, the height variations should be compared to a 

statistically filtered surface. The statistical filters like mean and median are affected from the 

problematic points (flying points, gaps of penetration, etc.). Therefore, the deviations are 

compared to the non-smoothing filter developed in this research (see section ‎5.2.1).  



Experimental Results   134 

 

 

Regarding the hypothesis, that the coniferous stands have more averaged-based roughness on 

their canopy surface than the deciduous ones, the classification of tree types is implemented on a 

mixed stand in the Habichtswald test area possessing spruce (picea abies) stands and European 

beech (Fagus sylvatica). The results of the segmentation (Table 12) show the quality of the STD 

feature in both laser-based and image-based datasets to classify the coniferous and deciduous 

stands. The roughness feature STD on the image-based nDSM of the coniferous stand has a mean 

value of 2.13m. The same feature (STD) on the filtered laser dataset shows a mean value of 

3.05m. This is due to the higher roughness in the laser dataset. More confidential results are 

achieved with the feature NHV from laser data with a mean value of 1.80m, which is independent 

from the mean height values.  

Tree Type Values for 
Tree height 

(image) 
Image-based 

STD 
Tree height 

(laser) 
Laser-based 

NHV 
Laser-based 

STD 

Coniferous 

Min 6.63 1.00 5.44 0.40 0.53 

1st Quartile 18.52 1.40 17.33 0.72 2.12 

Median 21.07 1.89 19.96 1.44 3.01 

3rd Quartile 23.00 2.59 21.71 2.51 4.03 

Max 26.76 6.76 25.88 6.64 6.65 

Mean 20.28 2.13 19.14 1.80 3.05 

Deciduous 

Min 1.79 0.00 3.30 0.00 0.23 

1st Quartile 19.06 0.27 18.46 0.06 0.69 

Median 20.50 0.49 20.74 0.12 0.92 

3rd Quartile 23.21 0.70 22.45 0.24 1.33 

Max 26.02 1.00 25.85 0.40 4.11 

Mean 20.49 0.50 21.01 0.15 1.14 

Table 12: Analysis of rouhgness parameters on laser-based and image-based surface models 

Using quartile distribution analysis, Figure 108 shows the segment characteristics and the quality 

of the segmentation for the coniferous class. To compare the roughness values with the tree 

heights of the stand, the statistical value of the mean height extracted from the nDSM of the tree 

segments are also demonstrated. This shows that 50% of the segments have height values around 

20m in both surface models. This feature can classify the coniferous area in the same height 

range in image-based and laser-based surface models. The first quartile of the segment height 

begins with the minimum value of more than 5m in both surface models. This means the low 

vegetation segments are automatically excluded during the classification.   
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Figure 108: Segment specification of coniferous classification using roughness parameters on image-based and laser-

based surface models (values in meter) 

However, in the image-based segmentation 75% of the classified segments have a height value of 

more than 18m. In the case of laser data, this value is around 17m. The problem comes from the 

shadowed areas, where the gaps are interpolated in higher elevations in the image-based datasets.  

In Figure 109 the distribution analysis of the classification is demonstrated for the deciduous 

segments. As in can be seen, in the case of the coniferous results, 75% of the classified segments 

are at the top elevations (approx. 19m for image-based and 18m for laser-based). Compared to 

the coniferous segments, the height variations of the deciduous ones (0.5m in image-based STD 

and 0.15m for laser-based NHV) are significantly lower, which confirms the hypothesis of less 

average-based roughness on the deciduous canopies.  
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Figure 109: Segment specification of deciduous classification using roughness parameters on image-based and laser-

based surface models (values in meter) 

Although most of the segments are at the highest levels of elevation, the minimum value of less 

than 5m in the first quartile of both data types shows the participation of low vegetation in this 

classification. These segments can be easily filtered by their height values in the next steps.  

For a better comparison, the roughness analyses for the coniferous and deciduous classes are 

expanded in Figure 110. Referring back to Table 12, the difference between mean values of 

coniferous and deciduous roughness in laser nDSM (1.65m for NHV and 1.91m for STD) is 

significantly higher than in the image-based surface model (0.63m for STD). This shows the 

advantage of laser data for better separation of the tree types, based on the surface characteristics. 
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Figure 110: Comparison of the tree classes based on image-based and laser-based roughness parameter 

The classification results of both image-based and laser-based features are visually demonstrated 

in Figure 111 and Figure 112. In this visual form, one can see that in the image-based 

segmentation some coniferous trees are classified as deciduous. This is due to the smoothed 

surface of the image-based models. 

 

 

Figure 111: Classification results using image-based height variation feature STD (left), compared with RGB data 

(right). 
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Figure 112: Classification results for laser-based height variation with feature NHV (left) compared with the RGB 

data (right). 

6.4.2. Form analysis 

In this section the form of the tree segments is evaluated based on the flatness analysis. For this, 

the geometry feature Mean Quasi Flatness (MQF) is implemented (see section ‎5.8). The 

hypothesis in this case is that the segments belonging to the deciduous trees are flatter than the 

coniferous ones. The classification results are demonstrated in Table 13.  

Tree Type Values for 
Tree height 
from image 

MQF image 
Tree height 
from laser 

MQF laser 

Coniferous 

Min 1.79 0.051 3.30 0.100 

1st Quartile 18.10 0.063 17.17 0.129 

Median 20.88 0.077 19.51 0.162 

3rd Quartile 22.88 0.099 21.28 0.230 

Max 26.76 0.424 25.88 0.600 

Mean 20.30 0.090 18.71 0.218 

Deciduous 

Min 11.17 0.000 8.93 0.024 

1st Quartile 19.38 0.022 19.03 0.057 

Median 20.73 0.032 20.77 0.073 

3rd Quartile 23.28 0.040 23.08 0.088 

Max 26.02 0.050 25.85 0.100 

Mean 21.04 0.031 20.74 0.070 

Table 13: Analysis of form feature MQF on laser-based and image-based surface models 
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The distribution analyses of the coniferous and deciduous classes are represented in Figure 113 

and Figure 114 respectively. Due to the small values of MQF, they are represented with factor 10 

near the height values in the boxplots. Comparing the laser-based and image-based surface 

models, one can see that in both cases most of the segments are at the highest levels of elevations. 

However, due to the interpolation of the height values in the gap areas between the coniferous 

trees, the image-based elevation have even larger values compared to the laser data. The value of 

less than 4m for the minimum height of both datasets shows that some low vegetation segments 

are also categorized in this class. The reason is the small size of these segments which lead to 

higher values of MQF. These low vegetation areas can be simply excluded from the classification 

results by setting a threshold of height or segment size.  

 

Figure 113: Segment specification of coniferous classification using the form parameters on image-based and laser-

based surface models 

Compared with the coniferous classes, the deciduous ones (Figure 114) lay also in the top 

elevations (more than 19m for laser and image data). In contrast with the coniferous classes, the 

deciduous segments, classified by MQF on the image-based nDSM, possess nearly the same 

range of laser-based values. This is due to the density of the deciduous canopy and consequently 

fewer shadows in the gap areas. The false elevations calculated from the height interpolation in 

these regions are less than the coniferous ones. 
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Figure 114: Segment specification of deciduous classification using form parameters on image-based and laser-based 

surface models 

For a better illustration, the boxplot diagram of the coniferous and deciduous stands are compared 

and expanded in Figure 115. Referring back to Table 13, in both surface models, the MQF value 

of the coniferous segments are larger than the deciduous ones. This proves the hypothesis that 

deciduous trees are flatter than coniferous ones. The difference of mean values (0.059 difference 

for image-based and 0.148 for the laser-based nDSM) illustrates the greater efficiency of LIDAR 

compared to the photogrammetric method in keeping the geometric form of the trees. This is 

because of the smoothed form of the image surface models that the top point of the trees have 

less height than their true height in the nature. 
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Figure 115: Comparison of the tree classes based on image-based and laser-based form parameter MFQ 

The classification results are illustrated in Figure 116 and Figure 117. In both datasets, the MFQ 

feature can separate the coniferous and deciduous trees with more efficiency than the roughness 

feature. Even the isolated trees in both stand types (coniferous trees in deciduous stand and 

deciduous trees in coniferous stand) are significantly better distinguished using this geometry 

feature. 

 

Figure 116: Classification results using laser-based form feature MQF (left), compared with RGB data (right). 
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Figure 117: Classification results using image-based form feature MQF (left), compared with RGB data (right). 

6.5. Quantitative evaluation of single tree delineation 

For quantitative analysis of the single tree extraction algorithm, two aspects are taken into 

account; first the positioning accuracy of the single trees extraction and second the delineation of 

the crown regions. For this purpose, two datasets, called reference and target, are provided and 

compared. Each dataset contains vector data for tree positions in point format and for tree regions 

in the form of polygons. Evaluation of the tree regions, in this research, is undertaken on the basis 

of the spatial analysis of the reference and target polygons. The reference segments are simulated 

by the region growing of the segments on the surface models. The seed segments are the tree 

positions from reference segments. The growing procedure for each segment is weighted by the 

DBH, extracted from the terrestrial measurement (laser scanning and close-range 

photogrammetry) of the circles at breast height level.  The tree regions are finally controlled with 

spectral data. 

The tree positions in the reference dataset are extracted from the terrestrial methods (see 

section ‎6.2), whereas, in the target dataset, they are extracted from different features in the tree 

segment.  
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The tree positions, measured with the terrestrial laser scanning, are used to form a simulation of a 

reference dataset. To provide this simulated reference system the tree circles extracted from the 

combination of the close-range photogrammetry and the TLS data are used as seed objects. These 

will be converted into a thematic layer carrying the DBH characteristics in centimeter. This 

geometric value (segment area based on the DBH) will be used in a region growing algorithm as 

a weighting value, to simulate the tree crowns based on the available height data.  

The positioning evaluation is based on the measurement of distance between reference and target 

points in Euclidean space. The allocation of an arbitrary reference point to its related neighboring 

target points is based on the overlapping target polygons. This means, the target polygons without 

any overlap with the reference segment will not get any allocation value. For the point-point 

evaluation, the tree positions (TP) are provided in four datasets (Table 14).  

 

Reference points Target points 

 P: Position from TLS 
measurement of the tree 
circles at breast height 

 Mrb: Tree position from 
Marble Rolling segments 

 CR: Tree position from 
Centroid of Reference polygon 

 CT: Tree position from 
Centroid of Target polygon 

Table 14: Point to point datasets 

Among the allocated lines, the nearest point will be chosen as the related target point (Figure 

118). In the next step, the completeness evaluation (producer accuracy) of the distances is 

calculated and categorized using 1m to 3m buffers. As can be seen in Table 15, for the laser-

based data, the best quality of the evaluation is obtained from the comparison of the TLS 

measurements (P) and the positions of marble rolling (Mrb) segments. For single tree extraction 

with precision of less than 2m, the completeness of 87.2% and the correctness of 91% shows the 

efficiency of this method compared to the existing algorithms. In [Straub and Heipke 2007] these 

values were between 41% to 81% for completeness and 66% to 100% for correctness in single 

tree extraction of urban areas. 
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Point datasets 
Buffer 

Evaluation 
D <3m D <2.5m D <2m D <1.5m D <1m 

 Completeness 96.2 94.9 85.3 72.4 48.7 

CR-CT Correctness 92.3 85.1 72.9 62.4 42.0 

 Quality 89.0 81.3 64.8 50.4 29.1 

 Completeness 94.2 91.7 80.1 71.8 46.2 

CR-Mrb Correctness 92.8 86.7 76.8 65.7 39.8 

 Quality 87.8 80.4 64.5 52.3 27.2 

 Completeness 97.4 94.9 84.0 70.5 41.0 

P-CT Correctness 87.3 80.1 68.5 57.5 35.9 

 Quality 85.3 76.8 60.9 46.3 23.7 

 Completeness 95.5 95.5 87.2 78.2 56.4 

P-Mrb Correctness 98.7 96.8 91.0 81.4 56.4 

 Quality 94.3 92.6 80.8 66.4 39.3 

Table 15: Point-point evaluation (in %) of the laser-based data of the reference and target tree positions 

 

 

Figure 118: Allocation lines from the reference points to the target points in the case of P-CT datasets 



Experimental Results   145 

 

 

In [Persson et al. 2002] 86% of the trees with a diameter of more than 15cm are automatically 

detected. These parameters increase in the lower positioning accuracies (less than 2.5m and 3m). 

The lower values for the accuracy of less than one meter are because of the different 

characteristics of the airborne and terrestrial datasets. The inclination of the trees is assumed as a 

reason for this difference. 

In the image-based CHM (Table 16), for the distance buffer of less than 3m, the completeness of 

the extracted trees based on the centroid of the target segments (CT) shows better results (96.8% 

for CR-CT and 97.4% for P-CT). As the parameters CT and CR are dependent on the polygonal 

shape of the segment, these results are expected because of greater stability of the tree segments 

after region growing. The two independent parameters from region growing are the tree positions 

from the terrestrial measurements (P) and the marble rolling segments (Mrb). The completeness 

of 87.8% for positioning accuracy of less than 2m shows the high efficiency of this method in 

single tree extraction in coniferous stands. In Figure 119 the allocations of the extracted trees to 

the reference data are demonstrated for the buffer 2.5m. 

Point datasets 
Buffer 

Evaluation 
D <3m D <2.5m D <2m D <1.5m D <1m 

 Completeness 96.8 92.9 82.1 68.6 46.8 

CR-CT Correctness 99.4 84.5 70.7 58.0 40.3 

 Quality 96.3 79.4 61.2 45.8 27.7 

 Completeness 92.3 87.2 81.4 67.3 51.9 

CR-Mrb Correctness 99.4 88.4 78.5 59.1 45.3 

 Quality 91.8 78.2 66.5 45.9 31.9 

 Completeness 96.8 92.9 84.6 73.7 46.8 

P-CT Correctness 92.3 80.7 70.2 60.8 39.2 

 Quality 90.1 76.0 62.2 50.0 27.1 

 Completeness 93.6 90.4 87.8 77.6 64.1 

P-Mrb Correctness 95.6 89.5 74.6 66.9 54.7 

 Quality 89.7 81.7 67.6 56.0 41.9 

Table 16: Point-point evaluation (in %) of the image-based data of the reference and target tree positions 

In addition to positioning evaluation of the single tree extractor, to evaluate the quality of the 

segmentation the polygonal analyses are also incorporated in the next assessments.  
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Figure 119: Allocated trees from target segments of the marble rolling segments laser-based data to the reference 

TLS segments for the 2.5m buffer 

For the polygon-polygon analysis of the reference data and the extracted trees, the advanced 

overlapping factor (AOF) of reference and target segment is calculated (Figure 120). 

 

Figure 120: Quantitative evaluation based on overlapping factor of AOF  
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In addition to the overlapping ratio, the distance analysis is carried out based on the weighted 

distance (WD) factor.  

 

Figure 121: Point- point analyses of the reference and target datasets (P and Mrb) based on the weighted distance 

factor (WD) 

To incorporate the overlapping ratio into the distance analyses and to provide a point-polygon 

quality evaluator, the WDO factor (see section 5.10) is calculated. In the ideal case, the target and 

reference segments are 100% the same if they cover each other completely and, furthermore, the 

positions should be the same (WD=100%). 
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Figure 122: Point-polygon analyses of the reference and target datasets (P and Mrb) based on the weighted distance 

and overlapping factor (WDO) on LIDAR-based CHM 

The target segments with WDO < 10% are defined as the low quality segments which are due to 

the large distance or very small overlap with the reference segments. These oversegmented 

regions are, for the most part, the broad-leaved trees and can be seen in orange in Figure 122 for 

the LIDAR-based dataset. The best results are obtained for the WD of the marble rolling (Mrb), 

which shows the higher quality of this dataset for evaluation of the tree positioning. For the 

image-based data, the oversegmentation of the extracted trees is greater than the LIDAR data, 

which reduces the quality of the segmentation (Figure 123).  
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Figure 123: Point-polygon analyses of the reference and target datasets (P and Mrb) based on the weighted distance 

and overlapping factor (WDO) on image-based CHM 
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 7 

Conclusion and outlook 

 

 

This chapter outlines the results of 

this research and the outlook for 

future work. 
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7. Conclusion and outlooks 

7.1. Height-based forest mensuration 

The demand for more detailed mensuration of the individual trees is considered. Forest 

parameters at single tree level are for the most part related to tree height. In this research digital 

elevation models for European mixed forest are evaluated as an approach to single tree 

extraction. The focus is on comparison of laser-based and image-based digital elevation data. The 

spectral layers of aerial images are not implemented in this research for the following reasons: 

- Firstly, the spectral data are compromised by the different textural characteristics of the 

trees in the image scene. Capturing different sides of the trees in stereo imagery, different 

illumination and the problem of the shadows are the main concerns in this regards.  

- Secondly, the height of the trees is mostly used as a complementary layer in combination 

with the spectral data. As an important layer to describe the shape of the tree crowns, 

analyzing the CHM layers, independently from the spectral data, is necessary to consider 

the advantages and limitations of this layer for geospatial analysis in forestry. 

While image-based DSM is suitable for detailed stand-wise analysis, the complementary data 

such as spectral channels and vitality indices are required for the purpose of single tree 

extraction. The problematic areas are the gaps between the trees and the shadows. These areas are 

normally interpolated in image-based DSMs. In open stands, the completeness of the single trees 

falls off in such datasets. The lower roughness is one of the disadvantages of this data for the 

young stands in mixed-forests, where the tree regions are not easy to distinguish. This suggests 

that, for practical purposes, implementation of image-based CHM is recommended in dense and 

old forests. 

In the interests of completeness, due to the direct measurement of the tree crowns in LIDAR, 

these datasets are more reliable than the photogrammetric height data.  

7.2. From stand-wise analysis to single tree extraction 

The Roughness parameters are used to extract the characteristics of the stand, which is a method 

to define the stand type. Among the roughness parameters, the average based parameters provide 

general information about the stand geometry.  
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To define the appropriate parameters, e.g. scale space, a novel approach of marble rolling is 

proposed. Depending on the characteristics of the stands, the size of the marbles for single tree 

extraction can be identified. Having defined the stand type, the surface characteristics can be 

analyzed in further research to choose the appropriate parameters for marble rolling segmentation 

and region growing. 

Filtering the height data is carried out with a non-smoothing algorithm. In addition to removing 

the noise data, the main task of this filter is to close the gap pixels within the tree crown without 

changing the crown shape. These small pixels are the main reason for oversegmentation in 

LIDAR datasets. 

Surface analysis of the stand and crown height models can be used as an instrument for 

analyzing the characteristics of the forest areas and stand-wise partitioning of forests. Due to the 

influence of the peak and valley effect in evaluation of the surfaces, the roughness parameters 

related to the mean height of the stand, e.g. Ra, are reliable in the case of dense forests. To 

analyze the roughness of the tree surface models at finer scales the Rfstd feature is developed in 

this research. Using this surface evaluator the characteristics of the forests are evident at single 

tree level and can be employed as a feature in classification of the tree species. The results from 

different tree stands show that this parameter is independent from the stand density, the peak and 

valley effects or the stand type. Furthermore, the possibility of changing the sensitivity of the 

roughness evaluator is one of its great advantages. This parameter also serves to find the 

optimized strength and number of iterations in filtering the CHM data in the data preparation 

steps.  

Extraction of the roughness attributes based on the standard deviation of image-based nDSM 

provides less information from the surface than the laser data. The roughness characteristics in 

the image-based surfaces are dependent on the conditions during the imagery and also the surface 

calculation in post processing steps. Gaps in DSM data (caused from matching problems) and the 

smoothing parameters in final processes remove the significant characteristics required for 

roughness evaluations.  

The Marble-rolling method is proposed as a new and strong tool to extract seed objects. This 

method provides a solution to the problem of scale space. In the context of future work, the 
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author recommends development of this research in two aspects; firstly, to deepen the algorithms 

in different forest types and secondly, to exploit these techniques in other disciplines. For 

coniferous trees that might not have the expected cone form (like pine) the parameters should be 

set as for deciduous trees.  

Stand boundaries are extracted based on the curvature analysis. As the height difference 

between the trees which are in the same aging group varies significantly, it is not recommended 

to use the curvature profiles for separation of single tree crown regions. An automatically 

supervised region growing algorithm is implemented in this research, based on the morphological 

structuring elements, to keep the tree form the seed objects while growing as a tree segment. This 

will partition the stand into tree regions. 

However, for single trees in urban areas, the curvature parameters can succeed where sudden 

changes in elevation between the tree crown surface and the manmade objects (e.g. street, yard) 

occur. Separating the trees from the objects with close height values (like buildings in 

neighborhood) can be implemented considering the sudden changes in the textural characteristics 

and the homogeneity of the surface. Finding the appropriate settings for these features is a 

challenging approach in dense forests. 

7.3. Outlook 

To expand the techniques in forest classification, integration of this work with available forest 

information systems is advised. The roughness parameters can be used as main or complementary 

features, integrating with spectral layers for texture-based analyses. To define the geometric 

structure of the forests, e.g. the Stand Density Index (SDI), texture based surface analyses can be 

designed using developed roughness evaluators to extract the direction and wildness of the 

plantation. In this way, a detailed and extensive archive should be designed, in which each stand 

type is evaluated over different seasons and different ages. 

In other disciplines, due to the complexity of single tree extraction in forest areas, it is expected 

that the algorithms and techniques designed in this research will be implemented for extraction of 

single trees in urban areas or even for small vegetation in open lands. 

Due to the independence of the roughness parameter Rfstd from the height values, this evaluator 

can be employed also for change detection analyses in agricultural fields. 
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This algorithm can be studied in the case of different stand types. In coniferous stands, the 

growth direction of single trees can also be extracted in several marble projection layers. 

Combination of laser data with full-wave-form and intensity data can enrich these elevation 

models for the purpose of more accurate classification of the tree types.  
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9. Appendices 

Appendix 1: Roughness analysis over laser (La) or image (Im) CHM of a young beech stand 

430c4 and a young mixed deciduous stand 430c6 using the Rfstd evaluator with window size of 3 

pixels in different filter iterations: 
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430c4_Dec_La_Rfstd 11.59 9.73 9.11 8.83 8.70 8.65 8.62 8.61 8.60 8.60 8.60

430c6_Dec_La_Rfstd 6.90 6.67 6.63 6.62 6.61 6.61 6.61 6.61 6.61 6.61 6.61

430c4_Dec_Im_Rfstd 8.04 8.04 8.04 8.04 8.04 8.04 8.04 8.04 8.04 8.04 8.04

430c6_Dec_Im_Rfstd 5.77 5.77 5.77 5.77 5.77 5.77 5.77 5.77 5.77 5.77 5.77

Rfstd 
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Appendix 2: Environment of the Feature Extraction and Analyzing Tool (FEATsurf) 

developed using the GUI in MATLAB including the Marble-rolling tool, Roughness evaluators, 

and non-smoothing filter, Edge detection and Curvature analyses. 
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Appendix 3: Partial representation of the FEATsurf developed in MATLAB (Function 

Marble Rolling) 
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Appendix 4: Combined classes before segmentation refinement of a laser CHM of a 

deciduous stand. 
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Appendix 5: Partial representation of the implemented rule-sets designed and developed in 

the object-oriented environment of the software eCognition. 
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Appendix 6: Polygonal and point analyses of the image-based canopy height models 
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10. Abbreviations 

AHV 

 

Averaged Height Variations 

ALS 

 

Airborne Laser Scanning 

CHM 

 

Canopy Height Model 

CW 

 

Crown Width 

DBH 

 

Diameter at Breast Height 

DEM 

 

Digital Elevation Model 

DMC 

 

Digital Mapping Camera 

DSM 

 

Digital Surface Model 

DTM 

 

Digital Terrain Model 

fSTD 

 

Filtered Standard Deviation 

FWF 

 

Full Wave Form 

GSD 

 

Ground Sampling Distance 

HBW 

 

Habichtswald 

HRDI 

 

High Resolution Digital Images 

HRSC 

 

High Resolution Stereo Cameras 

IMU 

 

Inertial Measurement Unit 

IQF 

 

Inversed Quasi Flatness 

LIDAR 

 

Light Detection And Ranging 

LOD 

 

Level Of Detail 

ME 

 

Morphological Element 

MQF 

 

Mean Quasi Flatness 

Mrb/MR 

 

Marble Rolling 

nDSM 

 

Normalized Digital Surface Model 

NHV 

 

Normalized Height Variations 

OBIA 

 

Object Based Image Analyses 

RGB  

 

Red, Green, Blue 

RMS 

 

Root Mean Square 

SDI 

 

Stand Density Index 

SE 

 

Structural Element 

SGM 

 

Semi Global Matching 

STD 

 

Standard Deviation 

TLS 

 

Terrestrial Laser Scanning 

VHSR 

 

Very High Spatial Resolution  

WD 

 

Weighting Distance  

WDO 

 

Weighted Distance and Overlapping  
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